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Predicting nodal influence via local 
iterative metrics
Shilun Zhang , Alan Hanjalic  & Huijuan Wang *

Nodal spreading influence is the capability of a node to activate the rest of the network when it is 
the seed of spreading. Combining nodal properties (centrality metrics) derived from local and global 
topological information respectively has been shown to better predict nodal influence than using a 
single metric. In this work, we investigate to what extent local and global topological information 
around a node contributes to the prediction of nodal influence and whether relatively local 
information is sufficient for the prediction. We show that by leveraging the iterative process used to 
derive a classical nodal centrality such as eigenvector centrality, we can define an iterative metric set 
that progressively incorporates more global information around the node. We propose to predict nodal 
influence using an iterative metric set that consists of an iterative metric from order 1 to K produced 
in an iterative process, encoding gradually more global information as K increases. Three iterative 
metrics are considered, which converge to three classical node centrality metrics, respectively. In 
various real-world networks and synthetic networks with community structures, we find that the 
prediction quality of each iterative based model converges to its optimal when the metric of relatively 
low orders ( K ∼ 4 ) are included and increases only marginally when further increasing K. This fast 
convergence of prediction quality with K is further explained by analyzing the correlation between 
the iterative metric and nodal influence, the convergence rate of each iterative process and network 
properties. The prediction quality of the best performing iterative metric set with K = 4 is comparable 
with the benchmark method that combines seven centrality metrics: their prediction quality ratio 
is within the range [91%, 106%] across all three quality measures and networks. In two spatially 
embedded networks with an extremely large diameter, however, iterative metric of higher orders, 
thus a large K, is needed to achieve comparable prediction quality with the benchmark.

Spreading processes are ubiquitous in various systems of nature and society. Examples include the spreading 
of epidemics, the propagation of information, and cascade of failures. Complex networks, usually considered 
as the underlying structure of such systems, provide the substrate upon which the spreading process unfolds 
via links connecting nodes. The spreading influence of a node represents the extent to which the node, where 
the spread originates, can eventually activate other nodes in the network. For a given spreading process, the 
spreading influence of a node is defined as the expected outbreak size when the spreading process starts from 
the node, also called the seed node. Due to the topological heterogeneity of nodes in many real networks1, 
some nodes may have significantly higher spreading influence and are evidently more influential than the other 
nodes2–4. Identifying these influential nodes and predicting their spreading influence is crucial for controlling 
the spread of epidemics5,6 or rumors7,8, promoting strategic marketing9–11, quantifying the impact of researchers 
and publications12, and more13–15.

Two generic influence prediction problems have been addressed in prior research. The first involves identi-
fying the most influential nodes among all nodes based on the given network topology. To solve this problem, 
previous studies have proposed to rank nodes by a single nodal topological metric, so-called centrality metric16–18, 
which encodes either local19,20 or global16,21 topological information around a given node. The highest-ranked 
nodes are then identified as the most influential ones. Nonetheless, these prior work suggests that no single 
centrality metric can outperform all other centralities for different epidemic parameters and in diverse types of 
networks, since a centrality metric only captures a certain topological feature of a node. It has been shown that 
nodal degree, i.e., number of 1-hop neighbors, is more (less) predictive than eigenvector centrality22 when the 
spreading rate is small (large)6,23. The coreness better predicts the top spreaders than nodal degree in Susceptible-
Infected-Recovered model below epidemic threshold. Further studies put forward methods to integrate local 
and global centralities or their rankings. Zhe Li et al.24 used the sum of normalized degree, eigenvector central-
ity, and coreness as the mass of a node in a gravity model to derive a new nodal metric. Andrea Madotto et al.25 
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aggregated the ranking lists by local and global node centralities to produce a new ranking list based on the 
correlations between the rankings. These methods usually exhibit better performance than merely using a local 
or global centrality.

In many practical scenarios, it is possible to observe or derive the spreading influences of a small fraction of 
nodes. For example, the average number of retweets of content posted by a node can be used as an approximation 
of the spreading influence of the node6,26. This motivates the second influence prediction problem: identify the 
most influential nodes given the network topology and the influence of a small fraction of nodes. Bucur27 recently 
proposed to train a statistical model on the set of nodes whose spreading influences are known to classify the rest 
of nodes into binary classes, representing whether a node is among the top (e.g., top 10% ) influential ones or not. 
The statistical model maps the relation between the class of a node in spreading influence and centrality metrics 
including both local centrality metrics like degree and global centrality metrics like betweenness28 and eigenvec-
tor centrality. These centrality metrics were shown to be able to complement each other to achieve universally 
good performance in locating the most influential nodes across various real-world networks. However, global 
centrality metrics have a high computational complexity, which limits their application to large-scale networks. 
Moreover, the non-trivial correlation among different metrics makes it difficult to interpret to what extent global 
nodal properties are needed to estimate nodal spreading influence.

