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Abstract

In this thesis a problem of determining the optimal pacing strategy to minimize travel time is considered.
The problem is restricted to a straight race track with constant slope and rolling resistance, and no
headwind. It is expressed as an optimal control problem that can be solved using Pontryagin’s Maximum
Principle.
The control variable is the cyclist’s power, which is modelled according to a hyperbolic power-time
relationship [1], where a maximum power level is assumed. The Hamiltonian is linear with respect to
this control variable. The minimum time problem is redefined as a maximum excursion problem, which
is related to Goddards problem of a rocket’s ascent through the atmosphere [2].
It turns out that the optimal pacing problem is a singular control problem. Such problems are difficult
to solve, both numerically and analytically, and they only occur sporadically in control theory [3]. It is
proven that the singular control only accurs during a single interval; optimal pacing starts with maximum
power and decays through a singular control to minimum power. The singular arc may be degenerate;
a bang-bang control might be optimal, depending on the length of the race track and the amount of
available energy. The solution of the pacing problem has been obtained partly numerical and partly
analytical. It applies to a straight course without bends, but it can be extended to an arbitrary course
by dividing it into straight segments between bends and optimize over all distributions of energy over
the segments.
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Introduction

The prologue of the Tour de France 2015 was located in the town centre of Utrecht (see Figure 1). It
was a 13 km time trial to decide who deserved the yellow jersey on the first day of the Tour. One of
the competitors was Tom Dumoulin, Dutch rider of cycling team Giant Alpecin and national champion
time trial cycling 2014. Of course it would be great to see him win in his home country. But how can
we optimize his chances of winning?

Figure 1: The race track of the prologue of the Tour the France 2015.

In order to achieve the fastest final time, the absolute amount of energy the cyclist can exert during
a race is of course of great importance. However, the distribution of this available energy over the course
is a critical factor in sports performance. Pacing strategy is defined as the strategy an athlete uses to
distribute his or her energy throughout the race [4]. Power [W] denotes the expended energy per unit of
time, and therefore the terms energy distribution and power distribution are interchangeable. According
to former studies, the optimal pacing strategy depends on the length of the race track. In shorter
distances (<2 min), a pacing strategy with a relatively fast start is optimal [5]. In longer distances,
a fast start is apparently less advantageous. The force that is necessary to overcome air friction is
quadratically related to velocity, so variations in the pacing strategy of the cyclist, and therefore the
velocity profile, will influence the fraction of power that has to be used to overcome these forces. That
is, many deviations of the mean velocity will result in higher costs associated with air resistance [4],[6].
Of course a constant velocity along the entire race track will not always be possible. We have to deal
with hills, turns and a limitation on the physical abilities of the cyclist. The question is: given a certain
race track, physical properties of the cyclist, and external factors like weather conditions, what will be
the optimal power distribution over the race track that results in fastest finish time?
In this thesis we express the problem of determining optimal pacing strategy as a mathematical optimal
control problem that can be solved using Pontryagins Maximum Principle. The control variable u(t) will
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be the cyclist’s exerted power level at time t. A race track where all external factors are constant will
be considered. The problem is not trivial since the initial velocity is fixed and small, thus the cyclist has
to accelerate in some way, which costs energy.
In chapter 1 the power equation is explained, which is a way to model movement. Furthermore the
physical properties of a cyclist and the effect of turns on the maximum velocity are considered. In the
second chapter the mathematical background is discussed. We see how Optimal Control Theory follows
from Calculus of Variations. After that, in chapter 3 we state our problem with no headwind and constant
slope and rolling resistance. Some properties of the velocity as a solution of the differential equation
following from the power equation are derived. In chapter 4 we assume a constant velocity is optimal.
Assuming this and satisfying all constraints, there is nothing to optimize anymore. In this chapter it is
shown how to use this constant velocity for modelling a solution for a race track with variable slopes.
Furthermore certain assumptions are made on the acceleration after the turns, and it is shown how these
assumptions can be incorporated in a model.
In chapter 5 the problem with fixed (small) initial velocity is discussed. First the power equation is
simplified to completely solve the problem. Sufficient conditions are derived to determine the exact
shape of the solution. After that the original power equation is considered. The shape of a solution is
derived and turns out to be the same as for the simplified problem.
In this thesis a lot of examples are added to illustrate theory and findings. However, the examples are
isolated and may be skipped without loss of continuity.
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Chapter 1

Background

1.1 Power equation

In scientific terms, to pedal is to exert a propulsive force (FP) against the ground [7]. In order to maintain
a constant speed, one has to exert a propulsive force exactly equal to all frictional forces, consisting of

� Air resistance (FA),

� Slope resistance (FS),

� Rolling resistance (FR),

� Bump resistance (FB).

Any force in access of (or less than) the sum of these resistant forces, will result in a change of kinetic
energy. That is, it will accelerate (or decelerate) the cyclist. So we have that

FP = FA + FS + FR + FB + Facc,

where Facc is the acceleration force, equal to meffa. Here a is the acceleration in m/s2 and meff is the
effective mass, consisting of the rider plus bike in kg plus the kinetic energy of the rotation of the bicycle’s
wheels. The quantity meff is slightly greater than just the mass m of the rider plus bike.

In level-road cycling faster than approximately 3 m/s, air resistance is the main factor in the resis-
tance against the rider. Air resistance is quadratically related to relative air velocity in the following
way; FA = KA (vground + vwind)

2
. Here (vground + vwind) is the relative air velocity, where vground is the

speed relative to the ground, and vwind is the speed of the headwind. Furthermore, KA is the aerody-
namic drag factor where KA = 1

2CDAρ. Here CD is the drag coefficient which is usually less than or
equal to 1, the constant A is the frontal area in m2, and ρ is the air density in kg/m3. Usually KA is
somewhere between 0.1 and 0.3.

On hills, slope resistance becomes the most important source of resistance the rider encounters. It
is constant; it does not depend on the velocity of the rider. Slope resistance depends on the weight (mass
times gravitational acceleration) of the bicycle and rider, and the slope of the hill up against which they
are travelling. It is given by FS = mgsl, where g is the gravitational acceleration in m/s2, and sl is the
slope of the hill.

Rolling resistance is never very great, only in level road cycling with very small velocities is its con-
tribution to total resistance significant. Rolling resistance is given by FR = mgCR, where CR is the
coefficient of rolling resistance. The quantity of CR depends, among others, on the material of the tire,
the pressure of the tire, the diameter of the wheel and the quality of the road. It is typically between
0.002 (high-quality racing tires at high pressure) and 0.008 (utility tires at low pressure).
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For bump resistance there is no formula to express the resistance in terms of road condition, tire construc-
tion, velocity, etc. But since most race tracks are not very bumpy, the contribution of bump resistance
will be minimal. Therefore, in this thesis we neglect the influence of bump resistance.

Putting everything together, we find that

FP = KA (vground + vwind)
2

+mgsl +mgCR +meffa.

And, rearranging terms and writing u(t) = FPv(t) we find

u(t) =

[
KA(v(t) + vwind)2 +mg(sl + CR) +meff

dv

dt
(t)

]
v(t), (1.1)

where u(t) is the power in Watt exerted at time t, and v(t) is the velocity in m/s at time t. This is a
first-order nonlinear ordinary differential equation, and is known as the power equation [7].

An overview of all constants can be found in attachment B.

1.2 The rider

An important constraint we have to take into consideration is a constraint on our control variable. Re-
member the control variable u(t) is the cyclist’s exerted power level at time t. Of course the cyclist is a
human being and therefore is not able to produce an infinite amount of power. There will be a certain
umax which u can never exceed. However, if this was the only constraint the solution would be simple;
producing umax all the time would definitely result in the fastest final time. But again, the cyclist is a
human being and will get tired along the way and will not be able to produce his umax for longer than
approximately 20 seconds. Therefore we need another constraint.

For this we consider the CP model, presented by Monod and Schrerrer in 1965 [1]. The CP model
describes the physical properties of a human being in a simple way. It defines the critical power (CP )
as the power level that a person could maintain infinitely on the basis of principally aerobic metabolism.
On top of that, the constant W ′ is defined as a finite work capacity [J] available to the athlete once he
or she attempts a power output above CP . From here on we will denote W ′ by W , to avoid confusion
with time derivatives. We can view W as a battery of energy that depletes during exercise above CP .
The W and CP are related according to the following equation:

W = (P − CP )t,

where P is a certain power level above CP , and t is the duration for which that power level was sustained.
This relation implies that the size of W is independent of the rate of its depletion. The model is based
on the following four assumptions [8]:

� Power output is a function of two energy sources: aerobic and anaerobic;

� Aerobic energy is unlimited in capacity but limited in rate. That is, a person could exert power
levels ≤ CP infinitely;

� Anaerobic energy is limited in capacity but unlimited in rate. That means the maximum power
output is infinite;

� Exhaustion occurs when W is depleted.

Each of the assumptions is physiologically imprecise, but it turns out that the model is useful for mod-
elling the power-duration relationship for maximal exercise with a duration of 2 up to 30 minutes.

There are many variations on the CP model. Since it is unrealistic to assume the power level could
be infinite, R.H. Morton [9] created a three-parameter model in 1996 described by

W = (P − CP )(t+ j),

4



where j = W
Pmax−CP is the asymptote. Here Pmax is the maximum power output, that can only occur

for instantaneous time (time to exhaustion is 0).

In reality the ‘battery’ W can be recharged during exercise. Skiba et al. introduced the Wbal model,
in which they assumed the reconstruction of the W begins the moment the cyclist’s power level falls
below CP [10]. They furthermore assumed the reconstruction of the W follows an exponential. The
Wbal model provides a generally robust prediction of W [11].

1.3 The race track

As an example of a race track we consider the prologue of the Tour the France 2015 (see Figure 1). An
important limiting factor on the velocity in this race track are the turns. To prevent the cyclist to go
into a skid, there is a certain maximum speed he should not exceed in a turn. This maximum speed
depends on the sharpness of the turn, but also on the coefficient of friction between the tires and the
road. The exact formula is given by

vmax =
√
µgr,

where µ is the coefficient of friction, usually between 0.3 and 1, g ≈ 9.81 the gravitational acceleration
and r the curve radius. See Figure 1.1.

Figure 1.1: The biggest curve radius r for two crossing roads.

Since we want to take a turn as fast as possible, we want the least restricting vmax. For this we have
to determine the biggest curve radius for certain roads crossing each other.

Figure 1.2: Construction for determining the biggest curve radius for crossing roads under angle φ and
road width b.
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Consider Figure 1.2. Suppose the roads cross each other under an angle φ. To determine the least
sharp turn the cyclist can take, we have to find the circle through point D, tangent to the line segments
AB and BC. Obviously the middle point M of the ‘curve circle’ is on the bisector of angle φ. Consider
point M , and let ω = d(M,B) denote the distance between M and B. Then

d(AB,M) = d(BC,M) =
sin( 1

2φ)

ω

must hold, where d(AB,M) and d(BC,M) denote respectively the shortest distance between M and
line segment AB and BC.
Besides that, we have that

d(D,M) = ω − b

sin( 1
2φ)

,

where b is the road width. So we find

ω = − b

sin( 1
2φ)

(
sin( 1

2φ)− 1
) .

So the maximum curve radius is given by

r = ω − b

sin( 1
2φ)

=
b

1− sin( 1
2φ)

,

and the length lc of the curve is given by

lc =

(
1− φ

180

)
πr.
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Chapter 2

Calculus of Variations and Optimal
Control

In June 1696 Johan Bernoulli posed a challenge to all mathematicians in the world. It said the following:
If in a vertical plane two points A and B are given, then it is required to specify the orbit AMB of the
movable point M, along which it, starting from A, and under the influence of its own weight, arrives at
B in the shortest possible time.
The challenge was taken up by the best mathematicians of the time. Newton, l’Hopital, Tschirnhaus,
Leibniz and Johan’s older brother Jacob Bernoulli solved the problem. As we will later see, the solution
is a cycloid. In 1697 Johan Bernoulli published the solution, addressed to The Sharpest Mathematical
Minds of the Globe. Bernoulli’s good friend Leibniz called the cycloid the Brachistochrone (from the
Greek words βραχιστoς: shortest and χρoνoς: time). The challenge of Bernoulli can be seen as an
important contribution to the development of Calculus of Variations and later Optimal Control [12].

Before we can move on to the theorems to solve these kind of problems, there are a few definitions
we need. In this thesis we will restrict ourselves to systems described by ordinary differential equa-
tions. That is, if x(t) = (x1(t), x2(t), . . . , xn(t)) denotes the state variable of a process at time t and
u(t) = (u1(t), u2(t), . . . , un(t)) is the control input to the process at time t, then the system can be
described by n first-order differential equations

x′(t) = f (x(t),u(t), t) 1,

where f = (f1, . . . , fn) is any function of the state x, the control u and the time t ∈ [t0, tf ]. The control
u is finite for all t. Besides that, u is piecewise continuous; it can contain a finite number of jumps.
From this it follows that x is piecewise smooth; it is continuous, and differentiable except for the points
where u ‘jumps’.
There can be certain constraints on the state and control variables.

Definition 2.0.1. A control history which satisfies the control constraints during the entire time interval
[t0, tf ] is called an admissible control. We denote the set of all admissible controls by U .

Definition 2.0.2. A state trajectory which satisfies the state variable constraints during the entire time
interval [t0, tf ] is called an admissible trajectory. The set of all admissible state trajectories is denoted
by X .

To evaluate the performance of a system, we can define a performance measure. The performance
measure is a functional.

1The work of several authors is discussed in this thesis. For clarity and consistency, from now on we will use our own
notation. That is, for the independent variable we use the letter t, which can be thought of as time. The state variables are
denoted by x and the control variable by u. The only exception on this notation is made in Example 2.1.1, where the used
notation is clearly specified. We use primes (or d

dt
for differentiating longer expressions) for differentiation with respect to

time. A ∗ will always denote optimality. Furthermore, J will denote the performance measure and H the Hamiltonian.
These concepts are defined later on.
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Definition 2.0.3. Let L be a Banach space. A functional J : X → R is a mapping from a set of
functions X ⊂ L to the real numbers. Intuitively, we might say that a functional is a ‘function of a
function’.

Definition 2.0.4. Let J : L → R be a functional defined on the function space (L, ‖ · ‖) and let X ⊂ L
be the set of functions satisfying certain boundary conditions. The functional J is said to have a local
maximum in X at x∗ ∈ X if there exists an ε > 0 such that J(x)− J(x∗) ≤ 0 for all x ∈ X such that
‖x− x∗‖ < ε.
The functional J is said to have a global maximum in X at x∗ ∈ X if J(x)− J(x∗) ≤ 0 for all x ∈ X.

We assume that the performance measure is a functional of the following form:

J(u) =

∫ tf

t0

L(x(t),u(t), t)dt, 2

where t0 and tf are respectively the initial and final time. The function L is a scalar function and
assumed to be continuous in its three arguments x, u and t. Besides that, we assume it has continuous
partial derivatives with respect to x and u.

Definition 2.0.5. An optimal control is defined as the control input that maximizes the performance
measure.3

So, starting from initial state x(t0) = x0 and applying a control u on the system, the system fol-
lows a state trajectory x and the performance measure assigns a unique real number to each trajectory
of the system. The objective is to find the control trajectory that maximizes the performance measure,
such that all constraints are satisfied. That is,

The Optimal Control problem Find an admissible control u∗ which causes the system

x′(t) = f (x(t),u∗(t), t) (2.1)

to follow an admissible trajectory x∗ such that

J(u) =

∫ tf

t0

L(x(t),u(t), t)dt

is maximized .4[13]

Depending on the form of J and the type of constraints, one can use Calculus of Variations or Op-
timal Control Theory to find a solution to this problem.

There are some important differences between the two methods. The Calculus of Variations deals with
optimization problems of the following form:

max
x

J(x) =

∫ tf

t0

L (x(t),x′(t), t) dt,

subject to x(t0) = x0, x(tf ) = x1. (2.2)

2One might note that the functional also depends on x. However, in optimal control problems x is determined by u via
the system dynamics. Therefore the notation J(u) is chosen rather than J(x,u).

3We seek for a global maximum here. That is, J(u)− J(u∗) ≤ 0 for all u ∈ U which make x ∈ X .
4Note that minimizing J is equivalent to maximizing −J .
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Or, equivalently, of the form

max
u

J(u) =

∫ tf

t0

L (x(t),u(t), t) dt,

subject to x(t0) = x0, x(tf ) = x1, and x′(t) = u(t),

for a ≤ t ≤ b.5 (2.3)

Thus the maximization of (2.2) takes place in the space of all curves (all continuous functions on [t0, tf ]).
The difficulty of these problems completely depends on the form of the function L.
In contrast, in optimal control problems one maximizes J over a set X of curves which is itself determined
by some dynamical constraints. So X might be the set of all curves t 7→ x(t) that satisfy a differential
equation

x′(t) = f(x(t),u(t), t),

for some choice of the control function t 7→ u(t). Therefore we have to deal with the dynamics f and
the functional J to be maximized. The class of optimal control problems contains for example problems
where the function L equals -1 everywhere. These problems are so called minimum time problems. The
difficulty of these problems completely comes from the dynamics f . The Brachistochrone Problem of
Bernoulli is an example of a minimum time problem [12].

In the next two sections we will consider Calculus of Variations and Optimal Control more extensively,
and we will see how the two are related.

2.1 Calculus of Variations

In this section we will consider problems of the form (2.2). In 1744 Euler, a student of Bernoulli’s,
published his book ‘The Method of Finding Plane Curves that Show Some Property of Maximum and
Minimum’. In this book he gave a general procedure for writing down what became known as Euler’s
equation. From Euler’s equation, Lagrange derived in 1755 the necessary condition for a maximum of
(2.2), leading to the following theorem:

Theorem 2.1.1. Let J : C2[t0, tf ] → R be a functional of the form J(x) =
∫ tf
t0
L(x, x′, t)dt, where

t0 < tf and L has continuous partial derivatives of second order with respect to x, x′ and t. Let
X = {x ∈ C2[t0, tf ] : x(t0) = x0 and x(tf ) = xf} be the set of admissible trajectories, where x0 and xf
are given real numbers. If x∗ ∈ X maximizes J , then

d

dt

(
∂L

∂x′

)
− ∂L

∂x
= 0 for all t ∈ [t0, tf ].6 (2.4)

This is called the Euler-Lagrange equation. Any solution to this equation is called an extremal of J.78

Before we move on to the proof, one remark has to be made. In the notation above, we use x′ both as
an independent variable and as a function of time evaluated along a trajectory. To avoid confusion, one
can also write the Euler-Lagrange equation as

d

dt

(
∂L

∂u
(x∗(t), x∗′(t), t)

)
− ∂L

∂x
(x∗(t), x∗′(t), t) = 0.

5At first sight nothing changes in this new notation. We added an extra degree of freedom (u), but get an extra constraint
in return in the form of a differential equation (x′ = u). However, by writing the problem like this, the difference between
Calculus of Variations problems and optimal control problems becomes obvious.

6That is, d
dt

(
∂L
∂x′ (x

∗(t), x∗′(t), t)
)
− ∂L

∂x
(x∗(t), x∗′(t), t) = 0 for all t ∈ [t0, tf ]. In the proof we omit the arguments.

7From now on we will write x instead of x, to denote the state variables. Still x ∈ Rn; it will be clear when we talk
about the vector x or a specific state variable xi. The same applies to u.

8In fact, for n > 1, the Euler Lagrange equation is a system of differential equations given by d
dt

(
∂L
∂x′i

)
− ∂L
∂xi

= 0 for

i = 1, . . . , n.
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So in the first term, one starts evaluating ∂L
∂x′ , where x′ has to be treated as an independent variable.

