
 
 

Delft University of Technology

Towards a unified taxonomy for algorithmic transparency
Insights from uncrewed air traffic management
Zou, Y.; Borst, C.

DOI
10.1007/s10111-025-00826-5
Publication date
2025
Document Version
Final published version
Published in
Cognition, Technology and Work

Citation (APA)
Zou, Y., & Borst, C. (2025). Towards a unified taxonomy for algorithmic transparency: Insights from
uncrewed air traffic management. Cognition, Technology and Work. https://doi.org/10.1007/s10111-025-
00826-5

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s10111-025-00826-5
https://doi.org/10.1007/s10111-025-00826-5
https://doi.org/10.1007/s10111-025-00826-5


RESEARCH

Cognition, Technology & Work
https://doi.org/10.1007/s10111-025-00826-5

development (Kopardekar et al. 2016; Mohamed Salleh and 
Low 2017; FAA 2022, 2023; SESAR 2023). As UTM is a 
novel concept, a universally recognized standard has not 
yet been firmly established (Lieb and Sievers 2024). Vari-
ous solutions for UTM are being actively explored around 
the world, such as American UTM (FAA 2023), European 
U-space (SESAR 2023) and Chinese UTMISS (Guan et al. 
2024).

Despite the differences among these solutions, there is a 
consensus that, unlike traditional Air Traffic Management 
(ATM), UTM will be built from the ground up to rely on 
high levels of automation. This is because drone traffic often 
involves much higher flight densities and could be far more 
complex than existing crewed air traffic. It is nearly impos-
sible for humans to manually control such a large number 
of drones simultaneously. However, relying heavily on 
automation may also be problematic, especially in the low-
altitude airspace around airports where drones and crewed 

1  Introduction

In recent years, drone usage has rapidly increased in vari-
ous domains, such as agriculture, delivery, surveillance and 
entertainment. In aviation, it is expected that a large num-
ber of drones will share the airspace with crewed aircraft in 
the near future (FAA 2024; SESAR 2016). To safely cope 
with the increased number of drones, Uncrewed Air Traffic 
Management (UTM) was proposed and is currently under 
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Abstract
With the rapid advancement of drone technology, their applications have become increasingly widespread. However, the 
integration of drones into the airspace also poses risks to crewed aircraft, particularly around airports. To address this issue, 
a highly automated Uncrewed Air Traffic Management (UTM) system is being developed. Since fully safe and reliable 
automation does not exist yet, UTM still requires human supervision to enhance the overall system safety and reliability. 
Some form of “seeing-into” transparency may be necessary to help operators better understand the limitations and behav-
ior of the automated UTM system. As UTM is a novel concept, research on transparent UTM is limited. Many efforts 
have been made in other fields, but there still remains a lack of consensus on what transparency entails, particularly for 
algorithmic systems. Therefore, this article first presents a unified taxonomy for algorithmic transparency, with operational, 
domain and engineering transparency introduced as its core concepts. From the taxonomy, twenty UTM transparency 
elements and their corresponding visual prototypes were then designed, which also showcases how the taxonomy can be 
applied in practice. A survey-based user study was conducted to collect the opinions of air traffic controllers and drone 
experts regarding the designed elements and prototypes. Results indicate that transparency is deemed imperative for UTM, 
especially in scenarios featuring automation failure. It also reveals that operational transparency is generally preferable 
over engineering transparency in nominal operations. Participants were asked to group the designed elements, and their 
results closely aligned with the structure of the proposed taxonomy.
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aircraft coexist. Any deficiencies or limitations in automa-
tion could increase the risk of collisions between drones and 
crewed aircraft, posing a threat to human lives. Therefore, 
although UTM is highly automated, it still requires human 
supervision, at least in the Controlled Traffic Regions (CTR) 
around airports, to enhance the overall safety and reliability.

However, a higher level of automation generally makes 
it more difficult for human supervision (Bainbridge 1983; 
Endsley 2023). Operators may be unable to understand 
the automation decisions and their underlying reasoning 
without any additional support. In this case, they are left 
no choice but to either blindly follow the actions suggested 
by automation or manually control everything due to a lack 
of trust in automation. In UTM, if a drone’s behavior is 
completely unpredictable and uninterpretable, it will pose a 
huge threat to crewed aircraft and should not be allowed to 
operate around airports (EASA 2021). To address this issue, 
some form of “seeing-into” transparency may be needed 
that presents information and/or explanations about the 
inputs, outputs and internal processes of automation (Chen 
et  al. 2020; Jamieson et  al. 2022; Bhaskara et  al. 2020; 
van de Merwe et al. 2024). UTM operators should be aware 
of the intents and goals of both drones (e.g., where are their 
destinations?) and the automated UTM system (e.g., what 
automated services are provided?). Safety-related metrics, 
such as Closest Point of Approach (CPA), could also be dis-
closed to help operators monitor the situation (Papadopou-
los et al. 2024).

Since UTM is not fully developed, direct research on 
transparent UTM is limited (Pongsakornsathien et al. 2021; 
Janisch et al. 2022, 2023, 2024; Schwoch et al. 2024; Teutsch 
and Petersen 2024). In other fields, many studies have been 
conducted to explore the design and impact of transparency 
(Bhaskara et  al. 2020; Arrieta et  al. 2020; van  de Merwe 
et  al. 2024), such as Chen’s Situation Awareness–based 
Agent Transparency (SAT) model (Chen et al. 2014, 2018), 
Ecological Interface Design (EID) (Vicente and Rasmus-
sen 1992; Kilgore and Voshell 2014) and Explainable AI 
(XAI) design frameworks (Wang et al. 2019; Mohseni et al. 
2021). Previous research also suggested positive effects of 
transparency on human performance in one-to-many drone 
operations (Zhang et  al. 2021) and multi-unmanned (air, 
ground, and sea) vehicle mission planning (Mercado et al. 
2016; Stowers et al. 2020; Bhaskara et al. 2021). However, 
these works generally stem from different perspectives on 
transparency, and there remains a lack of consensus on what 
transparency entails, particularly for algorithmic systems. In 
the UTM context, it is still unclear how to achieve transpar-
ency and how transparency could affect the collaborative 
operations between drones and crewed aircraft. There-
fore, this article, an extension of our previous work (Zou 
and Borst 2023), aims to propose a unified taxonomy for 

algorithmic transparency to integrate different perspectives. 
Based on the taxonomy, various information elements and 
visual prototypes are devised for transparent UTM. Accord-
ing to the designed elements and prototypes, a survey-based 
user study is conducted to validate the proposed taxonomy 
and explore operators’ needs and preferences for transpar-
ency in different UTM scenarios.

The article is structured as follows. In Sect. 2, we review 
different perspectives and related works on transparency 
and propose a unified transparency taxonomy. In Sect. 3, 
based on the taxonomy, we devise twenty transparency 
elements and fourteen corresponding visual prototypes 
for UTM. In Sect. 4, we outline the user study methodol-
ogy, introducing the questionnaire structure and participant 
background. In Sect. 5, we present the results collected from 
participants, analyzing their needs and preferences regard-
ing the designed transparency elements and prototypes. In 
Sect. 6, we discuss the insights gained from the user study 
and future research directions.

2  Transparency taxonomy

Much research has been conducted to enhance automa-
tion transparency (Bhaskara et al. 2020; Gunning and Aha 
2019; Arrieta et  al. 2020; CORDIS 2022; van  de Merwe 
et al. 2024), but their methods are usually diverse and lack 
a unified guide or framework. For example, the Single 
European Sky ATM Research (SESAR) projects ARTIMA-
TION (Hurter et al. 2022), MAHALO (Westin et al. 2022) 
and TAPAS (Papadopoulos et al. 2024) all explored meth-
ods to achieve transparency in tactical ATM operations, yet 
ended up with different design choices. Some studies (Mer-
cado et al. 2016; Bhaskara et al. 2021; Papadopoulos et al. 
2024) emphasized improving operator situation awareness 
in human-automation collaboration through transparency. 
They usually followed Endsley’s situation awareness the-
ory (Endsley 1995) and Chen’s Situation Awareness–based 
Agent Transparency (SAT) model (Chen et al. 2014, 2018). 
In contrast, other studies (van Paassen et al. 2018; Westin 
et al. 2022; Dikmen 2022) focused on revealing the physi-
cal and intentional constraints of work domains to estab-
lish a common ground for both humans and machines. This 
approach was mainly based on Ecological Interface Design 
(EID) (Vicente and Rasmussen 1992) and Cognitive Work 
Analysis (CWA) (Vicente 1999). Additionally, some other 
research (Saraf et al. 2020; Hernandez et al. 2021; Hurter 
et al. 2022) seemed to draw inspiration from the Explain-
able AI (XAI) community, aiming to design explainable 
models to elucidate the inner workings of automation.

