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Abstract

This wbrk deals with the non-linear interaction analysis of the jacket-pile-soil systems. A historic
preview and the motivation for the study is described in introduction part (Ch.1).
To be able to study the non-linear response of the jacket systems under extreme loading condi-
tions, initially the static behaviour of the pile-soil system is investigated in Chapter.2. In the
initial part of this work, a review of the state of art pile-soil interaction models is performed.
It is recognized that the most of the existing pile-soil models have been established based on
large diameter pile tests on specific sites. The need for non-site specific and mechanistic pile-soil
interaction models initiated the development of new (t-z) and (p-y) disk models.

Validation of the disk models is carried out by using the available database from recent large
diameter pile tests in North-sea and Gulf of Mexico regions. The established static disk models
are applied for non-linear static analysis of the jacket-pile-soil system under extreme wave load-
ing.

Dynamic pile-soil interaction is studied in Chapter.4. Based on Wolf's initial pile-soil model a
new disk-cone model is developed for the non-linear and non-homogeneous soils. The approach
is based on strength of material and an indirect boundary element method. The differential
equation of a single disk-cone system fOr non-linear and non-homogeneous soil is established. A
semi-analytical solution of a single disk-cone system is obtained based on step-wise linearization
of the established non-linear differential equation. Material and radiation damping are accounted
for in the disk-cone model and the performance of the model is discussed.

The disk-cone model is applied in Chapter.4 for both surface and embedded disks in a soil layer
with non-linear properties. The reflection and refraction mechanisms are discussed for various
boundary conditions of the layer.

The system of multi-stack of disks-cones is used to discretize the pile-soil system. The solution
of the discretized system is presented in both frequency and time domains. The idea of green
friction is applied to establish the dynamic flexibility and hence stiffness matrix of the pile-soil
system. The principle of superposition is used in frequency domain solution with and without
considering the coupling effects between various disks. An incremental solution of the pile-soil
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system is obtained in time domain by using Newmark's methods.

Equivalent simplified lumped models of pile-soil system such as SDOF,2DOF and 3DOF are also
established for the aim of parametric studies in an efficient manner.

Validation of the dynamic stiffness functions computed according to disk-cone models is carried
out by comparing the results with the more rigorous boundary element solutions and several
verification cases of the pile-soil systems under dynamic loading are presented. The cases include
vertical, horizontal and rocking motions of the pile-soil systems.

In Chapters.3 and 5, a new pushover analysis approach is presented based on wave height in-
crementation. Both the traditional load scaling and wave height incrementation methods are
applied for the static as well as dynamic analyses of the jacket-pile-soil systems.

Simplified non-linear SDOF, 2DOF, 3DOF analysis methods as well as more complex MDOF
analysis approach are employed in Chapter.5 to study the dynamic response of the jacket plat-
form under extreme sea and seismic loading.

The ductility spectra analysis approach is introduced in Chapter.5 to facilitate the study of the
dynamic performance of the jacket systems near collapse. Equivalent lumped models such as
SDOF, 3DOF are applied and as a result simplified relationships are obtained for predicting the
dynamic overload of the jacket-pile-soil system. The validation of the results of the SDOF based
relationship is carried out against the results obtained from non-linear dynamic analysis of more
complex MDOF systems.

Several case studies of SDOF, plane frames and MDOF jacket-pile-soil systems are performed
in Chapter.5. The cases are examined to illustrate the effects of structural, foundation failure
characteristics as well as dynamic loading effects on the overall performance of the jacket-pile-soil
systems near ultimate collapse.

The influence of the pile-soil interaction modelling on the global behaviour of the jacket-pile-soil
system near collapse are studied through considering various models of foundation such as linear
spring to ground, non-linear plugged and un-plugged pile systems. The influence of the member
fracture on the overall load carrying capacity of the system is also assessed by applying a simple
CTOD criterion. The overall safety assessment of the jacket-pile-soil system is briefly described.

In Chapter.6, a reliability approach for the integrated analysis of the jacket-pile-soil system is
applied. Modified versions of RELPS and GENSODM FORTRAN programs and NDDCAP
MATLAB program are developed during the course of this work.