Then x∗, x∗′ and t are plugged in and finally one differentiates with respect to t [12].

We will now prove Theorem 2.1.1 for the one-dimensional case.

Proof. Suppose the function x∗(t) ∈ X maximizes the functional J . Let x(t) be some other admissible
function. Now define h(t) as the difference between the admissible function x(t) and the optimal function
x∗(t) for each t, that is

h(t) = x(t)− x∗(t).
Since both x, x∗ ∈ X , we have that h(t0) = 0 and h(tf ) = 0. Using this, we see that for any constant ν
the function y(t) = x∗(t) + νh(t) is also admissible. We can now fix x∗ and h and compute the value of
J(y) as a function of ν, yielding

J(y) =

∫ tf

t0

L (y(t), y′(t), t) dt

=

∫ tf

t0

L (x∗(t) + νh(t), x∗′(t) + νh′(t), t) dt

= g(ν).

Since x∗ maximizes J , the function g must attain its maximum at ν = 0. By the first order necessary
condition for a maximum of a function of a single variable, we have that g′(0) = 0 must hold. Using the
chain rule and Leibniz’s rule9 for differentiating under an integral we find that

g′(ν) =

∫ tf

t0

∂L

∂x
(x∗(t) + νh(t), x∗′(t) + νh′(t), t)h(t) +

∂L

∂x′
(x∗(t) + νh(t), x∗′(t) + νh′(t), t)h′(t)dt,

so

g′(0) =

∫ tf

t0

∂L

∂x
(x∗(t), x∗′(t), t)h(t) +

∂L

∂x′
(x∗(t), x∗′(t), t)h′(t)dt = 0.

Integrating the second term by parts and using the fact that h(t0) = h(tf ) = 0, we find that∫ tf

t0

[
∂L

∂x
(t, x∗(t), x∗′(t))− d

dt

∂L

∂x′
(x∗(t), x∗′(t), t)

]
h(t)dt = 0.

This must hold if x∗ maximizes J , for every continuously differentiable function h that is zero at the
endpoints. Therefore we can conclude that if x∗ maximizes J , then

∂L

∂x
(t, x∗(t), x∗′(t))− d

dt

∂L

∂x′
(x∗(t), x∗′(t), t) = 0,

for all t0 ≤ t ≤ tf . To see this, without loss of generality, suppose that ∂L
∂x −

d
dt
∂L
∂x′ is positive on some

subinterval I ⊂ [t0, tf ]. We choose h to be a continuously differentiable function that satisfies h ≡ 0 for
all t /∈ I ∪ {t0} ∪ {tf} and h > 0 for all t ∈ I. Then∫ tf

t0

[
∂L

∂x
(x∗(t), x∗′(t), t)− d

dt

∂L

∂x′
(t, x∗(t), x∗′(t))

]
h(t)dt > 0,

a contradiction [14].

If L does not depend on t, the Euler-Lagrange equation reduces to a first-order differential equation.
This equation is known as the Beltrami identity.

9Leibniz’ rule: Let L(ν, t) be continuous wrt t for every value of ν, with a continuous derivative dL
dν

(t, ν) wrt t and ν.

Let the functions A(ν) and B(ν) have continuous derivatives. If g(ν) =
∫B(ν)
A(ν)

L(ν, t)dt, then g′(ν) = L(B(ν), ν)B′(ν) −

L(A(ν), ν)A′(ν) +
∫B(ν)
A(ν)

∂L
∂ν

(ν, t)dt.

In this case A′(ν) = B′(ν) = 0, so Leibniz’ rule yields g′(ν) =
∫ t1
t0

∂L
∂ν

(ν, t)dt. Note that we use g′(ν) for dg
dν

(ν).
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Corollary 2.1.2. (Beltrami identity) Suppose L of theorem 2.1.1 depends only on x and x′. If x∗ ∈ X
maximizes J , then

L− ∂L

∂x′
x∗′ = C for all t ∈ [t0, tf ], 10

for a constant C.

Proof. Suppose x∗ ∈ X maximizes J . Then x∗ satisfies the Euler-Lagrange equation (2.4). Multiplying
this equation with x∗′ yields

x∗′
d

dt

(
∂L

∂x′

)
− x∗′ ∂L

∂x
= 0 for all t ∈ [t0, tf ]. (2.5)

By the chain rule we have that
dL

dt
=
∂L

∂t
+
∂L

∂x
x′ +

∂L

∂x′
x′′.

Substituting the expression for ∂L
∂xx

∗′ in (2.5), we find

x∗′
d

dt

(
∂L

∂x′

)
− dL

dt
+
∂L

∂t
+
∂L

∂x′
x∗′′ = 0. (2.6)

From the product rule it follows that

d

dt

(
∂L

∂x′
x′
)

= x′
d

dt

(
∂L

∂x′

)
+
∂L

∂x′
x′′.

Substituting the expression for x∗′ ddt
(
∂L
∂x′

)
in (2.6), we find

d

dt

(
∂L

∂x′
x∗′
)
− dL

dt
+
∂L

∂t
= 0,

so
d

dt

(
L− ∂L

∂x′
x∗′
)

=
∂L

∂t
.

Since L does not depend on t, ∂L
∂t = 0, yielding

L− ∂L

∂x′
x∗′ = C for all t ∈ [t0, tf ],

for a constant C [15].

We see that the Euler-Lagrange equation gives conditions for stationarity, i.e. for the first variation
of J to be zero. Legendre considered the second variation and derived the following necessary condition
for x∗ ∈ X to be optimal:

∂2L

∂x′2
(t, x∗(t), x∗′(t)) ≤ 0, (2.7)

for all t ∈ [t0, tf ]. In the vector case this says that the Hessian matrix
{

∂2L
∂x′i∂x′j (t, x(t), x′(t))

}
1≤i,j≤n

has to be nonpositive definite. The proof can be found in [15].

Before we turn to Optimal Control Theory we will consider the ‘Optimal race track Problem’, which is
a small extension of the Brachistochrone problem, that can be solved using Calculus of Variations.

10That is, L(x∗(t), x∗′(t), t)− ∂L
∂x′ (x

∗(t), x∗′(t), t)x∗′(t) = C for all t ∈ [t0, tf ]. In the proof we omit the arguments.
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2.1.1 Example: Optimal race track

Suppose a cyclist has to cycle from start to finish, via A and B, in a world without friction (see Figure
2.1). Somewhere in between the start and A the cyclist’s battery is completely depleted, and his critical
power is 0. After depletion he is not able to produce any power anymore, so due to the absence of
friction, his velocity remains constant up to A. We call this velocity v0. The cyclist is allowed to choose
the altitude profile of his race track between A and B. Different choices of the race track are represented
in Figure 2.1. The first idea the cyclist might come up with is simply a straight line. However, one can
imagine that riding downhill leads to acceleration which might result in a faster final time. The steeper
the slope, the bigger the acceleration, but also the longer the race track will be. Therefore we are looking
for the optimal curve that accelerates our cyclist, but is not too long.

Figure 2.1: Possible choices of the race track between A and B.

To find the optimal curve we can use Calculus of Variations. We define a coordinate system with
point A as the origin, and the positive y-axis is directed vertically downwards as shown in Figure 2.2.

Figure 2.2: Coordinate system. The arrows denote the positive axes.

First we have to determine the integral we want to maximize. For this we use the Principle of
conservation of energy, stating ‘In the absence of friction, the total energy of an object in motion
(that is, the sum of its kinetic and potential energies) remains constant’. Hence the cyclist’s energy E,
given by

E =
1

2
mv2 −mgy,

remains constant throughout his trip along the curve. Here m is the mass of the cyclist, v is the speed
and g = 9, 81 m/s2 is the gravitational acceleration. Let y denote the y-coordinate of the cyclist. Note
that the minus sign comes from the inverted y-axis. If v0 is the initial speed, we have that initially
E = 1

2mv
2
0 , and it will remain this value along the entire trajectory. We then have that the velocity v

on a certain position with y-coordinate y is given by

v =
√
v2

0 + 2gy. (2.8)
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The integral we want to maximize is given by

J(y) = −
∫ T

0

1 dt = −
∫ xB

0

dt

ds

ds

dx
dx, 11

where ds is the infinitesimal step along the curve. Using (2.8) and Pythagoras’ theorem, we find

J(y) = −
∫ xB

0

1√
v2

0 + 2gy

√
1 + (y′)2dx.

So L is given by

L(y, y′, x) =
−1√

v2
0 + 2gy

√
1 + (y′)2.

We see that L is independent of x, so according to Beltrami’s identity 2.1.2, we have that for optimal y∗,

y∗′
∂L

∂y′
− L = − y∗′2√

1 + y∗′2
√
v2

0 + 2gy∗
+

√
1 + y∗′2√
v2

0 + 2gy∗
=

1√
1 + y∗′2

√
v2

0 + 2gy∗
= C,

for a constant C. Rewriting yields

y∗′ =

√
1
C2 − v2

0 − 2gy∗

v2
0 + 2gy∗

.

Now choose a constant κ such that v2
0 = 2gκ. Then

y∗′ =

√
1
C2 − 2g(κ+ y∗)

2g(κ+ y∗)
.

Now write ŷ = κ+ y∗ and k = 1
2g C2 , yielding

y∗′ =

√
k − ŷ
ŷ

.

We now make the trigonometric substitution
√

ŷ
k−ŷ = tan(ψ), where ψ is a function of x. Isolating ŷ,

we find that
ŷ = k sin2(ψ).

Now
dψ

dx
=
dψ

dŷ
·

dŷ

dx
=

1

2k sin(ψ) cos(ψ)
·

1

tan(ψ)
=

1

2k sin2(ψ)
,

so
dx = 2k sin2(ψ)dψ.

Integrating both sides yields

x = 2k

∫
sin2(ψ)dψ

= k

∫
1− cos(2ψ)dψ

= k

(
ψ − 1

2
sin(2ψ)

)
+ c,

11The notation might be somewhat confusing here. Since we have to deal with a coordinate system, we denote the
function for which we evaluate J by y, which is the y-coordinate of the cyclist. The independent variable is denoted by x,
which is the x-coordinate of the cyclist. Note that we converted the problem with free terminal time into one with fixed
terminal ‘time’ (which is position in this notation).
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where c is a constant. If we now substitute k
2 = δ and 2ψ = θ we find that the optimal curve from A to

B is given by {
x = δ(θ − sin(θ)) + c,
ŷ = δ(1− cos(θ)),

where δ = xB

2 , and 0 ≤ θ ≤ 2π. We want the cyclist to go through point A = (0, 0), yielding

c = 2δ
(√

κ
2δ (1 + κ

2δ )− sin−1(
√

κ
2δ )
)
. If v0 = 0, then κ = 0 and c = 0 and the parametric equa-

tions describe a cycloid. A cycloid is the trajectory traced out by a point on the edge of a circle rolling
in a straight line [15] (see Figure 2.3).

Figure 2.3: Construction of a cycloid.

We see that the shape of the optimal race track depends on the initial velocity v0. We can imagine
that when the cyclist is going really fast, the acceleration due to gravity is relatively small and will
probably not outweigh the extra meters the cycloid describes.

We can see this as follows. Consider two points A 6= B strictly between C and D on the cycloid.
Obviously the speed is not zero at A. Now note that the optimal path from A to B has to be along the
cycloid. Suppose this is not the case; there is a path σ that is faster than the path along the cycloid.
In this case we would replace the part of the cycloid between A and B by σ, resulting in a faster path
between C and D, contradicting the optimality of the cycloid.
Concluding, we have to find a cycloid CD that goes through A and B, such that a point starting at C
with zero speed, and following the cycloid, has velocity v0 in A. Indeed, the greater v0, the greater this
cycloid and the flatter the optimal race track will be.
The part of the cycloid between A and B is our solution. See Figure 2.4.

Figure 2.4: The optimal race track from start to finish via A and B, with velocity v0 at A.

2.2 Optimal Control

From the former section we have two necessary conditions for a maximum of a functional; Euler-Lagrange
(theorem 2.1.1) and Legendre’s condition (2.7). The next step is to combine these two conditions in one
condition. This has partly been done by Hamilton and later Weierstrass and leads to Optimal Control
Theory, the Maximum Principle and a great generalisation of the classical theory [12].
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Suppose t 7→ x(t) is a solution of (2.4). Now define a function H as follows:

H(x, u, λ, t) = 〈λ, u〉 − L(x, u, t), (2.9)

where x, λ ∈ Rn and u ∈ Rm are vector variables and t ∈ R a scalar variable. Let 〈 · , · 〉 denote the inner
product. We also define

λ(t) =
∂L

∂u
(x(t), x′(t), t). (2.10)

We see that ∂H
∂λ = u, and since u = x′(t) along our curve we have that

dx

dt
(t) =

∂H

∂λ
(x(t), x′(t), t).

Also ∂H
∂x = −∂L∂x , so substituting this and (2.10) in the Euler-Lagrange equation (2.4), we find

dλ

dt
(t) = −∂H

∂x
(x(t), x′(t), t).

Finally, ∂H∂u = λ− ∂L
∂u , hence (2.10) states

∂H

∂u
(x(t), x′(t), t) = 0.

Concluding, we now have a system of equations given by

dx

dt
=
∂H

∂λ
,

dλ

dt
= −∂H

∂x
,

∂H

∂u
= 0,

that is equivalent to the Euler Equation, provided that H is defined as (2.9).

We now consider Legendre’s condition (2.7) for this particular H. Our H(x, u, λ, t) is equal to −L(x, u, t)
plus a linear function of u, so (2.7) is equivalent to

∂H

∂u2
(x(t), x′(t), λ(t), t) ≥ 0.

So we have

∂H

∂u
= 0 and

∂H

∂u2
≥ 0,

and we conclude that H must have a minimum as a function of u. So an additional necessary condition
for optimality is that H(x(t), u, λ(t), t) as a function of u, has a minimum at x∗′(t) for each t [12].

This all leads to the Maximum Principle as known today. The Hamiltonian is defined somewhat
different than (2.9). For clarity, we state the complete problem once again.

Maximize with respect to all admissible u ∈ U

J(u) =

∫ tf

t0

L(x(t), u(t), t)dt, (2.11)

subject to the dynamical constraint
x′(t) = f (x(t), u(t), t) , (2.12)

where x ∈ Rn and u ∈ Rm. Besides that, x has to satisfy an initial constraint x(t0) = x0 and possibly
a final constraint x(tf ) = xf . Here t0 and tf are fixed. Pontryagin’s Maximum Principle states that
if u∗(t) is an optimal control, then there exists a function λ∗(t) ∈ Rn, called the costate or influence
function, that satisfies the so called Maximum Principle.
In order to define this principle, we first define the Hamiltonian as follows:

H(x, u, λ, t) := L(x, u, t) + λf (x, u, t) , (2.13)

where x, λ ∈ Rn, u ∈ Rm and t ∈ R. Let λf be the inner product of λ and f .

15



Theorem 2.2.1. (Pontryagin Maximum Principle) Assume u∗( · ) is optimal for the problem de-
fined by (2.11)-(2.12), and x∗( · ) is the corresponding state trajectory. Then there exists a continuously
differentiable function λ∗ : [t0, tf ]→ Rn such that

λ∗(t) 6= 0, (2.14)

x∗′(t) = Hλ (x∗(t), u∗(t), λ∗(t), t) , (2.15)

λ∗′(t) = −Hx (x∗(t), u∗(t), λ∗(t), t) , (2.16)

H (x∗(t), u∗(t), λ∗(t), t) = max
u∈U

H (x∗(t), u, λ∗(t), t) , (2.17)

for all t ∈ [t0, tf ].12

Equation (2.14) is known as the nontriviality condition, (2.15) are just the system dynamics or state
equations, (2.16) are called the adjoint or costate equations and (2.17) is known as the maximization
condition. A trajectory-control pair (u, x) for which there exist a λ(t) satisfying Pontryagin Maximum
Principle, is called an extremal.

The geometric interpretation of the function λ is as follows; λi(t0) can be seen as the gradient of the per-
formance measure J with respect to variations in the initial condition xi(t0), while holding u(t) constant
and satisfying the system dynamics. The function λ is called the influence function on J of variations
in x(t), since t0 is arbitrary [3].

For minimum time problems there is an additional condition. In these kind of problems the end
time is free but the endpoint is given. That is,

Maximize J(u) =

∫ T

t0

L(x(t), u(t), t)dt,

subject to the dynamical constraint

x′(t) = f (x(t), u(t), t) (2.18)

and endpoint constraints x(t0) = x0 and x(T ) = xf . Again t0 is fixed but T = T (u( · )) denotes the first
time the solution of (2.18) hits the target point xf .13

In this case, for an optimal u∗ and corresponding trajectory x∗, there exists a function λ satisfying all
conditions from Theorem 2.2.1, and besides that,

H(x∗(t), u∗(t), λ∗(t), t)

∣∣∣∣
t=T

= 0.

The last equation is known as the transversality condition.

Remark 2.2.2. If xi(t0) is given, λi(t0) is unknown. If xi(t0) is not specified, we have λi(t0) = 0. This
says that influence of small changes in the optimal xi(t0) on J is zero. The same applies for terminal
time T ; if xi(T ) is given, λi(T ) is unknown, and if xi(T ) is not specified, we have λi(T ) = 0. So we have
2n boundary conditions for 2n differential equations (2.15) and (2.16) [3].

2.2.1 Solutions for linear Hamiltonian

Suppose the Hamiltonian H is linear in u, that is

H(x, u, λ, t) = p(x, λ, t)u+ q(x, λ, t),

12Here Hλ = ∂H
∂λ

and Hx = ∂H
∂x

. Note that (2.15) and (2.16) both are in fact n differential equations. That is,
x∗′i (t) = Hλi

(x∗(t), u∗(t), λ∗(t), t) and λ∗′i (t) = −Hxi (x∗(t), u∗(t), λ∗(t), t) for i = 1, . . . , n.
13From now on, T will denote the free final time, determined by the control variable u. Fixed final time will be written

as tf or Tf .
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for some functions p and q. The Maximum Principle is simple now; H(u) is maximal for the u that
maximizes the term p ·u. So if u is bounded, the maximum of H may occur on the boundary of u. That
is,

u∗(t) =

{
umin if p(x, λ, t) < 0
umax if p(x, λ, t) > 0,

where, for obvious reasons, p is called the switching function. Optimal controls that only contain the
values umin and umax are called bang-bang controls, since these controls move suddenly from one point
on the boundary of the feasible control region to another point on the boundary.

However, it may be possible to find intervals where a function u(t) inside the bounded region will
yield a λ(t) and x(t) such that

∂H

∂u
= p(x, λ, t) = 0,

that is, a stationary solution. Such intervals are called singular arcs. On a singular arc the coef-
ficient of the linear control term in the Hamiltonian vanishes identically. In this case the control is
determined by the requirement that the coefficient of these linear terms remain zero along the singu-
lar arc, so the time derivatives of Hu must be zero. We denote the value of u along a singular arc by using.

So if the Hamiltonian is linear in u, the optimal solution u∗ is either bang-bang, or a combination of
bang-bang and singular arcs [3].

2.2.2 Sufficiency

Pontryagin’s Maximum Principle provides a necessary condition for u to be optimal. In this subsection
we provide conditions under which the Maximum Principle is both necessary and sufficient.

