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Abstract. In this work we present and solve a class of non–Newtonian viscoelastic
fluid flow problems. Models for non-Newtonian fluids can be classified into three large
groups depending on the type of the constitutive relation used: algebraic, differential and
integral. The first type of models are most simple one, the last are the most physically
adequate ones. Here we consider some models from the first and the third groups, and
present robust and efficient algorithms for their solution. We present new mathematical
model, which belongs to the class of generalized Newtonian models and is able to account
for the anisotropy of the viscosity tensor observed in many real liquids. In particular, we
discuss a unified model that captures both shear thinning and extensional thickening for
complex flows. The resulting large variations of the viscosity tensor in space and time are
leading to a strong numerical coupling of the momentum equations due to the appearance
of mixed derivatives in the discretization. To treat this strong coupling appropriately,
we present two modifications of classical projection methods (like e.g. SIMPLE). In the
first modification all momentum equations are solved coupled (i.e. mixed derivative are
discretized implicitly) but still iterations are performed between the momentum equations
and the continuity equation. The second one is a fully coupled method, where momentum
and continuity equation are solved together using a proper preconditioner. The models
involving integral constitutive relation which accounts for the history of deformations,
result in a system of integro-differential equations. To solve it, we suggest a proper splitting
scheme, which treats the integral and the differential parts consecutively. Integral Oldroyd
B and Doi Edwards models are used to simulate flows of dilute and concentrated polymer
solutions, respectively.

1 INTRODUCTION

Newtonian liquids are defined by a linear constitutive relation between the strain-
and stress tensor with a scalar and constant viscosity as proportionality factor. In Non-
Newtonian liquids this linear relation is not valid anymore. The form of the constitutive
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relations become material dependent and the dynamics e.g. the strain rate field, temper-
ature and pressure can enter in a much more complicated way. As long as the microscopic
dynamics of the liquid does not interfere with the hydrodynamic time scale the stress
strain relation can still be assumed to be local in time i.e the stress only depends on the
current values of the strain rate tensor and other dynamic quantities. But if the relation
between stress tensor and strain rate tensor becomes nonlinear the local isotropy of the
liquid is very likely to be violated. In fact the most general relation between stress tensor
(σ) and strain rate tensor (γ), which is still local in time is given by

σi,j = ηij,lm(γ)γl,m (1)

Locally axially symmetric liquids in which the axis of symmetry is given by local flow
velocity are considered in this paper. For such liquids the simple Newtonian relation
between stress and strain tensor is generalized to

σij = η(γ̇)(γij − γiiδij) + ηe(ε̇)γiiδij (2)

where ηe and η are extensional and shear viscosities, respectively, depending on the
local averaged shear rate γ̇ and the local extension rate ε̇ to be introduced below. Fluids,
which show decrease of shear viscosity upon increase of shear rate γ̇ are called shear
thinning. If the viscosity increases they are called shear thickening. In analogy liquids
with decreasing or increasing extensional viscosity with increase of extensional strain rate
ε̇ are called extensional- (tension-) thinning or thickening, respectively.

The most common model for pure shear thinning liquids is the Carreau model [17], or
variants of it [9]. All of them are isotropic and therefore inconsistent in the sense that
dependence of the viscosity on shear rate implies by definition, that the property of the
liquid should depend on the direction of shearing.

Viscoelastic fluids, however, consist of both short and long relaxation modes, and
therefore such local stress–strain relation is not valid anymore. In order to calculate stress
tensor at certain particle position, one has to take the full history of the deformations of
this particle into account, not only the one which can be determined from current stress.
In such case, the stress tensor can be written in general integral constitutive equation
formulation as

σ =
∫ t
−∞ µ(t, t′)ft(t′),

where µ(t, t′) is the memory function and ft(t
′) is a model dependent nonlinear strain

measure relative to the current time t. In this paper for simulations of dilute polymer
solutions we use integral Oldroyd B model [15, 17] and for concentrated ones integral Doi
Edwards model [7].

