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Background Information

HIL Simulation has been applied in many industry fields for decades, for instance it

is already the standard approach for development, customization and production tests

of ECU [4]. Nowadays, for the need of design, implementation and testing of more

complicated control systems, HIL Simulation is increasingly being required [5].

The following example will give a clear explanation about how HIL Simulation works:

an industrial company designed and built a feedback control system (which is used to

control the rising speed, direction and monitor the workload) for the operation work

of a crane, but before it could be put into use in reality, the capability of this control

system needs to be tested. The most straightforward way to do the test, with no doubt,

is connecting the feedback control system with a real crane and creating a closed-loop-

control system. The result of this test will be convincing since it represents the reality

with 100%. However, such a testing way could be expensive, time-consuming and even

dangerous. To eliminate these negative factors without damaging the quality of testing

result, instead of using a real crane, a simulation model which is able to accurately

mimic the dynamic behavior of the crane could be involved (as shown in Fig 1).

Figure 1: Example of HIL Simulation System

This way of testing will be economical, highly-efficient and safer compared to the former

one. Here, if the feedback control system is named as controller, the real crane as plant

1



Symbols 2

and the simulation model of crane as simulator, this typical example could be extended

to describe the characteristics (as well as the main components) of HIL Simulation.

Therefore, the definition is given as follows:

Hardware-In-the-Loop Simulation is a type of real-time simulation which contains hard-

ware components in a closed-loop control system. It could be used in the development

and test of the controller since this type of simulation shows how the controller re-

sponds, in real time, to realistic virtual stimuli. On the other hand, it could also be used

to determine whether the simulator (simulation model of the plant) is valid or not.

With all the advantages mentioned above, maritime industries has also embraced HIL

techniques, especially in naval projects. The development and testing of the propulsion

control system of the Dutch M-class frigates could be given as an early example while

the testing for Italian Navy gives other examples [6] [7].

Figure 2: A ship model during the free sailing test

Introducing HIL techniques into model-scale ship test, however, is a novel application

and the main reason to do so is: modify the traditional way of doing model-scale test

(e.g. free sailing test shown in Fig 2) so as to acquire a more complete and realistic result.

Currently, model-scale ship tests still fail to take the dynamics of involved shipboard

systems into account. For example, when the model-scale free sailing tests in waves are

carried out, the testing condition of propulsion system (including electric motor, shaft

and propeller) of the ship model will either be under constant propeller speed, constant

shaft torque or under constant motor power. Since in waves all the three are actually

variables whose dynamic behavior is governed by the drive train characteristics, it is

obvious that neither of these options reflects the realistic behavior of propulsion system.

Therefore, a natural question can be arisen: to what extent, and in which cases, the
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dynamics of shipboard systems affect the behavior of overall system [1]. By exploring

the application of HIL Simulation in towing tank, the research program Potential of

Hardware-In-the-Loop Simulation in the Towing Tank will provide a mean to answer

this question.

The ambition is to develop an instrumented model scale ship of which the components of

the drive train and its control are included by means of a correctly scaled time domain

computer simulation model of the propulsion system [1]. In other words, a new type

of experimental setup which integrates model scale ship tests with real-time dynamic

simulation of the shipboard systems including their controls will be created.

Figure 3: Schematic visualization of full scale and model scale system [1]

The schematic visualization of the whole system is shown in Fig 3, from the bottom

figure it could be acknowledged that the simulation model will be running on a real-

time processor which, via I/O boards, provides electric power to an electric motor of the

instrumented model scale ship, then the motor will drive in turn the shaft and propeller.

The drive train partially consists of the hardware (amplifier, motor, shaft as well as

propeller) and partially consists of the real-time simulation model of the prime mover

(for instance a Diesel Engine or an electric motor). If this new integrated test setup

could become reality, the traditionally separate disciplines of ship hydromechanics, ma-

rine engineering and controls could be considered simultaneously including interactions

with each other and with the dynamic environment [1]. Furthermore, the new setup

is also able to quantify the expected behavior of the full-scale system thus the safety,

environmental friendliness and the workability of ship will be increased as well.

To develop this setup, there are two main challenges that need to be overcome. First

one is the hydrodynamic scale effect due to the model scale of the hull and propeller
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compared with full scale. Although scaling laws have been made and developed by

many scientists during the past centuries, to what extent these detrimental scale effects

could influence our foreseen system and how to deal with it remains to be a question.

The other challenge is to ensure equivalent propulsion plant dynamics on model scale

compared to full scale [1], in other words, is to ensure the dynamic behavior of the drive

train reflects reality.

Figure 4: Visualization of effect of unrepresentative model scale dynamics on the
operating cloud [1]

The example given in [1] visualizes the importance: as shown in Fig 4, unrepresentative

dynamics of the model scale setup results in a totally different operating cloud (shape

& orientation) compared with full scale, which in this particular case would lead to

activating the protective features of the engine control system too often, again leading

to erroneous impression of system behavior in waves or during maneuvers.

All in all, to build this test-setup, researches should focus on three domains: the full-scale

domain, the model-scale domain and the scaling laws between full-scale & model-scale.

As a sub-project, this Thesis deals with the model-scale domain research.

In the model-scale domain, effort should be made on exploring the hydromechanical

characteristics of model hull, the thrust characteristics of propulsor, the mechanical

characteristics of the drivetrain and the electrical characteristics of the prime-mover (in

this particular case the prime-mover is an electric motor).

Although many researches regarding model-scale ships have been elaborated in the liter-

ature, most of them focus on investigating maneuvering behavior of the model ship. For

instance, from the year 1998 to 2016, NTNU constructed two 1:70 model scale supply

ships (Cybership I and Cybership II), works about determining maneuvering coefficients

and the corresponding control techniques have been reported in several papers [8] [9] [10]

[11] [12] [13] [14], yet only two of them ([9] and [10]) have mentioned the identification of

propulsor thrust characteristics and none of them gave information about identification
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of the characteristics of drivetrain or prime-mover (electric motor). Therefore, in this

Thesis, a complete research about identifying the propulsion system’s characteristics of

a model-scale ship (Tito Neri) is elaborated.

Besides, as shown in Fig 3, propulsion control has been involved in the test-setup.

Although modeling of the control system will not be presented in this Thesis, some

discussions about linearization of the propulsion system will be given as a preparation

of future work.



Chapter 1

Research Objectives

6
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Based on the foregoing, there are two main topics in this Thesis. The first

topic is identifying the characteristics (or parameter identification, to be

specific) of a model-scale ship propulsion system and the second topic is

linearizing the propulsion system. In this Chapter, the structure of this

Thesis will be introduced, including the scope, research questions and the

outline.

1.1 Scope

First of all, as shown in Fig 5, the Thesis only focuses on model-scale research therefore

all the issues related to full-scale ship are out of boundary. Meanwhile, challenges

regarding scale effects have not been explored in the graduation project as well.

Figure 5: Scope of the graduation project

Additionally, although the ultimate goal of the research program Potential of Hardware-

In-the-Loop Simulation in the Towing Tank is developing a test setup which could be

used to predict the behavior of ship-board systems under free-sailing condition, works

need to be done one step after another. In this Thesis, instead of free-sailing, the

relatively simple operating conditions, including dry-run, bollard-pull and straight line

sailing condition will be adapted to analyze the behavior of the propulsion system.

The model-scale ship which has been chosen as the research object of this Thesis is

Tito Neri (shown in Fig 6). During the past few years, a fleet of this model boat with

same instruments on board has been used for educational purposes in course MT218

Mechatronics for all MSc students of Maritime Technology in TU Delft. During the

course, an online and a offline Dynamic Positioning Model are required to be built

based on thrust allocation and PID control, while the characteristics of the propulsion

chain, are again out of consideration, just like the researches that have been done by

NTNU mentioned in last Chapter.
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In order to identify the parameters of Tito Neri’s propulsion system, some tests (or

experiments) need to be designed, conducted and the values of those parameters could

be determined through test result analysis. After the parameters are identified, corre-

sponding simulation model of this propulsion system is able to be built and values of

the identified parameters could be validated by means of result comparison between the

simulation model and the test.

Besides the parameter identification, simulation and validation, this particular propul-

sion system will be linearized which aims at, as mentioned in the last Chapter, providing

a basis of propulsion control that will be introduced in the future.

Figure 6: Picture of Model Boat ”Tito Neri”

1.2 Research Questions

Based on the analysis of the aim of this graduation project, research questions are given

as follows:

• Which parameters of this propulsion system should be identified?

• How to determine the value of those parameters?

• After being determined, how to validate the values of those parameters?

• How to linearize this non-linear propulsion system?

Basically, the Thesis is written to answer these four questions, and the outline is given

in next section.
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1.3 Outline

The Thesis is structured in 7 Chapters. Chapter 2 is used to give information about

propulsion system of Tito Neri and based on the provided information, mathematical

model to describe the behavior of the propulsion system could be built. During this

procedure, the parameters which need to be identified will become clear and the method

to identify them will also be presented in Chapter 2. Chapter 3, 4 & 5 deals with intro-

ducing and analyzing the tests which are required to identify those parameters together

with the simulation and validation works. In Chapter 3 the effort made on acquiring

parameters of DC motor and friction model is given, and Chapter 4 provides readers

one way to identify the hull resistance curve. Some information related with propeller

open-water diagram is shown and discussed in Chapter 5. After all the works mentioned

above, it comes to linearization of the propulsion system, which will be discussed in

Chapter 6. Chapter 7 ends the Thesis with summarized results, conclusions and further

recommendations.



Chapter 2

The Mathematical Model of Tito

Neri’s Propulsion System &

Related Discussions
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In this Chapter the propulsion system of Tito Neri is looked through. In

section 2.1, firstly some basic information, such as the components of the

propulsion chain is given. And based on that, the mathematical model of

this propulsion system could be built. Meanwhile, by examining the model,

parameters that require to be identified in order to analyze the system be-

havior also become clear and are summarized in section 2.2. Therefore, in

section 2.3 and 2.4, ways to determine the values of those required parame-

ters are elaborated and discussed.

2.1 Derivation of the Mathematical Model

Before starting the derivation, basic information regarding with Tito Neris propulsion

system (Fig 10 is the block diagram) should be given. This model boat has two shaft

lines, and each shaft line consists of one ducted azimuth thruster, which is driven by a

permanent magnet DC motor through a Z-shape driven train. Within the drive train,

there are two horizontal shafts, one vertical shaft and two bevel gears (with a total gear

ratio of 1/3).

Figure 7: Block diagram of propulsion system of model boat Tito Neri

Since this model boat is used for course MT218 to test some DP models, in order to

achieve a PI feedback control, one RPM sensor (which works as a pulse counter) is

mounted on each horizontal shaft while the Arduino Board is responsible for counting

the RPM voltage pulses and transferring the value to laptop, as shown in Fig 7. Ad-

ditionally, the Arduino Board also generates PWM signals for motor controllers after

communicating with the virtual control system in laptop.

In the foregoing it is acknowledged that the prime mover (among each shaft-line) of

this propulsion system is a DC motor, therefore some fundamental characteristics and

equations of a DC motor actuated system must be given before going into details.
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Fig 8 shows the model of a permanent magnet DC motor: left part indicates the sim-

plified electrical circuit and right part gives the mechanical model of the rotor. The

dynamic behavior of the DC motor could be described by using the following two dif-

ferential equations:

Figure 8: Model of a permanent magnet DC motor

The first equation describes the electrical behavior which follows Kirchhoff’s voltage law:

L · dia
dt

= va −R · ia −Kb · ω (2.1)

The second equation describes the mechanical behavior which follows Newton’s second

law:

IP ·
dω

dt
= Km · ia −Mf −ML (2.2)

In Eq 2.1 and 2.2, va is the armature terminal voltage, ia is the armature current and

ω is the angular speed of rotor. R is armature resistance, L is armature inductance and

IP is moment of inertia. Kb is back EMF constant, which, after derivation, is equal to

Km [15][16], the motor torque constant. ME = Km · ia stands for the torque provided

by motor, Mf represents the friction torque and ML is the load torque. vb = Kb · ω in

Fig 8 shows the effect of back EMF voltage.

In the system shown above, va is the input signal, ia and ω are always selected as state

variables. The choice of output signal will depend on needs.

Apart from Eq 2.1 and Eq 2.2, the behavior of ship propulsion system is always interacted

with ship hull hydrodynamics through propeller. For instance, under straight-line sailing

condition when maneuvering is no longer under consideration, as the block diagram (in
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which the dynamics of prime mover is excluded) shown in Fig 9, two loops are connected

by the operation of propeller.

Figure 9: General Ship propulsion block diagram [2]

On the left side it shows the shaft rotation loop, whose behavior could be determined

by Eq 2.3:

2π · Ip ·
dn

dt
= MS −Mprop (2.3)

In which Ip is the polar moment of inertia of the shaft, MS stands for shaft torque,

Mprop stands for propeller torque and n represents the rotating speed of shaft.

On the right side the ship translation loop is given, whose behavior could be determined

by Eq 2.4:

mship ·
dvs

dt
= Fprop − Fship (2.4)

In which mship is the ship mass (included the added mass of water), Fprop stands for

the thrust force provided by propeller, Fship stands for ship resistance and vs represents

ship speed.

Apparently, if transmission efficiency ηTRM is taken into account, shaft torque MS in

Eq 2.3 could be transformed to brake torque Mb provided by the prime mover through

MS = Mb · ηTRM . And after looking through the working principle of prime mover,

expression of Mb could also be specified, as for DC motor, for instance, the brake torque
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Mb = Km · ia. Therefore, a combined version of Eq 2.2 and Eq 2.4 could be derived

to describe the torque characteristics (or Shaft rotating dynamics) of the propulsion

system.

Based on the analysis given above, the mathematical model of Tito Neri’s propulsion

system should contain three basic equations, which are going to describe the system

behavior of electric circuit (Eq 2.1), ship speed dynamics (Eq 2.4) and shaft rotating

dynamics individually. Until now, the former two equations are already clear enough to

be adapted, yet the third one requires a detailed research about the propulsion chain,

in which the effect of gearbox reduction ratio and friction torques must be involved, to

be derived.

2.1.1 Components & Torque Analysis of Tito Neri’s Propulsion Chain

To begin with, it is necessary to introduce the components of Tito Neris propulsion

chain. As shown in Fig 10, the propulsion chain is consisted of 8 main components:

Figure 10: Propulsion Chain of Tito Neri

1. DC Motor

2. The first horizontal shaft which is connected to DC motor (also known as motor

shaft), and its moment of inertia is IP1

3. Shaft bearing

4. The first bevel gear, with a reduction ratio igbt equal to 3:1
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5. The vertical shaft, whose moment of inertia (together with parts connected to the

bevel gear)is IP2

6. The second bevel gear with a reduction igbb equal to 1:1

7. The second horizontal shaft which is connected to propeller (also known as pro-

peller shaft), and its moment of inertia is IP3 (keep notice that IP3 also includes

the inertia of propeller)

8. The azimuth propeller equipped with nozzle

With the information given above, torque analysis along the propulsion chain could now

be undertaken. Since there are two bevel gears, the whole chain needs to be broken

down when doing torque analysis.