To bridge this gap, we will systematically explore two foundational questions: how local and global topologi-
cal information around a node contribute to the prediction of the spreading influence of this node, and whether 
relatively local information, i.e., topological information derived from the neighborhood within a small hopcount 
from a target node, can predict its nodal spreading influence effectively. The general prediction task is considered: 
given the topology of a network and the spreading influences of a fraction of nodes, how to predict the spreading 
influences of the other nodes in the network, beyond their ranking. To solve the prediction task, a node-level 
regression model is trained on the set of nodes whose spreading influences are known and used to predict the 
influences of the remaining nodes. To understand how local and global topological information contribute to 
the prediction, we design the input of the regression model based on nodal properties as follows. We show that 
by leveraging the iterative process used to derive a classical node centrality such as eigenvector centrality, we can 
define an iterative metric that gradually encodes more global information as the order grows. Then, an iterative 
metric set that consists of an iterative metric from order 1 to order K is used as input features of the regression 
model. For example, the number of k-hop walks originate from a node, which is determined by the k-hop neigh-
borhood of the node, can be derived in an iterative process starting from k = 1 . The resultant iterative metric 
set is composed of the iterative metric (the number k-hop walks) with order k ∈ [1,K] after K iterations. The 
benefits of using an iterative metric set to predict nodal influence are as following. Firstly, it allows us to explore 
to what extent global network information is needed to estimate the nodal influence, i.e., is K necessarily large 
for accurate prediction? Secondly, it enables us to identify the prediction method with low computational cost, 
i.e., the regression model with an iterative metric set of a small K. Moreover, in practical applications, one has 
the flexibility to choose an appropriate K to achieve a well-balanced trade-off between prediction accuracy and 
computational efficiency. The intuition is illustrated in Fig. 1, which shows a network example of 1000 nodes 

Figure 1.   Location of top ranked nodes in a network generated by LFR model. The red-colored nodes are the 
top 10% nodes when nodes are ranked by spread size (top left), eigenvector centrality (EC, top middle), degree 
centrality (DC, top right), 2-hop walk counts (bottom left), 3-hop walk counts (bottom middle), and 4-hop walk 
counts (bottom right), respectively.
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with community structure generated by Lancichinetti-Fortunato-Radicchi model29. The red-colored nodes are 
the top 10% nodes when nodes are ranked by spreading influence (top left), eigenvector centrality (EC, top mid-
dle, which corresponds the component of the eigenvector corresponds to the largest eigenvalue of the adjacency 
matrix), degree (DC, top right), number of 2-hop (bottom left), 3-hop (bottom middle) 4-hop (bottom right) 
walks originating from a node, respectively. The example suggests that the number of 2-, 3- and 4-hop walks 
possibly reflect nodal spreading influence better than the global metric (eigenvector centrality). Furthermore, it 
has been observed and partially proved in previous work that a centrality metric like betweenness with a high 
computational complexity is correlated with local metrics derived from a low order neighborhood18,30. Hence, 
global network information, i.e., large K, is not necessarily needed in nodal influence prediction.

In this work, we consider three iterative metrics, which converge, respectively to three global node centrality 
metrics: eigenvector centrality, PageRank centrality31, and H index of a node32. The computation of each iterative 
metric set can be done in O (K · |E|) time, where |E| is the number of links in the network. Based on each 
iterative metric set, a statistical regression model is built and trained to predict nodal influence. We evaluate the 
prediction quality of the corresponding three regression models, in comparison with a benchmark27, i.e., the 
regression model that uses 7 nodal centrality metrics, in both real-world networks and synthetic networks with 
community structure. We find that in almost all networks, an iterative metric set with K ∼ 4 is able to accurately 
predict nodal spreading influence, and the prediction quality increases marginally when more global metrics are 
included as K grows. This suggests the low computational complexity of our iterative metric based prediction 
methods. Additionally, the best performing iterative metric based model with K ∼ 4 performs as well as the 
benchmark model, which has higher computational cost due to the computation of global centrality metrics. 
An exception holds for two infrastructure networks, i.e., US power grid and Chicago regional road network, 
which are spatially embedded networks and have an extremely large diameter ( > 40 ). In these two networks, 
nearly optimal prediction quality is achieved only when using the iterative metric set that includes metrics of 
large orders, thus when K is large. Hence, the proposed iterative metric method utilizing relatively local network 
information could predict nodal influence as well as the benchmark in networks with the small-world property 
and has a lower computational complexity.

This paper is organized as follows. In "Method" section, we introduce the definition of nodal spreading 
influence and iterative metrics, and regression models to predict nodal influence. "Results" section evaluates 
the performance of the proposed influence predication methods in both real-world networks and synthetic 
networks with community structure. "Discussion and future work" section summarizes our findings and discusses 
limitations and potential extensions of our work.

Method
In this section, we present the definition of nodal spreading influence ("Nodal spreading influence" subsection), 
followed by the definition of iterative metrics ("Iterative metrics" subsection). We then describe the regression 
model that uses an iterative metric set to predict nodal spreading influence ("Nodal influence prediction method" 
subsection).

Nodal spreading influence
We consider the continuous-time Susceptible-Infected-Recovered (SIR) spreading process on a static network3,33. 
At any time, each node can be in one of three possible states: susceptible, infected, or recovered. At the beginning, 
one seed node gets infected, while the rest are susceptible. A susceptible node gets infected by each of its infected 
neighbors at an infection rate β , and each infected node recovers at a recovery rate γ . Both the infection and 
recovery processes are independent Poisson processes. In the steady state, all nodes are either susceptible or 
recovered. The ratio � = β/γ is called the effective infection rate. Without loss of generality, we assume the 
recovery rate γ = 1 , thus � = β . For a given network, an epidemic threshold �c exists. When � > �c , a non-
zero fraction of recovered nodes exist in the stable state. When � < �c , the epidemic dies out. The number of 
recovered nodes in the steady state, or equivalently, the number of nodes that have ever been infected is called 
the outbreak size.