Theorem 2.2.3. Suppose L(x, u, t) and f(x, u, t) are both differentiable concave functions of x, u in the
problem (2.11)-(2.12). Suppose the functions x, u and λ satisfy the necessary conditions (2.14)-(2.17) for
all t ∈ [0, tf ]. Suppose further that x and λ are continuous with λ ≥ 0 for all t ∈ [0, tf ] if f is nonlinear
in x or u, or both. Then Pontryagin’s Maximum Principle is sufficient for optimality.14

Proof. Let (x, u) satisfy (2.12). Let L, f denote functions evaluated along the feasible path (x, u, t), and
let L∗, f∗ denote functions evaluated along the optimal path (x∗, u∗, t). We have to show that

D ≡
∫ tf

t0

L∗ − L dt ≥ 0.

Since L is a concave function of (x, u), we have that

L ≤ L∗ +
∂L∗

∂x
(x− x∗) +

∂L∗

∂u
(u− u∗).

So

D ≥
∫ tf

t0

[
(x∗ − x)

∂L∗

∂x
+ (u∗ − u)

∂L∗

∂u

]
dt.

Substituting (2.16) and (2.17) and using the definition of the Hamiltonian (2.13) yields

=

∫ tf

t0

[
(x∗ − x)

(
−λ∂f

∗

∂x
− λ∗′

)
+ (u∗ − u)

(
−λ∂f

∗

∂u

)]
dt. (2.19)

If we integrate
∫ tf
t0
λ′ (x∗ − x) dt by parts, we find∫ tf

t0

λ′ (x∗ − x) dt = λ(tf ) (x∗(tf )− x(tf ))− λ(t0) (x∗(t0)− x(t0))−
∫ tf

t0

λ(f∗ − f)dt

= −
∫ tf

t0

λ(f∗ − f)dt,

14Note that the final time tf is fixed!
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since x(t0) = x∗(t0), and from Remark 2.2.2 we have that either xi(tf ) = x∗i (tf ) is given, or λi(tf ) = 0.
So we have that (2.19) equals∫ tf

t0

λ

[
f∗ − f − (x∗ − x)

∂f∗

∂x
− (u∗ − u)

∂f∗

∂u

]
dt ≥ 0. (2.20)

This inequality follows since we assumed f to be concave and λ(t) ≥ 0 for f nonlinear in x or u, or both.

If f is linear in x, u, f∗ − f − (x∗ − x)∂f
∗

∂x − (u∗ − u)∂f
∗

∂u = 0 and the inequality holds 15 [14].

2.2.3 Example: No friction

Consider a cyclist with unit mass on a horizontal road. At time t the cyclist can exert a force u(t) on
the system. There is no friction involved, so exerted force will be equal to acceleration in that direction.
That is,

x′′(t) = u(t),

where x(t) is the position of the cyclist at time t. Given the initial position x(0) = 0 and initial velocity
x′(0) = 0, the goal is to bring the cyclist to a given position (x(T ) = l) in minimum time, while
0 ≤ u ≤ umax, where umax > 0. To make the example more interesting, the cyclist has a total amount
of energy W that he can spend to reach the finish.
We thus want to maximize

−T =

∫ T

0

−1dt,

s.t. (x1(0), x2(0)) = (0, 0) and x1(T ) = l, where l is the length of our race track. The quantity of

x2(T ) is not specified. Besides that,
∫ T

0
u(t)dt ≤ W . To model the last criterion, we define a variable

w(t) =
∫ t

0
(u(s))+ds which denotes the amount of used energy up to time t. We note that, in order to

reach the finish in minimum time, we want w(T ) to equal W .
We can now define the following state variables:

x1(t) = x(t), x2(t) = x′(t), x3(t) = w(t).

So the system equations are

x′1(t) = x2(t), x′2(t) = u(t), x′3(t) = (u(t))+,

with boundary conditions (x1(0), x2(0), x3(0)) = (0, 0, 0), x1(T ) = l and x3(T ) = W . We furthermore
assume W

umax
< T , saying that the battery is not big enough to exert umax all the time. Otherwise the

problem would be trivial.
Now since u(t) ≥ 0 for all t, we can eliminate one state variable, reducing the system to

x′1(t) = x2(t), x′2(t) = u(t),

with boundary conditions (x1(0), x2(0)) = (0, 0), (x1(T ), x2(T )) = (l,W ). Note that, with this notation,
x2 denotes both the velocity and the battery.

Pontryagin’s Maximum Principle states that if {u∗(t)|t ∈ [0, T ]} is an optimal control trajectory, then
u∗ maximizes the Hamiltonian for all t. The Hamiltonian is now given by

H(x(t), u(t), λ(t), t) = −1 + λ1(t)x2(t) + λ2(t)u(t),

so
u∗(t) = arg max

umin≤u(t)≤umax

[−1 + λ1(t)x2(t) + λ2(t)u(t)] .

We see that the Hamiltonian is linear in u, so we can conclude

u∗(t) =

 0 if λ2(t) < 0,
using if λ2(t) = 0,
umax if λ2(t) > 0.

15Note that f could also be convex and λ ≤ 0 if f is nonlinear in x or u, or both. This would result in a product of
nonpositive quantities in (2.20), resulting in the same inequality.
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The adjoint equations are given by:

dλ1

dt
= 0,

dλ2

dt
= −λ1(t),

so
λ1(t) = q1, λ2(t) = −q1t+ q2,

for some constants q1, q2 ∈ R. We see that λ2 is linear so it has one of the four forms which are shown
in Figure 2.5. We also see the corresponding u∗.

Figure 2.5: Possible forms of the adjoint variable λ2(t) and the corresponding forms of the optimal
control trajectory u∗(t).

So for each t, u∗(t) is either 0 or umax, and {u∗(t)|t ∈ [0, T ]} has at most one switching point in the
interval [0, T ].
Obviously, the first case is impossible by assumption. In the latter case the battery will not deplete at
all, violating the terminal condition of x2. Whether case 2 or case 3 is optimal, is not immediately clear
from the Maximum Principle. Also the transversality condition,

−1 + q1W + (−q1T + q2)u(T ) = 0,

does not exclude one of the cases.

To determine the precise form of the optimal control trajectory, we consider the possible state tra-
jectories. For u ≡ ξ, where ξ ∈ {0, umax}, and x1(0) and x2(0) unknown, the system evolves according
to

x1(t) =
1

2
ξt2 + x2(0)t+ x1(0), x2(t) = ξt+ x2(0).

Eliminating the time t in these equations yields

2ξx1(t)− (x2(t))2 = 2ξx1(0)− (x2(0))2,

for all t.
So on intervals where u(t) ≡ umax, we have that 2umaxx1(t)− (x2(t))2 is constant and on intervals where
u(t) ≡ 0, we have that −(x2(t))2 is constant, as shown in Figure 2.6.
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Figure 2.6: State trajectories of a cyclist with unit mass for u∗(t) ≡ umax and u∗(t) ≡ 0, when there is
no friction involved.

To determine the optimal control trajectory we use the given final state. To bring the system from
the initial state (0, 0) to the final state (x1(T ), x2(T )) = (l,W ) with at most one switch in the value of
control, it follows from Figure 2.6 that umax must be exerted until x2(s) = W for a certain time s, and
then a switch to 0 Watt has to be made. The corresponding optimal state trajectory is shown in Figure
2.7. The switch is made at s = W

umax
[16].

Figure 2.7: Optimal state trajectory when there is no friction involved. Here x1 denotes the travelled
distance and x2 denotes velocity and used energy.
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Chapter 3

Stating the Problem

In this chapter we return to the original problem of determining the optimal pacing strategy, as stated
in the introduction. We will translate this problem into an optimal control problem.

3.1 The Problem

We assume that the aerodynamic drag factor and the roll and slope resistance are constant along the race
track. We assume no headwind, so we have the following (simplified) power equation for the movement
of the cyclist:

u(t) =

[
c1(v(t))2 + c2 + c3

dv

dt
(t)

]
v(t), (3.1)

where c1, c2, c3 > 0 are known constants, v(t) is the velocity at time t, dvdt (t) its derivative, or equivalently
the acceleration at time t, and u(t) is the control variable, i.e. the power produced by the cyclist at time
t.
In accordance with section 1.2, we assume there exists a certain umax that u never exceeds. Besides that,
we make some assumptions based on de CP model described in the same section.
We assume the cyclist has a certain critical power level he could maintain forever. On top of that he has
a finite battery of energy of size W , that depletes once his power level exceeds CP . The constants CP
and W are related by W = (u(t)−CP )+t, and we assume the battery can be emptied only once during
the time trial. In order to have the shortest finish time, we want the battery to be exactly empty on the
finish line, so we want that ∫ T

0

u(t)dt = W + CP ·T.

We can now define

w(t) :=

∫ t

0

(u(τ)− CP )
+
dτ, (3.2)

where we can view w(t) as the amount of energy of our battery we have used up to time t.

Now define the following state variables:

x1(t) = x(t), x2(t) = v(t), x3(t) = w(t).

Note that, since exerting CP Watt does not cost any energy in this model, power levels lower than
CP will not appear in an optimal solution. Therefore we might as well put umin = CP and w(t) =∫ t

0
(u(s)− CP ) ds.

We can now state the problem:

max
CP≤u(t)≤umax

−T =

∫ T

0

−1 dt,
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subject to dx1

dt
dx2

dt
dx3

dt

 =

 x2(t)
u(t)

x2(t)c3
− c1

c3
(x2(t))2 − c2

c3

u(t)− CP

 ,

s.t. x1(0) = 0, x1(T ) = l, x2(0) = α > 0, x3(0) = 0, x3(T ) = W ,

where the first system equation is just velocity, the second comes directly from (3.1) and the third
from (3.2).

We can now apply the Maximum Principle. The Hamiltonian is given by

H(x(t), u(t), λ(t), t) = −1 + λ1(t)x2(t) + λ2(t)

[
u(t)

x2(t)c3
− c1
c3

(x2(t))2 − c2
c3

]
+ λ3(t) (u(t)− CP ) . (3.3)

We can state the adjoint equations, using dλi

dt = − dH
dxi

, leading to the following six differential equations:

dx1

dt
= x2(t) x1(0) = 0, x1(T ) = l (3.4)

dx2

dt
=

u(t)

x2(t)c3
− c1
c3

(x2(t))2 − c2
c3

x2(0) = α (3.5)

dx3

dt
= u(t)− CP x3(0) = 0, x3(T ) = W (3.6)

dλ1

dt
= 0 (3.7)

dλ2

dt
= −

(
λ1 −

λ2(t)u(t)

c3(x2(t))2
− 2

c1
c3
λ2(t)x2(t)

)
λ2(T ) = 0 (3.8)

dλ3

dt
= 0, (3.9)

where α > 0 is a known constant. This is a minimum time problem, so also the transversality condition
holds true:

−1 + λ1(T )x2(T ) + λ3(T ) (u(T )− CP ) = 0.

Note that the Hamiltonian is linear in u, so maximizing it wrt u yields

u∗(t) =


umin if λ2

x2
(t) > −c3λ3,

using if λ2

x2
(t) = −c3λ3,

umax if λ2

x2
(t) < −c3λ3.

Consider a singular interval. We note that λ3 is a constant, so differentiating λ2

x2
(t) = −c3λ3 yields

d

dt

(
λ2

x2

)
=
x2(t)dλ2

dt (t)− λ2(t)dx2

dt (t)

x2(t)2
= 0. (3.10)

If we substitute (3.5) and (3.8), we find

d

dt

(
λ2

x2

)
= − 1

x2(t)
+ 3

c1
c3
λ2(t) +

c2λ2(t)

c3(x2(t))2
. (3.11)

On this singular interval λ2

x2
(t) = γ, where γ := −c3λ3. Substituting this yields

3
c1
c3
γx2(t) +

(
c2
c3
γ − 1

)
1

x2(t)
= 0. (3.12)

We conclude that the velocity x2(t) has to remain constant on a singular interval. To be precise, it has

to equal x2(t) =
√

c3
3c1γ
− c2

3c1
. Since the velocity is constant, we have dx2

dt = 0. So using (3.5), we can

determine the power level using corresponding to this constant velocity, yielding

using =
(c3 + 2c2γ)

√
c3−c2γ
c1γ

3
√

3γ
. (3.13)
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3.2 Properties of x2 for constant u

Suppose the power level u(t) = u is constant on an interval. In this section we take a closer look at what
happens to the velocity in this case. Remember that acceleration is given by

dx2

dt
=

u

x2(t)c3
− c1
c3

(x2(t))2 − c2
c3

= f2(x2(t)), 1 (3.14)

a nonlinear autonomous differential equation in x2 for which we can not write down the solution explic-
itly. In this section we will consider the limit of x as t→∞, where x satisfies the nonlinear differential
equation x′(t) = f(x(t)).

If f(x) > 0, x(t) increases, if f(x) < 0, x(t) decreases. We have three possibilities:

1) x(t) is strictly increasing;

2) x(t) is strictly decreasing;

3) x(t) is neither strictly increasing nor strictly decreasing.

Consider case 3. In this case the sign of f has to change at least once. Suppose this happens at x(t̃) = c̃.
Then f(c̃) = 0, so x(t) = c̃ for all t ≥ t̃. But then x(0) = c̃ since differential equations are uniquely
determined by their initial condition.
Consider case 1 and 2. Now limt→∞ x(t) exists (it might be±∞). Suppose the limit is finite; limt→∞ x(t) =
c. If we differentiate this expression we find

lim
t→∞

f(x(t)) = 0. (3.15)

Hence
0 = lim

t→∞
f(x(t)) = f( lim

t→∞
x(t)) = f(c), (3.16)

by continuity of f . So the limit c is where f equals zero. If f(x) > 0, x increases, so x moves to the right
in Figure 3.1. If f(x) < 0, x(t) moves to the left. From this we conclude the limit is stable if f decreases
through the x-axis. That is, if f ′(c) < 0 for a certain equilibrium c where f(c) = 0, the equilibrium is
stable. All solutions will asymptotically approach the constant solution.

Figure 3.1: Stable equilibrium point c of ordinary autonomous differential equation x′ = f(x).

1To improve legibility, we will omit the subscript 2 in this section.
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3.2.1 Determine the limit

We determine the limit of x2 for a given constant power level u. An equilibrium point is where dx2

dt = 0,
so

u

x2(t)c3
− c1
c3

(x2(t))2 − c2
c3

= 0,

yielding

x2(t) =

3

√
2
3c2

3

√√
3
√

27c41u
2 + 4c31c

3
2 − 9c21u

−
3

√√
3
√

27c41u
2 + 4c31c

3
2 − 9c21u

3
√

18c1
:= vu.

2 (3.17)

We define

η :=
√

3
√
c31 (27c1u2 + 4c32)− 9c21u

=

√81 +
12c32
c1u2

−
√

81

 c21u.

Since
12c32
c1u2 > 0, we have η > 0. Writing η =

√
u2 +

4c32
27c1
−
√
u2, we see that η is a decreasing function of

u. So for increasing u, we have that (3.17) increases as well. Hence:

Remark 3.2.1. vu defined by (3.17) is an increasing function of u.

One assumption on c1, c2 has to be made to assure vu is positive for positive u. Since we only consider
u ≥ CP , and vu is an increasing function of u, the following assumption suffices:

Assumption: c1 and c2 are such that
vCP > 0. (3.18)

This assumption is in general not restricting for realistic values of c1 and c2.

Now

f ′(vu) = −
(

2c1vu
c3

+
u

c3v2
u

)
< 0,

since vu ≥ vCP for u ≥ CP by remark 3.2.1, and vCP > 0 by assumption (3.18). We conclude all
solutions of 3.14 will asymptotically approach vu.

3.2.2 Linearization

To approximate x2 by a known function, we can linearize the system near the equilibrium point. A linear
approximation of a function f of x ∈ R near a point a is given by f(x) ≈ f(a) + f ′(a)(x − a). So to
linearize the system we have to replace f by its linear approximation in the equilibrium point.

Consider a function x̃2 nearby the equilibrium vu. That is, x̃2(t) = vu + y(t) for y(t) small. For
y(t) ≡ 0 we know that x̃2 is a solution of the differential equation. To study the behaviour of x̃2, we
plug it in to our linearized differential equation, yielding

dx̃2

dt
=
dy

dt
= f ′(vu)y,

since f(vu) = 0. We conclude that y(t) = (x̃2(0)− vu)ef
′(vu)t. So an estimation of the velocity x2 while

we exert u on the system, where x2(0) = vstart, is given by x̃2(t) = (1− eλt)(vu − vstart) + vstart, where

λ = f ′(vu) = −
(

2c1vu
c3

+
u

c3v2
u

)
.

2We will use this notation from now on. So for example vCP denotes the constant velocity that does not change while
exerting CP .
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In Figure 3.2 we see in blue the real velocity x2 when the cyclist exerts 270 W on the system, starting
at 5 m/s. In red we see the estimated velocity x̃2 (now u = 270).

Figure 3.2: Velocity when cyclist exerts 270 W on the system, starting at 5 m/s (blue), and the estimated
velocity using v(t) = (1 − eλt)(vu − vstart) + vstart (red). Used constants are c1 = 0.128, c2 = 0.394,
c3 = 80.

3.3 Properties of x2 for variable u

Consider the ordinary differential equation

dx

dt
= f(x, u(t)), (3.19)

where f is a strictly increasing function of power level u(t). The differential equation is not autonomous
anymore, since u is a function of t. In this section we will prove a lemma and a corollary that we will
need later on.

Lemma 3.3.1. Let ū, û : U 7→ R be two controls where ū(t) ≤ û(t) for all t. Let x̄ denote the solution
of x̄′ = f(x̄, ū) and x̂ the solution of x̂′ = f(x̂, û) with x̄(0) = x̂(0). Then x̄(t) ≤ x̂(t) for all t.

Proof. Let t0 denote the first time where ū < û. Then by continuity of x̄ and x̂, we have that x̄ = x̂ for all
t ≤ t0. Since f is strictly increasing in u, we have that f(x̄(t0), ū(t0)) = f(x̂(t0), ū(t0)) < f(x̂(t0), û(t0)).
Furthermore, x is continuous so in a right neighbourhood of t0 we have x̄ < x̂. Now, if x̄ ≤ x̂ for all
t ≥ t0 we are done.
Therefore, suppose there exists a time t1 which is the first time after t0 where x̄(t1) = x̂(t1) and x̄ > x̂
in a right neighbourhood of t1. Then x̄′(t1) > x̂′(t1), but by monotonicity of f in u we have that
x̂′(t1) = f(x̂(t1), û(t1)) = f(x̄(t1), û(t1)) ≥ f(x̄(t1), ū(t1)) = x̄′(t1), which is a contradiction so t1 does
not exist.

Corollary 3.3.2. Consider an interval [a, b]. Suppose x satisfies (3.19), and x(a) < vξ,
3 where ξ :=

min{u(t)|t ∈ (a, b)}. To end with, suppose f ′(vξ) < 0. Then x(b) > x(a).

Proof. The control u on this interval satisfies ξ ≤ u(t) for all t, so from lemma 3.3.1 it follows that
xξ(t) ≤ x(t) for all t ∈ [a, b]. Here xξ is the solution of x′ξ = f(xξ, ξ) and xξ(a) = x(a) < vξ. For constant
ξ, it follows from section 3.2 that f ′(vξ) < 0 and xξ(a) < vξ implies that xξ is increasing towards vξ. We
conclude x(a) = xξ(a) < xξ(b) ≤ x(b).

3vξ is defined as the equilibrium of (3.19) for u(t) ≡ ξ
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Chapter 4

Constant velocity on intervals

Since air resistance is nonlinear in velocity, it is likely optimal to ride with a constant speed v during
the time trial as much as possible. Namely, many deviations from the mean velocity will result in higher
costs associated with air resistance [6]. In this chapter we assume a constant velocity is optimal, even
though we do not prove its optimality.
In order to have an empty battery on the finish line, we note that v is uniquely determined. We use the
boundary conditions of (3.4) and (3.6) to find

v =
3
√

2(W − c2l)
3

√
27c21CP · l3 +

√
729c41CP2

· l6 + 108c31l
3(c2l −W )3

+

3

√
27c21CP · l3 +

√
729c41CP2

· l6 + 108c31l
3(c2l −W )3

3 3
√

2c1l
.

