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Summary

With the growing demand for air travel, minimizing operational downtime at airports has become increas-
ingly critical for maintaining efficiency. Winter weather is a significant contributor to such disruptions,
often resulting in flight delays, cancellations, and substantial economic losses. This underscores the
importance of effective winter maintenance strategies, including aircraft de-icing and snow removal
from runways, taxiways, and aircraft stands. While aircraft de-icing and runway and taxiway clearance
have been widely studied, snow removal at aircraft stands has received limited attention, despite be-
ing critical nodes for boarding, disembarking, and baggage handling. Insufficient cleaning can delay
inbound and outbound flights, reducing overall airport capacity. Gaining a deeper understanding of
aircraft stand snow removal performance is therefore essential to improve winter resilience at airports.

This study aims to quantify aircraft stand snow removal capacity and develop a data-driven forecasting
model to predict cleaning performance under varying operational and environmental conditions, using
Amsterdam Airport Schiphol as a case study. In doing so, it addresses the following research question:

”How can a data-driven forecasting model be designed to improve the estimation of aircraft stand
snow removal capacity and enhance airport capacity planning during snowfall?”

The research followed the Define-Measure-Analyze-Design-Verify (DMADV) methodology, a structured
approach derived from Lean Six Sigma that is particularly suited for developing new processes or prod-
ucts. The Define phase introduced the research problem and identified key gaps in the literature, no-
tably the limited focus on aircraft stand snow removal, particularly in relation to airport capacity during
winter weather. Existing models also lack standardized snowfall classifications, limiting the comparabil-
ity of results. Furthermore, this study introduces a novel application of ground radar data by analyzing
the movements of specialized ground vehicles rather than aircraft. In addition to identifying these knowl-
edge gaps, the literature review outlined six main categories of factors influencing winter maintenance
performance: preparation, resources, airport-specific factors, environmental influences, operational ef-
ficiency, and human factors. These factors and their interdependencies form the basis for assessing
current snow removal performance at aircraft stands.

Following the problem definition, theMeasure phase analyzed current aircraft stand cleaning operations
at Schiphol Airport. As shown in Figure 4.11, the process was broken down into its chronological
phases, highlighting key preparatory and operational activities.

Figure 1: Chronological phases of snow removal process

The analysis provided insight into how airport capacity is determined prior to a snow event to ensure
safe and manageable airport operations. Hourly airport capacity is set by the most limiting factor of
three factors: runway availability, de-icing capacity, or aircraft stand availability. Airlines are advised
to cancel flights accordingly. While Schiphol’s runway and de-icing capacities are relatively well un-
derstood and supported by forecasting tools, stand cleaning capacity remains poorly quantified and is
often overlooked in strategic discussions. This can lead to overestimated inbound capacity, resulting
in queues, delays, and unplanned cancellations, highlighting the need for data-driven investigation of
aircraft stand snow removal capacity.
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To support this, insights from both the literature review and current state analysis were combined to
develop a swimlane and causal diagram, identifying capacity-defining events and key influencing vari-
ables. These diagrams formed the conceptual foundation for a classification algorithm that categorizes
historical radar tracking data from each cleaning team into one of three operational phases, cleaning,
traveling, or idle.

The classified phases enabled cleaning capacity estimation and performance analysis, focusing on
team availability, task durations, routing patterns, and overall capacity. Key findings included:

• On 50% of snow operation days, one fewer team than planned was available.
• Idle time varied considerably; a 35-minute break per 8-hour shift was assumed.
• Wide-body stands required longer cleaning times than narrow-body stands.
• Consecutive cleaning tasks within the same bay significantly reduced travel time compared to
cross-bay operations.

• Although efforts were made to limit cross-bay movements, the ratio of within-bay to cross-bay
has remained stable at 55%–45% since 2017.

• Cleaning time was the dominant component of the total cleaning cycle.
• Capacity (cleaning cycles/per hour) showed a right-skewed distribution, peaking at 2-3 cycles per
hour.

In the Analyze phase, the relationship between key variables and aircraft stand cleaning capacity
was systematically examined. Minute-level KNMI data were used to incorporate weather variables
alongside operational factors identified in the Measure phase and clear classifications were applied
to weather conditions. The analysis revealed that only snow depth (low or high) significantly affected
cleaning capacity, with low accumulation (< 50 mm) associated with increased capacity. Other weather
variables showed no significant impact, likely due to limited variability across the observed events.
Among operational factors, stand type and route type significantly influenced cleaning capacity.

These results formed the basis for defining scenario-specific capacities. However, not all scenarios
with combined variables proved statistically significant, for example, no clear capacity difference was
observed between Nabo and Wibo stands for cross-bay routes. Based on these insights, four distinct
capacity scenarios were defined to reflect key environmental and operational conditions. In addition,
three weather forecast uncertainty levels, Low, Middle, and High, were established. The Middle sce-
nario serves as the baseline, while the Low and High scenarios represent more favorable and more
severe weather conditions, respectively. The final capacity scenarios are shown in Table 1.

Stand Route Snow Capacity
Low Middle High

Nabo within-bay Low 7.2 4.9 3.2
Nabo within-bay High 5.7 3.7 1.9
Nabo cross-bay Low 3.3 2.2 1.8
Nabo cross-bay High 3.3 2.2 1.8
Wibo within-bay Low 5.5 3.4 2.0
Wibo within-bay High 5.5 3.4 2.0
Wibo cross-bay Low 3.3 2.2 1.8
Wibo cross-bay High 3.3 2.2 1.8

Table 1: Categorized capacities

The forecasting model was designed as a simulation-based tool that replicates aircraft stand snow
removal operations under varying environmental and operational conditions. The design, visualized
using a flow diagram (Figure 9.1), illustrates how time-dependent constraints, such as capacity limits,
team availability, and stand suitability, interact to determine cleaning assignments and queue formation.

The model uses two types of adjustable input variables:

• Situation-specific inputs, that vary per snow event (exemplified in Table 2a)
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Figure 2: Design

• Operational inputs, reflecting structural process assumptions (Table 2b).

The model processes scheduled flight data and dynamically adjusts capacity per time slot based the
Nabo/Wibo distribution, route type ratio, and snow depth level. Cleaning demand is compared against
available capacity, flagging time slots where demand exceeds capacity and queues emerge, highlight-
ing potential delays and guiding decision-making.

Variable Values
Scenario Middle
Time window of forecasted snow 03:00 - 11:00
Time window of forecasted 03:00 - 05:00; low
accumulation levels 05:00 - 10:00; high

10:00 - 11:00; low
Number of teams active at centrum 4
Number of teams active at CDF 2
Runway capacity restriction 03:00 - 06:00; C

06:00 - 07:00; D
07:00 - 08:00; E
08:00 - 09:00; D
09:00 - 10:00; E
10:00 - 11:00; D

Deicing capacity restriction 07:00 - 10:00; 12
10:00 - 11:00; 24
11:00 - 15:00; 26

Additional capacity restriction -
(a) Initial user-defined inputs virtual situation

Variable Values
Time slot minutes 30 minutes
Maximal Inbound capacity E: 10 flights/hour,
per runway availability scenario D: 17 flights/hour,

C: 35 flights/hour,
B: 68 flights/hour

Runway clean time 40 minutes
Handling time Nabo: 50 minutes,
type Wibo: 75 minutes
Break duration 35 minutes
Start time of first break after 3 hours
Shift duration 8 hours
Route type weights within-bay: 55%,

Cross-bay: 45%
Situation-specific capacity See Table 6.7

(b) Inputs reflecting operational assumptions

Table 2: Model inputs
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The forecasting tool is demonstrated using the virtual snow scenario discussed during the sector briefing
training in November 2024. While the session concluded that runway and deicing capacity would be the
primary constraints between 06:00 and 15:00, and that stand capacity would not present a limitation,
the model results suggest otherwise (Figure 3). Queues begin forming around 06:30, with congestion
intensifying after 10:00, posing a significant risk to operational continuity, including delays and potential
cancellations. This supports the conclusion from the Measure phase that limited data-driven insight
into stand cleaning capacity leads to its underestimation in strategic planning, risking overestimated
inbound capacity and resulting queues.

Figure 3: Model output base scenario

The emergence of queues when stand cleaning capacity is disregarded underscores the strategic im-
portance of the developed model as a decision-support tool. The model enables users to proactively
explore and evaluate interventions aimed at reducing delays and mitigating congestion through the in-
put variable Additional Capacity Restriction. For example, applying a restriction of 12 flights per hour
between 10:00 and 12:00 results in congestion dissipating rapidly after 10:00, reducing both the total
number of queued aircraft and the maximum queue length (Figure 4). This illustrates the tool’s value
for proactive scenario testing and congestion mitigation.

Figure 4: Model output with additional restrictions

Beyond its operational value during snow events, the forecasting model offers valuable insights for
strategic optimization by simulating structural changes, such as shifting the within-bay versus cross-
bay ratio or optimizing team deployment by identifying periods of over- and underutilization.
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The model was validated using a historical snow event (January 5, 2025), a sensitivity analysis, and
stakeholder feedback from Schiphol. Both the real-life scenario and sensitivity analysis confirmed
realistic behavior. Stakeholders confirmed the model’s realism and value in capturing the impact of
stand cleaning capacity and supporting capacity planning during sector briefings.

Although designed for Schiphol, the model is adaptable to other airports that employ dedicated stand
cleaning teams during winter operations. Schiphol-specific inputs, such as the distinction between
centrum and CDF teams or predefined runway scenarios, can be easily adapted to suit other airport
environments.

Despite offering valuable insights and a practical forecasting tool, some limitations remain. The lim-
ited weather variability in the dataset restricted the assessment of severe conditions, leading to non-
significant effects for most weather-related variables, despite literature and current state analysis high-
lighting the importance of snow conditions. Additionally, key factors such as stand occupancy, airside
traffic, and human elements (e.g. staff experience and coordination) were beyond the study’s scope
but likely influence performance.

Moreover, to keep the simulation operationally useful, simplifying assumptions were made. For exam-
ple, route types were assigned based on a fixed Nabo/Wibo ratio rather than dynamic team positions,
which may not fully capture real-world complexity.

Future research should aim to improve model realism by dynamically modeling route types using clean-
ing team locations and by incorporating more diverse snow event data. Integrating operational factors
like stand occupancy, airside traffic, and human behavior, via advanced simulation or qualitative anal-
ysis, would further enhance model accuracy.

In conclusion, the developed forecasting model allows users to simulate stand cleaning operations by
choosing the applicable scenario-based inputs. With the model, capacity bottlenecks can be antici-
pated, and mitigation strategies can be evaluated. It also serves as a strategic tool for scenario testing,
helping to assess the impact of operational variables such as routing strategies or team availability,
ultimately contributing to more robust and efficient winter operations.
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1
Introduction

1.1. Problem Statement
With the growing demand for air travel, minimizing downtime at airports is becoming increasingly criti-
cal to maintain operational efficiency (Fernández et al., 2016; Pačaiová et al., 2021; Šváb et al., 2019).
At Amsterdam Airport Schiphol, for example, a single day of airport closure can lead to costs of ap-
proximately €2.3 million for the airport and between €40 and €80 million for airlines (Schiphol, 2018).
Winter weather is a significant contributor to operational disruptions, posing serious challenges to safety,
punctuality, and cost management. These disruptions often result in flight delays, cancellations, and
substantial economic losses for the aviation sector (Janic, 2009; Koščák et al., 2012; Merkert & Mangia,
2012; Pačaiová et al., 2021; Šváb et al., 2019). Beyond disruption-related costs, winter maintenance ac-
tivities themselves impose significant expenses for airports and ground handlers (Koščák et al., 2020).
This highlights the need for an efficient winter maintenance plan to effectively manage and mitigate
the operational and financial impacts of adverse winter conditions (Pačaiová et al., 2021; Šváb et al.,
2019).

To ensure operational continuity and the safety of passengers, airport personnel, and flights, various
winter maintenance activities are carried out. These primarily include anti-icing and de-icing. Anti-icing
involves the prevention of ice accumulation on surfaces through the application of specialized fluids that
create a temporary barrier, slowing down the formation of ice. In contrast, de-icing focuses on removing
ice or snow that has already accumulated. In aviation, anti-icing and de-icing are applied to both aircraft
and airport pavements. Aircraft anti-icing and de-icing (hereafter referred to as aircraft de-icing) are
essential for safe operations, as snow or ice on an aircraft can significantly impair its aerodynamics.
However, they also result in longer gate handling times or longer taxi-out times, depending on where the
aircraft is deiced, contributing to prolonged stand occupancy and departure delays (Alsalous & Hotle,
2024; Janic, 2009). Pavement anti-icing and de-icing are equally crucial, ensuring that all essential
infrastructure, including runways, taxiways, taxilanes, and aircraft stands, remains fully operational
for the safe movement of aircraft, vehicles, personnel, and passengers (Janic, 2009; Koščák et al.,
2020; Zhang et al., 2022). Runways must maintain adequate friction levels to enable safe takeoffs and
landings, taxiways and taxilanes require sufficient rigidity to support turning maneuvers, and aircraft
stands must be cleared to facilitate passenger boarding and deboarding, baggage handling, and other
ground operations (Koščák et al., 2020; Pačaiová et al., 2021; Šváb et al., 2019). To ensure smooth
and efficient winter operations without interference between snow removal teams and airside traffic,
particularly aircraft, carefully planned and coordinated winter maintenance strategies are essential.

Numerous studies have explored winter maintenance activities at airports under adverse weather con-
ditions. As outlined in Chapter 3, these studies predominantly focus on aircraft de-icing and snow
removal from runways and taxiways, while the clearing of aircraft stands has been largely overlooked.
However, aircraft stand availability is a critical determinant of overall airport capacity, making efficient
stand operations essential during winter weather events. This study addresses this gap by focusing
specifically on snow removal from aircraft stands, using Schiphol Airport as a case study.

2
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1.2. Objective and research questions
The primary objective of this research is to accurately quantify aircraft stand cleaning capacity under
varying conditions and to design a forecasting model that predicts this capacity based on anticipated
weather and operational factors. By establishing a data-driven approach to capacity estimation, this
research aims to enhance airport-wide capacity planning during winter operations and support the
optimization of snow removal strategies for aircraft stands.

To achieve this objective, the following main research question has been formulated:

”How can a data-driven forecasting model be designed to improve the estimation of aircraft stand
snow removal capacity and enhance airport capacity planning during snowfall?”

The primary research question is addressed through the following sub-questions:

1. What is the current process for snow removal at aircraft stands?
2. What key factors are theoretically expected to influence the capacity of snow removal operations

at aircraft stands?
3. What insights do historical data offer about the performance of current snow removal operations?
4. Which factors are shown by historical data to significantly affect aircraft stand snow removal ca-

pacity?
5. How can these insights be used to design a forecasting model that supports winter weather ca-

pacity planning under varying situations?
6. To what extent does the forecasting model provide accurate and usable capacity forecasts during

simulated snow events?

The main research question and its sub-questions are explored using Schiphol Airport as a case study.
Further details regarding the case context are provided in the following subsection. The generalisability
of the findings beyond Schiphol is discussed in Section 9.1.

1.3. Schiphol Airport
This research investigates the winter maintenance strategies used at Schiphol Airport, located near
Amsterdam. As the largest airport in the Netherlands and one of Europe’s busiest hubs, Schiphol
processed nearly 474.000 aircraft movements and welcomed over 66.5 million passengers in 2024
(Schiphol, 2024). It ranks second in Europe for direct connectivity and fourth globally as a connected
hub (ACI EUROPE, 2024). Given its critical role in international air travel, ensuring smooth and efficient
operations is essential to avoid delays and maintain high performance.

Schiphol Airport operates six runways, of which five serve primarily commercial traffic. During daytime
operations, up to three runways are used simultaneously, based on factors such as weather, safety,
and runway maintenance. At night, operations are limited to two runways. Schiphol’s layout features
eight aprons in the centrum area (A to H), as well as several additional aprons located outside centrum,
including J, K, M, P, R, S, U, and Y. An extensive network of taxiways and taxilanes connects the aircraft
stands to the runways. Figure 1.1 illustrates Schiphol’s main infrastructure.

Upon landing on one of Schiphol’s six runways, a commercial aircraft receives instructions from the cor-
responding ground controller, an LVNL (Luchtverkeersleiding Nederland) air traffic controller stationed
in the tower who manages airside movements of aircraft and vehicles. The ground controller directs the
aircraft to its designated parking position along taxiways and taxilanes, a process known as ”taxiing”.
Following the instructed route, the aircraft reaches its designated parking position, referred to as an
”aircraft stand”. Once the aircraft is securely parked, a jet bridge (or mobile stairs for remote stands)
is positioned to facilitate passenger disembarkation. Simultaneously, ground crews begin unloading
baggage for transport to the terminal.

During winter maintenance operations, close coordination between Apron Control & Planning (APC, a
Schiphol department in the tower responsible for towing), and snow removal teams is crucial tominimize
disruptions with aircraft, as both the teams and aircraft operate within the same maneuvering area. At
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Schiphol, snow removal activities on critical infrastructure involve three snow fleets (Snow Fleet 1 to 3)
dedicated to clearing snow from runways, runway exits, taxiways, and taxilanes, as well as six Aircraft
Stand Clearing Teams (ASCTs, numbered 4-9) responsible for removing snow from aircraft stands.
These efforts aim to maintain airport capacity during snowfall as close as possible to normal levels.
Inadequate coordination, however, can significantly reduce operational capacity (Bolsius & Scholten,
2024). The snow removal process from aircraft stands is further detailed in Chapter 4.

During snowfall, Schiphol’s operational capacity must be proactively adjusted to reflect reduced in-
frastructure availability and to ensure safe, manageable flight operations. This capacity is determined
during sector briefings, where the most constraining factor, either runway availability, de-icing capac-
ity, or aircraft stand availability, defines the overall hourly airport capacity. While Schiphol’s runway
and de-icing capacities are relatively well understood and supported by forecasting tools, the capacity
for aircraft stand snow removal remains poorly quantified and lacks a solid empirical foundation. This
gap hinders accurate capacity forecasting during snow events and increases the risk of operational
mismatches. In particular, underestimated stand availability can result in queues of aircraft awaiting
cleared stands, causing delays and, in some cases, unforeseen flight cancellations. As such, aircraft
stand snow removal capacity warrants further investigation and data-driven modeling.

1.4. Research scope
The winter season spans from November 15 to April 15, during which employees are on standby for
potential snow operation.

As previously noted, Schiphol’s layout comprises eight aprons in the centrum area (A to H), along with
several additional aprons located outside centrum, including J, K, M, P, R, S, U, and Y. For this study,
the focus is on ASCTs 4 to 9, which are responsible for cleaning the aircraft stands at aprons A, half
of B, C, D, E, F, G, and the Central de-icing Facility (CDF). The other aprons either have a dedicated
snow removal team or are out of service. For instance, aprons R, S, and U have dedicated cleaning
teams that operate independently, without direct coordination with APC. The same applies to apron H
and half of B, although ASCTs 4 to 9 may be called to assist with cleaning at these aprons if necessary.
Aprons P and J (also called the CDF) are designated for de-icing operations. During snowfall, ASCT
4 is assigned to continuously clean this area. Once snowfall has stopped and aprons J and P are
fully cleared and made non-slippery, ASCT 4 will split into two teams, ASCT 4 and ASCT 9, to provide
additional support to the other ASCTs working at centrum. Aprons K and M fall under the responsibility
of ASCT Schiphol East. Finally, apron Y is typically used for lining up, refueling and relieving snow fleets
1 to 3. However, if apron Y is needed to accommodate aircraft, ASCTs 4 to 9 will clean it accordingly.

Aircraft stands can be categorized based on the size of the aircraft they accommodate, either wide body
or narrow body, and by the origin or destination of the flight, classified as Schengen or non-Schengen.
For the purpose of determining snow removal capacity based on historical data, only the aircraft stand
size will be taken into account, as this directly influences the time required for cleaning. While Schen-
gen status may influence the order in which stands are cleared, since certain arriving flights must be
assigned to specific stands, which may affect the route taken by a cleaning team, this operational effect
is not included in the capacity analysis. However, the forecasting tool does incorporate the distinction
between Shengen and non-Shengen stands. This is necessary because the model may reassign ar-
riving aircraft to available clean stands, in which case compliance with Schengen regulations must be
ensured.

The capacity determination process relies on high data granularity, as snow operations take place
at most a few days per year, and may not occur at all in some winters. These events are highly
irregular and difficult to predict in advance. As a result, each snow event provides valuable but scarce
data, making it crucial to capture detailed, high-resolution information to maximize operational insights.
Furthermore, the forecasting model developed in this research is designed to be continuously updated
as new data becomes available, allowing for improved accuracy and adaptability over time.

The forecasting model is used one day before snowfall (D-1) or on the day of snowfall (D-0).

Finally, only influencing factors that can be directly retrieved from the data are included in the scope of
this research. Factors that cannot be captured from the data are considered out of scope.
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1.5. Societal and academic relevance
This research contributes to both academic knowledge and practical airport operations by addressing a
largely unexplored but operationally critical aspect of winter maintenance: the snow removal capacity of
individual aircraft stands. Whilemost existing literature has focused on runway and taxiway clearance or
aircraft de-icing, stand cleaning has received limited attention. Yet, stand availability directly influences
inbound capacity, and insufficient cleaning performance can lead to operational bottlenecks and delays.

From an academic perspective, this thesis provides a novel, data-driven methodology to quantify air-
craft stand cleaning capacity under varying conditions. It leverages high-resolution radar data to an-
alyze cleaning team behavior and identifies key determinants through statistical analysis. In doing
so, it addresses two notable gaps in existing literature: the limited understanding of stand-level winter
maintenance performance and the utilization of ground radar data from airside vehicles for operational
analysis, both of which are discussed in Chapter 3.

The societal relevance lies in its direct applicability to real-time decision-making at Schiphol Airport
during snow events. Schiphol’s capacity during under such conditions depends on the combined effec-
tiveness of runway clearing, de-icing operations, and stand cleaning. While the capacities of the first
two are well-established, the precise capacity of aircraft stand cleaning remains uncertain. By accu-
rately forecasting this capacity, the model developed in this research supports more informed capacity
planning, enabling better coordination of operations, reducing unnecessary bottlenecks and delays,
and improving the overall passenger and airline experience during winter disruptions.

1.6. Structure
This research follows the five phases of the DMADV methodology: Define, Measure, Analyze, Design,
and Verify. Each chapter aligns with one of these phases and collectively contributes to the develop-
ment of a data-driven forecasting model for aircraft stand snow removal capacity.

The current chapter introduces the research topic, outlining its context, objectives, and relevance, con-
tribution to defining the problem. Chapter 2 describes the overall research approach, elaborating on
the DMADV methodology and the tools and techniques applied throughout the project. Chapter 3
presents the literature review, identifying gaps in current knowledge on winter airport operations and
highlighting relevant factors affecting snow removal performance, meteorological snow classifications,
and applicable data analysis techniques. The former contribution the the definition of the problem, and
the latter contributing to the current state analysis. Chapters 4 and 5 together constitute the Measure
phase. They describe Schiphol Airport’s current snow removal operations and quantifiy the current
performance of the operations using historical data. In Chapter 6, the analysis of operational and envi-
ronmental factors is conducted to identify key drivers of cleaning capacity, forming the basis for model
input. Chapter 7 introduces the design of the forecasting model, while Chapter 8 assesses the model’s
performance through scenario analysis, sensitivity testing, and peer reviews.

Finally, Section 9 addresses the main research question, highlighting both the practical and academic
contributions of this study. Furthermore, the section discusses the limitations and offers recommenda-
tions for future work. Additional details and supplementary analyses can be found in the appendices.

Throughout this report, two styles of highlighted boxes are incorporated to emphasize important infor-
mation:

Statements relevant to the development of the model (input data and assumptions).

Key conclusions from chapters, sections, or subsections.
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Figure 1.1: Layout Schiphol



2
Methodology

To achieve the primary objective of this study, quantifying aircraft stand cleaning capacity and devel-
oping a forecasting model to predict this capacity under varying scenarios, thereby improving winter
weather airport capacity planning, the DMADV methodology was selected as the guiding framework.
DMADV, which stands for Define, Measure, Analyze, Design, and Verify, is derived from the Lean Six
Sigmamethodology and builds on the DMAIC framework (Define, Measure, Analyze, Improve, Control).
While DMAIC is typically applied to the optimization and continuous improvement of existing processes,
the focus of this research lies in the design of a new, data-driven model to support capacity planning
during snow events. As such, DMADV provides a more appropriate structure. It is particularly well-
suited for projects involving the development of new processes, products, or models that must meet
specific performance requirements, aligning closely with the goals of this research (Majumdar & Selvi,
2014).

In the Define phase, the introduction outlines the problem, defining the goals and scope, supported by
conclusions drawn from the literature review. This phase provided the overall direction and focus for
the project. The Measure phase involved identifying and collecting relevant data to gain insight into
current snow removal operations at Schiphol Airport. The Analyze phase then explored the key factors
on cleaning capacity in depth. In the Design phase, a forecasting model was developed to estimate
aircraft stand cleaning capacity under various conditions, incorporating insights form the Measure and
Analyze phases. Finally, the Verify phase involved validating the model using a real-life snow event
and conducting a sensitivity analysis to assess robustness. Stakeholder feedback was incorporated to
make refinements, ensuring the model’s reliability for capacity planning during winter conditions. This
phase ensured that the forecasting tool met the predefined requirements and could reliably support
capacity planning during winter weather conditions.

Figure 2.1 provides an overview of the research phases, alongside the methodologies applied at each
stage. The following sections provide an explanation of each methodology and its application within
the research process.

2.1. Desk research
To address the first two sub-questions, a thorough review of documents related to winter operations at
airports was conducted. Key internal resources, such asWerkboek Sneeuw & Gladheid andWinterop-
eratie: Sneeuw & Gladheid, were analyzed (Bolsius and Scholten, 2024; Bolsius et al., 2023; Service
Owner Sneeuw en Gladheid, 2023). These findings were complemented with insights from relevant
literature and interviews with KNMI and DTN. Together, these sources contribute to a thorough under-
standing of the current snow removal process and the key factors influencing aircraft stand cleaning
operations.

7
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Figure 2.1: Schematic overview of applied methodologies

2.2. Literature research
A systematic literature review is conducted to synthesize research findings in a transparent, systematic
and replicable manner. This process involves four key steps, as outlined by Bryman (2016). First, the
purpose and scope of the literature review are defined. Secondly, search techniques are employed to
identify studies relevant to the defined purpose and scope. Subsequently, the studies found are ap-
prised and narrowed down according to predefined criteria. Finally, the remaining studies are analyzed
and synthesized.

2.2.1. Purpose and scope of literature review
The literature review aimed to explore existing research on winter maintenance operations at airports,
with a primary focus on the factors influencing these operations and the specific snow characteristics
that impact airport functionality and maintenance strategies. Additionally, studies utilizing ground radar
data from airports are reviewed to offer a foundation for the data analysis conducted in this research.

While the primary emphasis is on airport operations, relevant studies on road winter maintenance are
also included where applicable to provide additional insights.

2.2.2. Search techniques and restriction criteria
A comprehensive search was undertaken to obtain studies that align with the defined purpose and
scope of this research. Most of the research findings were collected through Scopus, using the search
terms outlined in Table 2.1. These specified keywords enhance the replicability of the literature review.
The search was limited to studies published within the last fifteen years, starting from 2010. However,
a study from 2009, identified through snowballing, was considered highly relevant and has therefore
been included in the analysis. Table 2.1 also presents the number of papers that the initial search
yielded. However, after screening the titles and abstracts, only the articles listed in the third row of the
table were deemed relevant to the research purpose. Furthermore, backward and forward snowballing
techniques were applied, resulting in the final selection of articles, as detailed in Table 2.1. In Chapter 3,
the final step of the literature review is carried out by analyzing and synthesizing the remaining studies.
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Search engine Search term Papers yielded

Scopus

airport AND (”winter operations” OR ”winter
maintenance” OR ”snow removal”) [67]

Zhang et al., 2022
Pačaiová et al., 2021
Koščák et al., 2020
Šváb et al., 2019
Fernández et al., 2016
Merkert and Mangia, 2012
Myers et al., 2012

”winter maintenance” AND ”weather condi-
tions” AND snow AND (airport OR road) [10]

Mohammadi et al., 2024

”ASDE-X Data” [14] Alsalous and Hotle, 2024
Mirmohammadsadeghi et al., 2019
Srivastava, 2011

”A-SMGCS Data” [7] Pan et al., 2022
Friso et al., 2018

Snowballing

Alsalous and Hotle, 2024 Adikariwattage et al., 2012
Mohammadi et al., 2024 Shu-Ling et al., 2011
Zhang et al., 2022 Janic, 2009
Koščák et al., 2020 Klein-Paste, 2018

Koščák et al., 2012
Šváb et al., 2019 Keis, 2014
Fernández et al., 2016 Preis and Fricke, 2020

Table 2.1: Literature search engines and their yields

2.3. Interviews
Since Schiphol relies on weather forecasts from KNMI and DTN, gaining a detailed understanding
of the content and structure of the forecasts they provide is essential. Therefore, two unstructured
interviews were conducted with both meteorological organizations, offering deeper insight into the type
and granularity of weather data they deliver. The information obtained from these interviews formed
the basis for the weather classifications presented in Table 4.2 in Subsection 4.2.1.

In addition, a sector briefing training session was attended to gain insight into the decision-making
process when adverse weather is forecasted and capacity adjustments become necessary. This ses-
sion involved key stakeholders including Schiphol (APOC, FMA), LVNL, KLM, and KNMI, and provided
valuable perspective on how these parties coordinate their responses to winter weather disruptions and
what considerations influence capacity-related decisions.

Finally, informal interviews held during winter operations meetings, along with ongoing discussions
with the Schiphol Service Owner Winter Operations, contributed to mapping the current snow removal
process, identifying key factors influencing cleaning capacity and developing the forecasting model.

2.4. Process visualization
Two conceptual models were developed to provide an overview of the current snow removal process
and its key influencing factors. These consist of a swimlane diagram and a cuasal diagram, both con-
structed using insights from the literature review and further supported by findings from desk research
and informal interviews.

2.4.1. Swimlane diagram
The swimlane diagram (also known as a cross-functional flowchart) is developed to illustrate the current
aircraft stand snow removal process at Schiphol. Unlike a standard flowchart, the swimlane diagram
explicitly assigns responsibilities to different departments involved in the process. Each swimlane rep-
resents a key stakeholder, ensuring that roles, interactions, and task sequences are clearly delineated.
By mapping out the workflow, decision points, and communication flows, the swimlane diagram pro-
vides a comprehensive process overview. This structured visualization not only clarifies the roles of
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different stakeholders in ensuring efficient and timely aircraft stand clearance but also identifies gaps
in information that hinder accurate capacity calculations.

2.4.2. Causal diagram
The causal diagram illustrates the key factors influencing the snow removal process and their interde-
pendencies. It highlights cause-and-effect relationships, helping to identify dependencies and critical
variables that impact snow removal efficiency. The diagram consists of external, independent, interme-
diate, and dependent factors, along with arrows indicating their relationships. External factors directly
impact the process but cannot be controlled or influenced by the system itself. Independent factors
exist within the system, influencing other variables without being affected themselves. Intermediate
factors are influenced by other factors while also impacting additional variables. Finally, the dependent
factor is influenced by other factors and represents the unkown variable in this research.

Relationships between factors can be positive, where an increase in one factor leads to an increase in
the next; negative, where an increase in one factor results in a decrease in the subsequent factor; or
neutral, for factors that cannot exhibit an increasing or decreasing effect.

This visualization provides a structured overview of how different environmental, operational, and lo-
gistical factors interact, forming the foundation for the data analysis.

2.5. Data analysis
Based on the swimlane and causal diagrams presented in Figures 4.13 and 4.14 in Subsection 4.4,
three operational states were identified as critical for calculating snow removal capacity: cleaning, trav-
eling and idle time. Additionally, factors likely to influence these activities, and which can be captured
through data analysis, were also considered. To extract these states from the data and assess the
impact of influencing factors, a comprehensive data analysis was conducted, addressing the third and
fourth sub-questions of this study.

2.5.1. Data sources
Table 2.2 provides an overview of the data sources used in the data analysis, including descriptions and
their intended purposes within this research. To calculate cleaning capacity, the Casper dataset serves
as the primary data source. While theoretically, the Casper, CISS, and VGRS datasets could each
provide the necessary information to identify the relevant operational activities for capacity calculation,
with VGRS and CISS offering more accessible formats, practical limitations affect their usability.

The VGRS dataset is highly incomplete, with inconsistent timestamps and a significant amount of miss-
ing cleaning tasks. The CISS data, although more consistent, is only available from 2021 onwards
and occasionally fails to differentiate consecutive cleaning tasks within the same bay, as these tasks
are allowed to occur without communicating with APC. Due to these limitations, Casper data is chosen
as the primary data source, while CISS and VGRS data are used to verify and validate the algorithm
developed to extract operational states. Specifically, when the algorithm detects a cleaning period,
CISS and VGRS data help determine whether adjacent aircraft stands were cleaned simultaneously,
an event that is challenging to detect through the algorithm alone.

The LHSP and CISS datasets both provide start and end times of snow removal activities; the earliest
start and latest end times from these are used to define the total cleaning window. Finally, the CISS
dataset supports the estimation of the cleaning operation’s starting location.

Both the Casper and KNMI datasets coincidentally lack data for 2021. Although snow events occurred
early that year, they coincided with the COVID-19 lockdown, which significantly disrupted normal airport
operations. Consequently, the 2021 data would not be directly comparable to other years, and its
absence is not considered a major limitation. In contrast, data from the years 2017 to 2025 are deemed
suitable for comparison, as no substantial changes in snow removal procedures or team structures
occurred during this period.

Casper data records all vehicle movements at one-second intervals, capturing each vehicle’s longitude
and latitude (see Figure 2.3). To make this data usable for analysis, it is combined with Schiphol’s Ge-
ofence polygons (see Figure 2.2). By mapping the vehicle coordinates to the corresponding polygons,
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Data source Resolution and
timeframe

Description Purpose

Ground Radar data
(Casper data) (not
publicly available)

One-second in-
terval, 2017-2025
(excl. 2021)

A dataset capturing aircraft and ve-
hicle movements. For this research,
the data is filtered to include vehi-
cles V4-9 and their timestamps, lati-
tude and longitude.

To reconstruct the movements of
the ASCT coordinators and classify
them as cleaning, traveling or idle
time.

Geofence poly-
gons (not publicly
available)

-, 2025 A GeoJSON file containing seg-
ments of runways, taxiways, tax-
ilanes, and aircraft stands, with
names and positional information.

To ensure precise location iden-
tification by matching each vehi-
cle’s GPS coordinates (from Casper
data) to a specific segment, such as
a runway, taxiway or aircraft stand.

Central Information
System Schiphol
(CISS) (not publicly
available)

Event-based, 2021-
2025

An Aerodrome Operational
Database, including aircraft stand
assignments, departure and arrival
times, and other operational data.
For this research, the dataset is
filtered for vehicles V4-9, includ-
ing timestamps and positional
information.

To support the detection of cleaning
periods and to verify algorithm out-
comes. Also used to determine the
start and end times of the snow re-
moval operation and the initial posi-
tion of ASCTs.

VOP Gladheid Reg-
istratie Systeem
(VGRS) (not publicly
available)

Event based, 2017-
2025

Snow removal and spraying tasks
fulfilled by the ASCTs and sprayers,
including the recorded times of exe-
cution.

To support the detection of cleaning
periods and to verify algorithm out-
comes.

Luchthaven status
panel (LHSP) (not
publicly available)

Event-based, 2017-
2025

Start times of airport statuses, in-
cluding snow status.

To identify periods of active snow re-
moval and determine operation start
and end times.

KNMI weather
data (not publicly
available)

12-second-interval,
2017-2025 (excl.
2021)

12-second measurements of 114
weather variables from 26 weather
stations across Schiphol.

To assess the influence of winter
weather conditions on cleaning ca-
pacity.

Table 2.2: Data sources

a new dataset is generated that provides referenceable locations for all ASCTs, specifying whether the
vehicle is on a runway, taxiway, taxilane, or aircraft stand at any given second. This enriched dataset
enables both the visualization of vehicle movements and the extraction of operational activities.

2.5.2. Data analysis of key factors
An algorithmwas developed to classify the states of the ASCT coordinator vehicles into three categories:
cleaning, traveling, or taking a break. The algorithm also accounts for and handles missing data to
ensure continuity in the classification process. A detailed explanation of the algorithm, including its logic
and implementation, is provided in Section 5.1. Additionally, Section 6.1.1 describes the preprocessing
of weather data to enable its integration with the classified vehicle dataset for further analysis.

2.6. Forecasting model
The forecastingmodel was implemented as a discrete-time simulation, designed to estimate the relation
between cleaning capacity, tailored to a given scenario, and the inbound flight schedule, in order to
identify potential queues and operational bottlenecks. The simulation progresses in fixed time steps
(e.g., 30-minute intervals), during which system states are updated to reflect changes in flight arrivals,
cleaning capacity and queue formation. This approach is particularly suitable given that the sector
briefing output is presented in hourly time steps, making continuous tracking of aircraft stand snow
removal unnecessary. Therefore, breaking down the simulation into discrete intervals aligns well with
the temporal resolution of available data and operational decision-making processes.

The simulation model operates on scenario-specific input, which users can configure to reflect upcom-
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Figure 2.2: Geofence polygons

Figure 2.3: Sample of radar data

ing conditions, such as expected snowfall and team availability. This flexible input structure ensures
that the model output remains directly aligned with the forecasted operational and environmental con-
text, making it suitable for real-time decision support.

A detailed explanation of the simulation framework, including design requirements, input structure, as-
sumptions, and model logic, is provided in Section 7.1.

2.7. Verification and validation
To assess the reliability, robustness, and practical applicability of the forecasting model, a structured
validation process was conducted. This process consisted of three complementary components:

• Real-life scenario validation, in which the model was applied to a historical snow event at Schiphol
Airport (January 5, 2025). The model output was compared with operational expectations and
evaluated in consultation with the Service Owner Winter Operations to assess realism and pre-
dictive accuracy.

• Sensitivity analysis, involving systematic variation of key input parameters to evaluate the model’s
responsiveness to different operational configurations.

• Peer review, in which three key stakeholder groups reviewed the model’s structure, output, and
usability. These sessions assessed the tool’s alignment with real-world workflows and its value
as a decision-support instrument during winter operations.



3
Literature review

Table 2.1 gives an overview of the reviewed literature. Using the defined search techniques and restric-
tion criteria, 22 studies were selected for analysis. This literature review identifies knowledge gaps and
establishes a foundation for addressing the sub-question What key factors are theoretically expected
to influence the capacity of snow removal operations at aircraft stands?. To easily compare the articles,
the analysis is structured into three categories: the impact of snowfall on airports, factors influencing the
snow removal process, and the analysis of surveillance system data. The following sections discuss
each category in detail.

3.1. Impact of snowfall on airports
Severe winter conditions at airports can cause delays, resulting in significant costs for society, airports,
and air carriers (Merkert & Mangia, 2012). During such events, it is crucial for airports to maintain
smooth, reliable and efficient operations. This underscores the importance of optimizing winter main-
tenance services to minimize disruptions and associated expenses.

Preis and Fricke (2020) emphasize that winter operations are optimized at both strategic and opera-
tional level. At strategic level, key decisions include determining the size and composition of the winter
fleet and developing procedures for staff training and activation (Preis & Fricke, 2020). For example,
Adikariwattage et al. (2012) focus on determining the optimal number of de-icing trucks required for
gate de-icing, while Preis and Fricke (2020) estimate the ideal fleet size for standard cleaning vehicles
used on aprons and specialized equipment for runways and taxiways.

At operational level, detailed plans for vehicle and personnel allocation must be formulated, encom-
passing the assignment of vehicles to specific areas and the design of optimal routes (Preis & Fricke,
2020). Snow and ice removal priorities are typically divided into four distinct zones: runways, taxiways,
connecting ways, and aprons (Koščák et al., 2012; Zhang et al., 2022). Several studies have focused
on optimizing winter maintenance strategies for these areas. For instance, Preis and Fricke (2020)
designed snow removal routes, while Zhang et al. (2022) and Fernández et al. (2016) optimized the
sequence of snow clearance. Additionally, Koščák et al. (2020) proposed a dynamic allocation model
for snow removal vehicles. While these studies enhance winter maintenance efficiency, they overlook
the inclusion of aircraft stand clearance in their models. Fernández et al. (2016) is the only study that
explicitly mentions aircraft stands clearance. However, since the cleaning priority of aircraft stands
is determined by the flight arrival schedule, their research focuses solely on optimizing the cleaning
sequence for runways, taxiways, and aprons, without addressing the complexities of aircraft stand
clearance.

Beyond optimizing winter operations, it is crucial to assess the impact of snow removal efficiency on
overall airport capacity. One study by Myers et al. (2012) addresses this topic through the development
of a Winter Weather Airport Capacity Model, which incorporates snow-clearing speed and weather
conditions to predict departure rates during winter weather. However, this analysis is limited to runway
and taxiway snow removal, and does not consider the capacity implications of snow removal on aircraft
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stands, leaving a significant aspect of airside operations unexamined.