The spreading influence of a node is defined as the average outbreak size when the node is chosen as the 
seed node. We derive the influence of a node as the average outbreak size over r = 104 realizations of the SIR 
spreading process on a given network. When the effective infection rate � ≪ �c or when � ≫ �c , nodes tend to 
have similar influence. We focus on predicting influence when the effective infection rate is around the epidemic 
threshold, e.g., � = 0.5�c , �c , 1.5�c , 2�c . This is when nodes differ evidently in influence, and influence prediction 
is crucial. We estimate the epidemic threshold �c using the numerical approach introduced in34. Specifically, 
referring to ρ as a random variable denoting the influence of a random node in the network, we consider the 
variability 

√

�ρ2� − �ρ�2/�ρ� as a function of � . The epidemic threshold �c is then the value of � that maximizes 
the variability.

Iterative metrics
Given an undirected network G = (V ,E) , where V is the set of nodes and E is the set of links between nodes in 
V, the network can be represented by the adjacency matrix A, whose element Aij = 1 if there is a link between 
node i and j, otherwise Aij = 0 . Various node centrality metrics have been proposed to measure the topological 
importance of a node, such as eigenvector centrality, PageRank, and coreness32. For a given centrality metric, the 
centralities of all nodes can be denoted by a vector M , where the entry Mi represents the centrality of node i. The 
iterative process used to derive the corresponding iterative metric set starts with an initial metric vector M(0) and 
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updates the metric vector based on a specific rule M(k) = f (M(k−1)) . Eventually, this process converges to the 
target centrality metric M . We refer to the derived metric vectors {M(k), k = 1, 2, ...K} as the iterative metric set.

In this paper, we consider three iterative processes that converge to three global centrality metrics: eigen-
vector centrality, PageRank centrality, and coreness of a node, respectively. Three different iterative metrics are 
derived using these processes.

•	 Normalized Walk Count (NWC). We adopt the power iteration process for the computation of eigenvector 
centrality to derive the NWC iterative metric. The centrality vector is initialized as the normalized all-one 
vector w(0) = u/

√
N  , where u is the all-one vector, and is updated iteratively following the updating equation 

w(k) = Aw(k−1)/||Aw(k−1)|| . The k-th order NWC follows w(k) = Aku/||Aku|| . Its element w(k)
i  represents 

the normalized number of distinct k-hop walks starting from node i and can be derived from the neighbor-
hood within k hops of the node i. As k increases, w(k) converges to the eigenvector centrality w. The rate of 
convergence is determined by the ratio of the largest eigenvalue �1(A) and the second largest eigenvalue �2(A) 
of the adjacency matrix A of the network. The convergence rate is higher when |�2(A)||�1(A)| is smaller35.

•	 Visiting Probability (VP) is derived using the iteration process for the computation of PageRank centrality31. 
The metric vector is initiated as the normalized all-one vector, p(0) = u/N  , and updated iteratively as 
p
(k)
i = α

∑N
j=1 Ajip

(k−1)
j /dj + (1− α)/N , where dj is the degree of node j and the teleportation parameter 

α is set to 0.85, which is a common choice for calculating the PageRank centrality36. As k increases, p(k)i  
converges to PageRank centrality. The updating equation can be formulated in matrix form: p(k) = Gp(k−1) , 
where G = αATD−1 + 1−α

N uuT , matrix D is a diagonal matrix with Dii =
∑

j Aij . Since matrix G is a sto-
chastic matrix, the largest eigenvalue �1(G) = 1 . The rate of convergence is determined by the second largest 
eigenvalue �2(G) of the matrix G. The smaller |�2(G)| is, the faster the convergence is35. The iterative process 
can be interpreted as a random walk: the walker starts at a randomly selected node. At each time step, with a 
probability α it moves to a random neighbor of the current visiting node, and with a probability 1− α it jumps 
to a node that is randomly selected from the network. The k-th order iterative metric p(k)i  of a node i is the 
probability that node i is visited by the random walker at the k-th hop. Since the information of neighbors’ 
degree is needed in each iteration step, p(1)i  actually encodes 2-hop neighbors’ information. Similarly, the 
(k + 1)-hop neighborhood information of a node i is needed to derive p(k)i .

•	 H index (HI)32. The 1-st order H index is defined as the degree of a node, i.e. h(1)i = di . The k-th order H index 
of node i can be derived as h(k)i = H[h(k−1)

j1
, h

(k−1)
j2

, ..., h
(k−1)
jdi

] , where j1, ..., jdi are neighbors of node i and H 

is an operator that returns an integer. Specifically, h(k)i  is the maximum integer such that at least h(k)i  elements 
of [h(k−1)

j1
, h

(k−1)
j2

, ..., h
(k−1)
jdi

] are no less than HI(k)i  . It has been proved that h(k) will converge to the coreness16,37 
as k increases.

The iterative rules f in the three iterative processes only involve operations among a node’s 1-hop neighbors. As 
a result, the metric vector M(k) after one step iteration encodes information about the neighborhood one hop 
further than M(k−1) (see Sect. S1 in Supplementary Information for a more detailed explanation). Given an itera-
tive process, the obtained metric set {M(1)

i ,M
(2)
i , ...,M

(K)
i } will be used to predict the influence of node i using 

the regression model described in "Nodal influence prediction method" subsection. The parameter K controls 
the scope of information around a node encoded in the iterative metric set {M(1)

i ,M
(2)
i , ...,M

(K)
i }.