As shown in Fig 11, the whole chain is separated into 3 individual parts when bevel gears

are separated. If defining the angular speed of component-1 (DC motor) and component-

2 as ωE , then according to the transmission law, the angular speed of component-5, 7

and 8 is ωE
igbt

, which is also equal to the angular speed of propeller ωp.

Figure 11: Torque Analysis of Propulsion Chain

Examine the first part (which contains DC motor, motor shaft and one gear), and if Eq

2.2 is applied, there is:
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IP1 ·
dωE
dt

= Km · ia −MBF −MGT1 (2.5)

In which MBF is the torque caused by friction between bearing and motor shaft (in

future analysis it also contains the friction torque within the DC motor), MGT1 is the

reacting torque from the driven gear.

Assuming there is no power loss within component-4 (actually the loss has been included

by MF1), the relation between MGT1 and M
′
GT1 is:

M
′
GT1 = igbt ·MGT1 (2.6)

And examining the second part gives:

IP2

igbt
· dωE
dt

= M
′
GT1 −MF1 −MGT2 (2.7)

In which MF1 is the mixture of friction torques (which comes from component-4 and

the friction between component-5 and its plastic cover), MGT2 is the reacting torque.

If the same assumption about power loss within bevel gear is made, there is:

M
′
GT2 = igbb ·MGT2 (2.8)

By examining the third part, it gives:

IP3

igbt · igbb
· dωE
dt

= M
′
GT2 −MF2 −MLP (2.9)

In which MF2 is the mixed friction torque and MLP is the propeller load torque.

After substituting step by step, from Eq 2.5 to Eq 2.9, the overall relation of torque

(which determines the behavior of shaft rotation loop in the meantime) is:

(IP1 +
IP2

i2gbt
+

IP3

i2gbt · i2gbb
) · dωE

dt
= Km · ia −MBF −

MF1

igbt
− MF2

igbt · igbb
− MLP

igbt · igbb
(2.10)

Eq 2.10 is the equation which describes torque characteristics of Tito Neri’s propulsion

system in every details.
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2.1.2 Mathematical Model to describe Tito Neri’s Propulsion System

After discussions given in section 2.1.1, the three basic equations of the mathematical

model which describe the behavior of Tito Neris propulsion system are finally able to

be determined.

As elaborated in last section, the first equation is used to describe the electrical circuit

of DC motor. This equation is expressed as:

L · dia
dt

= va −R · ia −Kb · ωE (2.11)

The second one is a transformation of Eq 2.10 in which propeller load torque MLP is

substituted by open-water torque Q, which represents the behavior of shaft rotation

loop:

(IP1 +
IP2

i2gbt
+

IP3

i2gbt · i2gbb
) · dωE

dt
= Km · ia −MBF −

MF1

igbt
− MF2

igbt · igbb
− Q

igbt · igbb
(2.12)

To be specific, the open-water torque Q = KQ · ρ ·D5 · ( ωE
igbt·igbb2π )2.

And the last one describes ship translation loop:

mship ·
dvs
dt

= Fprop − Fship (2.13)

Now, the mathematical model of Tito Neri’s propulsion system is completely built with

Eq 2.11, Eq 2.12 and Eq 2.13.

2.2 Summary of Parameters that need to be identified

Obviously, before using the mathematical model to analyze the behavior of Tito Neri’s

propulsion system, some parameters must be identified. Below they are divided into 3

different types:

The first type is DC motor related parameters, including electric resistance R,

electric inductance L and electromotive force constant Kb.

The second type is mechanical parameters, including friction torquesMBF ,MF1,MF2

and moment of inertia IP1, IP2, IP3.
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The last type is hydrodynamic parameters, including expression of the resistance

curve R = α · ves and expressions of propeller open-water diagram KT = X(J),KQ =

Y (J).

2.3 Potential Ways to determine the value of DC motor

related parameters & Mechanical parameters

In this section, potential ways to identify the DC motor related parameters & mechanical

parameters mentioned in last section are discussed. This discussion also provides solid

theoretical basis for the tests which will be elaborated and analyzed in coming chapters.

Parameter identification of DC motor is not a novel topic and quite a few literature could

be found. The method given by their authors could be summarized as follows: firstly,

a step voltage is added on the DC motor when the motor is isolated (which means the

motor is running under no-load or free condition) and its responses, most often are the

current and the rotating speed should be recorded. Then in most of the literature, such

as [17], [18] and [19], the author adapted the Parameter Estimation tool in Simulink to

determine the value of those parameters: the Simulink simulation model of DC motor

should be built in which all the parameters need to be estimated were given their initial

values, now by adding the same input voltage signal and after step by step of iterations,

the Estimation toll is able to adjust the value of those parameters (within a given range)

and make the running result of the simulation model be close to the recorded test data.

This method is proven to be a very convenient and highly-efficient way for parameter

identification, if, the initial values have been wisely chosen (which means the initial values

are already close to the final determined values of the parameter) or the adjusting range

has been reasonably given (which means the operating range for adjusting the parameter

value should not be infinite). However, the DC motor of Tito Neri is a grey-box and

very limited information could be found. Therefore, the Parameter Estimation tool is

not very applicable in this case and some other strategies should be adapted.

2.3.1 Identification of R, Kb and MBF

As mentioned above, the DC motor should be isolated when input voltage is given. As

for Tito Neri, although isolating DC motor completely from the propulsion chain is im-

possible due to the chosen construction, a similar condition could be created by removing

component-4 in Fig 10. In this condition, which is called Condition-I, only the DC
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motor (component-1), motor shaft (component-2) and the shaft bearing (component-3)

are involved in, as shown in Fig 12 and the mathematical model is given as follows:

For electrical circuit, the equation is:

L ·
dia

dt
= va −R · ia −Kb · ωE (2.14)

For shaft rotation loop, there is:

IP1 ·
dωE

dt
= Km · ia −MBF (2.15)

And ship translation loop does not even exist in this condition.

Figure 12: Torque Characteristic of Condition-I

By looking through Eq 2.14 and Eq 2.15, it is acknowledged that there are four param-

eters need to be identified: R, Kb, MBF and IP1. Among them, the value of R, Kb and

IP1 are constant by their definition, now if the Coulomb Friction Model is adapted to

describe MBF , there is:

MBF =

ME (ME ≤MS , ωE = 0)

MC (ME > MS , ωE 6= 0)
(2.16)

Eq 2.16 suggests that after overcoming static friction and the shaft starts to rotate, the

value of MBF could also be treated as constant. Although later on this assumption is

found to be not very accurate when a small value of input voltage is added which results
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in a low rotating speed (more details will be given in Chapter 3), in most cases it is

reasonable enough to be adapted.

Based on the discussion given above, the method to identify parameters of Tito Neri’s

DC motor (along with IP1) could now be introduced. If a step voltage with constant

value Va,i is added on the system under Condition-I, when it reaches the steady state,

there is:

R · Ia,i +Km · ΩE,i = Va,i

Km · Ia,i −MBF = 0
(2.17)

In Eq 2.17, Ia,i is the steady state value of current while ΩE,i is the steady state value

of angular speed, and both of them could be measured during test. Therefore, there

are two equations containing three unknown variables (R, Kb and MBF ). Theoretically,

by adding another step voltage whose value is Va,i+1 and record the steady state value

Ia,i+1, ΩE,i+1, a new equation set could be generated:

R · Ia,i+1 +Km · ΩE,i+1 = Va,i+1

Km · Ia,i+1 −MBF = 0
(2.18)

Apparently, by considering Eq 2.17 and Eq 2.18 simultaneously, the value of R, Kb and

MBF could be determined as follows:



MBF =
Va,i+1 · Ia,i − Va,i · Ia,i+1

ΩE,i+1 − ΩE,i · Ia,i+1

Ia,i

Km =
Va,i+1 − Va,i · Ia,i+1

Ia,i

ΩE,i+1 − ΩE,i · Ia,i+1

Ia,i

R =
Va,i+1 − Va,i ·

ΩE,i+1

ΩE,i

Ia,i+1 − Ia,i ·
ΩE,i+1

ΩE,i

(2.19)

However, due to the noise of the measured data (as shown in Chapter 3), later on it is

acknowledged that the values determined by just considering test results of two steady

states are not qualified enough. Therefore, in order to reduce the impact of test error to

an acceptable level, more test results under different steady states should be analyzed

simultaneously by using the following method.

Now if n different steps of constant voltage are added on the system and the correspond-

ing steady state values are recorded, the following equation set (in matrix form) could

be formed:
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

Ia,1 ΩE,1 0
...

...
...

Ia,i ΩE,i 0
...

...
...

Ia,n ΩE,n 0

0 Ia,1 −1
...

...
...

0 Ia,i −1
...

...
...

0 Ia,n −1


︸ ︷︷ ︸

A


R

Km

MBF


︸ ︷︷ ︸

x

=



Va,1
...

Va,i
...

Va,n

0
...

0
...

0


︸ ︷︷ ︸

b

(2.20)

In order to solve Eq 2.20, which is over determined when 2n > 3, the least-squares

method should be applied. The mathematical theory of this method is explained below:

”Least-squares” actually means approximating the solution of this over determined sys-

tem by minimizing the sum of squared residuals S(x), whose funstion is defined as

below:

S(x) = ||Ax− b||2 (2.21)

The minimum of S(x) is found by setting the gradient to zero. And since the system

shown in Eq 2.20 is linear, the linear least-squares should be adapted with the solution

given below:

x̂ = (ATA)−1AT · b (2.22)

In Matlab, if matrix A and vector b have already been created, using least-squares

method to determine values inside vector x could be achieved by command b\A or by

using command:

x = regress(b, A)

Therefore, through data analysis of steady states under Condition-I, the value of R,

Km and MBF could be determined. Now recall Eq 2.14 and Eq 2.15, it will be observed

that the value of inductance L and moment of inertia IP1 still remain to be determined.

Due to multiplying with the differential part, their values cannot be determined by
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steady state analysis but could be determined by dynamic analysis, which is given in

the next section.

2.3.2 Identification of L and IP1

If a step voltage signal is added on a DC motor while the motor shaft has already

been blocked and forbidden to rotate, in other words ωE remains to be 0 so there

is no back EMF effect, the equation to describe its behavior is:

L · dia
dt

= Va,0 −R · ia (2.23)

Va,0 is the input nominal voltage. Since Eq 2.23 is a typical first order linear differential

equation, by solving it, there is:

ia(t) =
Va,0
R
· (1− e−

R
L
t) (2.24)

From Eq 2.24 it is acknowledged that when time t goes to infinite, current ia(t) will

approach its limit (or its ideal steady state value)
Va,0
R . Now if define the time τele (in

seconds) that the current takes to reach 1− e−1 ≈ 0.63 of its ideal steady state value as

electrical time constant (ia =
Va,0
R · (1− e

−1) ≈ 0.63 · Va,0R ), then:

τele =
L

R
(2.25)

Eq 2.25 provides a convenient way to determine the value of electric inductance L: firstly

determine the value of electrical time constant τele by analyzing the test data of current,

then since the value of electric resistance R has already been determined, there is:

L = τele ·R (2.26)

As for determining the value of IP1, theoretically, it is always possible by measuring the

dimension of the shaft then doing calculation. But again due to the chosen construction,

that the motor shaft (component-2) consists of many sub-components whose dimensions

are very difficult to be measured, the value determined through this way is not accurate

enough. Therefore, another method, which is similar to the analysis of L given above, is

raised up: if a step voltage is added on the DC motor, the behavior could be described

by Eq 2.1 and 2.2. Since the effect of L could be neglected compared with back EMF

effect on the change of voltage, the equations can be simplified as follows:
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
0 = va −R · ia −Kb · ωE

IP1 ·
dωE
dt

= Km · ia −MBF

(2.27)

From the upper equation it is acknowledged that ia = va−Kb·ωE
R , after substituting it

into the second equation, a first-order linear equation will be generated as below:

IP1 ·
dωE
dt

= Km ·
va −Kb · ωE

R
−MBF (2.28)

If there is no load and the friction torque MBF could be assumed as a constant, Eq 2.28

can be solved with the result:

ωE(t) = (
Va,0
K m

− R ·MBF

K2
m

) · (1− e−
K2

m
R·IP1

·t
) (2.29)

Just like the definition of electrical time constant given ealier in this section, the time

when the angular speed ωE reaches 1 − e−1 ≈ 63% of its ideal steady state value, is

defined as the mechanical time constant τmech:

τmech =
R · IP1

K2
m

(2.30)

Therefore, since the value of Km and R are already known, IP1 could be determined by:

IP1 =
τmech ·K2

m

R
(2.31)

2.3.3 Identification of MF1 + MF2

Determining the value of MF1 and MF2 requires propulsion system running under dry

condition, which is called Condition-II. Compared with Condition-I, the difference is

obvious: under Condition-II, the bevel gear (component-4) is mounted back and the

whole propulsion chain has been involved.

And if n steps of constant voltage is now added on the DC motor in Condition-II, the

steady state of step i could be partly described by:

igbt · igbb · (Km · I
′
a,i −MBF )− igbb ·MF1 −MF2 = 0 (2.32)
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So the sum of MF1 and MF2 could be determined by:

igbb ·MF1 +MF2 =

∑n
i=1 igbt · igbb(Km · I ′

a,i −MBF )

n
(2.33)

It is impossible to determine MF1 and MF2 individually, because component-6, the other

bevel gear, cannot be removed without damaging the system. But this will not influence

the coming work, since model simulation & validation only requires the sum value of

MF1 and MF2.

2.3.4 Identification of IP2 and IP3

Unlike the identification of IP1 which requires a relatively complicated analysis, since

the structure of the vertical shaft (component-5) and the propeller shaft (component-7)

is very simple that could be treated as circular columns, the value of IP2 and IP3 are

able to be determined just by measuring and calculating.

2.3.5 A summary of section 2.3

Based on the discussion presented in this section, it is acknowledged that identification

of DC motor related parameters and mechanical parameters requires the propulsion

system to operate under different dry conditions (Condition-I and II), therefore, cor-

responding dry-run tests will also be elaborated in Chapter 3.

2.4 A brief discussion about acquiring hydrodynamic pa-

rameters

The identification of hydrodynamic parameters, to be specific, the expression of re-

sistance curve R = α · ves and expressions of propeller open-water diagram KT =

X(J),KQ = Y (J), traditionally should be acquired individually from towing tank resis-

tance test and propeller open-water test. Yet the situation is special for Tito Neri and

the tests have to be designed and conducted in special ways, which will be presented in

Chapter 4 and Chapter 5.
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In this Chapter, the value of DC motor related parameters and mechani-

cal parameters will be determined. As elaborated in last chapter, in order

to acquire enough data to determine their values, dry-run tests under two

different conditions should be carried out. After all the values have been de-

termined, they will be validated together with the simulation model of the

propulsion system under dry-run condition. Since the simulation model is

structured on the mathematical model whose equations are transparent and

valid, by comparing the result of simulation and experiment, the reliabil-

ity of determined parameter values could be checked. Meanwhile, potential

reasons that may lead error are also discussed in this Chapter.