3.2. Factors influencing the snow removal process
While no study specifically examines the snow removal process for aircraft stands, the broader factors
influencing winter maintenance operations are likely applicable. Therefore, this section explores the
key elements affecting the efficiency and effectiveness of snow removal at airports. Table 3.2 provides
an overview of these factors, categorized into six main groups: preparation, resources, airport-specific
factors, environmental influences, operational efficiency, and human factors.

3.2.1. Preparation
Careful preparation for winter weather events can be done well in advance. Pačaiová et al. (2021)
and Janic (2009) emphasize the importance of establishing a ”snow committee” at any airport that
encounters snow and ice events, regardless of their frequency. This committee plays a crucial role
in ensuring smooth operations by facilitating effective communication with snow removal teams. It is
also responsible for organizing preseasonal meetings for planning and preparation, as well as regular
meetings throughout the winter season to address ongoing challenges. These gatherings are essential
for developing a comprehensive winter maintenance document and operating procedures tailored to
the unique conditions and scenarios that may arise during the season.

A robust and well-structured winter maintenance plan is essential for airports exposed to winter weather
(Fernández et al., 2016; Koščák et al., 2020). According to Šváb et al. (2019), these plans must be
customized to reflect the specific environmental and operational conditions of each airport. An effec-
tive plan should detail essential aspects, including the weather conditions that trigger snow removal,
required staff, equipment, and other resources, areas to be cleared, designated driving routes, opera-
tional procedures, and a structured communication and information-sharing plan among all stakehold-
ers (Janic, 2009; Merkert & Mangia, 2012; Shu-Ling et al., 2011).

Proper training is crucial for the successful execution of the winter maintenance plan. This involves not
only basic training but, more importantly, regular refresher sessions to maintain readiness (Fernández
et al., 2016; Merkert & Mangia, 2012; Preis & Fricke, 2020). Šváb et al. (2019) stress that even the
most advanced technology is ineffective without properly trained personnel to operate and manage it
efficiently. Ensuring that equipment is in optimal condition is equally important, which requires regular
inspections by technicians (Pačaiová et al., 2021).

Short-term preparation measures include preventive spraying and staff readiness. Shu-Ling et al.
(2011), in their study on snow removal from roadways, highlight the importance of pre-treating roads
with snow-melting agents to maximizing the efficiency and effectiveness of mechanical snow removal.
This proactive approach not only simplifies snow removal during storms but also prevents ice forma-
tion, extending the impact of the mechanical clearing process and maximizing overall snow removal
capacity. Additionally, Šváb et al. (2019) emphasize that accurate and timely weather forecasts play a
vital role in ensuring the readiness of snow removal teams.

By combining long-term planning with proactive short-term measures, airports can ensure efficient and
effective responses to even the most severe winter weather events.

3.2.2. Resources
Several studies highlight the impact of the type and quantity of equipment on snow removal capacity,
with four studies providing a more in-depth analysis. The algorithm developed by Zhang et al. (2022)
optimizes performance by exploring various combinations of equipment types and quantities, using the
snow removal capacity of different equipment teams as input. Koščák et al. (2012) focuses on opti-
mizing the deployment of equipment sets, specifically snow blowers and sweepers with varying perfor-
mance levels, by incorporating factors such as the size of the area to be cleared, various characteristics
of snow, and the density of air traffic. Similarly, Koščák et al. (2020) optimizes equipment configurations
but employs a different, more flexiblemodel that integrates additional variables, including environmental
impact and dynamic meteorological conditions. Lastly, Preis and Fricke (2020) estimates the minimum
fleet size for winter maintenance by analyzing the area to be cleared and the performance capacity of
different vehicle types, which is determined by the operating speed, the technical configuration of the
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vehicle, and efficiency factors such as time and spatial utilization.

Once the optimal fleet size is determined, it is crucial to ensure that this capacity can be fully mobilized
when needed. Pačaiová et al. (2021) emphasize the importance of having an adequate reserve fleet
and conducting periodic inspections to ensure that all vehicles are in satisfactory technical condition
at all times. Despite these preventive measures, Pačaiová et al. (2021) account for the exceptional
scenario in which a repair is required during snow operations. Similarly, Šváb et al. (2019) highlight the
need for on-the-spot vehicle inspection during snow events to ensure the equipment is always ready
for immediate deployment.

Pačaiová et al. (2021) emphasize that, despite efforts to plan for an optimal number of staff, shortages
can still occur in certain situations, potentially prolonging the overall duration of the process. Although
the influence of staff availability is frequently mentioned, no research provides an in-depth analysis
of this factor. Most studies focus on individual vehicles or entire fleets, making the number of staff
inherently tied to the required equipment. However, the number of teams also significantly affects
snow removal capacity and is not strictly tied to the equipment used. Janic (2009) states that overall
system capacity depends on the number of servers and the service rates of each individual server,
referring to the de-icing process in his research. This principle is also applicable to snow removal at
aircraft stands, where multiple teams (servers) may operate simultaneously, each with varying service
rates, influencing the overall snow removal capacity.

3.2.3. Airport specific factors
Fernández et al. (2016) highlight the impact of the flight arrival schedule on the cleaning order of aircraft
stands and the routes between consecutive tasks. Janic (2009) also underscores the effect of the arrival
schedule, noting that high arrival demand in themorning results in more traffic delays compared to lower
arrival demand in the late afternoon, thereby illustrating the relationship between the arrival schedule,
traffic volume, and its operational impact. Šváb et al. (2019) further emphasize the differences in the
winter maintenance process depending on whether air traffic is present, highlighting the impact of traffic
volume. Additionally, Shu-Ling et al. (2011) highlights the critical impact of traffic volume on operating
speed and overall snow removal capacity, where high traffic volume negatively impacts the operating
speed.

3.2.4. Environmental conditions
Weather forecasts play a crucial role in the planning and organization of winter airport maintenance.
Pačaiová et al. (2021) and Šváb et al. (2019) emphasize that airports heavily rely on weather forecasts
to anticipate and prepare for upcoming winter conditions. Both studies highlight the importance of well-
defined winter maintenance procedures tailored to specific types of weather events, enabling airports
to select the most appropriate response based on forecasted conditions. In addition, Myers et al. (2012)
note that airports may respond differently to identical weather conditions due to variations in processes,
operational efficiency, and infrastructure. As a result, a universal relationship between winter weather
and airport capacity might not be feasible, necessitating customized protocols at each airport.

Effective use of weather forecasts allows airports to optimize the allocation and readiness of technology,
equipment, and personnel, whether in anticipation of heavy snowfall or milder winter events. Forecasts
must be both highly accurate and available well in advance to support timely decision-making. More-
over, airports must remain agile, continuously updating their plans in real time as weather conditions
evolve, to maintain an efficient and responsive operational approach (Pačaiová et al., 2021; Šváb et al.,
2019). Myers et al. (2012) further underscore the significance of weather forecasts by incorporating
forecast inaccuracies into their winter weather airport capacity model, thereby improving the model’s
ability to predict operational impacts.

Given the need for airports to manage a variety of winter weather conditions, and with a particular focus
on snowfall in the context of this research, the impact of different snow conditions is discussed in the
following paragraphs. Table 4.2 summarizes the snow-related variablesmentioned across the reviewed
studies. It can be concluded that most studies use the same terms to distinguish snow conditions,
mainly focusing on snow intensity, type, density and depth.
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Types of snow
Many studies distinguish between slush, wet snow, and dry snow. Wet snow and slush typically form
around 0 °C, but can also occur at lower temperatures due to the application of anti-icing and de-icing
chemicals on runways (Klein-Paste, 2018). Klein-Paste (2018) further report that, when examining air-
plane braking performance on snow-contaminated runways, wet snow is perceived as more slippery
than an equivalent amount of slush, while dry snow provides superior braking performance compared
to both. Furthermore, Myers et al., 2012 highlight that light, dry snow is easier to remove from runways
than dense, wet snow of equal depth, as the latter contains a higher water content. Both Janic (2009)
and Keis (2014) differentiate between dry snow and wet snow/slush when defining thresholds for initi-
ating winter maintenance operations, noting that the threshold for wet snow and slush is significantly
lower than for dry snow. Furthermore, Fernández et al. (2016) and Preis and Fricke (2020) highlight
that snow type affects the operating speed of snow removal vehicles.

Snow accumulation
Snow accumulation is typically measured by snow depth (height) and volume, and is influenced by
snowfall intensity, duration, and temperature. Several studies reference snow intensity using qualita-
tive classifications such as ”light,” ”moderate,” and ”heavy.” However, only Janic (2009) defines specific
thresholds for these categories, but limited to ”light” and ”heavy” snowfall. The absence of standard-
ized criteria for snow intensity levels across studies limits the ability to directly compare findings on
the impact of snowfall on airport operations. For instance, Myers et al. (2012) incorporate snow in-
tensity levels and precipitation rate into their winter weather airport capacity model but do not provide
exact boundaries for these classifications. Their correlation analysis revealed that snow intensity had
a stronger association with capacity reductions than precipitation rate, underscoring snow intensity as
a critical factor. Similarly, Adikariwattage et al. (2012) define five winter weather scenarios based on
snow intensity, snow type, and other winter conditions, but again without specifying quantitative criteria.

Both Janic (2009) and Koščák et al. (2020) use snow accumulation, measured through snow depth or
intensity, to establish thresholds for initiating snow removal activities. In addition, Koščák et al. (2020)
emphasize the role of snow depth and total snowfall amount in determining the optimal deployment of
winter maintenance equipment.

Finally, Shu-Ling et al. (2011) developed a snow accumulation prediction model alongside a snow
removal capacity model to assess the feasibility of accomplishing the snow removal tasks within the
designated time period.

Snow characteristics
Snow characteristics such as weight, density, and water content, are critical parameters for accurately
forecasting winter weather and implementing effective winter maintenance strategies. Snow weight
significantly influences the selection and quantity of equipment needed and plays a key role in deter-
mining the efficiency and performance of snow removal operations (Koščák et al., 2020). It is also an
important factor in estimating the time needed to complete snow clearance tasks (Janic, 2009).

Myers et al. (2012) argue that the water equivalent of snow, a measure of the water content within snow,
is a more relevant metric than snow depth when assessing the impact of snowfall on airport operations.
For example, as discussed earlier, dry snow is easier to clear from runways than wet, dense snow of
the same depth, as the latter contains a higher water content. In addition, they emphasize that snow
density directly affects the rate at which snow melts.

Finally, Janic (2009) note that newly fallen snow typically exhibits much lower density than older, com-
pacted snow, making it easier to remove but more prone to displacement by wind.

Atmospheric conditions
Temperature and wind are key factors influencing the effects of snowfall. Myers et al. (2012) incorporate
temperature into their snow depth model to estimate melting rates, noting that higher temperatures
accelerate snowmelt. Similarly, Shu-Ling et al. (2011) report that snow coverage tends to be thicker at
lower air temperatures and thinner at higher wind speeds due to increased snow displacement. Keis
(2014) further emphasize the role of air temperature in determining precipitation type, affecting whether
snowfall occurs as dry snow, wet snow, or rain.
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In addition, Mohammadi et al. (2024) account for both newly fallen snow and drifting snow as explana-
tory variables in their model, recognizing the contribution of wind-driven snow accumulation to overall
surface conditions.

Factor Reference
Accumulation
depth/height Janic, 2009, Klein-Paste, 2018, Koščák et al., 2020,

Mohammadi et al., 2024, Myers et al., 2012, Shu-
Ling et al., 2011

duration Mohammadi et al., 2024
volume Koščák et al., 2012
Intensity Adikariwattage et al., 2012, Janic, 2009,Keis, 2014,

Koščák et al., 2020, Mohammadi et al., 2024, Myers
et al., 2012

Characteristics
density Janic, 2009, Koščák et al., 2012, Koščák et al., 2020,

Shu-Ling et al., 2011
weight Janic, 2009, Koščák et al., 2012, Koščák et al., 2020
water content Myers et al., 2012, Shu-Ling et al., 2011
Atmospheric conditions
Temperature Janic, 2009, Keis, 2014, Klein-Paste, 2018, Myers

et al., 2012, Shu-Ling et al., 2011
Wind Mohammadi et al., 2024, Preis and Fricke, 2020,

Shu-Ling et al., 2011
Type
dry, wet, slush Adikariwattage et al., 2012, Janic, 2009, Keis, 2014,

Klein-Paste, 2018, Koščák et al., 2012, Myers et al.,
2012

Table 3.1: Snow-related variables

3.2.5. Operational efficiency
Several studies mention that snow removal from runways, taxiways and aprons has priority over other
airport areas. Zhang et al. (2022) develop an algorithm that dynamically adjusts cleaning priorities
based on real-time conditions, including snow accumulation, proximity to critical zones, and initial area
prioritization. Similarly, Fernández et al. (2016) optimize the snow removal sequence for these areas,
where vehicles follow predetermined routes. Furthermore, Preis and Fricke (2020) focus on the optimal
routing of snow removal vehicles, with runways prioritized over taxiways and aprons.

In contrast, the cleaning order of aircraft stands is determined by the arrival schedule of incoming flights.
After one aircraft stand is cleared, the team is promptly reassigned to the next (Fernández et al., 2016).
In line with this, Shu-Ling et al. (2011) emphasize the importance of prioritizing specific road segments
based on predicted travel demand.

As earlier emphasized by Preis and Fricke (2020), the operating speed of snow removal machines is a
crucial factor influencing snow removal capacity. The speed depends on multiple factors, including the
technological capabilities of the equipment (Fernández et al., 2016), the snow conditions (Fernández
et al., 2016; Preis & Fricke, 2020), and traffic flow (Shu-Ling et al., 2011).

3.2.6. Human factors
According to research by Pačaiová et al. (2021), the variability in the duration of snow clearing op-
erations is primarily driven by human factors. The effectiveness of these operations is significantly
influenced by the varying levels of experience among snow coordinators. While the development of
a practical winter maintenance document serves as the foundation for the effective implementation of
the airport’s snow management strategy, each coordinator’s practical knowledge further enhances the
overall efficiency of the operations. Beyond experience, professionalism plays a key role in determin-
ing performance capacity. Mechanical equipment cannot reach optimal capacity if staff members lack
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the necessary skills and competency (Merkert & Mangia, 2012; Shu-Ling et al., 2011). Moreover, time
utilization factors, such as breaks and start-up times, further impact snow removal capacity (Preis &
Fricke, 2020).

In addition to individual expertise and proficiency, effective collaboration among airport departments is
another critical human factor affecting the overall duration of the snow clearing process (Janic, 2009;
Merkert & Mangia, 2012; Pačaiová et al., 2021; Šváb et al., 2019). Proper collaboration specifically
aims to prevent chaotic operations, inconsistencies in communicated information, and misaligned lead-
ership, all of which can significantly hinder performance (Šváb et al., 2019). Moreover, effective commu-
nication between snow removal teams and the airport dispatcher is crucial to ensure that the vehicles
used by the removal teams do not interfere with airside traffic (Janic, 2009). Furthermore, Merkert and
Mangia (2012) highlight that a winter management plan should include adequate planning for proper
communication and information exchange among all parties involved.

3.3. Analysis of surveillance system data
Several studies have used data from surveillance systems that monitor the position and identification of
aircraft and vehicles within the airport movement area, using radar, multilateration, and satellite-based
technologies. For instance, Srivastava (2011) enhance departure taxi time predictions by transforming
and enriching raw ASDE-X data, including digitizing airport surface layouts and cleansing and validating
the data. Mirmohammadsadeghi et al. (2019) use surveillance data to obtain actual values for aircraft
approach speed and runway occupancy time in their runway capacity simulation model, improving its
accuracy. Similarly, Pan et al. (2022) use surveillance data to simulate aircraft ground movements
to detect taxiway and runway conflicts and identify capacity limitations, and Friso et al. (2018) com-
bine radar, surveillance, and weather data (wind, visibility, temperature) to predict abnormal runway
occupancy times.

Whilemost studies focus on evaluating aircraft performance, Alsalous andHotle (2024) use surveillance
data to determine de-icing times by analyzing aircraft movements within a centralized de-icing facility.
They combine surveillance and airport layout data to visualize surface movements and extract de-
icing event details. A specialized algorithm analyzes individual speed profiles to distinguish between
traveling, de-icing, and waiting segments.

The type of data used in these studies closely aligns with the data available for this research. How-
ever, nearly all reviewed studies focus on aircraft taxi times and runway occupancy. Notably, Alsa-
lous and Hotle (2024) is one of the few exceptions, although it still relies exclusively on aircraft data.
Their approach to extracting operational segments through a dedicated algorithm closely resembles the
methodology applied in this research. Nonetheless, this study distinguishes itself by focusing on spe-
cialized ground vehicles rather than aircraft movements, offering a novel perspective on the utilization
of surveillance system data.

3.4. Conclusion
The literature review underscores the critical impact of winter conditions on airport operations and the
importance of optimizing snow-clearing strategies to maintain airport capacity and operational safety.
The findings reveal significant gaps in current literature and provide valuable insights into the key factors
and weather conditions influencing the winter maintenance operations.

Research on snow removal from runways and taxiways is relatively well-developed, with multiple stud-
ies focusing on optimizing equipment deployment, routing strategies, and vehicle allocation. In contrast,
aircraft stand cleaning remains largely overlooked, with only a single study (Fernández et al., 2016)
briefly mentioning it. Moreover, although snow removal efficiency plays a critical role in determining
airport capacity, only one study (Myers et al., 2012) has examined this relationship, and its scope is
limited to runway operations, leaving the capacity impact of stand cleaning entirely unexplored.

In addition, while most reviewed studies incorporate winter weather conditions into their models, there
is no standardized approach for defining and categorizing snow conditions. Many studies refer to quali-
tative classifications such as ”light,” ”moderate,” or ”heavy” snowfall, yet few establish clear quantitative
thresholds. This lack of standardization limits the comparability and generalizability of findings. While
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Factor Scientific literature
Preparation
Equipment inspection and main-
tenance

Pačaiová et al., 2021

Preventive spraying Shu-Ling et al., 2011
Training of staff Fernández et al., 2016, Merkert and Mangia, 2012,

Preis and Fricke, 2020, Šváb et al., 2019
Winter maintenance plan Fernández et al., 2016, Janic, 2009, Koščák et al.,

2020, Merkert and Mangia, 2012, Pačaiová et al.,
2021, Preis and Fricke, 2020, Shu-Ling et al., 2011,
Šváb et al., 2019

Resources
Amount of equipment Koščák et al., 2012, Koščák et al., 2020, Preis and

Fricke, 2020
Amount of staff Janic, 2009, Merkert and Mangia, 2012, Pačaiová

et al., 2021, Preis and Fricke, 2020, Shu-Ling et al.,
2011

Equipment type Janic, 2009, Koščák et al., 2012, Koščák et al., 2020,
Preis and Fricke, 2020, Zhang et al., 2022

Number of teams Janic, 2009
Repair time of equipment failure Pačaiová et al., 2021, Šváb et al., 2019
Airport specific factors
Area to be cleaned Fernández et al., 2016, Janic, 2009, Koščák et al.,

2020, Preis and Fricke, 2020, Zhang et al., 2022
Flight arrival schedule Fernández et al., 2016, Janic, 2009
Traffic volume Koščák et al., 2012, Shu-Ling et al., 2011
Environmental influences
Weather conditions Fernández et al., 2016, Janic, 2009, Koščák et

al., 2012, Koščák et al., 2020, Myers et al., 2012,
Pačaiová et al., 2021, Preis and Fricke, 2020, Shu-
Ling et al., 2011, Šváb et al., 2019, Zhang et al.,
2022

Weather forecast accuracy Myers et al., 2012, Pačaiová et al., 2021, Šváb et al.,
2019

Operational efficiency
Cleaning priority Fernández et al., 2016, Preis and Fricke, 2020, Shu-

Ling et al., 2011, Zhang et al., 2022
Driving speed Fernández et al., 2016, Koščák et al., 2012, Koščák

et al., 2020, Shu-Ling et al., 2011, Preis and Fricke,
2020

Route between consecutive
tasks

Fernández et al., 2016, Preis and Fricke, 2020

Human factors
Cooperation Janic, 2009, Merkert and Mangia, 2012, Pačaiová

et al., 2021, Šváb et al., 2019
Efficient time utilization Preis and Fricke, 2020
Experience of staff Pačaiová et al., 2021, Shu-Ling et al., 2011
Professionalism of staff Merkert and Mangia, 2012, Shu-Ling et al., 2011

Table 3.2: Factors influencing snow clearing capacity of aircraft stands

insights from the existing literature will inform the analysis of how weather conditions influence snow
removal capacity, precise classifications will need to be developed within the scope of this research.

Another notable gap is the limited use of airport surveillance data for analyzing winter maintenance
processes. While this data has been widely applied to study aircraft taxi times and operational efficiency,
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its use in optimizing winter operations remains minimal. The only exception is the study by Alsalous and
Hotle (2024), which leveraged surveillance data to analyze de-icing times but still focused exclusively
on aircraft movements. In contrast, the present study will extend the application of surveillance data
to specialized ground vehicles operating on the maneuvering area, offering a novel perspective on the
application of surveillance data.

Beyond identifying these knowledge gaps, the review highlights key factors that influence winter main-
tenance operations, which are grouped into six primary categories: preparation, resources, airport-
specific factors, environmental influences, operational efficiency, and human factors. The identified
factors and their interdependencies serve as the foundation for the causal diagram presented in Figure
4.14. However, given the absence of studies specifically modeling snow removal at aircraft stands,
these factors and their relationships must be adapted to accurately reflect the stand cleaning process.
This adaptation is essential to address the second sub-question: ”What key factors are theoretically
expected to influence the capacity of snow removal operations at aircraft stands?”.

3.5. Discussion
The knowledge gaps identified in this review are particularly interesting given the critical role aircraft
stands play in overall airport operations. Inefficient snow removal at stands can cause significant delays,
reduce airport capacity, and disrupt flight schedules. A deeper understanding of stand-specific snow
removal processes enables airports to make more informed operational decisions, optimize vehicle
routing and resource allocation, and ultimately minimize disruption. Therefore, developing a compre-
hensive understanding of snow removal capacity at aircraft stands during snowfall events is essential
for maintaining operational resilience.

Since snow removal efficiency is likely affected by prevailing weather conditions, it is important to quan-
tify their influence on the cleaning process. Establishing clear, quantitative definitions for key weather
parameters will improve the predictability of snow removal performance and facilitate the comparison
and generalization of findings across different airports.

To address the identified gaps, this study will adopt a data-driven approach that integrates historical
ground vehicle radar data with weather observations, thereby accounting for both operational and en-
vironmental variability. The data processing methodology developed by Alsalous and Hotle (2024) will
serve as a foundational reference, but will be adapted to focus specifically on specialized ground vehi-
cles operating at aircraft stands, offering a novel extension of this approach to an underexplored aspect
of winter airport operations.
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4
Current state analysis

This chapter provides a chronological overview of the snow removal process for aircraft stands at
Schiphol Airport, addressing subquestions 1 and 2: What is the current process for snow removal from
aircraft stands? and What key factors influence the capacity of snow removal operations at aircraft
stands?. It begins with long-term preparations, covering strategic decisions made years in advance
(Section 4.1). Short-term preparations commence once snowfall is forecasted, typically around three
days in advance (Section 4.2), and the day-of-operation processes focus on the real-time execution of
snow removal activities (Section 4.3).

4.1. Long term preparation

Figure 4.1: Long term preparations of the snow removal process

4.1.1. Winter maintenance plan
At Schiphol, the winter maintenance plan (Bolsius & Scholten, 2024; Service Owner Sneeuw en Glad-
heid, 2023) is updated annually. This plan outlines all processes and regulations related to snow re-
moval at the Airside area and serves as a guideline for theoretical training sessions (Informal interview
Service Owner Winter operations, November 2024).

4.1.2. ASCT composition
Typically, an ASCT consists of an ASCT coordinator, known as a SnowStar, who is a Schiphol employee
driving a dedicated vehicle. The coordinator leads a team comprising a small and a large tractor, both
equipped with front-mounted brooms, and a loader with a snowplough, as illustrated in Figures 4.2 and
4.3. Unlike the ASCT coordinator, the other vehicles are operated by contractors (Bolsius & Scholten,
2024).

The small tractor with front-mounted broom is responsible for clearing the area around the jet bridge,
represented by the red-shaded area in Figure 4.2, while the other two vehicles handle the remainder of
the aircraft stand. The type of equipment likely influences the cleaning speed due to variations in snow
removal effectiveness. For example, the large tractor with front-mounted broom is much more efficient

22
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for wet snow compared to the loader with snowplough. To ensure all equipment is fully operational
during snowfall events, periodic technical inspections are conducted, verifying the functionality and
readiness of each vehicle. Moreover, backup vehicles are available for the coordinators in case one
becomes non-operational (Informal interview Service Owner Winter Operations, January 2025).

The ASCT-coordinator oversees snow clearing operations, ensuring both the effectiveness and safety
of its team. The coordinator is also responsible for communicating with APC regarding task assign-
ments and vehicle movements. The coordinator’s vehicle is equipped with a transponder, providing
APC with real-time operational information, including the team’s callsign, current position, origin and
destination (Bolsius & Scholten, 2024). Table 4.1 lists the callsigns of all teams, which are used in the
algorithm described in Subsection 5.1.

In addition to the above-mentioned vehicles, a sprayer may operate either as part of the team or inde-
pendently within its designated area, depending on the availability of sprayers relative to the number
of ASCTs. In practice, however, the sprayer almost always operates independently, maintaining direct
communication with APC (Bolsius & Scholten, 2024).

Table 4.1: ASCT callsigns (Bolsius & Scholten, 2024)

Team Callsign
ASCT 4 V4
ASCT 5 V5
ASCT 6 V6
ASCT 7 V7
ASCT 8 V8
ASCT 9 V9

Figure 4.2: Composition ASCTs (Bolsius & Scholten, 2024)

(a) Loader with snowplough (b) Large tractor with front-mounted brooms (c) Small tractor with front-mounted brooms

Figure 4.3: Special vehicles of ASCT

An exception to the standard ASCT composition occurs withASCT 4 andASCT 9, which are responsible
for clearing the Central de-icing Facility (CDF). Until the end of the winter season 2023/2024, ASCT
4 comprised one coordinator and four loaders with snowploughs. However, this configuration made it
impossible for ASCT 4 to assist ASCTs 5-8 once snowfall had ceased and the CDF was cleared. To
address this limitation, starting in the winter of 2024/2025, ASCT 4 is reconfigured to consist of two
coordinators, two loaders with snowploughs and two large tractors with front-mounted brooms. After
snowfall ends and the CDF is cleared, ASCT 4 will split into two separate teams: ASCT 4 and ASCT
9. Each team will include one coordinator, one loader with snowplough and one large tractor with front-
mounted broom. Although neither team will have a small tractor with front-mounted broom, the red-
shaded area will still be cleared as thoroughly as possible using the available snow vehicles, ensuring
the bridge remains deployable. This reconfiguration will increase the ASCT’s cleaning capacity after
snowfall, as ASCT 4 and ASCT 9 will be able to assist the other teams. However, the absence of the
small tractor with front-mounted broom will likely result in longer cleaning times (Bolsius & Scholten,
2024; Bolsius et al., 2023).
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4.1.3. ASCT cleaning area
As outlined in the research scope, only ASCTs 4 through 9 are included in this research. These teams
are specifically assigned to snow clearance operations at centrum (aprons A, B (odd side), C, D, E,
F, and G), and the CDF, which encompasses aprons J and P. These areas are highlighted in green in
Figure 4.4. Aprons excluded from the research either have their own dedicated ASCT or are at that
time out of service. However, if necessary, ASCTs 4 through 9 may assist with snow clearing at pier
B (even side) or H, which are the two rightmost blue areas shown in Figure 4.4 (Aircraft Operations
Schiphol, 2024; Bolsius & Scholten, 2024).

ASCT 4 is primarily designated for the continuous cleaning of the CDF. Once snowfall has ended and
the CDF is completely cleared and made non-slippery, ASCT 4 will divide into two teams: ASCT 4 and
ASCT 9 (Bolsius & Scholten, 2024).

After snowfall, ASCT 4 and 9 provide assistance to the other teams at centrum.
During light snowfall, ASCT 4 and 9 can assist the other teams intermittently.

During snowfall, apron Y is primarily used for lining up, refueling and relieving Snow Fleets 1 through
3. However, if apron Y is needed for aircraft accommodation, ASCTs 4 through 9 will ensure it is
cleaned accordingly (Bolsius & Scholten, 2024). Apron Y is therefore also shown in blue in Figure 4.4,
specifically as the leftmost blue area.

Figure 4.4: Cleaning area of ASCTs (Schiphol Operations, n.d.)

Aircraft stands used for passenger handling are categorized in twomain types: narrow body (Nabo) and
wide body (Wibo). Nabo stands have a significantly smaller surface area thanWibo stands, which likely
affects the required cleaning time. In addition to size, stands also differ in their operational designation:
they may be used for Schengen flights, non-Schengen flights, or be equipped to handle both.

4.1.4. Training of staff
As earlier mentioned, the winter maintenance document serves as a key reference for theoretical train-
ing sessions. Before joining the winter crew, new Snow Stars must pass both theoretical and practical
exams. In addition, each year in October and November, all Snow Stars and contractors operating
ASCT equipment must participate in a night training session. If snowfall is minimal or absent between
November and January, an additional training session is scheduled in January or February for all Snow
Stars and contractors. These training sessions provide the winter crew with valuable experience, im-
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proving their familiarity with routes, vehicle coordination, team management and communication with
APC (Informal interview Service Owner Winter Operations, November 2024).

4.2. Short-term preparation
The accuracy of the weather forecast determines the timeline for short-term preparations, which typi-
cally begin up to three days in advance. However, if snowfall is predicted at short notice, the reduced
preparation time can disrupt the efficiency of operations.

Figure 4.5: Short term preparations of the snow removal process

4.2.1. External winter weather forecasting
Schiphol primarily relies on the Koninklijk Nederlands Meteorologisch Instituut (KNMI) for weather fore-
casts, which provides regular updates on expected weather conditions. Additionally, Schiphol can
request forecasts from DTN or consult Roadmaster, a forecasting application developed by DTN. Both
KNMI and DTN base their predictions on a range of meteorological variables relevant to winter oper-
ations, including the expected start and end times of snowfall (duration), snow intensity, snow depth,
temperature, wind, and visibility (Interview DTN, December 2024; Interview KNMI, January 2025). In
addition to these variables, specific weather classifications are used to characterize weather conditions.
The classifications relevant to this research are based on interviews with KNMI and DTN, as well as op-
erational documents provided by Schiphol. These classifications are shown in Table 4.2 and discussed
in the following subsections.

Variable Category name Category value

Snow Intensity (mm/h)
Light Intensity < 5
Moderate 5 ≤ Intensity ≤ 50
Heavy Intensity > 50

Snow type Wet Nattebol T ≥ 0
Dry Nattebol T < 0

Wind speed (Knots)
Light ( < 3 Bf) Knots < 7
Moderate (3-6 Bf) 7 ≤ Knots ≤ 22
Heavy (>6 Bf) Knots > 22

Visibility

BZ0 scenario 0 Visibility ≥ 1500
BZ0 scenario A 550 ≤ Visibility < 1500

OR 200 ≤ Ceiling ≤ 300
BZ0 scenario B 350 ≤ Visibility < 550 OR

Ceiling ≤ 200
BZ0 scenario C Visibility < 350

Table 4.2: Classified weather variables

Snow intensity and accumulation
Snowfall intensity, combined with its duration, determines the total accumulation. Another key metric of
accumulation is snow depth, measured by sensors that calculate the distance to the ground. However,
strong winds can cause drifting snow, leading to inaccuracies in these measurements as snow dunes
may form (Interview KNMI, January 2025).
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Temperature and snow type
Both KNMI and DTN classify snow as either dry or wet, with temperature playing a crucial role in
determining the type. In general, dry snow typically forms when temperatures are below 0°C, while wet
snow occurs at or just above freezing. However, when air temperatures hover around 0°C, accurately
predicting the form of snowfall becomes challenging (Interview DTN, December 2024; Interview KNMI,
January 2025). Wet snow tends to accumulate only during high precipitation rates. As it melts, it
transitions into slush—a mixture of snow and water. Slush can also form from the melting remnants of
older dry snow.

In cases where air temperatures are below 0°C at higher altitudes but slightly above freezing near the
ground, winter rain may occur, sometimes accompanied by hail. Hail accumulation can also affect
ground conditions, potentially necessitating winter maintenance measures (Interview KNMI, January
2025).

The ground temperature further influences whether snow accumulates or melts upon contact. As snow
builds up, it gradually cools the surface, slowing the melting process (Interview DTN, December 2024).

Wind
Wind plays a crucial role in winter weather conditions once it reaches a certain strength. Wind speeds
between 3 and 4 on the Beaufort scale can already influence snowfall patterns. Dry snow, in particular,
is highly susceptible to wind drift, meaning that even after it has settled, it can be blown across surfaces,
forming snow dunes. In contrast, wet snow remains in place once it has accumulated, as wind only
affects it while it is falling (InterviewDTN, December 2024; Interview KNMI, January 2025). According to
KNMI, wind speeds of 6 Beaufort or higher can lead to ”snow yachting,” a phenomenon where blowing
snow severely reduces visibility, creating hazardous conditions (Interview KNMI, January 2025).

Wind direction is not expected to have a direct impact on cleaning speed. While it can influence the
distribution of snow accumulation, particularly through the formation of snow dunes under strong wind
conditions, it does not affect the overall snow removal process. This is because cleaning activities are
carried out at aircraft stands situated in all wind directions across the airport. Consequently, localized
accumulation patterns caused by wind are likely to be averaged out across the operation. For this
reason, wind direction is not further considered in this research (Informal interview, Service Owner
Winter Operations, 2025).

Visibility
During snowfall, significantly reduced visibility often indicates heavy snowfall; however, strong winds
causing drifting snow can also impair visibility. Poor visibility increases travel times for snow removal
teams, reducing overall operational efficiency.

Visibility categories are determined based on both horizontal visibility and cloud ceiling height, following
the classifications used by Schiphol’s ’Reduced View Operation’ protocol (Beperkt Zicht Operatie, BZO)
(Informal interview, Service Owner Winter Operations, 2025).

4.2.2. Weather scenarios at Schiphol
Until the winter of 2023/2024, a single snow scenario was implemented, in which all teams, including
Snow Fleets 1 through 3 and ASCTs 4 through 8, were mobilized whenever snowfall was predicted
with sufficiently high probability and accumulation. Since the winter of 2024/2025, this approach has
been replaced by two distinct scenarios: ’Snow Big’ and ’Snow Small’. Snow Big retains the proce-
dure of the previous general scenario, mobilizing all teams. In contrast, Snow Small is activated for
lighter snowfall or less accumulation forecasts, deploying only Snow Fleet 1 and 2 ASCTs. The snow
conditions associated with each scenario are detailed in Figure 4.6. Prior to the introduction of the two
scenarios, the snow conditions now associated with Snow Big served as the threshold for mobilizing
snow fleets and ASCTs. When conditions would have fallen under the current Snow Small category,
it was typically managed through proactive spraying or by quickly mobilizing snow teams as needed
(Bolsius & Scholten, 2024; Bolsius et al., 2023; Schiphol, 2018).

Preventive spraying helps maintain the operating speed of ASCTs and enhances the efficiency of air-
craft stand cleaning by preventing ice formation on the roads. It is almost always performed, except
in cases when temperatures are extremely low, pavement temperatures are very low, and very dry
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snow is forecasted. However, there is no specific threshold or regulation defining when spraying can
be omitted (Informal interview Service Owner Winter Operations, February 2025).

Figure 4.6: Snow scenarios (Schiphol Group, 2024a)

4.2.3. Determining airport capacity
Schiphol’s operational capacity is determined daily in sector briefings involving multiple stakeholders.
In the event of forecasted snowfall, standard airport capacity is proactively adjusted based on antici-
pated conditions to ensure operational predictability, maintain manageable traffic flow, and avoid air-
craft congestion in the airside area. These briefings take place starting one day before snowfall (D-1)
and continue throughout the operation. They are led by APOC and include representatives from FMA,
KLM, KNMI, and LVNL, who collectively assess the most critical bottlenecks in Schiphol’s hourly in-
bound and outbound capacity. Based on these assessments, airlines may be advised to cancel flights
in advance to align scheduled operations with the reduced capacity. The primary constraints affect-
ing capacity during snowfall are: runway clearing capacity, de-icing capacity or aircraft stand clearing
capacity (Figure 4.7) (Airport Operation Center Schiphol, 2024; Bolsius & Scholten, 2024).

Figure 4.7: Airport capacity determinants

Runway clearing capacity
Runway clearing capacity is predefined for different snow scenarios, as illustrated in Figure 4.8, where
the maximum inbound/outbound rate is indicated in red. The capacity assessment distinguishes be-
tween periods of active snowfall, categorized as light or heavy, and post-snowfall clearing, during which
remaining snow is removed from the airside area to restore full operational capacity. Based on fore-
casted weather conditions provided by KNMI, and the following operational guideline:

The average time required to clear a single runway is approximately 40 minutes.

FMA selects the appropriate Winter Runway Availability Scenario for each hour (Airport Operation
Center Schiphol, 2024; Bolsius & Scholten, 2024).

De-icing capacity
De-icing capacity is estimated using a forecasting model developed by APOC, tailored to each handling
agent. A key design requirement for the aircraft stand forecasting model developed in this research is
that it must align with both the logic and visual presentation of APOC’s de-icing tool, ensuring consis-
tency and ease of use (see Subsection 7.1.1). According to APOC documentation (Iris Schiphol, n.d.),
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the model operates according to several key principles. The most important are summarized below; a
more detailed overview is provided in Appendix C.1.

• The model operates in 15-minute time intervals, distributing demand, based on the sched-
uled departures from CISS flight data, across time blocks.

• Hourly de-icing capacity is entered as an average based on an equal mix of narrow body
and wide body aircraft. This capacity is then divided by 4 to align with the 15-minute time
intervals.

• Three scenarios (Low, Middle, High) are used to reflect weather forecast uncertainty. The
Middle scenario serves as the baseline, while the Low and High scenarios represent more
favorable and more severe weather conditions, respectively.

• The visual output displays bars for de-icing demand and a line for the handler’s planned
maximum capacity. Stacked bars differentiate fulfilled demand by aircraft type and show
queued aircraft. See Figure 4.9.

• KPIs shown alongside the graph include the number of narrow body and wide body aircraft
requiring de-icing, and the maximum queue size within a time block.

Figure 4.9 presents an example of the output for KLM’s de-icing operation on January 5, 2025. Between
06:30 and 11:30, projected demand significantly exceeded available capacity, resulting in a queue of
aircraft awaiting de-icing, visualized by the striped red bars (Airport Operation Center Schiphol, 2024)

Aircraft stand clearing capacity
In contrast, the capacity of aircraft stand snow removal is currently estimated using a simplified calcu-
lation that assumes 4 ASCTs, a maximum clearing time of 15 minutes per stand and some additional
travel time between stands. This results in a theoretical capacity of 12 stands per hour during heavy
snowfall. However, this calculation is not data-driven and is only available for heavy snowfall conditions
(Airport Operation Center Schiphol, 2024; Bolsius & Scholten, 2024).

Operational experience indicates that during snowfall, runway or de-icing capacity is often the primary
limiting factor. However, once snowfall ceases, runway operations are typically restored quickly, and
not all departing aircraft require de-icing anymore, allowing for a substantial increase in inbound traf-
fic. Despite this recovery, aircraft stand snow removal capacity is frequently overlooked, resulting in a
mismatch between available runway and de-icing capacity and the readiness of aircraft stands. Con-
sequently, aircraft are often forced to wait on taxiways until their assigned stands are cleared, leading
to substantial delays and operational inefficiencies, and even unforeseen flight cancellations (Informal
interview, Service Owner Winter Operations, November 2024).

This gap in capacity assessment was reinforced during the sector briefing training session in November
2024, where aircraft stand snow removal was not discussed, despite being a known bottleneck during
snow operations. These findings underscore the need for a more accurate, data-driven approach to
determine stand cleaning capacity and ensure its integration into operational planning and decision-
making (Sector briefing training, November 2024).

Final winter weather capacity
The briefing’s outcome is a graphical representation of inbound and outbound capacity over time. Fig-
ure 4.10 shows an example of the capacity assessment on the snowday of Januray 5, 2025. The red
line in the graph represents the runway capacity, with the corresponding Winter Runway Availability
Scenario labeled above it. Between 05:00 and 12:00, the inbound and outbound capacity are reduced
to 20x20 instead of 35x35, which would align with Scenario C, reflecting the de-icing capacity con-
straint. This reduction aligns with the forecasted de-icing capacity shown in Figure 4.9. Below the red
line, the primary constraint, in this case, de-icing capacity, is indicated by a label. Other factors, such
as aircraft stand capacity, can also become the primary bottleneck (Airport Operation Center Schiphol,
2024, Sector briefing training, November 2024).
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Figure 4.8: Winter Runway Availability Scenario (Service Owner Sneeuw en Gladheid, 2023)

Figure 4.9: De-icing tool
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Figure 4.10: Sector briefing output

4.2.4. ASCTs activation
In anticipation of expected snow accumulation, the FMA sends a notification to all Snow Stars and con-
tractors, alerting them to potential mobilization. Ideally, pre-warnings are issued three days in advance
(D-3) to allow for early preparation. Additionally, the FMA notifies the gate planner in the control tower,
enabling flexible scheduling of aircraft stands for snow storage and the staging of the snow fleets and
ASCTs. At D-1 (one day prior) or D-0 (the day of the snowfall), depending on its timing, the Snow Stars
and contractors receive the official call to report for duty (Schiphol Group, 2024a, 2024b).