In the final chapter, concluding remarks and also recommendations for further investigations are
given.
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"Everything should be made as simple as possible, but not simpler"
Albert Einstein
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Z the global soil depth parameter
Z,, the plastic section modulus

Greek symbols

a the material parameter of pile-soil, the Hilber-HHT integration parameter
aef the effective stiffness factor
a, the root-square of importance faêtor for random variable x

magnification factor of generalized Masing's rule
polynomial coefficients of disk or Bouc's model coefficients with n = 1,2,

ares the, residual strength parameter
a at the design point

/3 kinematic hardening (shift) parameter, Bouc's model coefficient, Newmark's param
pile-soil material parameter, residual strength (ductility) parameter, reliability mm

I3av the average value of /3
/3m the target reliability index

polynomial coefficients of disk (t-z), (p-y) curves with ii 1,2,
/3,, the

the reliability index at design pomt
shear strain, Newmark's integration parameter, unit weight of soil
the safety factor of material parameters

'yQ the safety factor of load parameters
'Yo the circumferencial strain of soil

the effective unit weight of soil
* j global' safety factor of R

global safety factor of S5
r the general yield surface function
rb bounding surface fU.nction
ri the yield surface function of element (i)

the 'yield' function of pile-soil interaction element
S a small increment of a quantity, pile-soil 'interface angle
5(Z) ' axial deflection function of pile with depth (Z)
& consolidation displacement of pile

rebounding displacement of pile
the differential displacement of pile

5' Dirac fuiiction of first type
5" Dirac function of second type
5' the effective pile-soil interface angle
5r, an iterative small variation of nodal displacement at incremental step (i) and iterat

'an iterative small variation of external force at incremental step (i) and iteration (j



LIST OF SYMBOLS ,ccvij

an finite incrémënt of a scalar, vector or matrix
n+1 iterative quantity at increment Step (n+1) and iteration (i)
Fe effective external excitation force

the reserve strength of a SDOF system
a nodal displacement increment at step (i)
an external force increment at step (i)

u1,9 a limit displacement at increment (1)
a limit displacement at increment (i)
the deviatoric stress variation during cyclic loading of sOil
a general strain component

(w) a dynamic strain component
the major principle strain component
the intermediate principle strain component
the minor principle strain component

50 the strain at 50% of the major deviatoric stress component
strain due to incident wave at soil layer boundary
the deviatoric strain component
the radial strain component, strain due to refraction from soil layer boundary
the ultimate strain level
the circumferencial strain component

( a normalized depth parameter
(f a pile-soil interface gap parameter

the soil disk radius parameter
?)2d 2D- radiation damping ratio
?3d 3D- radiation damping ratio

the refraction factor of a soil layer
material damping ratio
radiation damping ratio

e the apex angle Of cone
A a scalar variable
A. cosine direction vector of element (i)
AR Rayleigh wave length

Svanø's CSM correlation factor,
At transpose of the cosine direction of element (i)
p a ductility ratio
Papp an apparent ductility ratio
Peff the effective ductility ratio

maximum ductility ratio
mean value of Eandom parameters x

p the pOisson ratio
p density of a material
p1 the density of the soil layer above (on incident wave side)
Pr the density of the soil layer below (on refraction wave side)
0 general stress component or vector
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0j the major principle stress component
a2 the intermediate principle stress component
O3 the minor principle stress component
Oj the stress induced by the incident wave
a,. the stress induced by refracted wave

the ultimate stress
the yield stress
the average effective stress component

a' the consolidated effective stress component
0d the deviatonc effective stress component
ah horizontal effective stress component
am the mean effective stress component
a,, vertical effective stress component
T general shear stress component
T the shear stress at the pile-soil interface
Tp8 the peak shear stress at the pile-soil interface
0 the internal friction angle of soil, a general shape function

shape function of a beam element
0 shape fiiction of a beam element
Ow shape function of a beam element

the potential function of system
Xa soft clay correlation factor of API with depth

API's undrained shear strength correlation factor
Kra.ft's skin friction correlation factor

sb,. (r) shear strain distribution function over the radius of soil disk
'I, general stress-strain matrix
w the circular frequency of vibration
wn the natural circular frequency of vibration