Although transparency can be approached from dif-
ferent perspectives, the overall goal is to support human 
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supervision of automation and ensure humans remain in the 
loop. The ecological approach is developed for improving 
operator situation awareness as well (Mulder et al. 2019), 
while the XAI methods are implemented to foster the trust 
and acceptance of human users (Hernandez et  al. 2021). 
Essentially, transparency is about disclosing relevant infor-
mation to humans, and thus the focus of transparency may 
shift depending on the needs and background of the user 
(Langer et al. 2021). Operators may be more concerned with 
how automation affects operational scenarios and situa-
tions, whereas policymakers may need to assess whether an 
automated system is trustworthy and reliable for real-world 
application. Different transparency needs may lead to differ-
ent methods and perspectives on transparency.

However, even for the same type of users, their trans-
parency needs may still be different depending on personal 
preferences, expertise, and specific contexts (Chen et  al. 
2018; Miller 2019). In addition to situation-related infor-
mation, operators may also seek to understand the inner 
workings of automation, especially when automation 
behaves unexpectedly (Janisch et  al. 2022). To meet user 
needs across all scenarios, it seems necessary to adopt an 
overarching approach to disclose as much information as 
possible. Users can thus access the information they need 
on demand. Therefore, we attempt to devise a unified trans-
parency taxonomy to summarize different perspectives on 
transparency. The proposed taxonomy could also serve as a 
guide for transparency design.

As this research focuses on tactical UTM operations 
within CTR around airports, we primarily investigate the 
needs and preferences of operational users, such as Air Traf-
fic Controllers (ATCos) and drone experts, rather than those 
of policymakers or system developers/designers in our sur-
vey-based user study.

2.1  Perspectives on transparency

Three main perspectives can be summarized from the lit-
erature: user-centered (Lyons 2013; Chen et al. 2014; Wang 
et al. 2019; Springer and Whittaker 2020), model-centered 
(Lundberg and Lee 2017; Juozapaitis et al. 2019; Brandao 
et al. 2021) and ecology-centered (Vicente and Rasmussen 
1992; Borst et al. 2015; van Paassen et al. 2018).

From a user-centered perspective, transparency informa-
tion should be presented in accordance with user demands, 
limitations, preferences and expertise (Wang et  al. 2025). 
Lyons’ human-robot transparency model (Lyons 2013) 
defines various types of information that need be presented 
to humans, such as robots’ tasks, purposes, decision-making 
processes and environmental perceptions. To avoid over-
whelming users, transparency is generally divided into 
different levels, enabling a progressive and incremental 

disclosure of information (Springer and Whittaker 2020). 
For example, corresponding to the three levels of situation 
awareness defined by Endsley (1995); Chen et  al. (2014) 
designed three levels of transparency in their SAT model: 
Basic Information (Level 1), Rationale (Level 2) and Out-
comes (Level 3). In practice, these transparency levels are 
usually combined in visual and/or textual presentations 
(Stowers et al. 2020). However, information revealed by the 
SAT model might be insufficient in some cases. When auto-
mation fails or behaves unexpectedly, users may seek more 
information about the agent’s internal process (i.e., how the 
agent makes decisions) to understand what happened, why 
it happened, and how to resolve it Brandao et al. (2021); Liu 
and Brandão (2024). This type of information is not explic-
itly reflected in the SAT model.

The model-centered approaches are mostly developed in 
the XAI community, aiming to construct explainable mod-
els that are readily comprehensible to humans. As technol-
ogy advances, automation becomes increasingly complex 
and difficult for humans to understand, such as neural net-
works and reinforcement learning. XAI was thus introduced 
to enhance the explainability of advanced AI models and 
algorithms (Gunning and Aha 2019). Many approaches 
have been developed, including Local Interpretable Model-
agnostic Explanations (LIME) (Ribeiro et  al. 2016) and 
Shapley Additive Explanations (SHAP) (Lundberg and Lee 
2017). The main focus of the model-centered perspective 
is to thoroughly dissect the internal processes of models 
and explain them in human-understandable terms. In recent 
years, user-centric XAI has gained increasing attention 
from researchers since explanations should also consider 
user expertise and needs (Arrieta et al. 2020). For example, 
a theory-driven user-centric framework for XAI has been 
proposed (Wang et  al. 2019), aiming to support human 
reasoning and mitigate cognitive biases through tailored 
explanations.

XAI has also been applied in ATM to improve the opera-
tor trust and acceptance of AI-based ATM systems (Saraf 
et al. 2020; Hernandez et al. 2021; Xie et al. 2021). As the 
core of UTM is to guide drones to their destinations while 
avoiding conflicts with crewed aircraft, a centralized con-
flict-free path-planning algorithm is expected to be imple-
mented to achieve this goal (Janisch et al. 2024). Therefore, 
in this study, we primarily focus on transparent path plan-
ning. Many pathfinding visualizers have been developed to 
portray the search processes of various path-planning algo-
rithms (Sturtevant 2023; Xu 2023; Toma et al. 2021; Zheng 
et  al. 2024), which could also serve as references for our 
work.

The ecology-centered approach is derived from EID 
(Vicente and Rasmussen 1992; Rasmussen and Vicente 
1989) and CWA (Vicente 1999). It puts emphasis on 
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depicted in Fig. 1. The model-centered design identifies 
what content about machines can be revealed, including 
implemented algorithms, internal processes, and reason-
ing mechanisms. The user-centered design determines how 
the information should be conveyed to humans, taking the 
goals, skills and preferences of human users into account. 
The ecology-centered design highlights domain constraints, 
such as laws of physics, principles and dynamics. The 
behavior of both humans and machines should be bounded 
by these constraints. The interface acts as a bridge, facili-
tating interactions and communications between humans 
and machines. The transparency information is usually 
presented on an interface, conveying the state of and con-
straints within the environment, what the machine does, and 
what the users may need and/or prefer.

2.2  Transparency in ATM and UTM

In the fields of ATM and UTM, automation transparency is 
gaining increasing attention. SESAR 3 Joint Undertaking 
initiated five projects (SESAR 2022) to address transpar-
ency issues of AI in ATM. The most relevant projects for our 
use case in tactical operations are ARTIMATION (Hurter 
et  al. 2022), MAHALO (Westin et  al. 2022) and TAPAS 
(Papadopoulos et al. 2024).

ARTIMATION proposed three levels of transparency: 
(1) Black Box, (2) Heat Map and (3) Storytelling. The Black 
Box showed only the proposed solution along with the 
instructions for execution. The Heat Map presented what 
trajectory was explored by the algorithm and whether it was 
good or bad. The Storytelling provided a step-by-step pre-
view of the proposed solution while also explaining alter-
native possibilities. A user study of ARTIMATION (Hurter 

visualizing the physical and intentional constraints govern-
ing the work domain, revealing its deep structure for achiev-
ing domain transparency (van Paassen et  al. 2018; Borst 
et al. 2015). This approach can provide a common ground 
for user-centered and model-centered approaches since 
both humans and machines should obey the same domain 
constraints. Technically, the ecological approach seeks to 
discover the most effective way for presenting domain con-
straints, fully utilizing the human ability for direct percep-
tion (Vicente and Rasmussen 1990; Michaels and Carello 
1981). For instance, in drone flight monitoring, drone endur-
ance can be depicted as a virtual battery (Fuchs et al. 2014) 
or alternatively represented as available maneuvering space 
(an elliptical space) (Janisch et al. 2022). The latter may be 
more intuitive for humans in the context of path planning 
since it builds a direct link between the constraint and the 
solution: the path should be within the maneuvering space 
to satisfy the endurance constraint.

The ecology-centered approach could provide users with 
deeper insights into the solution space of a task, fostering 
a clearer understanding of the feasibility and robustness of 
solutions as well as serving as input/output feature spaces 
for human intervention. The ecology-centered approach 
has yielded many promising results for ATM and aviation 
(Borst et  al. 2017; van Paassen et  al. 2018; Mulder et  al. 
2019; Borst et  al. 2019; Velasco et  al. 2021). In essence, 
human and automated agents alike are constrained by the 
same fundamental laws and causalities that govern the work 
domain. Contextualizing machine intentions can enhance 
the comprehension of their underlying motives.

While these three perspectives differ from one another, 
they are connected when considering a triadic semiotic 
perspective on socio-technical systems (Flach 2017), as 

Fig. 1  Triadic perspective on trans-
parency, capturing user-, model-, 
and ecology-centered perspectives
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To summarize, these projects all had different perspec-
tives on addressing the same problem (i.e., CD&R in ATC). 
Each of them developed its unique transparency elements, 
covering different visual and textual parameters represent-
ing the tactical ATM context. Nonetheless, some similarities 
were found in that they all center transparency information 
around solutions, revealing information about the proposed 
solution (e.g., planned actions) and the expected outcomes 
(e.g., predicted minimum separation).

