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A B S T R A C T

The concept of intrinsic vulnerability of a traffic network is defined for the first time in this paper.
Intrinsic vulnerability is the susceptibility to incidents characterised by a probability of occur-
rence in space and time of difficult estimation, which can result in considerable reduction or loss
of the system functionality. Given the nature of this type of vulnerability, its assessment might
arise as a major problem. Therefore, this paper investigates the assessment of the intrinsic vul-
nerability of a traffic network through a set of quantifiable indicators, i.e., accessibility and re-
liability. Moreover, it is of interest to determine whether the selected indicators are sufficient to
assess the intrinsic vulnerability or if there is any significant missing aspect to be considered. A
new methodology based on structured elicitation of multivariate uncertainty from experts is
presented to address these issues, allowing the estimation of the intrinsic vulnerability and its
probabilistic relationship with the indicators accessibility and reliability. Although applied to the
case of the metric intrinsic vulnerability, the proposed methodology emerges as an effective tool
to understand other traffic descriptors of difficult evaluation such as resilience.

1. Introduction

The main function of a traffic network is to enable economic and social activity in a community. However, this functionality is
threatened by hazardous events whose probability of occurrence can be estimated with some confidence, e.g. floods and earthquakes,
and other type of incidents characterised by a probability of occurrence in space and time of difficult estimation, such as vehicle
breakdowns and terrorist attacks, which are more challenging for the decision makers. Accordingly, the new concept intrinsic vul-
nerability of a traffic (sub-) network can be defined as the susceptibility to incidents characterised by a probability of occurrence in
space and time of difficult estimation, which can result in considerable reduction or loss of its functionality. Given the nature of this
type of vulnerability, its assessment is not straightforward. For that reason, the paper proposes to evaluate it through other quan-
tifiable indicators, such as accessibility and reliability. In the case these indicators, when combined, represent a large portion of the
intrinsic vulnerability, they can be used as a unified framework to assess the intrinsic vulnerability of a traffic network.

Descriptors such as intrinsic vulnerability or resilience that is used to describe the system capacity to absorb and recover from an
internal or external shock, are usually adopted to encapsulate the characteristics or capabilities of a traffic network. Because of the
complexity of these descriptors, they are usually estimated either through indices that rely on subjective assessments (e.g., pre-
paredness) or by indicators (e.g., redundancy) that quantify system attributes that are assumed to be related to the descriptor (Vugrin
et al., 2014; Nogal and O’Connor, 2017). Fig. 1 depicts the idea behind the assessment of a traffic network descriptor (e.g., intrinsic
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vulnerability) through indicators.
The estimation of descriptors through indicators presents some operational issues, that is, (i) there is not a clear agreement about

the most important indicators to be considered in the assessment, or even their relation with the descriptors; and (ii) some of the
indicators exhibit a clear overlapping between them. In this context, a methodology is required to objectively identify the most
relevant indicators related to each descriptor, and to quantify the relation descriptor-indicator and the extent of the redundant
information provided by the indicators.

To address this problem, expert judgement for uncertainty quantification in proposed. One of the advantages of doing so is that it
permits the assessment of uncertainty regarding variables that could be difficult to obtain otherwise, for example because experi-
ments are too costly or data are unavailable. The type of vulnerability studied in this paper is related to incidents whose probability of
occurrence in space and time are of difficult estimation. Thus, this methodology is proposed in order to determine the feasibility of
assessing the intrinsic vulnerability of a traffic network. It is noted that various mathematical models for handing uncertainty and
partial information exist, beyond the frequency-based approaches. With the aim of increasing their acknowledgement, Corotis (2015)
proposes an interesting overview of these methods, highlighting that the integration of these approaches in the decision-making
process will result in a deeper knowledge of the increasingly complex reality addressed by engineers.

Random variables are also often correlated, for this reason in addition to uncertainty quantification, expert judgement techniques

Nomenclature

b scale factor
dCale calibration measure for elicitation of statistical

dependence associated with expert e
fi

e density of sample distribution provided by expert e
for the quantity i

gi background probability density for the quantity i
n number of nodes (random variables) of a Bayesian

network
ri j, Spearman rank correlation coefficient for two

random variables Xi and Xj
ri j k, | conditional rank correlation of Xi and Xj given Xk
tij actual travel time experienced by users travelling

from origin i to the destination j
tij

0 travel time experienced by users travelling from
origin i to the destination j in free-flow conditions

wi
e weight associated with expert e and quantity i

Aij accessibility associated with the origin–destination
pair ij

Aij
s contribution of service s to accessibility associated

to the origin–destination pair ij
C bivariate Gaussian copula
CSe calibration score associated with expert e
D total demand of a traffic network
Dij

s demand associated with service s, departing from
node i and reaching the closest service when tra-
velling from i to j

DMi Decision Maker associated with quantity i
I (·) relative information or entropy
ISe information score associated with expert e
FX cumulative distribution function associated with

the random variable X
Rij reliability associated with the origin–destination

pair ij
Vij intrinsic vulnerability associated with the origi-

n–destination pair ij
X set of nodes (random variables) of a Bayesian

network
subset of origin–destination pairs of nodes
directed acyclic graph
set of nodes of a traffic network
set of conditional probability densities
scale factor

i j, product moment correlation for two random vari-
ables Xi and Xj

1 inverse of the univariate standard normal dis-
tribution
bivariate standard normal cumulative distribution
with product moment correlation

i set of parents of node Xi in a Bayesian network
e correlation matrix elicited from expert e
s calibration matrix associated with the seed vari-

ables

Fig. 1. Representation of the assessment of a traffic network descriptor (e.g., intrinsic vulnerability) based on a number of indicators, such as
accessibility and reliability.
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for dependence modelling are used to establish to what extent common indicators of the traffic network performance explain the
intrinsic vulnerability. Within the list of quantifiable indicators potentially related to intrinsic vulnerability, in this paper accessibility
and reliability are investigated. A justification of this selection is given in Section 2.4.

Based on the elicitation of multivariate uncertainty from experts, this paper aims to answer the following relevant questions; (a)
can intrinsic vulnerability be assessed? (b) what does intrinsic vulnerability depend on? (c) can any mathematically-quantifiable
indicator(s) be used as a systematic framework to evaluate it?