When snowfall is predicted at very short notice, mobilization becomes significantly more challenging.
This was evident during the snowfall event of November 22, 2024, when forecasts did not predict snow
accumulation until just a few hours before it began. As a result, no pre-warning was issued, and all
staff were called to report without warning. Since the notification was sent around 22:00, not all Snow
Stars received it in time, resulting in incomplete attendance (Informal interview, Service Owner Winter
Operations, November 2024).

4.2.5. Preparation of equipment and resources
To minimize the risk of equipment failures during snow operations, technical inspections are conducted
on the snow removal fleet to ensure all vehicles are in optimal working condition. However, equipment
failures can still occur at the time of activation. Minor issues are typically resolved on-site by technicians
present during snow operations, but such failures may still temporarily reduce the number of available
ASCTs (Informal interview Service Owner Winter Operations, January 2025).

Additionally, all necessary resources are strategically positioned in advance to ensure efficient deploy-
ment when snow activation is required (Informal interview Service Owner Winter Operations, January
2025).

The snow operation event of November 22, 2024 underscored the operational challenges caused by
limited preparation time due to inaccurate weather forecasts. With no time for pre-snowfall inspections,
critical technical issues went unnoticed. Once operations began, drivers discovered that their snow
removal vehicles were still in training configuration. Resolving this issue took several hours, causing
significant delays (Informal interview, Service Owner Winter Operations, January 2025).
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Figure 4.11: Day of snow removal operations

4.3. During the snow removal operation
4.3.1. Communication
The ASCT-coordinators communicate with APC via radio to receive and complete tasks. An exception
applies to the ASCT-coordinator of ASCT 4, responsible for clearing the CDF, who communicates with
the KLM ice tower instead of APC. However, if ASCT 4 (and ASCT 9) assist the other ASCTs at the
centrum, they will resume communication with APC (Aircraft Operations Schiphol, 2024).

APC is structured into three main functions: Apron Control Inbound, Apron Control North and Apron
Control South. During operations, ASCT coordinators must communicate with the three different de-
partments: Apron Control Inbound for task assignment and handover, and Apron Control North or
South for route approval, depending on the team’s location (Aircraft Operations Schiphol, 2024). Each
of these departments operates on a separate radio frequency, which can lead to communication chal-
lenges and coordination inefficiencies, particularly for less experienced coordinators (Winter Operation
Training, November 2024).

During movement from stand to stand, ASCT-coordinators are under active control of Apron control
North or South. Only when the whole team is within the aircraft stand, the coordinator can temporar-
ily unsubscribe. In addition, there are some reporting points on taxiways, busy intersections where
multiple lanes converge, where coordinators must call Apron Control North or South to ask permission
to pass the point. As previously mentioned, the sprayers function independently of the ASCTs and
communicate directly with APC (Aircraft Operations Schiphol, 2024).

After an aircraft stand has been cleared, the ASCT coordinator hands it over to Apron Control Inbound,
assigning it to one of four status categories, Red, Orange, Yellow, or Green, as illustrated in Figure
4.12. These classifications serve as a guideline for discussions between the ASCT coordinator and
Apron Control Inbound to determine whether further action is required. Once a stand is fully cleared and
classified either Orange, Yellow or Green, Apron Control Inbound notifies the Gate Planner to confirm its
readiness for operational use (Bolsius & Scholten, 2024; Service Owner Sneeuw en Gladheid, 2023).

4.3.2. Routes and destinations
ASCTs follow standard towing routes unless otherwise directed by Apron Control, for example, when
an aircraft occupies the standard route, an occurrence more likely during periods of high traffic volume.
These towing routes differ for inbound and outbound hours and are established in coordination with
LVNL.

Apron Control Inbound assigns tasks to ASCTs based on the Gate Planner’s prioritization and directs
teams to their destinations. The Gate Planner is responsible for determining the order of snow clear-
ance on aircraft stands while managing overall stand capacity.

During snowfall, task prioritization follows the ”AS on demand” principle, meaning that aircraft
stands are only cleared when an aircraft is scheduled to arrive within 15 minutes

Once snowfall has ceased, it becomes preferred to clean multiple aircraft stands simultaneously where
possible. Moreover, Snow Fleet 3 may assist in these operations after snowfall.
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Figure 4.12: Color classifications aircraft stand

In addition, to minimize travel time and enhance operational efficiency:

Efforts are made to keep ASCTs within the same bay during cleaning operations.

However, when multiple aircraft are expected to arrive in the same bay, it may be necessary to deploy
ASCTs from other bays to assist. Maintaining teams within a single bay becomes especially challenging
during the ‘Snow Small’ scenario, when only two ASCTs are available. In situations with low stand
occupancy, it may be possible to strategically allocate incoming aircraft to adjacent stands. This enables
an ASCT to clean multiple stands in succession, thereby reducing travel time and potentially shortening
the overall cleaning duration (Bolsius & Scholten, 2024; Service Owner Sneeuw en Gladheid, 2023).

4.3.3. ASCT's idle time
The idle time of ASCTs includes activities such as shift handovers, refueling, breaks, and restroom
visits.

ASCT coordinators, who are Schiphol employees, work in 8-hour shifts

The other vehicles are operated by contractors working 12-hour shifts. Shift handovers for ASCT co-
ordinators typically occur at the team’s current location, whereas contractor personnel are relieved at
locations designated by their own coordinator.

Refueling generally takes place at the ASCT’s current position. Vehicles such as sprayers and small
tractors equipped with front-mounted brooms must monitor their levels of spraying agent to ensure
timely replenishment. To maintain efficient ASCT operations, it is essential to inform APC of the
expected refueling duration, which includes both fuel and spraying agent replenishment (Bolsius &
Scholten, 2024).

Where possible, refueling is combined with a short break or shift handover. Breaks can be taken at the
’Skihut’ near apron Y, while platform R is also commonly used as a designated rest location (Bolsius &
Scholten, 2024).

4.4. Conclusion
To answer the first two research questions, two diagrams were developed by combining insights from
the literature review and the current state analysis. Both diagrams have been validated by Schiphol’s
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Service Owner Winter Operations and are presented in the following subsections.

Additionally, the current state analysis provided insight into how capacity is currently determined in
advance of a snow event, an essential step in which aircraft stand cleaning capacity should play a
central role. At present, capacity assessments rely on simplified assumptions rather than on data-
driven estimates. As a result, aircraft stand cleaning is often overlooked entirely in strategic discussions,
potentially leading to an overestimation of inbound capacity. This mismatch can cause substantial
queues, delays, and broader operational disruptions.

To address this knowledge gap, the next chapter focuses on the quantification of aircraft stand snow
removal performance using high-resolution historical data.

4.4.1. Swimlane diagram
The first sub-question, ”What is the current process for snow removal at aircraft stands?”, is
addressed through the swimlane diagram presented in Figure 4.13. This diagram maps the roles and
responsibilities of the various stakeholders involved in snow removal operations and identifies key
capacity-defining events. The diagram is organized into two main phases: short-term preparations
and day-of-operations. Long-term preparations are excluded, as they mainly involve strategic planning
rather than operational interactions between stakeholders.

As described in Section 2.4, each swimlane represents a distinct stakeholder or group of stakeholders.
Apron Control Inbound, Apron Control North, and Apron Control South are grouped under a single
swimlane labeled APC, due to the close alignment of their responsibilities. Red stars mark critical
capacity input moments, highlighting areas where knowledge gaps exist in understanding aircraft stand
snow removal capacity.

4.4.2. Causal diagram
The second sub-question ”What key factors are theoretically expected to influence the capacity of
snow removal operations at aircraft stands?” is answered through the causal diagram, illustrating
the relationships between key factors affecting aircraft stand clearing capacity, presented in Figure 4.14.
This diagram is specifically tailored to the process of cleaning aircraft stands at Schiphol, meaning
certain factors identified in the literature have been omitted or reinterpreted to align with Schiphol’s
operations. For instance, the commonly referenced factor Area to be cleaned is adapted to Type of
aircraft stand, which reflects the area size requiring clearance but is categorized only into narrow body
and wide body stands. Similarly, Cleaning priority is interpreted differently than in most studies, as it is
dedicated by the inbound flight schedule and cannot be optimized in advance. Aircraft stand occupation
is not mentioned in the literature but is included based on the current state analysis.

The causal diagram informed the selection of input variables that could be reliably extracted from avail-
able datasets. These include aircraft stand type (Nabo, Wibo), route type (within-bay, cross-bay or
cross-zone), number of active teams, and relevant weather conditions. Other factors, such as stand
occupancy and human-related influences, while recognized as potentially significant, were excluded
due to limited data availability.
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(a) Short-term preparations

(b) Process on the day of operation

Figure 4.13: Swimlane diagram
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Figure 4.14: Factors influencing the snow removal process



5
Current cleaning performance

The swimlane diagram and causal diagram, presented in Figures 4.13 and 4.14, served as the con-
ceptual foundation for the classification of operational activities, including, cleaning, traveling, and idle
time, and for identifying key influencing variables.

The activity classifications were derived from historical data using a dedicated algorithm, described in
Section 5.1. Based on the algorithm’s output, Section 5.2 presents exploratory data analyses that pro-
vide insight into the performance of the classified activities and the influence of the selected variables.

5.1. Algorithm for capacity determination
The goal of the algorithm is to classify each radar data point into one of three operational states: clean-
ing, traveling, or taking a break. The primary data source used for this classification is radar data
enriched with polygon information that pinpoints the precise location of each ASCT coordinator vehi-
cle (labeled V4-9, as described in Subsection 4.1.2), within the airside area, recorded at one-second
intervals. The python code is outlined in Appendix D.1.

For each snow event, the algorithm processes the data separately for each ASCT. It iterates over all
timestamps (rows) during the relevant time period, examining the vehicle’s location at every second.
At any given moment, the vehicle is classified as either cleaning or traveling; break periods are treated
as part of the cleaning status. The interpretation of location data depends on the assigned status, as
outlined below:

Cleaning
When the vehicle is in the cleaning state, the algorithm accounts for the possibility that the vehicle’s
positionmay not always align precisely with the aircraft stand being cleaned. In practice, the coordinator
vehicle may appear one or more polygons away due to minor movements while the team continues
cleaning. To prevent prematurely ending the cleaning session, the algorithm incorporates a look-ahead
window to accommodate this spatial variation. An example of this variation is shown in Figure 5.1, which
illustrates the movement of vehicle V5 while cleaning stand E19.

This behavior also introduces ambiguity in distinguishing between scenarios where multiple adjacent
stands are being cleaned simultaneously and situations where the ASCT coordinator is positioned on
a nearby stand while the team cleans a single stand. To resolve this, the algorithm cross-references
the radar-derived cleaning activity with data from the CISS and VGRS systems. These additional data
sources help verify whether adjacent stands were also cleaned, addressing potential gaps in radar-
based detection.

If a detected cleaning duration exceeds a predefined maximum threshold (see Table B.1 in Appendix
B.1), the algorithm again consults the CISS and VGRS datasets, this time using a broader spatial scope.
Instead of examining only directly adjacent stands, the algorithm considers all stands within the same
bay, enabling the detection of multi-stand cleaning sessions that explain the extended duration.

36
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Figure 5.1: Visualization of V5 between cleaning E19

When a detected cleaning period is shorter than the minimum allowed duration (see Table B.1 in Ap-
pendix B.1), the algorithm re-evaluates the sequence starting from the point where the vehicle left its
previous task. The stand in question is excluded as a potential cleaning task, and the corresponding
time period during which the vehicle was located at the excluded stand is reclassified as travel time.

Idle time
When the vehicle is in the cleaning state but located at platform R or Y, the algorithm assumes that
the ASCT is taking a break. However, since the start and end points of operations can also occur at
these platforms, the period is only classified as a break if it is detected outside the start or end of an
operation.

It is important to note that breaks may also occur at other locations, such as aircraft stands or taxi-
lanes. Unfortunately, these break periods are often misclassified as either cleaning or travel periods,
depending on the vehicle’s status, as there is no reliable way to accurately detect breaks in these cases.

Traveling
When the ASCT is not engaged in cleaning, the team is considered to be traveling to its next assignment.
Travel time is measured from the moment the team leaves the previous location until it reaches the next
one.

The output of the algorithm is a data file containing all identified cleaning periods, travel times, and
intermediate breaks. Travel times are linked to their corresponding cleaning or break period to form
complete cycles, which serve as the basis for determining cleaning capacity.

5.1.1. Missing information
The algorithm incorporates several mechanisms to address missing or inaccurate information, including
absent location data (NaN values), location inaccuracies (e.g., due to GPS drift), and missing times-
tamps (e.g., when vehicles temporarily become untraceable due to transponder deactivation).

During cleaning periods, missing location data are handled using a look-ahead window to determine
whether the vehicle is detected at the same aircraft stand shortly thereafter. If the vehicle reappears at
the same stand, the NaN value is assumed to correspond to the cleaning location. If not, the cleaning
period is terminated, and the NaN value is attributed to the subsequent travel time. Location inaccura-
cies are addressed by verifying whether the detected location remains within the same bay, in which
case it is not considered an outlier. A threshold (see Table B.1 in Appendix B.1) determines how often



5.1. Algorithm for capacity determination 38

such deviations are tolerated as GPS drift before being interpreted as a genuine relocation. In this way,
the model accounts for sporadic inaccuracies in vehicle positioning.

Missing timestamps are identified bymeasuring the time interval between consecutive rows. If this inter-
val exceeds a predefined threshold (see Table B.1 in Appendix B.1), the cleaning period is terminated
at the last valid timestamp, as the algorithm cannot infer the vehicle’s status during the undocumented
interval.

For travel periods, missing data have less impact. Missing locations are treated as part of the travel
time, and location inaccuracies are less critical. However, large time gaps remain important, as as the
algorithm cannot determine vehicle activity during such intervals.

5.1.2. Detecting outliers
The algorithm incorporates several parameters to minimize the impact of outliers and missing data,
including minimum and maximum cleaning and travel times. These parameter thresholds were derived
from box plot summary statistics obtained from boundary-free algorithm results or based on practical
experience. Additional details on parameter selection are provided in Appendix B.1.

To detect and exclude outliers, the algorithm applies these predefined thresholds. Cleaning cycles are
excluded if their cleaning or travel durations exceed the maximum allowed values or contain data gaps
that surpass the established time threshold. Additionally, snow operation days with fewer than 10 valid
cleaning cycles were removed from the analysis, as these fell well below the typical range of 40 to 400
cycles observed on most days, rendering them insufficiently representative.

Further exclusions were based on location. Cleaning periods at stands located outside the research
scope (those in areas HG, K, M, PD, and S) were omitted. Similarly, cleaning operations conducted at
the CDF were excluded, as they fell outside the operational focus of the analysis. While these were
primarily performed by V4, instances involving other vehicles were also identified and removed.

Collectively, these exclusion criteria ensured that only consistent, relevant, and representative data
were retained for subsequent capacity evaluations.

5.1.3. Algorithm verification and validation
The development of the algorithm followed an iterative process during which both verification and vali-
dation were conducted to ensure its accuracy and robustness.

Verification focused on ensuring that the algorithm was correctly implemented, including accurate clas-
sification of operational states, proper functioning of threshold settings, and reliable integration with
CISS and VGRS data. This is mainly done by boundary testing (how does the algorithm handles situ-
ations where data points fall exactly on threshold values) and debugging statements.

Validation involved continuously comparing the algorithm’s output for selected vehicles on several snow
operation days against records from the CISS and VGRS systems. Although these systems do not
cover all cleaning activities, they provided valuable reference points to verify whether the algorithm
correctly identified key cleaning periods.

In addition to system-based validation, manual validation was performed for selected vehicles on spe-
cific snow operation days. In these cases, cleaning periods were manually annotated through visual
inspection of radar data and then cross-referenced with CISS and VGRS records. This manual anno-
tation allowed for a direct comparison between algorithm output and human judgment.

The results of the validation methods confirmed that the algorithm successfully identified the majority
of operationally relevant cleaning events. The combination of verification (technical correctness) and
validation (real-world accuracy) guided successive refinements to the classification rules and parameter
thresholds, improving the algorithm’s robustness and accuracy.

Despite multiple development iterations, certain limitations remain. A key challenge lies in accurately
distinguishing between cleaning periods and breaks. The algorithm assumes that when an ASCT is
located at platform R or Y during the operation, so outside the start or end of an operation, the team is
on a break. However, breaks taken at aircraft stands within the centrum area are not reliably detected.
These can either be misclassified as cleaning events or, if the duration exceeds the maximum cleaning
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threshold, excluded altogether from the analysis. Similarly, breaks occurring while the ASCT is in
transit (e.g., parked on a taxi lane) may be incorrectly included in travel time or, in the case of extended
durations, flagged as invalid and discarded.

5.2. Exploratory data insights on snow removal operation
After running the algorithm on all radar data, a data file was generated containing all identified travel
times, cleaning periods, break periods, and cycles durations. This output serves as the basis for the
exploratory data analysis, which aims to assess the performance of the current process and determine
cleaning capacity.

For the data analysis, box plots and corresponding box plot statistics were chosen over the mean and
standard deviations for two main reasons. First, box plots provide a non-parametric summary of the
data, and do not assume an underlying distribution. This is particularly appropriate for the current
dataset, where the assumption of normality does not hold, as shown in Figure 5.4 and the Figures in
Appendix B.2. Second, mean values are sensitive to extreme observations, which frequently occur in
this context due to irregular operational events. By using the median, the analysis better reflects typical
performance, avoiding distortion from exceptionally short or long durations.

5.2.1. Team availability
Figure 5.2 shows the number of active teams during each Snow operation day. Prior to 2025, the
intended number of teams active simultaneously was five. Occasions where six teams were recorded
before 2025 likely reflect vehicle changes during operations due to technical issues. Since 2025, the
intended number of active teams has increased to six, as vehicle V9 was added alongside V4 at the
CDF. From the Figure, it can be observed that:

On 50% of the operation days, the number of active vehicles was one below the preferred
maximum.

This shortfall is likely due to the unavailability of the ASCT coordinator or technical malfunctions that
rendered a vehicle inoperable.

Figure 5.2: Number of active teams during each snow operation

5.2.2. Team's Idle time
Break moments were identified when a cleaning period was recorded at platform R or Y, as these
locations are commonly used as designated rest areas. However, as noted in Subsection 5.1.3, there
is a degree of uncertainty in detecting break periods. Breaks taken at aircraft stands, rather than at
platforms R or Y, are not recognized by the algorithm and are therefore likely underreported.

The heatmap in Figure 5.3 shows the number of breaks per vehicle across all analyzed Snow operation
days. It reveals that, in most cases, teams take one break during snow events lasting approximately
one 8-hour shift. In contrast, longer operations, such as those in 2017 that spanned multiple days,
display a significantly higher number of breaks. At the same time, the heatmap also highlights potential
underreporting. For example, in 2022 and 2024, not all teams appear to have taken a break, which is
unlikely given the duration of the operations. Similarly, in 2019, all teams are shown to have taken only
one break, despite the snow operation extending beyond two full shifts, which is also unrealistic. To
address these limitations, the heatmap findings were interpreted alongside known operational practices.
Based on this combined insight, it is assumed that each team takes one break per 8-hour shift.

In addition to the number of breaks, the duration of each break is an important parameter to include in
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the forecasting model to accurately reflect the availability of cleaning teams. The distribution of break
durations is shown in Figure 5.4, which demonstrates a high degree of variability. While some breaks
last only a few minutes and others exceed 90 minutes, most are relatively short, with a median duration
of 28.3minutes. To account for travel to designated break areas (platforms R or Y), this is supplemented
by a median cross-zone travel time of 7.7 minutes, resulting in an estimated total median break time of
approximately 35 minutes.

Each ASCT takes one break per 8-hour shift, of approximately 35 minutes.

Figure 5.3: Number of breaks for each vehicle on each snow day

Figure 5.4: Distribution of break durations

5.2.3. Clean time
Aircraft stands are classified into two categories: narrow body (Nabo) and wide body (Wibo). Of all
cleaned stands, 59% are Nabo and 41% areWibo (see Appendix B.3.2. There is a notable difference in
cleaning time between the two types, with Wibo stands generally requiring more time. This is illustrated
by the box plots in Figure 5.5, and aligns with expectations, since wide body stands have a larger
surface area to clean. The box plots show relatively similar interquartile ranges (IQRs) (15.2 minutes
for Nabo and 16.1 minutes for Wibo, see Appendix B.3.2), indicating comparable variability in clean
time.

5.2.4. Travel time
Travel time is categorized into three types: within-bay, cross-bay, and cross-zone. Cross-bay refers to
movements within the centrum area where the team must switch to a different bay, while Cross zone
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Figure 5.5: Variation of clean times per aircraft stand type

involves travel between the centrum and other areas of the Airside, typically occurring at the start and
end of operations, during breaks, or when vehicles assigned to clean the CDF must travel to and from
the centrum. Figure 5.6 provides a visual illustration of each route type: Figure 5.6a shows V8 traveling
from B32 to B20 (within-bay), 5.6b shows V8 moving from C07 to B32 (cross-bay) and 5.6c shows V8
traveling from its starting position at R72 to E09 (cross-zone).

(a) within-bay (b) cross-bay (c) Cross zone

Figure 5.6: Visualisation of each route type

The box plots in Figure 5.7 illustrate substantial differences in travel time across the three route types.
within-bay movements are by far the shortest and most consistent, with a median travel time of just 0.63
minutes. The narrow IQR (0.77 minutes) and low upper whisker (1.92 minutes) reflect limited variability,
reflecting the efficiency and predictability of within-bay routing. In contrast, cross-bay and cross-zone
movements are significantly longer and more variable, with median travel times of 6.3 and 7.7 minutes,
respectively. The wide IQRs and high upper whiskers suggest greater susceptibility to delays.

These results highlight the operational advantage of assigning consecutive tasks within the same bay
to minimize travel time and improve predictability.

Although efforts are made to keep ASCTs operating within the same bay, aiming to reduce travel time
and enhance operational efficiency, this strategy is not consistently reflected in practice. Figures 5.8a
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Figure 5.7: Variation in ASCT travel time across route type

and 5.8b show that cross-bay movements still occur frequently. Moreover, Figure 5.9 shows no ob-
servable increase over time in the proportion of within-bay routes across snow events.

The findings for the centrum area are particularly relevant, as efficiency efforts are focused here and
the forecasting model is specifically designed to simulate operations within this zone. Notably:

56% of the routes are classified as within-bay, while 44% are cross-bay.

The number of active teams is theoretically linked to route type distribution, as more teams could al-
low each to remain within its bay, reducing cross-bay movements (see the causal diagram in Figure
4.14). However, no clear trend emerges when comparing team availability (Figure 5.2) with route type
proportions across snow days (Figure 5.9). For example, in 2018, the share of within-bay routes was
high despite having the same number of teams (5) as in 2017 and 2019, when proportions were lower.
Similarly, in 2022 and 2024, both with 4 active teams, route type proportions differed markedly. This
suggests that team availability alone does not explain route type variation, indicating that other opera-
tional or environmental factors may be more influential.

When the strategies regarding routing are not achieved and cross-bay travel occurs, it becomes rel-
evant to examine whether travel time increases with the number of bay shifts a team makes. There
are eight bays in total (A, B, BC, CD, D, DE, EF, FG, G), arranged in sequential order. As such, a
movement from bay A to bay G, or vice versa, represents the maximum of eight bay shifts.

Table B.6 presents the frequency of each bay shift and the corresponding median travel time for all
categories with sufficient data. For the purpose of analysis, categories involving six, seven, or eight
bay shifts were excluded due to their low occurrence. The table shows that most cross-bay routes
involve only a single bay shift, with the number of occurrences decreasing as the number of shifts
increases. This pattern suggests that operational planning efforts are generally successful in keeping
teams at least close their current bay.

Notably, even a single bay shift results in a substantially longer median travel time compared to routes
that remain within the same bay (5.8 minutes versus 0.6 minutes). The median travel times across the
bay shifts categories reveal substantial variation, with one to three shifts associated with significantly
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(a) Proportional distribution of all route types (b) Proportional distribution of routes within the airside centrum

Figure 5.8: Comparison of ASCT route type distributions

Figure 5.9: Proportional distribution of routes within centrum over the years

shorter travel times than the higher-shift categories.

Number of bay shifts Count Median travel time
1 109 5.43
2 38 6.98
3 29 7.93
4 12 11.80
5 12 11.92
6 1 -
7 2 -
8 1 -

Table 5.1: Descriptives of travel time across number of bay shifts

5.2.5. Cleaning cycles
A cleaning cycle comprises both the travel time to a task location and the task’s cleaning duration.
Cycle time serves as the basis for calculating cleaning capacity in the following section. Since cleaning
time varies by aircraft stand type and travel time depends on the route type, it is expected that cycle
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time is influenced by both factors. This expectation is supported by the box plots in Figure 5.10, which
illustrate clear variations in cycle time across different stand and route types. Notably, the difference in
median cycle time between route types is more pronounced than between stand types.

Figure 5.10: Distribution of cycle times across stand and route types

Figures 5.11a and 5.11b provide a more detailed understanding of the composition of cycle times. Fig-
ure 5.11a distinguishes between regular and long cycles, with the latter defined as those exceeding
the 75th percentile (32.4 minutes). The scatterplot shows that most long cycles are driven by extended
cleaning durations rather than unusually long travel times.

Figure 5.11b displays the distribution of cleaning time as a share of total cycle time, revealing that
cleaning often takes up a substantial portion of the cycle, with a strong concentration near a ratio of 1.0.
This suggests that, in many cases, cleaning dominates the total operational cycle. Additional graphs
in Appendix B.3.4 show that this effect is primarily driven by within-bay operations, where travel time
is minimal. In contrast, cross-bay and cross zone movements contribute more significantly to the total
cycle time, with their distributions peaking around 20–30%.

Together, these figures highlight that, although route type influences the overall cycle length, clean-
ing duration plays the most dominant role and explains most of the variability in the upper tail of the
distribution.

5.2.6. Capacity
Hourly cleaning capacity is defined as the number of cleaning cycles that can be completed within one
hour. For each recorded cycle, capacity is calculated by dividing 60 minutes by the total cycle duration.
For instance, a 15-minute cycle corresponds to a capacity of 4 tasks per hour.

Figure 5.12 shows the distribution of cleaning capacity across all recorded cycles. The blue curve
represents the estimated probability density function (PDF), highlighting a right-skewed distribution.
Most capacities fall between 1 and 4 cycles per hour, with a peak around 2 to 3, corresponding to
cycle durations of 30 to 20 minutes. Outliers reaching up to 12 cycles per hour reflect exceptionally
short cycles, around 5 minutes, which likely result from minimal cleaning and travel times (within-bay).
The long right tail suggests that under optimal conditions, significantly higher throughput is achievable,
although such cases are rare in practice.

This distribution serves as the basis for the Analysis phase, in which statistical tests are conducted to
evaluate the influence of various factors on cleaning capacity.

5.3. Conclusion
This chapter provided a comprehensive overview of current snow removal operations at aircraft stands,
based on enriched radar data and a custom-built classification algorithm. The algorithm reliably distin-
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(a) Composition of regular versus long cycle times (b) Frequency distribution of clean time share in cycle duration

Figure 5.11: Impact of clean time versus travel time on cycle time

Figure 5.12: Distribution of hourly cleaning capacity

guishes between cleaning, travel, and break periods, while accounting for location inaccuracies and
missing timestamps. Key operational parameters were derived using box plot statistics, reducing the
impact of outliers.

Addressing the research question “What insights do historical data offer about the performance
of current snow removal operations?”, this chapter demonstrated that historical data reveals clear
patterns and variability in snow removal performance, driven by stand type and routing efficiency.
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Key Insights

• 50% of the time, one fewer team was active than the preferred maximum.
• Idle time varied greatly in both frequency and duration; a 35-minute break per 8-hour shift
is assumed.

• Wide body stands required longer cleaning times than narrow body stands.
• Travel time increased significantly when ASCTs moved between bays or zones.
• Even a single bay shift led to substantially higher travel time, with additional shifts com-
pounding the effect.

• The proportion within-bay - cross-bay operations is approximately 55%–45% and has re-
mained stable over the past years.

• Cleaning duration was the primary driver of overall cycle length.
• Capacity followed a right-skewed distribution, peaking at 2–3 cycles per hour.

For the remainder of this study, the analysis will be limited to cleaning cycles within the centrum
area.

This decision was made because cross zone movements typically occur at the start and end of the
operation, during intermediate breaks, or when vehicles travel to and from the CDF. These movements
do not reflect the core operational dynamics that the forecasting model aims to capture. Furthermore,
ASCT routing strategies are primarily focused on the centrum area (keep teams within their bay). By
limiting the analysis to this operational context, the results obtained are directly applicable to the im-
provement of relevant planning and routing strategies.

The insights gained in this phase form the foundation for the next stage of the research, where statistical
tests are applied to evaluate the influence of environmental and operational factors on snow removal
capacity.
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6
Determinants of Cleaning Capacity

In this chapter, potential factors influencing the aircraft stand cleaning capacity are analysed. Their
statistiscal significance and practical impact are assessed. Based on these findings, categorical ca-
pacity classes are defined, which serve as input for the final design model.

As concluded in the previous chapter (Section 5.2.6), the distribution of cleaning capacity is non-normal.
Consequently, non-parametric statistical tests are used to assess the impact of relevant factors on
capacity. The tests applied include the Spearman rank correlation, Mann-Whitney U test, and the
Kruskal-Wallis test.

Spearman rank correlation
The Spearman rank correlation evaluates the strength and direction of the association between two
variables without assuming linearity or normally distributed data. It tests the null hypothesis that no
association exists between the variable and cleaning capacity. A p-vlaue below 0.05 indicates that the
null hypothesis can be rejected, providing statistically significant evidence of a relationship between
the variable and cleaning capacity. Variables found to be significantly correlated with capacity are
considered for inclusion in the forecasting model.

Mann-Whitney U test and Kruskal-Wallis H test
The Mann–Whitney U test is used to determine whether there is a statistically significant difference in
cleaning capacity between two groups. It serves as a non-parametric alternative to the independent
samples t-test when the assumption of normality is not met. For comparisons involving more than two
groups, the Kruskal–Wallis H test is applied. This test extends the Mann–Whitney U test to multiple
groups and serves as a non-parametric alternative to one-way ANOVA. Both tests evaluate the null
hypothesis that there is no difference in cleaning capacity between the tested groups. A p-value be-
low 0.05 leads to the rejection of the null hypothesis, indicating a statistically significant difference in
cleaning capacity between the groups.

6.1. Impact of weather parameters
6.1.1. Data preprocessing
As outlined in Table 2.2 in Subsection 2.5.1, the KNMI dataset contains a lot of data. First the six
locations closest to the aircraft stands at centrum are filtered, and the variables provided in Table 6.1
are extracted. All variables are available at both 12-second and 1-minute intervals, while the cycle
times are at minute-interval. Therefore, the weather data at 1-minute intervals is used. However, there
is one exception: PWCm is only available at 12-second intervals. For this parameter, the mode (most
occuring value) of the 12-second values within each minute is calculated to align with the minute-level
resolution.

To align weather conditions with cleaning cycles, and thereby assess their impact on cleaning capacity,
four aggregation strategies were applied. First, weather variables were aggregated over a time window
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Category Variable (unit) Description

Precipitation
NDm (seconds/minute) Precipitation Duration (1 minute sum)
NIm (mm/hour) Precipitation intensity (1 minute average)
PWCm (-) Precipitation type. Relevant types for this

research are: 67 (rain+snow), 70 (snow),
77 (drizzle snow), 87 (grain hail or snow),
89 (hail)

Temperature
TAm (°C) Ambient Temperature (1 minute average)
TBm (°C) Wet Bulb Temperature (1 minute average)
TDm (°C) Dew Point Temperature (1 minute aver-

age)
TGm (°C) Grass Temperature (1 minute average)

Visibility
Vis (m) Horizontal Visibility
C1s (m) First Cloud Layer Height

Wind speed WSmK (knots) Wind speed in Knots (1 minute average)
Snow accumulation SHm (mm) Snow Depth (1 minute average)

Table 6.1: Weather variables

equal to the minimum cycle duration (4.6 minutes), to standardize the length of all periods, enabling
direct comparisons. Second, aggregation is performed over the median cycle duration (19 minutes), or
the full period if the actual cycle is shorter, capturing the typical operational duration. Third, weather data
is aggregated over the actual duration of each cycle, accounting for all fluctuating conditions during the
operation. Lastly, a 10-minute pre-cycle window is included to capture preceding weather conditions
that may affect performance. Table 6.2a provides an overview of these aggregation strategies, while
Table 6.2 outlines the method used for each weather variable. Most variables are averaged across the
defined windows. For NDm, a sum is calculated first, followed by a ratio, allowing for fair comparison
across different durations. PWCm, being categorical, is aggregated using the mode to avoid invalid
class values. For SHm, the maximum is taken to reflect peak snow depth, which can increase rapidly
during snowfall.

Aggregation Prefix
Minimum cycle duration first4.6_..
Median cycle duration first19_..
Full period full_ ..
10 minutes before period pre10_..

(a) Aggregated weather variables

Aggregation method Variables
Average NIm, TAm, TBm, TDm,

TGm, Vis, C1s, WSmK
Max SHm
Mode PWCm
Sum NDm
Ratio summed NDm

(b) Aggregation methods

Table 6.2: Aggregated variables and the corresponding methods

Besides the weather parameters, several classifications are made, as outlined in Table 6.3, based on
the classifications introduced in Table 4.2 in Subsection 4.2.1. The full period aggregation variables
are used for these classifications because they provide a comprehensive summary of weather condi-
tions over the entire duration of the cleaning operation. This ensures that the classification reflects
the full context in which the cleaning task was performed, rather than being influenced by short-term
fluctuations that may not represent the overall operational conditions.

6.2. Impact of weather variables
To examine the impact of weather variables on cleaning capacity, a Spearman rank correlation test was
performed between each aggregated weather variable and hourly cleaning capacity, as well as between
each weather classification and capacity. The null hypothesis for each test stated that no relationship
exists between the respective weather variable and cleaning capacity. Based on the resulting p-values,
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Variable Category name Category value

Precipitation type

Snow full_PWCm ∈ (67, 70, 77)
Remaining snow full_SHm > 5 AND full_PWCm /∈

(67, 70, 77)
Rain full_SHm = 0 AND full_PWCm ∈

(65, 55, 60, 65)
No precipitation full_SHm = 0 AND full_PWCm = 0

Snow Intensity
Light full_NIm < 5
Moderate 5 ≤ full_NIm ≤ 50
Heavy full_NIm > 50

Snow type
Wet full_TBm > 0.5 OR full_PWCm = 67
Dry full_TBm < −0.5
Doubtful cases (around 0°) full_TDm < −2

Wind speed
Light ( < 3 Bf) full_WSmK < 7
Moderate (3–6 Bf) 7 ≤ full_WSmK ≤ 22
Heavy (>6 Bf) full_WSmK > 22

Visibility

BZO scenario C full_Vis < 350
BZO scenario B 350 ≤ full_ViS < 550 OR full_C1s < 200
BZO scenario A 550 ≤ full_ViS < 1500 OR 200 ≤

full_C1s ≤ 300
BZO scenario 0 full_Vis ≥ 1500

Table 6.3: Categorized weather variables

presented in Appendix B.4, it was found that among the aggregated variables, only snow depth (SHm)
showed a statistically significant correlation with cleaning capacity (p < 0.05). All other aggregated
variables, as well as the categorized weather variables, yielded nonsignificant associations.

This lack of significance is likely due to limited variability in the observed weather conditions. For
example, snow intensity was consistently classified as light, wind conditions were generally moderate,
and visibility was almost always good (BZO scenario 0). Such uniform conditions reduce the potential
to detect meaningful differences between categories and also explain the absence of significant effects
among most aggregated weather variables.

To define categorical capacity classes suitable as input for the forecasting model, the continuous vari-
able Shm was discretized. Initially, Shm was divided into three categories, low, medium, and high, as
shown in Table 6.4, based on threshold values corresponding to snow situation classifications defined
by Schiphol (see Figure 4.6).

Table 6.4b presents the results of the Kruskal-Wallis H test and the pairwise Mann-Whitney U tests. The
Kurkal-Wallis H test indicated a statistically significant difference among at least two of the snow depth
categories (p = 0.003). However, pairwise Mann-Whitney U tests did not reveal a significant difference
between the low and medium categories. Consequently, these two categories were merged. For the
final model, snow depth is classified into two groups: low (< 50 mm) and high (≥ 50 mm), consistent
with the classification thresholds used by KNMI (KNMI, n.d.).

Figure 6.1 shows tat higher snow depths are associated with a substantially lower median capacity,
suggesting that increased snow accumulation negatively impacts cleaning performance.

Category Value
Low SHm < 10 mm
Medium Shm < 50 mm
High Shm ≥ 50 mm

(a) Snow depth classifications

Snow depth level P-value Test
Low, medium, high 0.003 Kruskal-Wallis H
Low vs medium 0.430 Mann-Whitney U
Low vs high 0.006 Mann-Whitney U
Medium vs high 0.004 Mann-Whitney U

(b) Statistical test results snow depth categories

Table 6.4: Snow depth categories and their statistical significancy
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Figure 6.1: Distribution of snow depth across snow depth categories.

6.3. Impact of operational parameters
To assess whether hourly cleaning capacity significantly differs by aircraft stand type and route type, two
Mann–Whitney U test were conducted. The results of these tests are presented in Table 6.5, revealing
a statistically significant difference in cleaning capacity and both differentiations. The box plots in Figure
6.2 give an illustration to this difference, showing that Nabo stands are associated with higher cleaning
capacities than Wibo stands, and within-bay routes are linked to substantially higher capacities than
cross-bay routes.

To examine the influence of bay shifts on capacity, a Kruskal–Wallis test was applied across the five
bay shift categories with sufficient data. The test did not yield a statistically significant result, indicating
that the number of bay shifts does not significantly impact hourly cleaning capacity. Although bay
shifts were shown to have a clear impact on travel time in Figure B.3, this does not translate into
significant differences in overall cleaning capacity. A likely explanation is that while longer travel times
may reduce the number of potential tasks a team could complete, this effect is offset by the variability
in cleaning durations. In practice, cleaning time often dominates the total cycle duration, as concluded
in Subsection 5.2.6, meaning that fluctuations in travel time have a relatively smaller influence on the
overall capacity.

Variables P-value Test
Nabo vs Wibo 0.022 Mann-Whitney U
within-bay vs cross-bay < 0.001 Mann-Whitney U
cross-bay shifts 1,2,3,4,5 0.491 Kruskal-Wallis H

Table 6.5: Statistical test results aircraft stand and route type

6.4. Capacity categorization
After concluding that snow depth, aircraft stand type, and route type each influence hourly cleaning
capacity, the combined effects of these factors were further evaluated. A Kruskal-Wallis H test was
performed across the six different combinations of these variables, with the resulting p-values outlined
in Table 6.6. All combinations demonstrated a statistically significant effect, except for C4, which repre-
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Figure 6.2: Distribution of snow removal capacity across aircraft stand and route types

sents cross-bay routes across stand types and snow depth levels. This indicates that when an ASCT
operates on a cross-bay route, cleaning capacity does not significantly vary with snow level or stand
type.

Subsequently, pairwise Mann-Withney U tests were conducted for the groups that showed statistically
significant results in the Kruskal–Wallis H tests, as presented in Table 6.6. Only those combinations
for which statistically significant differences were found were treated as distinct capacity scenarios in
Table 6.7, summarized as follows:

• For Nabo stands, three separate scenarios were defined: one for cross-bay routes, and
two for within-bay routes, differentiated by snow level (low vs. high).

• For Wibo stands, two scenarios were defined, one for each route type, as snow level did
not have a significant effect.

• cross-bay routes for Nabo and Wibo were combined into a single scenario, due to the
absence of significant differences.

