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Abstract

How did Avalanche, a botnet with an active lifetime of 8 years while serving 20+ malware families, ensure a
smooth operation of business? Avalanche had the attention of security researchers and law enforcement, yet
it managed to persevere for a long period of time.

In this work, we answer this question by analyzing Avalanche’s security controls and its business model
based on longitudinal ground truth data from its criminal investigation by German law enforcement. We first
analyzed previous botnet research and identified five research challenges: (1) the botnet phenomenon keeps
evolving, so continuous research is required, (2) there is not yet a framework to categorize or interpret botnet
evasion techniques, (3) botnet research is challenging due to the lack of large real-world datasets, (4) botnet
takedowns are challenging and costly, so other avenues for intervening in botnets should be explored, and
(5) more research is being done into botnet economics, but it is mostly based on case studies methodologies
without access to ground truth data.

We defined the adversarial context of botnets and showed how their responses – evasion techniques –
can be interpreted as security controls according to deviant security theory. We created a framework for
categorizing these security controls, based on security control types and the type of threat. Turning to our
data, we performed an exploratory analysis in which we processed, validated and interpreted the available
data based on their different types: server images, network data and databases. Based on the insights from
this analysis, we applied the business model canvas and described Avalanche’s business model. We describe
how Avalanche provides it customers with proxying and domain registration services, generating on aver-
age $7,500 of revenue per month from 59 customers. We identified seven security controls, three technical
controls and four administrative controls, that were applied to evade detection, to increase resilience against
takedowns and to conceal the ownership by the botnet operators.

Our findings show that Avalanche configured itself to adequately respond to the threats in its adversarial
context. Its business model – through using different key partners and many replaceable resources – and its
application of security controls – such as backups, bot monitoring and proxy architecture – created redun-
dancy in Avalanche’s operation, allowing it to detect and resolve threats quickly.
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1
Introduction

How do cybercriminals respond to the adversarial environment they operate in? Law enforcement (LE) oper-
ations targeting the infrastructure, actors and facilitators of cyber crime have shifted the current paradigm of
cybersecurity. The classical notion of cybersecurity, derived from nation state security and warfare, states that
society (the ’defenders’) needs to protect itself from threats originating from enemies (the ’attackers’). This
axiom has transferred into the mainstream interpretation of cybersecurity: we need to defend ourselves from
the criminals attacking our systems, software and data. However, by preventing, disrupting and investigating
cybercrime, it is the security of cybercriminals that is now actively targeted [19, 59, 61]. As a result of this,
"doing business" as a cybercriminal currently also entails the growing need to ensure operational security.

The concept of "cybercriminal’s cybersecurity practices" has been coined by Van De Sandt [60] as "de-
viant security". To study deviant security, the security practices or security controls of cyber criminals can
be studied, in light of their role in the trade-off between security and efficiency. Security controls are de-
fined as "the full range of administrative, physical and technical countermeasures of a preventive, deterrent,
detective, corrective, recovery and compensating nature" [60]. By creating an overview of these controls, it
provides an overview of how the crime and the criminal is protected.

In general, most research into the security controls of cyber criminals focuses on the technical functional-
ity of the controls and not so much the utilization of the controls in the context of the cybercriminal business
model. For example, the anti-forensic capabilities of malware have been studied extensively [20, 30, 36], un-
covering different encryption, stenography, wiping and anti-reverse engineering techniques used to obfus-
cate the working or author of malware. However, why certain techniques are used more often than others, or
whether these techniques secure the criminal and/or the crime or can be attributed to the unique working of
the malware, is not yet clear. Similarly, evasion techniques of botnets have been studied in different empirical
studies, describing techniques such as protocol manipulation (e.g. protocol tunneling) [63] and domain flux-
ing [31]. These evasion techniques are reported as either a characteristic of the botnet (e.g. DNS-tunneling
is seen as a C&C communication pattern), or as a behavioral feature (e.g. domain fluxing is a feature of a
fast-fluxing botnet), but not studied to explain the usage of these techniques by botmaster(s).

A contrasting example is the work of Van de Laarschot and Van Wegberg, who studied the different secu-
rity practices of vendors on the online anonymous market "Hansa", focussing both on which controls were
applied and how the use of these controls could be explained from the perspective of different vendors. They
found significant differences between vendors selling digital cybercrime items versus vendors selling physical
items (e.g. drugs), which could point to a difference in perceived risk and thus a difference in the application
of security controls between vendors [59].

For cybercriminals who operate infrastructure that provides a service to other (cyber-)criminals, the con-
sideration for using certain security controls, if any, involves the trade-off between security and efficiency
for both its own operation, as for its customers. This is similar to the paradigm in ’standard’ cyber security,
where security operators need to weigh the impact of applying certain security controls on the usability and
costs of the product or service used. In the case of ransomware-as-a-service, the infrastructure might hold
private data of both administrators and customers, such as account information, financial information and
IP-logging that it would want to protect. At the same time, it wants to make sure that the services it provides
to customers – such as their databases with data on compromised targets or back-end servers – are available,
reliable and cheap, which means that there is a limit to the amount, type or invasiveness of the controls ap-
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2 1. Introduction

plied. Switching around the location of the hosted servers means downtime, using more elaborate encryption
schemes means better hardware and more complex code is needed and thus higher fixed costs, et cetera. The
"you cannot have a secure cake and use it easily and cheaply too" also seems to apply for cybercriminals.

By studying the security controls of these service providers, we do not only understand better how they try
to protect themselves from LE, security researchers or other criminals, but also how they operate their busi-
ness. First, studying security controls can allow us to understand better in which way outside measurements
or probes are being evaded or denied by these infrastructure facilitators. This requires empirical research,
as this will help to guide future methodology approaches and to understand historical measurement errors.
Second, understanding and penetrating the security controls of cybercriminals is the goal of many LE opera-
tions, as it is a conditional step before achieving the final goal of operator attribution. Third, studying security
controls provides new insights in the economical considerations of these infrastructure operators. Business
models, value chains and modus operandi have been studied extensively, but without taking into account the
perspective of facilitators ensuring security for both themselves, the infrastructure and their customers.

The main challenge in studying the security controls of cybercriminals, is that it requires a look behind
the scenes of these enterprises. Historically, this has only been possible through three approaches: (1) when
researchers were able to penetrate (parts of) the backend, (2) when data was leaked by/from the backend,
and (3) through law enforcement stings. A notable example of the first approach is the Torpig botnet takeover
by Stone-Gross et al. [55]. A recent example of a leak is the Conti-leaks that came from a disgruntled insider
that posted the logs of their internal communication channels. Data from police operations has been sparse,
but used in several instances. Examples are the analyses of MaxiDed [44] and Hansa Market [21], both mar-
ketplace platforms. Although backend access provides researchers with the data needed to study security
controls, creating insights is challenging because of the unstructured data sources, which are not gathered
through a scientific method but rather created by adversaries in their operations. Moreover, methods of re-
constructing and interpreting these backends often heavily depend on manual analyses and have gained little
attention in academic research because of their limited use.

To study the security controls of a botnet facilitator, we were granted access to data of the German Law
Enforcement operation targeting ’Avalanche’. Avalanche was a botnet that served both as a way to distribute
malware and recruit and exploit money mules [24]. First recognized in 2008, it was dismantled after a bit more
than eight years in December 2016 by a collaboration of the German Police, FBI, Europol and other global
partners. In its lifespan, the Avalanche network was used by more than two hundred cybercriminals [26] and
for more than twenty different malware campaigns such as Citadel, Goznym, and Tinba [48]. Avalanche is
a compelling case to study for multiple reasons. From the point of studying the controls of infrastructure
operators that provide services to others, Avalanche has been used by multiple different groups to spread
the aforementioned 20+ campaigns for multiple years. This indicates that Avalanche provided services that
had a sustainable demand and was successful in providing their services to customers for a long period of
time, meaning that it had both a functioning business model and sufficient security controls to sustain the
business during that time. Additionally, data from different hosts was gathered at different points during the
investigation, meaning the security controls can be studied from more than a single snapshot of the platform.

This thesis presents the first empirical study of the security controls of service-providing botnet operators,
Avalanche, based on longitudinal ground truth data. We answer the question "How did Avalanche ensure busi-
ness continuity, given its adversarial context?". The adversarial context from which risks emerge, is shaped
by security practitioners, researchers and law enforcement. From publishing IP-blacklists, creating new de-
tection strategies to criminal investigations and takedowns: there were multiple threats that loomed on the
horizon of Avalanche. In order to achieve this continuity, they create ways of dealing with potential threats
by taking preventive or mitigative actions: security controls. Because security controls are assets that protect
the assets needed to operate the business model, we first answer the question "What was Avalanche’s busi-
ness model?", before analyzing their business operations and infrastructure to answer the question "Which
security controls did Avalanche apply". By combining our understanding of Avalanche’s business model and
their security controls, we can answer our main research question of business continuity.

The contributions that this research seeks to make, are:

• We create a framework to combine current insights on botnet evasion techniques with deviant security
concepts (chapter 3);

• We perform an exploratory analysis of the ground truth data of Avalanche (chapter 5);

• We describe Avalanche’s business model according to the Business Model Canvas (chapter 6);

• We describe security controls and categorize them according to our framework (chapter 7).



2
Background

Botnets and the resulting botnet attacks have been around for more than twenty years and have been studied
extensively. For a detailed definition and description of botnets, we point the reader in the direction of section
2 of the paper of Silva et al. [51] or the introduction of the paper of Thanh Vu et al. [57]. We utilize these
two excellent survey studies and the taxonomy paper of Khattak et al. [37] to summarize botnet research
from survey studies in section 2.1. These survey studies show that botnet research is mostly focussed on the
detection of botnets and, as a result, also focus little on the importance of empirical measurement studies to
understand the working of botnets better themselves. To address this, we analyze eight large-scale empirical
measurement studies into botnets and summarize the studied features studied and used data sources in
section 2.2. We combine these insights with the extensive survey into botnet economics of Georgoulias et
al. [29] in section 2.3, to provide a cohesive overview of the current botnet research challenges. Based on
these challenges, we describe the research gap we aim to address with this work. Because our analysis is
focussed on one specific botnet, Avalanche, we introduce Avalanche in section 2.4 and describe its history,
investigation and takedown.

2.1. Botnet survey studies
Silva et al., 2013: In their survey paper from 2013, Silva et al. use 205 botnet research papers until 2011. They
provide a comprehensive description of botnets in general, by describing the main components of a botnet,
desirable characteristics of a bot, the life cycle of botnets and architectural designs of botnets. Because most
of the previous academic literature on botnets had focused on detection techniques, they summarize main
findings and structure the techniques into honeypot-based and IDS-based. The latter approach is further
divided in signature-based and anomaly based, which in turn can be host-based or network-based through
active or passive monitoring. Botnet defense techniques are mainly focussed on preventing bot propagation
or hindering bot communication and are either prevent, treat of contain infections. Finally they describe new
trends and/or platforms, such as exploiting social network websites for bot communication and/or command
& control, and mini-botnets, which are smaller in size and focus on stealth and discretion.

Khattak et al., 2014: Khattak et al. present taxonomies of botnet behaviors, detection mechanisms and
defense strategies, derived from their systematic analysis of 162 references to academic and industry papers,
as well as news articles. Their taxonomy of botnet behaviors aims to provide a set of features to categorize
and describe each botnet. The six main features contain phases from the life-cycle of botnets, as well as com-
ponents of the botnet, which are propagation, rallying, command & control, purpose, topology and evasion.
Botnet detection mechanisms are divided into mechanisms focussed on bot detection, command & control
detection or botmaster detection. Each mechanism can also be described as active or passive, where active
mechanisms actively participate in the botnet by infiltrating, injecting or marking parts of the botnet, while
passive mechanisms detect through observations that are syntactic (e.g. signatures) or semantic (e.g. proto-
col information or event-related data). While they choose the level of activity or involvement of the detec-
tion mechanism (active versus passive) as the main discerning dimension, Khattak et al. also present seven
other dimensions by which detection mechanisms can be categorized, such as degree of automation (man-
ual, semi-automated or automated), mode of operation (live or offline), and location of deployment (host or
network). More importantly, they describe the interplay between botnet features and detection mechanisms,
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4 2. Background

detailing how the absence or presence of certain features improves or degrades the effectiveness of specific
detection mechanisms. The third taxonomy is that of botnet defenses, which is categorized in preventive and
remedial mechanisms. Preventive measures are either technical or non-technical, while remedial measures
are offensive or defensive.