3.1 Setup & Input Signal of Dry-run Tests

From section 2.3, it is acknowledged that the dry-run test should be conducted under

two conditions, and the only difference between them is without or with the bevel gear

(component-4). Therefore, in this Thesis, the dry-run test conducted under Condition-

I, in which component-4 has been removed, is named as Test-I while the test conducted

under Condition-II is named as Test-II. Obviously, the same test-setup and test pro-

cedure are applicable for both of them.

3.1.1 Setup of Dry-run Tests

Figure 13: Test-setup designed by the author & teammates
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Based on foregoing, the test-setup should include a signal generating system to provide

the input voltage signal, a response measurement system to measure the required sys-

tem response (in this case are current and rotating speed) and a recording system to

record the measurement data. Fig 13 shows the setup designed by the author and his

teammates.

To be specific, the list of equipment is given as follows:

• PC installed with specific dSPACE-MatLab software

• dSPACE-simulator

• Voltage Amplifier

• Allegro ACS712 Current Sensors (Portside & Starboard)

• RPM Sensors (Portside & Starboard)

• DEWE-43A Board and SIRIUS Board

• Laptop

The schematic block diagram is given in Fig 14 to make a clear view of the connections

between equipments:

Figure 14: Schematic block diagram of dry-run test setup

As shown in Fig 14, there is a special PC installed with specific dSPACE-MatLab soft-

ware (which is unable to shown in Fig 13), through which virtual waveform signals

(for instance step signal) could be generated. The dSPACE-simulator is responsible for

transforming these virtual signals to PWM voltage signals. Then, the voltage signal

generated by dSPACE-simulator is added on DC motors after being amplified by the
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Voltage Amplifier. To measure the responses of the propulsion system, one RPM sensor

and one current sensor are amounted on each shaft-line. The values that they mea-

sured, together with the voltage signals will then be transferred to different channels

of DEWE-43A Board and SIRIUS Board (RPM signal is treated as digital input while

current signal is analog input). These dSPACE boards are connected to users laptop

through USB cables and the data will be recorded by DEWE Software installed on the

laptop.

The brand of DC motor is GRAUPNER 900BB TORQUE (Nr 6373), the datasheet of

current sensor is given in Appendix A, and the introduction of boards is presented in

Appendix B.

3.1.2 Choice of the Input Signal

According to section 2.3, the required input signal is ”n different steps of constant

voltage”, and 2n must be greater than 3 for applying least-squares method later on.

After considering the maximum supply voltage of the current sensor, which is 8 volts,

the following signal was designed:

Figure 15: The Input Voltage Signal of Test-I and Test-II

As shown in Fig 15, there are 9 steps of constant voltage, ranging from 1.3 volts to 7.8

volts.

3.2 Analysis of Measured Data

After conducting the dry-run tests by using the setup introduced in last section, the

data of motor speed and armature current was recorded. By using DEWE Sofware,
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the recorded data is able to be transformed to a Matlab data file for analysis and the

analyzed result will be used to determine the values of required parameters.

As mentioned before, the propulsion system has two individual shaft-lines, a portside

one and a starboard one, therefore the data analysis is done individually.

The measurement data of Portside shaft-line in Test-I is shown in Fig 16:

(a) The Input Voltage Signal

(b) Rotating Speed of Portside DC Motor

(c) Current of Portside

Figure 16: Test-I Portside Result
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Fig 3.16(b) and Fig 3.16(c) indicate that although there is some noise, especially in Fig

3.16(c), when step voltages are given, the system is able to reach corresponding steady

states.

Although there are 9 steps in total, the first 2 steps and the last 2 steps cannot be used

for data analysis because the fluctuation is too obvious, and the trend is not very stable.

Therefore, only the data from step 3 to step 7 should be analyzed.

To mitigate the effect of noise, at each step, the average value of measured data after

it becomes relatively stable, is considered to be the steady state value. Table 3.1 shows

the result of data analysis of Portside data in Test-I.

Table 3.1: Average Value of input voltage, angular speed and current at
Portside (Test-I)

Step 3 Step 4 Step 5 Step 6 Step 7

Voltage (V) 3.8715 5.8633 7.8667 5.8649 3.8707

Current (A) 0.9694 0.9807 1.0014 0.9881 0.9604

ΩE (rad/s) 157.4619 266.6455 378.0969 269.1617 160.2212

The numbers shown in Table 3.1 will be applied for determining the value of Portside

R, Km and MBF by using the method elaborated in section 2.3.1.

As for Starboard (Test-I) and Test-II, the same way to analyze the measured data

(picking up the data of step 3 to step 7 and taking average) is still applicable. Based on

the result, the steady state values to identify Starboard R, Km, MBF and MF1 +MF2

for both sides could be provided.

Figure 17: The structure of motor shaft

From section 2.3.2 it is acknowledged that the identification of L and IP1 requires analysis

of dynamic state to determine electrical time constant τele and mechanical time constant

τmech. However, due to the chosen construction of shaft-line, the motor-shaft (shown

in Fig 17) cannot be blocked, therefore a few more discussion is needed and will be

presented in next section.
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(a) The Input Voltage Signal

(b) Rotating Speed of Starboard DC Motor

(c) Current of Starboard

Figure 18: Test-I Starboard Result

Table 3.2: Average Value of input voltage, angular speed and current at
Starboard (Test-I)

Step 3 Step 4 Step 5 Step 6 Step 7

Voltage (V) 3.8715 5.8633 7.8667 5.8649 3.8707

Current (A) 1.1029 1.2561 1.1982 1.2199 1.1283

ΩE (rad/s) 157.1673 260.9594 369.7664 260.0559 155.0502
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(a) The Input Voltage Signal

(b) Rotating Speed of Portside DC Motor

(c) Current of Portside

Figure 19: Test-2 Portside Result

Table 3.3: Average Values of input voltage, angular speed and current at
Portside (Test-2)

Step 3 Step 4 Step 5 Step 6 Step 7

Voltage (V) 3.8625 5.8586 7.8669 5.8657 3.8657

Current (A) 1.0289 1.0571 1.0756 1.0433 1.0165

ΩE (rad/s) 150.5462 257.6103 367.4970 258.7384 148.7701
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(a) The Input Voltage Signal

(b) Rotating Speed of Starboard DC Motor

(c) Current of Starboard

Figure 20: Test-2 Starboard Result

Table 3.4: Average Values of input voltage, angular speed and current at
Starboard (Test-2)

Step 3 Step 4 Step 5 Step 6 Step 7

Voltage (V) 3.8625 5.8586 7.8669 5.8657 3.8657

Current (A) 1.1592 1.2259 1.1088 1.1430 1.1280

ΩE (rad/s) 150.3995 257.0141 370.6636 259.7126 150.7998
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3.3 Value Determination of Required Parameters

3.3.1 Value Determination of R, Kb and MBF

So now, if the method demonstrated in section 2.3.1 is applied, there is:



Ia,3 ΩE,3 0
...

...
...

Ia,n ΩE,n 0
...

...
...

Ia,7 ΩE,7 0

0 Ia,3 −1
...

...
...

0 Ia,n −1
...

...
...

0 Ia,7 −1


︸ ︷︷ ︸

A


R

Km

MBF


︸ ︷︷ ︸

x

=



Va,3
...

Va,n
...

Va,7

0
...

0
...

0


︸ ︷︷ ︸

b

(3.1)

After substituting the data given in Table 3.1 into Eq 3.1, by using the Matlab command,

vector x could now be calculated. And the result is:


R

Km

MBF

 =


1.0418

0.0181

0.0177


Which indicates that for Portside shaft-line, R = 1.0418Ω, Km = 0.0181N/m · A,

MBF = 0.0177N ·m.

For Starboard shaft-line, by using the same calculation method, there is:


R

Km

MBF

 =


0.8923

0.0183

0.0217


Which indicates that for Starboard shaft-line, R = 0.8923Ω, Km = 0.0183N/m · A,

MBF = 0.0217N ·m.

Like other parameters whose value will be determined in this section, the value of R, Kb

and MBF is going to be validated in next section together with the simulation model.
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3.3.2 Value Determination of MF1 + MF2

Now if the method elaborated in section 2.3.3 is recalled, for Portside, the value of

MF1 +MF2 could be determined by:

MF1 +MF2 =

∑7
n=3 3 · (Km · I

′
a,n −MBF )

5
(3.2)

After calculation, the sum of MF1 and MF2 is 0.00352N · m, which indicates that at

Portside:

MF1 +MF2 = 0.00352N ·m

As for Starboard, the sum of MF1 and MF2 is:

MF1 +MF2 = 0.00351N ·m

3.3.3 Value Determination of L & IP1

As mentioned before, if the method given in section 2.3.2 would be applied to determine

the value of L, the key point when carrying out the measurement is ”forbid the motor

shaft rotating” in order to eliminate the back EMF effect. This is very difficult to

conduct on Tito Neri because it is highly possible to damage the motor shaft.

However, after examining Fig 16 and Fig 18, it is observed that current changes much

faster than the shaft rotating speed: when a new step voltage is added, the current only

takes 0.005 to 0.006 seconds to reach its peak while the shaft rotating speed takes 0.3

to 0.4 seconds to reach its next steady state. Therefore, a rough assumption could be

made: since shaft rotating speed changes too slowly compared with current, the back

EMF effect could be ignored among the process in which current increases to its peak.

With this assumption, the electrical time constant of this DC motor driven system could

also be calculated based on the recorded data of Test-I, which is shown in Fig 21.

In Fig 21, among each peak there are three indicating points: at the lowest one the

current started to increase and at the highest one the current reaches the peak. The

electrical time constant could be roughly determined by the difference of abscissa be-

tween the lowest point and the middle point. A detailed procedure is given below:
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(a) Current Portside with Related Data

(b) Current Starboard with Related Data

Figure 21: Portside and Starboard Current with Related Data

Figure 22: Analysis of the second peak

The second peak in Fig 3.21(a) is chosen to elaborate the calculation procedure. As

shown in Fig 22, at Point A current starts to increase from 1.03737, and at Point C
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it reaches the peak 4.46121. Therefore, by calculation, (4.46121 − 1.03737) · (1 − 1
e ) +

1.03737 ≈ 3.238A, another indicating point (Point B) should have a vertical ordinate

of 3.238. After Point B has been defined, according to the definition of electrical time

constant, τele = xB−xA = 0.0007. Therefore, based on Eq 2.26, L = τele ·R = 0.00073H.

After analyzing all peaks shown in Fig 21 and applying the value of R which has been

determined in section 3.3.1, the electric inductance of Portside shaft-line is:

L = 0.000739H

For Starboard shaft-line, the value is:

L = 0.000557H

3.3.4 Discussion about the value of Moment of Inertia

As mentioned in section 2.3.2 and section 2.3.4, the value of Ip1,Ip2 and Ip3 has to be

determined through different ways due to the chosen construction of shaft-line.

As is all known, the moment of inertia of a circular column could be calculated as follows:

Ip =
mr2

2
(3.3)

In which m stands for the mass, which is also equal to ρ · V , and r stands for the radius

of the column. Based on Eq 3.3, the calculation result of Ip2 is given below:

Ip2 =
mGr

2
G

2
+
msr

2
s

2

= 2.06293× 10−6(kg ·m2)

Since component-5 contains two parts, a plastic gear and a steel shaft, the result of Ip2

shown above is a combination. The detailed procedure in which ρ and V are involved is

omitted here.

Likewise, the calculation result of Ip3 is:

Ip3 =
mpr

2
p

2
+
msr

2
s

2

= 1.9635× 10−8(kg ·m2)
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While measuring the dimension of component-5 and 7, the dimensions of component-1

was also measured roughly. Based on the measurement result, Ip1 is calculated below:

Ip1 =
N∑
i=1

mir
2
i

2

= 1.11052× 10−5(kg ·m2)

Although the result shown above is not accurate enough and cannot be used in reality,

it provides the lower limit of Ip1 since some parts of component-1 are unable to be

measured. In other words, the actual value of Ip1 should definitely be larger than

1.11052× 10−5(kg ·m2).

And since Eq 2.31 indicates that Ip of motor torque could be determined by mechanical

time constant τmech. Therefore, by examining the result of Test-I, which is shown in Fig

23:

(a) nE Portside with Related Data (b) nE Starboard with Related Data

Figure 23: Portside and Starboard nE with Related Data

The second peak in Fig 23 is zoomed in and shown in Fig 24. The calculation procedures

are omitted here because they are exactly the same as the ones of L. After calculation,

the Ip of Portside motor shaft is:

Figure 24: Analysis of the second peak (RPM)
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Ip1 = 1.994× 10−5(kg ·m2)

As for the Starboard motor shaft, the result is:

Ip1 = 1.974× 10−5(kg ·m2)

Since both values given above are larger than 1.11052× 10−5(kg ·m2), so far they could

be thought as reasonable.

*Summary of the values acquired so far

Until now, all the DC motor related parameters as well as mechanical parameters have

been determined, their values are summarized in Table 3.5:

Table 3.5: DC motor related & Mechanical Parameters

Portside Starboard

R (Ω) 1.0418 0.8923

L (H) 0.000739 0.000557

Km (N ·m/A) 0.0181 0.0183

MBF (N ·m) 0.0177 0.0217

MF1 +MF2 (N ·m) 0.00352 0.00351

Ip1 (kg ·m2) 1.994× 10−5 1.974× 10−5

Ip2 (kg ·m2) 2.06293× 10−6 2.06293× 10−6

Ip3 (kg ·m2) 1.9635× 10−8 1.9635× 10−8

3.4 Model Validation of Dry-run Tests

Before applying the parameters shown in Table 3.5 for future use, their values need to

be validated. In order to do this, the best way is: building the simulation model of Tito

Neri’s propulsion system (under dry-run condition) with the parameters determined so

far, and compare the model output (angular speed & current) with the measured data

when same input voltage signal is added. Therefore, validation of parameters has been

combined with model validation.

From section 3.1 it is acknowledged that there are two dry-run tests undertaken: Test-

I and Test-II. Since they reflect two different circumstances of the propulsion system

(with and without the bevel gear), and their conceptual models are also different, the

simulation models should be built and validated individually as well. Therefore, in
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section 3.4.1 the simulation model of Test-I will be presented, together with the output

comparison between the simulation model and the test results. Once they do not match

perfectly with each other, the leading reasons will also be discussed. And in section 3.4.2

the information of Test-II will be given.