(4.1)

From (3.5) it follows that the power level corresponding to this speed equals u(t) ≡ c1v3 + c2v.

We take a closer look at this formula for v. We expect that if l → ∞, then u → CP , since we as-
sumed this power level can be sustained infinitely. When we divide the numerators and denominators
by l, we see that

v → − 3
√

2c2

3

√
27c21 ·CP +

√
729c41 ·CP +

√
729c41 ·CP 2 + 108c31c

3
2

+

3

√
27c21 ·CP +

√
729c41 ·CP +

√
729c41 ·CP 2 + 108c31c

3
2

3 3
√

2
,

as l→∞.

If we substitute this in the power equation, we find that

u(t) ≡ c1v3 + c2v → CP,

as we expected.
Furthermore, as l→ 0 we see that v →∞ because of its first term, also as we expected.

Since we assumed a constant speed, and the size of the battery and the length of the race track are
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fixed, there is nothing to optimize anymore. One might note that

x1(t) = vt,

x2(t) = v,

x3(t) =
(
c1v

3 + c2v − CP
)
t,

λ1(t) = 0,

λ2(t) = 0,

λ3(t) = 0

satisfies (3.4)-(3.9) (where α = v) and optimizes the (singular) Hamiltonian. However, all the influence
functions equal zero, making the system completely insensitive. Besides that, it does not satisfy the
transversality condition. Optimal Control Theory does not provide any information in this case.

In the rest of this chapter we assume this velocity is optimal, since it is likely to be close to the real
solution.

4.1 Hills

We will make a small extension of the former section by considering a race track with a constant slope
sl,1 on the first part, and a constant but different slope sl,2 on the second part. In Figure 4.1 we see an
example of this. In view of this chapter, we assume it is optimal to exert a constant power level on each

Figure 4.1: Race track with two constant slopes

part. However, a new question arises since the energy of the battery can be distributed in different ways
over the two parts of the race track.
We can view the final time T as a function of z ∈ R2, where 0 ≤ zi ≤ 1 denotes the fraction of energy
used in part i of the race track (

∑2
i=1 zi = 1). The final time is now given by

T (z) =

2∑
i=1

li
vi(z)

, (4.2)

where T is the final time, l1 and l2 are respectively the lengths of the first and second part of the race
track, and v1 and v2 are respectively the velocities on these parts.
The velocities are given by

vi(z) =
3
√

2(W · z − c2,ili)
3

√
27c21CP · l3i +

√
729c41CP2

· l6i + 108c31l
3
i (c2,ili −W · z)3

+

3

√
27c21CP · l3i +

√
729c41CP2

· l6i + 108c31l
3
i (c2,ili −W · z)3

3 3
√

2c1li
,

and c2,i = mg(CR + sl,i).
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In Figure 4.2 we see for both parts the effect of the fraction of energy used on that part, on the time it
takes to cycle it. We also see the sum of these two times, which is the final time of the cyclist completing
the whole race track. We see there is a certain distribution of energy z∗ resulting in the minimum final
time T ∗.

Figure 4.2: Final time as a function of energy distribution over the two parts of the race track.

4.1.1 Extension to n parts

We can extend the idea of section 4.1 to n parts. We assume our race track consists of n parts, with
constant slope on each part. We can again distribute our energy over the different parts, resulting in
different final times. The figure analogous to Figure 4.2 will be n-dimensional, and we have to find the
minimum of T over all distributions z. In Figure 4.3 we find the optimal distribution of energy over a
race track consisting of 5 parts. The Matlab code can be found in attachment C.

Figure 4.3: Optimal distribution of energy for a race track consisting of 5 parts, where constant velocity
on each part is assumed. Used constants are W = 30277, CP = 430, l = (6250, 3750, 4500, 1300, 4590),
c1 = 0.128, c2 = (45.1,−12.3, 4.1, 57.4,−77.9) and c3 = 80.
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4.1.2 Square race track

In this approach we might as well add a certain maximum speed in the turns, as described in section
1.3. As an example we consider a square race track, which can be found in 4.4.

Figure 4.4: Square race track of length 4 km.

The total race track length is 4 km and there are no hills. Suppose the race track has the same road
paving everywhere and it is a windless day. Besides that, the road is wet, so we assume µ = 0.6. The
road width is 3 meters everywhere.

For the entire race track we have c1 = 0.128, c2 = 3.924 and c3 = 78. Furthermore we have W = 30000
and CP = 300. We can now use (4.1) to calculate the optimal speed, ignoring the turns. Using the given
constants, we find v∗ = 13.98 m/s, resulting in a final time of 286 seconds.

However, in the turns we have that vmax =
√
µgr =

√
µgb

1−sin( 1
2φ)

=
√

0.6 · 9.81 · 3
1−sin(45) = 7.76 m/s.

Now suppose we set v∗ = vmax in the turns; the red parts in Figure 4.5.

Figure 4.5: Curves with biggest curve radius on a square race track.

On the green parts we use (4.1) to calculate the optimal speed. But now we use the length of these
parts, and from W we extract the energy it costed to ride vmax in the turns.
The length of the red parts is 3πr

2 = 48.3 meter, so the length of the green parts is 4000− 48.3 = 3951.7
meter. Using the power equation (1.1), we see the cyclist has to exert 90.26 W on the system to cycle
7.76 m/s, which is below CP , so W remains the same.
Using (4.1) again, we find that the new v∗ on the straight parts is 14.0 m/s. Still assuming that jumps in
velocity are possible, the final time will now be 288.5 seconds. We lost 2.5 seconds because of the turns.
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4.2 Acceleration

So far, we assumed jumps in velocity were possible, without any extra costs in energy. However, every
cyclist would say it is more exhausting to ride a winding course than a straight road of the same length.
That is, they say, because of the many accelerations they have to realize after the turns.
In this section we take a closer look at the acceleration from a certain speed vu1

to a higher speed vu2
,

where vu is defined by (3.17). If we just make the switch from u1 to u2, we can use differential equation
(3.5) to see what happens to the velocity. To make it visual, we see in Figure 3.2 what happens to the
speed if the cyclist has a speed of 5 m/s, and then at t = 0 starts exerting 270 Watt, corresponding to a
constant speed of 12 m/s. We see that it takes him at least 40 seconds to get close to 12 m/s, showing
that the solution in the former sections is not very realistic, and probably not optimal in a race. A faster
acceleration is probably desired.
To model acceleration after the turns, we have three approaches. These approaches follow from data
of time trials of Tom Dumoulin. In attachment A we find a part of a time trial in which the turns are
marked. At the start of the race, velocity seems to increase exponentially. However, after the first turn
acceleration seems constant. We could say the cyclist wants to be at or close to his pace within p seconds,
and he adjusts his power level to the acceleration he has to realise. We could also say he just exerts a
certain umax until he is at pace. In the following sections we discuss these approaches more extensively.

4.2.1 At pace within p seconds

Linear acceleration
Suppose the acceleration from vstart to v̄ is linear and realized within p seconds. So the velocity v is
given by

v(t) =

{
vstart + at if t ≤ p,

v̄ if t > p,

where a = v̄−vstart

p . We suppose l ≥ p
2 (vstart + v̄). The time T it takes to cycle a part of length l is then

T =
l − p

2 (vstart + v̄)

v̄
+ p.

The energy it takes to realize this v(t) is given by

u(t) =

{[
c1(vstart + at)2 + c2 + c3a

]
(vstart + at) if t ≤ p,[

c1(vstart + at)2 + c2
]
v̄ if t > p.

Suppose vstart is given. We can now choose v̄ such that
∫ T

0
u(t)dt = CP ·T +W .

Of course this idea can be extended to n parts again, where final time T is considered as a function

of distribution z. For each part i we have to determine v̄i such that
∫ Ti

0
ui(t)dt = CP ·Ti +Wzi, where

Ti =
li− p

2 (vstart,i+v̄i)

v̄i
+ p and

ui(t) =

{[
c1(vstart,i + ait)

2 + c2 + c3ai
]

(vstart,i + ait) if t ≤ p,[
c1(vstart,i + ait)

2 + c2
]
v̄i if t > p.

Then the final time T (z) is given by T (z) =
∑n
i=1 Ti(zi), and we can minimize T over all distributions

of energy z. Here vstart,i is the known vmax,i in the bend preceding part i.1

In Figure 4.6 we see the solution of this minimization for a race track consisting of 5 parts of respectively
length 10, 8, 7, 4 and 6 km, with slopes 0.01, -0.02, 0.01, 0.015 and -0.02. The parts are separated by 4
bends, where the maximum speed is respectively 7, 5, 7 and 8 m/s. The Matlab code can be found in
attachment C.

1N.B. In the final time of the whole race track we have to add the time Tc =
∑n
i=1

lc,i
vmax,i

it takes to cycle the turns.

However, since we assumed the velocity in turn i equals vmax,i, Tc is a constant independent of z, so it does not influence
the minimization. We assume that deceleration to vmax happens instantaneously, and cycling vmax costs no energy.
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Figure 4.6: Optimal power distribution on a race track with 4 bends, where we assumed constant
acceleration. Used constants are W = 30277, CP = 430, l = (10000, 8000, 7000, 4000, 6000), c1 = 0.128,
c2 = (12.3,−12.3, 12.3, 16.4,−12.3), c3 = 80, p = 15, vstart = (0.001, 7, 5, 7, 8).

Exponential acceleration
We now suppose vi is of the form

vi(t) =
(
1− e−λt

)
(v̄i − vstart,i) + vstart,i, (4.3)

where vstart,i < v̄i. Suppose we want the cyclist to be ε away from v̄i within p seconds. That is, we want
that

vi(p) =
(
1− e−λip

)
(v̄i − vstart,i) + vstart,i = v̄i − ε,

yielding

λi = −1

p
log

(
1 +

ε

v̄i − vstart,i

)
. (4.4)

We have to determine v̄i for each part i such that
∫ Ti

0
u(t)dt = CP ·Ti+Wzi. Using the Power Equation

(3.1), we find that the power we have to exert on the system at time t to realize the desired acceleration,
is given by

ui(t) =
[
c1
(
(1− e−λit)(v̄i − vstart,i) + vstart,i

)2
+ c2 + c3(v̄i − vstart,i)λie−λit

]
·

(
(1− e−λit)(v̄i − vstart,i) + vstart,i

)
.

(4.5)

And Ti is such that x1(Ti) = li, where

x1(t) = v̄it+
v̄i − vstart,i

λ
e−λit − v̄i − vstart,i

λi
.

Again we minimize T (z) =
∑n
i=1 Ti(zi) over all distributions z.

4.2.2 umax to accelerate

The models described in the former section could in theory generate an infinitely high u(t) (as p → 0).
This is permitted according to the CP model described in section 1.2, but not very realistic. We could,
instead of making assumptions on the velocity profile during accelerations, make assumptions on the
control variable u(t). In this section we assume, if the cyclist accelerates, he exerts a certain maximum
power level umax until he has the desired speed. After that, he continues in that constant speed, exerting
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the corresponding power level. We would like to see what happens to the speed when we apply this
strategy.
We can use the approximation of section 3.2.2 to optimize the final time over all power distributions.
Suppose the distribution z is given. That is, on part i a fraction zi of the battery is used here. We
assume velocity vi is given by

vi(t) =

{(
1− e−λit

)
(vumax,i − vstart,i) + vstart,i for t ∈ [0, si],

v̄i for t ∈ (si, Ti],

where vumax,i is the equilibrium of (3.5) on part i when u(t) ≡ umax, and

v̄i =
(
1− e−λisi

)
(vumax,i − vstart,i) + vstart,i. The value of λi is given by λi = −

(
2c1vumax,i

c3
+ umax

c3v2umax,i

)
.

The quantity ūi is the constant power level corresponding to the constant velocity v̄i, so ūi = c1v̄
3
i +c2v̄i.

Furthermore, si is the switching point of the control u from umax to ūi, such that

umaxsi + (Ti − si)ūi = CP ·Ti +Wzi.

To end with, Ti is such that x1(Ti) = li, where

x1(t) =

{
v̄it+

v̄i−vstart,i

λ e−λit − v̄i−vstart,i

λi
for t ∈ [0, si],

v̄isi +
v̄i−vstart,i

λi
e−λisi − v̄i−vstart,i

λi
+ v̄it for t ∈ (si, Ti].

Summarizing, we have four positive unknowns Ti, v̄i, ūi and si and four equations that uniquely deter-
mine these quantities.
Again we can minimize T over all distributions z.

In the next chapter Pontryagin’s Maximum Principle is used to solve the problem analytically.
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Chapter 5

Solving the Problem

In this chapter we will solve the problem of Chapter 3. We will do this in a step-by-step manner. We
simplify the state equations and in each step we get closer to the original state equations, to finally solve
the complete problem.

5.1 Constant velocity in the u(t)
x2c3

-term and linear air friction.

We can use the solution in the former chapter to simplify the state equations. In this section we want

to maximize −T = −
∫ T

0
dt, subject to:dx1

dt
dx2

dt
dx3

dt

 =

 x2(t)
u(t)
vc3
− c1

c3
x2(t)− c2

c3
u(t)− CP

 ,

s.t. x1(0) = 0, x1(T ) = l, x2(0) = α, x3(0) = 0, x3(T ) = W,

where v is defined by (4.1). That is, we use a constant velocity in the u(t)
x2c3

-term, and assume linear air
friction. We assume CP ≤ u(t) ≤ umax for all t ∈ [0, T ]. First of all, we note that f and L are linear in
x, u and therefore concave. By section 2.2.2, the Maximum Principle is now a necessary and sufficient
condition for optimality.

The Hamiltonian is given by:

H(x(t), u(t), λ(t), t) = −1 + λ1(t)x2(t) + λ2(t)

[
u(t)

vc3
− c1
c3
x2(t)− c2

c3

]
+ λ3(t) (u(t)− CP ) . (5.1)

We state the adjoint equations for this problem, yielding

dx1

dt
= x2(t) x1(0) = 0, x1(T ) = l (5.2)

dx2

dt
=
u(t)

vc3
− c1
c3
x2(t)− c2

c3
x2(0) = α (5.3)

dx3

dt
= u(t)− CP x3(0) = 0, x3(T ) = W (5.4)

dλ1

dt
= 0 (5.5)

dλ2

dt
= −λ1(t) +

c1
c3
λ2(t) λ2(T ) = 0 (5.6)

dλ3

dt
= 0, (5.7)

where we require α > 0 and

0 <
W

umax − CP
< T, (5.8)
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saying that our battery is not big enough to exert umax all the time.

We now have linear differential equations, which can be solved analytically. We start with maximiz-
ing the Hamiltonian wrt u. Since it’s linear in u, we conclude

u∗(t) =


CP if 1

vc3
λ2(t) + λ3(t) < 0,

using if 1
vc3
λ2(t) + λ3(t) = 0,

umax if 1
vc3
λ2(t) + λ3(t) > 0.

From (5.5) and (5.7) it follows that λ1(t) ≡ λ1 and λ3(t) ≡ λ3 for unknown constants λ1, λ3. From (5.6)

it follows that λ2(t) = c3
c1
λ1

(
1− e

c1
c3

(t−T )
)

.

We first rule out λ1 = 0 by contradiction. Suppose λ1 = 0. Then equation (5.6) turns into a ho-
mogeneous differential equation, and together with the terminal condition we conclude λ2 ≡ 0. By
nontriviality, we must have that λ3 6= 0. Now u∗ will either equal CP or umax for all t ∈ [0, T ], both
leading to violation of the boundary values of (5.4), by assumption 5.8.

We note that λ2 is an exponential and therefore strictly increasing or decreasing, depending on the
value of λ1 (remember that c1 and c3 are positive). Since λ3 is a constant too, 1

vc3
λ2(t) + λ3(t) will be

strictly increasing or decreasing as well. We conclude a bang-bang control with at most one switch in the
value of control will be optimal.

To determine the sign of λ1 we use the geometric interpretation of the influence functions λ. Remember
(see section 2.2) that λi(0) is the gradient of the performance measure with respect to variations in the
initial condition xi(0), while holding u(t) constant and satisfying the system dynamics. In this case it
is obvious that a positive change in initial position results in a shorter racing distance and, holding u(t)
constant, a smaller final time T . Therefore the performance measure −T becomes bigger as well, so the
gradient of the performance measure with respect to variations in the initial condition x1(0) must be
positive. We conclude λ1 > 0.

We conclude that 1
vc3
λ2(t) + λ3(t) is strictly decreasing, so

u∗(t) =

{
umax for 0 ≤ t ≤ s,
CP for s < t ≤ T.

To determine the switching point s ∈ R, we take a closer look at the system equations. Solving these
equations for u(t) ≡ umax we find for t ∈ [0, s];

xumax
1 (t) =

1

c21v
e−

c1
c3
t
(
c1te

c1
c3
t(umax − c2v)− c3

(
e

c1
c3
t − 1

)
(umax − v(αc1 − c2))

)
,

xumax
2 (t) =

1

c1v

[
e−

c1
c3
t
[
v
(
αc1 − c2e

c1
c3
t + c2

)
+ umax

(
e

c1
c3
t − 1

)]]
,

xumax
3 (t) = (umax − CP ) t.

And for t ∈ (s, T ] we find

xCP1 (t) =
1

c21v
e−

c1
c3

(t−s)
[
e

c1
c3

(t−s)(c1(t− s)CP − c1c2(t− s)v + c21x
umax
1 (s)v)

−c3
(
e

c1
c3

(t−s) − 1
)

(CP − v (xumax
2 (s)c1 − c2))

]
,

xCP2 (t) =
1

c1v

(
e−

c1
c3

(t−s)
[
v
(
xumax

2 (s)c1 − c2e
c1
c3

(t−s) + c2

)
+ CP

(
e

c1
c3

(t−s) − 1
)])

,

xCP3 (t) = W.

To satisfy the final condition of x3, we have to exert umax until the battery is empty. That is,

x3(s) = (umax − CP )s = W.
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So the switching point s is given by s = W
umax−CP . The position at time s equals xumax

1 (s). We can solve
the following equation for T ,

xCP1 (T ) = l − xumax
1 (s),

to find the final time. The transversality condition is given by

−1 + λ1(T )x2(T ) + λ3(T )(u(T )− CP ) = 0,

and since u(T ) = CP , we find λ1(t) ≡ λ1(T ) = 1
x2(T ) . Here x2(T ) is given by xCP2 (T ). To end with, we

must have that
1

vc3
λ2(s) + λ3(s) = 0,

so we find λ3(t) ≡ − c1
vc23
λ1

(
1− e

c1
c3

(s−T )
)

.

5.1.1 Example

Suppose a cyclist with an initial speed of 1 m/s has to race a race track of 5 km. His battery is 20.000
Joule and, needless to say, he wants to get to the finish as fast as possible. The maximum power he can
exert is 800 Watt, and his critical power is 300 Watt.

The system equations are given by (5.2)-(5.4) with l = 5000, α = 1, W = 20000, c1 = 0.128, c2 = 3.924
and c3 = 78. We use (4.1) to find v = 13.2981. In this section we found that the optimal power distri-
bution is exerting umax up to time s = W

umax−CP = 20000
800−300 = 40 seconds. After that the cyclist exerts

CP Watt on the system, until he reaches the finish which is at T = 147.8 seconds.
With an average velocity of 33.8 m/s, this result is obviously not very realistic. This is due to the
simplified state equations.