For all models describing generalized Newtonian fluids variations of viscosity results
in strong coupling of the momentum equations through their viscous term. Additionally,
the momentum equations are coupled through the convective term and the pressure. Due
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to varying viscosities, one has to take into account discretization of the mixed derivatives
appearing in the momentum equations. In many commercial solvers those terms are
treated in explicit way, i.e. calculated from the corresponding values computed in the
previous time step and taken as a source term. This may lead to the restriction on
the time step used in simulations due to the stability problems. To avoid it, here the
momentum equations are discretized and treated in coupled manner, i.e. the mixed
derivatives are discretized in implicit way. We also present here two solution techniques
used in simulations of generalized Newtonian fluids, that improve their stability properties,
namely coupled momentum projection method (which is extension of classical projection
methods, like SIMPLE) and fully coupled method. In the latter continuity and momentum
equations are solved simultaneously.

The paper is organized as follows. In Section 2 we present the system of governing
equations that are used in simulations. Next, in Section 3, we describe in more details
solution techniques used in calculations. Further, we present numerical results (Section 4).
First, validation with shear–thinning fluids modeled by Carreau viscosity model is given.
Then, we show results from simulations of anisotropic viscosity fluids described by the
model proposed in this paper. Further, simulation results of polymer solutions described
by integral type constitutive equations are shown. Finally, we discuss performance of
different solution techniques used in simulations of generalized Newtonian fluids.

2 GOVERNING EQUATIONS

The flow of incompressible and isothermal non–Newtonian fluids are governed by con-
tinuity and momentum equations

∇ · v = 0, (3)

ρ
∂v

∂t
+ (ρv · ∇)v = −∇p +∇ · σ, (4)

where v stands for velocity, p denotes pressure, ρ denotes density and σ stands for stress
tensor. In order to close the above system of equations, the latter has to be describe by
a constitutive equation.

2.1 Algebraic constitutive equations

In the class of generalized Newtonian fluids, the stress tensor is related with rate of
deformation tensor γ = (∇v + ∇Tv) by some algebraic formula. Let us first describe
isotropic viscosity model used in this paper. From many isotropic viscosity models, that
are reviewed in [17], we choose a very common one, namely Carreau model. Its viscosity
is expressed as

η(γ̇) = η0(1 + (Cuγ̇)2)
(n−1)

2 , (5)

where shear–rate is defined by γ̇ =
√

1
2

∑
ij γijγji, η0 is the zero shear–rate viscosity and

Cu, n are the parameters to fit experimental data. With the above defined viscosity, the
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stress tensor σ takes the following form

σ = η(γ̇)γ. (6)

This model has showed a good ability in capturing shear–viscosity properties and is still
widely used in commercial softwares.

Over many years isotropic models like Carreau, that can capture shear behavior of
fluids were extensively studied. However, up to the knowledge of the authors there is
still a lack of simple algebraic models being able to deal with the combined effect of
shear–thinning (thickening) and extensional–thickening (thinning). Simple means, that
it should have similar structure as the Carreau model, thus could be considered as its
natural extension. Moreover, this model should be easily applicable for an arbitrary flow
domains. Therefore, such model is proposed in this paper. Let us first define extensional
strain rate as

ε̇ = ~t · γ~t, (7)

where ~t is given by
~t =

v

‖v‖ (8)

and denotes unit vector parallel to the flow direction. The same definition may be found
in [14], where authors discuss how to perform the measurements of elongational viscosity.
Now, having defined extensional strain rate ε̇, one can also use Carreau model to describe
extensional viscosity behavior as

ηe(ε̇) = η0(1 + (Cueε̇)
2)

(ne−1)
2 (9)

with fitting parameters ne, Cue. Next step in modeling is to define the constitutive equa-
tion, which should include both, shear η(γ̇) and extensional ηe(ε̇) viscosities. Therefore,
taking into account the fact, that the diagonal terms of rate of strain tensor γii represent
the rate of elongation of an element of the fluid in respective i− direction, whilst the
off-diagonal terms γij(i 6= j) express deformations of a fluid element (what corresponds
to shearing), the stress tensor will now be defined as