Thanh Vu et al., 2021: The survey paper of Thanh Vu et al. starts with a summary of the main contribu-
tions and reference metrics of 23 literature reviews on botnets, showing the need for an updated literature
overview to answer questions relating to botnet incentives, botnet evolution, proposed mitigation strategies
and current trends & challenges. Using a search strategy following PICO-criteria1, they include 224 peer-
reviewed English references from 2005 onward related to botnets. Starting with incentives for botnet devel-
opment, they distinguish benevolent from malevolent botnets. For malevolent incentives, the designated tar-
gets and reasons for attack are summarized. Within the evolution of botnets, the authors highlight changes in
disguises and subterfuge as well as the intricacies related to botnets with a P2P architecture. Featuring new
and established botnet types, extension and browser based, smartphone-based, vehicular, social-network,
blockchain-based and IoT-based botnets are described. Botnet detection approaches are divided into neural
network detection mechanisms, machine learning and network-based detection mechanisms, and Domain
Name System (DNS) based mechanisms. Additionally, mechanisms specifically related to IoT and P2P bot-
nets, mobile botnets, and social network botnets are illustrated. For each of the techniques, the advantages,
disadvantage and detection rate (if it was available) is reported. Seven types of mitigation mechanisms, both
reactive and proactive are described, which are best practices for end-users and organizations, network-level
blocking and packet analysis, honeypots and botnet isolation, attacking P2P botnets, IoT-specific mitigation
strategies, community-driven approaches and botnet mitigation with ethical issues (such as spreading anti-
botnets or attacking suspected hosts).

The survey studies of Silva et al., Khattak et al. and Thanh Vu et al. provide an overview of topics and
findings of botnet research. In general, research into botnets is about specific types of botnets, botnet evolu-
tion, attack types, and detection and mitigation techniques. A main insight, that is also mentioned by Thanh
Vu et al., is that most botnet literature (as well as other surveys) focusses on botnet detection while a much
smaller portion of papers researches mitigation (although the two topics are sometimes also combined) [57].
From the 224 references they found with their survey method, 127 (so 57%) papers describe botnet detection
mechanisms.

2.2. Empirical botnet studies
Studying botnets is studying a moving target: botnets evolve and develop themselves based on new tech-
nological adoptions (such as IoT- and cloud-based botnets) as well as in response to advancing detection
techniques. When you combine this insight with the finding from Khattak et al. that there is an interplay be-
tween the presence/absence of certain features of a botnet with the effectiveness of detection mechanisms,
it becomes clear that continuous research is needed to better understand the functioning of botnets. How-
ever, most survey studies have left one crucial branch of botnet research out of the main picture: empirical
botnet (measurement) studies. Empirical measurement studies into Conficker [50], Mirai [7] or Bashlite [41]
contribute to a deeper understanding of these botnets, but have not been included in any of the aforemen-
tioned survey studies. Besides empirically measuring botnet features, these studies often provide a broader
view on a botnet, by researching botnet victims or botnet hosting. Empirical botnet studies are in a way the
predecessor of the detection and mitigation studies: they lay the ground work for a deep-dive on specific so-
lutions. This is similar to what Bailey et al. did in their survey paper [10]: they split the existing work into (1)
papers focussed on detection techniques and (2) botnet measurement studies. For this reason, we provide an
overview of eight empirical measurement studies into botnets.

One of the first large botnets studied extensively was the Storm Worm [34] in 2008, which at its peak was
responsible for 8% of all infections worldwide [23]. Since then, many botnets have been the focal point of
empirical botnet studies. We provide a small overview of such studies in Table 2.1 below.

While this is by no means a complete overview of all the empirical studies into botnets, nor a complete
list of botnets, these eight well-received studies show the general botnet features studied, as well as the data
sources used. In short, their findings mainly revolve around ‘size, devices and attacks’. Additionally, none of
the studies contained data from internal C&C to C&C server communication, or showed administrative or
economical features of these botnets.

1PICO: Population, Intervention, Comparison and Outcomes
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Table 2.1: Overview of empirical measurement studies of large-scale botnets

Authors Botnet Year Botnet feature(s) studied Data source(s)

Holz et al. [34] Storm Worm 2008 Propagation method, bot population size Botnet infiltration: spam traps, client honeypots,
binaries, communication and keys, crawler

Stone-Gross et al. [55] Torpig 2009 Bot population size Botnet takeover: bot data, account data, C&C structure
Cho et al. [18] Mega-D 2010 Attacks: spam operations, C&C architecture labelling Botnet infiltration: C&C server types, C&C groups,

spam template structures
Shin and Gu [50] Conficker 2010 Distribution over networks, victims Sinkhole data: victim IP-addresses
Andriesse et al. [6] P2P Zeus 2013 Network topology, p2p protocol, communication patterns, DGA usage Sample analysis and reverse engineering:

malware samples, communication protocol,
announcements and messages, DGA

Antonakakis et al. [7] Mirai 2017 Size, C&C infrastructure, devices, attacks Network telescope, scanning, telnet honeypots,
DNS, C&C milkers, DDoS IP Addresses

Marzano et al. [41] Bashlite, Mirai 2018 Malware evolution, attacks, targets, commands, C&C servers Monitoring infrastructures: honeypots (URL/command
logging and payload downloading), ‘fake’ monitoring bots

Herwig et al. [33] Hajime 2019 Size, P2P process, geographical dispersion Backscatter data, binaries, scanning the infrastructure,
C&C communication

2.3. Botnet research challenges
Combining the takeaways from previous work, there are some reoccurring challenges. First, research shows
that the botnet phenomenon is still continuously evolving. This can be explained from the broad range in
designated targets and use cases botnets can be utilized for [57]. Moreover, the amount of vulnerable targets
to victimize has not decreased and malware that can be used to create botnets or access to a botnet can be
easily bought/rented on online anonymous marketplaces. Botnets also evolve in response to findings from
researchers and new detection methods, creating somewhat of an arms-race between the detecters and the
malware designers [31, 39, 40, 51, 54].

Second, these responses of botnets to technical advancements have been observed in multiple studies,
but there is not yet a taxonomy or framework to describe or interpret them. Besides "evasion techniques" [4,
14, 52, 53, 66], terms such as "obfuscation mechanisms" [5, 7, 12, 29], "deception mechanisms" [12], "defense
techniques" [13] and "resilient design" [56] have been used to describe botnet behavior, with little conceptual
embedding.

Third, research on botnets is notoriously challenging due to a lack of data. There are not many large real-
world datasets that researchers can use for testing their proposed solutions and collecting data from a botnet
for empirical measurements often requires both active and passive longitudinal measurements. Moreover,
data related to managing the command and control architecture or other back-end infrastructure ran by the
botmaster(s) can only be gathered through infiltrating a botnet, through leaks of the botnet, or from law
enforcement takedowns.

Fourth, botnet takedowns are challenging and costly. Although there have been successful takedowns of
botnet infrastructure, takedowns are an extremely time-consuming (and therefore costly) technique that of-
ten can only be done legally by governmental agencies. A few papers have studied the impact and challenges
of botnet takedowns, such as Nadji et al. [43], Ife et al. [35] and Le Pochat et al. [39]. Georgoulias et al. [29]
performed a survey study and analyzed 28 botnet takedowns since 2008, most of which from industry reports
and news articles. They found that takedowns often focus solely on the technical infrastructure of botnets,
by domain sinkholing, seizing or shutting down servers (C&C or DNS servers) and that there has been little
focus on interventions that target the other, non-technical parts of their operations.

Fifth, research into botnet economics has gained traction, but is often done solely based on case studies
because of a lack of ground truth data. Studies into the business models of botnets by Georgoulias et al. [29],
Putman et al. [46] and Bottazi & Me [15] have used a case study methodology, in which the authors did not
have access to any data related to these cases other than news articles and other research papers.

2.3.1. Research gap

Similar to how empirical measurement botnet studies are the predecessor for better detection and mitigation
strategies, we propose an empirical study into the economics of a botnet to aid the design of alternative
interventions. We specifically want to look at how botnets interact with the hostile environment they operate
in, and interpret these responses through mapping them on deviant security controls. Additionally, we want
to provide an in-depth example of these security controls by performing an analysis of ground-truth data of
a botnet that had a business model of providing services to customers: Avalanche.
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2.4. Avalanche
The operations of Avalanche have been analyzed and studied both during its lifetime and after its takedown.
In this section, we paint the picture of the history of avalanche up to the takedown in section 2.4.1. Next, we
describe the investigation and takedown based on information from open sources in section 2.4.2.

2.4.1. History of Avalanche
The "Avalanche" group was awarded its name because of the quite literal avalanche of phishing emails and
phishing sites it hosted on its infrastructure [1]. It was first seen in December 2008 and received its name from
the Anti-Phishing Working Group (APWG). According to APWG, 67% of all phishing attacks2 in the second
half of 2009 could be attributed to the Avalanche infrastructure. In their Global Phishing Survey, APWG hints
that Avalanche could be a successor of the threat group "Rock Phish" or "Rock Gang", a hypothesis that is
corroborated by the SecureWorks Counter Threat Unit (CTU) [58]. The identifying factors that link Rock Phish
and Avalanche together according to SecureWorks are phishing automation factors, such as registering large
amounts of domains (instead of hacking of abusing compromised web hosting sites), applying fast-fluxing
techniques to ensure longer uptime of phishing domains and using one domain for hosting multiple phishing
sites.

APWG notes that phishing domains from Avalanche were often hosted on compromised consumer-level
computers, which made Avalanche a ’botnet’ of sorts. This ensured that the takedown or suspension of those
sites could not be ordered by an ISP or hosting provider, since they were not involved in the hosting. As a
result hereof, mitigation efforts at that time concentrated on suspending the domain itself. Avalanche was
well aware of this, and thus mostly registered its domains at non-responsive or vulnerable domain name
registrars and registries. In 2010 for example, Avalanche abused mainly the .KR and .PL TLDs by registering
over 70% of their domains at those ccTLDs [1].

At the end of 2009, APWG reports that the Avalanche infrastructure was used to distribute Zeus, a trojan
that, amongst other functionalities, gives the attacker remote access to the victim’s computer. Because code
of the Zeus malware was only publicly offered for sale in March 2011 and was leaked a couple months later,
it is suspected that the author of Zeus closely collaborated with Avalanche [58]. The reason for the change of
business model seemed to originate in a combination of improved security of online banking and the suc-
cess of the Zeus malware. Simply stealing the banking details by phishing and using those details for online
payments and transactions proved to be more difficult for Avalanche because of more strict online banking
security measures. Zeus malware, that was infecting machines through a combination of spam, drive-by-
downloads and fake software upgrade sites, would grant the attacker access to both personal (banking) data
and to the computer that was used for that banking. As APWG notes in their report: "It is simply more prof-
itable to control someone’s computer remotely and move large amounts of money than to simply steal victims’
online banking credentials." [2].

After the switch to distributing Zeus malware, Avalanche started to either collaborate or sell access to its
platform as a service to other cybercriminals. From then on, other malware variants have been observed to
be spread from Avalanche infrastructure. In total, there were more than 20 different malware families hosted
on Avalanche from 2013 onwards [48]. These malware variants include Bolek, Citadel, CoreBot, Gozi2, KINS
/ VMZeus, Marcher, Matsnu, Nymaim (later GozNym), Pandabanker, Ranbyus, Rovnix, Smart App, Smoke
Loader / Dofoil, TeslaCrypt, Tiny Banker / Tinba, Fake Trusteer App, UrlZone, Vawtrak and Xswkit. An-
dromeda was also hosted on Avalanche, but not mentioned in the public reports in 2016 since there was an
ongoing investigation into Andromeda. A year after the takedown of Avalanche, Andromeda was also sink-
holed [49]. Public advertisements from the administrators for their services appeared on various forums in
2015 and 2016, advertising a "fast fluxing bulletproof hosting service" [27].

2.4.2. Investigation and takedown
The following information on the investigation and takedown of Avalanche has been written based on multi-
ple public sources: an interview with the German prosecutor Frank Lange by Lukas Heiny [32], the affidavit
by FBI special agent Aaron O. Francis [27] and public communications by Europol [24, 25].

The investigation into Avalanche was started officially by the German law enforcement in 2012 [32], after
multiple reports were filed about what would later become known as "ransomware": a windows encryption
trojan that encrypts data on computers and only releases them after the victim has paid the ransom. This

2APWG defines an attack as follows "... a phishing site that targets a specific brand or entity. One domain name can host several discrete
attacks against different banks, for example."[3]
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malware was sent to possible victims in the form of a spam email with a malicious attachment that, when
opened, would download the trojan from a remote server. Retracing the IP-addresses the spam emails orig-
inated from, the investigative team found out that there were multiple of these servers at a time and that
the servers changed every one or two weeks [32]. Because of this, they suspected that Avalanche might be
a botnet: it was misusing the machines of others, and through controlling these, it was spreading malware
to the encryption trojan victims. When they monitored connections from these servers, they also observed
other types of malware: key-loggers, banking trojans, other encryption trojans et cetera. It seemed like the
network was bigger than just the network of one cybercriminal. The investigation itself was challenging: for
each server they wanted to monitor, the investigative team needed to obtain warrants, often outside of Ger-
man jurisdiction which meant a slow international and bureaucratic process. When they did get access to
servers, they were often "perfectly encrypted", leaving them with little information to analyze [32]. However,
they kept following the connections based on the collected malware sample, identifying first and second-level
servers and monitoring them. Through this monitoring of servers, they were able to create insight in the span
and size of the Avalanche architecture. In 2014 the investigators found a database with 18 million records of
stolen email addresses and passwords and they realized two things: one, that it is not just German citizens
that have become targets and two, Avalanche operates ’as a company’, providing its services in a professional
manner to other cybercriminals [32]. They also found proof for that in the advertisements of the admins –
who call themselves "User41", "Firestarter", "flux", "flux2" or "ffhost" – on Russian hacker fora [27, 32]. Ad-
ditionally, they found out that a second Avalanche network exists, which is not focussed on providing double
fast-fluxing services, but on recruiting money mules [27, 32].