5.2 Constant velocity in the u(t)
x2c3

-term and quadratic air friction.

We now consider the following maximization problem:

max
CP≤u(t)≤umax

−T =

∫ T

0

−1 dt,

subject to dx1

dt
dx2

dt
dx3

dt

 =

 x2(t)
u(t)
vc3
− c1

c3
(x2(t))2 − c2

c3
u(t)− CP

 ,

s.t. x1(0) = 0, x1(T ) = l, x2(0) = α, x3(0) = 0, x3(T ) = W ,

The problem is the same as in the former section, but compared to (5.3) the air resistance is quadratic
now.

The reasoning in this section is based on an article of Dmitruk and Samylovskiy [2], where the maximum
achievable height of a rocket is investigated, under bounded thrust and fuel expenditure.

Note that there has to be a one-to-one correspondence between optimal travel time when the length
of the race track is fixed, and optimal travelled distance when the travel time is fixed. Because of this,
we can easily reformulate the original problem of minimizing final time with fixed battery size and race
track length into a problem of maximizing travelled distance with fixed battery size and final time. When
we found a solution of the latter problem, we can vary the fixed final time such that the optimal travelled
distance equals the race track length of the original problem.
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So in this section we fix the final time Tf and maximize x1(Tf ). The performance measure is then∫ Tf

0
dx1

dt (t)dt =
∫ Tf

0
x2(t)dt, so the new Hamiltonian and adjoint equations are given by:

H(x(t), u(t), λ(t), t) = x2(t) + λ1(t)x2(t) + λ2(t)

[
u(t)

vc3
− c1
c3
x2

2(t)− c2
c3

]
+ λ3(t) (u(t)− CP ) , (5.9)

dx1

dt
= x2(t) x1(0) = 0 (5.10)

dx2

dt
=
u(t)

vc3
− c1
c3
x2

2(t)− c2
c3

x2(0) = α (5.11)

dx3

dt
= u(t)− CP x3(0) = 0, x3(Tf ) = W (5.12)

dλ1

dt
= 0 λ1(Tf ) = 01 (5.13)

dλ2

dt
= −1− λ1(t) + 2

c1
c3
x2(t)λ2(t) λ2(Tf ) = 0 (5.14)

dλ3

dt
= 0. (5.15)

Furthermore, we assume the following:

(1) Tf >
W

umax−CP > 0, meaning that we need to have enough time to empty the battery.

(2) c2 <
CP
v , which assures positive acceleration when u ≥ CP is exerted and the velocity is zero.

(3) 0 ≤ α < vCP , where α is the initial velocity.2

These assumptions are in general not restricting for realistic values of all constants.

We immediately note λ1 ≡ 0. It is in agreement with the geometric interpretation of the influence

functions, since a change in initial position will not influence the performance measure
∫ Tf

0
dx1

dt (t)dt =
x1(Tf )− x1(0) in any way. This reduces (5.14) to

dλ2

dt
= −1 + 2

c1
c3
x2(t)λ2(t). (5.16)

According to the Maximum Principle, we have to maximize the Hamiltonian wrt u. The Hamiltonian is
still linear in u, so

u∗(t) =

 CP if λ2(t) < β
using if λ2(t) = β
umax if λ2(t) > β,

where β := −vc3λ3 and using is some value in [CP, umax].

In this section we will show that the optimal control is of bang-bang or bang-singular-bang form, de-
pending on the value of Tf . We have to prove several lemma’s to determine the shape of the function
λ2, which determines u∗.

Lemma 5.2.1. λ2 > 0 for all 0 ≤ t < Tf .

Proof. According to (5.14), dλ2

dt (Tf ) = −1 − λ1 = −1. Since λ2 is continuous, λ2(t) > 0 in a left
neighbourhood of Tf . Now suppose there exists a t′ < Tf where λ2(t′) = 0, and λ2(t) > 0 for all t′ <
t < Tf . Then dλ2

dt (t′) ≥ 0. But according to (5.14) we have λ2(t′) = −1, leading to a contradiction.

Lemma 5.2.2. λ3 < 0.

1This extra terminal condition follows from remark 2.2.2, due to the absence of a terminal condition of x1.
2vCP denotes again the constant velocity that does not change while exerting CP . Note that we assume a simplified

power equation here, given by (5.11), so vCP is now given by vCP =
√
CP
c1v
− c2
c1

.
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Proof. Suppose λ3 ≥ 0. Then β ≤ 0 < λ2 for all 0 ≤ t < Tf , so u∗ ≡ umax. But this contradicts the
terminal condition of (5.12), because of assumption (1). We conclude λ3 < 0.

From lemma 5.2.1 and 5.2.2, we conclude the following:

Corollary 5.2.3. There exists a t2 < Tf such that u∗(t) ≡ CP for all t2 < t ≤ Tf .

Proof. The terminal condition of (5.14) is λ2(Tf ) = 0, and by lemma 5.2.1 we have that λ2 > 0 for all
t ∈ [0, Tf ). From lemma 5.2.2 it follows that β > 0. The function λ2 is continuous, and hence there
exists a t2 < Tf such that λ2 < β for all t2 < t ≤ Tf , equivalent to u∗(t) ≡ CP on this interval.

We will need some properties of x2 later on. Note that if x2(t) =
√

u
c1v
− c2

c1
:= vu for a certain t

where u(t) = u, then it follows from (5.11) that dx2

dt (t) = 0, so x2 remains constant while exerting u.
Note that vu is increasing in u.

Lemma 5.2.4. For constant u, all solutions of (5.11) will asymptotically approach the constant solution

vu :=
√

u
c1v
− c2

c1
.

Proof. According to section 3.2, we only have to check whether f ′(vu) < 0. Now f ′(vu) = −2 c1c3

(√
u
c3v
− c2

c3

)
,

so by assumption (2) and using that u ≥ CP , this is negative.

Corollary 5.2.5. Let ξ = min{u(t)|t ∈ (ta, tb)} for an interval (ta, tb) where 0 < ta < tb < Tf . Suppose
x2 satisfies (5.11) and x2(ta) < vξ. Then x2(ta) < x2(tb).

Proof. Since f(x, u) = u
vc3
− c1

c3
x2 − c2

c3
is a strictly increasing function of u, and f(vξ) < 0, this is a

special case of corollary 3.3.2.

Lemma 5.2.6. If for 0 < t′ < t′′ < Tf we have that λ2(t′) = λ2(t′′) and λ2(t) ≥ λ2(t′)(≤) for all
t ∈ (t′, t′′), then x2(t′) ≥ x2(t′′)(≤).

Proof. Note that dλ2

dt (t′) ≥ 0(≤) and dλ2

dt (t′′) ≤ 0(≥), and the result follows directly from (5.14) by
observing that x2(t′)λ2(t′) ≥ x2(t′′)λ2(t′′) (≤).

Lemma 5.2.7. Suppose x2(ta) < vξ where ξ = min{u(t)|t ∈ (ta, tb)} for an interval (ta, tb) where
0 < ta < tb < Tf . Then the following can not happen: λ2(ta) = λ2(tb) = c for some constant c and
λ2(t) ≥ c for all t ∈ (ta, tb).

Proof. Suppose it does happen. Then from lemma 5.2.6 it follows that x2(ta) ≥ x2(tb). But from
corollary 5.2.5 we have that x2(tb) > x2(ta), a contradiction.

We will now show that, if singularity appears in the optimal solution, it will be in one interval. For
this we define the set S = {t ∈ [0, Tf ] : λ2(t) = β}. By continuity, S is closed. Note that S is not empty,
otherwise λ2 < β for all t, so u∗ ≡ CP , contradicting the terminal condition of (5.12).

Lemma 5.2.8. The set S is connected.

Proof. Suppose S is not connected. Then there exist a 0 ≤ t̂ < t̃ ≤ t2 such that λ2(t̂) = λ2(t̃) = β
and λ2(t) < β for all t ∈ (t̂, t̃) and so u∗(t) = CP on this interval (The case λ2(t) > β is excluded by
lemma 5.2.7). So we have that dλ2

dt (t̂) ≤ 0 and dλ2

dt (t̃) ≥ 0, leading to x2(t̂) ≤ x2(t̃) because of lemma 5.2.6.

� Case 1: Suppose x2(t̂) = x2(t̃). Since u∗(t) = CP for all t ∈ (t̂, t̃), by lemma 5.2.4 the only way to
have a constant velocity on this interval is if x2(t̂) = x2(t̃) = vCP . So from (5.16) is follows that on
(t̂, t̃) we have that dλ2

dt (t) = −1 + 2 c1c3 vCPλ2(t). So λ2 is either strictly increasing or decreasing, or

constant on this interval. In the first two cases λ2 can not have the same values on t̂ and t̃. Note
that in the latter case this constant has to equal β by continuity of λ2, violating our assumption.
We conclude case 1 is not possible.
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� Case 2: Suppose x2(t̂) < x2(t̃). According to lemma 5.2.4 the only way the velocity can increase
on (t̂, t̃) where u(t) = CP , is if x2(t̂) < vCP . We consider two cases: Case 2.1 where the battery is
not empty yet at t̃, and Case 2.2 where the battery is empty at t̃.

– Case 2.1: Suppose the battery is not empty yet at t̃. To satisfy the terminal condition of
(5.12), there has to be (at least) one interval where λ2 > β (Case 2.1a), or a singular interval
after t̃ (Case 2.1b). See Figure 5.1.

Figure 5.1: Investigating the trajectory of influence function λ2, satisfying (5.14).

* Case 2.1a: Since we have to satisfy proposition 5.2.3, there is a t̃ < t̄ ≤ t2 such that
λ2(t̄) = β and dλ2

dt (t̄) ≤ 0. Let t̄ be the first time after t̃ where this happens. But since
x2(t̃) < vCP by lemma 5.2.4, and u(t) = umax on (t̃, t̄), it follows from lemma 5.2.7 that
this situation is impossible.

* Case 2.1b: On a singular interval dλ2

dt = 0 and λ2 = β. Considering (5.16), we find that
the velocity has to remain constant here, implying a constant power level using. Since
x2(t̃) < vCP , the quantity using should be less than CP to realize a constant velocity here,
which is infeasible.

– Case 2.2: To end with, suppose x2(t̂) < x2(t̃) and the battery is empty at t̂. Then u(t) = CP

for almost all t ∈ (t̂, T ]. Suppose λ2(t̃) = β, dλ2

dt (t̃) = 0 and d2λ2

dt2 (t̃) < 0 (See Figure 5.2).

But then d2λ2

dt2 (t̃) = 2 c1c3

[
dλ2

dt (t̃)x2(t̃) + dx2

dt (t̃)λ2(t̃)
]

= 2 c1c3
dx2

dt (t̃)β > 0 since x2 is increasing by

lemma 5.2.4, contradicting the existence of t̃.
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Figure 5.2: Investigating the trajectory of influence function λ2, satisfying (5.14).

Proposition 5.2.9. There exists a 0 < t1 < t2 where λ2 > β for all t ∈ [0, t1).

Proof. Suppose this is not the case. Then λ2(0) ≤ β. Suppose λ2(0) = β. By lemma 5.2.8, the set S is
connected, so S = {0} or S = [0, ts] for some 0 < ts < Tf . Obviously the first case is impossible because
then u(t) = CP for almost all t and we violate the terminal condition of (5.12). Suppose S = [0, ts]. Then
on [0, ts], x2 has to remain constant since λ2 is constant here. But since x2(0) < vCP by assumption (3),
an infeasible power level less than CP should be exerted in order to maintain this velocity. This case is
excluded.
Now suppose λ2(0) < β. To satisfy the terminal condition of (5.12), there has to be an interval where
λ2 ≥ β. Besides that, because of proposition 5.2.3, this can not happen at the end, so there exist
0 < t′ < t′′ < Tf such that λ2(t′) = λ2(t′′) = β where λ2(t) ≥ β for all t ∈ (t′, t′′). Let (t′, t′′) be the first
interval where this happens. But since x2(0) < vCP , and we only exerted CP up to time t′, lemma 5.2.4
is telling us that x2(t′) < vCP . A singular interval after t′ is impossible since then a power level less
than CP should be exerted to maintain this constant velocity. So λ > β on (t′, t′′), implying u∗ = umax

on this interval. We can directly apply lemma 5.2.7 to contradict our assumption.

We already have the desired result, but we will need some extra properties of λ2 later on, described
in proposition 5.2.10 and 5.2.11. These propositions hold for any function λ2 satisfying (5.14), so not
necessarily for the optimal function λ∗2 satisfying the Maximum Principle.

Proposition 5.2.10. Suppose λ2 satisfies (5.14) on an interval [0, t1) where u(t) = umax, λ2(t1) = β >
0, and dλ2

dt (t1) ≤ 0. Then λ2 is strictly decreasing on the interval [0, t1).

Proof. Suppose λ2 does not decrease strictly on [0, t1). Then there is 0 < t′ < t′′ < t1 such that
λ2(t′) = λ2(t′′) = c > β for a constant c, and λ2(t) > c for all t ∈ (t′, t′′). We can directly apply lemma
5.2.7 to contradict this.

Proposition 5.2.11. Suppose λ2 satisfies (5.14) on an interval [t2, Tf ] where u(t) = CP , λ2(t2) = β >
0, and dλ2

dt (t2) ≤ 0. Furthermore, x2(t2) > vCP . Then λ2 is strictly decreasing on the interval [t2, Tf ].

Proof. Since x2(t2) > vCP , and u(t) = CP on [t2, Tf ], we have by lemma 5.2.4 that x2 is decreasing
here.
So d2λ2

dt2 (t2) = 2 c1c3

[
dλ2

dt (t2)x2(t2) + dx2

dt (t2)λ2(t2)
]
< 0. By continuity of d2λ2

dt2 , we have that d2λ2

dt2 < 0 in

a right neighbourhood of t2. Hence in this neighbourhood we have dλ2

dt < 0, so λ2 < λ2(t2). Since x2 is
decreasing, it follows from (5.16) that these inequalities hold for all t ∈ [t2, Tf ].

We can finally conclude that λ2 is of the following form:

λ2(t)

decreases from λ2(0) to β for t ∈ [0, t1),
= β for t ∈ [t1, t2],

decreases from β to 0 for t ∈ (t2, Tf ],

39



where possibly t1 = t2. So the optimal control is of the form bang-bang if t1 = t2, and of the form
bang-singular-bang otherwise.

Suppose there is a singular interval. Then λ2(t) = β here. Differentiating this equality and substi-
tuting (5.14) yields x2(t) = c3

2c1β
, a constant. We call this constant vusing . Substituting this in (5.11), we

find

using =

(
c1

(
c3

2c1β

)2

+ c2

)
v. (5.17)

For feasibility, we must have that CP < using < umax. If using = CP , then on the singular interval
λ2 = β > 0 while CP is exerted and x2(t) = vCP . After the singular interval, the optimal control
‘switches’ to CP , but it is obvious that λ2 remains β and will never get to 0.
Furthermore, since umax is the maximum power level and the initial velocity is small, x2 will always
increase when this power level is exerted. Therefore using = umax is impossible.

Sufficiency

As a final remark, we note that

f(x, u, t) =

 x2
u
vc3
− c1

c3
x2

2 − c2
c3

u− CP


is a concave function in x, u. Obviously, so is L(x, u, t) = x2(t). Besides that, λ2 ≥ 0 for all t. Therefore
we satisfy all conditions of theorem 2.2.3, so the necessary conditions of the Maximum Principle are
sufficient as well.

We will now derive a condition to determine when which form of control is optimal.

Optimality of Bang-Bang

Let x̂2(t) be the state trajectory corresponding to the bang-bang control û:

û∗(t) =

{
umax for t ∈ [0, s] ,
CP for t ∈ (s, Tf ] ,

where s = W
umax−CP is the switching point. So x̂2(t) satisfies dx̂2

dt (t) = umax

vc3
− c1
c3
x̂2

2(t)− c2
c3

with x̂2(0) = α

for t ∈ [0, s] and dx̂2

dt (t) = CP
vc3
− c1

c3
x̂2

2(t) − c2
c3

for t ∈ (s, Tf ]. We assume the battery is big enough to

assure x̂2(s) > vCP
3. The optimality of this trajectory is equivalent to the existence of a function λ̂2

satisfying (5.14) (where x2(t) ≡ x̂2(t)) such that

λ̂2(t) > λ̂2(s) = β for t ∈ [0, s) , (5.18)

λ̂2(t) < λ̂2(s) = β for t ∈ (s, T ] , (5.19)

where β = −vc3λ3, and λ̂2(Tf ) = 0. This is equivalent to the existence of a function λ̂2 satisfying (5.14)

and (i) λ̂2(s) = β > 0, (ii) dλ̂2

dt (s) ≤ 0 and (iii) λ̂2(Tf ) = 0.

Proof. (⇒) is obvious.

(⇐) Since proposition 5.2.10 and 5.2.11 hold for any function λ2 satisfying (5.14), it also holds for λ̂2

satisfying (5.14) and belonging to trajectory x̂2. According to these propositions, λ̂2 is strictly decreasing

on [0, s) and on [s, Tf ] if λ̂2(s) = β > 0 and dλ̂2

dt (s) ≤ 0, and therefore satisfies (5.18) and (5.19).

From (ii) it follows that

β = λ̂2(s) ≤ c3
2c1x̂2(s)

= βmax,

where βmax is an upper bound for β. So taking any β ≤ βmax, we obtain a unique λ̂2 = λ̂2(β, t) as a

solution of (5.14) with λ̂2(s) = β and we can determine Tf = Tf (β) such that λ̂2(β, Tf ) = 0.

3The other case is discussed separately.
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Lemma 5.2.12. ∂λ2(β,t)
∂β > 0 for all t.

Proof. If β obtains an increment β̄, then the corresponding increment λ̄2 = λ2(β+ β̄, t)−λ2(β, t) satisfies

λ̄2
′
(t) = λ′2(β + β̄, t)− λ′2(β, t)

= 2
c1
c3
x2(t)(λ2(β + β̄, t)− λ2(β, t))

= 2
c1
c3
x2(t)λ̄2(t) and λ̄2(s) = β̄.

Obviously, if β̄ > 0, then λ̄2 > 0 for all t.

Hence, if β ≤ βmax, then for all t ≥ s we have λ̂2(β, t) ≤ λ̂2(βmax, t) and thus Tf (β) ≤ Tf (βmax) =

Tmax. Now if β = λ̂2(s) decreases from βmax to 0+, then dλ̂2

dt (s) = −1 + 2 c1c3x2(s)β decreases from 0 to

−1+, and the corresponding Tf (β) from Tmax to s+.

We conclude that for every Tf ∈ (s, Tmax] there is a unique β ≤ βmax such that the function λ̂2(β, t)
satisfies the Maximum Principle for the bang-bang control û and corresponding trajectory x̂. If Tf ≤ s
then u ≡ umax is obviously optimal. If Tf > Tmax, then β ≤ βmax does not exist, so the bang-bang
control û is not optimal in this case.

Note that Tmax corresponds to a certain lmax, since there is a one-to-one correspondence between opti-
mal time and optimal distance travelled. Hence the statement might as well be ‘If l ≤ lmax, a bang-bang
control is optimal’.

Bang-singular-bang

If Tf > Tmax (l > lmax) and x̂2(s) > vCP , a bang-singular-bang control is optimal. Suppose t1 is known.

Note that t2 is uniquely determined by t2 = W−t1(umax−CP )
using−CP , to satisfy the terminal condition of (5.12).