Operators

6 an increment of a variable
an increment of a vector or matrix

A ascalàr
V Laplasian (differential) of a function
a partial derivative
E sum of quantities
f integration symbol
bar a memory indicator

internal multiplication of vectors
* external multiplication of vectors
/ external division of vectors

element-by-element multiplication of vectors or matrices
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element-by-element division of vectors or matrices
At transpose of matrix A
Re the real part a complex variable(vector or matrix)
Irn the imaginary part of a complex variable(vector or matrix)

first derivative of a function w.r.t its variable for e.g. x
d'/dxTh uth derivative of a function w.r.t its variable for e.g. x
inv(A) inverse of matrix A
log logarithmic sign
ln natural logarithmic sign
sgn signum function
sin trigonometric sinusoidal sign
cos trigonometric cosine sign
tan trigonometric tangent sign
tanh tangent hyperbolic sign
tan1 arctangent sign
B Bessel function

Newman's function

Abbreviations:
BS base shear ftmction
COV coefficient of variation
CTOD crack tip opening displacement
DAF dynamic amplification factor
DEP degrading elasto-plastic system
DEQ differential equation
El elastic(fiexuraj) rigidity
EP elasto-plastic system
EPP elastic-perfectly-plastic system
FORM first order reliability method
GYEP gradually degrading elasto-plastic system
LDEQ linear differential equation
MDOF multi-degree-of-freedom system
NC normally consolidated soil
ND non-degrading system
NDEQ non-linear differential equation
NPD Norwegian petroleum directorate
OC over-consolidated soil
PFS plane frame system
P1 plasticity index of soil
RDU ultimate dynamic resistance
RFY first member failure(global yield) resistance
RNP resistance of non-plugged system
RQS quasi-static resistance
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RRES residual resistance
RSU ultimate static resistance
SCF scaling factor of load, acceleration etc. (ref to WLI approach)
SMDU safety margin associated with the ultimate dynamic capacity of MDOF system
SORM second order reliability method
SMQS safety margin associated with quasi-static resistance of MDOF system
SQS square sinusoidal shape wave
STI triangular shape impulse or wave
SWL still water level
WHI wave height incrementation method
WLI wave load incrementation method



CHAPTER 1

INTRODUCTION

1.1 Historical preview
The. design of jacket type offshore platforms has been until recently done by the linear elas-
tic design methods based on component strength such as first yield or low cycle fatigue of the
structural element. The recent advent of computer technology made it possible to utilize new
methods such as non-linear finite element and establish new methodologies for the design and
the analysis of the jacket structures based on system's (overall) resistance rather than compo-
nent strength.

To this aim, new structural models such as phenomenological model, general non-linear finite
element and plastic hinge beam models were developed in the past years. These models have
been implemented into the recent flmte element codes such as USFOS (Søreide et al, 1994)

In this connection, new non-linear analysis methods such as pushover approach are developed in
the recent. years. by Stewart et al, (1988,1993,1995), Hellan et al, (1991, 1995) Bea et al, (1993,
1995) and applied extensively (mainly) for static analyses o the Jacket systems. The advantages
of such pioneering methods are now recognized in the offshore industry and to a large extent
recent codes have authorized their use as the state of practice tools for the jacket system design.

However, recent events such as extreme storms(Hurricanes), see±e earthquakes and subsidence
of the jacket foundations highlighted the needs of offshore industry for the new models and
methods to take. into accoint the jacket- pile-soil foundation interaction as well as the.non-linear
dynamic performance/loading effects

In the recent five years, several initial studies were carried out for this purpose such as works
by Bea et al, (1993), Stewart et a!, (1993 and 1995), Schrnucker et al, (1994 and 1996), Emami
et al, (1995, 1996 and 1998) and Moan et al, (1997). The focus of the current investigation is
towards meeting some. of these new challenges facing the offshore industry.

1
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1.2 General(Background)

The dynamic pile-sOil-jacket interaction has been the focus of recent studies and developments
in the field of fixed trussed frame (jacket type) offshore platforms. In particular, the dynamic
performance of the pile-soil-jacket systems under extreme environmental loading such as sea
waves, currents and earthquakes is of great interest for re-assessment and limit state of col-
lapse(integrity) studies of such structures.

Within this context, the issues such as different behavior of various jacket platforms in the same
region exposed to an extreme storm (or hurricane) or a severe earthquake loading, response Of
a particular platform exposed to different loading time histories but with the same intensity,
and the significance of the pile-soil interaction on the overall behavior of the platform, may be
discussed.