To define the final capacity scenarios, the median capacity was calculated for each statistically valid
scenario. For merged scenarios, the average of the individual medians was used. Additionally, Low
and High capacity scenarios were included to be able to account for weather forecast uncertainty in
the forecasting model, consistent with the model logic of APOC’s de-icing tool. The Low and High
scenarios correspond to the 75th and 25th precentiles, respectively. The final capacity scenarios are
presented in Table 6.7. While only statistically distinct scenarios were assigned separate capacities,
all possible combinations are still included in the model with shared capacity values. This approach
facilitates easy updates in the future if new data reveal additional significant effects.
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Variables Count P-value Test
C1. Nabo - route types - snow levels < 0.001 Kruskal-Wallis H
C1.1. Nabo - within-bay - snow low vs. high 0.014 Mann-Whitney U
C1.2 Nabo - cross-bay - snow low vs. high 0.094 Mann-Whitney U

C2. Wibo - route types - snow levels 0.004 Kruskal-Wallis H
C2.1. Wibo - within-bay - snow low vs. high 0.546 Mann-Whitney U
C2.2. Wibo - cross-bay - snow low vs. high 0.086 Mann-Whitney U

C3. within-bay - snow levels - stand types 0.003 Kruskal-Wallis H
C3.1. within-bay - Snow Low - Nabo vs. Wibo < 0.001 Mann-Whitney U
C3.2. within-bay - Snow High - Nabo vs. Wibo 0.845 Mann-Whitney U

C4. cross-bay - stand types - snow levels 0.072 Kruskal-Wallis H
C5. Snow depth low - stand types - route types < 0.001 Kruskal-Wallis H
C5.1. Snow Low - Nabo - within-bay vs. cross-bay < 0.001 Mann-Whitney U
C5.2. Snow Low - Wibo - within-bay vs. cross-bay 0.032 Mann-Whitney U

C6. Snow depth high - stand types - route types < 0.001 Kruskal-Wallis H
C6.1. Snow High - Nabo: within-bay vs. cross-bay 0.002 Mann-Whitney U
C6.2. Snow High - Wibo: within-bay vs. cross-bay 0.006 Mann-Whitney U

Table 6.6: Statistical test results aircraft stand, route type and snow depth level combinations

Stand Route Snow Capacity
Low Middle High

Nabo within-bay Low 7.2 4.9 3.2
Nabo within-bay High 5.7 3.7 1.9
Nabo cross-bay Low 3.3 2.2 1.8
Nabo cross-bay High 3.3 2.2 1.8
Wibo within-bay Low 5.5 3.4 2.0
Wibo within-bay High 5.5 3.4 2.0
Wibo cross-bay Low 3.3 2.2 1.8
Wibo cross-bay High 3.3 2.2 1.8

Table 6.7: Categorized capacities

6.5. Conclusion
This chapter identified the key operational and environmental factors influencing aircraft stand cleaning
capacity during snow removal operations, thereby addressing the research question: ”Which factors
are shown by historical data to significantly affect aircraft stand snow removal capacity?” The
main findings are summarized below:

Key Insights

• Snow depth was the only weather variable with a statistically significant effect, with greater
depths linked to lower capacity.

• Other weather variables showed no significant impact, likely due to limited variability in the
dataset.

• Stand type (Nabo vs. Wibo) and route type (within-bay vs. cross-bay) significantly influ-
enced capacity.

• The combined effect of snow depth, stand type, and route type revealed that only spe-
cific combinations significantly affect capacity; these were modeled separately, while non-
significant variations were consolidated.

The capacity scenarios defined in Table 6.7 serve as input for the forecasting model developed in the
subsequent Design phase.
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7
Forecasting model design

The objective of this research is to develop a forecasting model that predicts aircraft stand cleaning
capacity based on anticipated weather conditions and operational factors. This model enables the
evaluation of how available cleaning capacity aligns with the inbound flight schedule, potentially iden-
tifying queues and operational bottlenecks. It is designed to support decision-making during sector
briefings, where the limiting capacity is determined and, based on this constraint, the inbound capacity
is adjusted and flight cancellations are advised to airlines as necessary.

The following section first outlines the simulation framework, after which the final output is demonstrated
using a virtual snow event.

7.1. Simulation design framework
The simulation is built using a discrete-time structure with 30-minute time slots, incorporating both
situation-specific and operational input variables. The model logic is based on real-world constraints
and historical performance data derived from theMeasure & Analysis phase. The following subsections
outline the design requirements, input parameters, and core assumptions, followed by a description of
the final simulation design, illustrated by a flow diagram, and the model verification process.

7.1.1. Design requirements
Functional requirements

• The model must be focused on the operations within centrum.
• Users must be able to adjust situation-specific parameters (e.g., capacity restriction time windows,
team numbers, route type ratio) without modifying the model code, making it applicable across
various snowfall events and operational setups.

• The model must provide cleaning capacity estimates at sufficient temporal resolution to support
slot-level planning decisions, e.g., 1-hour, 30-minute or 15-minute intervals.

• The simulation logic must realistically represent operational constraints, including the reassign-
ment of flights to already cleaned stands where feasible, logical allocation of available capacity,
utilization of surplus capacity, and incorporation of scheduled team breaks.

• The model should support rapid scenario analysis, delivering results within minutes to enable
timely decision-making during operational briefings.

• The model should align with the logic of the existing de-icing model to ensure consistency and
ease of use within the sector briefing, as discussed in Subsection 4.2.3.

Visualization requirements
• The model output must be intuitive and easy to interpret for operational stakeholders.
• The visual design must align with APOC’s de-icing forecasting tool to ensure consistency and
ease of use, as discussed in Subsection 4.2.3 and illustrated in Figure 4.9.
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While maintaining logical and visual consistency with the de-icing tool is essential, enhancements that
improve the model structure and output are encouraged.

KPIs
To ensure alignment with APOC’s de-icing forecasting tool, the representation of KPIs is an essential
design element. In addition to KPIs used in the de-icing tool, three supplementary indicators were
added to provide a better understanding of the situation on airside during the snow event. The full list
of KPIs is as follows:

KPIs aligned with the de-icing forecasting tool:

• Total number of queued aircraft, differentiated by Nabo and Wibo.
• Maximum queue length (aircraft per time slot)

Additional KPIs:

• Total number of time slots with queues
• Maximum waiting time experienced by an aircraft
• Number of aircraft experiencing a delay of more than 30 minutes

The KPIs adapted from the de-icing tool were modified to reflect the context of aircraft stand operations.
The additional KPIs were selected based on an informal interview with the Service Owner Winter Op-
erations, who specifically emphasized the operational relevance of the maximum waiting time. Delays
exceeding 30 minutes likely trigger additional procedures, making this threshold a critical metric for
supporting operational decision-making.

7.1.2. Input variables
The model incorporates two types of input variables: situation-specific inputs, which vary per snow
event, outlined in Table 7.1, and operational inputs, which are only adjusted in the event of a structural
change in the cleaning process, outlined in Table 7.2. Among these inputs is the cleaning capacity,
which is treated as an operational input and varies based on the situation defined by the user with the
situation-specific inputs.

Figure 7.1 displays the user input interface for situation specific variables. The date, end time of clean-
ing, model scenario and team availability can be specified using the designated widgets. The remaining
input variables must be manually updated in the sheet displayed at the top of the model file. Operational
inputs are located at the top of the modeling code for easy access.

7.1.3. Assumptions
The following assumptions are used in the model:

• CDF cleaning teams are assumed inactive during snowfall, resuming operations only after snow-
fall ends. Occasional assistance to centrum teams during snowfall is not modeled due to its
unpredictability.

• Flight cancellations occur randomly within each time slot, following a fixed Nabo/Wibo ratio of
95%-5%, without incorporating any strategic or tactical decision-making logic. In practice, specific
flight cancellations are decided by the airlines, following recommendations from APOC. For most
airlines, the resulting distribution of canceled flights adheres this fixed (Informal interview APOC,
March 2025).

• Flights assigned to a clean stand are excluded from the model.
• Capacity restrictions (runway, de-icing, additional) are hourly but split into two 30-minute slots.
Any fractional capacity is rounded up for the first slot and down for the second slot.

• Route type is modeled as a fixed ratio of 55% within-bay-45% cross-bay, derived from historical
data.

• Capacity is proportionally distributed between Nabo and Wibo stands based on the scheduled
and queued flights per time slot.
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Variable Description
Inbound flight schedule The flights scheduled during the simulation period,

derived from CISS flight data
Model Scenario Low, Middle, or High, reflecting weather uncertainty.

The Middle scenario represents the baseline con-
ditions, while the Low and High scenarios indicate
more favorable or worse conditions than expected,
respectively.

Time window(s) of forecasted accumulation Predicted start and end time(s) of low and/or high
accumulation levels.

End time of cleaning requirement Predicted time when cleaning is no longer needed,
for example, due to rain naturally clearing the
stands.

Number of teams active at centrum Number of teams operating at centrum throughout
the snowfall period.

Number of teams active at CDF Number of teams initially assigned to the CDF, who
become available at centrum once snowfall ends.

Start time of first cleaning shift Time when cleaning teams enter the Airside area
to start the snow removal process. Based on this
input, scheduled break times and potential subse-
quent shift start times are calculated.

Runway capacity restriction Time window(s) during which inbound capacity is re-
stricted, based on defined runway capacity scenar-
ios.

De-icing capacity restriction Time window(s) during which inbound capacity is re-
stricted, based on predicted de-icing capacity.

Additional capacity restriction Time window(s) with additional capacity limitations
due to other operational constraints such as aircraft
stand snow removal.

Table 7.1: User-defined situation-specific inputs

Variable Values
Time slot interval 30 minutes
Maximal Inbound capacity per E: 10 flights/hour,
runway availability scenario D: 17 flights/hour,

C: 35 flights/hour,
B: 68 flights/hour

Runway clean time 40 minutes
Handling time per aircraft type Nabo: 50 minutes,

Wibo: 75 minutes
Break duration 35 minutes
Start time of first break after 3 hours
Shift duration 8 hours
Route type ratio within-bay: 55%,

cross-bay: 45%
Situation-specific capacity See Table 6.7

Table 7.2: Inputs reflecting operational assumptions

• The number of assignable and queued aircraft are defined as integers, while capacity is a frac-
tional variable. This discrepancy often leads to positive or negative slack, which is carried over to
the next time slot. Following consultation with the Service Owner Winter Operations, the integer
threshold was set at 0.4 instead of 0.5.

• Excess capacity after snowfall ends (i.e., the ”AS on demand” principle no longer applies) is used
to clean future stands of the same type, or reallocated if only the other stand type remains.
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(a) Input widgets
(b) Input widgets - scenario

choice

(c) Input sheet

Figure 7.1: User interface of situation-specific input variables

• Aircraft arrival times are not individually modeled; instead, flights are grouped into their respective
time slots. As a result, the precise waiting time per aircraft cannot be determined and is instead
approximated based on slot-level timing.

7.1.4. Design
Figure 7.2 presents a comprehensive overview of the final model design. A detailed explanation of the
diagram is provided in Appendix C.2 and the underlying python code is outlined in Appendix D.2. The
flow diagram visualizes how time-dependent constraints such as capacity limits, team availability, and
stand suitability interact to determine flight cancellations, cleaning assignments, and queue formation.

7.1.5. Model output
Figure 8.1 presents the output of the simulation model, demonstrating alignment with the design re-
quirements outlined in Subsection 7.1.1. This visual representation illustrates the dynamic relationship
between available cleaning capacity, the number of aircraft stands cleaned, and the queue of aircraft
during a snow event. The x-axis represents time slots, while the y-axis indicates the number of aircraft
assigned to stands that have not yet been cleaned. The graph distinguishes between Nabo and Wibo
stands, displaying both assignable aircraft (solid bars) and queued aircraft (hatched bars) for each type.
A bold line represents the total available cleaning capacity per time slot. Notably, the capacity does not
always correspond to the solid bars of cleaned stands (assignable aircraft). This discrepancy arises
from capacity slack and the utilization of Nabo capacity for Wibo stands (and vice versa), as explained
in Subsection 7.1.3. The snowfall period is shaded in light blue to indicate reduced team availability
during this time.

Beneath the graph, a separate bar chart shows the total number of queued aircraft per time slot, and
the KPIs are displayed alongside the graph for quick reference.
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Figure 7.2: Simulation model logic
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7.1.6. Model verification
To ensure that the simulation model was correctly constructed and implemented, model verification
was performed. This involved assessing the internal consistency and correctness of the model’s logic
and computations. Several verification techniques were applied: code reviews were conducted to
detect potential implementation errors, and step-by-step logging was used to trace intermediate outputs
and verify alignment with expected behavior. Additionally, test runs using simplified and controlled
input cases were compared against manually calculated outcomes to confirm computational accuracy.
Extreme scenario testing was also employed to examine the model’s response under edge conditions,
such as complete unavailability of cleaning teams.

Together, these verification steps provide confidence that the model operates as intended. The valida-
tion of its practical performance is addressed in Chapter 8.

7.2. Forecasting tool demonstration
7.2.1. Current situation
The forecasting tool is demonstrated using a virtual snow situation, based on the situational context
discussed during the sector briefing training in November 2024. The situation-specific input variables
established during the briefing are summarized in Table 8.3. The conclusion of the sector briefing was
that, between 06:00 and 11:00, the limiting factor would alternate between runway capacity and de-
icing capacity. From 11:00 to 15:00, de-icing capacity was identified as the primary constraint. Aircraft
stand capacity would not cause any problem.

Variable Values
Scenario Middle
Time window of forecasted snow 03:00 - 11:00

Time window of forecasted accumulation
03:00 - 05:00; low
05:00 - 10:00; high
10:00 - 11:00; low

End time of cleaning requirement -
Number of teams active at centrum 4
Number of teams active at CDF 2
Runway capacity restriction 03:00 - 06:00; C

06:00 - 07:00; D
07:00 - 08:00; E
08:00 - 09:00; D
09:00 - 10:00; E
10:00 - 11:00; D

De-icing capacity restriction 07:00 - 10:00; 12
10:00 - 11:00; 24
11:00 - 15:00; 26

Additional capacity restriction -

Table 7.3: Initial user-defined inputs virtual snow event

The output of this scenario is shown in Figure 8.1. It reveals that, during the snowfall period, there are
typically 4 to 6 aircraft waiting in the field for an available stand. From 10:00 onwards, when runway and
de-icing capacities increase rapidly to a restricted capacity of 24 flights per hour, with de-icing as the
limiting factor, queues continue to grow, peaking at 9 aircraft. Moreover, the KPIs show that 2 aircraft
have a waiting time exceeding the 30 minute threshold, with a maximum waiting time of 2 time slots.
Overall, it can be concluded that this level of congestion poses a serious risk to operational continuity,
potentially leading to significant delays and unplanned flight cancellations.

Contrary to the conclusions of the sector briefing, which stated that runway and de-icing capacity would
be the primary constraints and stand capacity would not pose a problem, the model output suggests oth-
erwise. It indicates that stand availability already leads to queuing from 06:30 onwards, with congestion
escalating notably from 10:00. This finding reinforces the conclusion drawn in Section 4.4:
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Due to limited data-driven insights into aircraft stand cleaning capacity, this factor is often over-
looked in strategic planning, risking an overestimation of inbound capacity and the formation of
aircraft queues on taxiways.

Figure 7.3: Model output virtual snow event without additional capacity restrictions

7.2.2. Strategic value of the model
The queues that emerge when aircraft stand cleaning capacity is not considered highlight the critical
importance of the developed model as a strategic decision-support tool. By simulating operational
scenarios under additional capacity constraints, the model empowers users to proactively explore and
assess interventions aimed at reducing delays and alleviate congestion.

Through the input variable Additional Capacity Restriction, users can strategically test and optimize
various capacity management strategies. For instance, applying a restriction of 12 flights per hour
between 10:00 and 12:00 produces the output shown in Figure 7.4a. Compared to the baseline sce-
nario (Figure 8.1), queues dissipate rapidly after 10:00, reducing both the total number of queued
aircraft and the maximum queue length. However, one aircraft still experiences a waiting time of two
slots.

Introducing an additional restriction of 12 flights per hour between 06:30 and 07:00, thereby extend-
ing the existing de-icing constraint of 12 flights per hour between 07:00 and 10:00, yields the results
shown in Figure 7.4b. This earlier intervention proves highly effective in mitigating early-morning queue
formation, further reducing both the total number of queued aircraft and the maximum queue length.
Importantly, it ensures that the maximumwaiting time remains below the critical threshold of 30 minutes.

These results clearly demonstrate that even moderate, well-timed flight restrictions, informed by model
simulations, can significantly reduce queuing and enhance operational efficiency. Overall, it can be
concluded that:

The model enables users to assess cleaning capacity, identify bottlenecks, and evaluate opera-
tional constraints, thereby optimizing the timing, intensity, and effectiveness of interventions.
Its output provides a robust foundation for data-driven capacity planning.

7.3. Beyond forecasting
Beyond its purpose to evaluate strategic capacity restrictions during snow events, the forecastingmodel
offers valuable insights for a range of broader applications:
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(a) 12 flights per hour between 10:00 and 12:00

(b) 12 flights per hour between 6:30 and 7:00, 12 flights per hour between 10:00 and 12:00

Figure 7.4: Model output virtual snow event with additional capacity restrictions

Structural operational changes:
Themodel enables users to simulate the effects of structural adjustments in key operational parameters.
For instance, changes in the number of available cleaning teams or shifts in the within-bay to cross-
bay route type ratio can be assessed. This functionality supports more informed, long-term resource
planning and optimization of snow removal at aircraft stands.

Optimizing team deployment:
The model can support tactical improvements in workforce planning by revealing periods of over- and
underutilization. For example, the simulation output in Figure 8.1 indicates limited cleaning activity
between 03:00 and 06:00. Adjusting team schedules to start later could enhance efficiency by aligning
deployment with peak operational times, thereby reducing idle periods during critical moments.

Through these additional applications, themodel serves not only as an operational decision-support tool
during snow events but also as a broader instrument for strategic optimization and long-term planning.
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7.3.1. conclusion
In response to the sub-question ”How can these insights (from the Measure and Analyse phases)
be used to design a forecasting model that supports winter weather capacity planning under
varying situations?”, this chapter demonstrated how the key operational and environmental drivers
identified through the data analysis can be integrated into a discrete-time simulation model. By incor-
porating situation-specific inputs and operational constraints, the model allows for flexible configuration
and tailored scenario analysis, making it a robust tool for forecasting aircraft stand cleaning capacity
under diverse conditions.

The model’s output not only validates the importance of cleaning capacity in winter operations but also
highlights its strategic value in supporting informed decision-making. The following insights summarize
the model’s impact:

Key Insights

Forecasting value:
• Aircraft stand cleaning capacity is often overlooked in strategic planning, risking opera-
tional disruptions and the formation of queues on taxiways.

• The model provides a structured and transparent tool to assess cleaning capacity and
identify potential bottlenecks.

• It enables users to test the timing, intensity, and effectiveness of additional capacity re-
strictions, supporting data-driven capacity management.

• Even minor, well-timed interventions in flight throughput can significantly reduce conges-
tion, proving the value of proactive capacity planning.

Beyond forecasting:
• The model supports long-term optimization by simulating structural changes in key vari-
ables, such as team size, workforce planning, and route type ratios.
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8
Operational value assessment

This chapter presents the Verify phase of the DMADV framework, which focuses on validating the
forecasting tool by evaluating whether it effectively addresses the problem defined in earlier stages and
performs reliably under realistic operational conditions. To achieve this, three complementary validation
approaches are used: a real-life scenario analysis that applies the model to an actual snow event at
Schiphol Airport, a sensitivity analysis that evaluates the model’s responsiveness to varying operational
conditions, and peer reviews by operational stakeholders to assess usability, practical relevance, and
alignment with existing decision-making processes. Together, these methods provide a comprehensive
validation of the model’s effectiveness and help determine its added value for winter operations at
Schiphol Airport. The verification of the model is already discussed in subsection 7.1.6

8.1. Real life scenario analysis
The forecasting tool was validated using the snow event of January 5, 2025. The corresponding sector
briefing output is presented in Figure 4.10 in Subsection 4.2.3. On this day, snowfall occurred between
06:00 and 08:00, followed by rain. The weather conditions were relatively mild, suggesting that the
forecasting scenario would fall between the Middle and Low scenarios. As rain ensured rapid snow
melting, cleaning was no longer necessary from 9:00 onwards. According to the sector briefing, the
aircraft stand cleaning capacity was expected to be sufficient to meet the demand under these condi-
tions.

Data analysis of this snow event showed that V4 started helping the teams at centrum from 7.45 on-
wards, and the within-bay to cross-bay ratio was 58%-42%. A total of five cleaning teams were avail-
able during the event, as the sixth team was excluded due to technical issues. The situation-specific
input parameters used in the simulation are summarized in Table 8.1. Figure 8.1 presents the model
output based on these scenario-based and operational conditions and Table 8.2 shows the actual per-
formance.

Variable Values
Scenario Middle
Time window of forecasted snow 06:00 - 08:00
End time of cleaning requirement 9:00
Time window of forecasted accumulation levels 06:00 - 08:00: low
Number of teams active at centrum 4
Number of teams active at CDF 1
Runway capacity restriction 05:00 - 11:00; C
De-icing capacity restriction 05:00 - 09:00; 20

09:00 - 12:00; 26
Additional capacity restriction -

Table 8.1: User-defined inputs on January 5, 2025
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Figure 8.1: Model output of real life situation on January 5, 2025

KPI Performance
Aircraft in queue In total, 4 queued aircraft between 6:00 - 8:00 (2 Nabo, 2 Wibo).
Queue A maximum of 2 aircraft per slot, 4 slots in total.
Waiting time One aircraft experiences a waiting time of more than 30 minutes (2 slots).

Table 8.2: Actual performance on January 5, 2025 (Daily performance - Power BI, 2025)

The results indicate that the forecasting model predicted a more severe situation than what actually oc-
curred when applying the Middle scenario. In contrast, applying the Low scenario resulted in the model
predicting no queues. In reality, the actual performance was between the Middle and Low scenarios,
indicating that the model was slightly conservative when using the Middle scenario.

Although this study did not find a significant impact of most weather conditions on cleaning capacity, this
particular situation demonstrates that capacity exceeded the baseline scenario, likely due to favorable
weather conditions. Additionallly, the model is not able to capture the effect of rain. While the model
predicts queues between 8:00 and 9:00, the actual performance data shows not such queues. This
discrepancy can be attributed to the occurrence of rain, which significantly accelerated the cleaning
process, as confirmed during the evaluation meeting of this snow event.

To validate the model output, the results were discussed with the Service Owner Winter Operations,
who confirmed the plausibility of the outcomes. Based on his experience during the event, he agreed
that the discrepancy between the model output and the actual situation was reasonable.

8.2. Sensitivity analysis
To assess the robustness and responsiveness of the forecasting model, a sensitivity analysis was
performed by systematically varying key input parameters. Table 8.3 summarizes all scenarios along
with their respective KPI values. The results show that team availability and the selectedmodel scenario
have the greatest impact on queue formation.

In scenario S1.1, where one fewer team is available (4 centrum + 1 CDF teams), the maximum waiting
time increases to 3 slots, and the number of aircraft waiting more than one slot rises significantly, both
concerning results. This scenario is highly realistic, as Section 5.2.1 showed that team availability
during snow events often falls one team short of the plan. In scenario S1.2 (3 centrum + 1 CDF teams),
the system becomes severely overloaded: the maximum queue per slot more than triples, queues
occur during 24 time slots (12 hours), some aircraft have to wait up to 8 slots, and over 100 aircraft
face delays exceeding 30 minutes, an alarming result. Conversely, increasing the availability to 5
centrum + 2 CDF almost eliminates delays, with a maximum of 3 queued aircraft per slot in only 5 slots,
and no aircraft experience delays longer than 30 minutes. These findings underscore the critical role
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of team availability in maintaining operational performance and minimizing delays during snow events.

The model scenarios addressing weather uncertainty also show significant effects. Under favorable
conditions (S2.1 - Low), no queuing occurs, and only one aircraft experiences a brief delay. In sharp
contrast, the High scenario (S2.2), representing worse-than-expected weather, leads to severe con-
gestion, comparable to the impact of having two fewer teams available than planned.

Varying the share of within-bay versus cross-bay movements also significantly alters performance.
As the proportion of within-bay routes increases (S3.1–S3.3), the total number of queued aircraft de-
creases, along with the maximum queue per slot and total queued slots. Notably, increasing the ratio
of within-bay routes to 65% already ensures aircraft experience delays not longer than 30 minutes. On
the contrary, a little decrease of within-bay route ratio (to 50%) directly increases the maximum waiting
time to 3 slots, and lead to substantially higher total queued aircraft (90). This underscores the value
of minimizing cross-bay travel.

Adjustments to break time (S4.1–S4.4) have only a marginal effect. Shorter breaks (30–25 min) slightly
reduce queuing, while longer ones (40–45 min) modestly increase it. Notably, having slightly shorter
breaks (30 minutes) already ensures that no aircraft experiences a delay longer than 30 minutes, an
important KPI. The limited variation across scenarios is partly due to the model’s use of 30-minute time
slots, which rounds small changes in break duration to the same slot count, dampening their effect on
capacity. While this simplification supports model consistency, it does not fully reflect real-world break
behavior, where overlaps or partial slot usage may occur. Nevertheless, the results indicate that even a
20-minute difference in break time (25 vs. 45 minutes) has only a limited effect on system performance.

In conclusion, the sensitivity analysis confirms that the model responds logically to changes in input vari-
ables and provides valuable insight into operational decision-making. The most influential operational
factors for improving system performance are team availability and routing strategy, while changes in
break time are less effective as standalone measures.

Altered variables Aircraft in Queue Queue Waiting time
Max/slot Total slots Max slots > 1 slot

Base 77 9 15 2 2
S1.1 Nteams = 4 + 1 85 12 17 3 18
S1.2 Nteams = 3 + 1 116 33 24 8 105
S1.3 Nteams = 5 + 2 8 3 5 1 0
S3.1 Route type: 65%-35% 53 7 14 1 0
S3.2 Route type: 75%-25% 30 4 10 1 0
S3.3 Route type: 85%-15% 19 4 8 1 0
S3.4 Route type: 50%-50% 90 10 16 3 5
S4.1 Break time = 30 65 8 15 1 0
S4.2 Break time = 25 65 8 15 1 0
S4.3 Break time = 40 87 11 16 2 8
S4.4 Break time = 45 87 11 16 2 8
S2.1 Low 1 1 1 1 0
S2.2 High 116 37 24 9 110

Table 8.3: Results per validation-scenario

8.3. Peer reviews
Thirdly, the model was validated through peer review by two three stakeholder (groups) directly involved
in snow operations and airport capacity planning.

The first review was conducted with the Service Owner Winter Operations, who initially commissioned
the development of the tool. Throughout the development process, multiple iterations weremade based
on his feedback to ensure alignment with operational needs and constraints. The Service Owner ac-
knowledged that the model output was both realistic and operationally credible. However, as demon-
strated during validation with the real-life scenario, weather conditions can still influence outcomes,
despite the statistical analysis not indicating a significant effect. Consequently, he emphasized the con-
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tinued importance of considering the impact of weather conditions in decision-making. Furthermore,
the Service Owner saw the model’s ability to simulate different operational setups, such as team avail-
ability and routing strategies, as a key strength for improving snow removal operations. Additionally,
he emphasized the tool’s potential to enhance operational awareness of how stand cleaning capacity
affects overall airport performance and to support more effective coordination of capacity-constrained
resources during winter events.

The second peer review was conducted with APOC, the unit responsible for determining the airport
capacity during winter weather operations, and one of the primary intended end-users of the forecasting
tool. The review focused on the model’s potential integration into APOC’s decision-making processes.
Representatives from APOC recognized the model’s value in providing operational insight into how
cleaning capacity influences overall airport performance and in supporting capacity planning during
snow events, thereby improving the transparency of capacity-related decisions. They highlighted the
usefulness of visualizing the expected impact of cleaning delays on inbound flow, which could inform
decisions regarding total inbound capacity. Furthermore, they particularly appreciated the model’s
ability to simulate capacity based on user-specified operational configurations rather than relying on
manual capacity calculations.

Lastly, the model was presented to the Winter Process Team during the evaluation session of winter
2024/2025. All team members recognized the tool’s usability during sector briefings and emphasized
its potential to support strategic optimization. This was underscored by the discussions sparked around
increasing the within-bay ratio. Furthermore, the importance of scenario testing to validate the model
was recognized.

8.4. conclusion
The verification phase addressed the following sub-question: “To what extent does the model pro-
vide accurate and usable capacity forecasts during simulated snow events?”. The model eval-
uation revealed several important insights regarding its performance and practical applicability in an
operational context. These key insights are summarized below:

Key Insights

• The real-life case study revealed that the model tended to be overly conservative under
mild winter conditions, with actual performance falling between the Low and Middle sce-
narios.

• The model exhibited a logical response to variations in key input variables during the sen-
sitivity analysis, indicating its robustness.

• Team availability and route type distribution were identified as critical operational factors
influencing queue formation, suggesting potential levers for operational optimization.

• The choice of model scenario had a pronounced effect on outcomes, underscoring the
importance of accounting for weather forecast uncertainty in capacity planning.

• Peer reviews confirmed the model’s practical applicability, emphasizing its flexibility to
simulate user-defined operational configurations as a key strength.



9
Conclusion and Discussion

This research investigated the snow removal at aircraft stands at Amsterdam Airport Schiphol, focusing
on developing a data-driven model to support capacity planning during snowfall. The proposed model
simulates snow removal operations under varying environmental and operational conditions, providing
insights into optimal capacity management strategies. While the model was specifically designed for
Schiphol, the insights and methodologies are applicable to other airports with similar operational setups.
The conclusion of this research is presented in Section 9.1, followed by the discussion in Section 9.2.

9.1. Conclusion
The conclusion first addresses the main research question, followed by a discussion of the study’s
practical implications and scientific contributions.

9.1.1. Answer to the main research question
This research aimed to quantify aircraft stand cleaning capacity under diverse operational and environ-
mental conditions and to develop a data-driven forecasting model to support capacity planning during
winter operations. The primary research question was as follows: ”How can a data-driven forecast-
ing model be designed to improve the estimation of aircraft stand snow removal capacity and
enhance airport capacity planning during snowfall?”

To facilitate data analysis and model development, a swimlane diagram and causal diagram were con-
structed to map critical capacity-related data points and key influencing factors within the cleaning pro-
cess. These diagrams formed the conceptual foundation for a classification algorithm that categorizes
historical radar tracking data from each cleaning team into one of three operational phases: cleaning,
traveling, or idle. These classifications enabled a systematic analysis of cleaning performance and the
identification of key determinants of cleaning capacity. Results indicated that narrow body stands and
travel routes within the bay substantially increase cleaning capacity. Snow depth was the only weather
variable with a measurable impact, classified as low or high. Based on these three variables, scenario-
specific cleaning capacities were defined to serve as input for the forecasting model. This approach
significantly improves Schiphol’s current theoretical calculation of aircraft stand snow removal capacity,
estimated at 12 stands per hour with four active teams during heavy snowfall.

A discrete-time simulation model was subsequently developed to forecast stand cleaning capacity un-
der anticipated operational and environmental conditions. The model design, presented in Figure 9.1,
allows users to adjust scenario-specific input parameters, such as available teams and runway and
de-icing capacity restrictions. By simulating how the available cleaning capacity aligns with the in-
bound flight schedule, the model helps identify potential queuing situations. Furthermore, the model
allows users to evaluate the impact of additional capacity constraints or mitigation strategies aimed at
reducing queues. This functionality supports proactive planning by optimizing the timing, intensity, and
effectiveness of interventions. When combined with known runway and de-icing capacity forecasts,
the tool significantly enhances data-driven capacity management, enabling more efficient and strategic
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decision-making.

Feedback from operational stakeholders at Schiphol Airport confirmed the model’s relevance and prac-
tical value during sector briefings. Stakeholders acknowledged its ability to improve situational aware-
ness and inform capacity-related decision-making during snow events. Furthermore, the model was
recognized for its potential to optimize the snow removal process strategically.

Figure 9.1: Design

9.1.2. Practical contribution
Schiphol Airport
The findings of this research have direct implications for snow operations and capacity planning at
Schiphol Airport. The primary objective of the developed forecasting tool is to support decision-making
during sector briefings held prior to snow events, where the airport’s hourly inbound capacity is deter-
mined. This capacity is crucial for advising flight cancellations and ensuring smooth airport operations.

Currently, the hourly capacity is established by identifying the limiting factor among three key opera-
tional processes: expected runway availability (based on predefined runway scenarios), forecasted
de-icing capacity (obtained from the de-icing planning tool), and estimated aircraft stand cleaning ca-
pacity. Previously, aircraft stand cleaning capacity was estimated using a simplified rule of thumb,
assuming that four ASCTs could clean around 12 stands per hour. Due to the vague and non-data-
driven nature of this estimate, cleaning capacity often received less attention compared to runway and
de-icing limitations.

The forecasting tool developed in this study offers a more accurate, data-driven alternative. By simu-
lating expected queues under varying environmental and operational conditions, the model can proac-
tively identify whether stand cleaning might become the limiting factor during specific time windows.
Integrating the tool with known runway and de-icing capacities allows decision-makers to foresee bot-
tlenecks and apply targeted capacity restrictions, rather than reacting during real-time operations. This
enables a more balanced and evidence-based approach to capacity determination, where all relevant
components, runway, de-icing, and stand availability, are consistently considered.
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Beyond forecasting, the model also serves as a strategic tool to assess the impact of various opera-
tional parameters and strategies, providing valuable insights for optimizing snow removal processes.
One key finding from the sensitivity analysis is the significant impact of route type on cleaning capac-
ity. This result reinforces the current operational strategy of keeping ASCT teams within their existing
bays whenever possible, highlighting the importance of maintaining this practice during snow events.
The analysis of historical route ratios, which show approximately 55% within-bay and 45% cross-bay
movements, indicates that there is potential for optimization.

The model also demonstrates the substantial influence of team availability on cleaning capacity. The
sensitivity analysis shows that reducing the number of active teams by just one significantly increases
the number of queued aircraft and their waiting time. Given that historical data indicates one fewer
team was active than planned in 50% of cases, ensuring optimal staffing levels during snow operations
is crucial.

Potential for generalization
Although the forecasting tool was developed specifically for Schiphol Airport, the underlying method-
ology, combining historical operational data with scenario-based forecasting, is highly transferable to
other airports that experience similar winter weather conditions. It is particularly relevant for airports
that deploy dedicated teams for aircraft stand snow removal as part of their winter operations strategy.

To ensure accurate, airport-specific forecasting, it is recommended that each airport conducts its own
analysis of historical data to determine cleaning capacities and define appropriate capacity scenarios.
Since operational procedures, infrastructure, and available resources can vary considerably across air-
ports, the influence of factors such as snow depth, stand type, or route layout may differ, and additional
factors may also be relevant. This supports the findings of Myers et al. (2012), who concluded that
a universal relationship between winter weather conditions and snow removal capacity is unlikely to
exist, as airports respond differently to similar events.

Most user-defined scenario inputs and operational constraints are broadly applicable across different
airport contexts. Those that are specific to Schiphol, such as the distinction between centrum and CDF
teams or predefined runway scenarios, can be easily adapted to other airport environments. Moreover,
route types may vary depending on the airport layout. For instance, it may be necessary to differentiate
between cross-terminal and inter-terminal routes.

Finally, the added value of the forecasting tool depends on the airport’s layout and runway configuration.
Schiphol’s multi-runway system allows for up to two runways to be used for inbound traffic during peak
periods, making aircraft stand availability a more critical bottleneck during snow events. In contrast,
airports with simpler layouts or lower traffic volumes, such as Eindhoven Airport, which operates a single
runway in mixed-mode, are less likely to encounter stand-related capacity bottlenecks. At such airports,
the relatively lower volume of inbound flights and reduced routing complexity may allow for easier
coordination of snow removal, reducing the operational benefit of a detailed aircraft stand capacity
forecasting tool.

In summary, although the forecasting tool was tailored to Schiphol’s specific operational environment,
its modular and flexible design makes it well-suited for adaptation to other airport contexts, particularly
those with comparable layouts and dedicated snow removal teams. With appropriate customization of
scenario inputs and operational parameters, the tool can offer meaningful support for winter operations
and capacity planning across a wide range of airport settings.

9.1.3. Scientific contribution
This study makes several novel contributions to the academic literature on winter operations at airports.
It is the first to focus explicitly on snow removal at aircraft stands, a critical yet underexplored aspect
of winter maintenance. Prior research has largely concentrated on runways and taxiways, overlooking
the operational bottlenecks caused by limited stand availability during snowfall events.

The study introduces a novel methodological framework that combines radar-based vehicle tracking
data with a classification algorithm to identify cleaning activities and estimate cleaning capacity. While
the capacity estimates are tailored to Schiphol Airport, the underlying methodology is transferable to
other airports employing radar systems to monitor ground vehicle movements. Notably, this research
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expands the scope of radar data usage from the common focus on aircraft tracking to ground support
operations, offering a new direction for performance evaluation of airside operations.

In addition, this study contributes to the scarce literature on airport capacity forecasting during win-
ter weather. Although one earlier study explored this topic, its scope was confined to runways and
taxiways, neglecting the impact of stand availability. This research highlights the critical importance of
incorporating stand cleaning into capacity forecasting, highlighting its relevance for maintaining smooth
airport operations during snowfall.

Finally, the study addresses a methodological gap by introducing quantitative weather classification
thresholds to standardize snow condition categories. This resolves inconsistencies seen in previous
research, where qualitative or loosely defined definitions hindered the comparability and reproducibility
of findings across different studies and operational contexts.

Overall, the study contributes both academically and practically to the field of airport winter operations.
It presents a flexible, data-driven model that enhances winter weather capacity planning at Schiphol
Airport while also offering potential for adaptation at other airports employing similar snow removal
strategies. Additionally, the study advances the academic literature by addressing the previously over-
looked aspect of stand cleaning in capacity forecasting, thereby broadening the understanding of critical
factors influencing airport operations during snowfall.

9.2. Discussion
9.2.1. Limitations
While this study offers valuable insights and a practical forecasting tool, several limitations should be
acknowledged.

One limitation arises when classifying operational periods, where some degree of misclassification may
persist despite efforts to address noisy data, particularly when identifying breaks outside the R and Y
platforms. Additionally, the weather conditions observed on the analyzed snow days exhibited limited
variability, constraining the ability to assess the impact of more severe weather conditions. Conse-
quently, this limitation led to non-significant effects for most variables, despite both the literature and
the current state analysis emphasizing the influence of specific weather conditions. Moreover, the real-
life case study indicated that the model tended to be overly conservative under mild winter conditions.
This observation suggests that weather conditions may indeed affect operational performance, even
though the statistical analysis did not reveal a significant impact.

Furthermore, several influential factors, such as stand occupancy, airside traffic, and human factors
like staff experience and cooperation were beyond the scope of this study, despite their likely impact
on operational performance.

Tomaintain operational usability, several simplifying assumptions were made during the simulation. For
example, CDF-dedicated teams were assumed to be unavailable for centrum support during snowfall,
and route type was incorporated as a fixed within-bay - cross-bay ratio rather than being dynamically
derived based on team positioning. While these assumptions help maintain clarity and efficiency in the
simulation, they may not fully reflect the complexity of real-world operations.

Lastly, pavement spraying operations, essential for rendering stands operational, were excluded from
the scope of this study. Because sprayers are typically fewer in number than ASCTs and therefore
operate independently, they were not included in the algorithm for identifying cleaning cycles. How-
ever, they can be a source of capacity limitation themselves. For example, during the snow removal
operations on 5 January 2025, it was observed that spraying was a major bottleneck, with only a sin-
gle sprayer available to treat all aircraft stands (Informal interview Winter performance meeting, 2025).
This highlights a relevant operational factor not accounted for in the current model.

9.2.2. Recommendations
Future research
The findings and limitations of this study point to several promising directions for future research aimed
at deepening the understanding of aircraft stand snow removal capacity and improving the forecasting
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model.

First, continuously updating the model with data from new snow events would strengthen its predictive
performance, particularly under a wider range of weather conditions. As more diverse weather patterns
are captured, the model could offer deeper insights into the influence of meteorological factors on snow
removal operations.

Secondly, future research could explore the impact of additional factors identified in the causal diagram
(Figure 4.14). Incorporating historical flight data could enhance the model by providing insights into
dynamic stand occupancy levels and traffic flow. Lower stand occupancy may increase the within-bay
ratio by facilitating simultaneous cleaning, while high traffic flow may extend travel times between bays
due to congestion. Additionally, human factors, such as staff experience and cooperation, could be in-
vestigated through observational studies, structured interviews, or comprehensive sensitivity analyses.

Third, refining specific simulation components could enhance themodel’s accuracy and realism. Among
the simplifying assumptions outlined in Subsection 7.1.3, the static treatment of route type stands out
as particularly impactful. Future work could address this by dynamically modeling route type based on
task assignments, considering the position of each ASCT and the location of its next assigned stand.
Integrating such routing logic would allow the simulation to more accurately represent operational be-
havior.

Lastly, the observed bottleneck in pavement spraying capacity on January 5, 2025, underscores the
importance of integrating aircraft stand spraying into the capacity analysis. Specifically, future versions
of the model should consider spraying time as part of the total cycle time. Given that historical radar
data for sprayers is available, the developed classification algorithm could be used to identify spraying
periods by adjusting some threshold values and logic. Ultimately, enabling the number of available
sprayers to be defined as an input parameter, similar to the number of ASCTs, would provide a more
realistic capacity forecast.