Furthermore, for λ2 to remain constant on [t1, t2], it is necessary that x2 remains constant there. So
x2(t) = x2(t1) for all t ∈ [t1, t2], so from lemma 5.2.4 we find that x2(t1) = vusing , from where we can

determine using. We can now determine β using (5.17), yielding β = 2 c1c3

√
using

c1v
− c2

c1
. We know that

λ2(t2) = β, and using (5.14) we can determine Tf such that λ2(Tf ) = 0.
Concluding, once t1 is known, everything is determined. So we have to choose t1 in such a way that
the corresponding trajectory of λ2 results in the desired final time Tf , and thereby the desired distance
travelled.4

5.2.1 Example

For the same problem as Example 5.1.1, we can determine Tmax to see if a bang-bang control is optimal.
We use (5.11) to determine x2(s) = x2(40) ≈ 19.26 m/s, which is the velocity after exerting 800 Watt

for 40 seconds, when the initial speed is 1 m/s. We see x2(s) > vCP =
√

CP
c1v
− c2

c1
= 12.07 m/s. So

we find βmax = c3
2c1x2(s) = 15.82. We can now put λ2(βmax, s) = 15.82 and determine Tmax such that

λ2(Tmax) = 0. We find that Tmax = 77.61 seconds. The distance travelled is then 1082.1 meter. We can
conclude that a bang-bang control is optimal for distances shorter than 1082.1 meter. For Example 5.1.1
the bang-bang control is not optimal. In Figure 5.3 we find x1, x2, x3, λ2 and the corresponding u∗ for
β = βmax.

4Note that t1 has to be big enough to exceed vCP , otherwise using < CP which is infeasible.
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Figure 5.3: State trajectories x1, x2 and (W − x3), adjoint function λ2 and the corresponding optimal
control u∗ for β = βmax, equivalent with a 1082 m race track.

For Example 5.1.1 we conclude a bang-singular-bang control is optimal. It turns out that t1 = 18.8
seconds results in a final time of 387.9 seconds and a travelled distance of 5.000 meter. The optimal
control of Example 5.1.1 is therefore given by

u∗(t) =

 umax = 800 W for t ∈ [0, 18.8),
using = 328.9 W for t ∈ [18.8, 385.3],
CP = 300 W for t ∈ (385.3, 387.9].

In Figure 5.4 we find λ∗2 and the optimal control u∗. In Figure 5.5 we find the corresponding state
trajectories x∗1, x∗2 and x∗3.

Figure 5.4: Adjoint function λ∗2 and the optimal control u∗, for a 5 km race track.
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Figure 5.5: Optimal state trajectories x∗1, x∗2 and (W − x∗3) for a 5 km race track.

We note that we satisfy assumptions (1)-(3) in this example.

We will now consider the case of a small battery seperately, and show that there does not exist a
βmax in this case.

5.2.2 Special case: small battery

Consider the special case where x̂2(s) < vCP . In words, if umax is exerted until the battery is empty, the
velocity is still less than vCP .

First of all, we know the optimal control u∗ is of the form bang-bang or bang-singular-bang. Obvi-
ously the latter case is not possible; since the velocity on a singular interval is constant, it would involve
an interval where we sustain a velocity less than vCP , which implies exerting an infeasible power level.
So the optimal control is bang-bang.

We will show that λ̂2 is decreasing in this case, independent of the value of Tf . To start with, we
note that x̂2 will be increasing the entire interval, towards an asymptote at vCP . Consider the differen-
tial equation of λ̂2:

λ̂′2(t) = −1 + g(t)λ̂2(t), (5.20)

where g(t) = 2 c1c3 x̂2(t) is an increasing function of t, with limt→∞ g(t) = 2 c1c3 vCP . Note that (5.20) is
a linear differential equation, so the solution is given by the sum of the homogeneous solution and a
particular solution. The homogeneous equation reads

λ̂′2(t) = g(t)λ̂2(t),

so the solution is given by λ̂2(t) = ceG(t). Here c is an arbitrary constant and G denotes a primitive of
g. We may choose G such that G(0) = 0.
A particular solution is a solution of (5.20). For this we use an integrating factor. We seek a function ζ
such that

d

dt

[
ζ(t)λ̂2(t)

]
= ζ(t)λ̂′2(t) + ζ ′(t)λ̂2(t) = ζ(t)

[
λ̂′2(t)− g(t)λ̂2(t)

]
.

Therefore we need a ζ that satisfies ζ ′(t) = −ζ(t)g(t), and we find that ζ(t) = e−G(t) is a suitable
function. Multiplying (5.20) by ζ yields

d

dt

[
e−G(t)λ̂2(t)

]
= −e−G(t).
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We find that a particular solution is given by

λ̂2(t) = −eG(t)

∫ t

0

e−G(τ)dτ.

Hence the complete solution of (5.20) is λ̂2(t) = eG(t)
(
c−

∫ t
0
e−G(τ)dτ

)
. We determine c such that

λ̂2(Tf ) = 0, yielding c =
∫ Tf

0
e−G(τ)dτ . Concluding,

λ̂2(t) = eG(t)

(∫ Tf

t

e−G(τ)dτ

)
. (5.21)

Note that G is convex, since it is the primitive of a monotone increasing function. Therefore we have
that

G(x) ≥ G(y) + g(y)(x− y), (5.22)

for all x, y ∈ [0, Tf ]. We want to show that λ̂2 is monotone decreasing. Equivalently, that (5.20) is
negative for all t ∈ [0, Tf ). Substituting (5.21) in (5.20), we find

λ̂′2(t) = −1 + g(t)eG(t)

(∫ Tf

t

e−G(τ)dτ

)
.

Now fix t ∈ [0, Tf ). Using (5.22) for y = t and x = τ , we find

λ̂′2(t) = −1 + g(t)eG(t)

(∫ Tf

t

e−G(τ)dτ

)

≤ −1 + g(t)eG(t)

(∫ Tf

t

e−(G(t)+g(t)(τ−t))dτ

)

= −1 + g(t)eG(t)e−G(t)+tg(t)

(∫ Tf

t

e−g(t)τdτ

)

= −1 + g(t)etg(t)
(
− 1

g(t)
e−g(t)Tf +

1

g(t)
e−g(t)t

)
= −1− eg(t)(t−Tf ) + 1

= −eg(t)(t−Tf ) < 0.

Since t ∈ [0, Tf ) was arbitrary, λ̂2 is monotone decreasing for all t ∈ [0, Tf ]. We conclude that the
bang-bang control is indeed optimal in the case of a small battery. Like we expected, this optimality does
not depend on the value of Tf . The quantity β equals λ̂2(s) and can be determined by iterating (5.20)
backwards from time Tf . An example is shown in Figure 5.6. The same constants as in example 5.1.1
are used, except that the quantity of the battery W equals 4000 Joule now and hence x̂2(s) < vCP .
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Figure 5.6: State trajectories x∗1, x∗2 and (W − x∗3), adjoint function λ∗2 and the corresponding optimal
control u∗ for 5000 m race track with a small battery of 4000 Joule.

The Matlab code providing this figure can be found in attachment C.

5.3 The complete problem

We can repeat the reasoning in the former section for the original problem. In this section we determine
some properties of the form of the solution and will see it is similar to the former section.

We want to maximize the travelled distance over all CP ≤ u(t) ≤ umax, with fixed final time Tf
and amount of energy W . In comparison with the former section, we assume a variable velocity in the
u(t)

x2(t)c3
term now. Thus, the Hamiltonian is given by

H(x(t), u(t), λ(t), t) = x2(t) + λ1(t)x2(t) + λ2(t)

[
u(t)

x2(t)c3
− c1
c3

(x2(t))2 − c2
c3

]
+ λ3(t) (u(t)− CP ) ,

and the six differential equations by

dx1

dt
= x2(t) x1(0) = 0 (5.23)

dx2

dt
=

u(t)

x2(t)c3
− c1
c3

(x2(t))2 − c2
c3

x2(0) = α (5.24)

dx3

dt
= u(t)− CP x3(0) = 0, x3(Tf ) = W (5.25)

dλ1

dt
= 0 λ1(Tf ) = 0 (5.26)

dλ2

dt
= −

(
1 + λ1 −

λ2(t)u(t)

c3(x2(t))2
− 2

c1
c3
λ2(t)x2(t)

)
λ2(Tf ) = 0 (5.27)

dλ3

dt
= 0, (5.28)

where we assume the following:

(I) Tf >
W

umax−CP > 0.
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(II) c1 and c2 are such that vCP > 0, in accordance with (3.18). 5

(III) 0 < α < vCP , where α is the initial velocity.

These assumptions are in line with the assumptions of the former section. We furthermore assume:

(IV) λ3 > − 1
c2

.6

(V) The battery is big enough to exceed vCP when a bang-bang control is applied. In mathematical
terms, x̂2(s) > vCP . Here x̂ denotes the state trajectory belonging to bang-bang control û, and s
is the point in time when the control û switches from umax to CP .

Again we note λ1 ≡ 0, like in the former section, reducing (5.27) to

dλ2

dt
= −

(
1− λ2(t)u(t)

c3(x2(t))2
− 2

c1
c3
λ2(t)x2(t)

)
. (5.29)

.

Maximizing the Hamiltonian wrt u yields

u∗(t) =


umin if λ2

x2
(t) < γ,

using if λ2

x2
(t) = γ,

umax if λ2

x2
(t) > γ,

where γ = −c3λ3.

Remember from chapter 3 that

d

dt

(
λ2

x2

)
= − 1

x2(t)
+ 3

c1
c3
λ2(t) +

c2λ2(t)

c3(x2(t))2
, and

λ2

x2
(Tf ) = 0. (5.30)

So for all t̃ ∈ [0, T ] where λ2

x2
(t̃) = γ, we have that

d

dt

(
λ2

x2

)
(t̃) = 3

c1
c3
γx2(t̃) +

(
c2
c3
γ − 1

)
1

x2(t̃)
. (5.31)

On a singular interval this has to equal zero, so x2 has to remain constant here. Here x2(t) = vusing =√
c3

3c1γ
− c2

3c1
. The quantity of using on a singular interval is given by (3.13):

using =
(c3 + 2c2γ)

√
c3−c2γ
c1γ

3
√

3γ
. (5.32)

Lemma 5.3.1. λ2

x2
> 0 for all t ∈ [0, Tf ).

Proof. Combining (5.30) and the terminal condition of (5.27), we find d
dt

(
λ2

x2

)
(Tf ) = − 1

x2(Tf ) . Since

x2(Tf ) > 0, we find d
dt

(
λ2

x2

)
(Tf ) < 0 and the same reasoning as in the proof of lemma 5.2.1 applies to

conclude λ2

x2
> 0 for all t ∈ [0, Tf ).

Lemma 5.3.2. λ3 < 0.

Proof. See proof of lemma 5.2.2.

5The quantity vCP is given by (3.17), where u = CP .
6We will derive properties of λ2

x2
, assuming λ3 > − 1

c2
. If we found functions that satisfy (5.23)-(5.28), and the

corresponding control maximizes the Hamiltonian, we found an extremal. We have to check afterwards whether this
assumption holds.
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By the above lemma’s, we can again state the following corollary:

Corollary 5.3.3. There exists a t2 < Tf such that u∗(t) ≡ CP for all t2 < t ≤ Tf .

We need some properties of x2 again. Remember that, for constant u, if x2(t) =
3
√

2
3 c2

3
√√

3
√

27c41u
2+4c31c

3
2−9c21u

−

3
√√

3
√

27c41u
2+4c31c

3
2−9c21u

3√18c1
:= vu, we have that dx2

dt = 0 and the velocity remains constant while exerting

power level u.

Lemma 5.3.4. For constant u, all solutions of (5.24) will asymptotically approach the constant solution
x2(t) = vu.

Proof. See section 3.2 and 3.2.1.

Lemma 5.3.5. If for 0 < t′ < t′′ < Tf we have that λ2

x2
(t′) = λ2

x2
(t′′) = γ and λ2

x2
(t) ≥ λ2

x2
(t′)(≤) for all

t ∈ (t′, t′′), then x2(t′) ≥ x2(t′′)(≤).

Proof. Note that d
dt

(
λ2

x2

)
(t′) ≥ 0(≤) and d

dt

(
λ2

x2

)
(t′′) ≤ 0(≥). By assumption (IV), we find that

c2
c3
γ−1 < 0, so (5.31) is a strictly increasing function of x2. We conclude that d

dt

(
λ2

x2

)
(t′) ≥ d

dt

(
λ2

x2

)
(t′′)

(≤) implies x2(t′) ≥ x2(t′′) (≤).

Now define the set G = {t ∈ [0, Tf ] : λ2

x2
(t) = γ}. G is not empty, otherwise λ2

x2
< γ for all t, so

u∗ ≡ CP , contradicting the terminal condition of (5.25).

Lemma 5.3.6. The set G is connected.

Proof. Suppose G is not connected. Then there exist 0 ≤ t̂ < t̃ ≤ t2 such that λ2

x2
(t̂) = λ2

x2
(t̃) = γ

and λ2

x2
(t) < γ for all t ∈ (t̂, t̃). Again the case λ2

x2
(t) > γ is excluded since then x2(t̂) < vumax and

u(t) = umax on (t̂, t̃), so x2 is strictly increasing by lemma 5.3.4. However, from lemma 5.3.5 it follows
that x2(t̂) ≥ x2(t̃), leading to a contradiction.

Hence we have that d
dt

(
λ2

x2

)
(t̂) ≤ 0 and d

dt

(
λ2

x2

)
(t̃) ≥ 0, leading to x2(t̂) ≤ x2(t̃) by (the bracketed

version of) lemma 5.3.5.

� Case 1: Suppose x2(t̂) = x2(t̃). Since u∗(t) = CP for all t ∈ (t̂, t̃), the only way to have the

same velocity on t̂ and t̃ is if x2(t) = vCP for all t ∈ (t̂, t̃). But then d
dt

(
λ2

x2

)
(t̂) = 3 c1c3 γvCP +(

c2
c3
γ − 1

)
1

vCP
= d

dt

(
λ2

x2

)
(t̃). So d

dt

(
λ2

x2

)
(t̂) = 0 and since x2 is constant, d

dt

(
λ2

x2

)
= 0 for all

t ∈ (t̂, t̃), contradicting the assumption.

� Case 2: Suppose x2(t̂) < x2(t̃). The only way the velocity can increase in an interval where
u(t) = CP , is if x2(t̂) < vCP . Assume the battery is not empty yet, in accordance with assumption
(V). To satisfy the terminal condition of (5.25), there has to be a singular interval or an interval
where λ2

x2
> γ after t̃. We can consider a comparable figure as Figure 5.1, but then for the function

λ2

x2
. Again we distinguish two situations.

– Case 2a: There is an interval where λ2

x2
> γ after t̃. We already noticed this case is impossible.

– Case 2b: There is a singular interval after t̃. We can follow the same reasoning as in the
former section to conclude this is impossible.

Proposition 5.3.7. There exists a 0 < t1 < t2 where λ2

x2
> γ for all t ∈ [0, t1).
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Proof. Suppose this is not the case. Then λ2

x2
(0) ≤ γ. Suppose λ2

x2
(0) = γ. By lemma 5.3.6, G = {0} or

G = [0, ts]. The first case is obviously not possible. In the second case, d
dt

(
λ2

x2

)
(0) = 0 and λ2

x2
(0) = γ,

so by (5.30) x2 has to remain constant here. But by assumption (III), x2(0) < vCP , so an infeasible
power level (< CP ) should be exerted to maintain this velocity.
Now suppose λ2

x2
(0) < γ. To satisfy the terminal condition of (3.6), there has to be a 0 < t′ < t′′ ≤ Tf

such that λ2

x2
(t′) = λ2

x2
(t′′) = γ and λ2

x2
(t) ≥ γ for all t ∈ (t′, t′′). Let (t′, t′′) be the first interval where this

happens. By lemma 5.3.5, we have x2(t′) ≥ x2(t′′). But since the cyclist only exerted CP up to time t′,
x2(t′) < vCP . Again a singular interval is not possible since this implies maintaining a velocity less than
vCP , requiring an infeasible power level. Hence λ2

x2
(t) > γ for all t ∈ (t′, t′′). From lemma 5.3.5 it follows

that x2(t′) ≥ x2(t′′), but we have from lemma 5.3.4 that x2 increases, leading to a contradiction.

We can now conclude λ2

x2
is of the following form:

λ2

x2
(t)

> γ for t ∈ [0, t1),
= γ for t ∈ [t1, t2],
< γ for t ∈ (t2, Tf ],

where possibly t1 = t2. So a bang-bang or a bang-singular-bang control is optimal. We will not derive
sufficient conditions like in the former section to determine when which form is optimal. What we do
know is that a necessary condition for optimality of the bang-bang control û is that λ2(s) ≤ 0, yielding

γ =
λ̂2

x̂2
(s) ≤ c3

3c1x̂2
2(s) + c2

:= γmax. (5.33)

We expect the analogue of proposition 5.2.10 and 5.2.11 to still hold true. In this section they are stated
as conjectures. If the conjectures would be validated, we could follow the same reasoning as in the former
section to conclude that γmax corresponds to a unique Tmax, which determines whether the bang-bang
control is optimal.

Conjecture 5.3.8. Suppose λ2

x2
satisfies (5.30) on an interval [0, t1) where u(t) = umax, λ2

x2
(t1) = γ > 0,

and d
dt

(
λ2

x2

)
(t1) ≤ 0. Then λ2

x2
is strictly decreasing on the interval [0, t1).

Conjecture 5.3.9. Suppose λ2

x2
satisfies (5.30) on an interval [t2, Tf ] where u(t) = CP , λ2

x2
(t1) = γ > 0,

and d
dt

(
λ2

x2

)
(t1) ≤ 0. Furthermore, x2(t2) > vCP . Then λ2

x2
is strictly decreasing on the interval [t2, Tf ].

The proofs of these conjectures are not considered here and further research on sufficient conditions
is recommended. Even though, we can use (5.33) for giving an example where a bang-bang control is an
extremal, and one where a bang-singular-bang control is an extremal. Note that these extremals are not
necessarily optimal; we did not consider sufficiency of the Maximum Principle.

5.3.1 Example

For the same problem as Example 5.1.1, we can determine γmax for which a bang-bang control is an
extremal. We use (5.24) to determine x̂2(s) = x̂2(40) ≈ 17.546 m/s, which is the velocity after exerting
800 Watt for 40 seconds, when the initial speed is 1 m/s. So we find γmax = c3

3c1x2
2(s)+c2

= 0.6386.

We can now put λ2(γmax, s) = γmax · x̂2(s) = 11.205 and determine Tmax such that λ2(Tmax) = 0. We
find that Tmax = 61 seconds. The distance travelled is then 896 meter. We expect that a bang-bang
control is optimal for distances shorter than 896 meter. In Figure 5.7 we find x1, x2, x3, λ2, λ2

x2
and the

corresponding u for γ = γmax.
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Figure 5.7: State trajectories x1, x2 and (W − x3), influence function λ2, switch function λ2

x2
and the

corresponding control u for γ = γmax, equivalent with a 896 m race track 8.

The trajectory-control pair (u, x) is an extremal; there exists a λ satisfying Pontryagin’s Maximum
Principle.

For Example 5.1.1 we expect a bang-singular-bang control is an extremal. It turns out that t1 = 10.67
seconds results in a final time of 385.9 seconds and a travelled distance of 5000 meter. An extremal of
Example 5.1.1 is therefore given by

u∗(t) =

umax = 800 W for t ∈ [0, 10.67),
using = 345 W for t ∈ [10.67, 328.5],
CP = 300 W for t ∈ (328.5, 385.9].

In Figure 5.8 we find λ2, λ2

x2
and the control u. In Figure 5.9 we find the corresponding state trajectories

x1, x2 and x3.

Figure 5.8: Adjoint function λ2 and the control u, for a 5 km race track.