A number of SDOF and MDOF studies on the dynamic performance of jacket platforms have
been conducted in the recent years to address the aforementioned issues. Some of these inves-
tigations have neglected the nonlinear pile-soil-structure interaction. Some of the most recent
MDOF studies have considered a nonlinear model for soil by adoptmg a Wmkler type spring
model. The need to verify such existing nonlinear pile-soil models, so-called t-z and p-y models,
is great due to the uncertainties involved in their developments. The uncertainties may be re-
lated, to the empirical development of such models. Majority of these pile-soil.interaction models
have been established on a specific onshore site with the soil and the pile characteristics. Wider
application of the t-z and p-y models in the reeent offshore pile-soil design requires more studies
to be conducted on the topics of static, cyclic and dynamic pile-soil interactions

The ductility analysis of the complex MDOF system may provide a valuable re-assessment of
an existing jacket platform or offer accurate Eesults for the design purposes, but they are much
more costly than those of equivalent simplified systems such as (SDOF, 2DOF and 3DOF) On
the other hand, simplified models are more efficient for use in spectral analysis and would also
offer a valuable insight into the global behavior of the piIe-soil.jacket system.

1.3 MotivatiOns for the wOrk

The motivations for the initiation, of the present work may be stated as the current needs of the
offshore industry for:

re-assessment of the existing jacket platforms facing extreme loading such as hurricanes or
winter storms, subsidence of the foundation of the jacket platforms in areas such as North-sea
or Gulf of Mexico.

new jacket platform's design for the use in the next decades
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moving towards an integrated jakët-pilé-soil system änalrsis approach

considering the combined structural and dynamic loading effects hence moving ultimately to-
wards an integrated dynamic pushover analysis approach

simple models for screening the jacket platforms before opting for more costly non-linear dy-
namic pushover analysis approach

1.4 Scope of the study
The scope of this work is to establish:

an in-depth knowledge about the static and dynamic pile-soil interaction behaviour

- the methodology for the non-linear static and the dynamic integrated analyses of the jacket-
pile-soil systems near the ultimate collapse(ULS check)

For this aim, the following items are considered:

extensive literature study of state of practice and art pile-soil models

establishment of static and dynamic disk/cone-disk pile-soil models based on soil-structure
mechanics theory

validation of the static disk and dynamic disk-cone models against large diameter pile test
results as well as refined numerical methods

establishment of a new pushover static/dynamic approach based on wave height incrementation

introduction of a ductility spectra analysis approach to quantify the structure/foundation
characteristic as well as dynamic loading effects on the global behaviour of the jacket-pile-soil
systems near ultimate collapse

1.5 The organization of the work
The thesis has been organized as follows:

In Chapter 1 a preview and introduction of the thesis work is given.

In Chapter 2, a review and performance study of several widely used existing pile-soil interac-
tion models is presented. In Chapter 2, two new t-z and p-y models are presented and validated
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against the available data from the recent large diameter pile tests. Five case studies are in-
cluded at the end of this Chapter.

In Chapter 3, two different methods for (integrated) static pushover static analysis of jacket-
pile-soil systems are described and the results of three case studies are presented.

In Chapter 4, the dynamic pile-soil interaction is discussed and a dynamic model based on disk-
cone idealization of the pile-soil system is presented.

In Chapter 5, the ductility demand analysis approach is described for simplified models as well
as more complex MDOF systems and the results of the several case studies are discussed.

In Chapter 6, a reliability study of a pile-soil-jacket system is presented.

Finally Chapter 7, summarizes the main findings of this study and the recommendations for
further investigations.



2.1 Introduction
This chapter deals with the static pile-soil interaction problem. The term pile-soil modelling
is used throughout this study to refer to the idealization of the interaction between the pile
and the surrouiiding soil in a force-deformation(or stress-strain) sense. The pile-soil interaction
behaviour is often described by the load transfer- displacement curves, known as (t-z) and (p-y)
curves, respectively, for axial and lateral loading.