The study is conducted through the analysis of the National Road network of Ireland, that is, an inter-urban traffic network,
without signalised intersections, under a non-congested scenario.

The paper is organized as follows; Section 2 introduces the concepts of vulnerability, accessibility and reliability, and their
relationship according to the literature; a brief revision of the structured expert judgement is given in Section 3, along with the
methodological framework proposed; Section 4 presents the analysis of the specific case of the Irish traffic network, whose findings
are discussed in Section 5. Finally, in Section 6 some conclusions are drawn.

2. Relations between descriptors and indicators

This section reviews the definitions of vulnerability, accessibility, and reliability. The last two have been selected as potential
indicators to assess intrinsic vulnerability. The operational definitions used in this paper for intrinsic vulnerability, accessibility, and
reliability are also presented. Once these concepts have been stated, Section 2.4 justifies the selection of the two potential indicators
to evaluate intrinsic vulnerability.

2.1. Vulnerability

According to Berdica (2002), vulnerability is the susceptibility to incidents that can result in considerable reductions in road
network serviceability. Therefore, vulnerability is a measure of the ability of transportation networks to provide a service and meet its
intended functions under a wide range of environmental conditions (Taylor, 2017). Existing interpretations of vulnerability include
aspects such as change in welfare for passengers (Cats and Jenelius, 2012), remoteness in rural areas (Susilawati and Taylor, 2007),
and loss of accessibility, serviceability and reliability (Nicholson et al., 2003; Snelder et al., 2012).

Regarding the operational approaches to assess vulnerability, some authors, such as Berdica (2002), Berche et al. (2009) and
Jenelius (2010), state that traffic vulnerability depends on the scenario affecting the traffic network, and can be assessed by analysing
the system response to the disruption. This implies an assumption of the location, the intensity and the duration of different ha-
zardous events (Cho et al., 2001; Nogal et al., 2016; Nogal et al., 2017). Nevertheless, other authors (D’Este and Taylor, 2001; Taylor
et al., 2006) agree that the concept of vulnerability is related to the consequences of failure, irrespective of the probability of failure.
Thus, vulnerability is obtained through the system response when a partial or complete failure is given in a specific link, independent
of the cause of the failure (Tampère et al., 2008; Kuang et al., 2013). In the case that intrinsic vulnerability is to be assessed, the
drawback of the scenario-specific approach is that covering the full range of possible combinations location/intensity/duration
becomes an impossible task. On the other hand, as noted by El-Rashidy and Grant-Muller (2014), most of the research on vulner-
ability measures and methodologies have focused on assessing the impact, rather than focusing on the link characteristics that lead to
vulnerability. Indeed, this is the case of the second approach, which focuses on the consequences and the identification of the links in
a traffic network that can potentially cause most disruption if affected (Schmöcker and Fonzone, 2015), which can be understood as a
study of the criticality of the links.

Embracing the idea of a vulnerability measure independent from the concept of criticality, intrinsic vulnerability of a traffic
network is formally introduced as follows; Considering a connected traffic network with set of nodes and some Origin–Destination
(OD) pairs of nodes, i j i j{ , } , , where is a subset of x , and an incident in a random location of the network (not
necessary between the OD pair ij), an OD pair ij with a null intrinsic vulnerability, =V 0ij , implies either that no user driving from i to j
is affected by the incident, or the level of service experienced by users driving from i to j is not reduced as a consequence of the
incident. An OD pair ij is completely vulnerable, =V 1ij , when the OD pair ij loses completely its functionality as a consequence of the
incident.

2.2. Accessibility

According to D’Este and Taylor (2001), accessibility is the ease for participation in activities from different specific locations using
a transport system. Accessibility is a measure of the actual effort in terms of distance, time or cost, required to connect inhabitants
with services and facilities. Therefore, it will depend on the existing physical connections as well as the efficiency of those con-
nections. For instance, the congestion level of a given route will reduce its efficiency and therefore, the accessibility of the points
connected by the route. In addition, the number of inhabitants affected or potentially affected by the targeted connection is often
considered when evaluating accessibility (e.g., Van Wee et al. (2001, 2006)). Two type of accessibility measures exist, namely, the
relative and the integral accessibility. The former focuses on a given type of service and analyse the distance, time or cost required to
reach it from a given location of the transport system, whereas the latter refers to several services within a given area, and its value is
assessed by integrating the relative accessibility of each individual service with respect to a given location of the transport system.

In line with the concept of integral accessibility with consideration of the portion of affected population, the following operational
definition of accessibility is adopted in this paper; Accessibility of a (sub-) network is the ease for road users to reach certain services
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from specific locations (origins) by using the traffic (sub-) network at a specific time. The services considered in this paper are (i)
business, (ii) education, (iii) health services and (iv) interconnection with other modes. The minimum value of the accessibility is 0. A
null accessibility from the origin i to the destination =j A, 0ij , implies that users cannot reach any of the services considered when
travelling from i to j. A total accessibility for a given service from the origin i to the destination j implies that the service considered is
located at the origin i, resulting in a required travel time =t 0i

s . Accordingly, the accessibility of the OD pair ij at the time interval
studied is calculated as follows;

= =A A
D
D

texp( ) ,ij
s

ij
s

s

ij
s b

i
s

(1)

where Dij
s is the demand associated with the service s, departing from node i and reaching the closest service when travelling from i to

j. D is the total demand of the network, ti
s is the time required to cover the distance between the origin node i and the node where the

closest service s is located, and b and are scale factors. The contribution of a specific service on the accessibility index as a function
of the travel time, for different

D

D
ij
s
ratios (contour curves) is shown in Fig. 2. It is noted that the accessibility decreases with increasing

values of , nevertheless, its influence becomes smaller with increasing values of the travel time. For example, for the represented
range of D D/ij

s and = 1 hours−1 (black thick line), when =t 1i
s hour Aij

s is in the range of [0.09, 0.37], whereas when =t 5i
s hours Aij

s

is always less than 0.01. In other words, the parameter implicitly defines a critical travel time where larger values of ti
s cannot be

considered as reasonable to reach a given service, and thus, the contribution of Aij
s of the associated service to the total accessibility

will be negligible. For example, in Ireland, due to the spacial arrangement of the country, a value of = 1 seems reasonable, however
smaller values of should be considered for countries such as Australia. Thus, its calibration should take into account the associated
spatial interaction model.