8Note that λ2 does not have to be decreasing now, contrary to the former section.

49



Figure 5.9: State trajectories x1, x2 and (W − x3) for a 5 km race track.

In this example we satisfy assumptions (I)-(IV). The Matlab code can be found in attachment C.

Comparing Example 5.2.1 and Example 5.3.1

It is not surprising that we get a smaller t1 if we assume (5.24) instead of (5.11) for the same example.
When the velocity is close to v, (5.24) and (5.11) do not deviate much. The big difference in behaviour
is for small velocities. Delivering umax and using (5.24), acceleration from small initial velocities will be
a lot faster than using (5.11), due to the term umax

x2(t)c3
in contrast to the constant term umax

vc3
.
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Discussion and Conclusion

This thesis was on determining the optimal pacing strategy for cycling a time trial. Since a constant
velocity is likely to be close to the optimal solution, we focussed on this approach first. We divided the
race track in n parts, and assumed a constant velocity on each part was optimal. We assumed jumps in
velocity were possible, without costing extra energy. Since this method was imprecise, we made certain
assumptions on acceleration and showed how to incorporate these assumptions into the model.
To determine the best way to accelerate, the problem of determining the optimal pacing strategy was
expressed as an optimal control problem that could be solved using Pontryagin’s Maximum Principle.
The problem was downscaled to ‘Determine the optimal pacing strategy for a straight part of the race
track, with no headwind, and constant slope and rolling resistance’. Here the control u(t) was the exerted
power level at time t, which was modelled according to a hyperbolic power-time relationship [1]. We
assumed the power level was always between CP and umax. The constant CP denoted the critical power
level, which the cyclist could theoretically maintain infinitely. The constant umax denoted the maximum
power level the cyclist could exert on the system.
We then redefined the minimum time problem as an equivalent maximum excursion problem. The so-
lution of this problem was derived analytically, in a step-by-step manner. The state equations were
simplified and in each step they became closer to the original state equations.

For simplified state equations, namely a constant velocity in the denominator of u(t)
x2(t)c3

, the problem was

solved. It turned out that the optimal control was of the bang-bang (umax − CP ) or bang-singular-bang
(umax − using − CP ) type, depending on the length of the race track and the size of the battery. When
the size of the battery was such that a bang-bang control resulted in an monotone increasing velocity (so
x̂2(s) < vCP ), the bang-bang control was optimal. For other cases, a sufficient condition on the length
of the trial was derived to determine which type was optimal. When it was bang-bang, the switch point
s could be analytically determined. Here s was the point in time when the optimal control switched
from umax to CP . When the optimal control was of bang-singular-bang type, an algorithm was needed
to determine the switch points t1 and t2, that were respectively the moments in time when the control
switched from umax to using, and from using to CP . Here using was a value of u which was higher than
CP (but below umax) so still resulted in depletion of the battery of the cyclist. The algorithm chose
different t1’s, until the desired final time and therefore travelled distance was found.
For the complete problem, it was shown that the ‘switch function’ λ2

x2
forced the optimal control to be of

the bang-bang or bang-singular-bang type again. Even though, no sufficient conditions were derived for
the complete problem. Despite this, examples were added to show a trajectory-control pair (u, x) could
be found for which there existed a λ satisfying Pontryagin’s Maximum Principle. Thus, this pair was an
extremal.

If we assume the simplified system equations, we can use the found solution to model the optimal
solution for a race track. Suppose the race track is divided in n parts, and assume a certain energy
distribution z over these n parts. The initial velocity on each part is given and less than vCP,i. If zi
is not enough energy to exceed vCP,i by using a bang-bang control, a bang-bang control is optimal for
part i. If zi is enough energy to exceed vCP,i, one determines the γmax and the corresponding Tmax and
lmax. If li ≤ lmax, a bang-bang control is optimal. If l > lmax, a bang-singular-bang control is optimal
and an algorithm is needed to find t1. The optimal control on part i will determine the final time Ti of
that part. Keeping track of the Ti’s, this will result in a final time T (z) =

∑n
i=1 Ti(zi) of the entire race

track. Minimizing T over all energy distributions z will result in an approach of the optimal control of
the entire race track.
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Obviously, further research is needed to assure the solution we found for the complete problem is suf-
ficient. In that case, the model described above will yield an approach of the optimal solution of the
complete problem as well.
The disadvantage of this model is the assumption that the initial velocity of each part is less than vCP,i.
That is, each part should start with a sharp turn or on top of a hill. This makes the model not very
useful in practice, since it is unreasonable to assume all parameters are constant between every two turns
or mountain tops.

The results of this thesis are in line with the conclusion of simulation studies like [5]. De Koning
et. al. found that an ‘all out’ strategy was optimal for a 1000 meter time trial. For a 4000 meter time
trial, they found that an ‘all out’ start of 12 seconds followed by an anaerobic power output was optimal,
resulting in an evenly paced race. This is equivalent with a bang-bang or bang-singular-bang control,
depending on the length of the race track.
There is much to explore further on this topic. We could continue the analytic approach to include the
recharging of the battery. That is, instead of CP ≤ u(t) ≤ umax, we have that 0 ≤ u(t) ≤ umax. Besides
that, instead of a decreasing variable w(t) with only an initial and terminal condition, we have a variable
wbal, denoting the amount of energy we have left at time t. Here wbal decreases when power levels above
CP are exerted, and increases in a certain way when power levels lower than or equal to CP are exerted.
For this the model of Skiba et. al. might be useful [10]. We need that wbal ≥ 0 for all t 9. Thus, there
is a nonnegativity constraint on all state variables.
Also, we could consider variable wind. In a part of the race track where we assume everything is constant,
we could consider the direction and magnitude of the wind as a random variable. Stochastic optimization
could provide a solution to this problem.
To end with, an analytic formula that tells us the optimal solution is probably never found. Therefore
it is recommended to make the problem discrete and solve it by minimization techniques such as D.
Limebeer and G. Perantoni used in determining the optimal control of a formula one car [17], [18]. They
used a method that is based on Legendre-Gauss-Radau collocation, which can be viewed as an implicit
numerical integration scheme. By adjusting all parameters, their research can directly be applied to a
bicycle. Also track modelling is discussed briefly by D. Limebeer and G. Perantoni, which makes their
model useful for a cycling team as Giant Alpecin.

Conclusion

For a simplified optimal pacing problem the optimal control is derived from Pontryagin’s Maximum
Principle. On a straight course without bends, no headwind and constant slope and rolling resistance,
a bang-bang or bang-singular-bang control is optimal. Sufficient conditions to determine whether the
optimal control contains a singular subarc are derived for a simplified power equation.
The solution of the pacing problem is partly numerical and partly analytical. It applies to a straight
course without bends, but it can be extended to an arbitrary course by dividing it into straight segments
between bends and optimize over all distributions of energy over the segments.

9To prevent the mental disadvantage of complete energy depletion during the race, one might prefer wbal > 0 for all
t ∈ [0, T ).
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Attachments

Attachment A: Time trial

Figure 5.10: Altitude, power and velocity during a time trial of a professional road cyclist. The turns
are marked.
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Attachment B: Table of constants

Parameter Description Equal to Indication of size

A Frontal area [m2] 0.33− 0.5 10

a Acceleration [m/s2]

α Initial velocity [m/s] x2(0) > 0

b Road width [m] > 0

β −vc3λ3

CD Drag coefficient 0.9− 1.2 10

CP Critical power level [W] 150− 450

CR Coefficient of rolling resistance 0.002− 0.008 10

c1 Constant 1 KA 0.128 11

c2 Constant 2 mg(sl + CR) 3.924 11

c3 Constant 3 meff 78 11

γ −c3λ3

FA Air resistance KA(v + vwind)2

FS Slope resistance mgsl

FR Rolling resistance mgCR

Facc Acceleration force meffa

g Gravitational acceleration [m/s2] 9.807 (at sea level)

KA Aerodynamic drag factor [kg/m] 1
2CDAρ 0.1− 0.3 10

l Length of the race track [m] > 0

lc Length of a curve [m] > 0

m Mass of the cyclist + bicycle [kg] 80− 86 10

meff Effective mass slightly greater than m

µ Coefficient of friction 0.3− 1

r Curve radius [m] b
1−sin( 1

2φ)−1
> 0

ρ Air density [kg/m3] 1.225 (at sea level, 15◦C)

s Switch point > 0

sl Slope (or gradient)
[

percentage
100

]
−0.24− 0.24
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umax Theoretical maximum power output [W] 400− 1000

v Constant velocity [m/s] (4.1) > 0

vground Velocity relative to the ground [m/s] > 0

vmax Maximum speed in a curve [m/s]
√
µgr > 0

vu Equilibrium of (3.5) while u(t) ≡ u (3.17) > 0

vwind Velocity of the headwind [m/s] −20− 20

φ Angle under which two roads cross [◦] 0− 180

W Size of the battery of anaerobic energy [J] 15000− 35000

10The first value is an indication for a road racing bicycle, the second value is for a utility bike [7].
11These are values used for examples in this thesis, unless stated differently.
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Attachment C: Matlab codes

Code of Figure 4.3

Function:

function T=finaltime n parts(y)
% T is the final time as a function of energy distribution y
parms.rho=1.18; %sea level air density, kg/mˆ3
parms.CdA=0.217; %effective frontal area,coefficient of drag (Cd) multiplied by frontal area A (0,4mˆ2)
parms.Ka=(parms.rho/2)*parms.CdA; %
parms.m=83.6; %mass of cyclist+bike, kg
parms.g=9.81; %valversnelling, m/s
parms.Cr=0.005;%coefficient of rolling resistance
parms.meff=80; %effective mass
parms.CP=430.3033; %Critical Power
parms.W=30277.19; %battery
parms.l=[6250; 3750; 4500; 1300; 4590]; %Length first and second part parcours
parms.s=[0.05; -0.02; 0; 0.065;-0.1]; %slope, rc
parms.Vw=[0; 0; 0; 0; 0]; %headwind, m/s

%V(i) denotes the time it takes to cycle part i
V=arrayfun(@(a,b,c,y)b/(-((2*a)/3)-(2.ˆ(1/3)*(3*parms.Cr*parms.g*parms.Ka*b.ˆ2*parms.m+3*parms.g

*parms.Ka*b.ˆ2*parms.m*c-parms.Ka.ˆ2*b.ˆ2*a.ˆ2-3*parms.Ka*b*parms.W*y))/(3*parms.Ka*b*(27*parms.CP

*parms.Ka.ˆ2*b.ˆ3+18*parms.Cr*parms.g*parms.Ka.ˆ2*b.ˆ3*parms.m*a+18*parms.g*parms.Ka.ˆ2*b.ˆ3

*parms.m*c*a+2*parms.Ka.ˆ3*b.ˆ3*a.ˆ3-18*parms.Ka.ˆ2*b.ˆ2*a*parms.W*y+sqrt(4*(3*parms.Cr*parms.g

*parms.Ka*b.ˆ2*parms.m+3*parms.g*parms.Ka*b.ˆ2*parms.m*c-parms.Ka.ˆ2*b.ˆ2*a.ˆ2-3*parms.Ka*b*parms.W

*y).ˆ3+(27*parms.CP*parms.Ka.ˆ2*b.ˆ3+18*parms.Cr*parms.g*parms.Ka.ˆ2*b.ˆ3*parms.m*a+18*parms.g

*parms.Ka.ˆ2*b.ˆ3*parms.m*c*a+2*parms.Ka.ˆ3*b.ˆ3*a.ˆ3-18*parms.Ka.ˆ2*b.ˆ2*a*parms.W*y).ˆ2)).ˆ(1/3))
+(1/(3*2.ˆ(1/3)*parms.Ka*b))*((27*parms.CP*parms.Ka.ˆ2*b.ˆ3+18*parms.Cr*parms.g*parms.Ka.ˆ2*b.ˆ3

*parms.m*a+18*parms.g*parms.Ka.ˆ2*b.ˆ3*parms.m*c*a+2*parms.Ka.ˆ3*b.ˆ3*a.ˆ3-18*parms.Ka.ˆ2*b.ˆ2*a

*parms.W*y+sqrt(4*(3*parms.Cr*parms.g*parms.Ka*b.ˆ2*parms.m+3*parms.g*parms.Ka*b.ˆ2*parms.m*c
-parms.Ka.ˆ2*b.ˆ2*a.ˆ2-3*parms.Ka*b*parms.W*y).ˆ3+(27*parms.CP*parms.Ka.ˆ2*b.ˆ3+18*parms.Cr*parms.g

*parms.Ka.ˆ2*b.ˆ3*parms.m*a+18*parms.g*parms.Ka.ˆ2*b.ˆ3*parms.m*c*a+2*parms.Ka.ˆ3*b.ˆ3*a.ˆ3-18

*parms.Ka.ˆ2*b.ˆ2*a*parms.W*y).ˆ2)).ˆ(1/3))),parms.Vw,parms.l,parms.s,y);

T=real(sum(V));

Script:

close all
clear all

parms.rho=1.18; %sea level air density, kg/mˆ3
parms.CdA=0.217; %effective frontal area,coefficient of drag (Cd) multiplied by frontal area A (0,4mˆ2)
parms.Ka=(parms.rho/2)*parms.CdA; %
parms.m=83.6; %mass of cyclist+bike, kg
parms.g=9.81; %valversnelling, m/s
parms.Cr=0.005;%coefficient of rolling resistance
parms.meff=80; %effective mass
parms.CP=430.3033; %Critical Power
parms.W=30277.19; %battery
parms.l=[6250; 3750; 4500; 1300; 4590]; %Length first and second part parcours
parms.s=[0.05; -0.02; 0; 0.065;-0.1]; %slope, rc
parms.Vw=[0; 0; 0; 0; 0]; %headwind, m/s

n=length(parms.l);
lb=zeros(n,1);
ub=ones(n,1);
A=[];
b=[];
Aeq=zeros(n,n);
Aeq(1,:)=1;
beq=zeros(n,1);
beq(1,1)=1;
x0=zeros(n,1);
x0(:,1)=1/n;
[x,fval]=fmincon(@finaltime n parts,x0,A,b,Aeq,beq,lb,ub);
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%V(i) is the time it takes to cycle part i
V=arrayfun(@(a,b,c,x)b/(-((2*a)/3)-(2.ˆ(1/3)*(3*parms.Cr*parms.g*parms.Ka*b.ˆ2*parms.m+3*parms.g

*parms.Ka*b.ˆ2*parms.m*c-parms.Ka.ˆ2*b.ˆ2*a.ˆ2-3*parms.Ka*b*parms.W*x))/(3*parms.Ka*b*(27*parms.CP

*parms.Ka.ˆ2*b.ˆ3+18*parms.Cr*parms.g*parms.Ka.ˆ2*b.ˆ3*parms.m*a+18*parms.g*parms.Ka.ˆ2*b.ˆ3

*parms.m*c*a+2*parms.Ka.ˆ3*b.ˆ3*a.ˆ3-18*parms.Ka.ˆ2*b.ˆ2*a*parms.W*x+sqrt(4*(3*parms.Cr*parms.g

*parms.Ka*b.ˆ2*parms.m+3*parms.g*parms.Ka*b.ˆ2*parms.m*c-parms.Ka.ˆ2*b.ˆ2*a.ˆ2-3*parms.Ka*b

*parms.W*x).ˆ3+(27*parms.CP*parms.Ka.ˆ2*b.ˆ3+18*parms.Cr*parms.g*parms.Ka.ˆ2*b.ˆ3*parms.m*a+18

*parms.g*parms.Ka.ˆ2*b.ˆ3*parms.m*c*a+2*parms.Ka.ˆ3*b.ˆ3*a.ˆ3-18*parms.Ka.ˆ2*b.ˆ2*a*parms.W*x).ˆ2))
.ˆ(1/3))+(1/(3*2.ˆ(1/3)*parms.Ka*b))*((27*parms.CP*parms.Ka.ˆ2*b.ˆ3+18*parms.Cr*parms.g*parms.Ka.ˆ2

*b.ˆ3*parms.m*a+18*parms.g*parms.Ka.ˆ2*b.ˆ3*parms.m*c*a+2*parms.Ka.ˆ3*b.ˆ3*a.ˆ3-18*parms.Ka.ˆ2*b.ˆ2

*a*parms.W*x+sqrt(4*(3*parms.Cr*parms.g*parms.Ka*b.ˆ2*parms.m+3*parms.g*parms.Ka*b.ˆ2*parms.m*c
-parms.Ka.ˆ2*b.ˆ2*a.ˆ2-3*parms.Ka*b*parms.W*x).ˆ3+(27*parms.CP*parms.Ka.ˆ2*b.ˆ3+18*parms.Cr*parms.g

*parms.Ka.ˆ2*b.ˆ3*parms.m*a+18*parms.g*parms.Ka.ˆ2*b.ˆ3*parms.m*c*a+2*parms.Ka.ˆ3*b.ˆ3*a.ˆ3
-18*parms.Ka.ˆ2*b.ˆ2*a*parms.W*x).ˆ2)).ˆ(1/3))),parms.Vw,parms.l,parms.s,x);
%S(i) is the speed in part i
S=arrayfun(@(a,y)a/V(y),parms.l,(1:n).');

%P(i) is the power it takes to cycle part i
P=arrayfun(@(x,y)x*parms.W/V(y)+parms.CP,x,(1:n).');

%building vectors to get the right plot:
%vector for the length of the parcours
q=zeros(n,1);
for i=1:n;
q(i+1,1)=parms.l(i,1);
end;
K=cumsum(q);

%vector for the power
R=zeros(n+1,1);
for i=1:n;
R(i,1)=P(i,1);
end
R(n+1,1)=P(n,1);

%vector for the speed TIMES 10
U=zeros(n+1,1);
for i=1:n;
U(i,1)=S(i,1)*10;
end
U(n+1,1)=S(n,1)*10;

%vector for the parcours (height)
Z=parms.s.*parms.l;
W=zeros(n+1,1);
for i=1:n;
W(i+1,1)=Z(i,1);
end;
X=cumsum(W);

figure
%plot the power
stairs(K,R/10)
hold on
%plot the speed
stairs(K,U/10)
hold on
%plot the parcours
plot(K,X/10)
h legend=legend('Power (*10 Watt)','Speed (m/s)','Altitude (*10 m)')
set(h legend,'FontSize',12)
finaltime=fval

Code of Figure 4.6

Function 1:

function G=run n parts {\mathrm{l}}inear(y)

58



% put a % in front and save as script: run n parts {\mathrm{l}}inear nofunction
%G is the final time as a function of energy distribution y
parms.power=400; %Watt
parms.rho=1.18; %sea level air density, kg/mˆ3
parms.CdA=0.217; %effective frontal area,coefficient of drag (Cd) multiplied by frontal area A (0,4mˆ2)
parms.Ka=(parms.rho/2)*parms.CdA; %
parms.m=83.6; %mass of cyclist+bike, kg
parms.g=9.81; %valversnelling, m/s
parms.Cr=0.005;%coefficient of rolling resistance
parms.meff=80; %effective mass
parms.CP=430.3033; %Critical Power
parms.W=30277.19; %battery
parms.l=[10000; 8000; 7000; 4000; 6000];
parms.s=[0.01; -0.02; 0.01; 0.015; -0.02];
parms.vw=[0; 0; 0; 0; 0];
parms.p=15; % number of seconds you take to be at vster
parms.vstart=[0.001; 7; 5; 7; 8];

n=length(parms.l);

parms.T=zeros(n,1);
parms.vs=zeros(n,1);
parms.lam=zeros(n,1);
for i=1:n
clear T vster a snijpunt u