In June 2015, the German law enforcements started a collaboration with the FBI, who had also started
an investigation into the Avalanche network based on the US-based victims. By working together and com-
bining evidence, they identified 16 suspects and two administrators. The two administrators were seen as
the programmers or "masterminds" behind the technical operations of Avalanche and the main goal of the
investigative team bacame to arrest the two administrators [32]. To neutralize the threat of Avalanche bots, a
botnet sinkhole was created with the help of the ShadowServer organization. On November 2016, in a joint
multinational operation facilitated by Europol, the two administrators were arrested and the Avalanche do-
mains were sinkholed. Thirty-nine servers were seized and hosting providers were ordered to shut down 221
servers from the Avalanche network [24]. The infrastructure was hosted in 30 countries and impacted 60 reg-
istries worldwide [48]. The sinkhole operation was the largest of its kind, with more than 800,000 domains
blocked, seized or sinkholed [24].





3
Conceptual framework

In this chapter we define the concepts business continuity, security controls and adversarial context, and show
how these can be combined into a framework to categorize evasion techniques of botnet operators. We first
define the adversarial context of botnets in section 3.1. Next, we interpret the evasion techniques of bot-
nets through the lens of deviant security theory as security controls in section 3.2 and create a framework of
threats to botnet operators and their corresponding security controls. We then define business continuity in
section 3.3. Because security controls need to be analyzed within their economical context, we describe the
business model canvas an its components in section 3.4.

3.1. Adversarial context
The adversarial context in which botnets operate while trying to fulfill their business model, is created by
security practitioners, researchers and law enforcement. In the canon security risk model, there are attackers
that launch attacks which can lead to incidents at, for example, companies. For botnets, these aforemen-
tioned parties are the attackers that launch ‘attacks‘ on their operations. The attacks from researchers come
mostly from what we described in our overview of botnet studies: new detection strategies, mitigation mech-
anisms and empirical studies that unveil their modus operandi. Security practitioners have a broader range
of attack types; from security firms publishing white-papers and reports on specific botnets, to firms pro-
viding detection and mitigation systems, or publishing blocklists of C&C domains. The most comprehensive
attack is however a botnet takedown, often done in a collaboration between law enforcement and security
practitioners. While a botnet takedown is often synonym with sinkholing (domain seizure and/or domain
preregistering), bot takeovers (peer injection or peerlist poisoning) are also takedown methods, especially in
P2P-systems.

We summarize three main types of threats to a botnet operator from this adversarial context:

1. Blocking: This can be blocking the infection, blocking the communication (either between bots or
between bot and C&C-server), blocking propagation or scanning behavior et cetera. This causes the
botmaster to be less effective in its operation.

2. Takedown of infrastructure: We interpret this as both the takedown of a part of the infrastructure, or
a takedown of the entire infrastructure. Takedown of a part of the infrastructure can for example occur
through patching a bot, through quarantining of a bot by an ISP, or through a notice to takedown of
a C&C server that leads to a response from the hosting provider. A complete infrastructure takedown
can be focussed on different assets of the botnet infrastructure. Domains can be sinkholed through
preregistering or seizure, servers can be shutdown or seized, or in the case of a P2P structure, peers can
be ’sinkholed’ (through injection and peerlist poisoning). This causes the botmaster to lose access to
the assets it uses to operate the botnet and often means the botmaster needs to rebuild its infrastructure
and operations.

3. Attribution of botmaster(s): Attribution of a botnet operator means that the true identity of the oper-
ator can be connected to the botnet. This is necessary for criminal investigations and thus causes the
operator to be vulnerable to arrest and prosecution.

9
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3.2. Evasion techniques as deviant security controls
In the previous chapter we described how botnets respond to these external threats with a variety of tech-
niques (see 2.3). Using deviant security theory, we can interpret the aforementioned evasion techniques,
obfuscation mechanisms, resilient designs etc. as security controls. Deviant security takes the cyber criminal
as the referent object and studies the security policies and mechanisms, e.g. the security controls, taken by
"natural and legal persons who are criminally liable for the commission of crime, in order to protect the crim-
inal and his/her crimes" [60]. The theoretical framework combines concepts from information technology,
social science, legal scholars and microeconomic theory to reason about what security controls are and why
they are used. Security controls can be divided into technical, administrative and physical security controls,
which can either be defensive or offensive in nature. An example of a technical offensive security control is
the anti-analysis capability of Rombertik malware, that was designed in such a way that it would actively wipe
and corrupt the computer used for reverse-engineering, decompilation or any other detected malware anal-
ysis environment [11]. An administrative defensive control can be to register for services with fake (personal)
information, such as registering at cryptocurrency exchanges with stolen credit card information.

The techniques applied by botnet operators in response to threats are thus controls to protect themselves
and/or the crime. To provide an overview of these techniques and show how they can be categorized accord-
ing to deviant security theory and the adversarial context they respond to, we create a framework in Table 3.1.
On the vertical axis are the three different types of security controls: technical, administrative and physical.
On the horizontal axis are the threats to botnets: blocking, takedown of infrastructure and attribution. To aid
the classification of currently known techniques, we mapped the terms used in previous work to the threat
they are a response to. Because detection and blocking techniques have improved, botnet operators have
developed new techniques for stealth (to go unnoticed) or evasion (to do something different than expected).
Because of takedown measures, botnet operators try to make their infrastructure more resilient. Finally, at-
tribution efforts have caused botnets to respond with controls for the concealment of ownership. We fill the
framework with the evasion techniques from the eight empirical botnet studies from Table 2.1. Although this
does not provide a complete overview of all security controls, the table shows the empirical botnet studies do
not provide examples of measures other than technical ones.

Table 3.1: A framework for categorizing botnet security controls

Blocking Takedown of infrastructure Attribution of botmaster(s)

Stealth Evasion Resilience to takedown Concealment of ownership

Technical Obfuscation [7] Polymorphism [18] P2P-architecture [6, 34] –
Deleting binary [7] Domain Generation Algorithm [7, 50] Domain-flux [55] –
Obfuscate process name [7] DNS C&C communication [7] Reputation schemes [6] –
Protocol manipulation [51] P2P DTH for C&C communication [33] Non-persistent peer list entries [6] –

Administrative – – – –

Physical – – – –

3.3. Business continuity
Business continuity is a term used often in conjunction with "planning", which is the planning done by cor-
porations to prevent disruptive incidents to negatively impact business operations. In that definition, busi-
ness continuity planning is a subset of general risk management. We however want to use business continuity
in its definition that is similar to the often-used idiom organizational resilience: an evolutionary process in
which businesses adapt in response to their environment to continue their business operations [42]. With
that definition, business continuity supersedes risk management and can be used to describe the responses
of organizations to both disturbance and munificence [42].

For botnet operators, the disturbances in the environment are the types of threats that originate from their
adversarial context. Their responses to that – the evasion techniques we interpret as security controls – have
the goal to protect their business model, in order to continue their business operations. For explaining why
security controls are used, deviant security reasons from the economic concept of opportunity costs: a value
tradeoff between how much of the objective of commissioning the crime (performing all the activities of the
business model) he/she wants to give up for the objective of achieving some level of protection or security.
Because of this value tradeoff, security controls should be interpreted in conjunction with the applied busi-
ness model: security is an asset to defend an asset that is key in the operation of the business model. Thus,
through studying (A) the security controls and (B) the business model of botnet operators, we can answer the
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question of how they achieve business continuity.
We therefore decompose our main research question "How did Avalanche ensure business continuity,

given its adversarial context?" in two subquestions:

1. What is the business model of Avalanche?

2. Which security controls did Avalanche apply?

3.4. Business model canvas
To understand the business model of botnet operators, we apply the business model canvas. The Business
Model Canvas (BMC) [45] is a well-known tool for developing and improving (new) business models. Previous
work has used it to describe cybercrime and specifically botnet business models before [29, 46]. Based on
nine building blocks, companies can easily describe the core of their business. The building blocks are: value
propositions, key partners, key activities, key resources, customer relationship, channels, customer segments,
cost structure and revenue stream. We will give a general description of these building blocks here.

The value proposition describes what products and / or services you will provide to your customers. Often
the value proposition mentions a problem or an unsatisfied desire experienced by a certain group of people.
The key partners, activities and resources give an overview of the infrastructure underlying the business. It
lists the main external partners and suppliers, where a trade-off can be made between the benefits (partners
can allow for the business to reach its goal faster or contribute to the overall success) and the risks and un-
certainties (which necessarily follows from outsourcing responsibilities). The main business activities, which
are required by the value proposition, are described, including for instance activities related to distribution
channels, customer relations, and production. The resources refer to both tangible (office space, raw materi-
als, computers, financial) and intangible (knowledge, skill, patents) assets. The customer relations, customer
segments and channels give a descriptive overview of the target audience: the customer. It describes the tar-
get audience (characteristics, needs and desires, size), the relationship with the customer (e.g. the mode and
frequency of interaction) and how these customers will be reached (which includes everything from market-
ing and awareness to purchase, delivery and aftersales). Finally the finances of the business are set out in the
cost structure and revenue model building blocks. This last one includes the price of the product / service, as
well as the kind of revenue stream (e.g. one-off purchase, subscription, lease).





4
Methodology

Our methodology consists of a tiered approach, in which each next step builds upon the preceding find-
ings. In this chapter, we briefly outline the steps of our approach in section 4.1. Because we use data from
Avalanche to answer our research question, we describe the suitability of Avalanche as a case for this research
in section 4.2. We conclude this chapter by discussing the ethical considerations that this research raises in
section 4.3.

4.1. Approach
We use data that is not often used in academic research (ground truth data from a criminal investigation), to
answer a question that has no predefined methods or earlier methodological work we could lend insights or
guidance from. Closest to our study is the work of Noroozian et al., who studied the anatomy and economics
of bulletproof hoster MaxiDed from ground truth data [44]. To our knowledge, the security controls of a
botnet have not yet been studied on empirical ground truth data. Because of this, our approach is of an
exploratory nature. We:

• First describe our data through and perform an exploratory analysis, processing, validating and inter-
preting the data provided to us for this research;

• Next, we analyze Avalanche’s business model by applying the Business Model Canvas of Osterwalder &
Pigneur [45];

• We can then, based on our understanding of Avalanche’s infrastructure and business model, describe
security controls and interpreted them in light of our framework.

4.2. Avalanche as a case
Two papers have used Avalanche as their main case. Le Pochat et al. [39] used data from the German investi-
gation of Avalanche, to create a model to classify DGA domains generated by malware that was distributed by
the Avalanche infrastructure. The data for this paper consisted of DGA-generated domains in 2017 and 2018,
after the takedown of Avalanche, to aid the manual process of correctly sinkholing registered DGA-generated
domains. Wainwright and Cilluffo [64] use Avalanche as a case to describe the Crime-as-a-Service model: a
model in which the service model is to provide an all-inclusive service from malware to money-laundering.
They conclude the following: "The very essence of the Avalanche network and its CaaS operating model, with
its varied portfolio of innovative products and services, pro-active advertising, and customer support features,
is a striking example of how cybercriminal groups today work like international businesses" [64]. Additionally,
there are papers that used the case of Avalanche as an example or case in a multi-case study. An example is
the paper of Dargahi et al. [22] that create a cyber-kill-chain based taxonomy of crypto-ransomware features
and describe the fast-fluxing behavior of Avalanche in relation to the WannaCry ransomware that was hosted
on Avalanche.

We want to use avalanche as a case to study the security controls of a botnet operator that had a service-
providing business model. We believe the case of Avalanche to be interesting because their platform was used
by a broad variety of malware groups and because these variants were successful and had a lot of (negative)
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impact. Similar to Wainwright and Cilluffo, we argue that Avalanche is a good example of a facilitating plat-
form because it provided a lot of different services for its customers and those services were advertised (semi)
publicly. Moreover, because of the longevity of the platform and the multi-year police investigation, there is
longitudinal data to study the behavior of Avalanche.

A counterargument to using Avalanche as a case to study security controls, is the remark that Avalanche
has been taken down and thus had its security breached. What use is it to study something that got taken
down? The main reasoning is that the goal of this study is not to make any qualifying statements about how
well or not Avalanche arranged its security, nor is the goal to quantify its security through measurements.
There is also a more practical point for studying a platform that has been taken down: it is impossible to get
data from a platform that has had no leaks, breaches or takedowns. We therefore use the fact that Avalanche
has been active for a long period of time (even while it was being investigated) as a signal that it had at least
some functioning security controls.

