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There is an interesting class of problems in the 
physics of polymeric materials which one may group 
under the heading “semiclassical elasticity”. Herein, the 
question is raised how the deformational behavior of the 
material changes from entropy-dominated to elasticity- 
dominated as one increases the level of stress exerted 
on it. Chain fluctuations and undulations are gradually 
frozen out during this process. Thus, the connotation 
“semiclassical” applies to an evaluation of the partition 
function in the limit of weak fluctuations, which may 
remain influential nonetheless. A simple example of 
this effect is the elongation of stiff microfilaments under 
tensions that are of practical interest. Both the fluctua- 
tions and material extension in this problem were 
already addressed qualitatively by Oosawal two decades 
ago, but a straightforward quantitative analysis is 
apparently lacking. 

Let us suppose it is possible to associate a center curve 
with the macromolecule or filament in a particular 
configuration. The center curve is described by the 
radius vector 7%) = (ds), y(s), z(s)), where s is the 
contour distance from one_end. The contour length L 
is a function of the tension f exerted at both ends of the 
chain (Figure 1). The consour length is LO in the state 
without external stress cf = 01, referred to here and 
below by index 0. 

The unstressed reference configuration without ther- 
mal undulations is assumed to be a straight line. A 
fairly general, effective Hamiltonian may be written as 
the sum of three terms 

S u = 6 + % + 5 q  (1) 

The bending energy2 valid for an extendible wormlike 
chain may be approximated by 

where kg is Boltzmann’s constant, Tis  the temperature, 
and P(L,s) is the persistence length, which will generally 
depend on the material elongation and hence implicitly 
on the tension. At the same level of approximation, we 
have for the energy of material elongation 

(3) 
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Figure 1. Stiff chain under a gradually increasing tension: 
(a) undulation-dominated elongation; (b) at the crossover; (c) 
elasticity-dominated regime. 

extension are nonuniform. According to eqs 2 and 3, 
the filament behaves locally like an elastic medium. The 
tensile energy follows from considering the displacement 
of the two ends 

.5g= -?.(7(L) - 3(0)) (4) 

The statistical physics of a filament or chain defined 
by %is obviously complicated but one limit is readily 
soluble. 

I consider the case of small elongations and weak 
undulations (AL L - LO << LO; &Ids = 8, *: 1 gnd 
dy/ds 8, << 1 iff  = fiz is in the z direction and 8 = 
(8,(s), 8Js)) is the angle between the tangential vector 
Glds and Zz. All quantities in eqs 1-4 are noy 
expanded systematically in AL and the small angle 8- 
(s )  and only the leading terms are retained. The 
resulting harmonic approximation reads 

At this stage the canonical variables &) and AL are 
completely separable and the statistics becomes a mat- 
ter of quadrature. For instance, a quantity of experi- 
mental relevance is the elongation 

where K(L,s) is an elastic modulus and S/SO signifies an 
extension ratio at s (presumably, there is a one-to-one 
correspondence between SO and s). In principle, both P 
and K depend on s because both the bending and 
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where ( ) denotes canonical averaging and higher order 
terms are consistently deleted in the harmonic ap- 
proximation. The first average in eq 6 involves es- 
sentially Gaussian integrals since AL << LO 
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(7) 

The second average has been computed in a different 
context for finite contour lengths (see eq M.8 of ref 3). 

The general form of this expression was first derived 
by Fixman and Kovac4 although with different numer- 
ical coefficients because they employed an approxima- 
tion, Gaussian in the extension vector, which was forced 
to  mimic a wormlike chain. Their formula also de- 
scribes the approach to the fully flexible limit. A 
convenient closed expression valid for sufficiently long 
contour lengths has been presented re~ent ly .~  

Let us now focus on chains longer than the deflection 
l e x ~ g t h ~ , ~  ,I = Po(@)h so that eqs 6 and 8 reduce to 

(9) 

The extension ratio e is defined with respect to the 
reference state. Equation 10 at zero material elongation 
(i.e., with KO = -1 has been discussed b e f ~ r e ~ , ~  and 
expresses the manner in which undulations are frozen 
out as we increase the tension. Here, the curve of e 
against In f has a point of inflection given by 

- i(kBTK:)113 
* - 4 7 5 -  (11) 

It effectively demarcates the regime dominated by 
entropy (f < f * )  from that dominated by energy cf > f*), 
loosely speaking (in practice, the entropy and energy 
terms are not pure). 

In general, there need not be a simple relation 
between the empirical constants KO and PO. We gain 
more insight into the magnitude and nature of the 
crossover given by eq 11 by supposing the macromol- 
ecules behaves like a cylindrical rod of homogeneous 
elasticity. Sometimes this may be a realistic model; 
often it must be regarded as a convenient idealization. 
The quantities KO and PO are now related2,8 through 
Young‘s modulus E and the rod diameter DO. 

ZD;E 
= 64K,T (12) 

(13) 

These equations yield a numerically transparent for- 
mula for the tension at the crossover 

k,T 4Po 113 113 

f * - Do (Do) = kBT(&) (14) 

It is surprising, perhaps, that f* is independent of the 
diameter. In addition, we have the following relations 
valid at the point of inflection 

(16) 

Hence, for stiff filaments these ratios are indeed much 
smaller than unity as is required for the applicability 
of the harmonic approximation. Equation 15 yields the 
deflection length3f’t7,9 a t  the crossover 

Accordingly, at f = f* the transverse distance the 
filament wanders a t  mostg is then DO so, for higher 
tensions (f > f i ) ,  it looks progressively more like a 
straight, smooth rod on the scale of DO (Figure 1). 

If the elastic rod model is indeed realistic for biofila- 
ments, Young‘s modulus E would range from 10 to lo2 
kBT nm-3 judging from the dimensions and persistence 
lengths of DNA,1° Schizophyllan,ll fd myo- 
sin,15 and F-actin.lG-l8 Thus, the tension f* lies in a 
narrow range of 1-3 kBT nm-l and for practical 
purposes may be regarded a fairly constant and uni- 
versal quantity in that case. The associated stresses 
are at MPa levels or less which are on the order of those 
pertinent to the deformation of many bi0materia1s.l~ 
The effect of undulations is particularly evident for 
filaments longer than the deflection length ,I* though 
the latter is surprisingly short: from eq 17 its numerical 
value in nm is basically Do2 when DO is expressed in 
nm. Therefore, the simple calculations presented here 
may bear on a variety of materials from microfibrils 
within f i b e r ~ ~ O - ~ ~  to collagen fibrils in structural 
t i s s ~ e s . ~ ~ - ~ ~  Finally, measurements of the tensile elon- 
gation of a single DNA molecule have been carried out 
by Smith et al.27 Their data have been reanalyzed in 
ref 5 and start to show deviations from purely entropic 
behavior at a tension of about 10 pN (it is difficult to  
discern a point of inflection in their e-ln f curve since 
there are few data at higher tensions). This onset does 
agree with eq 14 but more experiments are needed t o  
investigate whether an elastic rod model is indeed 
appropriate for a complex polymer like DNA in this 
range of tensions. Recent workz8 shows that, ultimately, 
the DNA helix may well be disrupted at tensions as high 
as 50 pN. Yet another effect has been suggested on 
theoretical grounds by Marko and Siggia,29 the scale 
dependence of electrostatics with increasing tension. All 
in all, with so many regimes, unequivocal determination 
of the persistence length of DNA from its extensional 
behavior is nontrivial. 
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