Nodal influence prediction method
We assume two key types of information are given to predict nodal influence. Firstly, the network topology is 
known. Secondly, the influences of a small fraction of nodes are available. In practical scenarios, these influences 
can often be estimated from real-world diffusion data within social media networks. Our objective is to predict 
the influences of the remaining nodes in the network. We approach the prediction of nodal influence as a node-
level regression problem. Specifically, given a static network G = (V ,E) represented by its adjacency matrix A 
and the spreading influences of a fraction q of nodes, which is randomly selected and denoted as Sq , we aim to 
predict spreading influences of the remaining 1− q nodes, referred to as S1−q.

We choose q = 10% assuming only the influences of a small fraction of nodes are known. We train a statistical 
regression model, which maps the nodal features into the influence of a node, on the training node set Sq , and 
evaluate it on the remaining test node set S1−q . For each of the three iterative metrics, the iterative metric set 
{M(1)

i ,M
(2)
i , ...,M

(K)
i } is used as nodal features in the regression model to predict nodal influence. As a bench-

mark model, we consider a regression model that uses the same set of 7 classic centrality metrics as in Bucur’s 
classification model27 as nodal features. These 7 centrality metrics include both local and global centrality metrics 
and are able to complement each other in improving the performance in the node classification task. Finally, we 
evaluate the prediction quality of the regression models based on 50 realizations of the random sampling of the 
training node set Sq and the training of the regression model.

We choose the Random Forest Regression model (RFR), a classic model that captures the nonlinear relation-
ship between input features and the outcome variable, i.e., nodal influence, in our case. We also considered the 
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Ridge regression, a linear regression model with L2 regularization, and obtained qualitatively similar observations 
(in Supplementary Information) as the Random Forest Regression.

Results
We evaluate the performance of the regression models based on each of the three iterative metrics and the 
benchmark model based on classic centrality metrics, first in real-world networks in "Performance analysis in 
real-world networks" subsection, and afterwards in synthetic networks with community structures in "Prediction 
on networks with communities" subsection. Finally, we explore the performance of these models in relation 
to parameters of the spreading process in "Prediction of nodal spreading influence near epidemic threshold" 
subsection.

Networks and measures to evaluate prediction quality
We consider 9 real-world networks that differ in network properties such as size and and diameter (i.e. the 
largest shortest path length between a node pair among all possible node pairs), including four online social 
networks (advogato, facebook, deezerEU, github), a scientific collaboration networks (Arxiv Astro), a file sharing 
network (Gnutella04), two infrastructure networks (US power grid, ChicagoRegional road network), and an 
email communication network (Email Enron). All the datasets are obtained from the repository of KONECT 
project38,39. We treat all networks as simple, undirected and unweighted. Basic properties of these networks are 
listed in Table 1. Notably, the two infrastructure networks, US powergrid and ChicagoRegional, have significantly 
larger diameters, higher modularity, and lower average degree than the other networks.

We evaluate the prediction quality of the proposed regression models using the following 3 classic measures:
r2 measures the proportion of the variance in the dependent variable (nodal influence) that is predictable 

from the input features in the regression model. r2 is defined as:

Here, yi and ŷi are the ground truth and the predicted nodal influence of node i given by the regression model, 
respectively. ȳ = 1

n

∑n
i=1 yi is the mean value of yi.

Kendall’s correlation coefficient τ(ŝ, s) measures the similarity of the two ranking lists of nodes based on the 
predicted nodal influence ŝ and the ranking based on the actual nodal influence obtained by SIR simulation. 
A value of 1 for τ(ŝ, s) indicates that the predicted nodal influence gives the same node ranking as the ground 
truth, while a value of −1 indicates that the two rankings are reverse. Kendall’s correlation coefficient40 τ(ŝ, s) is 
defined as follows:

where nc and nd are the total number of node pairs that are concordant and discordant respectively, based on the 
influence s and the predicted influence ŝ . For example, node pair (i, j) is concordant if (ŝi − ŝj)(si − sj) > 0 , and 
is discordant if (ŝi − ŝj)(si − sj) < 0 . T is the number of node pairs that have the same influence but different 
predicted influence, i.e., si = sj , ŝi �= ŝj and U is the number of node pairs that have the same predicted influence 
but different influence, i.e., ŝi = ŝj , si �= sj.

Recognition rate of top- f% measures the performance of a regression model in identifying the most influential 
f% nodes in the test set S1−q . It is calculated as the fraction of nodes that are present in the top f% of both the 
ranking by predicted nodal influence ŝ and the ranking by actual nodal influence s. A higher recognition rate of 
top- f% implies better performance of the regression model in identifying the most influential nodes.

(1)r2 = 1−
∑

i(yi − ŷi)
2

∑

i(yi − ȳ)2

(2)τ(ŝ, s) = nc − nd√
(nc + nd + T) ∗ (nc + nd + U)

Table 1.   Basic properties of each real-world network considered: Number of nodes |N|, number of links |E|, 
average node degree 〈d〉 , network diameter, the modularity Q1, and epidemic threshold �C of the SIR process 
on the network.