4.3. Ethical considerations
Using data from criminal backends to study their security raises ethical considerations. The data of Avalanche
originates from the police investigation by German law enforcement. All data was seized in accordance with
German law. Access to data was provided to us for academic research and this access was only granted to
the authors of this work through monitored police systems. The data contained personally identifiable infor-
mation of both Avalanche administrators, their customers (malware groups), as well as victims. Because it is
not possible to retrieve informed consent for these vulnerable parties such as the victims, we took great care
in anonymizing their data in our analysis and we only report aggregate statistics. While this data contains
evidence of crimes for which the administrators of Avalanche were prosecuted, this work does not seek to
provide any legal proof of any criminal conduct whatsoever.
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Data & exploratory analysis

Laying the foundation for our measurements and analyses, we first provide an in-depth exploration and high-
level analysis of data from Avalanche. During the investigation and takedown of the Avalanche platform,
German law enforcement collected different sources of forensic evidence related to the platform. From the
collected evidence, access has been granted to data related to 19 hosts within the Avalanche network. This
data consists of three types: server images, network traffic from wire taps and seized databases (extracted
from active hosts, server images or VM snapshots). Table 5.1 provides an overview of the types of data avail-
able, the timeframe the available data was from and the size of the data for each host.

Table 5.1: Overview of data types, dates and sizes per host

Host Server image Network traffic Seized database

Seize date Size First date Last date Size First date Last date Size

Host 1 21-09-2017 ∼3.1 TB 19-10-2015 30-11-2015 ∼2 TB - - -
Host 2 21-11-2015 27-11-2015 ∼324 GB - - -

01-06-2016 07-06-2016 ∼337 GB - - -
Host 3 28-10-2013 ∼1 TB 25-02-2013 25-02-2013 ∼20 GB - - -
Host 4 - - 24-02-2016 25-02-2016 ∼38 GB - - -
Host 5 03-03-2017 ∼149 GB - - - - - -
Host 6 - - 02-08-2016 30-11-2016 ∼381 GB - - -
Host 7 07-06-2017 ∼2 TB 07-10-2015 27-10-2015 ∼141 GB - - -
Host 8 30-11-2016 ∼601 GB - - - - - -
Host 9 30-11-2016 ∼480 GB - - - - - -
Host 10 30-11-2016 ∼21 GB - - - - - -
Host 11 14-03-2017 ∼572 GB - - - - - -
Host 12 - - 03-09-2015 20-10-2022 ∼34 GB - - -
Host 13 15-03-2017 ∼297 GB - - - - - -
Host 14 - - 22-12-2014 21-07-2015 ∼7 GB - - -
Host 15 - - 29-02-2016 14-04-2016 ∼206 GB - - -
Host 16 - - 20-10-2015 18-12-2015 ∼568 GB - - -
Host 17 - - 06-02-2014 29-07-2014 ∼614 GB - - -
Host 18 - - - - - 23-03-2016 30-11-2016 ∼10 GB
Host 19 - - - - - 21-04-2016 26-04-2016 ∼23 MB

Criminal backends do not come with an instruction manual, leaving us with the challenge to make sense
of the data LE investigators discretely extracted from criminal operations. Moreover, very little to no data
descriptions or earlier analyses of the data were provided by the investigative team. We were granted access
to in total close to 13 TB of data and it was a challenging feat to understand what was in the data, how it could
be interpreted, and how it could be used for our research. Our approach was to explore the data based on its
data type and look into the server images, network data and databases separately. For each data source, we
followed these steps:

1. Make data readable and searchable through software processing;
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2. Validate data;

3. Extract high-level descriptives;

4. Interpret available features.

We describe this process and the resulting insights for each data type in the sections 5.1, 5.2, and 5.3. Last,
having understood what our data contains, we interpreted the entirety of the available data, as well as how
the data sources are connected, in section 5.4.

5.1. Server images
5.1.1. Processing of server images
The server images of the Avalanche hosts all had the .E01 file format. This is the EnCase Evidence file for-
mat, which contains a byte-for-byte depiction of the acquired volumes. Additionally, E01 files hold forensic
metadata (such as the time and date of the forensic copy and whether there were read or write errors) and a
device-level hash. For our analysis, we used EnCase Forensic (version 21.4.0.109) to load all server images.

5.1.2. Server image validation
All the server images were obtained from the legal seizure of the servers during the Avalanche investigation.
This means that procedures relating to forensic evidence have been followed, for example by making full disk
images (of all partitions) with write blockers and forensic software and calculating hashes for each image. A
forensic report made by the software used to create the forensic copy was provided for each server image.
When you load an E01 image in EnCase Forensic, it calculates the acquisition hashes in MD5 and SHA1.
To validate that the E01 file we received is similar to the image that was made from the Avalanche host, we
compared the MD5 and SHA1 acquisition hashes from EnCase with the hashes from the forensic reports
provided to us by German LE. For each image, we observed exactly the same hashes in the forensic report as
calculated by EnCase.

We also validated whether EnCase recognized an operating system or file system. This was not the case
for the image of host 8, where only data partitions with unallocated space were recognized by EnCase. We
hypothesized the image might contain a Linux-based distribution which had a corrupted master boot record
(MRB), or a deleted or broken partition table. We tried to recover the data by using the open source program
TestDisk [17] but were unsuccessful. We therefore excluded the image of host 8 from our following analyses.

5.1.3. Descriptives
We manually extracted the following three features from each of the server images: OS version, probable
install date and time zone. The approach was slightly different for each OS type.

Debian: The OS version for Debian systems was taken from the file /etc/debian_version. The probable
install date was taken from the first line in the syslog file /var/log/installer/syslog. The timezone was
taken from the /etc/timezone file.

FreeBSD: The OS version for FreeBSD systems was taken from the file /bin/freebsd-version. The
probable install date was approximated from the access time of the folders in /boot, such as /defaults, /mod-
ules, /firmware. We verified this by looking at other files and checking whether these files indeed had the earli-
est access time. This approximation was necessary because the systems did not have a/etc/defaults/rc.conf
file. The time zone information was taken from the /var/db/zoneinfo file, which saved the name of the
timezone file installed last [28].

CentOS: The OS version for CentOS systems was taken from the file /etc/centos-release. The prob-
able install date was taken from the creation date of the file /anaconda-ks.cfg. This file is created after an
installation completes and saves all choices made during the installation [16]. The timezone was taken from
the /etc/localtime file.

Although there are some similarities between servers in their used time zones, more notable is the amount
of different OS versions and install dates. From this we can assume Avalanche either did not have one instance
that was deployed to all servers, or that the servers were all installed by different people.

5.1.4. Interpretation of image data
The data pertained in these server images relates to the configuration of each host, their connections to other
hosts in the infrastructure and the actions of the administrators. For the configuration and thus role of a host,
we can for instance look at the installed packages, the network configuration (e.g. the configured interfaces)
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Table 5.2: Descriptives of seized server images

Host OS version Install date Timezone

Host 1 Debian 8.0 26-01-2015 GMT+2
Host 3 Debian 7.2 16-10-2013 GMT-5
Host 5 FreeBSD 10.3 03-08-2016 GMT+2
Host 7 CentOS 6.7 24-01-2015 GMT+2
Host 8 - - -
Host 9 CentOS 6.8 16-10-2016 GMT-4
Host 10 CentOS 6.8 25-10-2016 GMT+3
Host 11 CentOS 6.6 31-10-2015 GMT-5
Host 13 FreeBSD 10.3 31-08-2016 GMT-6

and the configured hosts. Especially the installed packages provide insights into the usage of encryption and
virtualization. The server images also contain information on their connection to other hosts, which can be
extracted from for example the SSH known hosts, the Nginx settings (e.g. proxy parameters). Finally, data
related to the action of the administrators can also be extracted, such as the amount of configured users,
their passwords and log files of their actions (such as the bash history).

5.2. Network data
5.2.1. Processing network data
We received the network data in the form of .pcap files. PCAPs are packet capture files, which contain packet
data that was captured from a host or network. In the case of Avalanche, the PCAP files were gathered from
wire taps on the Avalanche hosts during the investigation. A common approach is to analyze .pcap files with
the open source program WireShark, but since we received around 4.7 TB of network data we opted for a
more automated approach. We processed all PCAPs with the open source program Arkime (formerly known
as Moloch) [8], which is created to handle large amounts of packet captures and make them searchable. A
high-level overview of the processing pipeline can be seen in Figure 5.1. We used version v3.1.1 (release date
26-01-2022) [9] and processed in total 45,042,359 sessions of network data.

Figure 5.1: PCAP processing pipeline

The PCAP files are processed by Arkime and from the packet data, Arkime groups connections between
hosts in sessions. The most obvious example is a TCP session, that is build from different connection seg-
ments. For these sessions, metadata relating to the IP-adresses such as GeoIP information is retrieved by
Arkime. These resulting sessions and their metadata are stored in a generalized format as Elasticsearch data.
To interact with this data, the Arkime Viewer uses Kibana-like features to display, group and visualize session
data. Because the original PCAPs are stored separately from the session data, it is possible to download the
raw packet data for each session for further analysis in for example WireShark.

5.2.2. Validation
We validated the correct processing of all the PCAP files by verifying that all the files for each host were pro-
cessed and available in Arkime’s file index. Arkime annotates sessions with tags if it encountered any irregu-
larities during its processing, such as "out-of-order-src" or "incomplete-tcp". We provide an overview of the
amount of occurrences of these tags and the percentage of sessions that have one or multiple of these tags in
Table 5.3.
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Table 5.3: Tags of Arkime processing

Tag name # occurrences % of total

acked-unseen-segment-dst 5,962,708 13.24
acked-unseen-segment-src 5,742,318 12.75
out-of-order-dst 4,754,217 10.55
out-of-order-src 4,365,668 9.69
incomplete-tcp 561,900 1.25
no-syn-ack 273,084 0.61

The "acked-unseen-segment" tags occured often and originated from Arkime observing ACKs for packets
that were not found in the data. Possible causes are packets from sessions that were ongoing when the capture
was started, or the capturing device was not able or capable enough to capture all traffic. Both the "out-of-
order-dst" and "out-of-order-src" tag indicate that Arkime encountered timestamped packets that were in
the incorrect order. This does not influence the reassembling of the TCP-session, but only shows the order
differently (true to the timing in the PCAPs). The "incomplete-tcp" and "no-syn-ack" tags stem from the TCP
conversation completeness analysis, which calculates the completeness of the TCP conversation based on
the observed packet types. The "incomplete-tcp" tag occurs when not all 6 packet types were observed, while
"no-syn-ack" only indicates missing the syn-ack packet [65].

Interpreting Table 5.3, it might look like as if there were more tags than sessions. However, manual in-
spection showed that often a sessions had four to six tags connected to it. We therefore queried to see how
many packets had at least one or more tags, and that number was 6,985,607. This means that in total 15.51%
of all sessions had at least one (and often multiple) tags. Additionally, we observed that the tags were not
distributed equally over time; almost 12% of the sessions with tags (∼840,000 sessions) originated from 2.5
hours of recorded network data on a single day, indicating a possible incomplete capturing process at one
host for a small period of time.

Our validation showed that the network data is not always complete and that the data captures were not
perfect. Intuitively 15.51% of all sessions having at least one tag feels like a lot, but to our knowledge there are
no comparable cases to compare this number with. Additionally, there is not much we can do to improve the
packet data. Therefore we proceed our analysis with the notion of the presence of missing data.

5.2.3. Descriptives of network data
For each host, we manually extracted the following features from Arkime. The resulting descriptives can be
seen in Table 5.4.

• # days: the amount of days between the first packet and the last packet, increased by 1 to account for
the last day;

• Total amount of sessions: amount of sessions processed from the PCAPs by Arkime1 ;

• % TCP / UDP / ICMP: the percentage of sessions with the TCP, UDP or ICMP protocol;

• % incoming / outgoing: The percentage of sessions that were incoming (from another client connect-
ing to this host) versus the percentage of sessions that were outgoing (started from this host connecting
to another client);

• Unique source hosts: The amount of unique IP-adresses that started two or more incoming sessions to
this host;

• Unique destination hosts: The amount of unique IP-adresses that started this host started outgoing
sessions to.

1Sessions with more than 10,000 packets are split by Arkime in multiple sessions of 10,000 max (e.g. a session of 33,000 packets will be
split into four Arkime-sessions.)

210,000 is the maximum amount of unique IP’s that can be exported from Arkime. The number 10,000 unique source hosts is therefore
the amount of hosts with 14 or more incoming connections to host 17.