3.4.1 The Simulation Model & related Discussions of Test-I

The conceptual model of a single shaft-line under Test-1 could be summarized into two

basic equations: Eq 2.14 and 2.15, which are given below:


L · dia

dt
= va −R · ia −Kb · ωE

IP1 ·
dωE
dt

= Km · ia −MBF

Based on these two equations, by using relative blocks in Simulink, the simulation model

of a single shaft-line is shown in Fig 25:

Figure 25: Simulation model of a single shaft-line under Test-I

Clearly, the input of this model is the voltage signal and the outputs, or the state vari-

ables, are current and rotating speed. The two cycles in the simulation model indicate

the two basic equations, and the interaction between those two equations is reflected by

the block Kb and Km.
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Another point of this model that needs to be addressed is the friction part, whose

expression is summarized in Fig 3.4. Unlike the traditional expression of Coulomb

Friction Model, in which the static friction and the kinetic friction is switched based

on the maximum static friction and rotating speed, the switch function in Fig 3.4 is

based on input voltage. The reason behind this will be given in later paragraphs in this

section, together with more discussions about the choice of this friction model.

MBF =


0 (va = 0V )

|Km · ia| (va < 1.2V )

0.0177N ·m (va ≥ 1.2V )

(3.4)

So now if both shaft-lines, the input voltage signal and test results (fro comparison) are

all included, the final version of the simulation model looks like the picture given below:

Figure 26: Simulation model of whole Propulsion System

In Fig 26, the models of single shaft-line shown in Fig 25 are included as subsystems

in the blue blocks, and the input voltage signal as well as the recorded test results are

imported from related Matlab data files. In the ”scope” blocks, the simulation results

will be graphed and compared to the test results. And Fig 27, 28, 29, 30 shows the

result comparison.
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Figure 27: Result Comparison of Test-I: Rotating Speed Portside

Figure 28: Result Comparison of Test-I: Rotating Speed Starboard

Figure 29: Result Comparison of Test-I: Current Portside
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Figure 30: Result Comparison of Test-I: Current Starboard

From the four figures shown above, it is acknowledged that the running results of the

simulation model are well matched with the recorded test data, especially at step 3 to

step 7 (the five steps that were chosen to undertake the data analysis in section 3.2).

However, at the other four steps when low nominal voltages were supplied, the simulation

result of current is higher than the recorded data while the simulation result of rotating

speed is lower compared to the recorded data. Below will discuss the reason.

The perfect match of step 3 to step 7 indicates that the parameter values determined in

section 3.3.1 and 3.3.3 are precise enough if the supplied nominal voltage ranges from

3.8V to 8V . Among those parameters, considering R, L, Km and Ip1 as constants is very

logical and convincing. In other words, their values are not influenced by supplied voltage

(and of course not by shaft speed or other factors). Therefore, the most suspectable

parameter is MBF .

Now if assuming in the simulation model, at step 2 (when supplied voltage is 1.5V )

the real value of friction torque is M
′
BF,2, which is smaller than the value determined

before, while the other parameters keep their value which has been determined before,

based on Eq 2.14 and 2.15, in steady state, there is:

Va,2 −R · Ia,2 −Kb · ΩE,2 = 0

Km · Ia,2 −M
′
BF,2 = 0

Which indicates that the simulation result of current and angular speed in steady state

is:

ΩE,2 =
Va,2
Km
−R ·

M
′
BF,2

K2
m
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Ia,2 =
M
′
BF,2

Km

Apparently, after applying the new value M
′
BF,2, the simulation result of current (Ia,2)

will decrease and meantime, the simulation result of angular speed (ΩE,2) will increase,

and both of them will be closer to the recorded data compared with the result shown in

Fig 27 to Fig 30.

The analysis given above makes a clear statement that the key factor leading to the

deviation between simulation result and recorded data is: the expression of friction

torque which is given in Eq 3.4 is not accurate, or to be specific, not complete enough.

Some information,especially the condition under low supplied voltage is missing.

In section 2.3.1 and one former graph of this section, there is a short discussion about the

choice of friction model of MBF , and here a more detailed research will be elaborated.

There are many friction models to describe the friction phenomenon in a rotating system,

and the one chosen in this thesis is Coulomb Friction Model. A Coulomb friction

model does not depend on the velocity magnitude and its expression is a switching

function similar to Eq 2.16.

Due to its conciseness, Coulomb Friction Model has been widely used and in most cases it

could give a good description of the friction phenomenon. However, in the paper written

by Tegoeh Tjahjowidodo, Farid Al-Bender, and Hendrik Van Brussel [3], the authors

suggested that more complete (also more complicated) friction models, such as Stribeck

Friction Model, LuGre Friction Model or GMS Friction Model should be adapted in

order to get a more precise simulation result under some particular circumstances, for

instance when the rotating motion starts, stops or inverses. According to the example

given in the paper (which is shown in Fig 31), the more complete the friction model is,

the closer the simulation result compares to reality.

Figure 31: Examples given in the Paper [3]
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Yet there remains an issue when adapting these friction models: the expressions of them

are hard to derive therefore some special experiments need to be designed, and high-

accuracy measurement is required when those experiments are undertaken. With this

limitation, it is almost impossible to determine those expressions in the case of Tito Neri

because of the instability of the voltage-amplifier and current sensors.

For our case, Coulomb Friction Model may not be the precisest one, but it is indeed the

optimal one: this type of model is very simple to determine and to build. Besides, it is

already suitable enough for a large range of input voltage. Another discussion should be

made on Eq 3.4, as mentioned before, is about the switch function, which is unlike the

traditional form (given in Eq 2.16) and is based on input voltage. This is because the

value of maximum static friction cannot be precisely determined by our test-setup, and

the motor shaft started to rotate when the input voltage increased to 1.2V . Therefore,

in Eq 3.4, when input voltage is lower than 1.2V , MBF is assumed to be equal to the

external torque (torque provided by DC motor), and when input voltage is higher than

1.2V , MBF will switch to the determined value.

To summarize, all the parameter values determined so far are valid enough to be applied

in future work.

3.4.2 The Simulation Model & related Discussions of Test-II

The simulation model of Test-II is almost the same as Test-I so the related figures will

not be presented here, the difference is: based on Eq 2.12 and 2.15, MF1, MF2, IP2, IP3

are now included in the shaft-line model and some coefficients are changed due to gear

reduction ratio.

Result comparison between the simulation model and recorded test data is shown below:

Figure 32: Result Comparison of Test-II: Rotating Speed Portside
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Figure 33: Result Comparison of Test-II: Rotating Speed Starboard

Figure 34: Result Comparison of Test-II: Current Portside

Figure 35: Result Comparison of Test-II: Current Starboard

The result shown in Fig 32 to Fig 35 indicates that after including all the determined

parameter values, the simulation result is still able to match well with the recorded

data. However, there is another odd phenomenon which exists in both Test-I and Test-

II: compared with motor rotating speed, the difference between simulation result and
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measured test data in armature current is more obvious. This is mainly because of the

asymmetrical behavior of measured armature current: in Fig 29, 30, 34 and 35, it is

clearly shown that at step 3 to step 5 when increasing step voltages are given, height of

the peaks of measured data (the grey solid line) are almost as twice as the height of peaks

at step 6 to step 8 when decreasing step voltages are given. This is sort of unusual after

considering the fact that the input voltage (shown in Fig 15) added to the DC motor is

symmetrical. With this input signal, and if the system behavior is determined by the

mathematical model established in section 2.1.2, the system response is also expected to

be symmetrical. Therefore, there are two possible reasons leading to this asymmetrical

behavior. The first reason is the reliability of current sensor: by looking through the

noise level under steady state of measured data, it is evident that the reliability of these

two current sensors is poor, then needless to mention their reliability under dynamic

state. Another reason that may lead to this asymmetrical behavior is: there are some

unknown characteristics in this system, such as the difference in physical phenomenon

between speed increasing and decreasing stage.

But all in all, based on the result comparison between simulation model and test data

of Test-I and Test-II, such conclusion that all the parameters identified in Table 3.5 are

valid enough for most cases could be drawn. To make this conclusion more convincing,

the result comparison of other two dry-run tests is given in Appendix C, and good

matches between experimental and simulation result are clearly shown.



Chapter 4

Determination of the Resistance

Curve

48



Symbols 49

In this Chapter the effort made on acquiring the expression of resistance

curve, including the introduction of test-setup and result analysis, is elabo-

rated.

4.1 Introduction of the Test-setup

The aim of conducting resistance test is to provide data from which the expression of

resistance curve of model hull could be determined. Besides, this test also provides

required data that could be applied in the propeller open-water test (in Chapter 6 it

will be discussed).

The conventional way of conducting model-scale resistance test is the towing tank test,

whose detailed procedure could be found in ITTC Recommended Procedures & Guide-

lines and will not be repeated here. Yet some key points about model installation should

be addressed:

• The model should be positioned such that it is in the centreline of the tank.

• The tow force should, where possible, be applied in the line of centerplane and at

the LCB.

• The model should be attached to the measuring head of the resistance dynamometer

by a connection, which can transmit and measure only a horizontal tow force.

• Yawing and swaying of the model must be prevented without restraining any other

direction of movement.

Figure 36: Setup of Resistance Test
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Since the model boat ”Tito Neri” is a complete model with all systems equipped, it has

difficulty being mounted on the towing carrier. Therefore, another way (which is similar

to the towing tank test) of conducting test needs to be found.

Fig 36 shows the test-setup: the test is conducted in the flume tank in 3ME Faculty.

Unlike the traditional way through which the model hull is mounted on a carrier and

sails in the towing tank, Tito Neri is connected to one load cell which is fixed on the edge

of the flume tank through the white wire. By changing the speed of the generated water

flow, the value of tension force (which is equal to the drag force) at different velocity

will be measured by the load cell and transferred to DEWE-43A Board, then recorded

by DEWE Software installed in the user’s laptop.

As shown in Fig 36, the model boat is positioned in the centerline of flume tank in

order to make sure that the effect of coming water flow is symmetrical, the white wire

connected to the load cell is perfectly horizontal, yet its extension line fails to go

through the LCB because the load cell cannot be placed in the water. Although there

are no artificial trim effects in this test which indicates that its result is still trustful,

this error becomes fatal in other tests and related information will be given in Chapter

6. The orange rope and wooden structure could prevent the model boat from yawing

and swaying, while the vertical and longitudinal movements are free to occur.

The result of resistance test is given below:

Table 4.1: Result of Resistance Test

vs Rahead Rastern
[m/s] [N ] [N ]

0.19 0.2812 0.3265

0.26 0.5679 0.6632

0.32 0.9047 1.0124

0.39 1.3298 1.5829

0.45 1.8792 2.1911

0.52 2.4252 2.8894

0.58 3.2323

As shown in Table 4.1, both ahead resistance and astern resistance were measured. When

measuring the astern resistance at 0.58m/s, there was a risk that the lateral movements

could not be restrained anymore, so the measurement stopped at 0.52m/s.

4.2 Result Analysis of the Resistance Test

Based on the test result given in Table 4.1, after entering the measured data into Mi-

crosoft Excel and plot the graph of resistance versus velocity, the resistance curve (ahead
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and astern) looks like:

Figure 37: Resistance Curve of Tito Neri

After the graph shown in Fig 37 is created, by using the function ”adding trend line” in

Excel, the expression of resistance curve could be determined as follows:

For ahead resistance:

Rahead = 10.448v2
s − 0.5879vs (4.1)

For astern resistance:

Rastern = 12.103v2
s − 0.6504vs (4.2)

The expressions shown in Fig 4.1, 4.2 are both parabolic polynomials and it fits the

resistance law, which indicates that the result of resistance test should be reasonable.

However, perhaps due to the error of load cell, the values of force measured under high

velocities are not very accurate. More details will be given in next chapter.
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In this Chapter the main topic for discussion is determining the propeller

open-water diagram. Like the tests elaborated in previous Chapters, the

basic theory, test-setup, test result analysis and further discussions will be

included.

5.1 Basic Theory of the Propeller Open-water Diagram

There are two different types of propeller open-water diagram: KT ,KQ versus J type

and the four-quadrant C∗
T , C

∗
Q versus β type. The expression of β,C∗

T , C
∗
Q is given below:



β = arctan(
vA

0.7π · np ·D
)

C∗
T =

T
1
2 · ρ · (v

2
A + (0.7π · np ·D)2)π4 ·D2

C∗
Q =

Q
1
2 · ρ · (v

2
A + (0.7π · np ·D)2)π4 ·D3

(5.1)

Compared with the J − KT ,KQ type, one significant advantage of the four-quadrant

type is its continuity: when propeller rotating speed np = 0, the advanced ratio J will

become infinite and the diagram will be discontinuous. The four-quadrant type, on the

other hand, does not have this problem.

Both types of the open-water diagram mentioned above need to be acquired through

propeller open-water tests. Here, the word ”open-water” is applied to differ from the

normal operating condition of propeller: the behind vessel condition. Under open-water

condition, there is no interaction between hull and propeller, which means that the effect

of wake field and thrust deduction (or resistance increasing) could be eliminated.

While conducting the open-water test, a wide enough range of J (or β) should be reached.

In order to do so, there are two ways to conduct the test:

• Fix the value of advance velocity vA while changing the value of propeller rotating

speed np.

• Fix np while changing vA.

Obviously, if bollard-pull condition (when vA = 0) wants to be included, the first way

given above should not be chosen because the fixed value of vA cannot be 0. The second

way, on the other hand, does not have this limitation. Therefore, the second way given

above is the optimal choice for the test.
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5.2 Introduction of the Test-setup

Traditionally, the propeller open-water test should be conducted either in the towing

tank or inside the cavitation tunnel. However, just like the example of resistance test

given in last Chapter, the situation of Tito Neri is special (the ducted propeller equipped

on Tito Neri is too small) therefore its open-water test needs to be designed and con-

ducted in a different way.

Before introducing the test-setup and procedure, some basic characteristics of the ducted

propeller should be given:

Table 5.1: Basic Characteristics of Tito Neri’s Ducted Propeller

Propeller diameter Dp (m) 0.065

Number of propeller blades Zp 4

P/D ratio 1.4

Hardware of the setup and the connections between each other is shown below:

Figure 38: Schematic block diagram of open water test setup

The location to conduct this test is again the flume tank in 3ME Faculty. From Fig 38

it is acknowledged that the test is conducted by using the whole model boat. The DC

motors are now driven by a voltage supply, and the corresponding shaft rotating speed,

motor current as well as (part of) the thrust force will be measured and recorded.

The method to conduct the open-water test by using this setup is: fix the propeller

rotating speed by giving the DC motor a constant voltage, meanwhile changing the

propeller advance velocity by adjusting the water flow velocity so that different values of

advanced ratio J (or C∗
T ), which is equal to vA

np·D could be acquired (including the bollard-

pull condition when J = 0). Besides, in order to acquire enough data, different voltages

(from 6V to 7.5V ) are given and the test is repeated under each voltage. However, there
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is a price to do so: although by changing the pump power of flume tank, water flow with

different velocity could be generated, which makes it possible to simulate the situation

of towing tank, there is a big problem of conducting ”open-water” test in this way:

since the model hull is included, the interaction between propeller and the hull is also

brought in, which makes the test environment not ”open-water” any more. Therefore,

extra attention should be made when analyzing the test result.

5.3 Result Analysis of the Open-water Test

As mentioned in the last paragraph of section 5.2, the interaction between propeller and

the hull must be taken into account when analyzing the test result. Since the interaction

is different for bollard condition and for other conditions (when vA is not zero), it should

be discussed individually:

For bollard-pull condition, the concepts of wake field is no more applicable because the

advance velocity remains zero, and the interaction between propeller and the hull is only

accounted for by thrust deduction.

