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Abstract-This note presents a state-space algorithm for the calcula- 
tion of a normalized coprime factorization of continuous-time general- 
ized dynamical systems. It will be shown that two Riccati equations have 
to be solved to obtain this normalized coprime factorization. 

I. INTRODUCTION 

Recent publications have shown the importance of normalized 
coprime factorization plant descriptions in the fields of control 
design [6], [1], robustness analysis [13], [15], model reduction [7], 
and identification for control [12]. 

In [9], the connection between the state-space realization of a 
strictly proper plant, and a coprime factorization has been 
established. The coprime factorization of a generalized dynami- 
cal system was presented in [17]. In [8], it has been shown that 
in order to calculate a normalized coprime factorization of a 
continuous-time strictly proper plant, one Riccati equation has 
to be solved. In [14], these results have been extended to proper 
plants. For discrete-time proper systems, the construction of a 
normalized coprime factorization has been formulated in [2]. 

In this note, we extend the results of [8] and [14] to the case of 
proper and nonproper systems in a generalized state-space form. 
It will be shown that in the calculation of a normalized coprime 
factorization for systems in a generalized state-space form, two 
Riccati equations have to be solved. An explicit algorithm to 
obtain this factorization will be given. 

11. PRELIMINARIES 

In this note, we adopt the ring theoretic setting of [4] and [16] 
to study stable multivariable linear systems. That is, we consider 
a stable system as a transfer function matrix with all its entries 
belor,$ng to the ring Z. For the application of our state-space 
algorithm, we will identify the ring Z with [w Hz, the space of 
stable real rational finite-dimensional linear time-invariant 
continuous-time systems. 

We consider the class of possibly nonproper and/or unstable 
multivariable systems as transfer function matrices whose en- 
tries are elements of the quotient field F:= ( a / b l a  E Z ,  b E 

3\00) .  The set of multiplicative units of 3 is defined as f : =  

{h ~ 2 I h - l  €8. In the sequel, systems P E FmX" are denoted 
as P E 3 and M* := M T (  -SI. 

Definition 2.1 [16]: A plant P E 3 i s  said to h_ave_a right (left) 
fractional representation-if there exist N ,  M( N ,  M )  E 3 such 
that P = NM-' (  = e-'?). 

The pair M ,  N ( M ,  N )  is a right (left) coprime factorization 
(RCF or LCF) if it is a right (left) fractional representation and_ 
there exist U, V ( U ,  V )  ~ Z s u c h  that UN + VM = I ( N U  + MV 
= I). 
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The pair M, N ( M ,  P?) is called a normalized right (left) 
coprime factorization (NRCF or N X F )  if it is an RCF (LCF), 
and M*M + N * N  = I(MM* + N N *  = I). 

Proposition 2.2: Let P ( s )  E 9 have McMillan degree r .  Then 
P(s) can be represented by P ( s )  = C(sE - A ) - ' B ,  where 

I 0  A A  
E = [ ( ;  0] '  . = [ A i :  A : : )  

with A, ,A; ,  = 0, A i 2 A 2 ,  = 0, and B2BT, CTC2 nonsingular, 
having matrix partitions assumed to be compatible with the 
partitioning of E. 

Pro08 Let P ( s )  = P X p , )  + Pp(s)  with PJp = c ( s l  - &'i 
strictly _ _ -  proper and Pp = C ( I  - sj)-'B polynomial, (2, B, 6, 
and (.I, B, C) controllable and observable matrix triples, and .I 
in Jordan form [ 111. Then, operations of restricted system cquiv- 
alence (RSE) [ l l ]  applied _ - -  to the polynomial system matrix [lo], 
[5] corresponding to (.I, B,  C )  yield 
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The resulting structure (2) is obtained by solely interchanging 
rows and columns containing an s, and by performing sign 
changes. Controllability and observability of systems in Jordan 
form imply no-nsipgularity of _B,B: and CTC, [3]. The Jordan 
form implies .I,,.IL = 0 and J & f 2 ,  = 0. Now defining 

(3) 

where the partitions have consistent dimensions, leads to (11, 
0 and this proves the proposition. 

111. MAIN RESULT 

The main result consists of two parts. First, we will show that 
an NRCF of P is a stable full-rank spectral factor of 

[;](I +P*P)-I[I P * ] .  (4) 

Secondly, we will use this result to obtain a state-space realiza- 
tion of an NRCF of P. This will be presented in the form of an 
algorithm. 

Theorem 3. I: Let P E F be given. Then the following state- 
ments are equivalent: 

a) ( N ,  M )  is an NRCF of P. 
b) [E] €3, where ( N ,  M )  right coprime is a full-rank spec- 

tral factor of 

[ ; ] ( I + P *P ) - I [ I P * ] .  
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Proof a) + b). Given ( N ,  M )  as an NRCF of P.  Then The following corollary enables the construction of both an 
NRCF and NLCF of a plant using the algorithm presented 
above. 

[ E] €2 is full rank and (4) can be written as 

[ N;- l ] ( l  + M*-"*NM-') - l [ z  M*-"*] 
Corollaly 3.2: If ( M ,  N )  is an NRCF of system P ,  then 

( M T ,  N T )  is an NLCF of PT. 

= [ 3 M * M  + N * N ) - ' [ M *  N * ]  IV. EXAMPLE 

Assume that our nonproper system is a double differentiator 
P ( s )  = s2 .  A generalized state-space form of P ( s )  is 

= [ 3 M *  N * ]  

which shows b). 