σij = η(γ̇)(γij − δijγii) + ηe(ε̇)δijγii. (10)

Note, that the shear viscosity η enters the off–diagonal terms of the stress, while the
extensional viscosity ηe only the diagonal ones. This simple model includes both shear
and extensional effects, modeled by η(γ̇) and ηe(ε̇) respectively. Therefore, it allows
simulations of shear–thinning and extensional–thickening fluids, for example. Moreover,
it is very easy to add to (5, 9) the viscosity dependence from pressure and temperature,
what may result, for example, in a kind of Cross–WLF model.
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2.2 Integral constitutive equations

Many natural and synthetic fluids are viscoelastic materials, for which the stress of a
fluid particle depends not only on the current flow field, as for Newtonian or generalized
Newtonian fluids, but also on the history of the deformation experienced by that particle,
which can be specified by an integral models. In such case, the stress tensor σ is written
in a following form

σ = η0γ + T, (11)

where η0γ is Newtonian and T is elastic parts of the stress tensor. In this work we apply
our numerical algorithm to two different integral models, the Oldroyd B and the Doi -
Edwards model within the independent alignment approximation. The Oldroyd B model
has a differential form and an equivalent integral form [15]. In the integral formulation
the polymeric stress is expressed as

T =
ηp
λ2

∫ t

−∞
dt′µ(t, t′)B(t, t′), (12)

where λ is the relaxation time, and ηp quantifies the amount of coupling between defor-
mations of the polymer and the flow.

µ(t, t′) = exp

(
−(t− t′)

λ

)
(13)

is again the memory function, and finally

B(t, t′) = E(t, t′) ·ET (t, t′) (14)

is the Finger strain tensor. The differential form of the Oldroyd B can be found e.g. in
[17]. The polymeric stress contribution of the Doi - Edwards model [7] has a similar form
as the Oldroyd B but a more complicated form for the effective strain produced by the
conformations of the polymers.

T = Ge

∫ t

−∞
dt′µ(t, t′)Q(t, t′) (15)

where Ge is the elastic modulus of the entanglement configuration of the polymers and

µ(t, t′) =
1

τd
exp

(
−(t− t′)

τd

)
(16)

is the memory function that weights the contributions of past deformations which influ-
ences the current stress. τd is as usual the effective tube relaxation time. We use different
notation for relaxation times simply to be consistent with cited literature. The orientation
tensor Q takes within the independent alignment approximation the form

Q(t, t′) =

〈
(E(t, t′)u(t′))⊗ (E(t, t′)u(t′))

‖ E(t, t′)u(t′) ‖

〉

0

1

〈‖ E(t, t′)u(t′) ‖〉0
, (17)
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where u are unit vectors representing the orientation of a tube segment, ⊗ stands for
the dyadic product and E(t, t′) is the deformation tensor. The evolution equation for the
deformation tensor appearing in (14,17) is given by [17]

DE(t, t′)

Dt
= (∇v(t))T E(t, t′) (18)

with the initial condition
E(t′, t′) = I, (19)

where I stands for identity matrix. The time derivative on the left-hand side in (18) is the
material derivative, because we consider the deformation of a fluid particle while following
the particle along its trajectory.

3 SOLUTION TECHNIQUES

The governing equations (3, 4) are discretized with use of finite volume method on
collocated grid. The details of the space discretization are not discussed here, interested
readers are referred to [10]. Here we concentrate on different approaches for time dis-
cretization.

3.1 Time splitting for system of integro–differential equations

To simulate the flows of viscoelastic fluids, modeled by the integral–type constitutive
equation one has to solve a strongly coupled system of integro-differential equations. A
decoupling approach, based on fractional time step discretization is used here. However,
work on more advanced coupling and decoupling approaches is a part of future research.
Shortly, the numerical algorithm reads as follows:

Step 1. Solve the continuity (3) and the momentum (4) equations taking the poly-
meric tensor T in (4) as a source term (i.e., from the previous time step calculation).