Similar to ATM, although UTM has not been fully estab-
lished yet, some research has already started to explore 
how to increase the transparency of UTM based on their 
envisioned operational concepts and designed simulators 
(Pongsakornsathien et  al. 2021; Janisch et  al. 2022). As 
UTM is expected to rely on high levels of automation, the 
transparency issue may be more urgent than it is for ATM. 
Without transparency, operators may struggle to understand 
the behavior and limitations of automation, leading to a loss 
of situation awareness (Janisch et al. 2022; Endsley 2023). 
Transparency research on one-to-many drone operations and 
multi-unmanned vehicle mission planning indicated posi-
tive effects of transparency, such as increased understanding 
and greater performance (Stowers et al. 2020; Planke et al. 
2020; Bhaskara et al. 2021; Zhang et al. 2021, 2024).

2.3  Proposed transparency taxonomy

To integrate the three perspectives on transparency in a 
pragmatic way in a path-planning context, a unified tax-
onomy is devised based on Fig. 1, and is shown in Fig. 2. 
Referring to the European Union Aviation Safety Agency 
(EASA) AI Roadmap (EASA 2023), two fundamental 
concepts are proposed: operational transparency and engi-
neering transparency. Operational transparency reveals 

et  al. 2022) showed that ATCos preferred the Black Box 
because of the time pressure issue. They favored the sim-
plest interface design for Air Traffic Control (ATC). They 
also thought that transparency would be beneficial for the 
initial training period to increase the understanding and trust 
of ATCos. In real operations, transparency should be hidden 
by default but remain accessible.

MAHALO devised three transparency conditions: (1) 
Vector Line, (2) Vector Line and Solution Space Diagram 
(SSD) and (3) Vector Line, SSD and text-based explanation. 
The Vector Line, indicating flight speed and heading, rep-
resented the proposed solution for conflict resolution. The 
text-based explanation clarified the target Closest Point of 
Approach (CPA) and the agent’s purpose. The core of MAH-
ALO is the SSD, which could visually explain whether the 
proposed solution is feasible and how robust it is. MAH-
ALO also explored the personalization of AI to align its 
advice more closely with ATCos’ preferences. A user study 
of MAHALO (Westin et al. 2022) indicated that personal-
ized advisories were more easily accepted by ATCos than 
transparent advisories and that greater personalization may 
reduce the need for transparency.

TAPAS did not have explicit transparency levels in their 
Conflict Detection & Resolution (CD&R) use case. Instead, 
it mainly utilized text-based tables to present detailed infor-
mation and possible solutions associated with CD&R, such 
as geometrical features of the CPA detected and suggested 
actions along with their expected outcomes. Their transpar-
ency design is similar to Chen’s SAT model, which is also 
based on Endsley’s situation awareness theory (Endsley 
1995). A user study of TAPAS (Papadopoulos et al. 2024) 
suggested that providing information that maintains opera-
tors’ situation awareness may be sufficient to develop trust 
in AI, even in high-stakes fields like ATC.

Fig. 2  Proposed unified taxonomy for algorithmic transparency, integrating user-, model-, and ecology-centered perspectives
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category lies at the intersection, forming solution spaces to 
explain the feasibility and robustness of solutions (opera-
tional) and also serving as a basis for system computation 
(engineering). The Explored Solutions indicate the algo-
rithm’s exploration results in addition to the final optimal 
solution. The Cost Values reflect the algorithm’s criteria 
for evaluation and comparison. The Computational Process 
represents the algorithm’s underlying process for finding a 
solution. In search-based path planning, it mainly refers to 
the search process. Please note that a transparency category 
is not entirely equivalent to a transparency level. A level 
may contain elements from one or more categories.

The proposed operational transparency categories can 
be regarded as a variant of the SAT model. As indicated by 
Bhaskara et al. (2021), the projected outcomes (Level 3) in 
the SAT model may not necessarily represent a higher level, 
but rather a type of information, which is in line with the 
concept of our taxonomy. Different from the SAT model 
(Chen et  al. 2014) and Lyons’ human-robot transparency 
model (Lyons 2013), the proposed taxonomy is organized 
around solutions, with each category shedding light on a dis-
tinct aspect. This approach strengthens the interconnections 
between the various transparency categories, highlighting 
its hierarchical structure. The operational transparency cat-
egories also exhibit a correspondence with the engineering 
transparency categories, such as Solution to Explored Solu-
tions, Purpose/Intent to Cost Function/Values, Expected 
Outcomes to Computational Process.

3  Transparency design in UTM

As UTM encompasses a wide range of services (FAA 2022; 
SESAR 2023), this research mainly centers on tactical UTM 
operations in CTR around airports, in particular Rotterdam 
The Hague Airport. A web-based simulator DroneCTR1 has 
been developed and improved as a test bed (Janisch et al. 
2022, 2024). The envisioned operational concept is similar 
to Dynamic Airspace Reconfiguration (DAR) (Janisch et al. 
2023; Teutsch and Petersen 2024). It assumes that CTR is 
assigned to UTM for navigating drones by default and oper-
ators can use geofences to block portions of the UTM air-
space as required. As previous studies suggested a dedicated 
role for UTM supervision (Janisch et al. 2023, 2024), it also 
assumes that operators can only control drones rather than 
crewed aircraft. A centralized time-optimal path-planning 
algorithm is responsible for drone (re)routing to prevent 
entry into geofences and avoid conflicts with crewed air-
craft. Therefore, this research is to reveal information about 

1  Demo: http://dronectr.tudelft.nl/, ID: demo.

(real-time) information about system status, goals, activi-
ties, and environmental impacts, directly supporting opera-
tional users in maintaining situation awareness, making 
informed decisions, and responding effectively to evolving 
conditions. Engineering transparency, in contrast, discloses 
system internal mechanisms, such as reasoning, explora-
tion, evaluation, and decision-making processes, enabling 
users to develop a deeper understanding of system behav-
ior. When operational transparency is sufficiently provided, 
operational users may have less need for engineering trans-
parency (Papadopoulos et al. 2024). This is because opera-
tional transparency equips users with the information they 
need to monitor and manage tasks effectively, reducing the 
necessity to understand the underlying engineering details. 
However, when unexpected events occur, such as automa-
tion failures, engineering transparency may become essen-
tial to help users identify the underlying causes and alleviate 
the stress associated with confusion. Domain transparency, 
as a shared foundation in the middle, serves to connect the 
operational and engineering transparency. By clarifying the 
boundaries of feasible solutions, domain transparency helps 
users understand why the proposed solution (operational) 
and the exploration process (engineering) are both con-
strained within a certain range.

The transparency taxonomy comprises seven categories, 
ranging from functional purpose and operational impact to 
operational boundaries and inner physical structure. This 
type of organization is inspired by Rasmussen’s Abstraction 
Hierarchy (AH) used in CWA and EID (Rasmussen 1985; 
Rasmussen and Vicente 1989; Vicente and Rasmussen 
1992; Vicente 1999). The AH is structured based on typi-
cal human top-down, problem-solving strategies, starting at 
the desired system output (= functional purpose) and pro-
gressively descending towards the physical components of 
a system. As suggested by Springer and Whittaker (Springer 
and Whittaker 2020), progressive disclosure may be needed 
for algorithmic transparency. In the proposed taxonomy, 
the transparency categories are organized hierarchically. 
From the Solution category to the Computational Process 
category, deeper algorithmic information is progressively 
revealed.

The Solution category emphasizes that the algorithm’s 
solutions should be clearly presented to users. For exam-
ple, a path plan may include a sequence of actions, and 
users should be informed of when and where each action 
will take place. The Purpose/Intent category aims to reveal 
the algorithm’s objective. This type of information will be 
complex if the algorithm has multiple objectives with vary-
ing weights. The Expected Outcomes help users assess the 
quality of the solution and decide whether to accept it or 
not. This decision depends not only on algorithm optimiza-
tions but also on user preferences. The Domain Constraints 
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A path is essentially built from a sequence of states and 
actions. To gain a deeper understanding of the proposed path 
(solution), the estimated states and planned actions should 
be clearly revealed (e.g., where certain heading/altitude 
changes will take place). The Purpose/Intent category can 
be presented by text-based explanations (Cha et  al. 2019; 
Westin et al. 2022). In this case, the path generated by the 
UTM system aims to be time-optimal and conflict-free. For 
the Expected Outcomes category, two different “what-if” 
situations are considered: what if the drone continues fol-
lowing the old path, and what if it flies along the proposed 
(new) path. To observe the outcomes of the paths, four 
metrics were proposed referring to other research (Hurter 
et al. 2022; Papadopoulos et al. 2024): predicted location of 
separation loss (and predicted location of CPA), predicted 
start time of separation loss (and predicted time to CPA), 
predicted minimum separation and predicted probability of 
separation loss. Regarding the Domain Constraints, a range 
of restrictions linked to drone endurance and no-fly zones, 
such as drone maneuvering space and flight mission bound-
ary, were presented (Janisch et al. 2022; van Paassen et al. 
2018). The wind field was also incorporated since drones 
are susceptible to wind (Alharbi et al. 2022).