For other conditions, both the effect of wake field (the water flow velocity which is equal

to vs should be multiplied by 1 − w to get vA) and thrust deduction (the thrust force

should be multiplied by 1− t to balance with other forces) should be considered.

Besides, in order to acquire the four-quadrant open-water diagram, the test needs to be

conducted in different conditions: the thrust force now is the result of superposition of

tension force (the force measured by load cell) and wave force (which can be deducted

from resistance curve), which differs from one quadrant to another.

Fig 39 to Fig 42 shows the force configuration of each quadrant:

Figure 39: Force configuration of 1st Quadrant
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Figure 40: Force configuration of 2nd Quadrant

Figure 41: Force configuration of 3rd Quadrant

Figure 42: Force configuration of 4th Quadrant
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Here the test data of the first-quadrant is given below as an example:

Table 5.2: Test Data of 6V

vA np(PS) np(STBD) Ips Istbd Vps Vstbd Tmasure R T

[m/s] [rps] [rps] [A] [A] [V ] [V ] [N ] [N ] [N ]

0.13 12.29 13.30 1.47 1.56 5.92 6.04 2.53 0.10 2.859
0.25 12.34 13.17 1.58 1.54 5.94 6.06 1.76 0.57 2.534
0.32 13.15 13.17 1.58 1.65 5.94 6.06 1.48 0.90 2.595
0.38 12.75 13.23 1.57 1.57 5.95 6.06 0.93 1.33 2.461

Table 5.3: Test Data of 6.5V

vA np(PS) np(STBD) Ips Istbd Vps Vstbd Tmasure R T

[m/s] [rps] [rps] [A] [A] [V ] [V ] [N ] [N ] [N ]

0.13 13.80 14.53 1.74 1.75 6.43 6.55 3.10 0.10 3.480
0.25 13.77 14.46 1.68 1.7 6.43 6.55 2.34 0.57 3.159
0.38 14.46 14.77 1.74 1.7 6.43 6.55 1.69 1.33 3.278
0.44 13.90 14.71 1.63 1.68 6.43 6.55 0.93 1.88 3.059

Table 5.4: Test Data of 7V

vA np(PS) np(STBD) Ips Istbd Vps Vstbd Tmasure R T

[m/s] [rps] [rps] [A] [A] [V ] [V ] [N ] [N ] [N ]

0.13 14.84 15.82 1.77 1.86 6.89 7.02 3.60 0.10 4.019
0.25 15.00 16.15 1.68 1.88 6.89 7.02 2.93 0.57 3.805
0.38 15.12 15.86 1.64 1.79 6.90 7.03 2.22 1.33 3.863
0.44 15.02 15.90 1.42 1.78 6.91 7.03 1.62 1.88 3.801
0.49 15.17 15.94 1.54 1.76 6.91 7.03 1.14 2.36 3.803

Table 5.5: Test Data of 7.5V

vA np(PS) np(STBD) Ips Istbd Vps Vstbd Tmasure R T

[m/s] [rps] [rps] [A] [A] [V ] [V ] [N ] [N ] [N ]

0.13 16.32 17.38 2 1.98 7.45 7.59 4.54 0.10 5.037
0.25 16.55 17.40 1.98 1.99 7.45 7.59 3.79 0.57 4.738
0.38 16.50 17.40 1.89 1.94 7.45 7.58 2.78 1.33 4.470
0.51 16.70 17.64 1.9 1.92 7.45 7.59 1.77 2.43 4.560
0.57 16.58 17.49 1.74 1.79 7.40 7.53 1.16 3.23 4.777

From the data shown in the above 4 tables, the open-water diagram could be determined

as follows:

J =
vA

np ·D
(5.2)

KT =
T

ρ · n2
p ·D4

(5.3)
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The determination of KQ relies on determining the open-water propeller torque Q, under

steady state, there is:

igbt · igbb ·Kmia,0 − igbt · igbb ·MBF − igbb ·MF1 −MF2 = Q (5.4)

Then KQ could be determined by:

KQ =
Q

ρ ·D5 · ( nE,0

igbt·igbb )2
(5.5)

Based on the information given above, the test result is shown below:

Figure 43: Result of Open-water Test KT Portside

Figure 44: Result of Open-water Test KT Starboard
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Figure 45: Result of Open-water Test 10KQ Portside

Figure 46: Result of Open-water Test 10KQ Starboard

In Fig 43, 44, 45 and 46, the dots represent the test result. Obviously, it is impossible

to derive the expression of KT ,KQ− J curves based on the given data dots and further

discussions should be made in order to modify the result.

Firstly, from Fig 43 and Fig 44, it is acknowledged that the value of KT becomes higher

and higher than expected when J increases, especially from the two red dots in Fig 43

and Fig 44. To understand the behind reason, the variables contained by Eq 5.2 and

Eq 5.3 are looked through here: since the density of fresh water ρ under 20◦C (which

is 0.9982063g/cm3) and the diameter of propeller D are determined physical quantities,

and the value of vs, nE are directly measured by corresponding sensors whose relationship

with vA, np is clear and simple, thrust force T becomes the most questionable variable

that may lead to the weird circumstance shown in Fig 43 and Fig 44.
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According to the expression given in Fig 39, the value of T is determined by the sum of

drag force W , which is equal to resistance R, and tension force Ttension along the wire,

which is measured by load cell. Since the expression of R is also derived from the data

measured by load cell during resistance test (recall section 4.2), the reliability of load cell

has vital importance on determining the value of T . Unfortunately, the author failed to

realize this point until another test (in which the steering force of different angles were

measured by the same load cell) was conducted. During that test, the sensitivity of load

cell, which should maintain constant, was found to be unstable and need to be calibrated

roughly every two minutes. In resistance test and open-water test, however, it was

calibrated every 10 minutes or even every 30 minutes depending on the test procedure.

Therefore, according to the procedure, there is a great possibility that the force measured

under high velocities in resistance test (as mentioned in the last paragraph of section

4.2), and the tension force Ttension measured under high advanced ratio J in open-water

test, are not reliable. All these factors will lead to error in determining the value of

thrust force T , and finally will lead to inaccuracy of KT .

After examining the relationship of KT − J shown in Fig 43 and Fig 44, now Fig 45

and 46 which present the relationship of KQ− J should be looked through. The dashed

line in Fig 45 and 46 is the 10KQ − J curve of Ka4 − 70 propeller in 19A duct (with

P/D = 1.0). It is chosen as the reference curve due to the geometrical similarity between

Ka4− 70 propeller in 19A duct and the ducted propeller of Tito Neri. Apparently, the

green dots are almost three times higher than the dashed line, which indicates the value

of open-water torque Q determined by Eq 5.4 is larger than expected. One possible

reason is: the value of Km,MBF ,MF1 and MF2 applied in Eq 5.4 were determined

by dry-run tests. Now the propulsion system is operating under water, which has no

influence on Km,MBF ,MF1. MF2, however, must be affected since water is expected

to go inside the shaft cover and viscous friction will be changed. Therefore, the actual

value of MF2 under wet condition should be lower than the value determined under dry

condition, which will result in increasing value of KQ.

However, since the value of MF2 is almost small enough to be neglected, even if it may

be inaccurate, the key factor leading ”error” in KQ should not be the inaccuracy of MF2.

Except the reason given above, Fig 47 indicates that the open-water efficiency ηo of Tito

Neri’s ducted propeller is relatively low compared with Ka4− 70 propeller in 19A duct.

And after measuring the geometrical dimensions, it was discovered that the P/D value

at 0.7R of Tito Neri’s propeller is 1.4 (given in Table 5.1), which is different from the

reference propeller (Ka4− 70 propeller in 19A duct with P/D = 1.0). This information

suggests that the chosen reference propeller may not be a proper representative of the

ducted propeller of Tito Neri, although the KT − J relationship of them seems to be

similar with each other.
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Besides the reasons mentioned above, the odd red dot in Fig 45, which is obviously lower

than expected, may indicate another key factor leading errors in determining the value

of open-water torque Q when using Eq 5.4: by checking the corresponding experimental

data in Table 5.4, it is observed that the value of measured electrical current Ips

(the red 1.42A) is definitely smaller than expected (the value should be around 1.6A

according to other data), which results in a lower value of Q and ultimately a lower

value of KQ. Therefore, when Eq 5.4 is applied to determine Q, the measured value of

electrical current I will play an important role. Unfortunately, as mentioned in section

3.4.2, the measurement data could sometimes be deceived by the instability of current

sensor, and this must be modified in the future.

Figure 47: Result of Open-water Test ηo Portside

Figure 48: Result of Open-water Test C∗
T Starboard

Since effort has been made on acquiring the four-quadrant open-water diagram, despite

the result is not valid enough, it is still given in Fig 48. Obviously, the range of C∗
T
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is very limited by using the current test-setup and in the future more effort should be

made on modifying it for sure.

5.4 Validation of KT , KQ value under bollard-pull condition

Since the expression of KT ,KQ − J curves could not be derived, and the expression

of resistance curve now becomes questionable, it is impossible to build the simulation

model of the propulsion system operating under straight-line sailing condition. However,

according to the description given in last section, the KT value of bollard-pull condition

should be reasonable: when conducting bollard-pull test, the load cell was just calibrated

and there was less interaction between hull & propeller compared with normal condition.

The KQ value, on the other hand, may not be so accurate due to the difference of

MF2 between dry and wet condition, yet since MF2 does not play an important role in

determining the value of KQ, the result acquired so far is at least acceptable. Therefore,

the simulation model of the propulsion system operating under bollard-pull condition is

built and validated.

5.4.1 The simulation model of Tito Neri’s Propulsion System of Bollard-

pull Condition

Compared with the simulation model of dry-run condition, KT and KQ are added to

the simulation model of propulsion chain, which is shown in Fig 49. And in Fig 50, the

result comparison of tension force is included.

Figure 49: Simulation Model of Single Shaft-line
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Figure 50: Simulation Model of Tito Neri’s Propulsion Sytem under Bollard-pull
Condition

5.4.2 Validation of the Simulation Model

Method to validate the simulation model is the same as before: by comparing its behavior

with measured data of real tests. Here the input voltage signal is sinusoidal with a

frequency of 0.01Hz, which is shown in Fig 51, and the result comparison is given in

Fig 52 to 56.

Figure 51: Input Voltage Signal 0.01Hz under Bollard-pull Condition

Figure 52: Comparison of Tension Force under Bollard-pull Condition
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Figure 53: Comparison of motor speed PS under Bollard-pull Condition

Figure 54: Comparison of motor speed STBD under Bollard-pull Condition

Figure 55: Comparison of current PS under Bollard-pull Condition

Figure 56: Comparison of current STBD under Bollard-pull Condition
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From Fig 52, 53 and 54, it is acknowledged that except peak value, the simulation result

and the measured data of tension force, and of motor speed match very well. Fig 55 and

Fig 56 indicate that the comparison of current is almost perfect despite the measured

data is extremely noisy.

The value of KT and KQ under bollard-pull condition for each shaft-line is: KT |PS =

0.55,KT |STBD = 0.53,KQ|PS = 0.1898,KQ|STBD = 0.1704.

To make the validity of this simulation model more convincing and complete, in Ap-

pendix D, the result comparison of block input signal is given.



Chapter 6

Linearization of Tito Neri’s

Propulsion Sytem
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As is all known, compared with non-linear model, there are some favorable

properties of linear model, such as simpleness and transparency, that makes

it being widely used in the field of control engineering. The mathematical

model derived in Chapter 2, however, like other models of ship propulsion

system, is non-linear. Therefore, in this Chapter, firstly, a linearized ship

propulsion system model raised by D.Stapersma and A.Vrijdag [2] is going

to be introduced and the method of linearization will be elaborated. After

that, some variations about the linearized model will be discussed to make it

more complete. Then, based on all the information, the mathematical model

of Tito Neri’s propulsion system will be linearized (also as an extension of

[2]), and its behavior under bollard-pull condition will be validated.

6.1 Introduction of the Original Linearized Model

Compared with non-linear models, linearized models often have simpler structures and

require less detailed parameters to derive. Yet behind these advantages, there is indeed

an expensive price to use linearized models: due to the principle of linearization, they are

only valid around equilibrium point or specially set-point. Therefore, the linearized ship

propulsion model should not be seen as the replacement for a non-linear model, but rather

as an additional tool that can be used. The main reason to derive this linearized model

is that linear models can be used to predict system behaviour (such as the behavior in

waves) in the frequency domain, besides, this model is also applicable for initial controller

design and tuning [2].

Figure 57: General Ship propulsion block diagram [2]

A ship propulsion system, as mentioned in Chapter 2, consists of two loops which is

connected by the operation of propeller.
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On the left side it shows the shaft rotation loop, whose behavior could be determined

by Eq 6.1:

2π · Ip ·
dn

dt
= MS −Mprop (6.1)

On the right side the ship translation loop is given, whose behavior could be determined

by Eq 6.2:

mship ·
dvs

dt
= Fprop − Fship (6.2)

Obviously, due to multiplicative action in the mathematical model, for instance ship

resistance R = α · ves, and the curvature in the characteristics of component models,

like the curvature of KT and KQ curves, the ship propulsion system shown in Fig 57

is non-linear. In 2016, D.Stapersma raised up a method regarding with normalization

and linearization (Appendix. B in [2]), and the author of this Thesis gives an extended

version of this method in the coming sub-section.