Step 2. Solve all the equations involved with integral constitutive equation (12,
15) using the velocity values obtained at Step 1.

Projection type, for example SIMPLE-like (see, e.g., [8]), or coupled algorithms are
applied for solving the balance equations at Step 1. In fact, the current algorithm and
software are extension of [10], where solution of the Newtonian flow problems are consid-
ered. The more interesting part of the algorithm is the non-Newtonian part, i.e. Step 2.
To calculate extra stress tensor of the integral–type (12, 15) Deformation Field Method
(DFM) is used at this point of our algorithm. For detailed description of this method
interested reader is referred to [18, 19].
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3.2 Iterative methods for varying viscosity problems

Let us now discuss solution techniques used in the generalized Newtonian flow problems.
Suppose for a moment, that the continuity (3) and the momentum (4) equations are
discretized in space. Denote by BT the discretization of the gradient operator, B the
discretization of the divergence operator, Dv the discretization of the diffusion (viscous)
operator and Cv the discretization of the convection operator. We use superscript n+1

to denote values at the new time level and superscript n to denote the old time values,
τ = tn+1 − tn stands for the time step. With such notations, the system of equations (3,
4), that has to be solved at each time step t = tn+1, may be written in a matrix form as

(
A BT

B 0

)(
v
p

)
=

(
f
0

)
, (20)

where f = ρvn

τ
, A = ( ρ

τ
I+Cv−Dv) and I stands for identity operator. Let us first discuss

projection type methods. Instead of solving simultaneously the velocity an pressure com-
ponents, the coupled problem (20) is divided into simpler equations of the Poisson and
the convection-diffusion type. Projection–type methods, using the formalism of Turek
[21], can be written as follows. First, momentum equations (4) are solved using pressure
field known from the previous time iteration, what can be written as

v∗ = A−1(f −BT pi). (21)

Then, one solves pressure correction equation, derived with use of the continuity equation
(3), i.e.

Mδpi = −Bv∗, (22)

where v∗ denotes solution of equation (21) for given pi. M should be spectrally close to
BA−1BT and the usual choice of it is

M = BH−1BT , (23)

where H is a diagonal matrix. Many possible choices were proposed, like H = diag{A},
which results in well known SIMPLE scheme. Modifications, like H = diag(part{A}),
give different versions of the original SIMPLE algorithm (fractional time step projection
method). After solving equation (22) new pressure field is calculated through its correction
δpi, i.e. pi+1 = pi + δpi. However, velocity v∗ will not in general satisfy incompressibility
constraint. Therefore, some correction has to be introduced to project it out on divergence
free space. It is realized by taking

vi+1 = v∗ +H−1BT δpi. (24)

Note, that contrary to Newtonian fluids, due to the varying viscosity in generalized New-
tonian ones, matrix A has a full block representation of the form (2D description for
simplicity)

A =

(
A11 A12

A21 A22

)
, (25)
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where off–diagonal blocks Aij, i 6= j correspond to mixed derivatives appearing in mo-
mentum equations (4). In many commercial solvers they are discretized in explicit way
and taken as a source term. However, space dependent viscosities bring additional cou-
pling of the governing equations. Now, in addition to the coupling of the continuity (3)
with the momentum (4) equations, and the coupling of the latter through the convective
term, equations (4) are strongly coupled through their viscous term. Modification of the
standard projection type methods, like SIMPLE, is done at point (21). The momen-
tum equations are solved coupled, i.e. mixed derivatives are treated in implicit way. It
is preferable for us due to stability reasons in simulations of the generalized Newtonian
fluids with varying viscosity.