Dataset |N| |E| 〈d〉 Diameter Q �c

Advogato 5042 41791 16.577 9 0.408 0.020

Arxiv-astrophics (astroph) 17903 196972 22.004 14 0.626 0.015

Enron 33696 180811 10.732 13 0.608 0.013

Facebook 63392 816886 25.773 15 0.632 0.010

Gnutella04 (gnu04) 10876 39994 7.355 10 0.386 0.080

Github 37700 289003 15.332 11 0.453 0.011

Deezer EU (deezereu) 28281 92752 6.559 21 0.683 0.070

US power grid (uspower) 4941 6594 2.669 46 0.935 0.870

ChicagoRegional (Chicago) 12979 20627 3.179 106 0.931 1.230
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Performance analysis in real‑world networks
We focus on the prediction of spreading influence when the effective infection rate of the SIR spreading process 
is � = �c , where the epidemic threshold �c of each network is identified using the method described in "Method" 
section. The values of �c of each real-world network are shown in Table 1. Later in this section, we will discuss 
how the choice of the effective infection rate around the epidemic threshold impacts the performance of influence 
prediction methods.

We predict nodal influence in real-world networks using the iterative metric based regression models. Each 
model uses an iterative metric set {M(1)

i ,M
(2)
i , ...,M

(K)
i } as input features. Thus, topological information of the 

K-hop ( K + 1-hop for VP) neighborhood of each node is used by the regression model for influence prediction. 
These regression models are evaluated using the evaluation metrics introduced in "Method" section. In Fig. 2, 
we show the Kendall correlations τ(ŝ, s) between the actual nodal influence s and the influence ŝ predicted by 
a regression model as a function of K in real-world networks. As K grows, higher order iterative metrics are 

Figure 2.   Kendall correlation between the actual nodal spreading influence s and the influence ŝ predicted by a 
regression model based on NWC (panel (A)), VP (panel (B)), and H index (panel (C)) respectively. Results are 
averaged over 50 realizations of training set sampling and model training.

Figure 3.   Kendall correlation between nodal spreading influence s and different orders of NWC ( w(k) , panel 
(A)), VP ( p(k) , panel (B)), and H index ( h(k) , panel (C)), and the convergence of NWC (D), VP (E), HI (F), 
measured by the Kendall’s correlation between the iterative metric after k iterations and the corresponding 
global centrality metrics, as a function of iteration number k in 9 real-world networks. (G) shows the coverage, 
i.e. the average fraction of nodes covered by hopping step out from a node, as a function of the number of hops.
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included, and the prediction quality increases. For all three iterative metrics, the prediction quality converges 
relatively fast as K increases. As shown in Fig. 2A, the prediction quality of the NWC based model is already 
close to the highest at a small K ( K ∼ 4 ) and only increases marginally by choosing a K > 4 . For example, the 
prediction quality when K = 4 reaches at least 95% of the highest prediction quality of the NWC based model. 
This suggests that a regression model using relatively local topological information could already achieve com-
parably good prediction quality as the one using more global information. This finding does not hold for the 
two infrastructure networks with an extremely large diameter, for which an iterative metric of higher orders (i.e., 
K > 4 ) is needed to achieve optimal prediction quality.

To understand why an iterative metric method achieves nearly its optimal prediction quality with a small 
K ∼ 4 in all networks except for the two networks without the small-world property, we first explore the correla-
tion τ(M(k), s) between the k-th order iterative metric M(k) and the spreading influence s. As shown in Fig. 3A–C, 
each iterative metric M(k) exhibits positive correlation with spreading influence for any order k, indicating that 
each iterative metric has certain predictive power. As k increases, the correlation τ(M(k), s) increases when k is 
small and achieves nearly the highest correlation around k ∼ 4 , implying the high predictive power of iterative 
metrics of up to order 4 in those small-world networks.

Secondly, we study the convergence of the iterative metric M(k) as the order k grows. As k increases, each 
centrality metric M(k) converges to the global centrality metric M∗ . The three iterative metrics converge to 
three global metrics: eigenvector centrality, PageRank centrality, coreness, respectively. Figure 3D–F shows the 
Kendall’s correlation τ(M(k),M∗) between the k-th order metric M(k) and the global metric M∗ as a function 
of k for each iterative metric. For each iterative metric, M(k) converges to M∗ with different convergence rates 
in different networks. Importantly, M(k) exhibits relatively high correlation with M∗ at k ∼ 4 in most networks. 
Hence, the predictive power of an high-order iterative metric could be inherited by a low-order iterative metric. 
This explains why the corresponding regression model improves in prediction quality only marginally as K 
increases when K ≥ 4 . Furthermore, the large correlation τ(h(k), h∗) for any k, as shown in Fig. 3F, explains why 
the prediction quality of the regression model based on HI hardly improves when K grows, as observed in Fig. 2C.

In the two infrastructure networks with a large diameter and strong community structure, iterative metrics 
converge relatively slowly, indicating the possibility that a large K or high-order iterative metric is needed for 
better prediction quality. Still, the convergence of the prediction quality τ(M(k), s) is faster than that of the metric 
NWC τ(M(k),M∗) . This is likely because the higher-order metric is less predictive, thus possibly less needed for 
the prediction, as shown in the decreasing trend of the correlation τ(M(k), s) with an increasing k when k is large. 
The different performance of the iterative metric based model in the two infrastructure networks from the other 
networks as well as the weakness of using a single classical centrality to predict influence precisely in networks 
with community structure41,42 motivate us to investigate the impact of the strength of community structure on 
nodal influence prediction in the next section.