Schiphol airport
A key recommendation for Schiphol Airport is to carefully consider potential weather impacts when
specifyingmodel inputs, as theymay still influence snow removal operations. In particular, it is important
to take into account the overall weather context rather than focusing solely on individual variables, as
the broader weather conditions are likely to shape operational outcomes.

To further optimize snow removal performance, it is recommended to enhance within-bay movements
during operations to increase efficiency and to ensure that the optimal number of teams is consistently
available, as this is essential for maintaining effective operations during snow events.

Lastly, testing the model in real-life situations or through additional historical scenarios would enhance
model validation and provide valuable insights into forecasting accuracy. Analyzing discrepancies be-
tween predicted and actual outcomes can help identify areas where model assumptions or parameters
may require adjustment. Moreover, it can reveal specific weather conditions under which the model
tends to overestimate or underestimate capacity, thereby refining the model’s practical application.
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Forecasting Aircraft Stand Snow Removal Capacity
A Case Study at Amsterdam Airport Schiphol
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Abstract
Winter weather can significantly disrupt airport opera-
tions, leading to flight delays, cancellations, and substantial
economic losses. Proactively forecasting airport capacity
during snowfall is essential to ensure timely flight cancella-
tions and maintain operational continuity. While aircraft
stand availability is a key determinant of overall airport
capacity, data-driven insights into this process are lack-
ing. This study addresses this gap by developing a fore-
casting model to predict aircraft stand snow removal ca-
pacity, using Amsterdam Airport Schiphol as a case study.
A classification algorithm is employed to extract opera-
tional cleaning activities, cleaning, traveling, and idle pe-
riods, from historical radar data, enabling the assessment
of current cleaning performance. Based on these insights,
a simulation-based model was developed to forecast stand
cleaning capacity under anticipated operational and envi-
ronmental conditions. The model’s flexible design allows
users to adjust scenario-specific input parameters, such as
team availability and capacity restrictions, facilitating tai-
lored scenario analysis. By simulating the alignment be-
tween available cleaning capacity and inbound flight sched-
ules, the model identifies potential queuing situations and
facilitates the assessment of additional capacity restrictions,
supporting more informed capacity planning.

Keywords: Winter operation, Aircraft stand cleaning, Air-
port capacity, winter weather capacity planning, Capacity
forecasting model, Ground radar data.

I Introduction
With the growing demand for air travel, minimizing operational
downtime at airports has become increasingly critical for main-
taining efficiency (Fernández et al., 2016; Pačaiová et al., 2021;
Šváb et al., 2019). At Amsterdam Airport Schiphol, for ex-
ample, a single day of airport closure can incur approximately
C2.3 million in costs for the airport itself and between C40
and C80 million for airlines (Schiphol, 2018). Winter weather
is a significant contributor to such disruptions, often result-
ing in flight delays, cancellations, and substantial economic
losses. This highlights the need for effective winter mainte-
nance strategies, to manage and mitigate the operational and fi-
nancial impacts of adverse winter conditions (Merkert & Man-
gia, 2012; Pačaiová et al., 2021; Šváb et al., 2019).

To ensure continuity of operations and the safety of passen-
gers, airport personnel, and flights, airports implement vari-

ous winter maintenance activities, including de-icing of air-
craft and snow removal on critical infrastructure such as run-
ways, taxiways, and aircraft stands. Although extensive re-
search has been conducted on snow removal from runways and
taxiways and on aircraft de-icing procedures, the clearing of
aircraft stands has received limited attention (see Section II).
Yet aircraft stands are essential components of the airside in-
frastructure, serving as key nodes for boarding, disembarking,
and baggage handling. Inadequate snow removal at stands can
delay inbound and outbound flight operations, thereby reduc-
ing overall airport capacity. Gaining a deeper understanding of
aircraft stand snow removal performance is therefore essential
to improve winter resilience at airports.

Therefore, the objective of this study is to quantify aircraft
stand snow removal capacity and to develop a forecasting
model that predicts cleaning performance under varying opera-
tional and environmental conditions, using Amsterdam Airport
Schiphol as a case study. The central research question guiding
this study is:

”How can a data-driven forecasting model be designed to
improve the estimation of aircraft stand snow removal

capacity and enhance airport capacity planning during
snowfall?”

To address this question, the study follows the Define-Measure-
Analyze-Design-Verify (DMADV) methodology, a structured
approach derived from Lean Six Sigma that is particularly
suited for developing new processes or products (Majumdar &
Selvi, 2014). Several tools are applied within each research
stage. Desk research of key internal researches combined with
literature review and (informal) interviews formed the basis for
the problem definition and current state analysis. Through the
development of a classification algorithm and subsequent data
analysis, current performance is assessed and key determinants
of capacity are defined. The model is build using discrete-event
simulation, where demand and capacity are calculated at dis-
crete time steps. Finally, the validation of the model is done by
scenario testing and informal interviews.

The paper is structured according to the DMADV phases, sys-
tematically guiding the reader. The first two sections present
the introduction of the problem (Section I), supported by con-
clusions drawn form the literature (Section II). Section III de-
tails the current state analysis, and Section IV the classifica-
tion algorithm development and subsequent exploratory data
analysis. In Section V, the determination of key determi-
nants of cleaning capacity is employed. Section VI outlines



the model design, including the simulation framework and the
model demonstration. Section VII evaluates the model’s opera-
tional value through real-life scenario analysis, sensitivity test-
ing, and stakeholder feedback. Finally, Section VIII concludes
the study by summarizing key findings, discussing limitations,
and suggesting avenues for future research.

II Literature review
As part of the Define phase, a literature review was conducted
to build a deeper understanding of the current state of knowl-
edge and identify research gaps relevant to this study.

Effective winter operations are crucial for maintaining airport
reliability and minimizing disruptions during adverse weather.
Research on aircraft de-icing and snow removal from runways
and taxiways is relatively well developed, with a primary fo-
cus on optimizing fleet size (Preis & Fricke, 2020), routing
strategies (Preis & Fricke, 2020), snow removal sequences
(Fernández et al., 2016; Zhang et al., 2022), and vehicle alloca-
tion (Koščák et al., 2020). In contrast, snow removal at aircraft
stands remains largely unexplored, with only a brief mention in
the study by Fernández et al. (2016). As stand cleaning prior-
ities are driven by flight arrival schedules, their work concen-
trated on optimizing cleaning sequences for runways, taxiways,
and aprons, without addressing the specific complexities asso-
ciated with aircraft stand operations.

Snowfall can significantly reduce airport capacity and cause
widespread delays (Merkert & Mangia, 2012). There is one
study by Myers et al. (2012) that researches the impact of
snowfall on airport capacity by developing a Winter Weather
Airport Capacity Model that incorporates snow-clearing speed
and weather variables to predict departure rates. However, the
model focuses exclusively on runway snow removal and ne-
glects the impact of stand cleaning. Given that inefficiencies in
stand snow removal can lead to congestion, parking shortages,
and cascading flight delays, understanding these operations is
essential for accurately predicting airport capacity during win-
ter weather.

Existing research highlights that snow removal performance is
influenced by multiple factors, which can be categorized into
six key groups: preparation, resources, airport-specific fac-
tors, environmental conditions, operational efficiency, and hu-
man factors. Effective preparation involves structured winter
maintenance plans, regular staff training, and preventive mea-
sures such as the application of de-icing agents (Pačaiová et al.,
2021; Shu-Ling et al., 2011; Šváb et al., 2019). Resources, in-
cluding the availability, reliability, and technical performance
of snow removal vehicles, as well as staff availability and the
number of teams active, also strongly impact operational effec-
tiveness (Koščák et al., 2020; Pačaiová et al., 2021; Preis &
Fricke, 2020). Operational efficiency is shaped by airport lay-
out, flight schedules, traffic volume, vehicle operating speeds,
and area prioritization strategies (Fernández et al., 2016; Janic,
2009; Preis & Fricke, 2020). In addition, human factors such as
communication and staff experience are critical determinants
of snow removal capacity, with variability in cleaning duration

often attributed to differences in personnel expertise (Merkert
& Mangia, 2012; Pačaiová et al., 2021; Shu-Ling et al., 2011)

Several studies emphasize the dependence of airports on accu-
rate weather forecasts to enable proactive and scenario-specific
winter maintenance planning (Pačaiová et al., 2021; Šváb et
al., 2019). Snow properties, including type (dry, wet, slush),
accumulation rate, and density, directly affect clearance diffi-
culty (Myers et al., 2012), equipment selection (Koščák et al.,
2020), cleaning efficiency (Janic, 2009; Koščák et al., 2020),
and vehicle operating speeds (Fernández et al., 2016; Preis &
Fricke, 2020). However, many models rely on qualitative clas-
sifications (e.g., ”light,” ”moderate,” ”heavy” snowfall) without
clearly defined quantitative thresholds, limiting comparability
and generalizability of findings across different studies and air-
ports.

Another important research gap is the limited use of surveil-
lance data in winter maintenance research. While surveillance
systems are widely used to analyze aircraft taxi times and run-
way operations (Mirmohammadsadeghi et al., 2019; Pan et al.,
2022; Srivastava, 2011), their application to winter operations
remains limited. Only Alsalous and Hotle (2024) use surveil-
lance data to evaluate de-icing operations, combining this data
with airport layout data to visualize surface movements and
extract de-icing event details. A dedicated algorithm analyzes
individual speed profiles to distinguish between operational
phases (traveling, de-icing, and waiting). While their approach
shares methodological similarities with the present study, this
research centers on specialized ground vehicles rather than air-
craft movements, providing a new perspective on how surveil-
lance data can be applied to winter maintenance operations.

Taken together, the literature reveals a clear gap in modeling
and quantifying snow removal at aircraft stands and its impact
on airport capacity. This study addresses this gap by applying
radar surveillance data to analyze snow removal vehicle oper-
ations, offering a novel application of such data. It also intro-
duces quantitative snow condition thresholds to overcome the
lack of standardized classifications and to enhance generaliz-
ability. Lastly, the literature review identifies offers a detailed
exploration of the factors influencing snow removal capacity,
forming the foundation for the conceptual model used in the
data analysis.

III Current state analysis

The Measure phase focused on gaining a comprehensive under-
standing of current snow removal operations at Schiphol Air-
port. To achieve this, the process was analyzed chronologically,
encompassing the key preparatory and operational activities as-
sociated with each phase, as visualized in Figure 1.

During snowfall, Schiphol’s operational capacity must be
proactively adjusted to account for reduced infrastructure avail-
ability and to ensure safe and manageable airport operations.
Capacity limits are determined during sector briefings, where
the most constraining factor, either runway capacity, de-icing
capacity, or aircraft stand capacity, sets the limit for the hourly



Figure 1: Chronological phases of snow removal process

airport capacity. Based on this assessment, airlines are advised
to cancel flights as needed to align demand with available ca-
pacity.

While runway capacity has been predefined for various scenar-
ios (Figure 2) and de-icing capacity is forecasted using a ded-
icated model (Figure 3), the capacity for aircraft stand snow
removal remains poorly quantified and lacks a solid empirical
foundation. This gap complicates accurate capacity forecast-
ing during snow events and increases the risk of operational
mismatches. Underestimating stand availability can lead to
queues of aircraft awaiting cleared stands, causing delays and,
in some cases, unforeseen flight cancellations. Therefore, air-
craft stand snow removal capacity requires systematic inves-
tigation and data-driven modeling (Airport Operation Center
Schiphol, 2024; Bolsius & Scholten, 2024).

This study focuses on Aircraft Stan Clearing Teams (ASCTs)
4 through 9, which are primarily responsible for snow removal
at ”centrum” (aprons A through H) and the Central de-icing
Facility (CDF). Typically, ASCTs 4 and 9 focus on clearing
the CDF during snowfall and assist the remaining teams once
snowfall has ceased and the CDF has been cleared. Task as-
signment is coordinated by Apron Control Inbound, based on
the Gate Planner’s prioritization. During snowfall, the “AS on
demand” principle is applied: stands are only cleared when an
aircraft is scheduled to arrive within 15 minutes. To minimize
travel time and enhance efficiency, ASCTs are kept within the
same bay (the area within the apron) whenever possible (Bol-
sius & Scholten, 2024; Service Owner Sneeuw en Gladheid,
2023).

Building on insights from the literature review and the current
state analysis, a causal diagram was developed (Figure 5), il-
lustrating the key factors influencing aircraft stand snow re-
moval and their interdependencies. The diagram is specifically
tailored to Schiphol’s operational context, with certain factors
from the literature omitted or reinterpreted to reflect local prac-
tices. It forms the conceptual foundation for classifying oper-
ational activities, including traveling, cleaning, and idle time,
and for identifying the key variables affecting cleaning perfor-
mance.

IV Current cleaning performance

Building on the current state analysis, the study further exam-
ines current performance by developing a classification algo-
rithm and conducting an exploratory data analysis.

Figure 2: Winter Runway Availability Scenario (Service Owner
Sneeuw en Gladheid, 2023)

Figure 3: Output de-icing tool

Classification algorithm

To determine aircraft stand snow removal capacity, an algo-
rithm was developed to classify each second of radar track-
ing data into one of three operational phases: cleaning, trav-
eling, or idle time. Ground radar data from Schiphol Airport
(2017–2025), combined with Geofence polygon information,
served as the primary input. Data from 2021 were unavailable,
however, this is not considered a limitation, as snow events dur-
ing that year coincided with the COVID-19 lockdown, signif-
icantly disrupting normal airport operations and making these
events atypical for comparison.

Cleaning activities were identified when vehicles were located
at an aircraft stand, with corrections for minor GPS drift during
cleaning. Cross-referencing with the CISS and VGRS infor-
mation systems was used to verify whether adjacent stands had
also been cleaned but were not directly captured by the algo-
rithm. Traveling was classified when vehicles moved between
stands, while idle periods were detected as cleaning periods at
designated break locations.

The algorithm addresses missing or inaccurate data, includ-
ing absent location records (NaN values), GPS inaccuracies,
and missing timestamps, using a combination of look-ahead
checks, proximity validation, and time-gap thresholds. Mini-
mum and maximum cleaning and travel durations were defined
based on box plot statistics under boundary-free conditions and
operational experience, ensuring that anomalies such as exces-
sively long or short activities were corrected or excluded.



Verification and validation were performed through manual
cross-checking with CISS and VGRS records, as well as man-
ual annotation of radar data. Although iterative refinements
improved the algorithm’s robustness, some limitations remain,
particularly in accurately distinguishing cleaning periods from
breaks, as teams may take breaks at locations other than the
designated break areas.

The classified operational phases formed the basis for calculat-
ing cleaning capacity and analyzing the impact of operational
and environmental factors.

Exploratory data analysis

The following bullet points summarize key insights from his-
torical data on aircraft stand cleaning at Schiphol Airport, fo-
cusing on team availability, task durations, routing patterns,
and cleaning capacity. These findings provide a baseline under-
standing of operational performance and identify factors that
influence the efficiency of snow removal activities.

• On 50% of the snow operation days, one team fewer than
the intended maximum was available.

• Idle time varied considerably in both frequency and du-
ration; a 35-minute break per 8-hour shift is assumed.

• Wide-body stands required longer cleaning times com-
pared to narrow-body stands.

• Consecutive cleaning tasks within the same bay were as-
sociated with significantly shorter travel times compared
to cross-bay operations, which involves crossing one or
multiple bays. While travel time generally increased
with the number of bays crossed, shifts involving two
to five bays occurred far less frequently than single-bay
shifts.

• Despite efforts to keep teams within their current bay,
the proportion of within-bay to cross-bay operations has
remained stable at approximately 55%–45% since 2017.

• Cleaning time was identified as the dominant contributor
to the total cleaning cycle duration, which includes both
the travel time to a task and the task’s cleaning time.

• Capacity, defined as the number of cleaning cycles that
can be completed per hour, showed a right-skewed distri-
bution, peaking between two and three cycles per hour.

V Determinants of cleaning capacity

In the Analyze phase, the relationship between key variables
and aircraft stand cleaning capacity was systematically exam-
ined. Given the non-normal distribution of capacity data, non-
parametric statistical tests, including Spearman rank correla-
tions and Mann-Whitney U tests, were applied. Alongside the
operational factors identified in the Measure phase, weather
variables were included using minute-level KNMI data from
multiple weather stations at Schiphol. These variables were

aggregated to align with individual cleaning cycles, and clas-
sifications such as snow intensity, snow type, and precipitation
level were defined.

The analysis revealed that only snow depth significantly af-
fected cleaning capacity, with greater accumulation linked to
reduced cleaning capacity. To enable its use in the forecasting
model, snow depth was categorized into two levels: low (< 50
mm) and high (≥ 50 mm). Other weather variables and classi-
fications showed no significant influence, likely due to limited
variability across the observed snow events. Regarding oper-
ational factors, stand type and route type were found to sig-
nificantly impact capacity, while the number of bay shifts did
not.

To define cleaning capacity across varying operational and en-
vironmental conditions, the combined effect of the three rel-
evant variables was evaluated. This resulted in four distinct
capacity scenarios:

• For Nabo stands, three scenarios were defined: one for
cross-bay routes, and two for within-bay routes, differ-
entiated by snow depth (low vs. high).

• For Wibo stands, two scenarios were defined based on
route type, as snow level did not have a significant effect.

• Cross-bay routes for Nabo and Wibo were combined into
a single scenario, due to the absence of significant differ-
ences.

These scenarios result in the final capacities presented in Table
1. The capacity labels Low, Middle, High correspond to the
75th, 50th, and 25th percentiles of observed capacity, respec-
tively. The Middle values serve as the default scenario, while
the Low and High values are included to meet the model’s de-
sign requirement for scenario flexibility.

Stand Route Snow Capacity
Low Middle High

Nabo within-bay Low 7.2 4.9 3.2
Nabo within-bay High 5.7 3.7 1.9
Nabo cross-bay Low 3.3 2.2 1.8
Nabo cross-bay High 3.3 2.2 1.8
Wibo within-bay Low 5.5 3.4 2.0
Wibo within-bay High 5.5 3.4 2.0
Wibo cross-bay Low 3.3 2.2 1.8
Wibo cross-bay High 3.3 2.2 1.8

Table 1: Categorized capacities

VI Model design

During the Design phase, the forecasting model aimed at esti-
mating aircraft stand cleaning capacity across a range of oper-
ational and environmental conditions was developed and veri-
fied.



VI.1 Simulation design framework

Figure 6 shows the model design, visualized using a flow dia-
gram. It outlines how time-dependent constraints, such as ca-
pacity limits, team availability, and stand suitability, interact to
determine flight cancellations, cleaning assignments, and the
formation of queues. The model is developed based on the fol-
lowing design requirements:

Functional requirements

• The model must be focused on operations within cen-
trum.

• The user must be able to adjust input parameters without
modifying the model code, making it applicable across
various snowfall events and operational setups

• The model must provide cleaning capacity estimates at
sufficient temporal resolution to support slot-level plan-
ning decisions, e.g., 1-hour or 30-minute intervals.

• The simulation logic must realistically represent opera-
tional constraints, including the reassignment of flights
to already cleaned stands where feasible, logical alloca-
tion of available capacity, utilization of surplus capacity,
and incorporation of scheduled team breaks.

• The model should support rapid scenario analysis, deliv-
ering results within minutes to enable timely decision-
making during operational briefings. The model should
align with the logic of the existing de-icing model to en-
sure consistency and ease of use within the sector brief-
ing. This includes the possibility to switch between a
Low, Medium, and High scenario.

Visualization requirements

• The model output must be intuitive and easy to interpret
for operational stakeholders.

• The visual design must align with APOC’s de-icing fore-
casting tool to ensure consistency and ease of use, as il-
lustrated in Figure 3.

While maintaining logical and visual consistency with the de-
icing tool is essential, enhancements that improve the model
structure and output are encouraged.

KPIs

To ensure alignment with APOC’s de-icing forecasting tool,
the representation of KPIs is an essential design element. The
KPIs adapted from the de-icing tool were modified to reflect
the specific context of aircraft stand cleaning operations. Ad-
ditionally, three new KPIs were selected based insights from
an informal interview with the Service Owner Winter Opera-
tions, who specifically emphasized the operational relevance
of the maximum waiting time. Delays exceeding 30 minutes
typically trigger additional procedures, making this threshold a

critical metric for for operational decision-making. The KPIs
are presented in the model output shown in Figure 4.

Input parameters

The model incorporates two types of adjustable input variables:
situation-specific inputs, which vary per snow event (exempli-
fied in Table 2) and operational inputs, which are based on in-
sights from the Measure and Analysis phases and are only up-
dated in response to structural changes in the cleaning process
(Table 3).

Variable Values
Scenario Middle
Time window of forecasted snow 03:00 - 11:00
Time window of forecasted 03:00 - 05:00; low
accumulation levels 05:00 - 10:00; high

10:00 - 11:00; low
End time of cleaning requirement -
Number of teams active at centrum 4
Number of teams active at CDF 2
Runway capacity restriction 03:00 - 06:00; C

06:00 - 07:00; D
07:00 - 08:00; E
08:00 - 09:00; D
09:00 - 10:00; E
10:00 - 11:00; D

De-icing capacity restriction 07:00 - 10:00; 12
10:00 - 11:00; 24
11:00 - 15:00; 26

Additional capacity restriction -

Table 2: Initial user-defined inputs virtual situation

Variable Values
Time slot minutes 30 minutes
Maximal Inbound capacity E: 10 flights/hour,
per runway availability scenario D: 17 flights/hour,

C: 35 flights/hour,
B: 68 flights/hour

Runway clean time 40 minutes
Handling time per aircraft type Nabo: 50 minutes,

Wibo: 75 minutes
Break duration 35 minutes
Start time of first break after 3 hours
Shift duration 8 hours
Route type weights Within-bay: 55%,

Cross-bay: 45%
Situation-specific capacity See Table 1

Table 3: Inputs reflecting operational assumptions

Figure 4 presents the output of the forecasting model, capturing
the dynamic relationship between available cleaning capacity,
the number of aircraft stands cleaned, and the queue of aircraft
awaiting a cleaned stand.



Assumptions

The model is based on the following key assumptions:

• CDF cleaning teams are assumed inactive during snow-
fall, resuming operations only after snowfall ends. Oc-
casional assistance to centrum teams during snowfall is
not modeled due to its unpredictability.

• Flight cancellations occur randomly within each time
slot, following a fixed Nabo/Wibo ratio of 95%-5% (In-
formal interview APOC, March 2025).

• Flights assigned to a clean stand are excluded from the
model.

• Aircraft arrival times are not individually modeled; in-
stead, flights are grouped into their respective time slots,
approximating waiting times.

• Capacity restrictions (runway, de-icing, additional) are
hourly but split into two 30-minute slots. Any fractional
capacity is rounded up for the first slot.

• Route type is modeled as a fixed ratio of 55% within-bay
and 45% cross-bay, based on historical data.

• Capacity is proportionally distributed between Nabo and
Wibo stands based on the scheduled and queued flights
per time slot, rather than using a fixed ratio.

• Integer rounding for queued aircraft uses a threshold of
0.4, as advised by the Service Owner Winter Operations.

• Excess capacity after snowfall ends is used to clean fu-
ture stands of the same type, or reallocated if only the
other stand type remains.

VI.2 Strategic value of the model

The forecasting tool is demonstrated using the virtual snow sce-
nario discussed during the sector briefing training in November
2024. The situation-specific input variables established during
the briefing are summarized in Table 2. During the session,
it was concluded that between 06:00 and 11:00, the limiting
capacity factor would alternate between runway capacity and
de-icing capacity, while from 11:00 to 15:00, de-icing capacity
would serve as the primary constraint. Aircraft stand capacity
was not anticipated to present a limitation.

The model output of this scenario is presented in Figure 4a.
In contrast to the conclusions drawn during the sector briefing,
the model results reveal that stand availability already leads to
queuing from 06:30 onwards, with congestion intensifying no-
tably after 10:00. Moreover, the KPIs show that 2 aircraft have
a waiting time exceeding the 30 minute threshold, with a max-
imum waiting time of 2 time slots. This level of congestion
poses a substantial risk to operational continuity, potentially
resulting in significant delays and maybe even unplanned flight
cancellations. This finding reinforces the conclusion drawn
in Section III that the limited data-driven insights into aircraft

stand cleaning capacity often lead to being overlooked in strate-
gic planning, thereby risking an overestimation of inbound ca-
pacity and the subsequent formation of aircraft queues.

The emergence of queues when stand cleaning capacity is dis-
regarded underscores the strategic importance of the developed
model as a decision-support tool. By simulating operational
scenarios under varying capacity constraints, the model enables
users to proactively explore and evaluate interventions aimed
at reducing delays and mitigating congestion. Through the in-
put variable Additional Capacity Restriction, users can strate-
gically test and optimize different capacity management strate-
gies. For example, applying a restriction of 12 flights per hour
between 10:00 and 12:00 results in the output shown in Figure
4b. Compared to the baseline scenario (Figure 4a), the queues
dissipate rapidly after 10:00, reducing both the total number of
queued aircraft and the maximum queue length. These results
demonstrate that even moderate, well-timed flight restrictions,
can significantly enhance stand availability and operational ef-
ficiency.

Overall, the model provides a robust framework for assessing
cleaning capacity, identifying bottlenecks, and evaluating op-
erational constraints. Its outputs enable users to optimize the
timing, intensity, and effectiveness of interventions, offering a
strong foundation for data-driven capacity planning.

(a) Without additional restrictions

(b) With additional restrictions

Figure 4: Model output

Beyond its primary function of evaluating strategic capacity re-
strictions during snow events, the forecasting model provides
valuable insights for a range of broader operational applica-
tions. It enables the simulation of structural changes in key
operational parameters, such as variations in the number of
available cleaning teams or adjustments in the ratio between
within-bay and cross-bay route types. Additionally, the model
supports tactical workforce management by identifying periods



of over- and underutilization, thereby enhancing overall team
deployment efficiency. By facilitating scenario analyses of op-
erational adjustments, the model serves not only as an opera-
tional decision-support tool but also as a broader instrument for
optimizing long-term aircraft stand cleaning strategies.

VII Operational value assessment
The Verify phase focuses on assessing whether the forecasting
tool effectively addresses the defined operational problem and
performs reliably under real-world conditions. Three comple-
mentary methods were applied: (1) a real-life scenario analysis
of the January 5, 2025 snow event, (2) a sensitivity analysis
of key input variables, and (3) peer reviews with operational
stakeholders.

Real-life scenario

The real-life scenario involved mild snowfall between 06:00
and 08:00, immediately followed by rain. The model, using the
Middle scenario, predicted a more severe situation than what
actually occurred. Although this study did not find a signifi-
cant impact of most weather conditions on cleaning capacity,
this particular situation demonstrates that capacity was slightly
higher than the baseline scenario due to the favorable condi-
tions. Especially when the rain accelerated snow melting and
improved cleaning performance, the model deviated from ac-
tual performance. Actual performance fell between the Mid-
dle and Low scenarios, with the Low scenario predicting no
queuing. The Service Owner Winter Operations reviewed the
discrepancy and confirmed the model’s conservative tendency
under these conditions.

Sensitivity analysis

Sensitivity analysis demonstrated that team availability was the
most influential factor (see Table 4). Removing one team, elim-
inating the CDF double shift but maintaining centrum capac-
ity, only slightly increased queuing. However, when centrum
capacity was reduced (e.g. two teams were unavailable), the
queue nearly tripled and delays occurred in nearly all time slots.
This scenario is realistic, as no CDF double shift existed before
winter 2024/2025, and Section IV showed centrum capacity
was reduced in 50% of past snow events. The model scenarios
addressing weather uncertainty also show significant effects,
ranging from no queuing in the Low scenario, to extreme queu-
ing in the High scenario.

Route type distribution also had a strong impact, with higher
shares of within-bay movements reducing queuing, while
changes in break duration had limited effect due to the model’s
rounding of break time into fixed slots. Overall, the model re-
sponded logically to input variations, confirming its robustness
and decision-support value.

Peer reviews

Peer reviews reinforced the model’s operational value, with the
Service Owner of Winter Operations validating the credibil-

ity of the model outputs and highlighting its potential to in-
crease awareness of how stand cleaning capacity affects over-
all airport performance. APOC representatives emphasized the
model’s utility for capacity planning, particularly its ability to
visualize the impact of cleaning delays on inbound flow and to
automatically compute capacity from user-defined configura-
tions. They considered it as a promising addition to the sector
briefing. Furthermore, members of the Winter Process Team
recognized the tool’s practical usability during sector briefings
and emphasized its potential to support strategic optimization
efforts.

In conclusion, the model has proven to be a reliable forecast-
ing and decision-support tool. It provides actionable insights,
enhances situational awareness, and supports data-driven plan-
ning, making it a valuable asset for improving winter opera-
tional resilience at Schiphol Airport.

VIII Conclusion

Key findings

The objective of this study was to quantify aircraft stand snow
removal capacity and to develop a forecasting model to predict
cleaning performance under varying operational and environ-
mental conditions, This addresses the central research question:
”How can a data-driven forecasting model be designed to im-
prove the estimation of aircraft stand snow removal capacity
and enhance airport capacity planning during snowfall?”.

A classification algorithm was developed using radar data
to identify cleaning activities and quantify cleaning perfor-
mance. Key determinants of cleaning capacity, such as stand
type, route type, and snow depth, were identified, leading to
scenario-based capacity estimations, thereby improving current
calculation of aircraft stand snow removal capacity. These ca-
pacities, along with parameters and constraints from the cur-
rent state and performance analysis, served as inputs for the
discrete-time simulation model.

The forecasting model enables users to simulate stand clean-
ing operations based on scenario-specific inputs, assessing
how available cleaning capacity aligns with the inbound flight
schedule to identify potential queuing situations. Additionally,
it allows users to evaluate the impact of capacity constraints or
mitigation strategies aimed at reducing queues. This function-
ality supports proactive capacity planning by optimizing the
timing, intensity, and effectiveness of interventions, facilitat-
ing more informed decision-making.

While tailored to Schiphol, the model structure is adaptable to
other airports, particularly those with comparable layouts and
dedicated snow removal teams. While Schiphol-specific in-
puts, such as the distinction between centrum and CDF teams
or predefined runway scenarios, were included in this version,
they can be easily adapted to suit other airport environments.

Besides practical relevance for Schiphol Airport, this research
makes several novel contributions to winter airport operations
research, focusing on the underexplored area of aircraft stand



snow removal, particularly in capacity forecasting during win-
ter weather. The study expands the scope of radar data usage
from the common focus on aircraft tracking to ground support
operations, offering a new direction for performance evalua-
tion of airside operations. Moreover, it provides clear quan-
titative weather classification thresholds to standardize snow
conditions categories, resolving inconsistencies in current lit-
erature.

Limitations and recommendations

Despite offering valuable insights and a practical forecasting
tool, limitations remain. The weather dataset lacked variability,
limiting the ability to assess the impact of more severe weather
and leading to non-significant effects for most variables. As
the real life scenario showed, the model might be too severe for
very mild conditions. Additionally, influential factors such as
stand occupancy, airside traffic, and human elements like staff
experience and coordination were beyond the study’s scope,
though they likely affect performance.

To keep the simulation operationally useful, simplifying as-
sumptions were made. For example, CDF teams were assumed
unavailable for centrum support during snowfall, and route
types were fixed based on Nabo/Wibo ratios rather than dy-
namic team positions, which may not fully reflect operational
complexity. Finally, spraying operations, essential for render-
ing stands operational, were excluded from the analysis. Their
limited availability can be a bottleneck, as observed on 5 Jan-
uary 2025, when operating with a single sprayer significantly
delayed operations.

Future research should focus on enhancing model realism by
dynamically modeling route types based on ASCT locations
and incorporating operational factors such as stand occupancy,
airside traffic, and human elements, using historical flight data
and qualitative methods. Additionally, integrating spraying op-
erations would provide a more comprehensive and realistic as-
sessment of total cycle time and capacity.

For Schiphol Airport, continuously updating the model with
data from new snow events is strongly recommended to im-
prove predictive performance, especially under varied weather
conditions. As the model captures more diverse patterns, it can
offer deeper insights into the impact of meteorological factors
on snow removal operations.



Figure 5: Factors influencing the snow removal process

Altered variables Aircraft in Queue Queue Waiting time
Max/slot Total slots Max slots < 1 slot

Base 77 9 15 2 2
S1.1 Nteams = 4 + 1 85 12 17 3 18
S1.2 Nteams = 3 + 1 116 33 24 8 105
S1.3 Nteams = 5 + 2 8 3 5 1 0
S3.1 Route type: 65%-35% 53 7 14 1 0
S3.2 Route type: 75%-25% 30 4 10 1 0
S3.3 Route type: 85%-15% 19 4 8 1 0
S3.4 Route type: 50%-50% 90 10 16 3 5
S4.1 Break time = 30 65 8 15 1 0
S4.2 Break time = 25 65 8 15 1 0
S4.3 Break time = 40 87 11 16 2 8
S4.4 Break time = 45 87 11 16 2 8
S2.1 Low 1 1 1 1 0
S2.2 High 116 37 24 9 110

Table 4: Results per validation-scenario



Figure 6: Simulation model logic



References
Airport Operation Center Schiphol. (2024). Trainingen Sector-

briefing APOC (tech. rep.).
Alsalous, O., & Hotle, S. (2024). Deicing Facility Capacity

and Delay Estimation Using ASDE-X Data: Chicago
O’Hare Simulation Case Study. Transportation Re-
search Record, 2678(4), 455–467. https : / / doi . org /
10.1177/03611981231185147

Bolsius, J., & Scholten, D. (2024). Werkboek Sneeuw & Glad-
heid.
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B
Statistics

This Chapter outlines several tables and figures supporting the Measure and Analysis phase.

B.1. Algorithm parameter limits
Several parameters are incorporated into the algorithm to define boundaries that minimize the impact
of outliers and missing data. Table B.1 presents an overview of these parameters and their respective
values.

The parameters related to cleaning and travel times are derived from box plot summary statistics of
the recorded durations under boundary-free conditions, that is, when the maximum cleaning and travel
time constraints are set to a large constantM (maximum), and the median within-bay travel time is set
to 0 (minimum). One exception is made for the minimum cleaning time, which is set at 4.5 minutes.
A lower threshold of 0 minutes is considered unrealistic, as it would result in the algorithm incorrectly
interpreting brief passes by an aircraft stand as completed cleaning events. According to the Service
Owner Winter Operations, based on operational experience, cleaning durations only become realistic
from 4.5 minutes onwards (Interview Service Owner Sneeuw & Gladheid, 2025).

To identify the thresholds for classifying outliers, the algorithm uses the lower and upper whiskers from
the box plots (see Table B.2). Because travel times vary significantly across the three defined route
types, route-specific travel time parameters are established. For all route types, the lower theoretical
whisker of travel time distributions falls below zero, which is physically impossible. As a result, no
minimum travel time is enforced. Similarly, the lower whisker for cleaning times also falls below zero;
however, the practical lower limit of 4.5 minutes will still hold because of the mentioned reasoning. The
maximum allowed values for both cleaning and travel times are set to their respective upper whiskers.

The parameter Median within-bay travel time is set to the median of the within-bay travel time distri-
bution. The median is chosen over the mean due to its robustness against outliers, which are visibly
present in the corresponding box plot. This choice ensures that the travel time parameter remains
representative of typical behavior while reducing sensitivity to extreme values.

As previously mentioned, location inaccuracies may occur due to GPS drift or other factors. For the
determination whether the location TAXILANE is within the bay, a breadth-first search is applied with a
threshold of three polygons, based on the observation that a maximum of three taxi lane polygons can
be present within a single bay. The threshold for the number of consecutive timestamps at which the
vehicle may be detected at a location deemed too far is set to five. Beyond this point, the deviation is
interpreted as an actual change in location rather than a temporary inaccuracy due to location drift.

The time gap threshold is set equal to the minimum allowed cleaning duration, as beyond this point,
the algorithm can no longer reliably determine whether a stand was cleaned during the undocumented
interval. The future data look-ahead window is set to the maximum allowed cleaning duration, reflecting
the theoretical upper limit for the number of consecutive NaN values that may occur within a single
cleaning period. Finally, the time window for cross-referencing with the CISS and VGRS datasets is
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set to 10 minutes, based on the assumption that the start time of a cleaning period in these datasets,
if available, should closely align with the start time identified by the algorithm.

Category Parameter Value

Cleaning time (min) Min. 4.50
Max. 56.30

Travel time (min)

Max. within-bay 4.50
Max. cross-bay 49.92
Max. Cross zone 65.05
Median within-bay 0.65

Time & distance thresholds polygon threshold 3
distant threshold 5
timegap threshold (min) 4.5 (min. clean time)

Look-ahead windows future data time window (min) 56.30 (max. clean time)
CISS/VGRS time window (min) 10

Table B.1: Limits and time windows used in the algorithm

Statistic Cleaning time Within-bay travel time Cross-bay travel time Cross-zone travel time

Median 39
Lower whisker 4.5 0 0 0
Upper whisker 3378 270 2995 3903

Table B.2: Boxplot statistics for parameter limit selection, in seconds

B.2. Distribution of cleaning data
Figure B.4 show the distributions of the cleaning data, split by clean time, travel time and cycle time.
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(a) Distribution of cleaning time (b) Distribution of travel time

(c) Distribution of cycle time

Figure B.1: Distributions of cleaning, travel, and cycle times

B.3. Supplementary results exploratory analysis
The following sub-sections support the exploratory analysis performed in Section 5.2.

B.3.1. Idle time

Statistic Minutes
25% quartile 13.0
median 26.5
75% quartile 56.7
IQR 43.8
Lower whisker 4.1
Upper whisker 93.7

Table B.3: Descriptive statistics of ASCT’s idle time
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B.3.2. Clean time

Figure B.2: Distribution of cleaned stands per type

Statistic Nabo Wibo
25% quartile 8.72 10.93
median 13.88 16.62
75% quartile 24.11 27.18
IQR 15.2 16.25
Lower whisker 4.5 4.6
Upper whisker 45.67 51.45

Table B.4: Descriptive statistics of clean times across stand
type

B.3.3. Travel time

Statistic Withinibay Cross-bay Cross-zone
25% quartile 0.03 2.97 2.78
median 0.63 6.30 7.67
75% quartile 0.80 11.92 14.70
IQR 0.77 8.95 11.92
Lower whisker 0.02 0.02 0.12
Upper whisker 1.92 25.25 31.95
Count 268 263 137

Table B.5: Descriptive statistics of ASCT travel times across route type

Figure B.3: Cross bay travel time across the amount of bay shifts

B.3.4. Cycle duration
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Statistic Cycle duration
25% quartile 12.35
Median 20.35
75% quartile 32.42
IQR 20.07
Lower whisker 4.68
Upper whisker 62.02

Table B.6: Descriptives of cycle time duration

(a)Within-bay travel time share (b) Cross-bay travel time share (c) Cross-zone travel time share

Figure B.4: Frequency distributions of travel time share in cycle duration

B.4. Impact of weather variables on cleaning capacity
Table B.7 shows the correlation coefficients and corresponding p-values of all weather variables and
cleaning capacity.
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Variable Correlation coefficient p-value
pre10_WSmK 0.030 0.534
pre10_TAm 0.010 0.830
pre10_TGm -0.059 0.222
pre10_TBm -0.022 0.648
pre10_TDm -0.048 0.317
pre10_Vis 0.018 0.711
pre10_NIm -0.062 0.200
pre10_SHm -0.206 1.73e-05
pre10_C1s 0.032 0.508
pre10_NDm_ratio -0.062 0.202
first4.6_WSmK 0.050 0.300
first4.6_TAm 0.006 0.897
first4.6_TGm -0.060 0.212
first4.6_TBm -0.022 0.643
first4.6_TDm -0.035 0.474
first4.6_Vis 0.019 0.699
first4.6_NIm -0.057 0.236
first4.6_SHm -0.211 1.08e-05
first4.6_C1s 0.037 0.446
first4.6_NDm_ratio -0.048 0.319
first19_WSmK 0.031 0.519
first19_TAm 0.003 0.955
first19_TGm -0.056 0.251
first19_TBm -0.025 0.607
first19_TDm -0.039 0.416
first19_Vis -0.002 0.971
first19_NIm -0.071 0.144
first19_SHm -0.229 1.62e-06
first19_C1s 0.010 0.838
first19_NDm_ratio -0.050 0.300
full_WSmK 0.021 0.664
full_TAm 0.008 0.877
full_TGm -0.051 0.288
full_TBm -0.019 0.691
full_TDm -0.035 0.465
full_Vis -0.016 0.746
full_NIm -0.085 0.080
full_SHm -0.248 1.96e-07
full_C1s 0.006 0.904
full_NDm_ratio -0.073 0.129

Table B.7: Correlation of weather variables with capacity and corresponding p-values



C
Model

C.1. Deicing forecasting tool
The following statements provide a detailed overview of the model logic and visual presentation of
APOC’s de-icing tool (Iris Schiphol, n.d.).
Model logic:

• The forecast is available from D-3 to D-0.
• The model operates in 15-minute intervals.
• De-icing demand is derived from CISS flight data, distributing the scheduled departures across
the 15-minute time blocks.

• Capacity refers to the number of aircraft each handler expects to be able to de-ice per hour. These
values are provided by the handlers and entered manually by APOC users.