In terms of engineering transparency, the domain con-
straints, such as the maneuvering space, limit the search 
space of path planning, explaining why the system only 
searches within a certain range (Koerkamp et  al. 2019). 
For the Explored Solutions category, three elements were 
proposed with reference to existing pathfinding visualizers 
(Sturtevant 2023; Xu 2023; Toma et al. 2021; Zheng et al. 
2024): search graphs, explored nodes and search trees. These 
three elements can also be simultaneously showcased to con-
vey information that is more meaningful and integrated. The 
cost function/value is somewhat similar to the expected out-
comes, with both utilizing specific metrics for computation. 
However, the cost function represents the goals of the sys-
tem, while the outcomes are future projections of the solu-
tion. The cost function in this study optimizes only a subset 
of factors, such as flight efficiency (time-optimal), without 
considering environmental uncertainty (e.g., optimizing for 
robustness). The Computational Process category reveals 
the algorithm’s dynamic search process (can be achieved 
through animation (Tversky et  al. 2002; Urquiza-Fuentes 
and Velázquez-Iturbide 2009; Aysolmaz and Reijers 2021)), 
providing more details about the algorithm’s expansion of 
search nodes and search trees.

3.2  Visual prototypes

The corresponding visual prototypes for the proposed trans-
parency elements have also been developed, as shown in 
Figs. 3, 4 and 5. The proposed (new) path is a solid yellow 

the UTM conflict-free routing service and the inner work-
ings of the path-planning algorithm.

3.1  Transparency elements

Following the transparency taxonomy outlined in Fig. 2, a 
total of 20 transparency elements have been proposed for 
assisting the supervision of the automated UTM conflict-
free routing service, as shown in Table 1. Like the proposed 
taxonomy, the transparency elements are primarily based 
on established design practices from previous studies, high-
lighting that our work complements rather than replaces 
them.

In terms of operational transparency, the Solution cat-
egory contains two elements: the old path and the proposed 
(new) path (Papadopoulos et  al. 2024; van Marwijk et  al. 
2011; Klomp et al. 2019). The old path is the path the drone 
followed before rerouting, which hints at why the drone 
needed to reroute in the first place (e.g., due to a conflict). 

Table 1  Proposed transparency elements
Transparency category Transparency element
Solution The proposed (new) path and old path

Estimated state and planned action 
(e.g., heading change) at each waypoint

Purpose/Intent The underlying goals and intentions 
of the system (e.g., minimizing flown 
track miles)

Expected outcomes If the drone follows the old path
Predicted location of separation loss
Predicted start time of separation loss
Predicted minimum separation
Predicted probability of separation loss
If the drone follows the proposed (new) 
path
Predicted location of CPA 
Predicted time to CPA Predicted mini-
mum separation
Predicted probability of separation loss

Domain constraints Safe separation standards between 
aircraft
Maneuvering space: the flight range 
governed by battery power and envi-
ronmental conditions
Flight mission boundary: certain drones 
can only fly within a pre-approved area
Wind field: wind speed and direction

Explored solutions Search graph: a search graph is how 
automation discretizes a continuous 
space, and the generated path can only 
follow the edges of the graph
Explored nodes: explored potential 
waypoints
Search trees: explored potential paths

Cost function/values The cost values of the explored poten-
tial paths given the system’s goals and 
intentions

Computational process Search process: a dynamic process that 
indicates how to generate the path
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conflict situation (old path): the red area indicates the pre-
dicted location of separation loss. More information about 
the conflict can be displayed, including estimated start time 
of separation loss (ET), estimated minimum separation dis-
tance (ES) and estimated probability of separation loss (EP). 
The other one is for the normal situation (new path): the 
amber crosses indicate the predicted locations of CPA. The 
predicted time to CPA (CPA Time), predicted distance at 
CPA (CPA Dist) and predicted probability of separation loss 
(LOS Prob) can also be accessed via the crosses.

line that the drone will follow, while the old path is drawn as 
a dashed yellow line that can be hidden if desired. The way-
points of the proposed path are presented as green dots and 
more details regarding the waypoints can be accessed, such 
as waiting (loitering) time, speed/heading/altitude change 
and remaining battery. The destination of the drone is also 
represented as a dot, containing information about the goals 
and intentions of the drone (path-planning algorithm).

For the Expected Outcome category, the proposed met-
rics can be collectively showcased, allowing us to depict 
the expected outcomes with only two images. One is for the 
Fig. 3  Prototypes showcasing the 
proposed transparency elements 
(Part 1)
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space are presented in the figure: the dark yellow indicates 
the proposed route and the bright yellow denotes the direct 
route. The mission boundary is designed as an air corri-
dor in this case and the drone can only fly within this area. 
Wind field information can not only be shown by speed and 
directional values, but also in the form of animated particles 
and/or colored arrows. Different colors indicate different 
wind speeds: green denotes winds that have relatively little 
impact on drones while red represents strong winds that 
could cause drones to drift.

For the domain constraints, the safe separation is repre-
sented by a yellow circle around crewed aircraft. It means 
that if a drone flies into this circle, there will be a loss of 
separation. Combined with the route, a green air corridor 
for crewed aircraft can be presented. The drone maneuver-
ing space is a visual representation of the drone’s range 
governed by battery power and environmental conditions 
such as wind. Generally, a narrow maneuvering space cor-
responds to low excess battery power and/or increased 
headwind conditions. Two different types of maneuvering 

Fig. 4  Prototypes showcasing the 
proposed transparency elements 
(Part 2)
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4  User study methodology

4.1  Overview

Based on the proposed transparency elements and visual 
prototypes, a questionnaire was designed to investigate the 
transparency needs of operators for supervising the UTM 
system. The overall goal of this survey study is to validate 
the content and structure of the proposed transparency tax-
onomy in the tactical UTM context. If all the devised ele-
ments are deemed valuable for UTM supervision, then every 
category in the taxonomy is indispensable. The survey study 
also examines how operators categorize these transparency 
elements, exploring whether three distinct types of transpar-
ency emerge from operators’ viewpoints.

At the start of the questionnaire, participants were given 
a detailed explanation of the background and a hypothetical 
operational concept, recognizing that they may have differ-
ent visions of future UTM operations. Some personal infor-
mation was then collected to aid data analysis. This study 
was approved by the Human Research Ethics Committee 
(HREC) under number 3374.

Given the primary focus of this study on UTM in CTR, 
Rotterdam-The Hague Airport was selected as a use case. 

A grid-based time-optimal path-planning algorithm (Zou 
and Borst 2024) is implemented for the UTM conflict-free 
routing service. Therefore, the search graph in this case is 
a grid bounded by the search space, which is determined 
by the drone maneuvering space and, if applicable, the mis-
sion boundary. The explored nodes are the green cells that 
are potential waypoints explored by the algorithm while 
the search tree represents all potential paths that have been 
explored. The “heuristic” (direct) lines between the branch 
ends and the destination node have been hidden to avoid 
visual clutter. Please note that the potential paths explored 
by the algorithm are just promising to be time-optimal and 
conflict-free (the purpose of the algorithm). During the 
search process, the algorithm produces (many) intermedi-
ate results that failed to be the final solution, because they 
are not optimal and/or are unsafe. The cost value of a node, 
representing the cost of an explored path passing through 
it, can be retrieved. The search process is a dynamic pro-
cess that indicates how the search tree is composed and how 
the final path was found. Similar to Sturtevant (2023); Xu 
(2023); Toma et al. (2021), the dynamic search process can 
be demonstrated through (fast-time) animation.

Fig. 5  Prototypes showcasing the 
proposed transparency elements 
(Part 3)
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To enhance the authenticity of the scenarios, descrip-
tive text for the three operational scenarios was also pro-
vided before the rating began. For the simple and failure 
scenarios, “a medical drone needs to pass through an area 
near the runway to deliver emergency supplies between 
two hospitals (from Rotterdam to Delft) as quickly and as 
safe as possible, but a crewed aircraft is about to land. The 
automated UTM conflict detection service has detected a 
potential separation problem (= conflict) between these two 
aircraft”. For the complex scenario, “when more drones 
need to cross the area covering the extended runway center-
line, the conflict scenario may become more complex. Such 
increased complexity may have an impact on your transpar-
ency needs in the light of ‘information overload’. Note that 
the UTM system in this investigation only deals with sepa-
ration conflicts between crewed and uncrewed aircraft. The 

The potential drone applications in the airport’s vicinity, 
such as railway and highway inspection and medical deliv-
ery, are illustrated in Fig. 6a. Three distinct hypothetical 
scenarios, as depicted in Fig. 6b–d, were presented to stimu-
late participants’ thoughts: a simple scenario encompassing 
only a single drone, a failure scenario entailing an automa-
tion failure case and a complex scenario involving multiple 
drones with diverse missions and types. For the simple and 
failure scenarios, a trajectory-contrastive question and a 
failure question (Miller 2019; Brandao et  al. 2021) were 
provided for further inspiration: (1) why path A rather than 
path B, and (2) why the system fails. For the complex sce-
nario, time pressure issues may be more salient (Hurter 
et al. 2022) and the usefulness of transparency information 
for supervision might be different.