The proposed formulation fulfills the collection of desirable attributes of an accessibility index discussed in Taylor (2017).

2.3. Reliability

As indicated by Mattsson and Jenelius (2015), reliability in the transportation field relates to the certainty and predictability of
travel conditions. These conditions can vary due to a number of factors, for instance, normal daily demand fluctuations, man-made
disasters and weather conditions. There are various valuable measures of transportation network reliability, such as capacity re-
liability (e.g., Chen et al. (2002)), travel time reliability (e.g., Wakabayashi (2012)) and connectivity reliability (e.g., Bell and Iida
(1997)).

In this paper, the concept of travel time reliability is considered, whose operational definition is as follows; (Travel time) re-
liability measures the feasibility that road users reach a destination within a certain travel time under the operating conditions
encountered. To measure the reliability of a given OD pair ij, the actual travel time experienced by users travelling from origin i to the
destination j t, ij, is compared with the associated travel time in free flow conditions, tij

0, that is,

=R
t
t

.ij
ij

ij

0

(2)

The maximum value of the reliability associated with the OD pair ij is =R 1ij , reached when the level of service is the optimal.
Note that low values of reliability mean a lack of reliability.

Fig. 2. Contribution of a specific service on the accessibility index as a function of the travel time, for different
Dij

s

D
ratios (contour curves).
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2.4. Intrinsic vulnerability through accessibility and reliability

There is a clear operational overlapping between the terms vulnerability, accessibility and reliability; the reader is referred to
Reggiani et al. (2015) for a comprehensive discussion on the relations between these concepts. One of the approaches commonly used
to determine traffic system vulnerability is through accessibility-based methods (Taylor, 2017), which use the accessibility value as a
measure of the vulnerability of the system (e.g., Taylor et al. (2006, 2013)). For instance, according to Murray and Grubesic (2007), a
network node is defined as vulnerable if loss (or substantial degradation) of a small number of links significantly diminishes the
accessibility of the node. The relationship between reliability and vulnerability is also acknowledged by many authors. Reliability is
related to the well-functioning capacity of traffic networks, whereas vulnerability focuses on non-functioning networks’ response
(Husdal, 2005; Taylor, 2008), thus, there exists a certain complementarity between both terms. For instance, Watling and Balijepalli
(2012) provides a methodology to determine how travel time reliability is affected by growing demand, which can be used to
estimate traffic network vulnerability. Taylor et al. (2006) discuss the convenience of considering reliability or accessibility when
analysing the vulnerability of traffic networks at different scale levels; in networks with a high level of connectivity, as in the case of
urban networks, the level of service gains importance to evaluate the vulnerability. On the contrary, when the connectivity is lower,
as in the case of inter-urban networks, the accessibility becomes a relevant indicator. It is clear that network connectivity underlies
behind both accessibility and reliability.

Given the widely-accepted existing relation of accessibility and reliability with vulnerability, they will be used as potential metrics
to assess the intrinsic traffic network vulnerability. Intrinsic vulnerability relates to incidents that pose a large uncertainty (in terms of
space and time), regardless the intensity of the perturbation and the extent of the consequences. Because big disasters might affect the
accessibility to basic services, and light perturbations result in a decrease of the reliability of the traffic systems, this initial choice
allows covering both degrees of possible perturbations and consequences.

3. Structured expert judgement for characterization of multivariate uncertainty

Structured expert judgement refers to a transparent methodology for elicitation of expert opinions such that these expert jud-
gements may be treated as (other type of) scientific data in a formal decision process. Structured expert judgment, and in particular
the mathematical aggregation of expert judgments has been extensively used in different fields of application. Over thirty-three
independent expert judgment studies were performed between 2006 and March 2015 and about 45 prior to 2006 (see Colson and
Cooke (2017)). The great majority of these studies investigate one-dimensional (1-d) uncertainty. The investigation of intrinsic
vulnerability through a set of indicators (i.e., accessibility and reliability) requires a multivariate analysis. In order to perform
multivariate analysis from a probabilistic point of view, 1-d marginal distributions are required as well as a copula realizing the joint
distribution. In this research, methods to elicit 1-d uncertainty regarding random variables will be used, as well as methods for
elicitation of dependence. The two main advantages of the methods to be presented with respect to other traditional methods are: (i)
it may be used in the absence or limited amount of field measurements, experiments or models for the particular case of interest (as is
the case for concepts such as intrinsic vulnerability discussed in Section 2), ii) it allows for evidence-based scoring and combination of
expert opinions. As far as the authors are concerned, this is the first time Cooke’s method and its extension to the elicitation of
dependence (DCal score in Section 3.2) are used in order to investigate a concept such as intrinsic vulnerability. Notice that despite
the advantages of the methods here presented, a certain amount of data will be required as “seed variables” which can also make the
general applicability of the method challenging. Moreover, structured expert judgment should not be seen as a substitute for fun-
damental research into driving processes. The main features of these methods are discussed next.

3.1. Expert judgement for uncertainty quantification

In this research, quantification of uncertainty through structured expert judgement is based on the classical (or Cooke’s) method.
This method is a performance-based linear pooling or weighted averaging model. The weights are derived from experts’ calibration
and information scores, as measured on seed variables. The seed variables, are variables whose realizations are known to the analysts,
but not known to the experts at the moment of the elicitation. The performance-based weights use two quantitative measures of
performance, namely, (a) calibration, which measures the statistical likelihood that a set of experimental results statistically cor-
respond with the expert’s assessments and (b) information, which considers how concentrated a distribution is relative to a back-
ground measure. For a complete review of the classical model, the reader is referred to Cooke (1991). For a recent Matlab im-
plementation of the method see Leontaris and Morales-Nápoles (2018).

In this research the quantile format is used, that is, experts are asked to assess their uncertainty concerning certain continuous
quantities in the form of a number of percentiles of their uncertainty distribution (5 , 50th th and 95th).