• Hourly de-icing capacity is entered as an average, based on an equal mix of narrow body and
wide body aircraft. This capacity is then divided by 4 to align with the 15-minute time intervals.

• The model incorporates three scenarios, Low, Middle, and High, to account for uncertainty in
weather forecasts. The Middle scenario serves as the baseline, while the Low and High scenarios
represent more favorable and more severe weather conditions, respectively.

• When demand exceeds capacity, a queue of aircraft starts to form. Conversely, when capacity
exceeds demand, the queue decreases.

Model output:

• In the visual output: bars represent de-icing demand, while the line indicates the handler’s planned
maximum capacity. The bars are stacked to show fulfilled demand for wide body and narrow body
aircraft, as well as queued aircraft. See Figure 4.9.

• KPIs displayed alongside the graph include the number of wide body and narrow body aircraft
requiring de-icing, and the maximum queue size within a 15-minute block.

C.2. Model logic
In the following steps, the logic of the simulation model is explained.

1. Initialize time slots and determine snow status

• Generate time slots (e.g., every 30 minutes) and round down each flight’s scheduled arrival time
to the beginning of its corresponding slot (e.g., 11:29 → 11:00).

• Identify and mark all time slots affected by snowfall, based on the predicted snow start and end
times.
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• Assign the number of active ASCTs to each time slot. During snowfall, only teams operating in
the centrum are considered available, excluding those assigned to the CDF. After snowfall ends,
the team(s) dedicated to the CDF rejoin the teams at centrum, increasing the number of available
teams accordingly.

• Adjust the number of active ASCTs per time slot to account for teams taking scheduled breaks.

2. Apply capacity restrictions

• Runway capacity undergoes a gradual transition towards the optimal runway scenario (Scenario
B) once snowfall ceases, taking into account the average runway cleaning time.

• For each time slot, the effective capacity is determined as the minimum of the runway capacity,
deicing capacity and additional restricted capacity.

• If the number of scheduled flights exceeds the available capacity for a given time slot, the surplus
flights are canceled. Flight removals follow a predefined ratio of 95% Nabo and 5% Wibo.

3. Determine aircraft stands requiring cleaning

• During snowfall, all aircraft stands are assumed to require snow removal and are therefore in-
cluded to the cleaning demand list.

• Starting 30minutes before the end of snowfall (i.e., one time slot), aircraft stands that have already
been cleared are assumed to remain clear and are therefore excluded from subsequent cleaning
rounds.

• When End time of cleaning requirement is applied, all queued and newly arriving aircraft can be
immediately assigned to an aircraft stand once this time is reached.

• For any flight scheduled at an aircraft stand that has not yet been cleaned after snowfall, the
algorithm attempts to reassign it to an already-cleaned stand if a suitable alternative is available.
Suitability is determined based on the following criteria:

– Wide-body aircraft can only be assigned to Wibo stands, and narrow-body aircraft to Nabo
stands.

– Schengen flights must be assigned to stands that are compatible with Schengen operations
or both Schengen and non-Schengen operations, and vice versa.

– The previous flight at the alternative stand must have completed handling before the new
assignment.

– The new flight must be able to complete handling before any subsequent flight is scheduled
at that stand.

• If no suitable cleaned stand is available, the flight remains assigned to its original stand, which is
then marked as requiring cleaning.

• Finally, the cleaning demand list is merged with the corresponding snow status and team avail-
ability per time slot. The total demand is categorized by aircraft stand type (Nabo or Wibo).

4. Calculate capacity and cleaned stands per slot

• For each time slot, compute the available cleaning capacity per aircraft stand type, considering
model scenario, route type (based on within-bay versus cross-bay ratio), accumulation level, and
the number of active teams. Distribute this capacity across Wibo and Nabo stands in proportion
to their total demand (including both scheduled and queued stands).

• Determine how many stands can be cleaned during each time slot and how many must be de-
ferred to the queue. If excess capacity remains and snowfall has ended, use it to clean upcoming
scheduled stands in advance.



D
Code

D.1. Classification algorithm
1 #!/usr/bin/env python
2 # coding: utf-8
3
4 # In[ ]:
5
6
7 #Casper data
8 minimum_cleantime = 270
9 maximum_cleantime = 3378
10 max_travel_time_within_bay = 270
11 max_travel_time_within_centrum = 2995
12 max_travel_time_outside_centrum = 3903
13 constant_within_bay_travel_time = 39
14 time_range_check = 600
15 lookahead_window = maximum_cleantime
16 time_gap_threshold = minimum_cleantime
17 polygon_threshold = 3
18
19
20 # In[ ]:
21
22
23 def calculate_polygon_distance(start, end, polygon_graph):
24 """Berekent de afstand in aantal tussenliggende polygons. --> breath-first search (BFS)"""
25
26 visited = set()
27 queue = deque([(start, 0)])
28
29 while queue:
30 current, distance = queue.popleft()
31 if current == end:
32 return distance
33 if current in visited:
34 continue
35 visited.add(current)
36 for neighbor in polygon_graph.get(current, []):
37 queue.append((neighbor, distance + 1))
38 return float('inf') # Geen pad gevonden
39
40
41 # In[ ]:
42
43
44 def decide_if_end_cleaning(snow_period, current_vop, start_time, end_time, vehicle_id, break_times, cleaning_periods, travel_times, cycli, minimum_cleantime,

maximum_cleantime, max_travel_time_within_bay, max_travel_time_within_centrum,↪→
45 max_travel_time_outside_centrum, constant_within_bay_travel_time, time_range_check, time_gap_detected, last_vop_end_time, previous_vop,

temporary_skipped_vops, skipped_vops, i, data, VGRS_data, df_ciss):↪→
46 is_break = False
47 too_long_cleaning = False
48 too_long_travel = False
49 route_type = None
50 #als op R of Y platform tijdens de schoonmaak --> pauze. Maar alleen als het midden in het proces is, niet als het aan het begin of einde is.
51 if current_vop.startswith(('Y', 'R')) and previous_vop is not None and current_vop != data.loc[data['loctype'] == 'VOP', 'location'].iloc[-1]:
52 is_break = True
53 #als de vorige current vop ook pauze was op hetzelfde platform, verleng de pauze
54 if break_times and (vop_location_dict.get(current_vop) == 'Y-platform' and vop_location_dict.get(previous_vop) == 'Y-platform') or

(vop_location_dict.get(current_vop) == 'R-platform' and vop_location_dict.get(previous_vop) == 'R-platform'):↪→
55 last_break = break_times.pop()
56 last_cyclus = cycli[-1]
57 if last_cyclus['is_break']:
58 cycli.pop()
59
60 #Maak de break opnieuw met de nieuwe eindtijd
61 start_break_time = last_break['start_time']
62 end_break_time = end_time
63 calculate_break_time(break_times, snow_period, previous_vop, start_break_time, end_break_time, vehicle_id)
64 #Maak de cyclus opnieuw met de nieuwe eindtijd
65 previous_previous_vop = last_cyclus['from_vop']
66 start_time_travel = last_cyclus['travel_start']
67 route_type = last_cyclus['route_type']
68 calculate_cyclus(cycli, snow_period, vehicle_id, previous_previous_vop, previous_vop, start_time_travel, start_break_time, end_break_time, route_type,

is_break, too_long_cleaning, too_long_travel, time_gap_detected)↪→
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69
70 else:
71 if last_vop_end_time is not None:
72 route_type, too_long_travel = calculate_travel_time(travel_times, snow_period, last_vop_end_time, start_time, previous_vop, current_vop, vehicle_id,
73 max_travel_time_within_bay, max_travel_time_within_centrum, max_travel_time_outside_centrum,

too_long_travel, time_gap_detected)↪→
74 else:
75 start_index = data[(data['location'] == current_vop) & (data['timestamp'] == start_time)].index[0]
76 previous_vop, last_vop_end_time = find_previous_start_position(start_index, data, df_ciss, current_vop)
77 if previous_vop is not None and last_vop_end_time is not None:
78 route_type, too_long_travel = calculate_travel_time(travel_times, snow_period, last_vop_end_time, start_time, previous_vop, current_vop,

vehicle_id,↪→
79 max_travel_time_within_bay, max_travel_time_within_centrum, max_travel_time_outside_centrum,

too_long_travel, time_gap_detected)↪→
80
81 calculate_break_time(break_times, snow_period, current_vop, start_time, end_time, vehicle_id)
82 calculate_cyclus(cycli, snow_period, vehicle_id, previous_vop, current_vop, last_vop_end_time, start_time, end_time, route_type, is_break,

too_long_cleaning, too_long_travel, time_gap_detected)↪→
83
84 last_vop_end_time = end_time
85 previous_vop = current_vop
86 temporary_skipped_vops.clear()
87 is_break = False
88 time_gap_detected = False
89 too_long_travel = False
90
91 #Als V4 op CDF was, hoef je niet te kijken naar mogelijke andere locaties die die heeft schoongemaakt
92 elif vehicle_id == 'V4' and vop_location_dict.get(current_vop) == 'CDF':
93 if last_vop_end_time is not None:
94 route_type, too_long_travel = calculate_travel_time(travel_times, snow_period, last_vop_end_time, start_time, previous_vop, current_vop, vehicle_id,
95 max_travel_time_within_bay, max_travel_time_within_centrum, max_travel_time_outside_centrum,

too_long_travel, time_gap_detected)↪→
96 else:
97 start_index = data[(data['location'] == current_vop) & (data['timestamp'] == start_time)].index[0]
98 previous_vop, last_vop_end_time = find_previous_start_position(start_index, data, df_ciss, current_vop)
99 if previous_vop is not None and last_vop_end_time is not None:
100 route_type, too_long_travel = calculate_travel_time(travel_times, snow_period, last_vop_end_time, start_time, previous_vop, current_vop, vehicle_id,
101 max_travel_time_within_bay, max_travel_time_within_centrum, max_travel_time_outside_centrum,

too_long_travel, time_gap_detected)↪→
102
103 calculate_cyclus(cycli, snow_period, vehicle_id, previous_vop, current_vop, last_vop_end_time, start_time, end_time, route_type, is_break, too_long_cleaning,

too_long_travel, time_gap_detected)↪→
104 calculate_break_time(break_times, snow_period, current_vop, start_time, end_time, vehicle_id)
105
106 last_vop_end_time = end_time
107 previous_vop = current_vop
108 temporary_skipped_vops.clear()
109 time_gap_detected = False
110 too_long_travel = False
111
112 else:
113 cleaning_duration = (end_time - start_time).total_seconds()
114 if minimum_cleantime <= cleaning_duration <= maximum_cleantime:
115 if last_vop_end_time is not None:
116 route_type, too_long_travel = calculate_travel_time(travel_times, snow_period, last_vop_end_time, start_time, previous_vop, current_vop, vehicle_id,
117 max_travel_time_within_bay, max_travel_time_within_centrum, max_travel_time_outside_centrum,

too_long_travel, time_gap_detected)↪→
118 else:
119 start_index = data[(data['location'] == current_vop) & (data['timestamp'] == start_time)].index[0]
120 previous_vop, last_vop_end_time = find_previous_start_position(start_index, data, df_ciss, current_vop)
121 if previous_vop is not None and last_vop_end_time is not None:
122 route_type, too_long_travel = calculate_travel_time(travel_times, snow_period, last_vop_end_time, start_time, previous_vop, current_vop,

vehicle_id,↪→
123 max_travel_time_within_bay, max_travel_time_within_centrum, max_travel_time_outside_centrum,

too_long_travel, time_gap_detected)↪→
124
125 #check other VOPS based on time
126 additional_cleaned_vops = {current_vop}
127 if not VGRS_data.empty:
128 additional_cleaned_vops = check_VGRS_adjacent_stands(i, data, VGRS_data, cleaning_periods, additional_cleaned_vops, start_time, end_time, current_vop,

minimum_cleantime, time_range_check)↪→
129
130 if len(additional_cleaned_vops) == 1: #geen extra vops gevonden vanuit VGRS
131 if not df_ciss.empty:
132 additional_cleaned_vops = check_ciss_adjacent_stands(i, data, df_ciss, cleaning_periods, additional_cleaned_vops, current_vop, start_time,

end_time, minimum_cleantime, time_range_check)↪→
133
134 if len(additional_cleaned_vops) == 1: #geen extra vops gevonden vanuit VGRS en CISS
135 #standaard aanpak
136 end_cleaning(cleaning_periods, snow_period, current_vop, start_time, end_time, cleaning_duration, vehicle_id, too_long_cleaning)
137 calculate_cyclus(cycli, snow_period, vehicle_id, previous_vop, current_vop, last_vop_end_time, start_time, end_time, route_type, is_break,

too_long_cleaning, too_long_travel, time_gap_detected)↪→
138 else:
139 n = len(additional_cleaned_vops)
140 cleaning_duration_per_vop = (cleaning_duration - (n - 1) * constant_within_bay_travel_time) / n
141 if cleaning_duration_per_vop < minimum_cleantime:
142 #toch niet met additional vop
143 end_cleaning(cleaning_periods, snow_period, current_vop, start_time, end_time, cleaning_duration, vehicle_id, too_long_cleaning)
144 calculate_cyclus(cycli, snow_period, vehicle_id, previous_vop, current_vop, last_vop_end_time, start_time, end_time, route_type, is_break,

too_long_cleaning, too_long_travel, time_gap_detected)↪→
145 else:
146 sorted_vops = [current_vop] + list(additional_cleaned_vops - {current_vop})
147 partly_travel_time = constant_within_bay_travel_time
148 partly_start_time = start_time
149 prev_vop = previous_vop
150 prev_end_time = last_vop_end_time
151 print(f'vopje toegevoegd met CISS: {additional_cleaned_vops}')
152 for vop in sorted_vops:
153 if vop != current_vop:
154 route_type, too_long_travel = calculate_travel_time(travel_times, snow_period, partly_end_time, partly_start_time, prev_vop, vop,

vehicle_id,↪→
155 max_travel_time_within_bay, max_travel_time_within_centrum, max_travel_time_outside_centrum,

too_long_travel, time_gap_detected)↪→
156 partly_end_time = partly_start_time + timedelta(seconds=cleaning_duration_per_vop)
157 end_cleaning(cleaning_periods, snow_period, vop, partly_start_time, partly_end_time, cleaning_duration_per_vop, vehicle_id,

too_long_cleaning)↪→
158 calculate_cyclus(cycli, snow_period, vehicle_id, prev_vop, vop, prev_end_time, partly_start_time, partly_end_time, route_type, is_break,

too_long_cleaning, too_long_travel, time_gap_detected)↪→
159 partly_start_time = partly_end_time + timedelta(seconds=partly_travel_time)
160 prev_vop = vop
161 prev_end_time = partly_end_time
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162
163 else:
164 n = len(additional_cleaned_vops)
165 cleaning_duration_per_vop = (cleaning_duration - (n - 1) * constant_within_bay_travel_time) / n
166 if cleaning_duration_per_vop < minimum_cleantime:
167 #toch niet met additional vop van VGRS --> check CISS
168 if not df_ciss.empty:
169 additional_cleaned_vops = {current_vop}
170 additional_cleaned_vops = check_ciss_within_bay(i, data, df_ciss, cleaning_periods, additional_cleaned_vops, current_vop, start_time, end_time,

minimum_cleantime, time_range_check)↪→
171 if len(additional_cleaned_vops) == 1:
172 print(f"cleaning duration van {current_vop} is te kort met VGRS en CISS werkt ook niet")
173 end_cleaning(cleaning_periods, snow_period, current_vop, start_time, end_time, cleaning_duration, vehicle_id, too_long_cleaning)
174 calculate_cyclus(cycli, snow_period, vehicle_id, previous_vop, current_vop, last_vop_end_time, start_time, end_time, route_type, is_break,

too_long_cleaning, too_long_travel, time_gap_detected)↪→
175 else:
176 n = len(additional_cleaned_vops)
177 cleaning_duration_per_vop = (cleaning_duration - (n - 1) * constant_within_bay_travel_time) / n
178 if cleaning_duration_per_vop < minimum_cleantime:
179 print(f"cleaning duration van {additional_cleaned_vops} is te kort ({cleaning_duration_per_vop}) met CISS data en VGRS data")
180 end_cleaning(cleaning_periods, snow_period, current_vop, start_time, end_time, cleaning_duration, vehicle_id, too_long_cleaning)
181 calculate_cyclus(cycli, snow_period, vehicle_id, previous_vop, current_vop, last_vop_end_time, start_time, end_time, route_type,

is_break, too_long_cleaning, too_long_travel, time_gap_detected)↪→
182 else:
183 sorted_vops = [current_vop] + list(additional_cleaned_vops - {current_vop})
184 partly_start_time = start_time
185 partly_travel_time = constant_within_bay_travel_time
186 prev_vop = previous_vop
187 prev_end_time = last_vop_end_time
188 for vop in sorted_vops:
189 if vop != current_vop:
190 route_type, too_long_travel = calculate_travel_time(travel_times, snow_period, partly_end_time, partly_start_time, prev_vop,

vop, vehicle_id,↪→
191 max_travel_time_within_bay, max_travel_time_within_centrum, max_travel_time_outside_centrum,

too_long_travel, time_gap_detected)↪→
192 partly_end_time = partly_start_time + timedelta(seconds=cleaning_duration_per_vop)
193 end_cleaning(cleaning_periods, snow_period, vop, partly_start_time, partly_end_time, cleaning_duration_per_vop, vehicle_id,

too_long_cleaning)↪→
194 calculate_cyclus(cycli, snow_period, vehicle_id, prev_vop, vop, prev_end_time, partly_start_time, partly_end_time, route_type,

is_break, too_long_cleaning, too_long_travel, time_gap_detected)↪→
195 partly_start_time = partly_end_time + timedelta(seconds=partly_travel_time)
196 prev_vop = vop
197 prev_end_time = partly_end_time
198
199 else:
200 sorted_vops = [current_vop] + list(additional_cleaned_vops - {current_vop})
201 partly_travel_time = constant_within_bay_travel_time
202 partly_start_time = start_time
203 prev_vop = previous_vop
204 prev_end_time = last_vop_end_time
205 print(f'vopje toegevoegd: {additional_cleaned_vops}')
206 for vop in sorted_vops:
207 if vop != current_vop:
208 route_type, too_long_travel = calculate_travel_time(travel_times, snow_period, partly_end_time, partly_start_time, prev_vop, vop,

vehicle_id,↪→
209 max_travel_time_within_bay, max_travel_time_within_centrum, max_travel_time_outside_centrum,

too_long_travel, time_gap_detected)↪→
210 partly_end_time = partly_start_time + timedelta(seconds=cleaning_duration_per_vop)
211 end_cleaning(cleaning_periods, snow_period, vop, partly_start_time, partly_end_time, cleaning_duration_per_vop, vehicle_id, too_long_cleaning)
212 calculate_cyclus(cycli, snow_period, vehicle_id, prev_vop, vop, prev_end_time, partly_start_time, partly_end_time, route_type, is_break,

too_long_cleaning, too_long_travel, time_gap_detected)↪→
213 partly_start_time = partly_end_time + timedelta(seconds=partly_travel_time)
214 prev_vop = vop
215 prev_end_time = partly_end_time
216
217 last_vop_end_time = end_time
218 previous_vop = current_vop
219 temporary_skipped_vops.clear()
220 time_gap_detected = False
221 too_long_travel = False
222
223 elif cleaning_duration >= maximum_cleantime:
224 print(f"{i ,current_vop} te lang {cleaning_duration}, ff verder kijken")
225 if last_vop_end_time is not None:
226 route_type, too_long_travel = calculate_travel_time(travel_times, snow_period, last_vop_end_time, start_time, previous_vop, current_vop, vehicle_id,
227 max_travel_time_within_bay, max_travel_time_within_centrum, max_travel_time_outside_centrum,

too_long_travel, time_gap_detected)↪→
228 else:
229 start_index = data[(data['location'] == current_vop) & (data['timestamp'] == start_time)].index[0]
230 previous_vop, last_vop_end_time = find_previous_start_position(start_index, data, df_ciss, current_vop)
231 if previous_vop is not None:
232 route_type, too_long_travel = calculate_travel_time(travel_times, snow_period, last_vop_end_time, start_time, previous_vop, current_vop,

vehicle_id,↪→
233 max_travel_time_within_bay, max_travel_time_within_centrum, max_travel_time_outside_centrum,

too_long_travel, time_gap_detected)↪→
234 #kijk of er miss andere vops zijn
235 potential_cleaned_vops = {current_vop}
236 if not VGRS_data.empty:
237 potential_cleaned_vops = check_VGRS_within_bay(i, data, VGRS_data, cleaning_periods, potential_cleaned_vops, start_time, end_time, current_vop,

minimum_cleantime, time_range_check)↪→
238
239 if len(potential_cleaned_vops) == 1: #geen extra vops gevonden vanuit VGRS --> check CISS
240 if not df_ciss.empty:
241 potential_cleaned_vops = check_ciss_within_bay(i, data, df_ciss, cleaning_periods, potential_cleaned_vops, current_vop, start_time, end_time,

minimum_cleantime, time_range_check)↪→
242 if len(potential_cleaned_vops) == 1: #geen extra vops gevonden vanuit VGRS en CISS
243 print(f"cleaning duration van {current_vop} is te lang en geen CISS of VGRS vops gevonden")
244 too_long_cleaning = True
245 end_cleaning(cleaning_periods, snow_period, current_vop, start_time, end_time, cleaning_duration, vehicle_id, too_long_cleaning)
246 calculate_cyclus(cycli, snow_period, vehicle_id, previous_vop, current_vop, last_vop_end_time, start_time, end_time, route_type, is_break,

too_long_cleaning, too_long_travel, time_gap_detected)↪→
247 else:
248 n = len(potential_cleaned_vops)
249 cleaning_duration_per_vop = (cleaning_duration - (n - 1) * constant_within_bay_travel_time) / n
250 if cleaning_duration_per_vop < minimum_cleantime:
251

print(f"cleaning duration van {potential_cleaned_vops} is te kort ({cleaning_duration_per_vop}) met CISS data, sla alsnog de lange clean time op")↪→
252 too_long_cleaning = True
253 end_cleaning(cleaning_periods, snow_period, current_vop, start_time, end_time, cleaning_duration, vehicle_id, too_long_cleaning)
254 calculate_cyclus(cycli, snow_period, vehicle_id, previous_vop, current_vop, last_vop_end_time, start_time, end_time, route_type, is_break,

too_long_cleaning, too_long_travel, time_gap_detected)↪→
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255
256 else:
257 if cleaning_duration_per_vop > maximum_cleantime:
258 too_long_cleaning = True
259 print(f"cleaning duration van {potential_cleaned_vops} is alsnog te lang ({cleaning_duration_per_vop}) met CISS erbij")
260
261 sorted_vops = [current_vop] + list(potential_cleaned_vops - {current_vop})
262 partly_start_time = start_time
263 partly_travel_time = constant_within_bay_travel_time
264 prev_vop = previous_vop
265 prev_end_time = last_vop_end_time
266 for vop in sorted_vops:
267 if vop != current_vop:
268 route_type, too_long_travel = calculate_travel_time(travel_times, snow_period, partly_end_time, partly_start_time, prev_vop, vop,

vehicle_id,↪→
269 max_travel_time_within_bay, max_travel_time_within_centrum, max_travel_time_outside_centrum,

too_long_travel, time_gap_detected)↪→
270 partly_end_time = partly_start_time + timedelta(seconds=cleaning_duration_per_vop)
271 end_cleaning(cleaning_periods, snow_period, vop, partly_start_time, partly_end_time, cleaning_duration_per_vop, vehicle_id,

too_long_cleaning)↪→
272 calculate_cyclus(cycli, snow_period, vehicle_id, prev_vop, vop, prev_end_time, partly_start_time, partly_end_time, route_type, is_break,

too_long_cleaning, too_long_travel, time_gap_detected)↪→
273 partly_start_time = partly_end_time + timedelta(seconds=partly_travel_time)
274 prev_vop = vop
275 prev_end_time = partly_end_time
276
277 else:
278 n = len(potential_cleaned_vops)
279 cleaning_duration_per_vop = (cleaning_duration - (n - 1) * constant_within_bay_travel_time) / n
280
281 if cleaning_duration_per_vop < minimum_cleantime:
282 print(f"cleaning duration van {potential_cleaned_vops} is te kort ({cleaning_duration_per_vop}) met VGRS data, check toch maar CISS data")
283 #check alsnog CISS
284 if not df_ciss.empty:
285 potential_cleaned_vops = {current_vop}
286 potential_cleaned_vops = check_ciss_within_bay(i, data, df_ciss, cleaning_periods, potential_cleaned_vops, current_vop, start_time, end_time,

minimum_cleantime, time_range_check)↪→
287 if len(potential_cleaned_vops) == 1:
288 print(f"cleaning duration van {current_vop} is te kort met VGRS en CISS werkt ook niet")
289 too_long_cleaning = True
290 end_cleaning(cleaning_periods, snow_period, current_vop, start_time, end_time, cleaning_duration, vehicle_id, too_long_cleaning)
291 calculate_cyclus(cycli, snow_period, vehicle_id, previous_vop, current_vop, last_vop_end_time, start_time, end_time, route_type, is_break,

too_long_cleaning, too_long_travel, time_gap_detected)↪→
292 else:
293 n = len(potential_cleaned_vops)
294 cleaning_duration_per_vop = (cleaning_duration - (n - 1) * constant_within_bay_travel_time) / n
295 if cleaning_duration_per_vop < minimum_cleantime:
296

print(f"cleaning duration van {potential_cleaned_vops} is te kort ({cleaning_duration_per_vop}) met CISS data en VGRS data, sla alsnog de lange clean time op")↪→
297 too_long_cleaning = True
298 end_cleaning(cleaning_periods, snow_period, current_vop, start_time, end_time, cleaning_duration, vehicle_id, too_long_cleaning)
299 calculate_cyclus(cycli, snow_period, vehicle_id, previous_vop, current_vop, last_vop_end_time, start_time, end_time, route_type,

is_break, too_long_cleaning, too_long_travel, time_gap_detected)↪→
300 else:
301 if cleaning_duration_per_vop > maximum_cleantime:
302 too_long_cleaning = True
303 print(f"cleaning duration van {potential_cleaned_vops} is alsnog te lang ({cleaning_duration_per_vop}) met CISS en VGRS erbij")
304
305 sorted_vops = [current_vop] + list(potential_cleaned_vops - {current_vop})
306 partly_start_time = start_time
307 partly_travel_time = constant_within_bay_travel_time
308 prev_vop = previous_vop
309 prev_end_time = last_vop_end_time
310 for vop in sorted_vops:
311 if vop != current_vop:
312 route_type, too_long_travel = calculate_travel_time(travel_times, snow_period, partly_end_time, partly_start_time, prev_vop,

vop, vehicle_id,↪→
313 max_travel_time_within_bay, max_travel_time_within_centrum, max_travel_time_outside_centrum,

too_long_travel, time_gap_detected)↪→
314 partly_end_time = partly_start_time + timedelta(seconds=cleaning_duration_per_vop)
315 end_cleaning(cleaning_periods, snow_period, vop, partly_start_time, partly_end_time, cleaning_duration_per_vop, vehicle_id,

too_long_cleaning)↪→
316 calculate_cyclus(cycli, snow_period, vehicle_id, prev_vop, vop, prev_end_time, partly_start_time, partly_end_time, route_type,

is_break, too_long_cleaning, too_long_travel, time_gap_detected)↪→
317 partly_start_time = partly_end_time + timedelta(seconds=partly_travel_time)
318 prev_vop = vop
319 prev_end_time = partly_end_time
320 else:
321 #niet mogelijk om nog te kijken naar CISS, dus sla te lange clean time op zonder de VGRS vops erbij
322 too_long_cleaning = True
323 end_cleaning(cleaning_periods, snow_period, current_vop, start_time, end_time, cleaning_duration, vehicle_id, too_long_cleaning)
324 calculate_cyclus(cycli, snow_period, vehicle_id, previous_vop, current_vop, last_vop_end_time, start_time, end_time, route_type, is_break,

too_long_cleaning, too_long_travel, time_gap_detected)↪→
325
326 else:
327 if cleaning_duration_per_vop > maximum_cleantime:
328 too_long_cleaning = True
329 print(f"cleaning duration van {potential_cleaned_vops} is alsnog te lang ({cleaning_duration_per_vop}) met VGRS data")
330
331 sorted_vops = [current_vop] + list(potential_cleaned_vops - {current_vop})
332 partly_start_time = start_time
333 partly_travel_time = constant_within_bay_travel_time
334 prev_vop = previous_vop
335 prev_end_time = last_vop_end_time
336 for vop in sorted_vops:
337 if vop != current_vop:
338 route_type, too_long_travel = calculate_travel_time(travel_times, snow_period, partly_end_time, partly_start_time, prev_vop, vop,

vehicle_id,↪→
339 max_travel_time_within_bay, max_travel_time_within_centrum, max_travel_time_outside_centrum,

too_long_travel, time_gap_detected)↪→
340 partly_end_time = partly_start_time + timedelta(seconds=cleaning_duration_per_vop)
341 end_cleaning(cleaning_periods, snow_period, vop, partly_start_time, partly_end_time, cleaning_duration_per_vop, vehicle_id, too_long_cleaning)
342 calculate_cyclus(cycli, snow_period, vehicle_id, prev_vop, vop, prev_end_time, partly_start_time, partly_end_time, route_type, is_break,

too_long_cleaning, too_long_travel, time_gap_detected)↪→
343 partly_start_time = partly_end_time + timedelta(seconds=partly_travel_time)
344 prev_vop = vop
345 prev_end_time = partly_end_time
346
347 too_long_cleaning = False
348 too_long_travel = False
349 last_vop_end_time = end_time
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350 previous_vop = current_vop
351 temporary_skipped_vops.clear()
352 time_gap_detected = False
353
354 else: #te korte schoonmaak duur
355 if previous_vop is None:
356 ##current_vop te korte schoonmaakduur. Herstart vanaf het begin.
357 skipped_vops.add(current_vop)
358 i = 0 #Ga terug naar het begin
359 else:
360 print(f"{current_vop} te kort {cleaning_duration}, einde schoonmaak")
361 #skip deze vop en ga opnieuw bekijken welke vop dan wel
362 temporary_skipped_vops.add(current_vop)
363 if vehicle_id == 'V4' and vop_location_dict.get(previous_vop) == 'CDF':
364 for j in range(i-1, -1, -1):
365 loc = data.iloc[j]['location']
366 if vop_location_dict.get(loc) == 'CDF' or loc == 'A20':
367 i = j + 1
368 break
369 else:
370 for j in range(i-1, -1, -1):
371 if data.iloc[j]['loctype'] == 'VOP' and data.iloc[j]['location'] == previous_vop:
372 i = j + 1 # Reset i naar die vorige locatie
373 break
374
375 return last_vop_end_time, previous_vop, temporary_skipped_vops, skipped_vops, time_gap_detected, i
376
377
378 # In[ ]:
379
380
381 def calculate_cyclus(cycli, snow_period, vehicle_id, previous_vop, current_vop, last_vop_end_time, start_time, end_time, route_type, is_break, too_long_cleaning,

too_long_travel, time_gap_detected):↪→
382 if last_vop_end_time is not None:
383 total_duration = (end_time - last_vop_end_time).total_seconds()
384 else:
385 total_duration = None
386
387 vop_type = vop_type_dict.get(current_vop, "Onbekend")
388 start_sneeuw, eind_sneeuw = snow_period
389
390 cycli.append({
391 'snow_start': start_sneeuw,
392 'snow_end': eind_sneeuw,
393 'vehicle_id': vehicle_id,
394 'from_vop': previous_vop,
395 'to_vop': current_vop,
396 'route_type': route_type,
397 'vop_type': vop_type,
398 'travel_start': last_vop_end_time,
399 'travel_end': start_time,
400 'clean_start': start_time,
401 'clean_end': end_time,
402 'total_cycle_duration': total_duration,
403 'is_break': is_break,
404 'too_long_cleaning': too_long_cleaning,
405 'too_long_travel': too_long_travel,
406 'time_gap_detected': time_gap_detected,
407 })
408
409
410 # In[ ]:
411
412
413 def find_previous_start_position(current_index, data, df_ciss, current_vop, min_duration=180):
414 #check eerst ciss data
415 if not df_ciss.empty:
416 if (df_ciss['current_position'].iloc[0] == current_vop) or (vop_location2_dict.get(df_ciss['current_position'].iloc[0]) ==

vop_location2_dict.get(current_vop)):↪→
417 print(current_vop, df_ciss['current_position'].iloc[0])
418 previous_vop = df_ciss['previous_position'].iloc[0]
419 print(f'met ciss{previous_vop}')
420 for j in range(current_index - 1, -1, -1):
421 if data.loc[j, 'location'] == previous_vop:
422 last_vop_end_time = data['timestamp'].iloc[j]
423 print(f'met ciss is de start index {previous_vop}')
424 return previous_vop, last_vop_end_time
425
426 #anders deze manier
427 candidate_vop = None
428 candidate_start = None
429 candidate_end = None
430
431 for j in range(current_index - 1, -1, -1):
432 row = data.loc[j]
433
434 # Als 'loctype' NaN is, sla deze rij over
435 if pd.isna(row['loctype']):
436 continue
437 if row['location'] == current_vop:
438 continue
439 if row['loctype'] != 'VOP':
440 if candidate_vop is not None:
441 # check of het verblijf lang genoeg was
442 duration = (candidate_end - candidate_start).total_seconds()
443 if duration >= min_duration:
444 print(f'met ruwe data is de start index {candidate_vop}')
445 return candidate_vop, candidate_end
446 else:
447 candidate_vop = None
448 continue
449 else:
450 if candidate_vop is None:
451 candidate_vop = row['location']
452 candidate_end = row['timestamp']
453 candidate_start = row['timestamp']
454 elif row['location'] == candidate_vop:
455 candidate_start = row['timestamp']
456 else:
457 # nieuwe VOP gevonden, check de vorige
458 duration = (candidate_end - candidate_start).total_seconds()
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459 if duration >= min_duration:
460 print(f'met ruwe data is de start index {candidate_vop}')
461 return candidate_vop, candidate_end
462
463 else:
464 # reset voor nieuwe VOP
465 candidate_vop = row['location']
466 candidate_end = row['timestamp']
467 candidate_start = row['timestamp']
468
469 # Als je de loop helemaal doorloopt, check laatste candidate nog
470 if candidate_vop is not None and (candidate_end - candidate_start).total_seconds() >= min_duration:
471 print(f'met ruwe data is de start index {candidate_vop}')
472 return candidate_vop, candidate_end
473
474 return None, None
475
476
477 # In[ ]:
478
479
480 def check_VGRS_adjacent_stands(i, data, VGRS_data, cleaning_periods, additional_cleaned_vops, start_time, end_time, current_vop, minimum_cleantime, time_range_check):
481 t_range_start = start_time - timedelta(seconds=time_range_check)
482 t_range_end = end_time + timedelta(seconds=time_range_check)
483
484 additional_cleaned_vops.update(set(VGRS_data[
485 (VGRS_data['location2'] == vop_location2_dict.get(current_vop)) &
486 (VGRS_data['Begin'].between(t_range_start, t_range_end))]['VOP']))
487 print(f'het was {current_vop} + vanuit VGRS zonder filtering: {additional_cleaned_vops}')
488
489 #filterin 1: staat de additional vop uberhaupt in de data?
490 additional_cleaned_vops.intersection_update({vop for vop in additional_cleaned_vops if not
491 data[(data['location'] == vop) & (data['timestamp'].between(start_time, end_time))].empty})
492 print(f'filtering 1: {additional_cleaned_vops}')
493
494 #filtering 2: wordt de vop al gedetecteerd door het algoritme zelf?
495 future_check = t_range_end + timedelta(seconds=time_range_check)
496 match = data.index[data['timestamp'] == future_check]
497 if not match.empty:
498 idx_future = match[0]
499 lookahead_data = data.iloc[i:i + idx_future]
500 future_locations = list(zip(lookahead_data['location'], lookahead_data['loctype'], lookahead_data['timestamp']))
501 valid_future_locations = [(loc, loctype, timestamp) for loc, loctype, timestamp in future_locations if pd.notna(loc) and pd.notna(loctype) and

pd.notna(timestamp)]↪→
502
503 to_remove = set()
504 for vop in additional_cleaned_vops:
505 vop_timestamps = [timestamp for loc, loctype, timestamp in valid_future_locations if loc == vop]
506 if vop_timestamps:
507 first_occurrence = min(vop_timestamps)
508 last_occurrence = max(vop_timestamps)
509 duration = (last_occurrence - first_occurrence).total_seconds()
510 if duration > minimum_cleantime:
511 to_remove.add(vop)
512 if to_remove:
513 additional_cleaned_vops -= to_remove
514 print(f'filtering 2: {additional_cleaned_vops}')
515
516 #filtering 3 --> staat de additional vop al in de cleaning periods die pas geleden zijn gedaan
517 time_window_start = start_time - timedelta(seconds=time_range_check)
518
519 recent_cleanings = [period for period in cleaning_periods
520 if time_window_start <= period['end_time'] < start_time]
521
522 for period in recent_cleanings:
523 additional_cleaned_vops.discard(period['vop'])
524 print(f'na filtering 3: {additional_cleaned_vops}')
525
526 additional_cleaned_vops.add(current_vop)
527
528 return additional_cleaned_vops
529
530
531 # In[ ]:
532
533
534 def check_ciss_adjacent_stands(i, data, df_ciss, cleaning_periods, additional_cleaned_vops, current_vop, start_time, end_time, minimum_cleantime, time_range_check):
535 future_check_ciss = None
536 for a in range(len(df_ciss)):
537 row = df_ciss.iloc[a]
538
539 # 1) current_vop in current_position
540 if row['current_position'] == current_vop:
541 # Check of end_datetime van ciss dicht bij start_time van casper ligt
542 if abs(row['end_datetime'] - start_time) <= timedelta(seconds=time_range_check):
543 # Pak de volgende rij om te zien of de previous_position overeenkomt
544 if a + 1 < len(df_ciss):
545 next_row = df_ciss.iloc[a+1]
546 # Als de volgende rij's previous_position NIET gelijk is aan de huidige current_position...
547 if next_row['previous_position'] != row['current_position']:
548 #maar wel dezelfde location2 heeft: --> dezelfde kant van dezelfde baai
549 if vop_location2_dict.get(next_row['previous_position']) == vop_location2_dict.get(current_vop):
550 additional_cleaned_vops.add(next_row['previous_position'])
551 future_check_ciss = next_row['start_datetime'] + timedelta(seconds=time_range_check)
552
553 # 2) current_vop in previous_position
554 if row['previous_position'] == current_vop:
555 # Check of start_datetime van CISS dicht bij end_time van casper ligt
556 if abs(row['start_datetime'] - end_time) <= timedelta(seconds=time_range_check):
557 # Kijk naar de vorige rij om te zien of de current_position dezelfde is
558 if a > 0:
559 prev_row = df_ciss.iloc[a-1]
560 # Als de vorige rij's current_position NIET gelijk is aan de huidige previous_position...
561 if prev_row['current_position'] != row['previous_position']:
562 #maar wel dezelfde location2 heeft: --> dezelfde kant van dezelfde baai
563 if vop_location2_dict.get(prev_row['current_position']) == vop_location2_dict.get(current_vop):
564 additional_cleaned_vops.add(prev_row['current_position'])
565 future_check_ciss = row['start_datetime'] + timedelta(seconds=time_range_check)
566 #filtering 1
567 additional_cleaned_vops.intersection_update({vop for vop in additional_cleaned_vops if not
568 data[(data['location'] == vop) & (data['timestamp'].between(start_time, end_time))].empty})
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569 print(f'filtering 1 ciss: {additional_cleaned_vops}')
570
571 #filtering 2
572 if future_check_ciss is not None:
573 match = (data['timestamp'] - future_check_ciss).abs().idxmin()
574 idx_future = match[0]
575 lookahead_data = data.iloc[i:idx_future]
576 future_locations = list(zip(lookahead_data['location'], lookahead_data['loctype'], lookahead_data['timestamp']))
577 valid_future_locations = [(loc, loctype, timestamp) for loc, loctype, timestamp in future_locations if pd.notna(loc) and pd.notna(loctype) and