Fig. 6  Schematic diagrams for operational scenarios
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perspective, specifically whether there are indeed three dis-
tinct types of transparency. Considering that each partici-
pant may have their own groups of transparency elements, 
we employ a weighted adjacency matrix to summarize their 
preferences. The weight here refers to the number of times 
two elements are divided into the same group. Then, based 
on this adjacency matrix, a weighted graph can be con-
structed to visually depict the interconnections among vari-
ous transparency elements. Finally, to group these elements 
(i.e., the vertices of the weighted graph), the Walktrap com-
munity detection algorithm (Pons and Latapy 2005) will be 
applied, as illustrated in Fig. 8.

In the second phase, the visual prototypes for the pro-
posed transparency elements were presented and then 
5-point Likert scale questions were provided to inquire the 
usefulness of the prototypes for understanding and supervi-
sion in the simple and complex scenarios again. To restrict 
the questionnaire length, we presented participants only 
with examples that successfully generate paths, as shown in 
Figs. 3, 4 and 5, and thus the failure scenario was omitted in 
the second phase. Previous studies indicated that user pref-
erences on transparency may change after actual experience 
with it Springer and Whittaker (2020); Hurter et al. (2022). 
This phase allows us to assess whether participants altered 
their perspectives after viewing our prototypes.

collision avoidance among drones is assumed to be achieved 
by ‘sense and avoid’ systems onboard drones. Therefore, 
the automated conflict detection & resolution services for 
drones only regard crewed aircraft as dynamic obstacles”.

4.2  Questionnaire structure

There were two main phases in the questionnaire, as shown 
in Fig. 7. In the first phase, the proposed 20 candidate trans-
parency elements derived from the unified taxonomy were 
presented as response options, with their order being ran-
domized. Participants were asked to rate the elements using 
a 5-point Likert scale according to their perceived useful-
ness for understanding and supervising the automated UTM 
conflict-free routing service. Open-ended questions were 
also present to inquire the reasoning behind their ratings. 
To obtain the original opinions of participants and prevent 
any potential bias in their results, the visual prototypes were 
deliberately withheld from participants in the first phase.

Then, the questionnaire investigates how participants 
proposed to group transparency elements that belonged 
together in their opinions. This could offer valuable insights 
into what transparency categories or elements should be 
connected and/or presented together in practice. The groups 
identified by operators could also help validate whether the 
proposed unified taxonomy is reasonable from the operators’ 

Fig. 7  The structure of the 
questionnaire
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be different (Westin et al. 2022; Arrieta et al. 2020; Langer 
et al. 2021).

Twenty four operators from Europe and China volun-
teered to participate in this survey of which twelve were 
licensed ATCos (e.g., Rotterdam and Shanghai controllers) 
and twelve were drone experts (e.g., drone engineers from 
TU Delft and drone pilots from companies). Their experi-
ence in ATC and drone operations is summarized in Fig. 9. 
One participant who serves as both an ATCo and a drone 
expert was classified as an ATCo in this survey.

5  User study results

5.1  General opinions on transparency

Figure 10 presents the general opinions of participants on 
transparency after filling out the questionnaire. Most partici-
pants believed that transparency plays an important role in 
supervising the UTM system and will significantly influence 
their level of acceptance and trust. One ATCo held the view 
that transparency would not affect acceptance at all, because 
his/her main concern was about the number of aircraft in 
flight. One drone expert believed that transparency would 
have a slight impact on trust, because he/she would trust the 
UTM system overall once it is fully operational. The addi-
tional workload that transparency could bring is considered 

When to present each prototype was also investigated 
after then. For example, operators could enable the UTM 
system to automatically determine the timing of informa-
tion presentation (adaptive). Alternatively, operators could 
manually show or hide the elements by clicking on relevant 
buttons (adaptable). After rating the transparency elements 
and prototypes, participants were asked to select and rank 
their preferred types of interactions with the UTM system. 
Finally, the questionnaire ended with some general ques-
tions on transparent UTM systems in terms of importance, 
additional workload and acceptance concerns.

4.3  Participants

Previous research indicated that UTM supervision may not 
be appropriate for ATCos to perform besides their regular 
ATC tasks and a dedicated UTM supervisor may be required 
(Janisch et al. 2023, 2024). As the role of UTM supervisors 
differs from ATC such as tower control, they are not required 
to undergo the same training and licensing as ATCos. 
Instead, they could be someone more familiar with drone 
operations, like drone pilots or drone engineers. Therefore, 
we invited both ATCos and drone experts to participate in 
our user study. The results could offer a more comprehen-
sive insight into the transparency needs of operational users. 
Additionally, given the diverse professional backgrounds of 
ATCos and drone experts, their transparency needs may also 

Fig. 10  General opinions on transparency

 

Fig. 9  Participants’ experience 
in air traffic control and drone 
operations

 

Fig. 8  Data processing of the 
grouped transparency elements
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Compared to operational transparency, engineering 
transparency is considered less useful in the tactical UTM 
operations, as expressed by an ATCo: “I need it to tell me 
why it gives this route and the disadvantage of this route. I 
don’t think how it finds this route is useful”. Drone experts 
had similar views: “I would be most interested in knowing 
when, where and how the conflict might occur from the sys-
tem’s point of view ... I need to access objective metrics from 
which I can verify the soundness of the proposals. I do not 
want to be bothered by the inner workings of the system (e.g. 
how the search is conducted) since I feel it may lead to an 
information overload.” These arguments are consistent with 
the SESAR projects reviewed in this paper, which focuses 
on the goals and intentions of systems and the expected out-
comes of solutions. Additionally, a drone expert remarked: 
“It has to be simple during actual operations ... the opera-
tional environment might be over-engineered - these items 
should be more of things to revisit in hindsight”. Interest-
ingly, we did not mention the concepts of operational and 
engineering transparency in the questionnaire, but judging 
from the results, participants seemed to distinguish between 
them very well.

The operational transparency encompasses two distinct 
categories of expected outcomes: one pertaining to the 
proposed (new) path and the other to the old path. A drone 
expert suggested that “a really simple table was needed to 
compare the main elements of two paths”. This comment 
shares similarities with the TAPAS project which also uti-
lizes tables to present various metrics. The expected out-
comes of the old path are also considered relatively less 
useful. One expressed it as follows: “I think the old path 
is not necessary for avoidance. The current states of both 
manned and unmanned aircraft and their predicted paths 
are more important”. Another drone expert also remarked: 
“The predicted states based on the proposed path matters 
more than the old path”. This is probably because the pro-
posed path is more relevant to the current situation.

As for the domain constraints, although a drone expert 
pointed out that “Large wind or stormy weather will cre-
ate critical situations for aircraft, especially drones”, the 
wind field is generally considered least useless compared 
to other constraints. A possible reason is that the wind field 
only presents basic environmental information, which is not 
directly associated with the goals of operators. It might be 
more effective to introduce no-fly zones determined by wind 
conditions, taking into account both wind speed and drone 
performance. In other words, presenting wind information 
in terms of how it impacts drones is considered more useful 
than simply presenting the wind condition itself.

For a clearer comparison, average ratings for operational 
and engineering transparency in different scenarios are com-
puted, as shown in Fig. 13. Based on the average ratings of 

to be relatively manageable. Over half of the participants 
thought that the additional workload would not be very 
high. This result should be interpreted with care, because 
this study did not feature a real-time, interactive human-in-
the-loop simulation with dynamic traffic situations. As such, 
conclusions about transparency-induced workload warrants 
further research.