To gain insight into why each iterative metric M(k) exhibits relatively high correlation with M∗ at k ∼ 4 
in most networks, we investigate the average size of the k-hop neighborhood, i.e., the fraction of nodes that is 
reachable (covered) from a random node in k hops. This indicates the proportion of nodes whose information 
is considered in the metric M(k) . Figure 3G shows that in most real-world networks, more than half of nodes 
are reachable from a random node within 4 hops. Hence, the 4-th order iterative metric possibly captures the 
topological information of a significant amount of nodes, supporting why τ(M(k),M∗) is high when k ∼ 4 . The 
4-hop coverage of network deezer EU and the two infrastructure networks is lower than in the other networks, 
which is likely due to their community structure or large diameter. Correspondingly, τ(M(k),M∗) when k ∼ 4 
for NMC is relatively lower in these three networks.

Among all three iterative metrics, NWC achieves evidently the highest prediction quality when K ∼ 4 . This 
is supported by the higher correlation τ(s,w(k)) between the NWC centrality w(k) and the spreading influence s 
at each order k, as shown in Fig. 3A–C.

Figure 4.   Comparison of prediction quality across different empirical networks (horizontal axis) of four 
prediction models based on different metrics (vertical axis): Normalized Walk Count when K = 4 (NWC(4)), 
Visiting Probability when K = 4 (VP(4)), H index when K = 4 (HI(4)), and classic centrality metrics27. Three 
panels correspond to different evaluation measures of prediction quality: r2 (left panel), Kendall’s τ (middle 
panel), and recognition rate of top 10% nodes (right panel), respectively. Results are averaged over 50 realizations 
of Random Forest Model training process.
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It has been found that combining local and global node centrality metrics can more accurately identify top 
influencers than using either local or global centralities alone27. Hence, we build a benchmark regression model 
that uses the same 7 centrality metrics (local ones like degree and global ones like closeness) as in the classifica-
tion model in27 as input features. Now, we compare the prediction quality of the proposed iterative metric based 
models with the benchmark model. We choose K = 4 for iterative metric based models. The choice of K = 4 
corresponds the case where the iterative metric based model only uses relatively local information, which ensures 
the computational efficiency and reasonably good prediction quality in most networks.

Figure 4 shows three evaluation measures of the regression models: r2 (left panel), Kendall correlation between 
the actual nodal spreading influence s and the predicted influence ŝ of the node by a regression model (middle 
panel), and the recognition rate of top 10% nodes (right panel). Across all real-world networks, the prediction 
quality of the NWC based model is evidently better than the other two iterative metric based models. In all net-
works except for the two infrastructure networks, the NWC based model achieves prediction quality comparable 
to the benchmark model. The prediction quality ratio between the NWC based model and the benchmark model 
is within the range [91%, 101%] for any of the three evaluation measures. In those two infrastructure networks 
uspower and Chicago, the NWC based model with K = 4 performs worse than the benchmark, whereas the NWC 
based model with a large K performs as well as the benchmark, achieving 96% to 105% of the prediction quality 
of the benchmark model.

Moreover, the computational complexity of the NWC based model with K = 4 is lower than that of the 
benchmark model, which requires the computation of global centrality metrics. We summarize in Table 2 the 
computational complexity of an iterative metric of orders up to K and the 7 classical centrality metrics used in 
the benchmark model for all nodes. In each iteration of an iterative process, the iterative metric of each node is 
updated via aggregating the metrics of its 1-hop neighbors derived in the previous iteration. Thus, updating the 
metric for all nodes in each iteration requires 2|E| basic operations. The computational complexity of an iterative 
metric set {M(1)

i ,M
(2)
i , ...,M

(K)
i } for all nodes equals that of M(K)

i  for all nodes, which is O (K · |E|) . Hence, a 
relatively small K facilitates the application of iterative metric based method in large networks. In contrast, the 
global metrics used in the benchmark model, such as closeness centrality, have a higher complexity.

Prediction on networks with communities
Community structure has been observed in many real-world networks43, where nodes within a community 
are densely connected while nodes from different communities have fewer connections. The existence of com-
munities affects significantly the spreading process unfolding on a network44,45 and has been ignored in most 
centrality metrics used to predict nodal influence42,46. Here we evaluate the performance of our influence pre-
diction methods in networks with community structures and investigate how community structure affects the 
prediction quality. To this end, we adopt the Lancichinetti-Fortunato-Radicchi (LFR) model29 to generate net-
works with power-law degree distribution and community size distribution, as observed in real-world networks. 
One advantage of LFR model is that the strength of the community structure in the generated networks can 
be changed via tuning its parameters. We use LFR model to generate networks with the following properties: 
network size N = 1000 and N = 10000 respectively, the exponent of the power-law degree distribution τ1 = 2 , 
and exponent of the power-law community size distribution τ2 = 3 , the average degree �k� = 10 , the maximum 
degree dmax =

√
10N/2 , the range of community sizes [50,

√
10N] . The mixing parameter µ represents the frac-

tion of inter-community links of a node. When µ = 0 , the generated networks have the strongest community 
structure, with communities being disjoint from each other. The model with µ = 1 generates networks where 

Table 2.   Comparison of the computational complexity of different nodal metrics for all nodes in a network: 
an iterative metric set {M(1), ...,M(K)} and classical centrality metrics used in the benchmark model. 
Neighborhood stands for the sum of degrees of direct neighbors, and two-hop neighborhood are the sum of 
degrees of nodes that are two hops away. K∗ is the number of iterations at which the iterative process used to 
compute the centrality metric converges.