( N ,  M )  right coprime, i.e., (4) equals [ z ] [ M *  N * ] .  Premulti- 

E 2 be a full-rank spectral factor of (4) with 

L 1  

plication by [ P  -I] yields [ P  -I][ z ]  = 0, which shows that 

( N ,  M )  is an RCF of P .  Postmultiplication of (4) by [E] yields 

[ T ] [ M *  N * ] [ ; ]  = [ ; ] ( I  + P * P ) - ' [ I  P * ] [ ; ] M  = [E],  
y =  [-1 0 of!]. 

which implies [ M* N * ]  [ E ]  = I ,  and this shows a). 0 

Based on Theorem 3.1, the following algorithm has been 
constructed, which will lead to a state-space representation of an 

Using Proposition 2.2, we can bring this system in the form (11, 
(3) 

NRCF of a system in generalized state-space form. The proof is 
given in the Appendix. 

Algorithm: Let P ( s )  be a real rational (possibly nonproper) 
transfer function of McMillan degree r. . ,  

Step 1: Perform the construction of a system in the particular 
generalized state-space form (1) having the structure defined by 
(2) yielding (3) as formulated in Proposition 2.2 and its Proof. 

Step 2: Calculate W2 as the stabilizing solution to the Riccati 
equation 

CrC2 + W2A2, + A;2W2 - W2B,BTW2 = 0 .  

Step 3: Define Y,  Z ,  c, B, x to be 

Then, the steps outlined in the proposed algorithm yield a 
state-space realization U,, B,, c,, 0,) of [ E ]  as 

Y : =  - ( W 2 A 2 ,  + CTC2)-'(AT2 - W2B2BT) 

Z := - ( W 2 A 2 ,  + CTC,)-I(CZC, + W 2 A I 2 )  

c := c, + c2z 
x:= A , ,  + (Al2 + YTCTC2)Z + YTCTC, 

Therefore, ~ ( s )  = (1/(s2 + Jzs + I)), ~ ( s )  = ( s 2 / ( s 2  + as 
+ 1)); and M ( s ) ,  N ( s )  E 3, N ( s ) M ( s ) - '  = P(s) ,  and 
M * ( s ) M ( s )  + N * ( s ) N ( s )  = I. 

:= B, - ( A l 2  - B1BTW2)(A2, - B2BTW2)-'B2.  

Step 4: Calculate W, as the stabilizing solution to the Riccati 

V. CONCLUSIONS 

In this note, a state-space algorithm for the calculation of a 
normalized coprime factorization of continuous-time generalized 

Riccati equations have to be solved in the calculation of this 

these Riccati equations are well defined. 

equation 

cTC + A7WT + W , x -  W,BBTWT = 0 .  

step 5: A regular state-space realization ( A , ,  B,, e,, 0,) of dynamical systems has been given. It has been shown that two 

the NRCF 7 having an Order to the McMillan normalized coprime factorization. As shown in the Appendix, 
degree of P s), is obtained, with 

APPENDIX 

I '  
A ,  =x- BBTWl, B, = Bl(Z - B2#B2) +A12W; 'Bfr  

In this Appendix, we prove the existence of an NRCF ( M ,  N )  
of P E F a s  constructed in the algorithm. 

Let the generalized state-space realization of the system be 
partitioned according to Proposition 2.2, and apply operations of 
restricted system equivalence [ll] to a generalized state-space 

- B f B 2  (BfB2 - Z)BTW, - B2#A2] 

( I  - C2C2#)C1 - c,#2~,w, ]4=[ C,#'W2B, ] 
using Bf = Bc(B2BT)-' and Cf = (CfC2)- 'C2.  
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0 - s E T - A T + F T B T  
- B B ~  

F - BT 
-C 0 

SE - A  + BF 
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- F T  CT 
B O  

I O  
0 0  

realization of ( I  + P * P ) - ’ [ I  P*] as follows: 1 ;I which equals a generalized state-space realization of the transfer 
function [ :] [ M *  N*] with 

Now it can be easily checked that P ( s )  = N(s)M-’(s ) .  Using 
operations under restricted system equivalence [ 111, the con- 

the state-space form 
structed generalized state-space realization of 

B , ( I  - B;B,) + A, ,W,-~B;~ 

- ( I  - C,C,#)C, + c$4:,w, C,”’W, B, 

(5) 
with 

Q = s ( E T W T  - WE) + CTC + A T W T  + WA - WBBTWT. 
(6) 

The right-hand side of (5) defines a generalized state-space 
realization of a spectral factor of ( I  + P * P ) - ’ [ I  P*], pro- 

vided that Q in (6) is equal to zero. Define W = [: with 

W,  = WT, W2 = WT, W partitioned in accordance with E. Then, 
the first part o f (6 ) ,  s (ETWT - W),  equals zero. Define A, ,  = 

A, ,  + A,,X,  A,, = A , ,  + A2,X,  el = C ,  + C,X, X = YW, + 
Z with 

[ :I 

Y = -(w,A,, + c;c,)-’(A;, - w,B,B;) 

Z = -(W,A,, + ClC, ) - ’ (C lC ,  + W,A,,) 

where W,, W, are the stabilizing solutions to the Riccati equa- 
tions 

0 = CTC, + W2A2,  + A$,W, - W,B,B,TW, 

0 = CTC + AIWT + W , x -  WIEETWT 

with 

c := c, + c,z 
A:= A, ,  + ( A l 2  + YTCTC2)Z + YTCTC, 

E := B, - ( A l 2  - B1B;W2)(A2,  - B,B:W,)-IB,. 

The existence of the Riccati solutions follows directly from 
properties formulated in Proposition 2.2. 

Using F := [BFW, - BTW,X B:W,], (5) can be written as 

with Bf = B;(B2B;)-’ and C,” = (CTC,)-’C,. Hence, 

is proper and asymptotically stable. This shows that the pre- 
sented algorithm will lead to a state-space representation of an 

0 NRCF of a system in generalized state-space form. 
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