pd.notna(timestamp)]↪→
578
579 to_remove = set()
580 for vop in additional_cleaned_vops:
581 vop_timestamps = [timestamp for loc, loctype, timestamp in valid_future_locations if loc == vop]
582 if vop_timestamps:
583 first_occurrence = min(vop_timestamps)
584 last_occurrence = max(vop_timestamps)
585 duration = (last_occurrence - first_occurrence).total_seconds()
586 if duration > minimum_cleantime:
587 to_remove.add(vop)
588 if to_remove:
589 additional_cleaned_vops -= to_remove
590 print(f'filtering 2 ciss: {additional_cleaned_vops}')
591
592 #filtering 3
593 if cleaning_periods:
594 last_vop = cleaning_periods[-1]['vop']
595 else:
596 last_vop = None
597
598 if len(cleaning_periods) > 1:
599 second_last_vop = cleaning_periods[-2]['vop']
600 else:
601 second_last_vop = None
602
603 if last_vop in additional_cleaned_vops:
604 additional_cleaned_vops.discard(last_vop)
605 if second_last_vop in additional_cleaned_vops:
606 additional_cleaned_vops.discard(second_last_vop)
607 print(f'filtering 3 ciss: {additional_cleaned_vops}')
608
609 additional_cleaned_vops.add(current_vop)
610
611 return additional_cleaned_vops
612
613
614
615 # In[ ]:
616
617
618 def check_VGRS_within_bay(i, data, VGRS_data, cleaning_periods, potential_cleaned_vops, start_time, end_time, current_vop, minimum_cleantime, time_range_check):
619 t_range_start = start_time - timedelta(seconds=time_range_check)
620 t_range_end = end_time + timedelta(seconds=time_range_check)
621
622 potential_cleaned_vops.update(set(VGRS_data[
623 (VGRS_data['location'] == vop_location_dict.get(current_vop)) &
624 (VGRS_data['Begin'].between(t_range_start, t_range_end))]['VOP']))
625 print(f'het was {current_vop} + vanuit VGRS zonder filtering: {potential_cleaned_vops}')
626
627 #Filter 1: staan de additional vops uberhaupt in de data?
628 potential_cleaned_vops.intersection_update({vop for vop in potential_cleaned_vops if not
629 data[(data['location'] == vop) & (data['timestamp'].between(start_time, end_time))].empty})
630 print(f'filtering 1: {potential_cleaned_vops}')
631
632 #Filter 2: wordt de vop al gedetecteerd door het algoritme zelf?
633 future_check = t_range_end + timedelta(seconds=time_range_check)
634 match = data.index[data['timestamp'] == future_check]
635 if not match.empty:
636 idx_future = match[0]
637 lookahead_data = data.iloc[i:i + idx_future]
638 future_locations = list(zip(lookahead_data['location'], lookahead_data['loctype'], lookahead_data['timestamp']))
639 valid_future_locations = [(loc, loctype, timestamp) for loc, loctype, timestamp in future_locations if pd.notna(loc) and pd.notna(loctype) and

pd.notna(timestamp)]↪→
640
641 to_remove_vop = set()
642 for vop in potential_cleaned_vops:
643 potential_vop_timestamps = [timestamp for loc, loctype, timestamp in valid_future_locations if loc == vop]
644 if potential_vop_timestamps:
645 first_occurrence = min(potential_vop_timestamps)
646 last_occurrence = max(potential_vop_timestamps)
647 duration = (last_occurrence - first_occurrence).total_seconds()
648 if duration > minimum_cleantime:
649 to_remove_vop.add(vop)
650 if to_remove_vop:
651 potential_cleaned_vops -= to_remove_vop
652 print(f'filtering 2: {potential_cleaned_vops} zijn over')
653
654 #filtering 3 --> staat de additional vop al in de cleaning periods die pas geleden zijn gedaan
655 time_window_start = start_time - timedelta(seconds=time_range_check)
656
657 recent_cleanings = [period for period in cleaning_periods
658 if time_window_start <= period['end_time'] < start_time]
659
660 for period in recent_cleanings:
661 potential_cleaned_vops.discard(period['vop'])
662
663 print(f'na filtering 3: {potential_cleaned_vops}')
664
665 potential_cleaned_vops.add(current_vop)
666
667 return potential_cleaned_vops
668
669
670 # In[ ]:
671
672
673 def check_ciss_within_bay(i, data, df_ciss, cleaning_periods, potential_cleaned_vops, current_vop, start_time, end_time, minimum_cleantime, time_range_check):
674 future_check_ciss = None
675 for a in range(len(df_ciss)):
676 row = df_ciss.iloc[a]
677
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678 # 1) current_vop in current_position
679 if row['current_position'] == current_vop:
680 # Check of end_datetime van ciss dicht bij start_time van casper ligt
681 if abs(row['end_datetime'] - start_time) <= timedelta(seconds=time_range_check):
682 # Pak de volgende rij om te zien of de previous_position overeenkomt
683 if a + 1 < len(df_ciss):
684 next_row = df_ciss.iloc[a+1]
685 # Als de volgende rij's previous_position NIET gelijk is aan de huidige current_position...
686 if next_row['previous_position'] != row['current_position']:
687 #en dezelfde location heeft: --> binnen dezelfde baai of platform
688 if vop_location_dict.get(next_row['previous_position']) == vop_location_dict.get(current_vop):
689 potential_cleaned_vops.add(next_row['previous_position'])
690 future_check_ciss = next_row['start_datetime'] + timedelta(seconds=time_range_check)
691
692 # 2) current_vop in previous_position
693 if row['previous_position'] == current_vop:
694 # Check of start_datetime dicht bij end_time ligt
695 if abs(row['start_datetime'] - end_time) <= timedelta(seconds=time_range_check):
696 # Kijk naar de vorige rij om te zien of de current_position dezelfde is
697 if a > 0:
698 prev_row = df_ciss.iloc[a-1]
699 if prev_row['current_position'] != row['previous_position']:
700 # Voeg de current_position van de huidige rij toe
701 if vop_location_dict.get(prev_row['current_position']) == vop_location_dict.get(current_vop):
702 potential_cleaned_vops.add(prev_row['current_position'])
703 future_check_ciss = row['start_datetime'] + timedelta(seconds=time_range_check)
704
705 #filtering 1
706 potential_cleaned_vops.intersection_update({vop for vop in potential_cleaned_vops if not
707 data[(data['location'] == vop) & (data['timestamp'].between(start_time, end_time))].empty})
708 print(f'filtering 1 ciss: {potential_cleaned_vops}')
709
710 #filtering 2
711 if future_check_ciss is not None:
712 match = data.index[data['timestamp'] == future_check_ciss]
713 idx_future = match[0]
714 lookahead_data = data.iloc[i:idx_future]
715
716 future_locations = list(zip(lookahead_data['location'], lookahead_data['loctype'], lookahead_data['timestamp']))
717 valid_future_locations = [(loc, loctype, timestamp) for loc, loctype, timestamp in future_locations if pd.notna(loc) and pd.notna(loctype) and

pd.notna(timestamp)]↪→
718
719 to_remove = set()
720 for vop in potential_cleaned_vops:
721 vop_timestamps = [timestamp for loc, loctype, timestamp in valid_future_locations if loc == vop]
722 if vop_timestamps:
723 first_occurrence = min(vop_timestamps)
724 last_occurrence = max(vop_timestamps)
725 duration = (last_occurrence - first_occurrence).total_seconds()
726 if duration > minimum_cleantime:
727 to_remove.add(vop)
728 if to_remove:
729 potential_cleaned_vops -= to_remove
730 print(f'filtering 2 ciss: {potential_cleaned_vops}')
731
732 #filtering 3
733 if cleaning_periods:
734 last_vop = cleaning_periods[-1]['vop']
735 else:
736 last_vop = None
737
738 if len(cleaning_periods) > 1:
739 second_last_vop = cleaning_periods[-2]['vop']
740 else:
741 second_last_vop = None
742
743 if last_vop in potential_cleaned_vops:
744 potential_cleaned_vops.discard(last_vop)
745 if second_last_vop in potential_cleaned_vops:
746 potential_cleaned_vops.discard(second_last_vop)
747 print(f'filtering 3: {potential_cleaned_vops}')
748
749 potential_cleaned_vops.add(current_vop)
750
751 return potential_cleaned_vops
752
753
754
755 # In[ ]:
756
757
758 def end_cleaning(cleaning_periods, snow_period, current_vop, start_time, end_time, cleaning_duration, vehicle_id, too_long_cleaning):
759 """
760 Handelt het einde van een schoonmaakperiode af door het toe te voegen aan de lijst.
761 """
762 vop_type = vop_type_dict.get(current_vop, "Onbekend")
763
764 duration_minutes = cleaning_duration/60
765 start_sneeuw, eind_sneeuw = snow_period
766
767 cleaning_periods.append({
768 'snow_start': start_sneeuw,
769 'snow_end': eind_sneeuw,
770 'vehicle_id': vehicle_id,
771 'vop': current_vop,
772 'vop_type': vop_type,
773 'start_time': start_time,
774 'end_time': end_time,
775 'duration_seconds': cleaning_duration,
776 'duration_minutes': duration_minutes,
777 'too_long_cleaning': too_long_cleaning,
778 })
779
780
781 # In[ ]:
782
783
784 def calculate_travel_time(travel_times, snow_period, start_time, end_time, previous_vop, current_vop, vehicle_id, max_travel_time_within_bay,

max_travel_time_within_centrum, max_travel_time_outside_centrum, too_long_travel, time_gap_detected):↪→
785
786 tt = (end_time-start_time).total_seconds()
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787 tt_minutes = tt/60
788 route_type = None
789
790 if vop_location_dict.get(current_vop) == vop_location_dict.get(previous_vop): #nu aangenomen dat heel platform A dan binnen de baai is.
791 route_type = 'Within bay/platform'
792 if tt > max_travel_time_within_bay:
793 too_long_travel = True
794 elif vop_locationtype_dict.get(current_vop) == vop_locationtype_dict.get(previous_vop):
795 route_type = 'Within zone'
796 if tt > max_travel_time_within_centrum:
797 too_long_travel = True
798 else:
799 route_type = 'Cross-zone'
800 if tt > max_travel_time_outside_centrum:
801 too_long_travel = True
802
803 start_sneeuw, eind_sneeuw = snow_period
804
805 travel_times.append({
806 'snow_start': start_sneeuw,
807 'snow_end': eind_sneeuw,
808 'vehicle_id': vehicle_id,
809 'from_vop': previous_vop,
810 'to_vop': current_vop,
811 'route_type': route_type,
812 'start_time': start_time,
813 'end_time': end_time,
814 'travel_time_minutes': tt_minutes,
815 'travel_time_seconds': tt,
816 'time_gap_detected': time_gap_detected,
817 'too_long_travel':too_long_travel,
818 })
819
820 return route_type, too_long_travel
821
822
823 # In[ ]:
824
825
826 def calculate_break_time(break_times, snow_period, current_vop, start_time, end_time, vehicle_id):
827
828 break_duration_seconds = (end_time - start_time).total_seconds()
829 break_duration_minutes = break_duration_seconds/60
830
831 start_sneeuw, eind_sneeuw = snow_period
832
833 break_times.append({
834 'snow_start': start_sneeuw,
835 'snow_end': eind_sneeuw,
836 'vehicle_id': vehicle_id,
837 'vop': current_vop,
838 'start_time': start_time,
839 'end_time': end_time,
840 'duration_seconds': break_duration_seconds,
841 'duration_minutes': break_duration_minutes,
842 })
843 return True
844
845
846 # In[ ]:
847
848
849 def determine_cleaning_capacity(snow_period, data, df_ciss, VGRS_data, vehicle_id, lookahead_window, minimum_cleantime, maximum_cleantime, max_travel_time_within_bay,

max_travel_time_within_centrum,↪→
850 max_travel_time_outside_centrum, constant_within_bay_travel_time, time_range_check, time_gap_threshold, polygon_threshold,

polygon_graph):↪→
851 cleaning_periods = []
852 travel_times = []
853 break_times = []
854 cycli = []
855 all_vops = set(data.loc[data['loctype'] == 'VOP', 'location'])
856 skipped_vops = {vop for vop in all_vops if vop.startswith(('K', 'R', 'Y', 'S', 'U'))}
857 temporary_skipped_vops = set()
858 in_cleaning = False
859 start_time, current_vop = None, None
860 last_vop_end_time = None
861 previous_vop = None
862 time_gap_detected = False
863
864 i = 0
865 while i < len(data):
866
867 current_row = data.iloc[i]
868 current_time, current_location, current_loctype = current_row['timestamp'], current_row['location'], current_row['loctype']
869
870 #wanneer starten met cleaning?
871 if previous_vop is None and not in_cleaning:
872 if current_loctype == 'VOP' and current_location in skipped_vops:
873 i += 1
874 continue
875 elif current_loctype != 'VOP':
876 i += 1
877 continue
878 else:
879 pass
880
881 if not in_cleaning:
882 if current_loctype == 'VOP':
883 if current_location in temporary_skipped_vops:
884 i += 1
885 continue
886 else:
887 #start cleaning
888 in_cleaning = True
889 start_time = current_time
890 current_vop = current_location
891 i += 1
892 continue
893 else:
894 i += 1
895 continue
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896 #als je aan het schoonmaken bent ...
897 if in_cleaning:
898
899 #als V4 op CDF, dan zien als 1 grote periode
900 if vehicle_id == 'V4' and vop_location_dict.get(current_vop) == 'CDF':
901 if (vop_location_dict.get(current_location) == 'CDF') or (current_location == 'A20') or (pd.isna(current_location)):
902 i += 1
903 continue
904 else:
905 end_time = data.iloc[i-1]['timestamp']
906 (last_vop_end_time, previous_vop, temporary_skipped_vops, skipped_vops, time_gap_detected, i) = decide_if_end_cleaning(snow_period, current_vop,

start_time, end_time, vehicle_id, break_times, cleaning_periods, travel_times, cycli,↪→
907 minimum_cleantime, maximum_cleantime,

max_travel_time_within_bay,
max_travel_time_within_centrum,
max_travel_time_outside_centrum,
constant_within_bay_travel_time,

↪→
↪→
↪→
↪→

908 time_range_check, time_gap_detected, last_vop_end_time,
previous_vop, temporary_skipped_vops, skipped_vops,
i, data, VGRS_data, df_ciss)

↪→
↪→

909 in_cleaning = False
910 start_time, current_vop = None, None
911 # temporary_skipped_vops.clear()
912 continue
913
914 # Kijk vooruit in de tijd om te zien of het schoonmaken eindigt
915 lookahead_data = data.iloc[i:i + lookahead_window]
916 future_locations = list(zip(lookahead_data['location'], lookahead_data['loctype'])) if not lookahead_data.empty else []
917 valid_future_locations = [loc for loc in future_locations if pd.notna(loc[0]) and pd.notna(loc[1])]
918
919 #check timestep continuity
920 if i > 0:
921 previous_time = data.iloc[i - 1]['timestamp']
922 time_gap = (current_time - previous_time).total_seconds()
923 if time_gap > time_gap_threshold:
924 print(f"grote timegap aanwezig, {vehicle_id}, om {previous_time} - {current_time}")
925 # Zoek naar de laatste geldige rij waar de locatie overeenkomt met current_vop --> deze range vanwege de logica verderop
926 i_timegap = i
927 for j in range(i - 1, max(i - lookahead_window -1, -1), -1):
928 if data.iloc[j]['loctype'] == 'VOP' and data.iloc[j]['location'] == current_vop:
929 last_valid_index = j
930 break
931
932 end_time = data.iloc[last_valid_index]['timestamp']
933 (last_vop_end_time, previous_vop, temporary_skipped_vops, skipped_vops, time_gap_detected, i) = decide_if_end_cleaning(snow_period, current_vop,

start_time, end_time, vehicle_id, break_times, cleaning_periods, travel_times, cycli,↪→
934 minimum_cleantime, maximum_cleantime,

max_travel_time_within_bay,
max_travel_time_within_centrum,
max_travel_time_outside_centrum,
constant_within_bay_travel_time,

↪→
↪→
↪→
↪→

935 time_range_check, time_gap_detected, last_vop_end_time,
previous_vop, temporary_skipped_vops, skipped_vops,
i, data, VGRS_data, df_ciss)

↪→
↪→

936
937 in_cleaning = False
938 start_time, current_vop = None, None
939 time_gap_detected = True
940 if i == i_timegap:
941 i = i + 1
942 continue
943 else:
944 pass
945
946 if current_loctype != 'VOP' or current_location != current_vop:
947 # Als de auto volledig naar een nieuwe polygon gaat en niet terugkeert naar de huidige VOP
948 if all(future_loc != (current_vop, 'VOP') for future_loc in valid_future_locations):
949
950 end_time = data.iloc[i-1]['timestamp']
951 (last_vop_end_time, previous_vop, temporary_skipped_vops, skipped_vops, time_gap_detected, i) = decide_if_end_cleaning(snow_period, current_vop,

start_time, end_time, vehicle_id, break_times, cleaning_periods, travel_times, cycli,↪→
952 minimum_cleantime, maximum_cleantime,

max_travel_time_within_bay,
max_travel_time_within_centrum,
max_travel_time_outside_centrum,
constant_within_bay_travel_time,

↪→
↪→
↪→
↪→

953 time_range_check, time_gap_detected, last_vop_end_time,
previous_vop, temporary_skipped_vops, skipped_vops,
i, data, VGRS_data, df_ciss)

↪→
↪→

954
955 in_cleaning = False
956 start_time, current_vop = None, None
957 continue
958
959 #Als auto nog teurg naar current VOP gaat, check of ie niet ergens verweg is geweest
960 else:
961 next_vop_index = next(index for index, loc in enumerate(valid_future_locations) if loc == (current_vop, 'VOP'))
962
963 # Controleer tussenliggende punten tot aan de volgende current_vop
964 end_cleaning_triggered = False
965 for intermediate_loc, intermediate_loctype in valid_future_locations[:next_vop_index]:
966 too_far_count = 0
967 threshold_count = 5
968
969 if intermediate_loctype == 'VOP':
970 if vop_location_dict.get(current_vop) == vop_location_dict.get(intermediate_loc): #binnen de baai
971 too_far_count = 0
972 else:
973 too_far_count += 1
974 if too_far_count >= threshold_count:
975 print(f"Tussenliggende locatie {intermediate_loc} te ver weg tijdens terugkeer naar {current_vop}.")
976 end_cleaning_triggered = True
977
978 # Einde schoonmaak vanwege te verre tussenliggende punten
979 end_time = data.iloc[i-1]['timestamp']
980 (last_vop_end_time, previous_vop, temporary_skipped_vops, skipped_vops, time_gap_detected, i) = decide_if_end_cleaning(snow_period,

current_vop, start_time, end_time, vehicle_id, break_times, cleaning_periods, travel_times, cycli,↪→
981 minimum_cleantime, maximum_cleantime,

max_travel_time_within_bay,
max_travel_time_within_centrum,
max_travel_time_outside_centrum,
constant_within_bay_travel_time,

↪→
↪→
↪→
↪→
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982 time_range_check, time_gap_detected, last_vop_end_time,
previous_vop, temporary_skipped_vops, skipped_vops,
i, data, VGRS_data, df_ciss)

↪→
↪→

983
984 in_cleaning = False
985 start_time, current_vop = None, None
986 break
987 elif intermediate_loctype in ('TAXIWAY', 'RUNWAY'):
988 #sws te ver
989 too_far_count += 1
990 if too_far_count >= threshold_count:
991 print(f"Tussenliggende locatie {intermediate_loc} te ver weg tijdens terugkeer naar {current_vop}.")
992 end_cleaning_triggered = True
993
994 # Einde schoonmaak vanwege te verre tussenliggende punten
995 end_time = data.iloc[i-1]['timestamp']
996 (last_vop_end_time, previous_vop, temporary_skipped_vops, skipped_vops, time_gap_detected, i) = decide_if_end_cleaning(snow_period,

current_vop, start_time, end_time, vehicle_id, break_times, cleaning_periods, travel_times, cycli,↪→
997 minimum_cleantime, maximum_cleantime,

max_travel_time_within_bay,
max_travel_time_within_centrum,
max_travel_time_outside_centrum,
constant_within_bay_travel_time,

↪→
↪→
↪→
↪→

998 time_range_check, time_gap_detected, last_vop_end_time,
previous_vop, temporary_skipped_vops, skipped_vops,
i, data, VGRS_data, df_ciss)

↪→
↪→

999 in_cleaning = False
1000 start_time, current_vop = None, None
1001 break
1002 else:
1003 #dus als de loc type taxilane is --> baseer op max aantal polygons binnen een baai van taxilane
1004 if calculate_polygon_distance(intermediate_loc, current_vop, polygon_graph) > polygon_threshold:
1005 too_far_count += 1
1006 if too_far_count >= threshold_count:
1007 print(f"Tussenliggende locatie {intermediate_loc} te ver weg tijdens terugkeer naar {current_vop}.")
1008 end_cleaning_triggered = True
1009
1010 # Einde schoonmaak vanwege te verre tussenliggende punten
1011 end_time = data.iloc[i-1]['timestamp']
1012 (last_vop_end_time, previous_vop, temporary_skipped_vops, skipped_vops, time_gap_detected, i) = decide_if_end_cleaning(snow_period,

current_vop, start_time, end_time, vehicle_id, break_times, cleaning_periods, travel_times, cycli,↪→
1013 minimum_cleantime, maximum_cleantime,

max_travel_time_within_bay,
max_travel_time_within_centrum,
max_travel_time_outside_centrum,
constant_within_bay_travel_time,

↪→
↪→
↪→
↪→

1014 time_range_check, time_gap_detected, last_vop_end_time,
previous_vop, temporary_skipped_vops, skipped_vops,
i, data, VGRS_data, df_ciss)

↪→
↪→

1015
1016 in_cleaning = False
1017 start_time, current_vop = None, None
1018 break
1019 else:
1020 too_far_count = 0
1021
1022 if not end_cleaning_triggered:
1023 i += 1
1024 continue
1025
1026 else:
1027 i += 1
1028 continue
1029
1030 #zorgt ervoor dat de break times alleen gelden als er daarna nog vops worden schoongemaakt.
1031 while break_times and cleaning_periods and break_times[-1]['start_time'] >= cleaning_periods[-1]['start_time']:
1032 print("Laatste break start_time is later dan laatste cleaning_period start_time. Verwijder de laatste break_time:", break_times[-1])
1033 break_times.pop()
1034
1035 travel_times_df = pd.DataFrame(travel_times)
1036 cleaning_periods_df = pd.DataFrame(cleaning_periods)
1037 break_times_df = pd.DataFrame(break_times)
1038 cycli_df = pd.DataFrame(cycli)
1039
1040 return travel_times_df, cleaning_periods_df, break_times_df, cycli_df
1041
1042
1043 # In[ ]:
1044
1045
1046 # SNOW DAYS
1047 all_travel_times = []
1048 all_cleaning_periods = []
1049 all_break_times = []
1050 all_cycli = []
1051
1052 selected_years = [2024, 2025]
1053 df = df_rg
1054 df_ciss = ciss_data_snow
1055 df_VGRS = VGRS_data
1056
1057 df_selected_years = df[df['timestamp'].dt.year.isin(selected_years)]
1058
1059 for start_datum, eind_datum in snow_periods:
1060 if start_datum.year not in selected_years and eind_datum.year not in selected_years:
1061 continue
1062 print(f"Initiele Sneeuwperiode: {start_datum} - {eind_datum}")
1063
1064 #check of de time van snow periods wel gelijk is aan CISS
1065 ciss_data_to_check = df_ciss[
1066 (df_ciss['start_datetime'].dt.date >= start_datum.date()) &
1067 (df_ciss['start_datetime'].dt.date <= eind_datum.date())]
1068
1069 if ciss_data_to_check.empty:
1070 continue
1071 ciss_data_to_check = ciss_data_to_check.sort_values(by='start_datetime').reset_index(drop=True)
1072
1073 #select start and end time based on CISS data
1074 ciss_start_time = ciss_data_to_check.iloc[0]['start_datetime']
1075 ciss_end_time = ciss_data_to_check.iloc[-1]['end_datetime']
1076
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1077 #kies tussen CISS en LHSP
1078 start_time = min(start_datum, ciss_start_time)
1079 end_time = max(eind_datum, ciss_end_time)
1080 snow_period = (start_time, end_time)
1081 print(f"Sneeuwperiode met ciss: {start_time} - {end_time}")
1082
1083 for vehicle_id in df_selected_years['vehicle_registration'].unique():
1084 print(f"Voertuig {vehicle_id}")
1085
1086 #Ciss data
1087 filtered_ciss_data = df_ciss[
1088 (df_ciss['tractor_movement'] == vehicle_id) &
1089 (df_ciss['start_datetime'] >= start_time) &
1090 (df_ciss['end_datetime'] <= end_time)]
1091
1092 if filtered_ciss_data.empty:
1093 print(f" Geen CISS-data voor voertuig {vehicle_id} in deze periode, skipping...")
1094 continue
1095 filtered_ciss_data = filtered_ciss_data.sort_values(by='start_datetime').reset_index(drop=True)
1096
1097 #Casper data
1098 df_filtered = df_selected_years[
1099 (df_selected_years['timestamp'] >= start_time) &
1100 (df_selected_years['timestamp'] <= end_time) &
1101 (df_selected_years['vehicle_registration'] == vehicle_id)]
1102
1103 if df_filtered.empty:
1104 print(f" Voertuig {vehicle_id} heeft geen data in deze periode, skipping...")
1105 continue
1106 df_filtered = df_filtered.sort_values(by=['timestamp']).reset_index(drop=True)
1107 # print(df_filtered[['location', 'timestamp']])
1108
1109 #VGRS-data
1110 VGRS_filtered = df_VGRS[
1111 (df_VGRS['Uitvoering door'] == vehicle_id) &
1112 (df_VGRS['Begin'] >= start_time) &
1113 (df_VGRS['Begin'] <= end_time)]
1114
1115 if VGRS_filtered.empty:
1116 VGRS_filtered = pd.DataFrame()
1117 else:
1118 VGRS_filtered = VGRS_filtered.sort_values(by='Begin').reset_index(drop=True)
1119
1120 travel_times_df, cleaning_periods_df, break_times_df, cycli_df = determine_cleaning_capacity(snow_period, df_filtered, filtered_ciss_data, VGRS_filtered,

vehicle_id,↪→
1121 lookahead_window, minimum_cleantime, maximum_cleantime,max_travel_time_within_bay,

max_travel_time_within_centrum,↪→
1122 max_travel_time_outside_centrum, constant_within_bay_travel_time, time_range_check,

time_gap_threshold, polygon_threshold, polygon_graph)↪→
1123
1124 all_travel_times.append(travel_times_df)
1125 all_cleaning_periods.append(cleaning_periods_df)
1126 all_break_times.append(break_times_df)
1127 all_cycli.append(cycli_df)
1128
1129 #Combineer alle dataframes
1130 final_travel_times = pd.concat(all_travel_times, ignore_index=True)
1131 final_cleaning_periods = pd.concat(all_cleaning_periods, ignore_index=True)
1132 final_break_times = pd.concat(all_break_times, ignore_index=True)
1133 final_cycli = pd.concat(all_cycli, ignore_index=True)
1134
1135
1136
1137 # In[ ]:
1138
1139
1140 get_ipython().system('jupyter nbconvert --to script Radardata_for_overleaf.ipynb')
1141
1142
1143 # In[ ]:
1144
1145
1146
1147

D.2. Simulation model
1 #!/usr/bin/env python
2 # coding: utf-8
3
4 # In[1]:
5
6
7 import os
8 import pandas as pd
9 import numpy as np
10 import matplotlib.pyplot as plt
11 import seaborn as sns
12 import matplotlib.dates as mdates
13 from datetime import timedelta, date, time
14 import math
15 import matplotlib.dates as mdates
16 import matplotlib.gridspec as gridspec
17 from collections import defaultdict
18 import matplotlib.patches as patches
19 from matplotlib.patches import FancyBboxPatch, BoxStyle
20
21
22 # In[ ]:
23
24
25 base_directory = "/Users/laradegeus/Library/Mobile Documents/com~apple~CloudDocs/TIL/THESIS/THESISdata/"
26
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27 file_name1 = 'flight_schedule_08_01_2025.csv'
28 VOP_information_file_name = "VOP_information.xlsx"
29
30 #flight schedule
31 file_path2 = os.path.join(base_directory, file_name1)
32 df_flight_schedule = pd.read_csv(file_path2, sep=",")
33
34 #VOPtypes
35 file_path3_1 = os.path.join(base_directory, VOP_information_file_name)
36 vop_information = pd.read_excel(file_path3_1)
37
38
39 # In[169]:
40
41
42 #make dictionary of VOP types for later use
43 vop_type_dict = vop_information.set_index('VOP')['type'].to_dict()
44 vop_type2_dict = vop_information.set_index('VOP')['type2'].to_dict()
45
46 #make dictionary of VOP location for later use
47 vop_location_dict = dict(zip(vop_information['VOP'], vop_information['location']))
48
49 vop_location2_dict = dict(zip(vop_information['VOP'], vop_information['location2']))
50
51 #make dictionary of VOP location type (Centrum or not) for later use
52 vop_locationtype_dict = dict(zip(vop_information['VOP'], vop_information['locationtype']))
53
54
55 # In[ ]:
56
57
58 df_flight_schedule['DateTime Scheduled'] = pd.to_datetime(df_flight_schedule['DateTime Scheduled']).dt.tz_localize(None)
59 df_flight_schedule['VOP'] = df_flight_schedule['GateRampIDRamp'].str.split('|').str[0]
60 df_flight_schedule['VOP_type'] = df_flight_schedule['VOP'].map(vop_type_dict)
61 df_flight_schedule['location_type'] = df_flight_schedule['VOP'].map(vop_location_dict)
62
63 nan_rows2 = df_flight_schedule[df_flight_schedule.isna().any(axis=1)]
64 nan_df2 = df_flight_schedule[df_flight_schedule.isna().any(axis=1)]
65 df_flight_schedule = df_flight_schedule.dropna(how='any')
66
67
68 # In[ ]:
69
70
71 #kleur for plots
72 donker_blauw = (0.0078, 0.0706, 0.3059) #021259
73 midden_blauw = (0.282, 0.518, 0.894) #4877E4
74 koning_blauw = '#072ac8'
75
76
77 # ## INPUT variabelen
78
79 # In[ ]:
80
81
82 #SITUATION SPECIFIC INPUTS --> determine these based on the upcoming conditions!
83
84 #kies welk scenario: low - middle - high
85 scenario = 'middle'
86
87 #start-end of period of the inbound flights you want to see
88 start_window = pd.to_datetime('2025-01-08 00:00')
89 end_window = pd.to_datetime('2025-01-08 23:59')
90
91 #period of snow
92 sneeuw_perioden = [
93 {'start': '2025-01-08 03:00', 'end': '2025-01-08 11:00'}
94 ]
95
96 #cleaning necessary until
97 stop_cleaning = pd.to_datetime('2025-01-12 23:59') #default
98
99 #intensity of snow, in total acucumulation cm
100 sneeuw_accumulatie = [
101 {'start': '2025-01-08 03:00', 'end': '2025-01-08 05:00', 'total_accumulation': 'low'},
102 {'start': '2025-01-08 05:00', 'end': '2025-01-08 10:00', 'total_accumulation': 'high'},
103 {'start': '2025-01-08 10:00', 'end': '2025-01-08 11:00', 'total_accumulation': 'low'},
104 ]
105
106 #how many teams are active?
107 teams_during_snow = 4
108 extra_after_snow = 2
109
110 #determined runway clearing scenario's during sector briefing
111 determined_runway_scenarios = [
112 {'start': '2025-01-08 03:00', 'end': '2025-01-08 06:00', 'scenario' : 'C'},
113 {'start': '2025-01-08 06:00', 'end': '2025-01-08 07:00', 'scenario' : 'D'},
114 {'start': '2025-01-08 07:00', 'end': '2025-01-08 08:00', 'scenario' : 'E'},
115 {'start': '2025-01-08 08:00', 'end': '2025-01-08 09:00', 'scenario' : 'D'},
116 {'start': '2025-01-08 09:00', 'end': '2025-01-08 10:00', 'scenario' : 'E'},
117 {'start': '2025-01-08 10:00', 'end': '2025-01-08 11:00', 'scenario' : 'D'},
118 ]
119
120 determined_deicing_capacity = [
121 {'start': '2025-01-08 07:00', 'end': '2025-01-08 10:00', 'restricted_deicing_capacity': 12},
122 {'start': '2025-01-08 10:00', 'end': '2025-01-08 11:00', 'restricted_deicing_capacity': 24},
123 {'start': '2025-01-08 11:00', 'end': '2025-01-08 15:00', 'restricted_deicing_capacity': 26},
124 ]
125
126 #beyond runway capacity restrictions, additional restrictions for de-icing or vop cleaning
127 additional_capacity_restrictions = [
128 # {'start': '2025-01-08 06:30', 'end': '2025-01-08 07:00', 'restricted_capacity': 12},
129 {'start': '2025-01-08 10:00', 'end': '2025-01-08 12:00', 'restricted_capacity': 12}
130 ]
131
132 #shifts scheduled
133 first_shift_start = '2025-01-08 02:00'
134
135
136 # In[ ]:
137