310,000 is the maximum amount of unique IP’s that can be exported from Arkime. The number 10,000 unique destination hosts is
therefore the amount of hosts that host 17 made 31 or more outgoing connections to.
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Table 5.4: Descriptives of network data

Host # days Total amount of sessions % TCP / UDP / ICMP % incoming / outgoing Unique source hosts Unique destination hosts

Host 1 43 2,176,450 97.64 / 1.25 / 1.11 98.91 / 1.09 4,014 771
Host 2 202 6,301,962 94.49 / 5.33 / 0.18 91.66 / 8.34 4,523 1,273
Host 3 1 899,196 99.98 / 0.02 / 0.00 77.27 / 22.73 28 8
Host 4 2 951 56.57 / 33.44 / 9.99 96.40 / 3.60 106 5
Host 6 384 16,696,700 98.94 / 0.97 / 0.08 41.59 / 58.41 7,818 2,099
Host 7 21 2,079,635 98.44 / 1.18 / 0.37 99.36 / 0.64 1,955 1,737
Host 12 48 4,902,728 98.86 / 0.96 / 0.17 70.68 / 29.32 2,820 978
Host 15 46 5,038,219 94.29 / 5.36 / 0.35 91.55 / 8.45 9,326 4,240
Host 16 90 2,719,674 95.01/ 4.69 / 0.29 23.00 / 77.00 1,850 1,942
Host 17 174 4,226,844 37.91 / 49.28 / 12.82 82.63 / 17.37 10,0002 10,0003

5.2.4. Interpretation of network data
The processed network data contains data and metadata about the sessions to and from hosts in the Avalanche
infrastructure. For each session, netflow data such as source IP, source port, destination IP, destination port,
protocols, packets, databytes and bytes is available. For each IP, metadata such as ASN, country code and
RIR is available. Depending on the protocol, additional data fields are available. For example, for HTTP these
fields include method, status code, hosts, user agents and several headers (request, response, server), for DNS
these are hosts, OpCode, statuscode, query type and query class, and for TLS these are version, cipher, JA3
en JA3s (hashes). We can manually analyze the packet content of each session, provided that the data is not
encrypted (which was the case for protocols like TLS and SSH). Overall, the network data relates mostly to the
behavior and thus role of the hosts in the network.

5.3. Databases
5.3.1. Processing databases
The in total 44 databases were provided in .sql files. Of those, 42 databases came from host 18 and the other
2 databases from host 19. We imported all databases in MySQL Workbench and saw that the databases were
dumps made from a database at different moments in time. This meant that we had 42 snapshots of the
database from host 18 and two snapshots of the database from host 19. To combine the database dumps to
one aggregated database that contained all information, we wrote a script that merged and then deduplicated
all versions of each table. The deduplication was done conservatively: only rows (or database records) that
had the exact same data for each variable were deleted. This means that two ’unique’ rows can have equal
data in each variable except for one. Manual inspection of the resulting aggregated tables showed that in
some tables, formats or the encoding of certain columns changed over time. For example, the aggregated
table of transactionsBtc has 16 unique rows, while these are 8 rows with a ’normal’ datetime format, and 8
identical rows with a ’Z’ added to the datetime format. We chose to not to make any manual deduplication
changes to the data, to keep our descriptives as close to the original data as possible. For our analyses in later
chapters however, we will explicitly describe on which fields we performed our analysis and how these are for
example cleaned or deduplicated on a case-by-case basis.

5.3.2. Validation databases
We validated the integrity of the databases both externally and internally. For external comparison, we searched
for sessions with mysql data in the network data and observed host 6 making connections with mysql to host
18. In this data, we could observe table and column names and validate that our dumps contained roughly the
same tables and columns. We say roughly, because the network data between host 6 and 12 was from a period
before we have database dumps. We observed that two tables were removed and that some columns in the
tables were changed in name or field type. We manually validated some inserts into the database and verified
that we had the same data in our aggregated database. We did however see that there was another database
active at host 18, that contained tables and columns different from the databases we were provided with.
Manual analysis of these insert statements showed that the other database was used to store (likely scraped)
Spamhaus SBL and CBL data. As a second external validation, we verified 7 bitcoin transactions through
querying the Bitcoin blockchain, observing that the transaction hash, datetime and amount was correct. For
internal validation we cross-referenced keys between tables. For example, we validated that the ID’s of the
users in tables balancheChanges, domainsRegistration and transactionsBtc also were present in the
table users and observed 1 ID to be missing (0.7%). Looking at all our validation steps altogether, the data
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seems both externally and internally consistent. However, we want to stress that while the available data is
consistent, the availability of data differs wildly between databases and columns. We will reflect on what this
means for our findings based on the technical and economical reconstruction of Avalanche in the discussion.

5.3.3. Descriptives and interpretation
In order to make the descriptives of the databases, we needed to analyze each table and column from each
database. Table and column names were mostly non-descriptive, sometimes in Russian and they often
seemed to hold duplicated information. We therefore interpreted each table and each column by manu-
ally sifting through the data. The result of this process can be found in the 36 tables with descriptives of the
analyzed tables in Appendix A. Based on this interpretation, we created the table names and descriptions
that can be found in the Tables 5.5 and 5.6 below. We interpreted the database from host 19 as the domain
registration database, and the database from host 18 as the infrastructure monitoring database.

Domain registration database: The domain registration database was copied twice: on 03-01-2016 and
05-04-2016. The database contains data on users, their balances, the domains they registered, the accompa-
nying name servers, the certificates used, as well as random personal data that seems to have been used for
creating fake WHOIS records. The database only held a login name for each user - that seems to be chosen
by the platform itself - and no other information such as email-accounts or other contact data. Mapping ac-
counts to malware strains is thus not possible besides by matching domains to for instance known blacklists
or DGA-domains.

Table 5.5: Tables of domain registration database

Table Unique rows First date Last date Description

balanceChanges 2,236 01-06-2015 04-04-2016 Log of balance charges to the accounts of users (often related to a certain domain)
dns 8 14-08-2015 09-10-2015 Overview of DNS-servers for some specific domains
domainsRegistration 3,633 2010-03-30 2017-04-04 Log of domains, linked to a user, nameservers and other info
firstNames 478 - - Overview of first names and their corresponding gender (male/female)
logsRegistrations 12,171 29-05-2015 05-04-2016 Log of different steps in the domain registration phase: checking availability,

registering, assigning or updating NICs and DNS-servers, adding certificates etc.
ownNameservers 670 - - Mapping of domain ID’s to the IP-addresses for their two nameservers
ssls 36 11-06-2015 23-02-2016 Overview of domains, their login information, the registered email and the SSL certificate details
transactionsBtc 16 04-03-2016 30-03-2016 Log of Bitcoin transactions made by uesrs
transactionsWebmoney 20 23-03-2016 04-04-2016 Log of WebMoney transactions made by users
userCommentWebmoney 7 23-03-2016 04-04-2016 Mapping of a WebMoney payment number, timestamp and a user
users 143 02-01-2015 04-04-2016 Overview of users, their balance, their idClient, register date, tariff and BTC address
whoisRandom 7,588 - - (Fake) personal data that is used to fill the WHOIS-info for registered domains
whoisRandomUsed 2,786 - - (Fake) personal data that is used to fill the WHOIS-info for registered domains
whoisCC 12 - - (Stolen) personal data that is used to fill the WHOIS-info for registered domains
words 16,922 - - List of random words, possibly used for seeding a DGA

Infrastructure monitoring database: The infrastructure monitoring database was copied 42 times be-
tween 23-03-2016 and 30-11-2016. The database contained data on the active servers in the proxy-architecture
and their role, domains, IP-addresses, name servers etc. Some tables held historical data, going back to March
2015. There were multiple identifiers that connect the infrastructure monitoring database to the domain reg-
istration database, such as account names and account identifiers. Table 5.6 describes the tables, columns
and their contents. Some tables held historical data (sometimes from dates preceding the first copy) while
other tables only hold data associated with the previous week. This means that although it seems that there
is data from March ’16 through November ’16, some tables only held data from a couple weeks in total. In
general, there are four types of tables: overview tables that provide an overview of a type of server, ip or do-
main, mapping tables that map one identifier to another, logging tables that log certain characteristics with
a certain interval in time, and settings tables that hold settings for a certain action or check.

5.4. High-level analysis of data source connections
The server images provided an in-depth view into the configuration of the servers, the services that were run
and the sub-network the hosts were a part of. The network data allowed us to observe the network data that
reaches and leaves hosts in the (managed) network, and, in the case of unencrypted data, study the content
of the data that has been received and send. The databases contained longitudinal information on the as-
sets used (servers, IPs, domains, DNS records, etc.) in their network and which customer is related to which
asset. By combining these data sources, we had access to information on both the technical and administra-
tive working of the Avalanche platform from March 2010 to November 2016, spanning a large proportion of
Avalanche’s total lifespan. For our high-level analysis of the connections between data sources, we extracted
host IP(s) from server image or network data, queried aggregated domain registration database and aggre-
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Table 5.6: Tables of infrastructure monitoring database

Table Unique rows First date Last date Description

clientLogs 2,719 07-03-2015 29-11-2016 A log that links client ID’s and domains to a certain action (1-4)
logs 8,108 08-08-2015 29-11-2016 A total log of which admin user did what actions (1-6) on which domain or IP
bots 3,324 18-07-2015 30-11-2016 An overview table that holds data on the currently active ’bots’ (servers) and their settings
botGroups 160 - - An overview table of the active bot groups, how they are functioning and if the groups have enough bots
countryIPs 86,016 - - A mapping from IP-ranges to 230 country codes
botsNS 8 03-03-2014 29-07-2014 A dated (2014) overview of nameservers that were used for bots
settings 1 - - The settings that were used to check whether the proxy-architecture worked as intended
checkSpeedServers 16 - - The IDs, IP-addresses and settings of the dedicated/C&C servers
checkSpeedSpeeds 109,156 01-06-2016 30-11-2016 Weekly log of the speed of servers at a certain date and time
dedicatedServers 1976 16-02-2016 30-11-2016 Overview of the dedicated servers and their settings
domainIPs 3,462 - - Mapping of domains to IP-addresses
domainIPsWork 3,046 - - Another mapping of domains to IP-addresses
domains 1744 03-04-2012 29-11-2016 Overview of domains and accounts that links those to a main identifier, a client identifier and a bot group.
domainsNS 10,960 - - Mapping a domain to nameserver.
nameServers 758 11-08-2015 30-11-2016 Overview of the nameservers, their domains and the ip-addresses of the domains.
nameServersAccount 172 - - Mapping of nameservers to accounts
nameServersDeleted 612 28-03-2015 25-11-2016 Historical log of the nameserver domains that were deleted.
layerServers 147 11-03-2016 30-11-2016 Overview of specific servers and their layer ID
trafficBots 36,861 16-03-2016 04-05-2016 Weekly log of the requested and sent count and length of the traffic to a certain bot IP-address on a timestamp
trafficDomains 41,451,002 16-03-2016 30-11-2016 Weekly log of the requested and sent count and length of the traffic to a certain domain on a timestamp
webChecks 33 02-12-2015 29-11-2016 The url that is used for the web checks

gated infrastructure management database for host IP(s) and queried network data for host IP(s). In Table 5.7
we provide an overview of our findings of these steps. We did not find any hits of the host IP-adresses in the
domain registration database and have therefore excluded the database from the findings.

Table 5.7: Findings of cross-referencing hosts to available data

Host Infrastructure management database Network data

# hits column:table has connections to host # connections Protocols

Host 1 1 redirIP:domains Yes - - -
Host 2 - - Yes - - -
Host 3 - - Yes - - -
Host 4 2 domainOrIP:logs Yes - - -
Host 5 21,327 domainOrIP:trafficDomains Yes Host 6 53,383 TCP (HTTP, TLS), ICMP
Host 6 75,261 domainOrIP:trafficDomains Yes Host 5 8,299,845 TCP (HTTP, TLS), UDP (Syslog)

1 ip:checkSpeedServers Host 7 3,513 TCP (HTTP)
18 ip:layers Host 15 1 TCP

320 proxyIP:dedicatedServers Host 18 210,620 TCP (HTTP, TLS, SMTP, MySQL, POP3)
635 proxyIP:bots

Host 7 20 redirIP:domains Yes - - -
Host 9 5 redirIP:domains No - - -
Host 10 3 redirIP:domains No - - -
Host 11 19 redirIP:domains No - - -
Host 12 - - Yes Host 16 7 TCP (HTTP)
Host 13 - - No - - -
Host 14 - - Yes - - -
Host 15 2 domainOrIP:logs Yes Host 6 4,603 TCP (HTTP, TLS)

4,169 domainOrIP:trafficDomains
Host 16 - - Yes Host 6 95 TCP (SSH)

Host 12 283 4 TCP (HTTP, SSH)
Host 18 176,275 TCP (HTTP, SSH, TLS, SMTP, POP3, MySQL)
Host 19 322 TCP (SSH)

Host 17 - - Yes - - -
Host 18 - - Yes Host 6 614 TCP (HTTP)

Host 12 4 TCP (HTTP)
Host 16 2,142 TCP (HTTP, POP3, SMTP)

Host 19 - - Yes - - -





6
Avalanche’s business model

To understand Avalanche’s business model, we describe the nine building blocks of the business model can-
vas in this chapter.

6.1. Value proposition
The value proposition of Avalanche was to provide the service of a stable proxy-infrastructure to other cy-
bercriminals. Their customers could use Avalanche bots as a virtual front for the malware backends, botnet
controllers or phishing websites they wanted to operate. Avalanche also added related services to make their
offering more appealing, like the (automated) domain registration system and even setting up servers for their
customers [27]. The unique selling point was most likely Avalanches reliability: its fast-fluxing architecture
had been running since 2009 and had weathered through years of advancement in IP- and domain-blocking
techniques.