The current practice (t-z) and (p-y) models have been developed based on either the pile test
results or theoretically by Winkler spring idealization of the pile-soil system. The empirical
models such as those recommended by API RP2A 1993, Reese's (p-y) model, Dunnavant et al
(p-y) model have been established based on a limited number of large diameter pile tests mostly
carried out on onshore sites. The reason for such limited database is the enormous costs of
conducting large diameter pile tests. Alternative cost effective solutions such as triaxial tests or
model (centrifuge) tests have proven to be far less reliable. A third solution is sought during the
present work, which is based on a simplified theoretical approach validated against a number of
large diameter pile test results.

Extensive studies in the past two decades have been conducted to establish the existing databases
of API and NGI such as works by Barton et al, (1983), Bea et al, (1984) and (1986), Bond, (1992),
Broms ,(1964), Clarke et al, (1992), Chow, (1996), Cox et al, (1974), Dunnavant et al, (1989),
Fugro-McClelland, (1989), Gazioglu and O'Neill, (1984), Hamilton and Murif, (1988), Hamil-
ton and Dunnavant, (1992), Janbu et al,(1976, 1985), Jardine and Lehane, (1994), Karisrud et
al, (1992), Kraft et al, (1981), Madshus,(1997), Matlock, (1970), Lacasse and Nadim, (1992),
Langen;(1991), Langø,(1991), Nadim and Dahlberg, (1996), Nogami and Novak, (1977), Nordal
et al, (1985), Poulos and Davis, (1980), Randolf; (1983) and (1992), Reese et al, (1974,1975),
Svanøet al, (1992,1993), Sullivan et al, (1980) and Vijayvergiya, (1977) etc.

CHAPTER 2

STATIC PILE-SOIL INTERACTION

5
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In the recent years several large diameter pile tests have been carried out worldwide such as those
by BP and NGI (Clarke et al, 1992) at Pentre and Tilbrook sites in UK and by the University of
Houston (Dunnavant et al, 1992) at Houston site in USA, respectively. These recent LDPT tests
have provided extensive data on the static pile-soil behaviour during axial and lateral loading.
The selection of these tests were based on the evaluation of the soil conditions at each site which
appear to be representative of the offshore soils particularly encountered in the North sea.

The new (t-z) and (p-y) models presented in this Chapter are developed based on an uncoupled
finite disk idealization of the pile-soil system. The establishment of these models are based on
the initial works by Grande and Nordal, (1979), Svanø et al, (1993), for drained and undrained
type soils, respectively. The basic idea is to model the pile-soil interaction in each direction with
a multi-stack of disks (uncoupled finite disks). Each soil disk in the stack carries the pile loading
into the surrounding soil.

Also in this Chapter the presented disk models will be validated against the recent large diame-
ter pile test cases. A verification study of several pile-soil models discussed in this Chapter will
be presented at the end of the Chapter.

2.2 Axial pile-soil interaction models
The piles are primarily subjected to the axial loading due to their own weight and other gravity
loads transferred from the superstructure(jacket) which they support. In addition of the gravity
loads the pile foundation is supposed to carry the axial loads induced by the environmental
loading such as waves, currents and earthquakes on the superstructure.

The axial loads on the piles are resisted by the pile-soil reaction which is characterized by the
pile-soil axial interaction(t-z) curves. The pile-soil axial resistance either is provided by the skin
friction resistance of the pile shaft or the pile tip resistance or both. In the case of floating piles
only the shear resistance at the pile-soil interface contributes to the pile's axial resistance, while
for the end bearing piles a significant portion of the axial loads may be carried through the pile
tip. The shaft (interface)resistance of the piles are the main focus of discussion throughout this
Chapter , however (the current practice) tip resistance model for the end bearing piles will be
briefly described.

-

2.2.1 API's axial modeffing of pile-soil

The empirical(t-z) models such as those recommended by API 93 have been established based on
a very limited number of large diameter pile test results. By measuring the settlement (or axial
displacement) of the pile at several points along its shaft and at its head, an axial displacement
function (5) may be obtained which varies with the soil depth (Z). The static equilibrium of
a slice of pile with thickness dZ and outer diameter D(Z) shown in Fig.2.1 can be written as
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follows:
t(Z).irD(Z).d(Z) + N(Z) + dN(Z) - N(Z) = 0 (2.1)

thus:
1 dN(Z)

22irD(Z) dZ (.)
where t(Z) is the mobilized shaft friction function on the unit area of pile's surface, Z is the ver-
tical distance of the pile-soil element from the pile head and N(Z) is the axial force at the point Z.