6.1.1 Linearization & Normalization Method

Assuming a variable Z is the product of powers of other variables:

Z = c · Y e1
1 · Y

e2
2 · Y

en
n = c ·

n∏
i=1

Y ei
i (6.3)

Where c is a constant multiplier and ei is a constant exponent. In an equilibrium point

the variable equals to:

Z0 = c ·
n∏
i=1

Y ei
i,0 (6.4)

After normalization, it results in:

Z

Z0
=

n∏
i=1

(
Yi
Yi,0

)ei (6.5)

Near equilibrium point small increments δZ, δYi can be introduced as:
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Z = Z0 + δZ

Yi = Yi,0 + δYi
(6.6)

Substituting Eq 6.6 into Eq 6.5, it will give:

Z0 + δZ

Z0
=

n∏
i=1

(
Yi,0 + δYi
Yi,0

)ei (6.7)

Eq 6.7 could be transformed to:

δZ

Z0
=

n∏
i=1

(1 +
δYi
Yi,0

)ei − 1 (6.8)

After Taylor series expansion and ignoring second as well as higher order terms, Eq 6.8

will become:

δZ

Z0
=

n∏
i=1

[1 + ei ·
δYi
Yi,0

+
ei · (ei − 1)

2
(
δYi
Yi,0

)2 + · · · ]− 1

≈ 1 +
n∑
i=1

ei ·
δYi
Yi,0
− 1

=
n∑
i=1

ei ·
δYi
Yi,0

(6.9)

And if by definition,

δZ∗ =
δZ

Z0
(6.10)

Eq 6.3 could be transformed to:

δZ∗ =

n∑∑∑
i=1

ei · δY ∗
i (6.11)

The derivation above indicates that after normalization and linearization, the multipli-

cation of variables Yi could be transformed to a format of summation, and the exponents

ei change to become constant multiplication factors.
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6.1.2 Linearization of Shaft Rotation and Ship Translation Loop

6.1.2.1 Linearization of Shaft Rotation Loop

By applying the same procedure shown in section 6.1.1 to Eq 2.3, which describes the

behavior of shaft rotation loop:

2π · Ip
MS,0

· n0

n0
· dn
dt

=
MS

MS,0
− Mprop

MS,0
(6.12)

Since in a steady nominal condition the shaft and propeller torque are equal (when

friction is neglected), therefore:

MS,0 = Mprop,0

And around equilibrium point:

 MS = MS,0 + δMS

Mprop = Mprop,0 + δMprop

Now Eq 6.12 becomes:

2π · Ip
MS,0

· n0

n0
· dn
dt

=
MS,0 + δMS

MS,0
− Mprop,0 + δMprop

Mprop,0
(6.13)

If defining the integration constant of shaft system as:

τn ≡
2π · Ip · n0

MS,0
(6.14)

Eq 6.13 now becomes:

τn ·
dn∗

dt
= δM∗

S − δM∗
prop (6.15)

Since the relation between engine torque Mb and shaft torque MS is [20]:

MS = ir · ke · ηGB ·Mb
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ir is gear-box reduction ratio and ke is number of engines. If gear-box efficiency ηGB is

assumed to be constant then there is:

δM∗
S = δM∗

b (6.16)

And if the change of relative rotative efficiency is neglected, there is:

δM∗
prop = δQ∗ (6.17)

Substituting Eq 6.16 and Eq 6.17 into Eq 6.15:

τn ·
dn∗

dt
= δM∗

b − δQ∗ (6.18)

Open water torque Q is equal to:

Q = ρ ·D5 · n2 ·KQ

And if water density ρ is assumed to be constant, after normalizing, there is:

δQ∗ = 2 · δn∗ + ·δK∗
Q

To be specific, KQ is a function of both advance ratio J and propeller pitch angle θ,

therefore:

δK∗
Q = b · δJ∗ + q · δθ∗ (6.19)

In which:


b ≡ (

J0

KQ,0
) · (

δKQ

δJ
)|θ

q ≡ (
θ0

KQ,0
) · (

δKQ

δθ
)|J

And since J = vs·(1−w)
n·D , after normalization:

δJ∗ = δv∗s − δw∗ − δn∗ (6.20)
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Substituting Eq 6.20 into Eq 6.19, there is:

δK∗
Q = b · (δv∗s − δw∗ − δn∗) + q · δθ∗ (6.21)

Finally, after substituting Eq 6.21 into Eq 6.18, the differential equation of shaft rotation

loop is given as:

τn ·
dn∗

dt
= δM∗

b − (2 − b) · δn∗ − b · δv∗s + b · δw∗ − q · δθ∗ (6.22)

6.1.2.2 Linearization of Ship Translation Loop

While in ship translation loop, after applying normalization procedure to Eq 2.4, there

is:

mship · vs,0
Fprop,0

· dvs
vs,0 · dt

=
Fprop
Fprop,0

−
Fship
Fprop,0

(6.23)

Around equilibrium point,

Fprop = Fprop,0 + δFprop

Fship = Fship,0 + δFship

And in steady conditions, there is:

Fprop,0 = Fship,0

If define integrator constant of ship translation τv as:

τv ≡
mship · vs,0
Fprop,0

Then Eq 6.23 could be transformed to:

τv ·
dvs

vs,0 · dt
=
Fprop,0 + δFprop

Fprop,0
−
Fship,0 + δFship

Fprop,0
(6.24)

By definition, Eq 6.24 is equal to:
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τv ·
dv∗s
dt

= δF ∗
prop − δF ∗

ship (6.25)

Since ship force could be replaced by resistance, there is:

δF ∗
ship = δR∗

And ship resistance could be presented as:

R = α · ves

Therefore, after normalization, there is:

δR∗ = δα∗ + e · δv∗s (6.26)

Where

e ≡ vs,0
R0
· δR
δvs
|α

As for propeller force, since it is equal to thrust force, there is:

δF ∗
prop = δT ∗

And the expression of thrust force T is:

T = ρ ·D4 · n2 ·KT

After normalization, there is:

δT ∗ = 2 · δn∗ + δK∗
T (6.27)

Just like KQ, KT is also a function of J and θ, so:

δK∗
T = a · δJ∗ + p · δθ∗ (6.28)
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In which the normalized propeller derivatives a and p are:


a ≡ (

J0

KT,0
) · (δKT

δJ
)|θ

p ≡ (
θ0

KT,0
) · (δKT

δθ
)|J

By substituting Eq 6.20 into Eq 6.28, there is:

δK∗
T = a · (δv∗s − δw∗ − δn∗) + p · δθ∗ (6.29)

Now if substitute Eq 6.29 into Eq 6.27, there is:

δT ∗ = (2− a) · δn∗ + a · δv∗s − a · δw∗ + p · δθ∗ (6.30)

Finally, if Eq 6.26 and 6.30 are substituted into Eq 6.25, the linearized differential

equation for ship translation loop is:

τv ·
dv∗s
dt

= (2 − a) · δn∗ − (e− a) · δv∗s − δα∗ − a · δw∗ + p · δθ∗ (6.31)

Figure 58: Linearized block diagram of core propulsion system [2]

*Summary of 6.1.2

After normalization and linearization, the block diagram of core propulsion system now

could be transformed from Fig 57 to Fig 58. And Eq 6.1, 6.2 are linearized to Eq 6.22,

6.31. In Eq 6.22 and 6.31, τn and τv are constants according to their definition, a, b, p, q

and e are variables (at equilibrium point they are constants) whose definition are given
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in the content above. δθ∗ and δM∗
b are inputs of this system which could be controlled

while δv∗s and δn∗ are state variables. The other two parameters, δω∗ and δα∗ reflect

the environmental disturbances.

According to D.Stapersma and A.Vrijdag [2], the model derived above provides a solid

framework for further work aiming at understanding and improving dynamic behaviour

of ship propulsion plants, especially sailing in waves. The linearised model can also be

used to determine initial settings of controller parameters, which can subsequently be

tested in a nonlinear model. In the paper it is also mentioned that some variations and

extensions will be given in the future. The following content could provide an example.

6.2 Related Variations

In previous section the method of linearization & normalization as well as the theoretical

linearized model is introduced. Apparently, this model could represent the operating

condition of a vessel equipped with CPP(s) under straight-line sailing condition. In

other words, this specific model does not cover all types of propulsion system (like FPP)

and does not take all the operating situations into consideration, for instance bollard-pull

condition. Therefore, some variations will be addressed in this section.

6.2.1 Discussion about Bollard-pull Condition

Firstly, the variation about bollard-pull condition (with CPP propulsion system) will

be discussed. For shaft rotation loop the situation is same as straight-line sailing con-

dition, and the equation is same as Eq 2.3, from 2.1.2.1 it is acknowledged that after

normalization, Eq 2.3 could be transformed to Eq 6.18:

τn ·
dn∗

dt
= δM∗

b − δQ∗

Here is a significant difference between bollard-pull condition and straight line sailing

condition:

Under bollard-pull condition, the openwater propeller torque Q is equal to:

Q = KQ,0 · ρ ·D5 · n2

While under free sailing condition, the torque Q is equal to:
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Q = KQ · ρ ·D5 · n2

The difference is: KQ,0 is constant because under bollard-pull condition the torque

coefficient does not change, while KQ, under free sailing condition, is a variable related

with J and θ.

Therefore, under bollard-pull condition, after normalization, openwater torque Q be-

comes:

δQ∗ = 2 · δn∗

Then the differential equation of shaft loop under bollard-pull condition is:

τn ·
dn∗

dt
= δM∗

b − 2 · δn∗ (6.32)

Since under bollard-pull condition ship speed maintains to be zero, the basic equation

of ship translation loop is:

0 = Fprop − FT

FR is the tension force along the rope which is used to fix the position of ship. Around

equilibrium point, there is:

Fprop = Fprop,0 + δFprop

FT = FT,0 + δFT

And in a steady condition, there is:

Fprop,0 = FT,0 (6.33)

If FR is replaced by thrust force T , after normalization and substitution, the linearized

equation of Eq 6.33 is:

0 = 2 · δn∗ − δF ∗
T (6.34)
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6.2.2 Linearization of FPP Equipped Propulsion System

Another variation will discuss changes in the linearized model when CPP is substituted

by FPP. The reason why this variation should be addressed is: the MT218 model boat

has two nozzled azimuth thrusters, which could be treated as FPPs. And the following

discussion will be separated into straight-line sailing condition and bollard-pull condi-

tion.

Under straight line sailing condition, the basic equations of shaft loop and ship trans-

lation loop will not change when CPP is substituted by FPP. So Eq 2.3 is still able to

describe the behavior of shaft loop. And after linearization and normalization proce-

dures shown in 6.1.1, Eq 2.3 will be transformed to Eq 6.18, also from section 6.1.2 it is

acknowledged that:

δQ∗ = 2 · δn∗ + δK∗
Q

Because of the substitution from CPP to FPP, now the open-water torque coefficient

KQ is only a function of advanced ratio J . Therefore:

δK∗
Q = b · δJ∗ (6.35)

In which:

b≡(
J0

KQ,0
) · (

δKQ

δJ
)

The normalization of advanced ratio J is presented in Eq 6.20, after substituting Eq

6.20 into Eq 6.35, there is:

δK∗
Q = b·(δv∗s − δω∗ − δn∗) (6.36)

The final version of shaft rotation loop differential equation is:

τn ·
dn∗

dt
= δM∗

b − (2 − b) · δn∗ − b · δv∗s + b · δw∗ (6.37)

As for ship translation loop, the procedure of linearization and normalization will not be

repeated, below is the final version of differential equation:
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τv ·
dv∗s
dt

= (2 − a) · δn∗ − (e− a) · δv∗s − δα∗ − a · δw∗ (6.38)

Under bollard-pull condition, since the situation (including basic equations for both

loops and the linearization procedures) has no difference when CPP is replaced by FPP,

Eq 6.32 and 6.34 could be directly adapted to describe the linearized behavior of shaft

rotation and thrust force.

*Summary of Linearized Equations, Constants & Variables

In this part all the linearized equations under different circumstances, as well as the

related constants and variables are summarized.

Obviously when equations shown in Table 6.1 are derived, the effect of transmission sys-

tem and friction torque has not been taken into account. The reason is: the transmission

system together with the friction model differs from one propulsion system to another,

therefore it is impossible to give an overall presentation. In next chapter, a case study

about the propulsion system of Tito Neri will provide an example of how to deal with

their effects when linearization is applied.

Table 6.1: Linearized Equations under different circumstances

Straight-line sailing condition Bollard-pull condition

CPP Eq 6.22 and Eq 6.31 Eq 6.32 and Eq 6.34

FPP Eq 6.37 and Eq 6.38 Eq 6.32 and Eq 6.34

Table 6.2: Expressions of mentioned constants&variables

Constants & Variables Expression

τn 2 · π · Ip · n0/MS,0

τv mship ∗ vs,0/Fprop,0
a ( J0

KT,0
) · ( δKT

δJ )|θ
b ( J0

KQ,0
) · ( δKQ

δJ )|θ
e

vs,0
R0
· δRδvs |α

p ( θ0
KT,0

) · ( δKT
δθ )|J

q ( θ0
KQ,0

) · ( δKQ

δθ )|J

6.3 Linearization of Tito Neri’s Propulsion System

Since the open-water diagram acquired in Chapter 5 is not valid enough to be applied,

it is impossible to build and validate the linearized model under straight-line sailing
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condition. Therefore, coming discussions will only focus on bollard-pull condition.

Based on the discussion given above and in section 2.1.2, the mathematical model of

Tito Neri’s propulsion system under bollard-pull condition contains three differential

equations: Eq 2.11, Eq 2.12 and Eq 6.33. Each of them will be linearized individually.

6.3.1 Linearization of Electrical Circuit (Eq 2.11)

Around equilibrium point, there is:

L · dia
dt

= (va,0 + δva)−R · (ia,0 + δia)−Kb · (ωE,0 + δωE) (6.39)

And in steady state, there is:

0 = va,0 −R · ia,0 −Kb · ωE,0 (6.40)

Subtracting Eq 6.40 from Eq 6.39, there is:

L · dia
dt

= δva −R · δia −Kb · δωE (6.41)

Divide both sides with nominal voltage supply minus back EMF voltage va,0−Kb ·ωE,0,

Eq 6.41 could be transformed to:

L

va,0 −Kb · ωE,0
· dia
dt

=
δva

va,0 −Kb · ωE,0
− R · δia
va,0 −Kb · ωE,0

− Kb · δωE
va,0 −Kb · ωE,0

(6.42)

And from Eq 6.40 it is acknowledged that va,0 −Kb · ωE,0 = R · ia,0, therefore:

L

R · ia,0
· dia
dt

=
δva

va,0 −Kb · ωE,0
− R · δia
R · ia,0

−
Kb · ωE,0

va,0 −Kb · ωE,0
· δωE
ωE,0

(6.43)

And if electrical constant is defined as τe ≡ L
R , Eq 6.43 could be transformed to:

τe ·
di∗a
dt

= δv∗a − δi∗a −
Kb · ωE,0

va,0 −Kb · ωE,0
· δω∗

E (6.44)

Since ωE = 2 · π · nE , the final version of differential equation is:
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τe ·
di∗a
dt

= δv∗a − δi∗a −
2 · π ·Kb · nE,0

va,0 − 2 · π ·Kb · nE,0
· δn∗

E (6.45)

Keep notice that here:

δv∗a =
δva

va,0 −Kb · ωE,0

6.3.2 Linearization of Shaft Rotation Loop (Eq 2.12)

If defining:

IP = IP1 +
IP2

i2gbt
+

IP3

i2gbt · i2gbb

Together with the relation ωE = 2 · π · nE , under bollard-pull condition, Eq 2.12 could

be rewritten as:

2 · π · IP ·
dnE
dt

= Km · ia −MBF −
MF1

igbt
− MF2

igbt · igbb
−
KQ,0 · ρ ·D5 · ( nE

igbt·igbb )2

igbt · igbb
(6.46)

And around equilibrium point there is:

2 ·π · IP ·
dnE
dt

= Km(ia,0 + δia)−MBF −
MF1

igbt
− MF2

igbt · igbb
−
KQ,0 · ρ ·D5 · (nE,0 + δnE)2

i3gbt · i3gbb
(6.47)

In steady state:

0 = Kmia,0 −MBF −
MF1

igbt
− MF2

igbt · igbb
−
KQ,0 · ρ ·D5 · n2

E,0

i3gbt · i3gbb
(6.48)

Subtracting Eq 6.48 from Eq 6.47 (according to Chapter 3, it is acknowledged that all

friction torques are assumed to be constant), there is:

2 · π · IP ·
dnE
dt

= Km · δia −
KQ,0 · ρ ·D5 · (2 · nE,0 · δnE + δn2

E)

i3gbt · i3gbb
(6.49)
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The second order term δn2
E could be neglected, and divide both sides with Kmia,0−MF ,

which is equal to KQ,0 · ρ ·D5 · n2
E,0/(i

3
gbt · i3gbb), and MF is defined as:

MF = MBF +
MF1

igbt
+

MF2

igbt · igbb

Eq 6.49 could be transformed to:

2 · π · IP · nE,0
Kmia,0 −MF

· dnE
nE,0 · dt

=
Km · ia,0

Km · ia,0 −MF
· δia
ia,0
−

2 ·KQ,0 · ρ ·D5 · nE,0 · δnE
KQ,0 · ρ ·D5 · n2

E,0

(6.50)

And if mechanical constant is defined as τm ≡
2·π·IP ·nE,0

Kmia,0−MF
, after fraction and reduction,

the differential equation of shaft rotation loop is:

τm ·
dn∗

E

dt
=

Km · ia,0
Km · ia,0 −MF

· δi∗a − 2 · δn∗
E (6.51)

6.3.3 Linearization of Eq 6.33

Under bollard-pull condition, there is:

FT = KQ,0 ·D4ρn2
E |[PS] +KQ,0 ·D4ρn2

E |[STBD] (6.52)

Around equilibrium point, there is:

FT,0 + δFT = KQ,0 ·D4ρ · (nE,0 + δnE)2|[PS] +KQ,0 ·D4ρ · (nE,0 + δnE)2|[STBD] (6.53)

In steady state:

FT,0 = KQ,0 ·D4ρn2
E,0|[PS] +KQ,0 ·D4ρn2

E,0|[STBD] (6.54)

After subtracting Eq 6.54 from Eq 6.53 and ignoring high order terms, there is:

δFT = 2 ·KQ,0 ·D4ρ · nE,0δnE |[PS] + 2 ·KQ,0 ·D4ρ · nE,0δnE |[STBD] (6.55)
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From Chapter 3 to Chapter 5, it is acknowledged that the characteristics, such as nE,0

& KQ,0, of Portside and Starboard are different. Here, in order to simplify the normal-

ization procedure, and also because the difference is very little, they are assumed to be

equal. Therefore, if divide both sides with 2 ·KQ,0 ·D4ρ · n2
E,0 (which is equal to FT,0),

Eq 6.55 could be transformed to:

δFT
2 ·KQ,0 ·D4ρ · n2

E,0

=
4 ·KQ,0 ·D4ρ · nE,0δnE

2 ·KQ,0 ·D4ρ · n2
E,0

(6.56)

After fraction, the linearized form of Eq 2.13 is:

δF ∗
T = 2 · δn∗ (6.57)

6.4 Validation of the Linearized Model under Bollard-pull

Condition

Now if δn∗E ,δi∗a and δF ∗
R are considered as outputs, δv∗a is treated as the input, based on

Eq 6.45, 6.51 and 6.57, the Laplace Transfer Functions are given below (the derivation

procedures are given in Appendix F):

δN∗
E

δV ∗
a

=
Km ·R · i2a,0

H · τe · τm · s2 +H · (2τe + τm) · s+ 2 ·H + 2πK2
m · ia,0 · nE,0

(6.58)

δI∗a
δV ∗

a

=
2 ·H +H · τm · s

H · τe · τm · s2 +H · (2τe + τm) · s+ 2 ·H + 2πK2
m · ia,0 · nE,0

(6.59)

δF ∗
T

δV ∗
a

=
2Km ·R · i2a,0

H · τe · τm · s2 +H · (2τe + τm) · s+ 2 ·H + 2πK2
m · ia,0 · nE,0

(6.60)

In which H = Km ·R · i2a,0 −MF ·R · ia,0.

As mentioned before, the linearized model is valid within a limited region, such as

a region around equilibrium point. In this Thesis, the equilibrium point (or steady

state) at when a constant voltage of 6.5 volts is added to the system under bollard-pull

condition is selected for analysis.

After applying the values given in Table 6.3, based on Eq 6.58, 6.59 and Eq 6.60, the

related Bode Plot could be created. And in order to validate the linearized model which
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Table 6.3: Constants & Variables at operating point under Bollard-pull
Condition

Constants & Variables at Test-point Value Unit

va,0 6.5 [V ]
ia,0(PS) 1.86 [A]

ia,0(SB) 1.97 [A]

IP (PS) 2.017× 10−5 [kg ·m2]

IP (SB) 1.997× 10−5 [kg ·m2]

nE,0(PS) 42.7 [rps]

nE,0(SB) 44.1 [rps]

MF (PS) 0.01887 [N ·m]

MF (SB) 0.02287 [N ·m]

R(PS) 1.0418 [Ω]

R(SB) 0.8923 [Ω]

Km(PS) 0.0181 [N ·m/A]

Km(SB) 0.0183 [N ·m/A]

τe(PS) 0.0007 [-]

τe(SB) 0.0006 [-]

τm(PS) 0.3658 [-]

τm(SB) 0.4197 [-]

is presented by those three first-order differential equations, the following input voltage

signal va has been added to the propulsion system:

va = va,0 +A · sin(Bt+ C) (6.61)

Eq 6.61 indicates that the input voltage va is a superposition of two different terms.

One is the nominal term va,0 (in this case va,0 = 6.5V ) and the other is sinusoidal term

A ·sin(Bt+C). To fulfill the condition of normalization, the amplitude A must be small

enough compared to va,0. An example of input voltage signal is shown in Fig 59:

Figure 59: Input Voltage Signal at 0.1Hz
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And when this type of input voltage is added, the response of propulsion system is shown

below:

Figure 60: Motor Speed at 0.1Hz

Figure 61: Tension Force at 0.1Hz

Figure 62: Current at 0.1Hz
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Based on Fig 60 to Fig 62, it is acknowledged that the expression of system response

nE , ia and FT could be derived as:

nE = nE,0 +A1 · sin(Bt+ C1) (6.62)

FT = FT,0 +A2 · sin(Bt+ C2) (6.63)

ia = ia,0 +A3 · sin(Bt+ C3) (6.64)

Please be aware that despite the experimental data of current shown in Fig 62 is ex-

tremely noisy, by using least-square method, the fitted curve could be perfectly described

by Eq 6.64.

In order to compare experimental data with the Bode Plot of the former linearized model,

the data must be normalized. After normalization, Eq 6.61 to Eq 6.64 will become:

δv∗a =
δva

va,0 − 2π ·Km · nE,0
=

va − va,0
va,0 − 2π ·Km · nE,0

=
A · sin(Bt+ C)

va,0 − 2π ·Km · nE,0
(6.65)

δn∗E =
A1 · sin(Bt+ C1)

nE,0
(6.66)

δF ∗
T =

A2 · sin(Bt+ C2)

FT,0
(6.67)

δi∗a =
A3 · sin(Bt+ C3)

ia,0
(6.68)

Based on the normalized variables, the corresponding points of experimental data (un-

der specific frequency) which could be added to the Bode Plot are determined by (in

Appendix E another form is given):


δn∗E
δv∗a
|Gain = 20 · log(

A1

A
·
va,0 − 2π ·Km · nE,0

nE,0
)

δn∗E
δv∗a
|Phase = C1 − C

(6.69)
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
δF ∗

T

δv∗a
|Gain = 20 · log(

A2

A
·
va,0 − 2π ·Km · nE,0

FT,0
)

δF ∗
T

δv∗a
|Phase = C2 − C

(6.70)


δi∗a
δv∗a
|Gain = 20 · log(

A3

A
·
va,0 − 2π ·Km · nE,0

ia,0
)

δi∗a
δv∗a
|Phase = C3 − C

(6.71)

The method given above is a reasonable way of transferring experimental data to corre-

sponding points of Bode Plot. Besides, the expressions given in Eq 6.65 to Eq 6.68 are

determined by curve fitting and more details are given in Appendix E. By analyzing the

experimental data of different frequency, the result comparison is shown below:

Figure 63: Magnitude Diagram of
δn∗

E

δv∗a
|PS

Figure 64: Phase Diagram of
δn∗

E

δv∗a
|PS
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Figure 65: Magnitude Diagram of
δn∗

E

δv∗a
|STBD

Figure 66: Phase Diagram of
δn∗

E

δv∗a
|STBD

Figure 67: Magnitude Diagram of
δF∗

T

δv∗a
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Figure 68: Phase Diagram of
δF∗

T

δv∗a

Figure 69: Magnitude Diagram of
δi∗a
δv∗a
|PS

Figure 70: Phase Diagram of
δi∗a
δv∗a
|PS
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Figure 71: Magnitude Diagram of
δi∗a
δv∗a
|STBD

Figure 72: Phase Diagram of
δi∗a
δv∗a
|STBD

In Bode Plot, the experimental data is reflected as star dots while the behavior of lin-

earized model is presented by the solid curve.

The magnitude diagrams in ABS are shown in Appendix G.

The well-matched result comparison shown above indicates that the linearized model is

valid enough to be used in predicting the system behavior in frequency domain. However,

if looking through the experimental data, it is easy to discover that the characteristic of

δi∗a, δn
∗
E and δF ∗

T is different: the highest frequency of input signal which has been added

during experiment is 50Hz, at which only the measurement data of δi∗a is still able to

maintain sinusoidal form and could be transformed into the last star dot shown in Bode

Plot (Fig 69 to Fig 72). δn∗E , as shown in Fig 73, could no longer be treated as a regular

sinusoidal signal under 50Hz therefore it is impossible to acquire corresponding star dots
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in Bode Plot. As for δF ∗
T , the situation is even worse: Fig 67 and 68 shows that only the

experimental data dot of 0.01Hz, 0.1Hz, 0.5Hz and 1.0Hz has a good agreement with

the simulation result. The phase of experimental data (δF ∗
T ) under 2.5Hz and 5Hz has

a significant difference with the predicted data, which could be explained by Fig 74 and

Fig 75: at 2.5Hz and 5Hz, although the curve of δF ∗
T may still look similar to sinusoidal

curve, yet the amplitude is not stable anymore. And when the frequency increases to

10Hz, the waveform of δF ∗
T has become totally irregular and is unable to be analyzed

(please be aware that the wave shown in Fig 76 may look similar to a sinusoidal wave,

its frequency is almost 7 times lower than 10Hz, the frequency which is expected).

Figure 73: Exp data of δn∗E at 50Hz

Figure 74: Exp data of δF ∗
T at 2.5Hz

Based on the setup, procedure and principle of the test, the author gives two possible

explanations about the missing experimental data dots under high frequency of δn∗E

and δF ∗
T . The first explanation is: due to the limitation of RPM sensor’s and load cell’s
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sensitivity, the actual behavior of angular frequency nE and thrust force FT under high

frequency failed to be reflected by the recorded measurement result. Fig 73 and 75

indicate that the measured data is very noisy while the amplitude is extremely small.

Besides, other defect of the test-setup worsen the situation: after checking the recorded

video of experiment, at 2.5Hz, 5Hz and 10Hz, there was an obvious pitching movement

of Tito Neri, which could be explained by the information given in section 4.1. Since the

extension line of load cell fails to go through the LCB, if high frequency voltage signal

is supplied, there is a great possibility that the model boat can no longer prevent the

unwanted movements in vertical and lateral direction, which will result in an imprecise

result of force measurement.

Figure 75: Exp data of δF ∗
T at 5Hz

Figure 76: Exp data of δF ∗
T at 10Hz

The second explanation is: the mechanical system of Tito Neri’s shaft line is not sensitive

enough to respond to high frequency input signal whose amplitude is very small. This
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could only be verified after all the defects elaborated in the first explanation have been

modified: by applying a more advanced measurement system which is able to provide

convincing experimental data, and if the result is still similar to the current one, then it

is highly recommended by the author to conduct a detailed research about the system

behavior under high frequency.

Based on previous discussion, so far, the conclusion drawn by the author is: around

the steady state at which va = 6.5V , the linearized model is valid enough to be applied

in predicting the behavior of Tito Neri’s propulsion system within a limited region of

frequency domain. Until now, the applicable frequency region of
δn∗E
δv∗a

is lower than 50Hz,

and as for
δF ∗T
δv∗a

, the region shrinks to 2.5Hz. δi∗a
δv∗a

has the widest applicable region whose

boundary needs to be determined in future research. Therefore, the upper bound of

applicable frequency is around 2.5Hz (by modifying the test-setup this range should be

wider).

The validated linearized model provides a solid basis for applying control technique,

for instance voltage control and current control to the propulsion system while operat-

ing. Moreover, after determining the open-water propeller diagram, the linearized model

under straight-line sailing condition could be built and validated by corresponding ex-

periments, which will make the model more complete.
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As a sub-project of research program ”Potential of Hardware-In-the-Loop

Simulation in the Towing Tank”, this Thesis aims at answering the research

questions which are proposed in Chapter 1. Those questions relate with cal-

ibration (parameter identification), simulation, validation and linearization

of Tito Neri’s propulsion system. Due to the construction of shaft-line and

limitations of measurement equipment, Question 2 and 4 have not been com-

pletely answered yet and more effort are required in the future. Therefore,

in this Chapter, the main conclusions and recommendations of this Thesis

will be summarized.

7.1 Conclusions

By analyzing the structure of Tito Neri’s propulsion system, combined with correspond-

ing physical laws, its mathematical model under bollard-pull and straight-line sailing

condition could be determined. By looking through the mathematical model, the re-

quired parameters are able to be classified into DC motor related parameters, mechanical

parameters and hydrodynamic parameters.The first and the second type of parameters

could be identified by result analysis of dry-run tests while the related expressions of

the last type must be acquired from hydrodynamic tests.

After being identified, the validity of those parameters (together with the validity of

simulation model) was determined by result comparison between simulation and ex-

periment, through which it has been discovered that most values of DC motor related

parameters and mechanical parameters shown in Table 3.5 (except the friction torque)

together with the simulation model shown in Fig 25 are valid enough for future use.

The result of hydrodynamic tests, especially the propeller open-water curve of high J ,

on the other hand, is not convincing enough and needs to be improved in the future.

But according to the discussion in section 5.2, the value of KT and KQ derived from

the result of bollard-pull test should be reasonable, and this opinion has been approved

later by the validation work elaborated in section 5.3.

In order to give a more straightforward view, validity of the identified parameters is

summarized in Table 7.1.

Besides parameter identification and corresponding validation, by applying and extend-

ing the linearization method proposed by D.Stapersma and A.Vrijdag in Paper [2], the

linearized (mathematical) model of Tito Neri’s propulsion system under bollard-pull

conditions, including Eq 6.45, 6.51 and 6.57, was constructed. After determining the

corresponding Laplace Transfer Functions Eq 6.58 to 6.60, the validity of this linearized
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model has been examined by experiment and a convincing result is shown by Fig 63 to

Fig 72. However, it must be addressed that currently the validity has only been proved

within a limited (frequency) region for δi∗a, δn
∗
E and δF ∗

T simultaneously (below 2.5Hz),

which requires more exploration in the future.