5.2  Preferred transparency information

5.2.1  Data analysis and statistics

By converting the Likert scale ratings into numerical values, 
we could perform statistical analysis to assess the impact 
of different factors on operators’ transparency needs. Wil-
coxon Signed-Rank tests were conducted for an overall 
comparison of operational and engineering transparency. 
The matched-pairs rank biserial correlation coefficient rc 
(King et al. 2018) was then calculated to measure the effect 
size for Wilcoxon Signed-Rank tests (small ≥ 0.1, medium 
≥ 0.3, large ≥ 0.5). Friedman tests were performed to fur-
ther analyze the differences in operational and engineering 
transparency among various scenarios, followed by Exact 
tests (Eisinga et al. 2017) with the Bonferroni correction for 
pairwise comparisons. Kendall’s coefficient of concordance 
w was used to measure the effect size for Friedman tests 
(small ≥ 0.1, medium ≥ 0.3, large ≥ 0.5). To compare the 
differences between ATCos and drone experts, Mann-Whit-
ney U tests were conducted. The effect size r was calculated 
for Mann–Whitney U tests (small ≥ 0.1, medium ≥ 0.3, 
large ≥ 0.5), which is defined by the standardized test sta-
tistic z from the tests divided by the square root of the total 
number of observations. The significance level was set to 
0.05. As the effect size reflects the magnitude of the differ-
ence between groups (Sullivan and Feinn 2012), it is ideal 
to have both a statistically significant result (p < 0.05) and a 
large effect size to claim a clear and meaningful difference. 
A low effect size suggests that the statistical significance 
should be interpreted with caution.

5.2.2  Comparison of operational and engineering 
transparency

The Likert scale ratings for the proposed transparency ele-
ments and the visual prototypes are shown in Figs. 11 and 
12. The failure scenario was not included in the second 
rating phase with the visual prototypes and the reason has 
already been mentioned in the previous section. Generally, 
all proposed elements were considered valuable for super-
vising the UTM system, although some of them may have 
limited utility in some scenarios.
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the system’s internal process to figure out what happened 
inside the system. The information concerning constraints 
could be particularly helpful: “If there’s no good solution, 
this should come from some limitations from the dynam-
ics of drones”. “The waypoints, maneuvering space, and 
boundaries are the key to finding the desired path”. Actu-
ally, some participants indicated, “that everything allow-
ing to understand why the system fails is useful”. However, 
it is worth noting that the occurrence of failure scenarios 
should be minimized as much as possible. Robustness was 
repeatedly mentioned as one of the crucial factors influenc-
ing their acceptance of a highly automated UTM system. 

the two phases, Wilcoxon Signed-Rank tests revealed signif-
icant differences between operational and engineering trans-
parency in both ATCo (V = 74, p < 0.01, rc = 0.897) and 
drone expert (V = 63, p < 0.01, rc = 0.909) groups.

5.2.3  Preferences in different scenarios

Figures 11, 12 and 13 also indicate that differences exist not 
only between the types of transparency but also among the 
scenarios. In the failure scenario, engineering transparency 
is deemed more useful compared to other scenarios. This 
is probably because operators need more information about 

Fig. 11  Likert scale ratings for the proposed transparency elements. The red dashed lines denote the operational, domain and engineering transpar-
ency categories. The transparency elements from the “Solution” category are absent in the failure scenario because there is no solution in this case
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Fig. 12  Likert scale ratings for the visual prototypes
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and a preference for maintaining a clean interface. The posi-
tive change for ATCos may stem from their experience with 
ATC interfaces. They may believe that more supportive 
information is required in complex scenarios and that the 
visual prototypes can be integrated into a single interface for 
support without excessive visual overlap.

5.2.5  Comparison of ATCos and drone experts

Generally, the needs for different types of transparency 
were found to be similar between ATCos and drone experts. 
Mann–Whitney U tests did not reveal any significant differ-
ence between the two operator groups. However, as evident 
from Figs. 11 and 12, some minor distinctions still exist on 
specific elements. Among the four metrics indicating the 
expected outcomes, the probability of separation loss is 
found to be favorable by drone experts: “I may pay more 
attention to ... the predicted probability of separation loss.” 
The probability would indicate the uncertainties of the sys-
tem. If the system’s confidence in resolving the conflict is 
not high enough, operators may be required to intervene 
in the system. However, as one ATCo stated, “ATC does 
not control considering probability”. Also, another ATCo 
expressed: “To some extent, probability may not represent 
its level of danger very well. If I realized the separation was 
not enough, I thought my priority was to increase the sepa-
ration to prevent it, not just to compare the probability”. 
In fact, the automated UTM conflict-free routing service 
should be robust enough to reduce the probability of separa-
tion loss to “zero” in most cases. When the probability is 
not zero, the system should provide some additional expla-
nations to indicate its limitations. For example, changes in 
wind conditions could lead to variations in flight duration, 
thereby increasing the probability of separation loss and 
triggering new conflicts. Furthermore, ATCos also empha-
size the transparency information regarding predicted loca-
tions of separation loss and CPA and predicted minimum 
separation. As mentioned by an ATCo, “Two elements are of 
utmost importance: which location will the separation loss 
be and to which location does it shift when a new route is 
proposed.” This preference can be clearly observed in the 
complex scenario (see Fig. 11).

As shown in Figs 13 and 14, there is a notable discrep-
ancy in the variance of ratings between ATCos and drone 
experts. It appears that ATCos tend to be more forthright 
and confident, often expressing their views at either end 
of Likert scales. There also seems to be a disagreement 
among ATCos, resulting in the increased variance. This 
phenomenon mainly exists within the tower and area con-
troller groups. In contrast, drone experts tend to hold more 
conservative views, leaning toward the neutral side. There 
appears to be more consensus among drone experts. Since 

One participant stated, “If there is no feasible path, it should 
never cross a route with manned traffic”. In the complex 
scenario, engineering transparency is considered even less 
useful, because “too much information could overwhelm 
operators.” One respondent suggested that “it is more 
important to only look at the conclusive information”. The 
transparency information indirectly related to safety and 
situations should probably be hidden in the first place.

To further confirm these differences, a statistical anal-
ysis was performed based on Fig. 13. For the ratings 
with only textual description, Friedman tests revealed 
significant differences among conditions (Three Sce-
narios × Two Transparency Types) in the ATCo group 
(χ2(5) = 23.002, p < 0.01, w = 0.383), but no such dif-
ferences were observed in the drone expert group. For 
the ATCo group, pairwise comparisons with the Bon-
ferroni correction further revealed that the “Complex-
Engineering” condition was significantly different from 
the “Simple-Operational” (D = 33.5, p < 0.01), “Fail-
ure-Operational” (D = 35.0, p < 0.01) and “Failure-
Engineering” (D = 30.5, p < 0.01) conditions. For the 
ratings with visual prototypes, Friedman tests revealed 
significant differences among conditions in both ATCo 
(χ2(3) = 9.083, p = 0.028, w = 0.252) and drone expert 
(χ2(3) = 19.817, p < 0.01, w = 0.550) groups. However, 
pairwise comparisons did not confirm significant differ-
ences in the ATCo group between conditions. It can also be 
observed in Fig. 13 that the data spread in the ATCo group is 
relatively large. For the drone expert group, pairwise compar-
isons with the Bonferroni correction further revealed that the 
“Complex-Engineering” condition was significantly differ-
ent from the “Simple-Operational” (D = 24, p < 0.01) and 
“Complex-Operational” (D = 18, p = 0.027) conditions.

5.2.4  Preferences with visual prototypes

To further explore whether participants’ preferences 
changed after viewing the visual prototypes, Fig. 14 pres-
ents the relationships between the average ratings for 
the two rating phases. Overall, participants’ preferences 
remained relatively consistent, suggesting that the visual 
prototypes in the second phase aligned with their expec-
tations formed through the textual descriptions in the first 
phase. However, there are still some notable changes. After 
viewing the visual prototypes, ATCos found the transpar-
ency information less beneficial in simple scenarios than 
previously thought (negative change), but more beneficial 
in complex scenarios (positive change). In contrast, drone 
experts regarded the transparency information as less use-
ful in both simple and complex scenarios than initially 
expected (negative changes). The negative changes for par-
ticipants are likely driven by concerns about visual clutter 
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identical. The sole distinction lies in how the safe separation 
standard is allocated: for ATCos, it is associated with the 
expected outcomes (red group) whereas for drone experts, it 
is linked to domain constraints and solutions (purple group). 
This is possibly because the goal of ATCos is to ensure that 
the outcomes meet the established separation standards. The 
safe separation can be regarded as a baseline or minimum 
requirement for the outcomes, which is very often presented 
in ATC decision-support tools.

In summary, the groups classified by operators can be 
labeled as follows: Expected Outcomes (red), Solution & 
Solution Space (purple) and Internal Process (green). This 
can be viewed as a more condensed variant of our proposed 
taxonomy. In the green group, the goals and intentions are 
closely connected to the cost values since cost functions 
should typically be designed in accordance with goals. The 
correlations among the proposed transparency elements can 
provide guidance and reference for further devising trans-
parency levels and models, as they illustrate which elements 

the sample size is not large, more data would be needed to 
substantiate this observation.