In order to evaluate experts’ opinions, their assessments on seed variables are analysed statistically. The assessments of each
expert e are treated as a statistical hypothesis and the obtained p-value used as a calibration score (CSe). Thus, values of calibration
close to zero mean that it is unlikely that the experts’ probabilities are correct.

To measure the experts’ informativeness, the density of the sample distribution fi
e provided by expert e for the quantity i is

compared against a background probability density gi (usually uniform or log uniform distribution). This comparison is carried out
through the mutual entropy between densities, obtaining the information score of each expert, ISe.

The combination of experts’ assessment, or Decision Maker (DM), is carried out by the summation of the experts’ assessments of
the variables of interest, weighted according the product of scores obtained ( i

e), that is,
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=DM
f

.i
e

i
e

i
e

e
i
e

(3)

There are different possibilities of combining the calibration and information scores to obtain the weights i
e for the variable of

interest i, such as, (a) considering an optimal global weight, = = CS ISi
e e e e where the indicator is 1 if is larger than a level

selected to maximize the combined score of the resulting DM; or (b) considering different weights per item (optimal item),
= CS I f g( , )i

e e
i
e

i , where I (·) is the relative information or entropy. The results of applying any of these criteria usually provides
better results than applying equal weights to all experts or even if only the best-scored expert is considered (Colson and Cooke, 2017).

A more detailed description of the process can be found in Cooke and Goossens (2008).

3.2. Expert judgement for dependence modelling

The use of expert opinions in dependence modelling is an active area still very much under development. For a recent overview on
the expert judgement for dependence in probabilistic modelling, the reader is referred to Werner et al. (2016). In our research
statistical dependence will be modelled through copulas, that is, positive monotonic functions in the range [0, 1], conforming a
compatible multidimensional cumulative distribution function. In this case, statistical samples of joint observations or realisations are
needed, however, they are usually not available, as happens in the present study. Under this perspective, the practical solution
implies again the use of expert elicitation, where experts are asked about statistical dependence between variables of interest.

The dependence relations investigated in this paper through the expert judgement elicitation are based on a continuous Non-
Parametric Bayesian Network (NPBN) modelling framework (for details see Hanea et al. (2015)). For a better understanding of the
NPBNs, Bayesian networks, copulas and (conditional) rank correlations are previously introduced.

A Bayesian network (Pearl, 2014) is a pair ( , ), where is a directed acyclic graph defined on a set of nodes X (the random
variables), = …p x p x{ ( | ), , ( | )}n n1 1 is a set of n conditional probability functions, one for each variable, and i is the set of parents
of node Xi in . The set defines the associated joint probability density of all nodes as

=
=

p p xx( ) ( | ).
i

n

i i
1 (4)

Fig. 3(a) shows a Bayesian network of three nodes, where the parents of variable 3 are 1 and 2, and the parent of 2 is 1.
The association between random variables can be investigated through copulas. In particular, in this research we will focus on the

use of the Gaussian copula since this may be parameterised entirely with the correlation coefficient, presents no asymmetries such as
tail dependence, and is perhaps the most familiar to experts. Moreover, as will be seen later, this type of copula allows measures for
calibration of expert opinions (Morales-Nápoles and Worm, 2013; Morales-Nápoles et al., 2014). Let be a bivariate standard
normal cumulative distribution with product moment correlation , and 1 the inverse of the univariate standard normal dis-
tribution, then the bivariate Gaussian copula is defined as

=C u u u u( , ) ( ( ), ( )),1 2
1

1
1

2 (5)

where u u( , ) [0, 1]1 2
2.

On the other hand, the Spearman rank correlation coefficient for two random variables X X,i j with cumulative distribution
functions FXi and FXj is

=r
E F F E F E F

var F var F
( ) ( ) ( )

( ) ( )
.i j

X X X X

X X
,

i j i j

i j (6)

The conditional rank correlation of Xi and Xj given Xk is denoted by ri j k, | .
In a NPBN, each node is associated with a continuous arbitrary invertible distribution function and each parent–child influence is

represented as a (conditional) one parameter copula, parameterised in terms of the (conditional) rank correlation (see Fig. 3(b)). In Fig. 3(b),
C ( , | )3 1 2 represents the conditional copula of variables 3 and 1 given 2. This is parameterised by the conditional rank correlation r1,3|2. The
joint distribution of variables 1 and p3, (1, 3) will be given by the choice of the underlying copulas in the particular model. For a detailed
description of the copulas/rank correlations, the reader is referred to Joe (2014) and Hanea et al. (2015).

Fig. 3. Example of Bayesian network of three nodes, indicating (a) the conditional probability densities expressed in terms of copulas, and (b) the
(conditional) rank correlations.
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The rank correlations will be realized using bivariate (conditional) copulas. When all copulas in the assignment of a NPBN
correspond to the bivariate normal copula, then a multivariate Gaussian copula with correlation matrix is obtained. For instance, in
the case of the NPBN of Fig. 3,

=
1

1
1

,
1,2 1,3

1,2 2,3

1,3 2,3 (7)

In this case the product moment correlation matrix has elements ,1,2 1,3 and 2,3. Where 1,3 is related to 1,3|2 through the expression

=
(1 )(1 )

.1,3|2
1,3 1,2 2,3

1,2
2

2,3
2

(8)

and = ( )( )r arcsini j,
6

2
i j, .

In the case of elicitation of dependence, the calibration of the experts will be carried out by means of the D-calibration (introduced
in Morales-Nápoles and Worm (2013)), i.e., a measure of the distance between a “seed” correlation matrix and the correlation matrix
obtained based on experts’ opinion, which is expressed as follows,

=
+

dCal 1 1 | | | |
| |

,e
S e

S e

1
4

1
4

1
2

1
2

1
4 (9)

where S and e are the seed calibration matrix and the correlation matrix elicited from expert e, respectively. Properties of the dCal score
have been investigated in Morales-Nápoles and Worm (2013), Morales-Nápoles et al. (2014); these include the fact that dCal [0, 1]e and
will be equal to 1 iff =e S. Also, an expert may obtain a low calibration score if, for example, a high correlation between a pair of variables
was expressed by the expert while this was not observed in the seed dependence structure S. Another property is that a necessary condition
for an expert to be highly calibrated is to sufficiently approximate the dependence structure of interest element-wise.