6.2. Key partners
In order to deliver this value proposition, Avalanche relied on multiple partners. The main one of course
being the hosting providers. Avalanche rented mainly VPS and one dedicated server from different hosting
providers worldwide for their second-layer servers. Of the 16 servers that had the role of second-layer, only
two were rented from the same hosting provider. All 14 other servers were each purchased from different
providers, even if two servers were hosted in the same country.

The second important type of partners is domain registrars: based on the logs table of the domain regis-
tration database, Avalanche seemed to have used nine different domain registrars. These registrars are some-
what geographically spread over the world, with a registrar in HongKong, China, Russia, Germany, Pakistan,
Singapore, The Bahamas and two in the USA. Besides hosting providers and domain registrars, there was a
broad range of suppliers that Avalanche relied on, such as certificate providers, providers of stolen identifies
(which could have come from one of their customers, or for example from an online anonymous market-
place), VPN-provider(s) to SSH to the infrastructure via a safe connection, a cryptocurrency-platform to gen-
erate addresses for customers to send Bitcoin to and WebMoney and other online payment services to receive
money from customers.

Although we have not analyzed this, the FBI affidavit mentions that the administrators collaborated with
cybercriminals who ran money mule schemes [27]. We can also consider this party as a key partner, if
Avalanche used these money mule schemes themselves or if they offered this as a service to their customers.

6.3. Key activities
We characterize Avalanche’s key activities as follows:

• Building and maintaining a stable fast-fluxing infrastructure: this was the main activity for Avalanche.
Multiple sub-activities were part of this, such as (1) compromising servers so they can be used as first
layer bots, (2) configuring servers according to different roles and their requirements, and (3) monitor-
ing the servers and the correct working of the proxy architecture.

23
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• Building and maintaining a domain registration system: Avalanche built a domain registration sys-
tem, that was essentially a top-layer built onto several API’s of domain registrars. They needed to con-
nect this system with their architecture, in order for the automated processing of changes in domains,
nameservers and IPs to facilitate double fast fluxing.

• Customer service: An important part of Avalanche’s offering was providing customer service. There is
no such thing as a standard working of malware, which meant that Avalanche needed to work with its
customers to make the infrastructure work for them. Based on the variety of malware strains that were a
customer of Avalanche, Avalanche needed to facilitate multiple different protocols, domain generation
algorithms and service requests (such as databases to store victim data).

6.4. Channels
There were two main communication channels: online fora for marketing communication and jabber for
business and customer service communication. In the affidavit of the FBI, the fora Verified and Mazafaka are
named as fora where the administrators of Avalanche posted advertisements to potential customers [27]. For
business and service communication, the administrators of Avalanche had hosted their own jabber service,
through which they could be contacted.

6.5. Customer relationship
Maintaining good customer relationships is key to successfully operating a business in which both parties
are anonymous. This is similar to online anonymous markets, where reputation and customer service have
shown to positively correlate with vendor performance [62]. If we observe the average lifetime of a customer
based on the creation date of the account and the last time an update was made to one of its domains, the
in total 59 customers purchased services from Avalanche for 168 days. Although we have little to compare it
with, we would argue this does show that the average customer was satisfied enough with Avalanche’s services
to keep purchasing them for a non-negligible period of time.

6.6. Customer segments
In the business model canvas, there are different segments of customers if they want or need different ser-
vices, or have the incentive to pay for a differentiated service. For Avalanche, we hypothesize that the cus-
tomers that solely used Avalanche for fluxing, the customers that used their fluxing and registered domains,
and the customers that (also) purchased configured servers can belong to different customer segments. While
we do have the data to distinguish between customers that only registered domains and customers that also
purchased configured servers, the other data available does not allow us to study if the observed differences
can be explained from the type of malware used, the knowledge of the customer, its trust in the infrastructure
et cetera. Additionally, it is interesting to note that Avalanche did differentiate between customers in the price
they asked for services: some customers paid $25 for a domain registration, while others paid $35.

6.7. Key resources
The key resources that were needed to operate Avalanche’s business, were:

• Compromised servers: because these severs would take on the role of the first layer in the proxy ar-
chitecture, they needed to be able to handle large streams of traffic and thus have a stable internet
connection;

• Servers for second and third layer proxy services: these servers should be even more powerful and
well-connected, since the multitude of first-layer bots would all connect to these servers;

• Malware backend servers: all-round servers that could be configured to serve the differing needs of
Avalanche’s customers;

• Domains: domains were a resource necessary for running the proxy architecture;

• Payment services: payment services, preferably anonymous services, were needed to receive payments
from customers;

• Software: to configure the proxy architecture, to monitor the infrastructure, to register domains, to
automate tasks such as backups and synchronization etc.;

• Certificates: SSL certificates were needed to encrypt traffic;
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• Administrator(s): one or multiple skilled persons were needed to build the infrastructure, manage it,
provide service to customers etc.;

• Fake/stolen identities: these were needed of the domain registration and like also for the server regis-
tration;

• VPN-services: VPN-services were needed for the administrators to anonymously connect to the infras-
tructure.

6.8. Cost structure
Unfortunately, our data does not contain much information that relates to the actual costs Avalanche ex-
perienced for their operation. We hypothesize Avalanche faced somewhat fixed costs for maintaining the
infrastructure, based on the observation that the amount of second layer servers and identified management
servers did not fluctuate much over time. Additionally, initial investments might have been made to create
or procure the software used for configuration, management and domain registration, as well as purchasing
access to payment and VPN services. Other than that, we would argue that Avalanche only had variable costs.
When it would want to expand its architecture to serve more customers, the amount of compromised servers,
malware backends, domains, certificates, fake identities and administrator time would scale with the amount
of customers.

6.9. Revenue stream
Although we only have access to revenue related data in the form of the balanceChanges table in the domain
registration database, we estimated a monthly revenue for Avalanche. The balanceChanges table contains
data from the 8 month period between June 2015 and April 2016. In that period, the aggregate of all the spent
funds was nearly $60,000, or $7,500/month. This is the revenue that was generated through selling registered
domains to customers ($25-$35) and providing them with a server in the infrastructure ($100-$150) [27].
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Security controls

In this chapter, we describe Avalanche’s security controls based on our explorative analysis and application
of the business model canvas. We use the concepts of the framework we presented in chapter 3: stealth and
evasion, resilience to takedown and concealment of ownership.

7.1. Stealth and evasion
7.1.1. Proxy architecture
Avalanche used a three-layered proxy architecture, to create a front of inconspicuous servers that hid the
location, identifying characteristics and other behavior of the servers that were the initiators of the actual
attacks. This meant that security researchers trying to study the malicious behavior of Avalanche, based on
the network connections of the different types of malware, would only be able to follow the trail until the
outer perimeters of the Avalanche infrastructure: the fist layer bots. Moreover, there were many first layer
bots active at the same time, which gave Avalanche’s customers the opportunity to spread their connections
over multiple proxies. This meant that when researchers would observe two different infections, they might
connect to two seemingly completely different servers.

As a result of this, blocking strategies based on the IP and/or domain the malware contacted would have
been less effective, because the servers that launched the attacks and collected data from victims evaded
detection and could continue their practices even when one or multiple fist layer bots were taken down. This
means that using a proxy architecture increases the resilience of takedown, since it protects the takedown of
the more valuable and difficult to replace resources of the botnet.

7.2. Resilience to takedown
7.2.1. Double fast-flux
While employing proxies did make blocking strategies less effective, it was still the case that when a bot IP or
domain was blocked, the bot would need to be taken out of circulation. To combat that, Avalanche employed
a double fast-flux of the nameservers of domains and the IPs the nameservers replied. This fluxing happened
in the connections between victims and the first layer bots. Because we do not have a server image nor
network data from a first layer server, we observed the process of fluxing from the databases.

The process works as follows. The customer of Avalanche requests to register a domain via their domain
registration service, for example thisisnotamalwaredomain.com. Avalanche checks the availability of that
domain with one of its registrars, and then registers the domain and subtracts money from the customers
balance. Either a generic nameserver is set (like ns1.yahoo.com), or the domain receives an already reg-
istered domain as nameserver. In this example, we assume the latter: the two nameservers registered for
this domain are ns1.thisisreallysafe.com and ns2.thisisreallysafe.com. The registration process
is logged in the log table of the domain registration database. The domain is then added to the domainRegis-
tration table. In the infrastructure monitoring database, the domain is linked to the account of the customer
and to a domainID. In our example this domainID is linked to four different IPs, which are first layer bots. In
the domainsNS table, the domainID is linked to the ID of the nameserver. In the nameServers table we are
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able to observe that our domain thisisreallysafe.com had in total five different IPs associated to it over
the course of its lifetime. These IPs were also first layer bots, but then from the dedicatedServers table.

From the point of the victim, its system would try to connect to Avalanche based on the domain name
randomstring.thisisnotamalwaredomain.com. To retrieve the IP of this domain, the victim is referred to
its nameserver: ns1.thisisreallysafe.com. Querying this nameserver, the query would be forwarded to the IP
of the nameserver, which was a compromised first-layer bot. This first layer bot would most likely forward
the query to its second layer server, who would query the database, to then respond with one of the four
IPs connected to this domain as the location the victim should connect to. If the victim were to repeat this
process, it would observe different IPs for the nameserver as different IPs that the nameserver responded
with.

The goal of double fast-fluxing is to prevent other parties being able to observe patterns in domains,
nameservers and IPs, to avert attempts of creating blocklists and thus the takedown of the domain or IP.
Because this can also be seen as evading detection [55], we also categorize it as such.

7.2.2. Bot monitoring
Even with controls such as the proxy architecture and fast fluxing, a domain could get blocked and a server
could get taken down by the hosting provider or by the original owner of the server. To be able to quickly
respond to this, Avalanche implemented a variety of bot monitoring techniques. First, they monitored the
availability of the bots through monitoring the proxy architecture. Every x minutes, the central c&c server
would send a GET request to first and second layer servers of a test website (e.g. thisisatest.com) and observe
whether this request would be correctly forwarded. For both types of servers, it kept track of this in the
infrastructure monitoring server. Second, they monitored the traffic to domains the and speed of the servers
extensively: the table trafficDomains has 41,451,002 rows and holds data on the observed traffic to almost
60,000 domains. The table checkSpeed verified the speeds of the second layer servers.

While this allowed Avalanche to respond swiftly to misconfigurations, blockings and takedowns of servers,
it did make their whole operation more vulnerable to a whole infrastructure takedown: through wire tap
monitoring of each first, second or third layer server of their infrastructure and observing the requests to the
testing website, it was possible to infer the IPs, roles and locations of other servers in the proxy architecture.

7.2.3. Blacklist checking
Besides monitoring internally, Avalanche monitored its domains and IPs externally. It did that through scrap-
ing the publicly available Spamhaus block lists (SBL). The result of this monitoring can be found in multiple
of their tables of the infrastructure monitoring database: the inBlacklist column in the tables bots, domains
and nameServers, the notified column of the botGroups and dedicatedServers table, and the notifiedProblem
column of the layerServers and webChecks tables. Interestingly enough, there were no first-layer bots with
a inBlacklist value. Of the 916 domains in the infrastructure management server had 144 (or round 16%) a
inBlacklist value, provings its value of this monitoring of the records (administration) of Spamhaus.

7.2.4. Backups
We observed a two-hourly process between the central C&C server at that time, and a different host. Given
the automated nature of this communication (9 minutes before every odd hour), the used protocol (SSH) and
the size of the sessions (on average 20,000 databytes), we hypothesized the other host was probably used as
a backup for the central C&C server. The connection is initiated by this other host, but the majority of the
data is send from the central C&C to this host. Additionally, there is an automated SSH process from another
IP to this C&C server, smaller in databytes size but occurring more often (every 3-5 seconds), which could
indicate a current syncing of settings or data. Having backup and/or fallback servers that can be easily spun
up to work in case of a takedown or malfunctioning positively influences the respond time. Similar to the
bot monitoring process: an automated process from and to the central C&C server can be observed when
analyzing the network traffic of that server.

7.3. Concealment of ownership
7.3.1. VPN usage
One of the most important steps in the concealment of ownership, is to conceal the connections that reveal
the location and thus possible identity of the administrators. To analyze this, we extracted all unique source
IPs that used the SSH protocol in all the network data we had available and queried the MaxMind Anonymous
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GeoIP database. We observed 3,304 unique IPs using the SSH protocol, of which 3,238 could be found in
the MaxMind database. Of these, we excluded IPs that were classified by MaxMind with the anonymous
status of Anonymous VPN, Hosting Provider, Tor Exit Node and Public proxy. This left 2446 IPs, of which
we only selected the IPs with a Cable/DSL or Cellular connection type (excluding Corporate and Unknown),
resulting in 2156 IPs. To retrieve the identify behind an IP address, a court order is needed. This is historically
a bureaucratic and lengthy process, especially if the court order targets a legal entity in a different country.
This was mentioned by the German prosecutor in his interview about Avalanche: "Die Amerikaner lachen
nur, wenn sie Post von einem deutschen Richter erhalten!" [32]. Because of this, we focused only on IPs from
EU countries, arguing that those IPs were realistically vulnerable to deanonymization. Ultimately, these were
339 IPs of the 3,304, meaning that around 10% of the SSH connections made to the Avalanche infrastructure
were possibly not done via anonymizing services and from an IP that was vulnerable to an EU court order.