Additionally, ATCos expressed a greater preference for 
engineering transparency elements than drone experts in 
complex scenarios after viewing the visual prototypes (see 
Figs. 12 and 13). One possible reason is that ATCos gener-
ally take a more critical view of automation (Westin et al. 
2015) and thus may seek as much information as possible to 
audit it. In comparison, drone experts, being more familiar 
with automation, may be more biased to accept and trust 
UTM (as noted by one drone expert shown in Sect. 5.1), and 
thus may require less engineering transparency information.

5.3  Transparency element grouping

Based on the weighted adjacency matrix and the Walktrap 
community detection algorithm, the correlations between 
the proposed transparency elements are computed, as shown 
in Fig. 15. Both ATCos and drone experts categorize these 
elements into three groups, with their results being nearly 

Fig. 14  The relationships between 
the average ratings for the two 
phases: one with only textual 
descriptions and the other with 
visual prototypes. Confidence 
ellipses (95%) are presented per 
transparency type, with black dots 
indicating their centers
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associated with each aircraft, including radar labels, speed 
vector lines and history dots. In contrast, for drone experts, 
they may rely more on automation to assist in planning 
trajectories and avoiding obstacles. More than 25% of the 
ATCos opted to never present the inner workings of the 
algorithm, likely to maintain a clean interface, which is in 
line with their ratings on the transparency elements (See 
Figs. 11 and 12). Conversely, drone experts prefer retaining 
the option to access more additional information.

With transparency information, operators may be able to 
understand the current system state and maintain situation 
awareness. However, they also need to know what actions 
they can take if something goes wrong; otherwise, human 
supervision of the system would be pointless. Sometimes, 
the generated path may not align with operators’ expecta-
tions or preferences on how to resolve conflicts. The UTM 
system should incorporate interaction methods that allow 
operators to intervene when required or desired. Therefore, 
during the user study, in addition to rating the elements, we 
also asked participants to select and rank different interac-
tion methods with UTM. The results are presented in Fig. 
17. Interestingly, according to the Rank 1, more than 50% 
of the ATCos and drone experts prefer active control over 
drones instead of passive control (geofence activation) or 
mixed control (waypoint constraints on algorithms). This 
observation is in line with previous human-in-the-loop 
experiments in dynamic UTM scenarios (Janisch et  al. 
2022, 2023, 2024). As the scenario becomes more complex, 
ATCos tend to prefer passive control to protect crewed air-
craft from drones whereas drone experts favor active con-
trol to navigate drones manually. This is probably because 
of their different professional backgrounds and experiences 
with drone operations. Drone experts may be more confi-
dent in taking control of drones to address issues, whereas 
ATCos prioritize maintaining the safety of crewed aircraft 
by clearing their paths of any obstacles.

6  Discussion

6.1  Trade-off between operational and engineering 
transparency

The results of the user study revealed that operational trans-
parency is more useful than engineering transparency for 
tactical UTM operations, as recognized by both ATCo and 
drone expert groups. This finding aligns with the previous 
transparency research in ATM (Hurter et  al. 2022; Westin 
et al. 2022; Papadopoulos et al. 2024). For example, TAPAS 
(Papadopoulos et al. 2024) also introduced the concept of 
operational transparency in their research, defining it as the 
provision of operational information driving decisions with 

operators prefer to see concurrently for understanding and 
supervision.

5.4  Interaction and intervention

Figure 16 depicts the trigger conditions preferred by opera-
tors for the transparency elements. Overall, there is no uni-
versally agreed-upon trigger condition for each transparency 
element. The operators have their individual preferences for 
determining when to present the transparency information. 
It seems that ATCos generally prefer to click on (or hover 
over) aircraft, while drone experts tend to favor global or 
automatic activation on demand. This is probably due to 
their different experiences with ATC and drone operations. 
For ATCos, they are more accustomed to interacting with 
radar screens where information and actions are typically 

Fig. 15  The correlations between the proposed transparency elements. 
The vertex size corresponds to the average rating
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Fig. 17  Ranks of interaction methods with the UTM system

 

Fig. 16  Trigger conditions of the visual prototypes
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path”, allowing operators to understand how the new path 
deviates from the original plan. For a point-to-point flying 
drone, its original plan represents a direct path from its cur-
rent location to its destination. Highlighting the expected 
outcomes of this direct path not only explains why the drone 
had to reroute but also indicates when it can resume direct, 
point-to-point flight. Thus, this information element could 
more effectively reflect the current situation. Additionally, 
for consistency, using a cross symbol similar to those mark-
ing the expected outcomes of the new path may be better 
than red grid cells for indicating the expected outcomes of 
the direct path or original plan. The red grid cells rely on the 
shape of geofences, making them applicable only within the 
concept of Dynamic Airspace Reconfiguration (DAR). In 
contrast, the cross symbol is independent of geofences and 
can be applied to a broader range of operational concepts.

Since most engineering transparency elements were 
deemed relatively less useful in nominal scenarios, we 
could simplify or condense them further to enhance their 
usability. For example, the search graph can be omitted for 
grid-based path-planning algorithms to reduce visual clut-
ter. The explored nodes and search trees can be combined to 
indicate the space explored by the algorithm. As shown in 
Fig. 5, the cost values have already been embedded within 
the explored nodes. In this way, we only need two transpar-
ency elements to reveal the inner workings of a path-plan-
ning algorithm: Explored Space and Search Process. The 
explored space represents the final results of the algorithm’s 
exploration, while the search process illustrates the step-by-
step details of how the exploration unfolds. They represent 
two distinct presentation styles for opening the “black box”: 
a static image and a dynamic animation.

6.3  Integration of transparency into UTM systems

This research aligns with the U-space Concept of Opera-
tions (ConOps) (SESAR 2023), which mandates a collab-
orative interface with ATC to support human operators in 
managing drone traffic within controlled airspace. Several 
corresponding interface prototypes have been developed in 
previous studies (Janisch et al. 2022, 2023, 2024; Teutsch 
and Petersen 2024), with one of them created by our team 
(Janisch et al. 2022, 2024) shown in Fig. 18. On the left side 
of the display is a selection panel where users can activate 
various options to display different information layers on 
the main radar screen. Our proposed transparency elements 
can be integrated as additional options within this selection 
panel. As discussed in Sect. 6.2, the transparency elements 
can be further condensed, thereby limiting the number 
of options. Otherwise, presenting too many options may 
overwhelm users. The operational transparency elements 
can also be considered as contributing to the provision of 

respect to operators’ pragmatics constraints. They believed 
that providing information that maintains operators’ situa-
tion awareness is sufficient to develop trust in AI, even in 
high-stakes fields like ATC.

This conclusion appears to contradict the prevailing per-
spective in XAI research that aims to open “black boxes” 
(engineering transparency) to increase human understand-
ing, trust and acceptance of AI-based systems (Gunning and 
Aha 2019; Arrieta et al. 2020). However, actually, there is 
no contradiction between them. As indicated by Springer 
and Whittaker (2020) and Kizilcec (2016), trust is affected 
by expectation violation. For ATM and UTM, operators’ 
expectations are to ensure safe and efficient operations. As 
long as the system’s proposed solution can meet this goal, 
operators will probably accept and trust it. In this case, oper-
ational transparency is to help operators evaluate the pro-
posed solution within a specific context (Simon et al. 2024) 
and thereby maintain their situation awareness. There is 
almost no need for operators to access engineering transpar-
ency in normal scenarios, especially when operators have 
extensive operational experience like ATCos (Papadopou-
los et al. 2024). Operators’ transparency needs may dimin-
ish over time as they become increasingly familiar with the 
automated system.

However, as our study suggests, in the case of automa-
tion failure, operators tend to want more engineering trans-
parency to understand what happened deeper inside the 
system. This is precisely because of expectation violation. 
The automated system did not work as expected, resulting 
in a reduced trust and an increased demand for explanations 
and engineering transparency (Sreedharan et  al. 2021). 
Therefore, to effectively address all possible situations, both 
operational and engineering transparency is important. Cer-
tainly, it does not mean that we need to present all infor-
mation simultaneously. To avoid overwhelming operators, 
transparency should be provided on demand (Springer and 
Whittaker 2020).

6.2  Potential improvements to transparency design 
in UTM

In Sect. 3, we devised twenty transparency elements and 
fourteen corresponding visual prototypes. Based on the 
results of the user study, we could further improve the trans-
parency design in UTM.

In operational transparency, some operators considered 
the old path relatively less important, possibly because 
drones may frequently adjust their paths in dynamic envi-
ronments, causing the old path to change often as well. 
Focusing on the old path may provide limited value for mon-
itoring the current situation and system state. Therefore, it 
may be better to present the drone’s original plan as the “old 
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(GPS), onboard sensors, and external surveillance systems. 
It is also imperative to maintain low latency and support 
timely updates to the user interface.