An alternative approach to the segregated solvers is the fully coupled solvers, where
system (20) is solved at once. To speed up calculations, it is supplemented with a proper
preconditioning technique. In general (see [5]) applying a preconditioned iterative method
for solving a system of equations is equivalent to applying a non–preconditioned method
for solving the transformed system. Several preconditioners for (20) are carefully analyzed
in [4]. In [9], another approach is used, where different preconditioners are applied to first
transformed system (20). In simulations presented here, we have used such approach,
however for detailed description the interested reader is referred to [9].

4 NUMERICAL RESULTS

There is much interest in understanding the flow of viscoelastic fluids. Different effects,
like shear and elongational rate dependent viscosities, elasticity of the fluid, etc., influence
the flow. We study these effects individually, in order to better understand each of them.
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Figure 1: The effect of varying Cu number on the calculated centerline velocity for n=0.2, Carreau model
(left plot). The effect of varying n number on the calculated centerline velocity for Cu=100, Carreau
model (right plot).

4.1 Varying viscosity models

To investigate the interaction of shear-thinning, similarly as in [12], the Carreau model
parameters Cu and n will be varied. The result will be discussed in terms of the centerline
velocity profile and the upstream vortex size. As a test geometry we use 4:1 planar
contraction domain. To exclude the inertial effects we choose the flow with Reynolds
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number Re = 10−2 defined as Re = ρŪL
η0

, where ρ = 1[ g
cm3 ] stands for fluid density, L

is the width of the upstream channel, η0 = 100[Pas] is a zero–shear viscosity and Ū is
average upstream channel velocity. Note, that for shear–thinning fluids local Reynolds
numbers can be higher, especially near to the walls where higher shear–rates occur and
decrease local viscosities even couple of order of magnitude. First, we examine the changes
of the centerline velocity profiles for high shear–thinning fluid (n = 0.2) when changing
Cu number. Results are presented in left plot of Figure 1. For Cu = 0.01 the axial
velocity attain almost the same maximum as in Newtonian case (Cu = 0). This should
be expected, since for such low Carreau number the shear–rate required for an onset
of shear–thinning is almost not present. Carreau fluid, however, exhibits less steep axial
velocity profile compared with the Newtonian one. Further increase of Carreau Cu number
results in decrease of centerline velocity profiles. At Cu = 100, the flow is dominated by
the power-law region of the viscosity function, and further increase of Cu number does
not change the velocity profile. Next, decrease of power-law index n at constant Cu
has quantitatively the same effect as increasing Cu at constant n. It is shown in right
plot of Figure 1. The reason for such behavior is that both combinations lead to more
shear–thinning. Another well known fact is that shear–thinning decreases the sizes of the
upstream vortices compared to the Newtonian fluids of the same zero–shear rate viscosity.
The more shear–thinning the fluid is, the smaller vortices it exhibits [12]. The effect of
shear thinning can be weakened by increase of extensional stress. This was shown in
an experimental study of polymer melts [23, 24]. Although in this paper the origin of
the increasing extensional stress is the increasing elasticity of the investigated fluid and
thus different from the mechanisms captured in our model, similar arguments apply. In
both cases vortex growth is caused by increasing extensional stresses in the entry region.

Figure 2: 3D planar contraction geometry. Streamline plots, Newtonian fluid (left figure) and extensional–
thickening fluid (right figure).

Vortices are formed as a stress relief mechanism. Only materials with an extensional
viscosity that increases with extensional rate exhibit vortex enhancement, whereas no,
or only small, vortices are present for the materials where extensional viscosity decreases
or remains constant with elongational rate. To validate the performance of the model
(10) and being able to distinguish between shear and extensional properties of the fluid,
we choose shear–thinning and extensional–thickening liquid with the fluid parameters:
Cu = 1, n = 0.8, Cue = 1, ne = 2 and zero-shear viscosity η0 = 10[Pas]. As a test
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Figure 3: 3D planar contraction geometry. Extensional viscosity (left figure) and shear viscosity (right
figure).

geometries, we choose after Evans and Walters [13] 7:1 planar contraction and 7:1 square–
to–square contraction domains. As it was discussed, shear–thinning itself decreases the
vortices for higher flow rates. However, adding extensional–thickening into the model
changes this situation. For both geometries considered here (see Figures 2, 4) we observe
clear vortex activity. Moreover, experimentalists have examined the effect of geometry

Figure 4: 3D square–to–square contraction geometry. Streamline plots, Newtonian fluid (left figure) and
extensional–thickening fluid (right figure).