As explained before, the expert decision can be analysed as a hypothesis testing, with null hypothesis stating that dCale comes
from the distribution of dCalS. Rejecting the null hypothesis would imply that the difference between both correlation matrices might
not be exclusively due to sampling fluctuation. The combination of expert opinions will be done similarly to Cooke’s method but with
the dCal score as the basis for determining weights for individual expert opinions. In this sense the procedure described here is an
extension of Cooke’s method in that it still uses a calibration measure for individual opinions while the calibration measure is
designed specifically to score experts as assessors of dependence while Cooke’s model scores experts as (one dimensional) uncertainty
assessors. Next, attention will be paid to the particular case of interest.

3.3. Methodological framework

The process followed to assess the intrinsic vulnerability of a traffic network based on structured expert elicitation consists of two
parts, the uncertainty quantification of the intrinsic vulnerability and the dependence modelling between accessibility, reliability and
intrinsic vulnerability.

The elicitation of uncertainty quantification will provide an estimation of the intrinsic vulnerability associated with each OD pair
of interest. The process is conducted as follows;

1. To determine the score of each expert to measure their capacity to express uncertainty. To do so, seed variables whose value is
only known by the researcher are used. An example of the type of question related to the uncertainty distribution of the seed
variables is shown in Appendix A.1;

2. To obtain from each expert their individual assessment of the intrinsic vulnerability associated with the OD pairs of interest. The
type of question used to that aim is presented in Appendix A.2;

3. To determine a final estimation of the intrinsic vulnerability of the OD pairs of interest by combining the individual assessments
according to Eq. (3).

The process followed to determine the contribution of the indicators accessibility and reliability into the value of the intrinsic vulner-
ability, the descriptor (i.e., intrinsic vulnerability) and the indicators (i.e., accessibility and reliability) are treated as random variables in a
process of elicitation of statistical dependence. In that way, the statistical contribution of each indicator will be determined, including the
potential redundant information between indicators. Therefore, the process will consist on the following steps;

1. To determine the score of each expert opinion according to Eq. (9), which will measure relative ability of individual opinion to
express the statistical dependency between random variables. To do so, the statistical relation between seed variables, only known
by the researcher, is used. Appendix A.3 provides an example of the type of question included in the questionnaire related to the
dependency of the seed variables;

2. To obtain from each expert their individual assessment of dependency between the variables vulnerability and accessibility, and between
vulnerability and accessibility for a given reliability associated with the OD pairs of interest. Examples of the type of questions required in
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this step are also indicated in Appendix A.4. The elicited values are used to obtain the Spearman rank correlation coefficients r r,V R A V, ,
and rV R A, | , and the consequent product moment correlations ( ) to build the correlation matrix in Eq. (7). Because reliability and
accessibility are both quantifiable indicators, rR A, can be assessed directly from the analysis of the traffic network;

3. Once the correlation matrix associated with each OD pair is determined, the corresponding multivariate Gaussian copula is
defined, meaning that the multivariate probability distribution function of intrinsic vulnerability, accessibility and reliability is
known for each OD pair of interest.

It is noted that the median value of the intrinsic vulnerability is used to determine the relation between variables during the
elicitation of dependence (see Appendix A.4), therefore, the elicitation of uncertainty quantification should be conducted before the
elicitation of statistical modelling.

The analysed indicators might account for an important portion of the intrinsic vulnerability of the traffic network, therefore the intrinsic
vulnerability can be systematically evaluated by introducing the value of the two quantifiable indicators into the obtained multivariate
probability distribution function. In the case that accessibility and reliability are not representative enough of the total intrinsic vulnerability,
other indicators should be included following the same process. In order to determine to which extent the selected indicators account for a
representative portion of the total intrinsic vulnerability, the value of the intrinsic vulnerability obtained with the multivariate probability
distribution function should be compared against the value previously obtained through the elicitation of uncertainty quantification.

4. Assessment of vulnerability by means of accessibility and reliability

4.1. Case study and elicitation process

The Irish traffic network presented in Fig. 4 is under study during the interval of time 8.00 a.m. to 9.00 am. The length of the links are

Fig. 4. Traffic network under study; Irish case study.
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proportional to the real length of the roads connecting the corresponding nodes, and all links represent bidirectional roads. For the sake of
simplicity, the typology of the roads has been reduced to three generic types, i.e., highways, primary and secondary roads. Their char-
acteristics for good ambient conditions are given in AECOM and ESRI (2014) and shown in Fig. 5. The OD pairs and the probabilistic
distribution of demands associated with each OD pair in the interval of time studied are given in Fig. 6. These values have been obtained
considering the NRA traffic data corresponding to the working days of January 2016.

A C-logit stochastic user equilibrium model is used to reproduce the traffic behaviour during the period of interest, based on the
formulation proposed by Zhou et al. (2012). It is assumed that, during the time interval analysed, the 60% of the demand is travelling because
of business reasons, 12% because of educational purposes, 3% are the potential users of the health services, and 8% of the demand are the
potential users of the intermodality facilities. Using the Monte Carlo method, 10, 000 simulations were carried out. The combination of
different traffic demands were introduced to obtain the travel time and the link flow associated with the links and routes of the traffic
network. For each simulation, the indices accessibility and reliability associated with the set of OD pairs were computed, using Eq. (1) and
(2), respectively, with =b 0.2 and = 1 hours−1. The obtained data were used for the preparation of the elicitation process.

For the sake of clarification, it is noted that the minimum value of the mean of accessibility corresponds to the OD 31 92 (Sligo-
Dublin), whose value is 0.16. This is due to the combination of two facts, namely, a low OD demand and the complete absence of
intermodality and health services in node =i 31 (Sligo). On the contrary, the largest value of the mean of accessibility corresponds to
the OD 92 69 (Dublin-Waterford), whose value is 0.88. In this case, the demand is very large and the intermodality and the health
services are both in the origin node ( =t 0i

s ). The effect of the other two services, business and education, is shown when analysing the
OD pairs 92 31 (Dublin-Sligo) and 92 63 (Dublin-Cavan). In both cases the demand and the contribution of services health and
intermodality are similar, nevertheless, the distance between nodes i j makes the mean of accessibility different, that is,

=A 0.6192 31 and =A 0.7692 63 . The large difference in the accessibility of the users travelling to Sligo from Dublin and vice versa
makes clear the influence of both, the demand and the proximity to services on the accessibility value.