Table 7.1: Validity of Identified Parameters

Parameter Validity

Ip2 (kg ·m2) ++

Ip3 (kg ·m2) +

Rele (Ω) +

Km (N ·m/A) +

L (H) +

Ip1 (kg ·m2) +

MBF (N ·m) +/−
MF1 +MF2 (N ·m) +/−

R (N) −
KT −
KQ −

• ”++” means the determined value of this parameter is almost 100% trustable and

no more validation is needed in the future

• ”+” means the determined value is highly trustable, but a more precise measure-

ment during future experiment may provide a more accurate result

• ”−” means validity of this parameter is very poor (KT and KQ) or has not been

proved (R), therefore the determined value could not be trusted so far

• +/− of friction torque means the determined value is valid enough under high

angular frequency, yet under low angular frequency it is another story

7.2 Recommendations

Recommendations given by the author in this section mainly focus on modifying the

result of parameter identification (which includes creating a more detailed friction model

and trying to acquire a convincing propeller open-water diagram), improving the quality

of bollard-pull experiments which is related with validation of the linearized model, and

a few discussion about extending the linearized model to predict system behavior under

straight-line sailing condition.
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Based on the information given in section 3.4.1 and section 5.3, it is acknowledged

that all the friction torques of this propulsion system, which includes MBF , MF1 and

MF2, their values are assumed to be irrelevant with shaft angular frequency and the

operating condition (dry-run or wet-run). This assumption plays a very important role

in simplifying the procedure of parameter identification and has been proved to be valid

for most cases by the well agreement between experimental data & simulation result,

yet Fig 27 and 28 suggest that this assumption also has its limitation, especially when

the supplied voltage is relatively low.

According to Eq 2.20 and Eq 2.33, the function of friction model is determined by result

analysis of dry-run tests under steady state. Therefore, more stable voltage supplier as

well as more reliable current sensors are required when conducting dry-run tests in the

future so as to modify the test result. Besides, the author is also keen to find out why

under low supplied voltage (or angular frequency), the Coulomb Friction Model is not

perfectly suitable. And after examining the shaft-line construction, it was observed that

component-3 (shaft bearing) had not been well mounted and may needed to be replaced.

This provides a potential explanation for the friction issue.

With a more complete friction model, the application range of the simulation model

shown in this Thesis will be wider. For instance, if the friction characteristic of this

propulsion system under low shaft angular frequency could be described precisely in

the future, the simulation model will then be able to applied as the basis of designing

a Dynamic-Positioning system (which usually operates under low voltage) for MT218

Course.

Another parameter which requires to be determined is propeller open-water diagram.

In this Thesis, due to the questionable result of propeller ”open-water” test, the author

failed to give a convincing expression of KT and KQ when J is not 0, which made it

impossible to build and validate the linearized model under straight-line sailing condi-

tion. According to section 5.3, the main reason leading to this failure is unreliability

of the load cell, so one way to improve is redoing the ”open-water” test with accurate

force measurement. However, this cannot eliminate the interaction between hull and

propeller, therefore the author suggests to apply 3D scanning technique and tries to

determine the open-water diagram through CFD analysis.

Besides parameter identification, the author also discussed linearization of Tito Neri’s

propulsion system. In Chapter 6, one linearized model under bollard-pull condition

is built and validated. As indicated in section 6.4, the validity needs to be explored

more, especially for the applicable frequency range of
δF ∗T
δV ∗a

, which could be done through

modifying the test-setup, for instance letting the extension line of load cell to go through
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the LCB and preventing the unwanted movements which will result in an imprecise result

of force measurement.

In order to reach the ultimate goal of this research program, building and validating the

linearized model under straight-line sailing condition is of vital importance. Because

this linearized model is the basis of introducing voltage or current control. Except for

the convincing propeller open-water diagram, a wireless experimental system must be

designed and set up for straight-line sailing test in the future.

Last but not least, during the past 15 months working with Mr.Vrijdag, the author

gradually learned the importance and benefits of a proper time management. Except

for knowledge, this is the most precious experience the author has acquired from the

MSc graduation project.
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The brand of current sensor is ACS712ELCTR-05B-T, and its absolute maximum ratings

are given below:

Figure 77: Absolute Maximum Ratings

To give a clearer view of this current sensor, the Pin-out diagram and terminal list are

given below:

Figure 78: Pin-Out Diagram and Terminal List

And the operating characteristics is:

Figure 79: x05B Performance Characteristics

Please be aware that Fig 77 to Fig 79 are all extracted from the datasheet of ACS712ELCTR-

05B-T. The original file could be easily found on the internet.
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Fig 80 and 81 show the channels of DEWE-43 board and SIRIUS board individually.

Combined with the content of Chapter 3, connection between components of test-setup

is clearer. More detailed information could be found through the Technical Reference

Manual from www.dewesoft.com/products.

Figure 80: Channels of DEWE-43 board

Figure 81: Channels of SIRIUS board



Appendix C
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Besides the dry-run test elaborated in Chapter 3, another two dry-run tests were also

conducted to validate the parameters as well as the simulation model. The first one is

the upward ramp whose result comparison is given below:

Figure 82: Input Voltage Signal (upward ramp)

Figure 83: Result Comparison of Current

Figure 84: Result Comparison of Motor Speed
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The second one is the multiple-step dry-run test:

Figure 85: Input Voltage Signal (multiple-step)

Figure 86: Result Comparison of Current

Figure 87: Result Comparison of Motor Speed
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The result conparison shown above indicates that the test result matches well with

simulation result. Furthermore it proves the validity of the simulation model together

with the defined parameters.



Appendix D

Result Comparison for

Bollard-pull Test When Block

Signal is Added
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When a block signal with a frequency of 0.1Hz is added to the system under bollard-

pull condition, the result comparison between experimental data and simulation is given

below:

Figure 88: Input Voltage Signal 0.1Hz under Bollard-pull Condition

Figure 89: Comparison of Tension Force under Bollard-pull Condition

Figure 90: Comparison of motor speed PS under Bollard-pull Condition
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Figure 91: Comparison of motor speed STBD under Bollard-pull Condition

Figure 92: Comparison of current PS under Bollard-pull Condition

Figure 93: Comparison of current STBD under Bollard-pull Condition

Although there is some difference on the peak value of tension force (Fig 89) and shaft

angular frequency (Fig 90 and 91), Fig 89 to Fig 93 indicates a well agreement between



Symbols 109

experimental data and simulation result, which also proves the validity of the simulation

model shown in Fig 49 and 50 when there is a sudden increase or decrease of input

voltage.



Appendix E

Example and Relevant Data of

Curve Fitting
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From section 6.4 it is acknowledged that the normalized variables are:

δv∗a =
A · sin(Bt+ C)

va,0 − 2π ·Km · nE,0
= A∗ · sin(Bt+ C)

δn∗E =
A1 · sin(Bt+ C1)

nE,0
= A∗

1 · sin(Bt+ C1)

δF ∗
T =

A2 · sin(Bt+ C2)

FT,0
= A∗

2 · sin(Bt+ C2)

δi∗a =
A3 · sin(Bt+ C3)

ia,0
= A∗

3 · sin(Bt+ C3)

And in order to determine the value of A∗
i and Ci, the experimental data must be

analyzed. The way to analyze data is curve fitting and the theory behind is least-square

method. The analysis under frequency of 0.01Hz is given below as an example:

Figure 94: Curve Fitting of δv∗a|PS of 0.01Hz

After importing the experimental data of va into MatLab, after normalization, the grey-

dot line shown in Fig 94 could be created. And by applying the curve-fitting tool of

MatLab, the black solid curve is able to be graphed and the corresponding expression

of A∗ · sin(Bt+ C) could be determined as follows:

δv∗a = A∗ · sin(Bt+ C) = 0.6807 · sin(0.06314t+ 2.09)

Please be aware that the value of C, which is equal to 2.09, is in radians and it should

be transferred to degrees by 2.09 · 180
π = 376.2o.
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By using the same way, the curve fitting graph of δn∗E , δF
∗
T , δi

∗
a are given below:

Figure 95: Curve Fitting of δn∗E |PS of 0.01Hz

Figure 96: Curve Fitting of δF ∗
T of 0.01Hz

Figure 97: Curve Fitting of δi∗a|PS of 0.01Hz
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The coefficients are given in Table E.1:

Table E.1: Value of Coefficients under 0.01Hz

A∗
i Ci

δv∗a|PS 0.6807 2.09
δn∗E |PS 0.1934 2.076
δi∗a|PS 0.1515 2.078

δv∗a|STBD 0.712 2.089
δn∗E |STBD 0.1922 2.073
δi∗a|STBD 0.1416 2.105
δF ∗

T 0.4063 2.056

And the coefficients under other frequency are given in the coming tables:

Table E.2: Value of Coefficients under 0.1Hz

A∗
i Ci

δv∗a|PS 0.09936 2.346
δn∗E |PS 0.03084 2.28
δi∗a|PS 0.02215 2.493

δv∗a|STBD 0.1069 2.349
δn∗E |STBD 0.02966 2.308
δi∗a|STBD 0.02356 2.494
δF ∗

T 0.06565 2.372

Table E.3: Value of Coefficients under 0.5Hz

A∗
i Ci

δv∗a|PS 0.7151 −1.309
δn∗E |PS 0.1801 −1.529
δi∗a|PS 0.2137 −0.7791

δv∗a|STBD 0.7355 −1.314
δn∗E |STBD 0.1791 −1.48
δi∗a|STBD 0.1963 −0.7571
δF ∗

T 0.4738 −1.368

Table E.4: Value of Coefficients under 1.0Hz

A∗
i Ci

δv∗a|PS 0.6807 0.6425

δn∗E |PS 0.1647 0.295

δi∗a|PS 0.3056 1.379

δv∗a|STBD 0.7021 0.6465

δn∗E |STBD 0.1647 0.3049

δi∗a|STBD 0.2826 1.363

δF ∗
T 0.4289 0.3899
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Table E.5: Value of Coefficients under 2.5Hz

A∗
i Ci

δv∗a|PS 0.6538 1.889

δn∗E |PS 0.1245 1.156

δi∗a|PS 0.5138 2.511

δv∗a|STBD 0.685 1.899

δn∗E |STBD 0.1251 1.152

δi∗a|STBD 0.5211 2.534

δF ∗
T 0.1637 −0.1082

Table E.6: Value of Coefficients under 5.0Hz

A∗
i Ci

δv∗a|PS 0.6201 −0.2166

δn∗E |PS 0.07551 −1.301

δi∗a|PS 0.6201 0.1564

δv∗a|STBD 0.6501 −0.2116

δn∗E |STBD 0.07817 −1.291

δi∗a|STBD 0.5661 0.1633

δF ∗
T 0.1242 2.697

Table E.7: Value of Coefficients under 10Hz

A∗
i Ci

δv∗a|PS 0.6055 0.1483

δn∗E |PS 0.04084 −1.196

δi∗a|PS 0.6359 0.3232

δv∗a|STBD 0.6354 0.1481

δn∗E |STBD 0.03919 −1.205

δi∗a|STBD 0.59 0.3351

δF ∗
T # #

Table E.8: Value of Coefficients under 50Hz

A∗
i Ci

δv∗a|PS 0.6049 −2.257

δi∗a|PS 0.6572 −2.363

δv∗a|STBD 0.6583 −2.257

δi∗a|STBD 0.6361 −2.372
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Based on the coefficients shown above, the magnitude and phase of Bode Plot could be

determined by:


δx∗

δv∗a
|Gain = 20 · log(

A∗
i

A∗ )

δx∗

δv∗a
|Phase = (Ci − C) · 180

π

(E.1)
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Based on Eq 6.45, 6.51, after applying Laplace Transform, there is:


s · τe · δI∗a = δV ∗

a − δI∗a −
2πKb · nE,0

va,0 − 2πKb · nE,0
· δN∗

E

s · τm · δN∗
E =

Km · ia,0
Km · ia,0 −MF

· δI∗a − 2 · δN∗
E

(F.1)

After elimination by substitution, Eq F.1 could be transformed to:

δN∗
E

δV ∗
a

=
Km ·R · i2a,0

R · ia,0 · (2 + s · τm)(1 + s · τe)(Km · ia,0 −MF ) + 2πK2
m · ia,0 · nE,0

(F.2)

δI∗a
δV ∗

a

=
R · ia,0 · (2 + s · τm)(Km · ia,0 −MF )

R · ia,0 · (2 + s · τm)(1 + s · τe)(Km · ia,0 −MF ) + 2πK2
m · ia,0 · nE,0

(F.3)

And according to Eq 6.57, there is:

δF ∗
T

δV ∗
a

=
2Km ·R · i2a,0

R · ia,0 · (2 + s · τm)(1 + s · τe)(Km · ia,0 −MF ) + 2πK2
m · ia,0 · nE,0

(F.4)

If rewrite Eq F.2 to F.4 in standard form, there are:

δN∗
E

δV ∗
a

=
Km ·R · i2a,0

H · τe · τm · s2 +H · (2τe + τm) · s+ 2 ·H + 2πK2
m · ia,0 · nE,0

(F.5)

δI∗a
δV ∗

a

=
2 ·H +H · τm · s

H · τe · τm · s2 +H · (2τe + τm) · s+ 2 ·H + 2πK2
m · ia,0 · nE,0

(F.6)

δF ∗
T

δV ∗
a

=
2Km ·R · i2a,0

H · τe · τm · s2 +H · (2τe + τm) · s+ 2 ·H + 2πK2
m · ia,0 · nE,0

(F.7)

In which H = Km ·R · i2a,0 −MF ·R · ia,0.

The DC gains are given below:

δN∗
E

δV ∗
a

|DCgain =
Km ·R · i2a,0

2 · (Km ·R · i2a,0 −MF ·R · ia,0) + 2πK2
m · ia,0 · nE,0
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δI∗a
δV ∗

a

|DCgain =
2 · (Km ·R · i2a,0 −MF ·R · ia,0)

2 · (Km ·R · i2a,0 −MF ·R · ia,0) + 2πK2
m · ia,0 · nE,0

δF ∗
T

δV ∗
a

|DCgain =
2 ·Km ·R · i2a,0

2 · (Km ·R · i2a,0 −MF ·R · ia,0) + 2πK2
m · ia,0 · nE,0



Appendix G

Magnitude Diagrams of Bode

Plot in ABS

119



Symbols 120

Figure 98: Magnitude Diagram of
δn∗

E

δv∗a
|PS

Figure 99: Magnitude Diagram of
δn∗

E

δv∗a
|STBD

Figure 100: Magnitude Diagram of
δF∗

T

δv∗a
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Figure 101: Magnitude Diagram of
δi∗a
δv∗a
|PS

Figure 102: Magnitude Diagram of
δi∗a
δv∗a
|STBD

Apparently, compared to the magnitude diagrams in dB, Fig 98 to 102 indicates that

the difference in abs between simulation and experimental data is more obvious, but the

result is still convincing and proves the validity of the linearized model.
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