D.2. Simulation model 109

138
139 #OPERATIONAL INPUT VARIABLES --> In general, you don't have to adjust these variables
140
141 #time slots of inbound flights
142 TIME_SLOT_MINUTES = 30
143
144 #runway capacity scenarios
145 runway_scenario_map = {
146 'E': 10,
147 'D': 17,
148 'C': 35,
149 'B': 68}
150
151 #clean time of one runway
152 runway_clean_time = 40
153
154 #afhandeltijd van vop --> voordat er weer een nieuw vliegtuig op kan komen
155 afhandeltijd = {
156 'NABO': 50,
157 'WIBO': 75}
158
159 #capacity per type of cleaning --> low, middle, high
160 capacity_data_low= [
161 {'route_type': 'Within bay/platform', 'vop_type': 'NABO', 'snow_accumulation': 'low', 'capacity_per_hour': 7.2},
162 {'route_type': 'Within bay/platform', 'vop_type': 'NABO', 'snow_accumulation': 'high', 'capacity_per_hour': 5.7},
163 {'route_type': 'Within bay/platform', 'vop_type': 'WIBO', 'snow_accumulation': 'low', 'capacity_per_hour': 5.5},
164 {'route_type': 'Within bay/platform', 'vop_type': 'WIBO', 'snow_accumulation': 'high', 'capacity_per_hour': 5.5},
165 {'route_type': 'Within zone', 'vop_type': 'NABO', 'snow_accumulation': 'low', 'capacity_per_hour': 3.3},
166 {'route_type': 'Within zone', 'vop_type': 'NABO', 'snow_accumulation': 'high', 'capacity_per_hour': 3.3},
167 {'route_type': 'Within zone', 'vop_type': 'WIBO', 'snow_accumulation': 'low', 'capacity_per_hour': 3.3},
168 {'route_type': 'Within zone', 'vop_type': 'WIBO', 'snow_accumulation': 'high', 'capacity_per_hour': 3.3},
169 ]
170
171 capacity_data_middle = [
172 {'route_type': 'Within bay/platform', 'vop_type': 'NABO', 'snow_accumulation': 'low', 'capacity_per_hour': 4.9},
173 {'route_type': 'Within bay/platform', 'vop_type': 'NABO', 'snow_accumulation': 'high', 'capacity_per_hour': 3.7},
174 {'route_type': 'Within bay/platform', 'vop_type': 'WIBO', 'snow_accumulation': 'low', 'capacity_per_hour': 3.4},
175 {'route_type': 'Within bay/platform', 'vop_type': 'WIBO', 'snow_accumulation': 'high', 'capacity_per_hour': 3.4},
176 {'route_type': 'Within zone', 'vop_type': 'NABO', 'snow_accumulation': 'low', 'capacity_per_hour': 2.2},
177 {'route_type': 'Within zone', 'vop_type': 'NABO', 'snow_accumulation': 'high', 'capacity_per_hour': 2.2},
178 {'route_type': 'Within zone', 'vop_type': 'WIBO', 'snow_accumulation': 'low', 'capacity_per_hour': 2.2},
179 {'route_type': 'Within zone', 'vop_type': 'WIBO', 'snow_accumulation': 'high', 'capacity_per_hour': 2.2},
180 ]
181
182 capacity_data_high = [
183 {'route_type': 'Within bay/platform', 'vop_type': 'NABO', 'snow_accumulation': 'low', 'capacity_per_hour': 3.2},
184 {'route_type': 'Within bay/platform', 'vop_type': 'NABO', 'snow_accumulation': 'high', 'capacity_per_hour': 1.9},
185 {'route_type': 'Within bay/platform', 'vop_type': 'WIBO', 'snow_accumulation': 'low', 'capacity_per_hour': 2.0},
186 {'route_type': 'Within bay/platform', 'vop_type': 'WIBO', 'snow_accumulation': 'high', 'capacity_per_hour': 2.0},
187 {'route_type': 'Within zone', 'vop_type': 'NABO', 'snow_accumulation': 'low', 'capacity_per_hour': 1.8},
188 {'route_type': 'Within zone', 'vop_type': 'NABO', 'snow_accumulation': 'high', 'capacity_per_hour': 1.8},
189 {'route_type': 'Within zone', 'vop_type': 'WIBO', 'snow_accumulation': 'low', 'capacity_per_hour': 1.8},
190 {'route_type': 'Within zone', 'vop_type': 'WIBO', 'snow_accumulation': 'high', 'capacity_per_hour': 1.8},
191 ]
192
193 capacity_scenarios = {
194 'low': capacity_data_low,
195 'middle': capacity_data_middle,
196 'high': capacity_data_high,
197 }
198
199 #hoeveel routes zijn binnen de baai, en hoeveel van baai naar baai
200 route_type_ratio = 0.58 # % within bay
201
202 #break periods
203 break_duration = 35 #minutes
204 break_after_snow_start = 1800
205 shift_duration = 480 #minutes
206
207
208 # ## CODE ZONDER CLEANED STANDS
209
210 # In[ ]:
211
212
213 #MODEL INPUT
214 df_flight_schedule = df_flight_schedule[
215 (df_flight_schedule['DateTime Scheduled'] >= start_window) &
216 (df_flight_schedule['DateTime Scheduled'] <= end_window)]
217
218 capacity_df = pd.DataFrame(capacity_data)
219
220 time_index = pd.date_range(start=start_window, end=end_window, freq=f'{TIME_SLOT_MINUTES}min')
221 df_snow = pd.DataFrame({'slot': time_index})
222
223 #sneeuw
224 def is_snow(x):
225 for periode in sneeuw_perioden:
226 start = pd.to_datetime(periode['start']).time()
227 end = pd.to_datetime(periode['end']).time()
228 if start <= x.time() < end:
229 return True
230 return False
231 df_snow['snow'] = df_snow['slot'].apply(is_snow)
232 first_snow_slot = df_snow[df_snow['snow'] == True]['slot'].min()
233 last_snow_slot = df_snow[df_snow['snow'] == True]['slot'].max()
234
235 #hoeveel teams
236 df_teams = df_snow.copy()
237 df_teams['n_teams'] = 0
238 df_teams.loc[df_teams['slot'] >= first_snow_slot, 'n_teams'] = teams_during_snow
239
240 for i in range(1, len(df_teams)):
241 if df_teams.loc[i-1, 'snow'] == True and df_teams.loc[i, 'snow'] == False:
242 # vanaf hier extra team
243 df_teams.loc[i:, 'n_teams'] = teams_during_snow + extra_after_snow
244 break
245
246 # break times --> less teams available
247 df_teams['n_teams_available'] = df_teams['n_teams']
248 total_window_minutes = (end_window - start_window).total_seconds() / 60
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249 n_shifts = math.ceil(total_window_minutes / shift_duration)
250 start_shift_times = [pd.Timestamp(first_shift_start) + pd.Timedelta(minutes=i * shift_duration) for i in range(n_shifts)]
251
252 for shift_start_time in start_shift_times:
253 break_start_time = shift_start_time + pd.Timedelta(minutes=break_after_snow_start)
254 teams_at_break_start = df_teams.loc[df_teams['slot'] == break_start_time, 'n_teams'].values
255 if len(teams_at_break_start) > 0:
256 total_break_minutes = teams_at_break_start[0] * break_duration
257 rounded_break_minutes = math.ceil(total_break_minutes / TIME_SLOT_MINUTES) * TIME_SLOT_MINUTES
258 break_end_time = break_start_time + pd.Timedelta(minutes=rounded_break_minutes)
259 mask = (df_teams['slot'] >= break_start_time) & (df_teams['slot'] < break_end_time)
260 df_teams.loc[mask, 'n_teams_available'] -= 1
261 else:
262 total_break_minutes = 0
263
264 # Stop flights in een time slot
265 def round_to_slot(dt, minutes):
266 discard = pd.Timedelta(minutes=dt.minute % minutes,
267 seconds=dt.second,
268 microseconds=dt.microsecond)
269 return dt - discard
270
271 df_flight_schedule['slot'] = df_flight_schedule['DateTime Scheduled'].apply(lambda x: round_to_slot(x, TIME_SLOT_MINUTES))
272
273 df_flight_schedule_snow = pd.merge(df_flight_schedule, df_snow[['slot', 'snow']], on='slot', how='left')
274 df_flight_schedule_snow['needs_cleaning'] = False
275 df_flight_schedule_snow = df_flight_schedule_snow.sort_values(['slot'])
276
277 #--------------------------------------------------------------------------
278
279 #inbound capaciteit aanpassen adhv runway capaciteit
280
281 def assign_capacity_restrictions(df, determined_runway_scenarios, runway_scenario_map, clean_minutes):
282 #runway capacity
283 df['runway_capacity'] = None
284
285 for periode in determined_runway_scenarios:
286 start_dt = pd.to_datetime(periode['start'])
287 end_dt = pd.to_datetime(periode['end'])
288 current_scenario = periode['scenario']
289 runway_capacity = runway_scenario_map[current_scenario]
290 df.loc[(df['slot'] >= start_dt) & (df['slot'] < end_dt), 'runway_capacity'] = runway_capacity
291
292 # Na laatste sneeuwslot: overgang naar scenario B
293 last_scenario = determined_runway_scenarios[-1]['scenario']
294 last_end = pd.to_datetime(determined_runway_scenarios[-1]['end'])
295 current_time = last_end
296
297 scenario_order = ['E', 'D', 'C', 'B']
298 current_index = scenario_order.index(last_scenario)
299
300 # Ga omhoog in de scenario-ladder tot B
301 for scenario in scenario_order[current_index:]:
302 if scenario == 'B':
303 break
304 else:
305 next_time = current_time + pd.Timedelta(minutes=clean_minutes)
306 next_capacity = runway_scenario_map[scenario]
307
308 df.loc[(df['slot'] >= current_time) & (df['slot'] < next_time), 'runway_capacity'] = next_capacity
309 current_time = next_time
310
311 #deicing capacity
312 df['deicing_cap_restriction'] = None
313 for deicing_restriction in determined_deicing_capacity:
314 start_deicing_restriction = pd.to_datetime(deicing_restriction['start'])
315 end_deicing_restriction = pd.to_datetime(deicing_restriction['end'])
316 restricted_deicing_cap = deicing_restriction['restricted_deicing_capacity']
317
318 df.loc[(df['slot'] >= start_deicing_restriction) & (df['slot'] < end_deicing_restriction), 'deicing_cap_restriction'] = restricted_deicing_cap
319
320 #additional restricted capacity --> voor vops
321 df['additional_cap_restriction'] = None
322 for restriction in additional_capacity_restrictions:
323 start_restriction = pd.to_datetime(restriction['start'])
324 end_restriction = pd.to_datetime(restriction['end'])
325 restricted_cap = restriction['restricted_capacity']
326
327 df.loc[(df['slot'] >= start_restriction) & (df['slot'] < end_restriction), 'additional_cap_restriction'] = restricted_cap
328 return df
329
330
331 def limit_flights_by_runway_capacity(df):
332 df['keep'] = True
333 removed_flights = []
334 removed_df = pd.DataFrame(columns=df.columns.drop('keep'))
335
336 for slot, group in df.groupby('slot'):
337 if pd.isna(group['runway_capacity'].iloc[0]) and pd.isna(group['deicing_cap_restriction'].iloc[0]) and pd.isna(group['additional_cap_restriction'].iloc[0]):
338 continue # geen beperking
339
340 runway_cap = group['runway_capacity'].dropna().iloc[0] if not group['runway_capacity'].dropna().empty else None
341 deicing_cap = group['deicing_cap_restriction'].dropna().iloc[0] if not group['deicing_cap_restriction'].dropna().empty else None
342 additional_cap = group['additional_cap_restriction'].dropna().iloc[0] if not group['additional_cap_restriction'].dropna().empty else None
343
344 # Combineer beperkingen
345 all_caps = [c for c in [runway_cap, deicing_cap, additional_cap] if c is not None]
346 adjusted_cap = min(all_caps) if all_caps else None
347 df.loc[df['slot'] == slot, 'adjusted_total_capacity'] = adjusted_cap
348
349 if adjusted_cap is None:
350 continue
351
352 #allowed capacity, rekening houdend met oneven getallen
353 hourly_capacity = int(adjusted_cap)
354 slots_per_hour = int(60 / TIME_SLOT_MINUTES)
355 base = hourly_capacity // slots_per_hour
356 extra = hourly_capacity % slots_per_hour # vaak 0 of 1
357
358 slot_minute = pd.to_datetime(slot).minute
359 slot_index_in_hour = slot_minute // TIME_SLOT_MINUTES
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360
361 allowed = base + (1 if slot_index_in_hour < extra else 0)
362 df.loc[df['slot'] == slot, 'allowed_per_slot'] = allowed
363
364 if len(group) <= allowed:
365 continue
366
367 # Te veel? → schrappen volgens 95% NABO, 5% WIBO
368 n_remove = len(group) - allowed
369 nabo = group[group['VOP_type'] == 'NABO']
370 wibo = group[group['VOP_type'] == 'WIBO']
371
372 n_nabo = math.ceil(n_remove * 0.95)
373
374 drop_indices = []
375
376 # Verwijder eerst zoveel mogelijk NABO
377 if len(nabo) >= n_nabo:
378 drop_indices.extend(nabo.head(n_nabo).index.tolist())
379 else:
380 drop_indices.extend(nabo.index.tolist())
381
382 # Daarna eventueel WIBO
383 remaining_remove = n_remove - len(drop_indices)
384 if remaining_remove > 0 and len(wibo) >= remaining_remove:
385 drop_indices.extend(wibo.head(remaining_remove).index.tolist())
386 elif remaining_remove > 0:
387 drop_indices.extend(wibo.index.tolist())
388
389 df.loc[drop_indices, 'keep'] = False
390 removed_flights.extend(drop_indices)
391 removed_df = df.loc[removed_flights].drop(columns='keep')
392
393 return df[df['keep']].drop(columns='keep'), removed_df
394
395 df_flight_schedule_adjusted = assign_capacity_restrictions(df_flight_schedule_snow, determined_runway_scenarios, runway_scenario_map, runway_clean_time)
396 adjusted_flight_schedule, removed_flights = limit_flights_by_runway_capacity(df_flight_schedule_adjusted)
397 adjusted_flight_schedule = adjusted_flight_schedule.sort_values(by='DateTime Scheduled')
398
399 #--------------------------------------------------------------------------
400
401 # Voor elke VOP apart bijhouden
402 already_cleaned = set()
403 last_occupied_time = {}
404 reassigned_gates = []
405
406 #check of VOP binnenkort nodig is
407 def is_vop_reserved_soon(vop, current_time, afhandeltijd_vop, df):
408 end_time = current_time + afhandeltijd_vop
409 future_flights = df[(df['DateTime Scheduled'] > current_time) &
410 (df['DateTime Scheduled'] <= end_time) &
411 (df['VOP'] == vop)]
412 return not future_flights.empty
413
414 def is_valid_gate(vop_schengen, flight_schengen):
415 if flight_schengen == 'Schengen':
416 return vop_schengen in ['Schengen', 'Beide', 'Niet van toepassing']
417 else: # Non-Schengen
418 return vop_schengen in ['Non-Schengen', 'Beide', 'Niet van toepassing']
419
420 def to_minutes(t):
421 return t.hour * 60 + t.minute
422
423 for idx, row in adjusted_flight_schedule.iterrows():
424 vop = row['VOP']
425 slot = row['slot']
426 snow = row['snow']
427 vop_type = row['VOP_type']
428 afhandeltijd_vop = pd.Timedelta(minutes=afhandeltijd[vop_type])
429 flight_schengen_status = vop_type2_dict.get(vop)
430
431 if slot < first_snow_slot:
432 adjusted_flight_schedule.at[idx, 'needs_cleaning'] = False
433 continue
434
435 if slot >= stop_cleaning:
436 adjusted_flight_schedule.at[idx, 'needs_cleaning'] = False
437 continue
438
439 if snow and slot != last_snow_slot:
440 # reset schoonstatus
441 already_cleaned.discard(vop)
442 adjusted_flight_schedule.at[idx, 'needs_cleaning'] = True
443
444 elif vop in already_cleaned:
445 #vop is al schoon
446 last_occupied_time[vop] = slot
447 else:
448 #niet schoon dus check voor betere vop optie
449 candidate_vops = [c for c in already_cleaned if
450 vop_type_dict.get(c) == vop_type and
451 is_valid_gate(vop_type2_dict.get(c), flight_schengen_status) and
452 to_minutes((last_occupied_time.get(c) + afhandeltijd_vop).time())<= to_minutes(slot.time()) and
453 not is_vop_reserved_soon(c, slot, afhandeltijd_vop, adjusted_flight_schedule)]
454 if candidate_vops:
455 selected_vop = candidate_vops[0] # je kunt hier ook op earliest available sorteren
456 adjusted_flight_schedule.at[idx, 'VOP'] = selected_vop
457 adjusted_flight_schedule.at[idx, 'needs_cleaning'] = False
458 last_occupied_time[selected_vop] = slot
459 reassigned_gates.append((idx, vop, selected_vop, slot))
460 else:
461 adjusted_flight_schedule.at[idx, 'needs_cleaning'] = True
462 already_cleaned.add(vop)
463 last_occupied_time[vop] = slot
464
465 #demand per slot per VOP-type
466 df_cleaning = adjusted_flight_schedule[adjusted_flight_schedule['needs_cleaning'] == True]
467
468 all_slots = pd.DataFrame({'slot': time_index}).assign(key=1).merge(
469 pd.DataFrame({'VOP_type': ['WIBO', 'NABO'], 'key': 1}),
470 on='key').drop(columns='key')
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471
472 df_cleaning_demand = (
473 df_cleaning
474 .groupby(['slot', 'VOP_type'])
475 .agg(
476 flight_list=('Main Flt Nr', list),
477 count=('Main Flt Nr', 'count'),
478 )
479 .reset_index()
480 )
481
482 df_cleaning_demand = pd.merge(
483 all_slots,
484 df_cleaning_demand,
485 on=['slot', 'VOP_type'],
486 how='left'
487 )
488
489 df_cleaning_demand['flight_list'] = df_cleaning_demand['flight_list'].apply(lambda x: x if isinstance(x, list) else [])
490 df_cleaning_demand['count'] = df_cleaning_demand['count'].fillna(0).astype(int)
491
492 df_cleaning_demand = pd.merge(df_cleaning_demand, df_snow[['slot', 'snow']], on='slot', how='left')
493 df_cleaning_demand = pd.merge(df_cleaning_demand, df_teams[['slot', 'n_teams_available']], on='slot', how='left')
494
495 #add snow accumulation
496 df_accumulation = pd.DataFrame(sneeuw_accumulatie)
497 df_accumulation['start'] = pd.to_datetime(df_accumulation['start'])
498 df_accumulation['end'] = pd.to_datetime(df_accumulation['end'])
499
500 df_cleaning_demand['snow_accumulation'] = None
501 for _, row in df_accumulation.iterrows():
502 mask = (df_cleaning_demand['slot'] >= row['start']) & (df_cleaning_demand['slot'] < row['end'])
503 df_cleaning_demand.loc[mask, 'snow_accumulation'] = row['total_accumulation']
504 df_cleaning_demand['snow_accumulation'] = df_cleaning_demand['snow_accumulation'].fillna('low')
505
506 #--------------------------------------------------------------------------
507 def custom_round(val):
508 frac = val - math.floor(val)
509 if frac < 0.4:
510 return math.floor(val)
511 else:
512 return math.ceil(val)
513
514 # CAPACITY, CLEANED VOPS & QUEUE
515 def get_hourly_cap(vop_type, snow_accumulation, count):
516 cap_within_bay = capacity_df[
517 (capacity_df['vop_type'] == vop_type) &
518 (capacity_df['snow_accumulation'] == snow_accumulation) &
519 (capacity_df['route_type'] == 'Within bay/platform')
520 ]['capacity_per_hour'].values
521
522 cap_cross_bays = capacity_df[
523 (capacity_df['vop_type'] == vop_type) &
524 (capacity_df['snow_accumulation'] == snow_accumulation) &
525 (capacity_df['route_type'] == 'Within zone')
526 ]['capacity_per_hour'].values
527
528 if len(cap_within_bay) == 0 or len(cap_cross_bays) == 0:
529 print(f"� Geen match voor {vop_type}, {snow_accumulation}")
530 return 0
531
532 ratio = 1.0 if count == 0 else route_type_ratio
533
534 return ratio * cap_within_bay[0] + (1-ratio) * cap_cross_bays[0]
535
536
537 def clean_future_slots(df, slot, vop_type, remaining_capacity):
538 cleaned_list = {'WIBO': [], 'NABO': []}
539 other_type = 'WIBO' if vop_type == 'NABO' else 'NABO'
540
541 next_slots = sorted(df['slot'].unique())
542 current_index = next_slots.index(slot)
543 next_index = current_index + 1
544
545 while remaining_capacity > 0.01 and next_index < len(next_slots):
546 next_slot = next_slots[next_index]
547
548 #kijk of er nog VOPs van hetzelfde type zijn
549 match_main = (df['slot'] == next_slot) & (df['VOP_type'] == vop_type)
550 if match_main.any():
551 idx_main = df.loc[match_main].index[0]
552 flight_list_main = df.at[idx_main, 'adjusted_flight_list']
553
554 if flight_list_main:
555 clean_now = min(remaining_capacity, len(flight_list_main))
556 clean_flights = custom_round(clean_now)
557 cleaned_list[vop_type] += flight_list_main[:clean_flights]
558 df.at[idx_main, 'adjusted_flight_list'] = flight_list_main[clean_flights:]
559 remaining_capacity -= clean_now
560
561 if remaining_capacity > 0.01:
562 #probeer andere type in hetzelfde slot
563 match_other = (df['slot'] == next_slot) & (df['VOP_type'] == other_type)
564 if match_other.any():
565 idx_other = df.loc[match_other].index[0]
566 flight_list_other = df.at[idx_other, 'adjusted_flight_list']
567
568 if flight_list_other:
569 clean_now = min(remaining_capacity, len(flight_list_other))
570 clean_flights = custom_round(clean_now)
571 cleaned_list[other_type] += flight_list_other[:clean_flights]
572 df.at[idx_other, 'adjusted_flight_list'] = flight_list_other[clean_flights:]
573 remaining_capacity -= clean_now
574
575 next_index += 1
576
577 return cleaned_list
578
579 def dynamic_weighted_cleaning(slot, slot_df, df, queue_per_type, queuelist_per_type, slack_capacity_per_type):
580 results = []
581 VOP_TYPES = ['WIBO','NABO']
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582
583 # Voeg queue toe
584 slot_df['queue_in'] = slot_df['VOP_type'].map(queue_per_type)
585 slot_df['total_demand'] = slot_df.apply(lambda row: len(row['adjusted_flight_list']) + len(queuelist_per_type[row['VOP_type']]), axis=1)
586 total_demand = slot_df['total_demand'].sum()
587 n_teams = slot_df['n_teams_available'].iloc[0]
588
589 if slot >= stop_cleaning:
590 total_demand = 0
591
592 if total_demand > 0:
593 #verplaats slack als nodig
594 demand_per_type = slot_df.groupby('VOP_type')['total_demand'].sum().to_dict()
595 for vop_type, slack in list(slack_capacity_per_type.items()):
596 if demand_per_type.get(vop_type, 0) == 0 and slack != 0:
597 other = 'WIBO' if vop_type == 'NABO' else 'NABO'
598 # verplaats slack
599 slack_capacity_per_type[other] += slack
600 slack_capacity_per_type[vop_type] = 0
601
602 # Bereken bijdrage aan gewogen capaciteit
603 slot_df['cap_contrib'] = slot_df.apply(
604 lambda row: get_hourly_cap(row['VOP_type'], row['snow_accumulation'], row['total_demand']) * row['total_demand'], axis=1)
605 total_cap_contrib = slot_df['cap_contrib'].sum()
606 weighted_avg_cap_per_team = total_cap_contrib / total_demand
607 total_capacity = (weighted_avg_cap_per_team / (60 / TIME_SLOT_MINUTES)) * n_teams
608
609 cap_for_type = {}
610 initial_capacity = {}
611 slack_capacity = {}
612 for _, row in slot_df.iterrows():
613 vop_type = row['VOP_type']
614 demand_share = row['total_demand'] / total_demand
615 capacity_for_type = demand_share * total_capacity
616 initial_capacity[vop_type] = capacity_for_type
617 cap_for_type[vop_type] = capacity_for_type + slack_capacity_per_type.get(vop_type, 0.0)
618 slack_capacity[vop_type] = cap_for_type[vop_type]
619 slack_capacity_per_type[vop_type] = 0.0
620
621 cleaned_queue_count = dict.fromkeys(VOP_TYPES, 0)
622 cleaned_queue_list = {vop_type: [] for vop_type in VOP_TYPES}
623
624 cleaned_cross_count = {}
625 cleaned_cross_list = {}
626
627 #eigen queue
628 for vop_type in VOP_TYPES:
629 q = queuelist_per_type[vop_type]
630 n = custom_round(min(cap_for_type[vop_type], len(q)))
631 cleaned_queue_count[vop_type] = n
632 cleaned_queue_list[vop_type] = q[:n]
633 cap_for_type[vop_type] -= n
634 queuelist_per_type[vop_type] = q[n:]
635
636 # cross‐type queue cleanup
637 for vop_type in VOP_TYPES:
638 other = 'NABO' if vop_type=='WIBO' else 'WIBO'
639 q_other = queuelist_per_type[other]
640 if cap_for_type[vop_type] > 0 and len(q_other)>0:
641 n2 = custom_round(min(cap_for_type[vop_type], len(q_other)))
642 cleaned_cross_count[(vop_type, other)] = n2
643 cleaned_cross_list[(vop_type,other)] = q_other[:n2]
644 cap_for_type[vop_type] -= n2
645 queuelist_per_type[other] = q_other[n2:]
646 else:
647 cleaned_cross_count[(vop_type,other)] = 0
648 cleaned_cross_list[(vop_type,other)] = []
649
650 #na queue
651 for _, row in slot_df.iterrows():
652
653 vop_type = row['VOP_type']
654 other = 'NABO' if vop_type =='WIBO' else 'WIBO'
655 cleaned_from_queue = cleaned_queue_list[vop_type]
656 cleaned_from_cross = cleaned_cross_list[(vop_type,other)]
657
658 remaining_capacity = cap_for_type[vop_type]
659 adjusted_flight_list = list(row['adjusted_flight_list'])
660 cleaned_from_currentflights = []
661 queue_new = []
662
663 # clean huidige vluchten met wat er nog over is
664 if remaining_capacity > 0 and adjusted_flight_list:
665 n_clean_from_currentflights = custom_round(min(remaining_capacity, len(adjusted_flight_list)))
666 cleaned_from_currentflights = adjusted_flight_list[:n_clean_from_currentflights]
667 queue_new = adjusted_flight_list[n_clean_from_currentflights:]
668 remaining_capacity -= n_clean_from_currentflights
669 else:
670 queue_new = adjusted_flight_list
671
672 extra_cleaned_list = []
673 other_extra_cleaned_list = []
674 if remaining_capacity > 0 and not row['snow']:
675 additional_cleaned_list = clean_future_slots(df, slot, vop_type, remaining_capacity)
676 extra_cleaned_list = additional_cleaned_list[vop_type]
677 other_extra_cleaned_list = additional_cleaned_list[other]
678 slack = remaining_capacity - len(extra_cleaned_list) - len(other_extra_cleaned_list)
679 if len(other_extra_cleaned_list) > 0 :
680 slack_capacity_per_type[other] += slack
681 else:
682 slack_capacity_per_type[vop_type] += slack
683 elif remaining_capacity <= 0.4:
684 # capaciteit volledig gebruikt: slack = init-cap gebruikt
685 used_capacity = (
686 len(cleaned_from_queue) +
687 len(cleaned_from_cross) +
688 len(cleaned_from_currentflights))
689 slack_capacity_per_type[vop_type] += (slack_capacity[vop_type] - used_capacity)
690
691 else:
692 #sneeuwt, en er is nog capacity, dat wordt geen slack
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693
694 pass
695
696 # bouw de totale cleaned_list en queue_list
697 cleaned_list = cleaned_from_queue + cleaned_from_currentflights
698 total_cleaned = (len(cleaned_from_queue)
699 + len(cleaned_from_currentflights)
700 + len(extra_cleaned_list))
701 total_queue = queuelist_per_type[vop_type] + queue_new
702
703 results.append({
704 'slot': slot,
705 'VOP_type': vop_type,
706 'queue_in': row['queue_in'],
707 'total_demand': row['total_demand'],
708 'capacity': initial_capacity[vop_type],
709 'capacity_slack': slack_capacity[vop_type],
710 'cleaned_count': len(cleaned_list),
711 'cleaned_list': cleaned_list,
712 'other_cleaned_queue_count': len(cleaned_from_cross),
713 'other_cleaned_queue': cleaned_from_cross,
714 'extra_cleaned_list' : extra_cleaned_list,
715 'other_voptypes_cleaned_list': other_extra_cleaned_list,
716 'total_cleaned': total_cleaned,
717 'queue_list': total_queue,
718 'queue_out': len(total_queue),
719 'flight_list': row['flight_list'],
720 'adjusted_flight_list': adjusted_flight_list,
721 'active teams': n_teams,
722 'snow': row['snow'],
723 'snow_accumulation': row['snow_accumulation']
724 })
725
726 # Update queue voor volgende slot
727 queue_per_type[vop_type] = len(total_queue)
728 queuelist_per_type[vop_type] = total_queue
729
730 else:
731 # total_demand == 0 → kijk naar future demand
732 future_slots = df[df['slot'] > slot]
733 future_demand = future_slots.groupby('slot')['adjusted_flight_list'].apply(lambda lists: sum(len(lst) for lst in lists))
734 future_slots_with_demand = future_demand[future_demand > 0]
735
736 if not future_slots_with_demand.empty:
737 # Er is nog toekomstige vraag
738 next_slot = future_slots_with_demand.index[0]
739 next_slot_df = df[df['slot'] == next_slot].copy()
740 next_slot_df['total_demand'] = len(next_slot_df['adjusted_flight_list'])
741 total_demand_next = next_slot_df['total_demand'].sum()
742
743 next_slot_df['cap_contrib'] = next_slot_df.apply(
744 lambda row: get_hourly_cap(row['VOP_type'], row['snow_accumulation'], row['total_demand']) * row['total_demand'], axis=1)
745 total_cap_contrib = next_slot_df['cap_contrib'].sum()
746
747 weighted_avg_cap_per_team = total_cap_contrib / total_demand_next
748 total_capacity = (weighted_avg_cap_per_team / (60 / TIME_SLOT_MINUTES)) * n_teams
749
750 demand_per_type = next_slot_df.groupby('VOP_type')['total_demand'].sum().to_dict()
751 for vop_type, slack in list(slack_capacity_per_type.items()):
752 if demand_per_type.get(vop_type, 0) == 0 and slack != 0:
753 other = 'WIBO' if vop_type == 'NABO' else 'NABO'
754 # verplaats slack
755 slack_capacity_per_type[other] += slack
756 slack_capacity_per_type[vop_type] = 0
757
758 # En dan capaciteit verdelen volgens de verhouding in de volgende slot
759 for idx, row in slot_df.iterrows():
760 vop_type = row['VOP_type']
761 other_type = 'WIBO' if vop_type == 'NABO' else 'NABO'
762 adjusted_flight_list = row['adjusted_flight_list']
763 queue_list = queuelist_per_type[row['VOP_type']]
764
765 demand_share = next_slot_df[next_slot_df['VOP_type'] == vop_type]['total_demand'].sum() / total_demand_next
766 capacity_for_type = demand_share * total_capacity
767 # print(slack_capacity_per_type[vop_type])
768 cap_for_type = capacity_for_type + slack_capacity_per_type.get(vop_type, 0.0)
769 slack_capacity_per_type[vop_type] = 0.0
770
771 total_cleaned = 0
772 extra_cleaned_list = []
773 other_extra_cleaned_list = []
774 remaining_capacity = cap_for_type
775
776 if remaining_capacity > 0 and not row['snow']:
777 additional_cleaned_list = clean_future_slots(df, slot, vop_type, remaining_capacity)
778 extra_cleaned_list = additional_cleaned_list[vop_type]
779 other_extra_cleaned_list = additional_cleaned_list[other_type]
780
781 #slack
782 slack = remaining_capacity - len(extra_cleaned_list) - len(other_extra_cleaned_list)
783 if len(other_extra_cleaned_list) > 0:
784 slack_capacity_per_type[other_type] += slack
785 else:
786 slack_capacity_per_type[vop_type] += slack
787
788 #bouw de totale cleaned_list en queue_list
789 total_cleaned = len(extra_cleaned_list) + len(other_extra_cleaned_list)
790 total_queue = []
791
792 results.append({
793 'slot': slot,
794 'VOP_type': vop_type,
795 'queue_in': row['queue_in'],
796 'total_demand': row['total_demand'],
797 'capacity': capacity_for_type,
798 'capacity_slack': cap_for_type,
799 'cleaned_count': 0,
800 'cleaned_list': [],
801 'other_cleaned_queue_count': 0,
802 'other_cleaned_queue': [],
803 'extra_cleaned_list' : extra_cleaned_list,



D.2. Simulation model 115

804 'other_voptypes_cleaned_list': other_extra_cleaned_list,
805 'total_cleaned': total_cleaned,
806 'queue_list': total_queue,
807 'queue_out': len(total_queue),
808 'flight_list': row['flight_list'],
809 'adjusted_flight_list': adjusted_flight_list,
810 'active teams': n_teams,
811 'snow': row['snow'],
812 'snow_accumulation': row['snow_accumulation']
813 })
814
815 # Update queue voor volgende slot
816 queue_per_type[vop_type] = len(total_queue)
817 queuelist_per_type[vop_type] = total_queue
818
819 else:
820 # total_demand == 0: fallback logic for no demand
821 for _, row in slot_df.iterrows():
822 vop_type = row['VOP_type']
823 slack_capacity_per_type[vop_type] = 0.0
824 results.append({
825 'slot': slot,
826 'VOP_type': vop_type,
827 'queue_in': queue_per_type[vop_type],
828 'total_demand': 0,
829 'capacity': 0,
830 'capacity_slack': 0,
831 'cleaned_count': 0,
832 'cleaned_list': [],
833 'other_cleaned_queue_count': 0,
834 'other_cleaned_queue': [],
835 'extra_cleaned_list': [],
836 'other_voptypes_cleaned_list': [],
837 'total_cleaned': 0,
838 'queue_list': [],
839 'queue_out': 0,
840 'flight_list': [],
841 'adjusted_flight_list': [],
842 'active teams': n_teams,
843 'snow': row['snow'],
844 'snow_accumulation': row['snow_accumulation']
845 })
846
847 queue_per_type[vop_type] = 0
848 queuelist_per_type[vop_type] = []
849
850 return results, df, queue_per_type, queuelist_per_type, slack_capacity_per_type
851
852
853 # #--------------------------------------------------------------------------
854
855 results = []
856 queue_per_type = {'WIBO': 0, 'NABO': 0}
857 queuelist_per_type = {'WIBO': [], 'NABO': []}
858 slack_capacity_per_type = {'WIBO': 0.0, 'NABO': 0.0}
859 df = df_cleaning_demand.copy()
860 df['adjusted_count'] = df['count']
861 df['adjusted_flight_list'] = df['flight_list']
862
863 for slot in sorted(df['slot'].unique()):
864 slot_df = df[df['slot'] == slot].copy()
865 results_per_slot, df, queue_per_type, queuelist_per_type, slack_capacity_per_type = dynamic_weighted_cleaning(slot, slot_df, df, queue_per_type,

queuelist_per_type, slack_capacity_per_type)↪→
866 results.extend(results_per_slot)
867
868 df_dynamic_cleaning = pd.DataFrame(results)
869 df_dynamic_cleaning['other_voptypes_cleaned_list'] = df_dynamic_cleaning['other_voptypes_cleaned_list'].apply(lambda x: x if isinstance(x, list) else [])
870 df_dynamic_cleaning['queue_length'] = df_dynamic_cleaning['queue_list'].apply(len)
871
872
873 # ����������MODEL OUTPUT��������������������������������������������
874
875 bar_width = TIME_SLOT_MINUTES / 1440 # bijv. 30 / 1440 = 0.02083
876
877 color1 = koning_blauw
878 color2 = midden_blauw
879 queue_color = 'white'
880
881 def get_color(val):
882 if val == 0:
883 return '#e0e0e0'
884 elif val <= 3:
885 return '#ffcccc'
886 elif val <= 6:
887 return '#ff9999'
888 else:
889 return '#ff6666'
890
891 effective_cleaned_dict = defaultdict(float)
892
893 for _, row in df_dynamic_cleaning.iterrows():
894 slot = row['slot']
895 own_type = row['VOP_type']
896 other_type = 'WIBO' if own_type == 'NABO' else 'NABO'
897
898 effective_cleaned_dict[(slot, own_type)] += row['total_cleaned']
899 effective_cleaned_dict[(slot, other_type)] += len(row['other_voptypes_cleaned_list']) + row['other_cleaned_queue_count']
900
901 # Maak een nieuw DataFrame van de dictionary
902 df_effective_cleaned = pd.DataFrame([
903 {'slot': slot, 'VOP_type': vop_type, 'effective_cleaned': cleaned}
904 for (slot, vop_type), cleaned in effective_cleaned_dict.items()])
905
906 cleaned_pivot = df_effective_cleaned.pivot(index='slot', columns='VOP_type', values='effective_cleaned').fillna(0)
907 queue_pivot = df_dynamic_cleaning.pivot(index='slot', columns='VOP_type', values='queue_length').fillna(0)
908 capacity_per_slot = df_dynamic_cleaning.groupby('slot')['capacity_slack'].sum()
909
910 queue_total = df_dynamic_cleaning.groupby('slot')['queue_length'].sum()
911 all_slots = queue_total.index
912
913 cleaned_pivot = cleaned_pivot.reindex(all_slots, fill_value=0)
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914 queue_pivot = queue_pivot.reindex(all_slots, fill_value=0)
915 capacity_per_slot = capacity_per_slot.reindex(all_slots, fill_value=0)
916
917 # ��� Figure en subplots ����������������������������������������
918 fig = plt.figure(figsize=(22, 9))
919 gs = gridspec.GridSpec(2, 2, width_ratios=[6, 1], height_ratios=[3, 0.2], wspace=0.05, hspace=0.1)
920
921 ax1 = fig.add_subplot(gs[0, 0]) # barplot
922 ax2 = fig.add_subplot(gs[1, 0], sharex=ax1) # heatmap
923 ax_kpi = fig.add_subplot(gs[0,1]) # KPI-dashboard
924
925
926 # ��� Barplots (boven) ������������������������������������������
927 ax1.bar(all_slots, cleaned_pivot['WIBO'], width=bar_width, color=color1,
928 label='WIBO cleaned', edgecolor='white', linewidth=0.5, align='edge')
929
930 ax1.bar(all_slots, cleaned_pivot['NABO'], width=bar_width, color=color2,
931 bottom=cleaned_pivot['WIBO'], label='NABO cleaned', edgecolor='white', linewidth=0.5, align='edge')
932
933 queue_wibo_bottom = cleaned_pivot['WIBO'] + cleaned_pivot['NABO']
934 ax1.bar(all_slots, queue_pivot['WIBO'], width=bar_width, color=queue_color,
935 bottom=queue_wibo_bottom, hatch='//', edgecolor=color1, label='WIBO queue', linewidth=0.5, align='edge')
936
937 queue_nabo_bottom = queue_wibo_bottom + queue_pivot['WIBO']
938 ax1.bar(all_slots, queue_pivot['NABO'], width=bar_width, color=queue_color,
939 bottom=queue_nabo_bottom, hatch='//', edgecolor=color2, label='NABO queue', linewidth=0.5, align='edge')
940
941 # Capaciteitlijn (nu juist uitgelijnd)
942 ax1.step(all_slots, capacity_per_slot.values, label='Total capacity',
943 color=donker_blauw, linewidth=2, where='post')
944
945 # Sneeuwperiode(s)
946 for i, periode in enumerate(sneeuw_perioden):
947 ax1.axvspan(pd.to_datetime(periode['start']),
948 pd.to_datetime(periode['end']),
949 color='lightblue', alpha=0.3,
950 label='Snow period' if i == 0 else None)
951 from matplotlib.ticker import MaxNLocator
952 total_heights = (
953 cleaned_pivot[['WIBO','NABO']].sum(axis=1)
954 + queue_pivot[['WIBO','NABO']].sum(axis=1))
955
956
957 y_max = math.ceil(total_heights.max()) + 1
958 ax1.set_ylim(0, y_max)
959 ax1.yaxis.set_major_locator(MaxNLocator(integer=True))
960
961 ax1.set_ylabel('Number of aircraft stands')
962 ax1.legend()
963 ax1.grid(axis='y')
964
965 ax1.tick_params(
966 axis='x',
967 which='both',
968 bottom=False,
969 labelbottom=False
970 )
971
972 # ��� Heatmap: Queue �������������������������������������������
973
974 rounded_queue = queue_pivot[['NABO', 'WIBO']].applymap(custom_round)
975 n_timeslots_with_queue = (rounded_queue.sum(axis=1) > 0).sum()
976 max_total_queue = rounded_queue.sum(axis=1).max()
977
978 for slot, row in queue_pivot.iterrows():
979 x = mdates.date2num(slot)
980
981 nabo_val = row['NABO']
982 wibo_val = row['WIBO']
983
984 # Bovenste helft: NABO
985 rect_nabo = patches.Rectangle((x, 0.5), bar_width, 0.5, color=get_color(nabo_val), ec='white')
986 ax2.add_patch(rect_nabo)
987 ax2.text(x + bar_width / 2, 0.75, str(int(nabo_val)) if nabo_val > 0 else '-',
988 ha='center', va='center', fontsize=9)
989
990 # Onderste helft: WIBO
991 rect_wibo = patches.Rectangle((x, 0), bar_width, 0.5, color=get_color(wibo_val), ec='white')
992 ax2.add_patch(rect_wibo)
993 ax2.text(x + bar_width / 2, 0.25, str(int(wibo_val)) if wibo_val > 0 else '-',
994 ha='center', va='center', fontsize=9)
995
996 for slot, row in queue_pivot.iterrows():
997 x = mdates.date2num(slot)
998
999 nabo_val = row['NABO']
1000 val_nabo_rounded = custom_round(nabo_val)
1001 wibo_val = row['WIBO']
1002 val_wibo_rounded = custom_round(wibo_val)
1003
1004 # Bovenste helft: NABO
1005 rect_nabo = patches.Rectangle((x, 0.5), bar_width, 0.5, color=get_color(nabo_val), ec='white')
1006 ax2.add_patch(rect_nabo)
1007 ax2.text(x + bar_width / 2, 0.75, str(int(val_nabo_rounded)) if val_nabo_rounded > 0 else '-',
1008 ha='center', va='center', fontsize=9)
1009
1010 # Onderste helft: WIBO
1011 rect_wibo = patches.Rectangle((x, 0), bar_width, 0.5, color=get_color(wibo_val), ec='white')
1012 ax2.add_patch(rect_wibo)
1013 ax2.text(x + bar_width / 2, 0.25, str(int(val_wibo_rounded)) if val_wibo_rounded > 0 else '-',
1014 ha='center', va='center', fontsize=9)
1015
1016 ax2.xaxis_date()
1017 ax2.xaxis.set_major_locator(mdates.MinuteLocator(interval=30)) # Ticks op elk half uur
1018 ax2.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M'))
1019
1020 ax2.set_xticks([mdates.date2num(t) for t in all_slots]) # ticks exact op slot-begin
1021 ax2.set_xticklabels([t.strftime('%H:%M') for t in all_slots]) # eventueel labels
1022
1023 ax2.set_ylim(0, 1)
1024 ax2.set_yticks([0.25, 0.75])
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1025 ax2.set_yticklabels(['Wibo', 'Nabo'], fontsize=10)
1026
1027 for label in ax2.get_xticklabels():
1028 label.set_rotation(45)
1029 label.set_ha('right')
1030
1031 # ��� KPI Dashboard ������������������������������������������������
1032
1033 #1. max queue in a slot
1034 max_queue = queue_total.max()
1035
1036 #2. max slots that one aircraft is in queue
1037 from collections import Counter
1038 all_queued = [flight
1039 for lst in df_dynamic_cleaning['queue_list']
1040 for flight in lst]
1041 cnt = Counter(all_queued)
1042 flight_max, n_slots_max = cnt.most_common(1)[0]
1043
1044 #3. Total slots with queue
1045 num_slots_with_queue = (queue_total > 0).sum()
1046
1047 #4. total aircraft that has been in queue
1048 all_queued_per_type = defaultdict(list)
1049 for _, row in df_dynamic_cleaning.iterrows():
1050 vop = row['VOP_type']
1051 for flight in row['queue_list']:
1052 all_queued_per_type[vop].append(flight)
1053
1054 unique_in_queue = {
1055 vop: len(set(flights))
1056 for vop, flights in all_queued_per_type.items()}
1057
1058 unique_wibo = unique_in_queue.get('WIBO', 0)
1059 unique_nabo = unique_in_queue.get('NABO', 0)
1060
1061 #5. How many flights wait more than 30 minutes
1062 num_waited_multiple = sum(1 for _, c in cnt.items() if c > 1)
1063 icon = "�"
1064 kpi_text = [
1065 # ("Queued aircraft:")
1066 ("Narrow body", f"{unique_nabo} "),
1067 ("Wide body", f"{unique_wibo}"),
1068 ("Max queue slot", f"{max_queue} "),
1069 ("Max waiting time", f"{n_slots_max} slots"),
1070 (">1 slot in queue", f"{num_waited_multiple}"),
1071 ]
1072
1073 pad_x = 0.04
1074 pad_y = 0.04
1075 round_style = BoxStyle.Round(pad=0.05, rounding_size=0.2)
1076
1077 rect = FancyBboxPatch(
1078 (-pad_x, -pad_y),
1079 1 + 2*pad_x,
1080 1 + 2*pad_y,
1081 transform=ax_kpi.transAxes,
1082 boxstyle=round_style,
1083 facecolor='#f0f0f0',
1084 edgecolor='none',
1085 zorder=0
1086 )
1087 ax_kpi.add_patch(rect)
1088 ax_kpi.axis('off')
1089
1090 icon = "�"
1091 icon_size = 16
1092 text_color = donker_blauw
1093 y = 1 - pad_y + 0.005
1094
1095 x_label = pad_x * 1.2
1096 x_icon = (1 - pad_x/2) - 0.02
1097 x_value = x_icon - 0.08
1098
1099
1100 ax_kpi.text(pad_x, y, "Aircraft in queue",
1101 fontsize=12, fontweight='bold',
1102 color=text_color, va='top', zorder=1)
1103 y -= 0.08
1104
1105 # 1) Aircraft in queue
1106 ax_kpi.text(x_label, y, "• Narrow body", fontsize=11, va='top', color=text_color, zorder=1)
1107 ax_kpi.text(x_value, y, f"{unique_nabo}", fontsize=11, ha='right', va='top', color=text_color, zorder=1)
1108 ax_kpi.text(x_icon, y, icon, fontsize=icon_size, ha='center', va='center',
1109 color=text_color, rotation=90, zorder=1)
1110 y -= 0.07
1111
1112 ax_kpi.text(x_label, y, "• Wide body", fontsize=11, va='top', color=text_color, zorder=1)
1113 ax_kpi.text(x_value, y, f"{unique_wibo}", fontsize=11, ha='right', va='top', color=text_color, zorder=1)
1114 ax_kpi.text(x_icon, y, icon, fontsize=icon_size, ha='center', va='center',
1115 color=text_color, rotation=90, zorder=1)
1116 y -= 0.12
1117
1118 # 2) Queue
1119 ax_kpi.text(pad_x, y, "Queue", fontsize=12, fontweight='bold', va='top', color=text_color, zorder=1)
1120 y -= 0.08
1121
1122 ax_kpi.text(x_label, y, "• Max/slot ", fontsize=11, va='top', color=text_color, zorder=1)
1123 ax_kpi.text(x_value, y, f"{max_queue}", fontsize=11, ha='right', va='top', color=text_color, zorder=1)
1124 ax_kpi.text(x_icon, y, icon, fontsize=icon_size, ha='center', va='center',
1125 color=text_color, rotation=90, zorder=1)
1126 y -= 0.07
1127
1128 ax_kpi.text(x_label, y, "• Total slots", fontsize=11, va='top', color=text_color, zorder=1)
1129 ax_kpi.text(x_value, y, f"{num_slots_with_queue}", fontsize=11, ha='right', va='top', color=text_color, zorder=1)
1130
1131 y -= 0.12
1132
1133 # 3) Waiting time
1134 ax_kpi.text(pad_x, y, "Waiting time", fontsize=12, fontweight='bold', va='top', color=text_color, zorder=1)
1135 y -= 0.08
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1136
1137 ax_kpi.text(x_label, y, "• Max slots", fontsize=11, va='top', color=text_color, zorder=1)
1138 ax_kpi.text(x_value, y, f"{n_slots_max}", fontsize=11, ha='right', va='top', color=text_color, zorder=1)
1139
1140 y -= 0.07
1141
1142 ax_kpi.text(x_label, y, "• >1 slot in queue", fontsize=11, va='top', color=text_color, zorder=1)
1143 ax_kpi.text(x_value, y, f"{num_waited_multiple}", fontsize=11, ha='right', va='top', color=text_color, zorder=1)
1144 ax_kpi.text(x_icon, y, icon, fontsize=icon_size, ha='center', va='center',
1145 color=text_color, rotation=90, zorder=1)
1146
1147 plt.tight_layout()
1148 plt.show()
1149
1150
1151 # In[ ]:
1152
1153
1154 get_ipython().system('jupyter nbconvert --to script MODEL_for_overleaf.ipynb')
1155
1156
1157 # In[ ]:
1158
1159
1160
1161
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