Figure 5: 3D square–to–square contraction geometry. Extensional viscosity (left figure) and shear viscos-
ity (right figure).

on the formation of vortices. The most common test problems considered in the literature
are planar and axisymmetric entry flows. For the Newtonian fluids the results show little,
or no vortices at the corners for both cases. The observations show, that vortices in planar
contraction, if appear, are much smaller than in axisymmetric domain. Similar situation
happens in square–to–square geometry, which resembles axisymmetric one. In Figure 2
streamlines plots in 3D planar contraction of the Newtonian (left plot) and the generalized

10



D.Niedziela, O.Iliev and A.Latz

Newtonian (right plot) fluids, at the same flow rate, are given. For the Newtonian fluid no
vortices are noticeable, whereas for the latter one, that exhibits both shear–thinning and
extensional–thickening, the vortices are clearly visible. The streamlines plots for the same
test fluid in square–to–square geometry is shown in Figure 4. Again, the Newtonian fluids
exhibit no vortices, contrary to the generalized Newtonian one. Moreover, the vortices are
much larger comparing with 3D planar contraction case, what is in a very good qualitative
agreement with experiments. Such behavior is correlated with much higher growth of the
extensional stress in 3D square–to–square contraction, what is shown in Figures 3 and 5,
where extensional ηe(ε̇) and shear η(γ̇) viscosities are given. Moreover, for constant ηe(ε̇),
or extensional–thinning fluids no growth of the vortices was detected. Above results may
indicate the statement made by White and Kondo in [24], that only materials with clearly
strong increasing of the elongational viscosities as a function of extensional rate exhibit
vortices.

4.2 Integral models

Let us first present simulation results of dilute polymer solution modeled by integral
Oldroyd B model. Numerical computations are performed on regular Cartesian grid in
4:1 2D planar contraction domain. We use the same space grid steps in all coordinates
directions. In all simulation, the time step used is τ = 5 ·10−3. The calculations have been
performed for a range of Weissenberg numbers, which is defined as We = λ · Ū

L
, where λ

is the relaxation time, Ū is the mean outflow velocity and L is the outflow channel width.
We perform comparison with the simulations obtained in [1, 2, 3, 16, 20], where equivalent
differential Oldroyd B model is used. In this case, we keep Re number constant and the
change of the We number is due to the change of the relaxation time λ. To quantify
the size of the vortices we use the reattachement length Lv. Let us present quantitative
comparison with the results obtained by differential counterpart. We compare our work
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Figure 6: Reattachement lengths against We numbers (left figure). Reattachement lengths against We
numbers for high We numbers (right figure).

with the results presented in [1, 2, 3, 16, 20]. To be consistent with those findings we have
chosen the following fluid parameters: ρ = 1[ g

cm3 ], ηs = 1[Pa s] and ηp = 8[Pa s]. Time
discretization of the integral constitutive equation is performed via Deformation Field
Method. The simulations are performed for constant Re = 10−3. We change We number
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by changing relaxation time λ. We observe decrease in the reattachement lengths as We
is increased, what is consistent with [1, 2, 3, 16, 20]. Results for the vortex behavior are
presented in Figure 6. The left figure shows comparison of the vortex behavior with the
previously published values for low Weissenberg numbers. As it was pointed out in [3],
there is dispersion in these results, however our findings fall in the range of listed data.
In right plot of Figure 6 we show comparison of the reattachement lengths with [16] for
high Weissenberg numbers. The reattachement lengths are a bit lower in our simulations,
however for We = 18 results coincide. We would like to point out, that we have no
problems with performing calculation for high We numbers.