As sketched in Section 3.3, the elicitation consists of two parts, (a) elicitation of uncertainty, where Cooke’s method is applied to
determine the intrinsic vulnerability associated with different OD pairs, and (b) elicitation of probabilistic dependence, where the statistical
relations between intrinsic vulnerability, accessibility and reliability are studied. The dependence relations between variables are modelled
directly by Gaussian copulas, and the score of the experts will be computed considering the D-calibration equation.

Therefore, the questionnaire consisted of 10 questions for calibration of uncertainty, 6 questions for calibration of dependence, 5
questions related to the variables of interest and finally, 10 questions on dependence between variables. Table 1 summarizes the
structure of the questionnaire. The questions related to dependence elicitation are asked following Morales et al. (2008).

The calibration variables for dependence modelling shown in Table 1 indicate that the accessibility indices for the analysed ODs
are not highly correlated, whereas a higher correlation exists between the reliability indices.

A number of 5 experts on Transportation with deep knowledge of the terms discussed, participated in the elicitation process. The country
where they are based on and their background are indicated in Table 2. It is noted that they were not aware of the real location of the traffic
network to avoid that previous experience on aspects such as the geographic features or the existing black spots, could influence their
answers.

4.2. Results

The results obtained from the elicitation process are presented and discussed in this section. First, the capacity to estimate the
intrinsic vulnerability is analysed in the uncertainty-elicitation phase. In the dependence-elicitation phase, the dependence structure
between intrinsic vulnerability, accessibility and reliability is addressed.

The calibration scores, CSe obtained by the five experts during the uncertainty elicitation are given in the 2nd column of Table 3.
The information scores, ISe, in all variables, and in seed variables only, are given in columns 3 and 4 of the same table respectively.
The combination of the expert opinions according to the “equal weights” decision maker is used as a baseline to compare the

Fig. 5. Characteristics of the road types.
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performance of the other decision makers. Column 5 shows the product of columns 2 and 4 for experts whose weight is different than
zero (see Section 3.1). Column 6 shows the ratio of the information score for calibration variables to the information score for
calibration variables of the equal weight decision maker. Notice that one individual expert (the one with the best calibration score)

Fig. 6. Probabilistic distribution of the traffic demands.

Table 1
Structure of the questionnaire. A R,ij ij and Vij denote accessibility, reliability and intrinsic vulnerability associated with the OD pair ij.

ELICITATION OF UNCERTAINTY

Calibration Variables Variables of Interest

ODs Max A[ ]ij Min R[ ]ij Vij (percentiles 5, 50 and 95)

20–25 (Galway-Limerick) 0.590 0.889 Unknown values
25–69 (Limerick-Waterford) 0.457 0.845
32–69 (Cork-Waterford) 0.816 –
32–92 (Cork-Dublin) 0.636 0.826
69–92 (Waterford-Dublin) 0.851 0.777
All ODs – 0.755∗ –

ELICITATION OF DEPENDENCE MODELLING

Calibration Variables Variables of Interest (percentile 50)

ODs Prob V A( | )i j i j, , Prob V A R( | , )i j i j i j, , ,

Prob A A( | )25,69 32,92 0.499 20–25
Prob A A( | )32,92 69,92 0.455 25–69
Prob A A A( | , )25,69 32,92 69,92 0.500 32–69 Unknown values
Prob R R( | )25,69 32,92 0.575 32–92
Prob R R( | )32,92 69,92 0.871 69–92
Prob R R R( | , )25,69 32,92 69,92 0.563

∗ The minimum reliability of the network is included to increase the variability of the elicited values.
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has an information score lower than the equal weight combination.
Column 7 shows the given weights (equal weights), and the 6th row the reference values in regards to the calibration and

information for the equal-weights DM. When selecting the optimised global weights decision maker, the obtained calibration score
(0.6827) is 6 times better than the reference case (0.1135). Moreover, this combination improves any of the individual scores. In the
case of the optimised item weights decision maker, its calibration score is 2.55 times better than the reference case and still larger than
the calibration scores of individual experts.

The performance based combinations all have a larger information score than the equal weight combination. The best performance DM in
terms of information as explained earlier is given by the optimal-item combination, with a 78% of improvement, meanwhile the optimal
global reaches 46% higher information score than the equal-weights combination. Taking into account all information available, the opti-
mised global weights decision maker is recommended as the criterion to combine the experts’ opinions, being the combination of experts C
and E identified as the optimum. Their corresponding weights, wi

e are given in the last column of Table 3.
Fig. 7 depicts the 5 , 50th th and 95th percentiles given by the experts when quantifying the uncertainty of intrinsic vulnerability. The same

percentiles are also shown for the three DMs analysed, namely, equal, optimal global and optimal item. Both, the values given by the group of
experts identified as the best set for the uncertainty quantification at the calibration stage, and those obtained when applied the selected DM
(optimal global) are represented with a thicker line. Note that the selection of the optimal-item DM would provide similar assessment of the
vulnerability (see Fig. 7). In Appendix B, Figs. 11 and 12 show the quantification of uncertainty of accessibility and reliability given by the
experts. These were used to evaluate experts’ performance and uncertainty assessors (see Section 3.1).

From the results depicted in Fig. 7, two important conclusions can be drawn in this phase; (a) given the range of definition of the
intrinsic vulnerability, the level of uncertainty expressed by the experts is very high, and (b) despite the uncertainty exhibited, OD
32 92 (Cork-Dublin) and OD 69 92 (Waterford-Dublin) seem to be the most vulnerable ODs in the Irish road network according to
the value of the medians.