% Assume l>0.5p(vster+vstart)
syms T vster real
T=(parms.l(i)-0.5*parms.p*(vster+parms.vstart(i)))/vster+parms.p;
a=(vster-parms.vstart(i))/parms.p;
syms t
u=(parms.Ka*(parms.vstart(i)+a*t+parms.vw(i)).ˆ2+parms.m.*parms.g.*(parms.Cr+parms.s(i))
+parms.meff*a).*(a*t+parms.vstart(i));
v=(parms.Ka*(vster+parms.vw(i))ˆ2+parms.m*parms.g*(parms.s(i)+parms.Cr))*vster;
snijpunt=-((3*((vster-parms.vstart(i))/parms.p)ˆ2 *parms.Ka* parms.vstart(i)+2 *((vster
-parms.vstart(i))/parms.p)ˆ2 *parms.Ka* parms.vw(i))/(3* ((vster-parms.vstart(i))/parms.p)ˆ3

* parms.Ka))-(2ˆ(1/3) *(3*((vster-parms.vstart(i))/parms.p)ˆ4 *parms.Cr* parms.g* parms.Ka

*parms.m+3 *((vster-parms.vstart(i))/parms.p)ˆ5 *parms.Ka *parms.meff+3 *((vster-parms.vstart(i))
/parms.p)ˆ4 *parms.g *parms.Ka *parms.m*parms.s(i)-((vster-parms.vstart(i))/parms.p)ˆ4 *parms.Kaˆ2

*parms.vw(i)ˆ2))/(3 *((vster-parms.vstart(i))/parms.p)ˆ3 *parms.Ka *(27 *((vster-parms.vstart(i))
/parms.p)ˆ6 *parms.CP *parms.Kaˆ2+18 *((vster-parms.vstart(i))/parms.p)ˆ6 *parms.Cr *parms.g

*parms.Kaˆ2 *parms.m *parms.vw(i)+18*((vster-parms.vstart(i))/parms.p)ˆ7 *parms.Kaˆ2 *parms.meff

*parms.vw(i)+18 *((vster-parms.vstart(i))/parms.p)ˆ6 *parms.g *parms.Kaˆ2 *parms.m *parms.s(i)

*parms.vw(i)+2 *((vster-parms.vstart(i))/parms.p)ˆ6 *parms.Kaˆ3 *parms.vw(i)ˆ3+sqrt(4 *(3 *((vster
-parms.vstart(i))/parms.p)ˆ4 *parms.Cr *parms.g *parms.Ka *parms.m+3 *((vster-parms.vstart(i))
/parms.p)ˆ5 *parms.Ka *parms.meff+3 *((vster-parms.vstart(i))/parms.p)ˆ4 *parms.g *parms.Ka

*parms.m *parms.s(i)-((vster-parms.vstart(i))/parms.p)ˆ4*parms.Kaˆ2*parms.vw(i)ˆ2)ˆ3+(27 *
((vster-parms.vstart(i))/parms.p)ˆ6 *parms.CP *parms.Kaˆ2+18 *((vster-parms.vstart(i))/parms.p)ˆ6

*parms.Cr *parms.g *parms.Kaˆ2 *parms.m *parms.vw(i)+18 *((vster-parms.vstart(i))/parms.p)ˆ7

*parms.Kaˆ2 *parms.meff *parms.vw(i)+18 *((vster-parms.vstart(i))/parms.p)ˆ6 *parms.g *parms.Kaˆ2

*parms.m *parms.s(i) *parms.vw(i)+2 *((vster-parms.vstart(i))/parms.p)ˆ6 *parms.Kaˆ3

*parms.vw(i)ˆ3)ˆ2))ˆ(1/3))+(1/(3 *2ˆ(1/3) *((vster-parms.vstart(i))/parms.p)ˆ3 *parms.Ka))

*((27 *((vster-parms.vstart(i))/parms.p)ˆ6 *parms.CP *parms.Kaˆ2+18 *((vster-parms.vstart(i))
/parms.p)ˆ6 *parms.Cr *parms.g *parms.Kaˆ2 *parms.m *parms.vw(i)+18 *((vster-parms.vstart(i))
/parms.p)ˆ7 *parms.Kaˆ2 *parms.meff *parms.vw(i)+18 *((vster-parms.vstart(i))/parms.p)ˆ6

*parms.g *parms.Kaˆ2 *parms.m *parms.s(i) *parms.vw(i)+2 *((vster-parms.vstart(i))/parms.p)ˆ6

*parms.Kaˆ3 *parms.vw(i)ˆ3+sqrt(4 *(3 *((vster-parms.vstart(i))/parms.p)ˆ4 *parms.Cr *parms.g

*parms.Ka *parms.m+3 *((vster-parms.vstart(i))/parms.p)ˆ5 *parms.Ka *parms.meff+3 *((vster
-parms.vstart(i))/parms.p)ˆ4 *parms.g *parms.Ka *parms.m *parms.s(i)-((vster-parms.vstart(i))
/parms.p)ˆ4 *parms.Kaˆ2 *parms.vw(i)ˆ2)ˆ3+(27 *((vster-parms.vstart(i))/parms.p)ˆ6 *parms.CP

*parms.Kaˆ2+18 *((vster-parms.vstart(i))/parms.p)ˆ6 *parms.Cr *parms.g *parms.Kaˆ2 *parms.m

*parms.vw(i)+18 *((vster-parms.vstart(i))/parms.p)ˆ7 *parms.Kaˆ2 *parms.meff *parms.vw(i)+18

*((vster-parms.vstart(i))/parms.p)ˆ6 *parms.g *parms.Kaˆ2 *parms.m *parms.s(i) *parms.vw(i)+2

*((vster-parms.vstart(i))/parms.p)ˆ6 *parms.Kaˆ3 *parms.vw(i)ˆ3)ˆ2))ˆ(1/3));

vster=double(solve(int(u,t,0,parms.p)+int(v,t,parms.p,T)+(parms.CP*snijpunt)-int(u,t,0,snijpunt)
-parms.CP*T-parms.W*y(i)==0,vster,'PrincipalValue',true));

parms.vs(i)=double(vster)
parms.T(i)=(parms.l(i)-0.5*parms.p*(parms.vs(i)+parms.vstart(i)))/parms.vs(i)+parms.p;
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parms.a(i)=(parms.vs(i)-parms.vstart(i))/parms.p;

end

V=arrayfun(@(a)a,parms.T);

G=real(sum(V));

Function 2:

function pw=plotpowerlinearnparts(H,parms)

parms.Tc=[0;cumsum(parms.T)];
n=length(parms.l);
for i=1:n;
clear He Ht;
He=H(parms.Tc(i)<H & H<= parms.Tc(i)+parms.p);
j(find(parms.Tc(i)<H & H<=parms.Tc(i)+parms.p))=(parms.Ka*(parms.vstart(i)+parms.a(i)*(He
-parms.Tc(i))+parms.vw(i)).ˆ2+parms.m.*parms.g.*(parms.Cr+parms.s(i))+parms.meff*parms.a(i))
.*(parms.a(i)*(He-parms.Tc(i))+parms.vstart(i));
j(find(parms.p+parms.Tc(i)<H & H<=parms.Tc(i+1)))=(parms.Ka*(parms.vs(i)+parms.vw(i))ˆ2
+parms.m*parms.g*(parms.s(i)+parms.Cr))*parms.vs(i);
end;

parms.lb=[0; 30; 80; 100; 150]; %length of the curves
parms.Tb=parms.lb./parms.vstart; %time it takes to cycle the curves
parms.Tbc=[0;cumsum(parms.Tb)];
%Build vector with power in the curves

for i=1:n;
q(find(H(0<H & H<= parms.Tb(i))),i)=(parms.Ka*(parms.vstart(i)+parms.vw(i))ˆ2+parms.m*parms.g

*(parms.s(i)+parms.Cr))*parms.vstart(i);
end;

parmsTsum=transpose(cumsum(parms.T));
% position of the curve in the vector:
lala=parmsTsum.*prod(size(H))./sum(parms.T);
lalala=[0 lala(1:end-1)]
qT=transpose(q);
[e1,e2]=size(transpose(j));
[d1,d2]=size(qT);
jnul=zeros(e1,d2-1);
jnew=[transpose(j) jnul];
Gee=insertrows(jnew,qT,lalala);
Ge=reshape(transpose(Gee),prod(size(Gee)),1);

pw=Ge(Ge~=0);
parms.Ge=pw;

Function 3:

function g=plotvelocitylinearnparts(H,parms)
% put a % in front and save as script: plotvelocitylinearnparts nofunction

parms.Tc=[0;cumsum(parms.T)];
n=length(parms.l);

for i=1:n;
clear He Ht
He=H(parms.Tc(i)<H & H<= parms.Tc(i)+parms.p);
h(find(parms.Tc(i)<H & H<=parms.Tc(i)+parms.p))=parms.a(i).*(He-parms.Tc(i))+parms.vstart(i);
h(find(parms.p+parms.Tc(i)<H & H<=parms.Tc(i+1)))=parms.vs(i);
end;

parms.lb=[0; 30; 80; 100; 150]; %length of the curves
parms.Tb=parms.lb./parms.vstart; %time it takes to cycle the curves
parms.Tbc=[0;cumsum(parms.Tb)];
%Build vector with speed in the curves
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for i=1:n;
f(find(H(0<H & H<= parms.Tb(i))),i)=parms.vstart(i);
end;

parmsTsum=transpose(cumsum(parms.T));
lala=parmsTsum.*prod(size(H))./sum(parms.T);
lalala=[0 lala(1:end-1)]
fT=transpose(f);
[e1,e2]=size(transpose(h));
[d1,d2]=size(fT);
hnul=zeros(e1,d2-1);
hnew=[transpose(h) hnul];
gee=insertrows(hnew,fT,lalala+1);
ge=reshape(transpose(gee),prod(size(gee)),1);

g=ge(ge~=0);
parms.ge=g

Function 4:

function H=vectorbouwen(parms)
H=linspace(0,parms.G+sum(parms.Tb),prod(size(parms.ge)))

Script:

close all
clear all

parms.power=400; %Watt
parms.rho=1.18; %sea level air density, kg/mˆ3
parms.CdA=0.217; %effective frontal area,coefficient of drag (Cd) multiplied by frontal area A (0,4mˆ2)
parms.Ka=(parms.rho/2)*parms.CdA; %
parms.m=83.6; %mass of cyclist+bike, kg
parms.g=9.81; %valversnelling, m/s
parms.Cr=0.005;%coefficient of rolling resistance
parms.meff=80; %effective mass
parms.CP=430.3033; %Critical Power
parms.W=30277.19; %battery
parms.l=[10000; 8000; 7000; 4000; 6000];
parms.s=[0.01; -0.02; 0.01; 0.015; -0.02];
parms.vw=[0; 0; 0; 0; 0];
parms.p=15; % number of seconds you take to get to vster
parms.vstart=[0.001; 7; 5; 7; 8];

n=length(parms.l);
lb=zeros(n,1);
ub=ones(n,1);
A=[];
b=[];
Aeq=zeros(n,n);
Aeq(1,:)=1;
beq=zeros(n,1);
beq(1,1)=1;
x0=zeros(n,1);
x0(:,1)=1/n;
nonlcon=[];
options = optimoptions('fmincon','Display','iter');
options = optimoptions(options, 'MaxFunEvals', 10000);
[x,fval]=fmincon(@run n parts {\mathrm{l}}inear,x0,A,b,Aeq,beq,lb,ub,nonlcon,options);

parms.lb=[0; 30; 80; 100; 150]; %length of the curves
y=x;
run n parts {\mathrm{l}}inear nofunction;
H=linspace(0,G,10000);
pw=plotpowerlinearnparts(H,parms);
g=plotvelocitylinearnparts(H,parms);
plotvelocitylinearnparts nofunction;
parms.G=G;
H=vectorbouwen(parms);
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figure
plot(H,g*10,H,pw)

xlabel('Time (s)')
hold on
hoogte plotten
legend('Speed (*10 m/s)','Power (Watt)','Altitude (m)')

Code of Figure 5.6

close all
clear all

ce=0.128;
ct=3.924;
cd=78;
umax=800;
CP=300;
W=4000;
dt=0.01;
vCP=sqrt(CP/(ce*v)-ct/ce);
T=421.26;%final time
s=W/(umax-CP);%switch point

%velocity:
x(1)=1;
for i=1:s/dt;
x(i+1)=(-(ct/cd)+umax/(cd*v)-(ce*x(i)ˆ2)/cd)*dt+x(i);
end
for i=s/dt+1:T/dt;
x(i+1)=(-(ct/cd)+CP/(cd*v)-(ce*x(i)ˆ2)/cd)*dt+x(i);
end

%lambda 2:
l(T/dt)=0;
for i=1:T/dt-1;
l(T/dt-i)=(l(T/dt-i+1)+dt)/(2*ce/cd*x(T/dt-i)*dt+1);
end

%position:
xe(1)=0;
for i=1:T/dt;
xe(i+1)=x(i)*dt+xe(i);
end

finalposition=xe(T/dt)

%battery:
xd(1)=W;
for i=1:s/dt;
xd(i+1)=xd(i)-(800-CP)*dt;
end
for i=s/dt:T/dt;
xd(i)=0;
end

%beta:
for i=1:T/dt;
b(i)=l(s/dt);
end

%ustar:
for i=1:s/dt;
USTER(i)=800;
end
for i=s/dt:T/dt;
USTER(i)=300;
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end

plot(xe/100)
hold on
plot(x)
hold on
plot(xd/1000)
hold on
plot(l)
hold on
plot(b)
hold on
plot(USTER/100)
legend('distance (*100 m)','velocity (m/s)','battery (*1000 Joule)','\hat{\lambda} 2','\beta',
'optimal u (*100 Watt)')
xlabel('Time (s)')

Code of Figure 5.8 and 5.9

The code of Figure 5.4 and Figure 5.5 is comparable, only the xtq(i) in the denominator of xtq(i+ 1) =
(−(ct/cd) + umax/(cd ∗ xtq(i)) − (ce ∗ xtq(i)2)/cd) ∗ dt + xtq(i) is replaced by the constant term v.
Furthermore, Figure 5.3 and Figure 5.7 can be obtained by choosing te = 40.

close all
clear all

ce=0.128; %c 1
ct=3.924; %c 2
cd=78; %c 3

umax=800; %maximum power (Watt)
CP=300; %critical power (Watt)
W=20000; % size of the battery (Joule)
a=1; %initial velocity (m/s)
xt(1)=1; %initial velocity (m/s)
N=200000;
dt=0.01; % time step

te=10.67; %choose t 1!!

% umax is exerted up to time te
xtq(1)=1;
for i=1:(floor(te/dt));
xtq(i+1)=(-(ct/cd)+umax/(cd*xtq(i))-(ce*xtq(i)ˆ2)/cd)*dt+xtq(i);
end

%The used energy is now (umax-CP)*te. So there is W-(umax-CP)*te energy
%left. Therefore t 2 is determined by (using-CP)*t 2=W-(umax-CP)*te.

%u sing is such that xt(floor(te/dt)) stays constant. Beta is chosen such
%that this is the case. Then lambda 2 is fixed and we can determine T.

using=(ce*(xtq(floor(te/dt)))ˆ2+ct)*xtq(floor(te/dt))
tt=(W-te*(umax-CP))/(using-CP) %t 2

for i=floor(te/dt):floor(tt/dt)+(floor(te/dt));
xtq(i+1)=(-(ct/cd)+using/(cd*xtq(i))-(ce*xtq(i)ˆ2)/cd)*dt+xtq(i);
end

for i=(floor(tt/dt)+(floor(te/dt))):N;
xtq(i+1)=(-(ct/cd)+CP/(cd*xtq(i))-(ce*xtq(i)ˆ2)/cd)*dt+xtq(i);
end

%Build x 1, the travelled distance
xeq(1)=0;
for i=1:N;
xeq(i+1)=xtq(i)*dt+xeq(i);
end
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syms bet positive
beta=double(solve((ce*(xtq(floor(te/dt)))ˆ2+ct)*xtq(floor(te/dt))==(cd+2*ct*bet)*sqrt((cd
-ct*bet)/(ce*bet))/(3*sqrt(3)*bet),bet))

%Build lambda 2
lq(floor(te/dt))=beta*xtq(floor(te/dt));
for i=1:(floor(te/dt))-1;
lq(floor(te/dt)-i)=(lq(floor(te/dt)-i+1)+dt)/((umax*dt)/(cd*xtq(floor(te/dt)-i)ˆ2)-(2*ce

*xtq(floor(te/dt)-i)*dt)/(cd)+1);
end
for i=(floor(te/dt)):floor(tt/dt)+floor(floor(te/dt));
lq(i)=lq(floor(te/dt));
end

for i=(floor(tt/dt)+floor(te/dt)):N;
if lq(i)<0
break
else
lq(i+1)=(-1+lq(i)*CP/(cd*xtq(i)ˆ2)+2*ce*lq(i)*xtq(i)/cd)*dt+lq(i);
end
end
T=prod(size(lq))

%Repeat everything up to T
xt(1)=1;
for i=1:(floor(te/dt));
xt(i+1)=(-(ct/cd)+umax/(cd*xt(i))-(ce*xt(i)ˆ2)/cd)*dt+xt(i);
end
for i=floor(te/dt):floor(tt/dt)+(floor(te/dt));
xt(i+1)=(-(ct/cd)+using/(cd*xt(i))-(ce*xt(i)ˆ2)/cd)*dt+xt(i);
end
for i=(floor(tt/dt)+(floor(te/dt))):T;
xt(i+1)=(-(ct/cd)+CP/(cd*xt(i))-(ce*xt(i)ˆ2)/cd)*dt+xt(i);
end

xe(1)=0;
for i=1:T;
xe(i+1)=xt(i)*dt+xe(i);
end

l(floor(te/dt))=beta*xt(floor(te/dt));
for i=1:(floor(te/dt))-1;
l(floor(te/dt)-i)=(l(floor(te/dt)-i+1)+dt)/((umax*dt)/(cd*xtq(floor(te/dt)-i)ˆ2)-(2*ce

*xtq(floor(te/dt)-i)*dt)/(cd)+1);
end
for i=(floor(te/dt)):floor(tt/dt)+floor(floor(te/dt));
l(i)=l(floor(te/dt));
end
for i=(floor(tt/dt)+floor(te/dt)):T;
l(i+1)=(-1+l(i)*CP/(cd*xtq(i)ˆ2)+2*ce*l(i)*xtq(i)/cd)*dt+l(i);
end

USTER=zeros(1,T);
for i=1:floor(te/dt);
USTER(i)=800;
end
for i=floor(te/dt):floor(tt/dt)+floor(te/dt);
USTER(i)=using;
end
for i=(floor(tt/dt)+floor(te/dt)):T;
USTER(i)=300;
end

finaltime=T*dt
finaldistance=xe(T)

%Build x 3, the battery
xd(1)=W;
for i=1:floor(te/dt);
xd(i+1)=xd(i)-(umax-CP)*dt;
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end
for i=floor(te/dt):floor(tt/dt)+floor(te/dt);
xd(i+1)=xd(i)-(using-CP)*dt;
end
for i=(floor(tt/dt)+floor(te/dt)):T;
xd(i)=0;
end

sw=zeros(1,T);
for i=1:T
sw(i)=l(i)/xt(i);
end

plot(xe/1000)
hold on
plot(xt)
hold on
plot(xd/1000)
legend('distance (*100 m)','velocity (m/s)','battery (*1000 Joule)')
xlabel('Time (*100 s)')

figure
plot(l)
hold on
plot(sw)
hold on
plot(USTER/100)
legend('\lambda 2','\lambda 2/x 2','optimal u (*100 Watt)')
xlabel('Time (*100 s)')
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