Let us now present results obtained form simulations of concentrated polymer solu-
tions. Two nearly monodisperse solutions, with an experimental data available in [6, 11]
and [22], are taken into considerations. The extra stress tensor is modeled by the most
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Figure 7: Rheological results for polystyrene solution. Left figure presents comparison of N1 = Txx−Tyy
between the experimental data (black triangles) given in [6] and calculated results (blue circle) against

shear–rate γ̇. Right figure presents comparison of the shear viscosity, defined as η( ˙γxy) =
Txy

˙γxy
, against

shear–rate ˙γxy between experimental measurements and calculated results.

successful tube model described by the time integral constitutive equation (15) intro-
duced by Doi and Edwards (in 1986). Results are evaluated in rheometrical flow. It
is well known, that viscoelastic fluids, contrary to the Newtonian one, exhibit non zero
first normal stress difference N1 = Txx − Tyy in steady state–state shear flows. In [6],
Bhattacharjee et al. have published experimental data in both shear and extension for
a 10% solution of a 3.9 · 106 molecular weight polystyrene in diethyl phthalate. In ad-
dition, they have derived the values for the Doi Edwards model parameters, which are:
ρ = 1[ g

cm3 ], Ge = 3083[Pa], τd = 8.61[s] and η0 = 4570[Pa s]. For a numerical comparison
of simulation results and rheological data of the first normal stress difference N1, as well
as the shear viscosity defined as η(γ̇xy) = Txy

˙γxy
, we choose the plane Couette flow. There-

fore, as a test geometry the channel with upper wall moving at a constant velocity and
static lower wall is taken. At the inflow linear velocity profile, known analytically form
the Newtonian Couette flows, is imposed. At the outflow zero Neumann condition for
velocities is satisfied. Note, that in these comparison equations (3), (4) supplemented by
model (15) are solved, and the simulations are performed till the steady state is reached.
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For the comparison, similarly as in [6], the modulus Ge is scaled in such a way, that the
zero–shear viscosity of the model coincides with the zero–shear viscosity of the data, i.e.
η0 = 4570[Pa s]. In Figure 7 comparison between experimental measurements and the
values obtained from the simulations, sampled at the middle point of the channel, and
thus being at less influenced by the boundaries, are shown. Left plot shows comparison
of the first normal stress difference N1 = Txx − Tyy. At regimes, where γ̇ < 1 simulation
results show very good agreement with experimental observations. For higher shear–rates
regimes, however, the original Doi Edwards model (15) gives lower predictions than ex-
perimental values. The same observations are showed in [6, 22], where authors have used
differential approximation to the Doi Edwards integral model. Right plot from Figure 7
presents comparison of the shear viscosity sampled experimentally and calculated through
the formula η(γ̇xy) = Txy

˙γxy
. Again, very good quantitative agreement with experiment is

achieved.

4.3 Performance of different solution techniques

Let us finally present results from comparison of the performance of three solution
algorithms: SIMPLE–like projection method (where mixed derivatives are treated in ex-
plicit way), coupled momentum projection method (where mixed derivatives are treated
in implicit way) and fully coupled method, in terms of stability of calculations that could
be achieved. For that, the following numerical experiment was performed. An unsteady
problem, starting simulations from the liquid being at rest and calculating till reaching
the steady state, is solved. Three fluids with different viscosity properties, namely shear–
thinning (with fluid parameters Cu = 1.0, n = 0.2), shear–thinning and extensional–

η0 1 10 50 100 500 1000 2500 5000 7500
SIMPLE
like Con. Con. Div. Div. Div. Div. Div. Div. Div.
Coupled
momentum Con. Con. Con. Con. Con. Con. Con. Con. Con.
Fully
coupled Con. Con. Con. Con. Con. Con. Con. Con. Con.