6.4  Training needs for UTM supervision

As noted by both ATCos and drone experts, when scenarios 
become more complex (e.g., increased number of drones), 
they are concerned about the risk of information overload, 
thereby preferring less information. However, such traf-
fic complexity also heightens the risk of conflicts between 
drones and crewed aircraft. Operators may in fact need 
greater transparency to support their supervision in complex 
scenarios. Moreover, when automation fails, which is often 
an urgent situation, ATCos and drone experts express a pref-
erence for access to nearly all available information. In such 
cases, the risk of information overload may be even more 
pronounced. Therefore, future UTM supervisors should be 
able to quickly identify the most relevant information in 
various situations. Appropriate training is required to ensure 
that they are familiar with how to effectively utilize trans-
parency information to learn more about the nature of the 
supervisory control task and the system that needs to be 
monitored.

Our proposed transparency taxonomy could serve as a 
reference for training practices that rely on providing infor-
mation “scaffolds” to guide the learning process in a phased 
manner, such as the Four-Component Instructional Design 
(4C/ID) model (Van Merriënboer and Kester 2005; Van Mer-
riënboer 2019). The hierarchical structure of the proposed 
transparency taxonomy seems inline with progressively 

certain UTM services, such as intent sharing, conflict alerts 
and weather information. All services can be integrated into 
a single interface, enabling UTM supervisors to share infor-
mation seamlessly with drone operators.

In such a UTM system, a centralized (conflict-free path-
planning) algorithm is expected to control all drones during 
tactical operations, meaning that flight plans are generated 
by the UTM system rather than by individual drones. This 
centralized approach allows both operational and engineer-
ing transparency elements to be computed directly within 
the UTM system, thereby reducing the volume of data that 
needs to be transferred between drones and UTM. If the 
UTM system is decentralized, the role of UTM supervi-
sors may become unnecessary, and drone operators should 
be responsible for the safety of their own flights. An inter-
face similar to Fig. 18, integrated with the transparency 
elements, can be adapted to help drone operators monitor 
whether their drones are maintaining safe separation from 
other aircraft during operations. As long as humans remain 
involved, transparency is essential for effective human-
automation collaboration.

From a technical feasibility standpoint, integrating trans-
parency elements into the UTM interface requires a robust 
backend architecture capable of real-time data processing 
and integration. The centralized conflict-free path-planning 
algorithm operates on a server-side platform, generating 
safe and efficient flight plans under dynamic airspace condi-
tions. These flight plans should then be transmitted to the 
drones securely and reliably. To ensure accurate drone posi-
tioning, the system needs to continuously aggregate data 
from diverse sources, including Global Positioning System 

Fig. 18  UTM interface prototype DroneCTR1 developed by Janisch et al. (2024)
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understanding (of the algorithm and context) to reduce their 
reliance on transparency mechanisms.

6.5  Extensions to machine learning methods

The engineering transparency categories in the unified tax-
onomy were largely derived from both literature and our 
experience with “traditional” planning algorithms such as 
graph-based and sampling-based algorithms. We chose tra-
ditional path planning, rather than machine learning-based 
path planning, for UTM routing because the operational 
UTM environment within controlled airspace is assumed to 
be fully known (similar to current ATC), and the future tra-
jectories of all flights are generally predictable, making the 
traditional approach particularly suitable in this case. Tra-
ditional path planning can be a feasible and practical solu-
tion to UTM in the near future due to its solid mathematical 
foundations and theoretical guarantees. This “traditional” 
field also continues to evolve, with algorithms becoming 
increasingly faster and optimal (Shen et al. 2022; Zou and 
Borst 2024).

However, owing to the substantial potential offered by 
machine learning, future research could further explore 
how to extend this taxonomy to include machine learn-
ing methods as well, addressing transparency for training 
data, training algorithms and trained models (Arrieta et al. 
2020). Figure 19 presents a possible extension of the pro-
posed transparency taxonomy to incorporate machine learn-
ing algorithms. Since operational transparency primarily 
concerns the proposed solution and its interaction with the 
external environment, the distinction between heuristic/opti-
mization algorithms and machine learning algorithms lies in 

providing deeper (algorithmic) information, ranging from 
easily-interpretable operational parameters to more com-
plex engineering parameters. For example, due to the large 
speed difference between drones and crewed aircraft, it may 
be difficult for inexperienced people to predict their Clos-
est Point of Approach (CPA). In this case, the CPA-related 
transparency elements can offer valuable support. On the 
one hand, they can help operators learn how to predict CPA 
more accurately. On the other hand, they reassure opera-
tors that this information can be relied upon when they feel 
uncertain about their own predictions. Engineering trans-
parency further helps operators understand an algorithm’s 
capabilities and limitations, fostering well-calibrated trust, 
preventing over-reliance, and promoting learning—poten-
tially reducing the need for transparency over time.

The hierarchical structure of the proposed taxonomy may 
also serve as procedural information to some extent, guid-
ing operators through a step-by-step process for diagnosing 
issues such as automation failures. For instance, when UTM 
rerouting fails, the expected outcomes of the old path may 
help operators understand the initial cause, such as to avoid 
a conflict with a newly incoming crewed aircraft (a new 
constraint appears). Then, operators could further inspect 
the domain constraints, since the failure may have been 
caused by some other factors such as limited remaining bat-
tery or a strong headwind. Finally, they could examine the 
algorithm’s inner workings to gain deeper insights. The grid 
size may be too large to find a feasible path, or the search 
tree may be overly constrained, preventing the drone from 
flying around certain obstacles. After repeated execution of 
this step-by-step process, operators could acquire sufficient 

Fig. 19  Extended transparency tax-
onomy including machine learning 
algorithms
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transparency, which involves dynamically tailoring trans-
parency information based on automation-driven assess-
ments of users’ context, workload, and task demands (Lim 
et al. 2021). Adaptive transparency is particularly useful in 
urgent situations, such as conflicts or emergencies, where it 
helps ensure that critical information is delivered promptly 
without overwhelming users. Future research could explore 
how to achieve adaptive transparency in UTM.

7  Conclusion

This research introduces a unified taxonomy for algorithmic 
transparency, integrating established user-, ecology-, and 
model-centered perspectives to achieve operational, domain, 
and engineering transparency. Based on the taxonomy, 
twenty transparency elements and fourteen corresponding 
visual prototypes were designed to support the supervision 
of tactical UTM operations within CTR around airports. A 
survey-based user study was then conducted to investigate 
the needs and preferences of ATCos and drone experts on 
these elements in different scenarios. The results suggest 
that transparency is a dynamic construct that depends on 
situational demands and operator background. In nominal 
UTM scenarios, operational transparency is deemed more 
useful than engineering transparency. In the case of automa-
tion failure, operators tend to seek more engineering trans-
parency to understand what happened deeper inside the 
system. Our proposed unified transparency taxonomy offers 
the flexibility to accommodate these varying transparency 
needs across various scenarios. As scenarios become more 
complex, the issue of information overload may intensify. 
To mitigate this issue, appropriate training may be neces-
sary for UTM supervisors to effectively access and inter-
pret transparency information in different situations. The 
grouping results of the transparency elements validated the 
structure of the proposed taxonomy. As demonstrated in 

(internal) engineering transparency. Each type of engineer-
ing transparency in machine learning algorithms has a direct 
counterpart in heuristic/optimization algorithms. Explana-
tions for trained models or policies in machine learning are 
also associated with XAI. Further research is required to 
validate and refine this extended transparency taxonomy.

The extended taxonomy can also inform the design of 
transparency elements for machine learning methods. For 
instance, visualizing the policy in reinforcement learning 
can offer deeper insights into the AI decision-making strat-
egy (Groot et al. 2023). Revealing the training process/data 
can assist policymakers in identifying bias in learning-based 
AI models (Obermeyer et al. 2019). Figure 20 illustrates an 
example of visualizing the initial and final policies in rein-
forcement learning based on vector fields (Ren et al. 2022). 
The training process can be interpreted as a convergence of 
the policy from an initial random state to a final optimized 
state.

6.6  Limitations and future research

In this research, we conducted the user study only via a 
questionnaire. Participants did not experience the actual 
functioning of transparency in (simulated) UTM opera-
tions, and thus their ratings were mainly based on their prior 
experience and expectations. The responses to the question-
naire can only provide subjective measurements that may 
be biased due to the small sample size. To address these 
limitations, our future research will involve human-in-the-
loop experiments in dynamic scenarios to further explore 
the practical usage of different transparency elements. Dur-
ing the second rating phase, participants were only required 
to rate elements in normal scenarios and the failure scenario 
may warrant further exploration.

As shown in Fig. 16, some operators preferred certain 
transparency elements to be activated automatically based on 
situations. This preference reflects the concept of adaptive 

Fig. 20  Vector field-based visual-
ization for reinforcement learning 
policies
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