Regarding the second phase, i.e., the dependence modelling, Table 4 shows the dependence calibration score of the experts when
assessing dependence according to the questions in Table 1. In the 2nd column a dCal score (Eq. 9) for each expert is obtained from the
correlation matrix corresponding to the accessibility variables. Column 3 gives a score for the reliability variables and column 4 for a
correlation matrix containing both. Columns 5 to 7 provide the normalized weights when applying the criterion of optimal global.
Notice that the optimal global in this case is constructed with the dCal score and not with the calibration score in Cooke’s sense.

On expressing the dependence relation of the variables studied, experts A and B exhibit good performance in relation to the accessibility,
and expert D in reference to the reliability. Nevertheless, expert D is selected as the best combination of experts to assess the dependence for
the variables of interest vulnerability, given the score obtained when considering the combination of both variables.

Expert C provided values inconsistent with the underlying assumptions of the model proposed (that is the assessment based on a
multivariate Gaussian copula, see Morales et al. (2008)) and therefore no score has been assigned to this expert. Finally, as explained before,
the criterion of optimal global is shown to provide better (or equal) dependence calibration than other combination criteria such as the equal
weighted (6th row) or any individual score. Fig. 8 depicts similar conclusions, through the representation of the conditional probability
distribution of the reliability for the OD 25 69 (Limerick-Waterford) when considering the equal-weights combination, the optimal global
combination, and independently experts’ opinion, in comparison with the true distribution. The DM optimal global (or expert D) provides
better assessment of the dependence that the other individual opinions and slightly better than the DM equal weights.

Therefore, taking into account the conditional probabilities given by expert D, Prob V A( | )i j i j, , and Prob V A R( | , )i j i j i j, , , , the correlation

Table 2
Country and background of the experts involved in the elicitation process (sorted by alphabetical order).

Country Background

Japan Reliability of transportation networks, transit assignment models, passenger behaviour.
Malaysia Transport modelling, reliability, vulnerability modelling, GIS, SCATS.
Sweden Traffic safety, vulnerability in transportation systems, traffic and transport planning.
Sweden Transportation, networks, resilience, data analysis, public transport.
The Netherlands Transport systems, transport modelling, traffic flows, choice behaviour, network resilience.

Table 3
Scores obtained by experts and DM analysis.
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Fig. 7. Quantification of uncertainty (5 , 50th th and 95th percentiles) of the intrinsic vulnerability by the experts (assessment stage).

Table 4
D-Calibration of the experts.

Fig. 8. Conditional probability distribution of reliability of OD 25 69 when considering the equal-weights combination, the optimal global
combination, and the experts’ opinion independently, in comparison with the true distribution.
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matrix (Eq. 7) can be obtained for each OD. Table 5 shows the elements of the correlation matrix for the ODs studied and the required
conditional correlation for the BN of interest. It is noted that in the case of the OD 20 25 (Galway-Limerick), it was not possible to evaluate
the dependence relation given that the provided conditional probabilities were also inconsistent with the underlying assumptions, which is
likely due to the high absolute value of the correlation between accessibility and reliability in this case. According to the results, accessibility
and intrinsic vulnerability are negatively correlated, and the reliability index is also negatively correlated to intrinsic vulnerability. Moreover,
accessibility and reliability explain a low percentage of the vulnerability of the network; nevertheless, in the case of the OD 32 92 (Cork-
Dublin), reliability presents a higher correlation with vulnerability according to the combined expert opinion.

Based on the data shown in Table 5 and the marginal distribution of the intrinsic vulnerability elicited through Cooke’s method,
the joint probability distribution function of intrinsic vulnerability, accessibility and reliability is defined through a Gaussian copula.
In that way, the conditional probability of the intrinsic vulnerability, V, can be determined for different values of A and R. For
instance, Fig. 9 shows the conditional probability distribution of the intrinsic vulnerability for low values of accessibility and re-
liability (lower than their 25th percentiles).

5. Discussion

The opinions of experts have exhibited high uncertainty when assessing the intrinsic vulnerability. This may be because this type
of vulnerability aims at considering all type of incidents characterised by an occurrence probability in terms of time and space of
difficult estimation. Indeed, it resulted to be very challenging for the experts to consider an undefined incident, or maybe, all of them.

The present study is the first step towards a more resilience-based analysis of traffic networks. A resilient view implies the
consideration of not only typically measured hazardous events, e.g. extreme weather events, allowing the assessment of the asso-
ciated probability and the consequent risk analysis; but also the emerging threats, such as terrorist attacks, whose uncertainty in
terms of location and intensity challenges the risk-based approach. Therefore, the identification of the most vulnerable ODs when
there is not a clear identification of the potential hazard provides very relevant information (see Caschili et al. (2015), Modica and
Reggiani (2015) for a more detailed discussion on resilience and vulnerability). In the case of the Irish traffic network, two ODs has
been clearly identified as more intrinsically vulnerable than the other ODs studied.

It is also interesting to know the factors considered by the experts when assessing the intrinsic vulnerability, which are sorted in
Fig. 10 according to their relative importance. Aspects such as the redundancy and the type of roads lead the listing, whereas none of
them considered the type of potential incident.

In relation to the dependence modelling, the correlation values obtained allow the following conclusions; (a) reliability and
accessibility are both valid indicators to assess the intrinsic vulnerability of the network, and (b) given the low correlation obtained,
other indicators are required to explain a larger portion of the intrinsic vulnerability. The last conclusion can be understood when
analysing Fig. 9, which shows that the OD pair 32 92 is the most vulnerable, followed by 32 69. However, the analysis of
uncertainty showed that the most vulnerable OD pairs were 32 92 and 69 92. This discrepancy highlights the need of adding other
indicators to estimate the intrinsic vulnerability.

The experts usually expressed themselves more confident in assessing the relation between vulnerability and the other indicators, rather
than estimating the uncertainty distribution of the vulnerability. This fact points out that the elicitation of dependence is an effective tool to
identify the set of indicators that better explain a large portion of some system descriptors, such as intrinsic vulnerability or resilience.