Table 1: Stability performance of three different solution techniques for shear–thinning fluid, modeled by
the Carreau constitutive equation (6), with the fluid parameters Cus = 1.0, ns = 0.4.

thickening (Cu = 1.0, n = 0.2, Cue = 1.0, ne = 0.4), and finally shear–thickening and
extensional–thinning (Cu = 1.0, n = 1.1, Cue = 1.0, ne = 0.4), were selected. The sim-
ulations were performed in planar 4:1 contraction domain with the time step τ = 10−3.
The only parameter that was varied was the zero shear–rate viscosity η0. In all the cases
the flow was such, that the mean velocity in the smaller outflow channel Ū = 10[ cm

s
]

(if the steady state was reached). In Tables 1, 2, 3 the simulations result of the listed
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above fluids are presented, where we indicate for which zero shear–rate viscosity η0 the
corresponding solution techniques converged (denoted by Con.) and gave steady state
solution, or diverged (denoted by Div.) and no solution was obtained. In all the cases, as
expected, the most stable behavior was obtained by the coupled momentum projection
method and the fully coupled method. For all range of the zero shear–rate viscosities,
that has been taken into considerations, stable steady–state solutions were reached. The

η0 1 10 50 100 500 1000 2500 5000 7500
SIMPLE
like Con. Con. Con. Con. Con. Con. Con. Con. Con.
Coupled
momentum Con. Con. Con. Con. Con. Con. Con. Con. Con.
Fully
coupled Con. Con. Con. Con. Con. Con. Con. Con. Con.

Table 2: Stability performance of three different solution techniques for shear–thinning and extensional–
thickening fluid, modeled by the extension of the Carreau constitutive equation (10), with the fluid
parameters Cus = 1.0, ns = 0.4, Cue = 1.0, ne = 1.1.

η0 1 10 50 100 500 1000 2500 5000 7500
SIMPLE
like Con. Div. Div. Div. Div. Div. Div. Div. Div.
Coupled
momentum Con. Con. Con. Con. Con. Con. Con. Con. Con.
Fully
coupled Con. Con. Con. Con. Con. Con. Con. Con. Con.

Table 3: Stability performance of three different solution techniques for shear–thickening and extensional–
thinning fluid, modeled by the extension of the Carreau constitutive equation (10), with the fluid param-
eters Cus = 1.0, ns = 1.1, Cue = 1.0, ne = 0.4.

least stable was the SIMPLE–like solution algorithm. As expected, explicit discretization
of the mixed derivatives has led to stability problems. The stable simulations could be
obtained for all considered η0 only in the case of the shear–thinning and extensional–
thickening fluid. However, for shear–thinning fluid (Table 1), and for shear–thickening
and extensional–thinning one (Table 3), stable calculations were obtained up to η0 = 10
and η0 = 1, respectively. This can be explained from the fact, that for the first fluid
the extensional viscosities that enter diagonal blocks of the viscous operator ηe ≥ η0

(since the fluid is extensional–thickening) and the shear viscosities ηs ≤ η0 enter the off–
diagonal ones. This results in stronger block diagonal dominance of the viscous operator,
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which is not the case for the last two remaining fluids. We have also observed, that for
large viscosities (η0 ≥ 5000) the convergence rate of the projection type methods (if they
have converged) was very poor, and high number of the non–linear iterations had to be
performed in order to get satisfactory result. It was not the case for the fully coupled
method.

5 CONCLUSIONS

In this paper, we have proposed new anisotropic viscosity model being able to deal
with shear and extensional properties of viscoelastic fluids. It has shown very good agree-
ment with experimental observations in various contraction flows. Moreover, we have
presented simulation results of dilute and concentrated polymer solutions described by
integral Oldroyd B and integral Doi Edwards models respectively. Simulations show very
good agreement with experimental observations (Doi Edwards model), as well as with
the results obtained by differential counterpart (Oldroyd B model). It is also shown
here, that careful treatment of mixed derivatives from momentum equations is essential
in performing stable simulations of generalized Newtonian fluids.
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