7.3.2. Registering domains with fake data
Before the implementation of GDPR policies that caused registrars to redact WHOIS data in 2018, data such
as the name, phone number and even address of the person who registered a domain would be published
by the registrar. When it was possible, Avalanche would activate the WHOIS-privacy settings. However, for
the registrars that did not have that as a possibility, Avalanche had multiple tables filled with data to be used
for these registrations. Because one of the table names contains ’CC’, we find it likely that these tables hold
stolen credit-card data. We queried the historical WHOIS data for some domains and saw the names and
addresses that matched data from the WHOIS tables of the domain registration database. By not only using
not their own data, but using a different ’persona’ for each domain that they registered, they made it difficult
to observe patterns in their registration and thus ownership of the domains.

7.4. Framework of Avalanche’s security controls
We add the observed security controls of Avalanche to the framework, to create the overview in Table 7.1.

Table 7.1: A framework of botnet security controls from previous work and Avalanche (A)

Blocking Takedown of infrastructure Attribution of botmaster(s)

Stealth Evasion Resilience to takedown Concealment of ownership

Technical Obfuscation [7] Polymorphism [18] P2P-architecture [6, 34]
Deleting binary [7] Domain Generation Algorithm [7, 50] Domain-flux [55]
Obfuscate process name [7] DNS C&C communication [7] Reputation schemes [6]
Protocol manipulation [51] P2P DTH for C&C communication [33] Non-persistent peer list entries [6]
- Proxy architecture (A) VPN usage (A)

Double fast-flux (A)

Administrative Bot monitoring (A) Registering domains with fake data (A)
Blacklist checking (A)
Backups (A)

Physical





8
Discussion and conclusion

Botnets and their plethora of resulting attacks continue to persist as an influential cybercrime threat. Anal-
ogous to increased outsourcing and the development of service-providing business models in all of cyber-
crime, botnet-as-a-service models have developed. These range from buying software to create botnets, to
renting access to a botnet, or specifically purchasing services performed by a botnet (such as attacks). Previ-
ous work on botnet has mostly focussed on creating detection and mitigation strategies, often at the bot or
bot-communication level. Other works have studied the effects of large-scale interventions like takedowns,
but have found these to be notoriously challenging and sometimes even ineffective. Recently, a shift to a
more economically focused analysis of botnets has occurred. These studies focus on the financial aspects of
operating a botnet business model, in order to find directions for alternative interventions or choke points.
Because this requires a behind-the-scenes look that is often unavailable, most studies have settled for surveys
or case studies. In this work, we have tried to fill this gap by performing an analysis of the business model and
security controls of Avalanche, through the analysis of ground truth data. The main research question of this
work was as follows: How did Avalanche ensure business continuity, given its adversarial context?

We reflect on our findings and discuss the limitations of our data and approach in section 8.1. We then
conclude by answering our research questions in section 8.2.

8.1. Discussion
8.1.1. Forensic investigation data as a source of empirical evidence
As the data for this research is not gathered through a scientific method designed by the authors, its com-
pleteness, accuracy and authenticity needed to be evaluated. The approach for this needed to be different for
every data source: data in the seized databases could have been manipulated by Avalanche’s administrators,
while wire tap data contains all network data measured by an external party (e.g., hosting provider or internet
service provider) and could thus be noisy or incomplete. Validation is especially difficult for server images:
a validation of the acquisition hash will validate the copy of the image, but does not provide any proof of
the validity of the data that was copied. We handled these challenges by employing multiple internal and
external validation approaches, described in chapter 5. Mainly, we validated the different data sources by
comparing them to one another, trying to substantiate conclusions based on findings from different sources.
Another challenge of using investigation data was that the data we received was from different hosts and from
different moments in time. This made it difficult to attribute findings at different moments in time to their
correct origin: did we observe something we saw before that has changed, or is this something new? For ex-
ample, there were plenty of domains from the domain registration database that we could not observe in any
network data. But because the network data stems from different hosts over time, we do not know why we
could observe some, and not others. Because of this, we limit our findings to observed patterns and abstain
from making statements of concepts we have not found to be present. All in all, we believe that the provided
data had the size, diversity and consistency to study Avalanche’s business continuity. A more in-depth under-
standing of for example the fast-fluxing behavior of Avalanche may require additional analysis, for example
from outside measurements.
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8.1.2. Avalanche in comparison to other botnets
We studied Avalanche and its business continuity in the context of Avalanche being a botnet. In other arti-
cles and studies, however, Avalanche is described as a "bulletproof hosting service" [39], "an infrastructure
platform, used to deliver malware and spam" [24], a "delivery and management platform" [48], "essentially
a cloud-computing platform designed for cybercriminals" [38] or a "cybercrime-as-a-service malware attack
network" [47]. While we believe Avalanche fits most of these descriptions, we do argue that Avalanches infras-
tructure fits the technical description of a botnet best. The first layer servers were compromised machines,
’bots’, of which the weak SSH password was exploited in order to install unwanted software (malware). These
first-layer bots were controlled from a command and control infrastructure and had (continuing) commu-
nication between bot and C&C. All this means the Avalanche infrastructure had all the main components
that make up a botnet. Different from a more standard botnet, was Avalanche’s behavior. The bots did for
example not propagate and infect other machines with the same malware they had. One could also argue
that Avalanche’s first layer bots technically did not perform any attacks directly, but only tunneled data, espe-
cially in the case of the different other botnets that used Avalanche (like Rovnix and Andromeda). However,
from the point of view of victims infected with malware from Avalanche’s infrastructure, Avalanche bots were
the C&C servers that their malware-infected systems made connections to, making Avalanche something
akin a C&C-botnet. Additionally, our analysis of Avalanche’s security controls showed overlap with known
stealth, evasion, resilience and concealment techniques of botnets, strengthening the comparison. So, while
Avalanche can be described as a cybercrime-as-a-service, cloud-computing, malware attack, delivery and
management bulletproof hosting platform, we believe its similarity in assets and evasion techniques sup-
ports our classification of Avalanche as a botnet.

An important distinction between Avalanche and other botnets, is that of the services it supplied and
thus its business model. Because the foundation of our analysis lies in the application of the concept op
business continuity and the business model canvas, we believe our findings should only be compared with
botnets that have a customer-serving service-oriented business model. For botnets where the customer is the
administrator itself, many concepts of the business model change. In Avalanche, the key activities, channels
and revenue streams are intertwined with having customers. Similarly, from deviant theory we can argue
that because there are other assets to defend, the value trade-off differs for botnet administrators without
customers. We therefore think the application of these findings to a non-customer-serving botnet merits a
new analysis.

8.2. Conclusion
In order to answer our main research question, we first answer our two sub-questions:

1. What was Avalanche’s business model?
Avalanche’s business model was built on the value proposition of providing customers with a stable fast-
fluxing proxy-infrastructure through which they could proxy their traffic to and from potential victims. The
three key activities that Avalanche performed to fulfill this value proposition were: building and maintain-
ing a stable fast-fluxing infrastructure, building and maintaining a domain registration system and customer
service. The necessary resources for this were compromised servers (servers with compromised SSH pass-
words), servers for second and third layer proxy services (rented themselves at 14 different geographically
spread hosting providers), malware backend servers (rented themselves, accessed by customers), domains
(bought via nine different registrars), payment services (Bitcoin, WebMoney and other), software (e.g. mon-
itoring), certificates (SSL), administrators, fake/stolen identities and VPN-services. The key partners they
relied on were hosting providers, domain registrars, certificate providers, providers of stolen identifies, VPN-
providers, cryptocurrency-platform and other online payment service providers. Avalanche communicated
via two types of channels: online fora for marketing purposes and its own Jabber service for customer service
purposes. They created relationships with customers that lasted on average 5,5 months and differentiating
factors for customer segments other than types of services they bought could not be observed. There was no
data to estimate any costs, but the revenue estimate based on 8 months of data showed an average revenue
of $7,500 per month.

2. What were Avalanche’s security controls?
We observed seven security controls, of which three were technical controls and four were administrative
controls. The technical controls were the proxy architecture, double fast flux and VPN usage. The proxy
architecture of Avalanche consisted of three layers: a first layer of compromised server (’bots’), a second
layer of proxying servers, and a third layer of a central C&C server and a variety of malware backends. The
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first layers were grouped in ’bot groups’ and different customers of Avalanche made use of different of these
bot groups. The proxy architecture was a technical control to prevent the reconnaissance and takedown
of the following tiers of servers, by shielding them with compromised and easily replaceable servers. The
double fast-fluxing behavior created through cycling the IPs and nameservers of domains mainly evaded
the detection of patterns in domain-IP combinations. This prevented (or at least, hindered) the takedown
of these domains and IPs through detection algorithms and blacklists. VPN usage was necessary to let the
administrators connect anonymously to the infrastructure. Our analysis showed that around 10% of the SSH
connections to the infrastructure were done from an IP vulnerable to deanonymization through an EU court
order.

The four administrative controls were bot monitoring, blacklist checking, backups and registering do-
mains with fake data. The correct working of the infrastructure was checked automatically in multiple differ-
ent ways. Through this monitoring, the administrators had an administrative safeguard to spot misconfigu-
rations, notice takedowns and debug errors. The administration of another party, Spamhaus, was (mis)used
to check for blocked domains and IPs. To be resilient if a takedown of the central C&C server were to hap-
pen, backup processes to other hosts were setup. Finally, Avalanche used fake data for registering domains,
creating a layer of administrative deception.

We can now answer our main research question: How did Avalanche ensure business continuity, given
its adversarial context?
The adversarial context in which Avalanche operated, generated different threats to its business model: Avalanche
had the attention of the industry working group APWG from 2009 until 2011 and survived their coordinated
actions to limit the uptime of Avalanche domains. Avalanche learned from their experience of hosting phish-
ing sites and used this knowledge to create a service of reliably and complaint-free proxying of malicious
traffic. Based on our findings, we can conclude that Avalanche responded to its adversarial environment
through employing different technical and administrative controls and creating a business model to achieve
technical and administrative redundancy.

Avalanche’s security controls achieved business continuity through (1) evasion or detection and (2) the
adaptability and quick response in case a threat did materialize. The proxy architecture and double fast fluxed
worked in shielding and hiding the malware servers, and Avalanche was as a result able to serve customers
with this service. The Spamhaus blocklist notified them of blocked domains and their monitoring & backup
services allowed them to quickly identify incidents and resolve them through the replacement of servers if
needed. Similar to their technical capabilities of switching IPs and domains, Avalanche used multiple differ-
ent hosting providers and registrars, all geographically dispersed. Of the 10 key resources needed to run the
business model, only the administrators themselves and their software are cumbersome to replace, making
their business model also redundant to changes in partners, resources or activities.
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A
Descriptives of tables and columns of the

infrastructure monitoring database

Table A.1: High-level descriptives of balanceChanges table (rows = 2,236)

Column Type Mean Min Max NumUnique

idUser Integer 18.69 2 58 49
idAdmin Integer 0.35 0 2 3
action Integer 0.96 0 5 6
domain String - - - 1040
amount Float 2.46 -150.0 2000.0 81
datetime Datetime - 01-06-2015 04-04-2016 -
idTransaction 0.04 0 10 7

Table A.2: High-level descriptives of dns table (rows = 8)

Column Type Mean Min Max NumUnique

idDns Integer 12.38 8 16 8
idDomain Integer 2371.0 2158 2546 4
recordType String - - - 3
ip IP-address - - - 5
mxPriorityValue 8.75 0 10 2
datetime Datetime - 14-08-2015 09-10-2015 -

41



42 A. Descriptives of tables and columns of the infrastructure monitoring database

Table A.3: High-level descriptives of domainsRegistration table (rows = 3,633)

Column Type Mean Min Max NumUnique

idDomain Integer 1799.24 1 3540 3513
datetimeInserted Datetime - 29-05-2015 04-04-2016 -
domain String - - - 3460
idUser Integer 9.14 1 58 45
dateBeg Date - 2010-03-30 2016-04-04 -
dateExp Date - 2011-03-30 2017-04-04 -
idRegistrar Integer 2.41 1 9 9
adminComment String - - - 47
nameservers String - - - 531
NIChandle String - - - 414
isHidden Binary 0.19 0 1 2
isLocked Binary 0.68 0 1 2
datetimeLockedChanged Datetime - 29-07-2015 04-04-2016 -

Table A.4: High-level descriptives of firstNames table (rows = 478)

Column Type Mean Min Max NumUnique

idName Integer 239.5 1 478 478
firstName String - - - 472
gender Binary 1.64 1 2 2

Table A.5: High-level descriptives of logsRegistrations table (rows = 12,171)

Column Type Mean Min Max NumUnique

idLog Integer 6771.69 35 12897 12171
idUser Integer 12.52 0 59 52
action Integer 27.13 0 102 40
isError Binary 0.07 0 1 2
comment String - - - 3904
domain String - - - 1935
request String - - - 8958
response String - - - 8366
datetime Datetime - 29-05-2015 05-04-2016 -
registrar Integer 3.49 0 9 10