6. Conclusions

In this paper, a new methodological approach has been presented to gain some understanding of intrinsic vulnerability of traffic net-
works. The approach is based on the quantification of multivariate uncertainty. The 1-d uncertainty distributions are assessed through
Cooke’s method while statistical dependence is investigated through the extension of Cooke’s method by the DCal score. The advantage of
this approach, as shown along the paper, is that it allows the operational definition of a concept such as intrinsic vulnerability. It also allows
for the quantification of its uncertainty and the dependence of this concept on other variables that partially explain this uncertainty such as
accessibility and reliability as defined in Sections 2.2 and 2.3. Hence this approach is especially valuable in contexts where the character-
ization of the state of knowledge regarding a particular subject (intrinsic vulnerability in this case) needs to be characterized. It should be
noticed that this approach is not meant as a replacement for fundamental research on the topic but rather as complementary. The uncertainty
regarding the location and duration of the incidents generating such a vulnerability makes other existing approaches for vulnerability
assessment very challenging. As a result of this approach, the identification of the most intrinsically vulnerable OD pairs of a traffic network
has been realised. For the case discussed in this paper, reliability and accessibility are proposed as explanatory variables for intrinsic

Table 5
Dependence modelling of vulnerability given by the elements of the correlation matrix (Eq. 7).

OD r R A( , ) r A V( , ) r V R( , ) r R V A( , | )

20–25 (Galway-Limerick) −0.97 −0.15 – –
25–69 (Limerick-Waterford) −0.64 −0.12 −0.17 −0.32
32–69 (Cork-Waterford) −0.68 −0.15 −0.20 −0.42
32–92 (Cork-Dublin) −0.71 −0.21 −0.35 −0.74
69–92 (Waterford-Dublin) −0.72 −0.12 −0.17 −0.38
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vulnerability and their individual contributions to the intrinsic vulnerability have been established. Nevertheless, other quantifiable in-
dicators that when combined explain a large portion of the intrinsic vulnerability should be investigated. Given that complete scrutiny of all
potentially related indicators is unapproachable, the identification of the most relevant indicators describing intrinsic vulnerability is im-
portant. Therefore future research will be oriented to the identification of other characteristics (measured by quantifiable indicators) that lead
to such a vulnerability.

Once the probabilistic relationship between the descriptor and the indicators is established, the set of indicators can be used as a
systematic framework to evaluate the descriptor. The framework is expressed in terms of a multivariate probability distribution function. The
multivariate probability distribution function relating intrinsic vulnerability with reliability and accessibility is a straightforward tool to assess
the impact of different strategies aiming to improve the intrinsic vulnerability. In that case, the values of accessibility and reliability asso-
ciated with each strategy would be computed and introduced in the multivariate probability distribution function to directly determine the
intrinsic vulnerability. In addition, an analysis of the multivariate probability distribution function will provide interesting insights regarding
the sensibility of the intrinsic vulnerability to specific changes in the reliability and the accessibility indexes.

The method presented in this research can be applied to avoid the commonly-used approach of evaluating a descriptor, for
instance the resilience of a given system, through a weighted summation of performance indicators. Without entering into discussion
on how performance indicators and weights are selected, it is clear that the weighted summation does not allow the identification and
removal of redundant information. For example, the connectivity degree is a factor common to both accessibility and reliability, thus
a weighted summation would overweight the contribution of the connectivity.

It is noted that the proposed approach can be also applied to determine the relationship between a descriptor whose value is
known and a list of indicators. In such a case, the elicitation of uncertainty may not be required.
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Fig. 9. Conditional probability distribution of the intrinsic vulnerability given an accessibility and a reliability their 25th quantiles.

Fig. 10. Aspects considered by the experts when assessing the intrinsic vulnerability.
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Appendix A. Questionnaire

Examples of the questions used to conduct the structured elicitation process are shown. To allow experts to provide their best
estimates, definitions of intrinsic vulnerability, accessibility and reliability are given along with a detailed description of the case
study. Note that the numerical values used in the elicitation of dependence refer to those presented in Table 1.

1. Elicitation of Uncertainty. Variables for calibration
Uncertainty distribution of max A[ ]20 25, : What is the maximum value of the accessibility associated with the OD 20–25,

max A[ ]20,25 ? Provide the 5th, 50th and 95th percentiles of the uncertainty distribution.
2. Elicitation of Uncertainty. Variables of interest
Uncertainty distribution of V20 25, : What is the intrinsic vulnerability associated with the OD 20–25, V20,25? Provide the 5th, 50th

and 95th percentiles of the uncertainty distribution.
3. Elicitation of dependence. Dependencies between variables for calibration

> >Pr A 0 46 A 0 64( . | . ):25 69 32 92, , What is your estimate that the accessibility associated with OD 25–69 is larger than 0.46 given
that the accessibility associated with OD 32–92 is larger than 0.64?

> > >Pr A 0 46 A 0 85 A 0 64( . | . , . ):25 69 69 92 32 92, , , What is your estimate that the accessibility associated with OD 25–69 is larger
than 0.46 given that (a) the accessibility associated with OD 32–92 is larger than 0.64, and (b) the expected value of the accessibility
associated with OD 69–92 is larger than 0.85?

4. Elicitation of dependence. Dependencies between variables of interest
> >Pr V med A 0 60( | . ):20 25 20 25, , What is your estimate that the intrinsic vulnerability associated with OD 20–25 is larger than your

estimation of the median of V20,25 given that the accessibility associated with OD 20–25 is larger than 0.60?
> >Pr V med A 0 60 R 0 90( | . , . ):20 25 20 25 20 25, , , What is your estimate that the intrinsic vulnerability associated with OD 20–25 is

larger than your estimation of the median of V20,25 given that, for OD 20–25 the accessibility is larger than 0.60 and the reliability is
smaller than or equal to 0.90?

Appendix B. Graphical results of the elicitation of uncertainty

Figs. 11 and 12 depict the 5 , 50th th and 95th percentiles given by the experts when quantifying the uncertainty of accessibility and
reliability, respectively. The values given by the group of experts identified as the best set for the uncertainty quantification at the
calibration stage, and those obtained when applied the selected DM (optimal global) are represented with a thicker line.

Fig. 11. Quantification of uncertainty (5 , 50th th and 95th percentiles) of the accessibility by the experts (calibration stage).
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Appendix C. Supplementary material

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.tra.2019.07.006.
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