Iterative metric Degree, neighborhood, two-hop neighborhood Coreness Eigenvector and PageRank Closeness

O (K · |E|) O (|E|) O (|E|) O (K∗ · |E|) O (|V ||E|)

Table 3.   Basic properties of networks generated by LFR model with different mixing parameter µ and 
N = 1000 : network diameter, the modularity Q, epidemic threshold �C of the SIR process on the network.

µ Diameter Q �c

0.02 10 0.924 0.090

0.05 6 0.872 0.080

0.1 5 0.608 0.070

0.2 5 0.632 0.070

0.3 5 0.386 0.070

0.4 5 0.453 0.070
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all links fall between different clusters. When µ > 0.5 , the community structure is not evident anymore29. We 
set µ = [0.02, 0.05, 0.1, 0.2, 0.3, 0.4] , thus six networks with different strength of communities are generated. We 
will focus on the results for N = 1000 , since results for N = 10000 (as shown in the Supplementary Informa-
tion) lead to the same observation. The generated networks vary in network properties such as diameter and 
modularity, as shown in Table 3 and Table S1.

We first evaluate our iterative metric based models in predicting nodal influence in LFR networks when the 
effective infection rate of the SIR model is around epidemic threshold, i.e., � = �c . Figure 5A–C show Kendall 
correlations τ(ŝ, s) between the nodal spreading influence s and the prediction ŝ by a regression model based 
on an iterative metric set {M(1),M(2), ...,M(K)} , as a function of K in LFR networks. Like what we observed in 
real-world networks, the prediction quality increases as K increases. Notably, the prediction quality only improves 
marginally when choosing a K > 4 . This can be understood by the correlation τ(M(k), s) between M(k) and nodal 
influence s, which is shown in Fig. 6A–C. As k increases up to k ∼ 4 , the correlation τ(M(k), s) increases. As k 
increases further, the correlation tends to decrease. This decreasing trend is more evident in networks with more 
evident community structure, but not observed in real-world networks that have a relatively small diameter and 

Figure 5.   Kendall correlation between nodal spreading influence ŝ predicted by different numbers of iterative 
metrics as features and nodal spreading influence given by SIR simulations of NWC (A), VP (B), and H index 
(C). Results are averaged over 50 realizations of training set sampling and model training.

Figure 6.   Kendall correlation between nodal spreading influence s and different orders of NWC ( w(k) , panel 
(A)), VP ( p(k) , panel (B)), and H index ( h(j) , panel (C)), and the convergence of NWC (D), VP (E), HI (F), 
measured by the Kendall’s correlation between the iterative metric after k iterations and the corresponding 
global centrality metrics, as a function of iteration number k in Lancichinetti-Fortunato-Radicchi (LFR) 
networks with different µ = 0.02, 0.05, 0.1, 0.2, 0.3, 0.4 . (G) shows the coverage, i.e. the average fraction of 
nodes covered by hopping step out from a node, as a function of the number of hops.
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modularity as shown in Fig. 3. This suggests that high-order ( k > 4 ) iterative metrics are less predictive than an 
iterative metric of an order around k ∼ 4 , thus less needed to predict nodal influence in networks with a higher 
modularity. Furthermore, we explore the convergence of an iterative metric M(k) as k increases. Figure 6D–F 
show the Kendall’s correlation τ(M(k),M∗) as a function of k for the three iterative metrics, respectively. For 
NWC, the correlation tends to be lower when k ∼ 4 as the mixing parameter µ gets smaller or equivalently in 
network with more evident community structure. In networks with strong community structure, NWC converges 
relatively slowly. Still, the prediction quality of the regression models in these networks is close to optimal when 
K ∼ 4 , since the higher order metric is less predictive. This is also in line with the intuition that in networks 
with strong community structure and when the infection rate is around the critical epidemic threshold, nodal 
influence is supposed to be mainly determined by nodal property derived within or around the community that 
the node belongs to.

Figure 6G shows the average fraction of nodes that are reachable (covered) from a randomly chosen node 
within k hops, i.e., the so called coverage, as a function of k. In networks with strong community structure (small 
µ ), the coverage and τ(M(k),M∗) when k ∼ 4 tend to be small. In such networks, an order k ∼ 4 iterative met-
ric encodes topological information of a small fraction of nodes, which explains partially the weak correlation 
τ(M(k),M∗) when k ∼ 4.

Now we compare the prediction quality of iterative metric based models (when K = 4 ) with the benchmark 
model in LFR networks via the same three evaluation measures as in real-world networks. Figure 7 shows that 
the NWC based model with K = 4 performs comparably as (mostly slightly better than) the benchmark model, 
the prediction quality ratio between the NWC based model and the benchmark model ranges from 95% to 106% . 
Among the three iterative metric based models, the NWC based model performs the best whereas VP based 
model performs the worst. As the strength of community structure grows, all models perform worse. This can 
be explained by the small (large) correlation τ(M(k), s) in networks with a strong (weak) community structure, 
as shown in Fig. 6A–C. The same has also been observed in real-world networks. As shown in Fig. 4, both the 
NWC based model and the benchmark model perform the worst in the two infrastructure networks that have 
the stronger community structure than the other considered real-world networks. In the two infrastructure 
networks, the correlation τ(M(k), s) is also weaker (see Fig. 3).