Table A.6: High-level descriptives of ownNameservers table (rows = 670)

Column Type Mean Min Max NumUnique

idNS Integer 308.26 1 636 630
idDomain Integer 3056.47 2468 3536 311
host String - - - 10
ip IP-Address - - - 332



43

Table A.7: High-level descriptives of ssls table (rows = 36)

Column Type Mean Min Max NumUnique

idSSL Integer 21.42 2 43 36
datetimeInsert Datetime - 11-06-2015 23-02-2016 -
domain String - - - 36
idUser Integer 1.86 1 2 2
idRegistrar Integer 0.44 0 4 2
regName String - - - 2
adminComment String - - - 26
email Email-Address - - - 36
sslCsr String - - - 36
sslKey String - - - 36
sslCrt String - - - 36

Table A.8: High-level descriptives of transactionsBtc table (rows = 16)

Column Type Mean Min Max NumUnique

idTransaction Integer 4.5 1 8 8
idUser Integer 25.62 1 58 6
datetimeAdd Datetime - 04-03-2016 30-03-2016 -
amount Float 437.55 -0.27000001 5747.92274689 10
recipientAddress String - - - 11
hash String - - - 15

Table A.9: High-level descriptives of transactionsWebmoney table (rows = 20)

Column Type Mean Min Max NumUnique

idTransaction Integer 5.5 1 10 10
datetimeAdd Datetime - 23-03-2016 04-04-2016 -
amount Float 5746531.7 0.0 68921216.0 12
paymentComment String - - - 10
transactionIdentifier Integer - - - 19

Table A.10: High-level descriptives of userCommentWebmoney table (rows = 7)

Column Type Mean Min Max NumUnique

idComment Integer 4.0 1 7 7
userComment String - - - 7
datetimeAdd Datetime - 23-03-2016 04-04-2016 -
idUser Integer 46.43 38 58 5



44 A. Descriptives of tables and columns of the infrastructure monitoring database

Table A.11: High-level descriptives of users table (rows = 143)

Column Type Mean Min Max NumUnique

idUser Integer 29.6 1 59 52
login String - - - 52
passwdHash String - - - 52
balance Float 63.18 -125.0 1934.0 31
minBalance Float -35.26 -350.0 0.0 15
enabled Binary 0.98 0 1 2
adminComment String - - - 49
datetimeRegister Datetime - 02-01-2015 04-04-2016 -
tariff object 69702813.29 -2092748416 2085736576 56
showUrl Interger -46.28 -128 2 4
btcAddress String - - - 54

Table A.12: High-level descriptives of whoisRandom table (rows = 7,588)

Column Type Mean Min Max NumUnique

idWhois Integer 2404.72 118 5263 5146
fullName String - - - 6095
firstName String - - - 577
lastName String - - - 4236
address String - - - 4789
city String - - - 3308
state String - - - 50
country String - - - 2
postalCode String - - - 4019
phone String - - - 4795

Table A.13: High-level descriptives of whoisRandomUsed table (rows = 2,786)

Column Type Mean Min Max NumUnique

idWhois Integer 1621.63 216 3023 2786
fullName String - - - 1410
firstName String - - - 144
lastName String - - - 1054
address String - - - 112
city String - - - 55
state String - - - 4
country String - - - 1
postalCode String - - - 83
phone String - - - 112
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Table A.14: High-level descriptives of whoisCC table (rows = 12)

Column Type Mean Min Max NumUnique

idWhois Integer 473.08 468 478 11
fullName String - - - 11
firstName String - - - 11
lastName String - - - 11
address String - - - 11
city String - - - 10
state String - - - 8
country String - - - 2
postalCode String - - - 11
phone String - - - 11

Table A.15: High-level descriptives of words table (rows = 16,922 )

Column Type Mean Min Max NumUnique

idWord Integer 8461.5 1 16922 16922
word String - - - 16260





B
Descriptives of tables and columns in the

domain registration database

Table B.1: High-level descriptives of clientLogs table (rows = 2,719)

Column Type Mean Min Max NumUnique

idClient Integer 211.88 8 264 39
action Integer 1.52 0 3 4
domain String - - - 2273
datetime Datetime - 07-03-2015 29-11-2016 -

Table B.2: High-level descriptives of logs table (rows = 8,108)

Column Type Mean Min Max NumUnique

idUser Integer 1.59 1 3 3
action Integer 3.51 1 6 6
domainOrIP String - - - 6529
datetime Datetime - 08-08-2015 29-11-2016 -

Table B.3: High-level descriptives of bots table (rows = 3,324)

Column Type Mean Min Max NumUnique

idBot Integer 122,333.03 121,032 122,861 939
botGroupID Integer 253.55 100 462 56
inBlacklist Binary 0.0 0 0 1
loginDetails String - - - 981
ip IP-address - - - 936
proxyIP IP-address - - - 20
ipAlias IP-address - - - 65
addDate Datetime - 18-07-2015 29-11-2016 -
checkDatetime Datetime - 23-03-2016 30-11-2016 -
lastCheckDatetime Datetime - 14-03-2016 30-11-2016 -
nginxConfigUpdateDatetime Datetime - 05-02-2016 29-11-2016 -
mainScriptUpdateDatetime Datetime - 06-02-2016 30-11-2016 -
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48 B. Descriptives of tables and columns in the domain registration database

Table B.4: High-level descriptives of botGroups table (rows = 160)

Column Type Mean Min Max NumUnique

idBotGroup Integer 307.66 100 462 61
idLayer Integer 3.46 1 6 5
countYellowAlert Integer 0.18 0 2 3
countRedAlert Integer -0.09 -1 1 3
botsEnough Integer 0.63 -1 1 3
notified Binary 0.34 0 1 2

Table B.5: High-level descriptives of countryIP table (rows = 86,016)

Column Type Mean Min Max NumUnique

startIP IP-address - - - 86,016
endIP IP-address - - - 86,016
countryCode String - - - 230

Table B.6: High-level descriptives of botsNS table (rows = 8)

Column Type Mean Min Max NumUnique

idBotNS Integer 49.0 22 58 8
working Binary 0.38 0 1 2
ip IP-address - - - 8
addDatetime Datetime - 03-03-2014 14-07-2014 -
checkDateTime Datetime - 29-07-2014 29-07-2014 -
lastCheckDatetime Datetime - 20-07-2014 29-07-2014 -

Table B.7: High-level descriptives of settings table (rows = 1)

Column Type Mean Min Max NumUnique

intervalRefresh Integer 30.0 30 30 1
intervalRefreshSpeed Integer 5760.0 5760 5760 1
intervalRefreshOnline Integer 15.0 15 15 1
remotePort Integer 80.0 80 80 1
localPort Integer 80.0 80 80 1
minSpeedRedir Integer 5.0 5 5 1
configURL URL - - - 1

Table B.8: High-level descriptives of checkSpeedServers table (rows = 16)

Column Type Mean Min Max NumUnique

idServer Integer 44.56 23 53 16
alertSpeed Integer 100.0 100 100 1
active Binary 1.0 1 1 1
ip IP-address - - - 16
checkURL URL - - - 16

Table B.9: High-level descriptives of checkSpeedSpeeds table (rows = 109,156)

Column Type Mean Min Max NumUnique

idServer Integer 42.7 23 53 18
speed Integer 903.79 0 1537 247
datetime Datetime - 06-01-2016 30-11-2016 -
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Table B.10: High-level descriptives of dedicatedServers table (rows = 1,976)

Column Type Mean Min Max NumUnique

idServer Integer 4048.23 2698 4561 526
works Binary 1.22 0 2 3
needDNS Binary 1.0 1 1 1
worksDNS Binary 1.25 0 2 3
gotDNS Binary 0.1 0 1 2
needMail Binary 0.0 0 0 1
worksMail Binary 0.0 0 0 1
inArchive Binary 0.32 0 1 2
notified Binary 0.09 0 1 2
ip IP-address - - - 524
ipAlias IP-address - - - 20
proxyIP IP-address - - - 16
loginDetails String - - - 733
addDatetime Datetime - 27-06-2015 29-11-2016 -
DNSconfigUpdate Datetime - 16-02-2016 30-11-2016 -
mainScriptUpdate Datetime - 16-02-2016 30-11-2016 -

Table B.11: High-level descriptives of domainIPs table (rows = 3,462)

Column Type Mean Min Max NumUnique

idDomain Integer 6330.13 5637 6924 757
ipServer IP-address - - - 357

Table B.12: High-level descriptives of domainIPsWork table (rows = 3,046)

Column Type Mean Min Max NumUnique

idDomain Integer 6351.48 5637 6924 757
ipServer IP-address - - - 358
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Table B.13: High-level descriptives of domains table (rows = 1,744)

Column Type Mean Min Max NumUnique

idDomainOrAccount Integer 6204.23 598 6924 916
domainOrAccount Integer - - - 891
idMain Integer 5596.44 598 6918 59
idClient Integer 212.24 8 264 43
numBots Integer 4.97 0 10 3
idBotGroup Integer 84.35 0 461 43
idBotGroupReserve Integer 129.63 0 462 28
maxDomainsAccount Integer 3.21 0 35 12
needChange Binary 0.27 0 1 2
isMain Binary 0.18 0 1 2
inArchive Binary 0.27 0 1 2
work Binary 1.39 0 2 3
inBlacklist Binary 2.86 0 3 4
doRedir Binary 0.17 0 1 2
useOwnNS Binary 0.16 0 1 2
ftpLogin String - - - 60
ftpPassword String - - - 67
homedir String - - - 891
info String - - - 164
redirIP IP-address - - - 76
createDatetime Datetime - 03-04-2012 29-11-2016 -
expireDatetime Datetime - 06-02-2015 23-07-2115 -
blacklistDatetime Datetime - 13-11-2014 29-11-2016 -
insertDatetime Datetime - 16-07-2015 29-11-2016 -

Table B.14: High-level descriptives of domainsNS table (rows = 10,960)

Column Type Mean Min Max NumUnique

idDomain Integer 3233.46 0 6924 6112
idNS Integer 1424.05 1 2531 1062

Table B.15: High-level descriptives of nameServers table (rows = 758)

Column Type Mean Min Max NumUnique

idNS Integer 2401.86 2068 2535 173
needChange Binary 1.0 1 1 1
work Binary 0.91 0 2 3
inBlacklist Binary 2.93 2 3 2
notified Binary 0.02 0 1 2
ownNSforDomain Binary 0.11 0 1 2
domain String - - - 172
registrar String - - - 24
commentForUser String - - - 3
ns1 IP-address - - - 239
ns2 IP-address - - - 242
lastChangeDatetime Datetime - 22-02-2016 30-11-2016 -
blacklistDatetime Datetime - 20-01-2016 29-11-2016 -
addDatetime Datetime - 11-08-2015 29-11-2016 -
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Table B.16: High-level descriptives of nameServersAccount table (rows = 172)

Column Type Mean Min Max NumUnique

idNS Integer 2427.87 2068 2531 159
idDomainOrAccount Integer 5318.49 0 6918 49

Table B.17: High-level descriptives of nameServersDeleted table (rows = 612)

Column Type Mean Min Max NumUnique

idNS Integer 2352.28 2040 2659 612
domain String - - - 606
deleteDatetime Datetime - 28-03-2015 25-11-2016 -

Table B.18: High-level descriptives of layerServers table (rows = 147)

Column Type Mean Min Max NumUnique

idLayerServer Integer 16.63 5 26 16
isActive Binary 1.0 1 1 1
works Binary 1.03 1 2 2
notifiedProblem Binary 0.02 0 1 2
ip IP-address - - - 16
comment String - - - 3
lastChangeDatetime Datetime - 11-03-2016 30-11-2016 -

Table B.19: High-level descriptives of trafficBots table (rows = 36,861)

Column Type Mean Min Max NumUnique

requestCount Integer 2.02 1 49 27
requestLength Integer 0.41 0 13 13
sentLength Integer 560.29 0 15347 2307
sentLengthBody Integer 559.89 0 15336 2288
trafficType Binary 2.0 2 2 1
ip IP-address - - - 9
logDatetime Datetime - 16-03-2016 04-05-2016 -

Table B.20: High-level descriptives of trafficDomains table (rows = 41,451,002)

Column Type Mean Min Max NumUnique

idDomainOrAccount Integer 3010.64 0 6918 45
requestCount Integer 35.19 1 65778 6175
requestLength Integer 70.83 0 192240 20846
sentLength Integer 720.31 0 8754200 106613
sentLengthBody Integer 714.44 0 8754200 104679
idLayerServer Integer 16.2 0 26 17
trafficType Binary 0.14 0 2 3
domainOrIP String - - - 59849
logDatetime Datetime - 16-03-2016 30-11-2016 -
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Table B.21: High-level descriptives of webChecks table (rows = 33)

Column Type Mean Min Max NumUnique

works Binary 1.0 1 1 1
notififiedProblem Binary 0.0 0 0 1
url URL - - - 5
insertDatetime Datetime - 02-12-2015 05-11-2016 -
lastChangeDatetime Datetime - 06-03-2016 29-11-2016 -
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