Prediction of nodal spreading influence near epidemic threshold
So far, we have focused on the influence prediction problem, where the influence is defined for the SIR epidemic 
spreading process with � = �c . It has been shown that the change of parameters in the epidemic spreading can 
lead to different rankings of nodes according to their influences23,47,48. Hence, we evaluate the average prediction 
quality of a regression model over all the networks except for the two infrastructure networks, at various effec-
tive infection rates around the epidemic threshold �c . Figure 8 (top panel) shows that NWC outperforms VP 
and HI, as � varies from 0.5 · �c to 2.0 · �c . The NWC based model with K = 4 and the benchmark model show 
comparable prediction quality. Their prediction quality is less sensitive to the effective infection rate � . In the 
two infrastructure networks (Fig. 8 bottom panel), the NWC based model with K = 4 exhibits lower prediction 
quality than the benchmark at different effective infection rates except that they perform similarly at � = 0.5 · �c , 
when the SIR spreading is relatively local.

Discussion and future work
In summary, we explore to what extent local and global topological information of a node is needed for the pre-
diction of nodal spreading influence and whether relatively local topological information around a node is suffi-
cient for the prediction. We propose to predict nodal influence by an iterative metric set derived from an iterative 
process. Three iterative metrics are considered: Normalized Walk Counts (NWC), Visiting Probability (VP), and 
H index (HI), which converge to eigenvector centrality, PageRank, and H index, respectively. The regression 
model using an iterative metric set as input features is trained on a fraction of nodes whose influence is known 
and is used to predict the nodal influence of the remaining nodes. We evaluate and interpret the performance of 

Figure 7.   Prediction performance on model networks generated with LFR model with varying mixing 
parameter µ (horizontal axis) of five sets of metrics (vertical axis): Normalized Walk Count when K = 4 
(NWC(4)), Visiting Probability when K = 4 (VP(4)), H index when K = 4 (HI(4)), and classical centralities. 
Three panels correspond to different evaluation measures of predictive models: r2 (left panel), Kendall’s τ 
(middle panel), and recognition rate of top 10% nodes (right panel), respectively. Results are averaged over 50 
realizations of training process of Random Forest Model.
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these three iterative metric based models in predicting nodal influence in SIR spreading processes with diverse 
effective infection rates around the epidemic threshold, on both real-world networks and synthetic networks 
with different strength of community structure. We find that the prediction quality of each iterative metric based 
model converges to its optimal when the iterative metric set of relatively low orders (up to order 4) are included 
and increases only marginally when further increasing K. This is explained via the correlation between an iterative 
metric of order k and nodal influence and the fast convergence of each iterative metric. The prediction quality 
of the best performing iterative metric set (NWC) with K = 4 is comparable with the benchmark method that 
combines seven centrality metrics. In two spatially embedded networks with an extremely large diameter and 
modularity, however, iterative metric of higher orders, thus a large K, is needed to achieve comparable predict 
quality as the benchmark. These findings suggest that the NWC metric of relatively low orders contain sufficient 
information to predict nodal influence reasonably well in networks with the small-world property, whereas its 
computation complexity is lower than that of the global centrality metrics needed by the benchmark model. 
In these networks, the NWC metric has almost the highest correlation with nodal influence when k ≈ 4 in 
most networks, indicating that a node with more distinct 4-hop walks starting from the node tends to be more 
influential. However, the interpretability of the iterative metric-based regression model is limited by the strong 
correlation among the iterative metric of different orders. Nodes with what kind of combination of low order 
the iterative metrics are more influential remains an interesting question.

This study has several limitations that call for further exploration. Firstly, we observe the trend that a larger 
K is needed for the iterative metric based method to perform close to its optimal in networks with a significant 
large diameter. It is interesting to explore the minimal K needed for the NWC based model to perform at 
least, for example, 95% of the optimal performance of the model in relation to the diameter of the network. 
Secondly, the diameter and strength of community structure are possibly correlated in real-world networks and 
network models. We have observed the influence of community structure or diameter on the prediction quality 
of the NWC based model and the benchmark model. An open question is how the diameter influences the 
prediction quality while the community strength is fixed. For both objectives, network models with a controllable 
diameter and more real-world networks, especially those without the small-world property are needed. Thirdly, 
we confine ourselves to the SIR spreading process on a static network. However, in many scenarios, both the 
spreading process and the underlying topology can be more complicated. Our proposed method can be extended 
to explore its capability of predicting nodal influence defined in such more complex context using local network 
information.

Data availibility
The data sets used are publicly available. More information can be found in the corresponding references.

Figure 8.   Average prediction quality over all considered real-world networks (shown in Table 1) excluding 
the two spatially embedded networks (top panels) and over the two spatially embedded networks (bottom 
panels) as a function of �/�c of 4 different metric sets: Normalized Walk Counts (NWC), Visiting Probability 
(VP), H index (HI), and 7 node centralities27. Three columns correspond to different evaluation measures of 
predictive models: r2 (left panel), Kendall’s τ (middle panel), and recognition rate of top 10% nodes (right panel), 
respectively. Results are averaged over 50 realizations of training process of Random Forest Model.
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