If the deformation of the pile-soil during the axial loading is measured at several stations along
the pile shaft, then an approximate deformation function 8(Z) may be fitted to the measured
data points as illustrated on Fig.2.2.

The axial force at any point along the pile shaft may be obtained from simple continuum me-
chanics theory for small strains as:

N(Z) = EAe(Z) = EA--- (2.3)

By substituting Eq.2.3 into Eq.2.2 , t(Z) may be obtained as a function of N:

t(Z) - 1 d EA"82) EA &8(Z)
(24)- irD(Z)dZ dZ irD(Z) dZ2

If 8(Z) function is already assumed or found numerically from the test data, then t(Z) will be
known as a function of depth (Z) from Eq.2.4 for a number of axial load increments zN(Z)

i = 1,2, ..., n and n the total number of load increments), then a (t-z) curve can be easily
obtained for each depth (Z).

'P

P-SUM (t.dA)

Figure 2.1: A schematic illustration of an ax-
ially loaded pile-soil system

A,ci1 isr1mcritcf i1e,-sc:jpi1 systm

Figure 2.2: A fitted axial deflection curve 8(Z)
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1.2

00

04

02

Figure 2.3: API RP2A 1993 (t-z) curves for Figure 2.4: tJ,ak vs. S, relationship according
clay and sand to API RP2A 1993

The basic empirical method described above may be modified to accommodate, large shear
strains by considering the second order strain components in Eq.2.3. The empirical (t-z) rela-
tionship for cohesive soils according to API RP2A 1993 is shown in Fig.2.4 in which the peak
skin friction t7,eck has been correlated with respect to the shear strength S,, and the effective
overburden pressure of soil p as follows:

tpeak = 0.5Sr°5 ;' 1.0

tpealv = 0.5Sb°25 ;' 1.0 (2.5)

where 1' = S/p, S is the undrained shear strength of soil, and p'0 is the effective overburden
pressure of soil.

The axial load transfer-pile displacement (t-z) relationships for clay and sand are shown in
Fig.2.3. It is seen in Fig.2.3, (t-z) curves recommended by API RP2A 93 for clay have a post-
peak softening part with the residual skin friction value range between 0.7 and 0.9 which may
be determined as a function of stress-strain behaviour, stress history, pile installation method,
pile loading sequence and other relevant factors.

The residual pile-soil resistance ratio tres/tok could be found from direct shear tests or large
scale pile tests. It is verified in Sec.2.5 that this ratio may vary from about 1.0 near the soil
surface to nearly 0.7 close to the pile tip which agrees with the API recommendations.

2.2.2 Kraft's theoretical (t-.z) model
This subsection briefly describes the theoretical (t-z) model proposed by Kraft et al,(1981)
which has been widely used in the offshore industry for the axial pile-soil interaction analysis.

aol 004 004
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Figure 2.5: Idealization of pile-soil with con-
centric cylinders after Kraft et a!, 1981

Figure 2.6: An idealized post-peak (t-z) rela-
tionship and illustration of the slippage dis-
placement (after Kraft et al, 1981)

Kraft's (t-z) model has been recommended by the practice codes such as API RP2A 1993 prac-
tice code and widely used in the past 15 years in the design of jacket foundations.

Kraft's (t-z) model has been developed in two separate stages, namely pre-peak and post-peak.
Pre-peak portion of Kraft's model has been constructed based on the elasticity theory by using a
concentric cyliüder idealization of the pile-soil system. This approach assumes the pile-soil axial
displacement as an equivalent to the deformation of concentric cylinders under shearing from
the central shaft, as illustrated in Fig.25 (For details of derivation confer Kraft et a!, 1981).
The load transfer-displacement relationship of concentric soil cylinder can be obtained according

to the continuum mechanics theory as f011ows:

çr dr.z=trf -Jr Cr
where r = pile radius, r1 =the radial distance beyond which shear stresses are negligible (i.e.
the radius of the outer cylinder) and C = the shear modulus of the soil which is assumed to
vary nonlinearly as a function of the radial distance r and the shear strain or displacement z.

Kraft et al, (1981) has integrated Eq.2.6 by assuming a nonlinear G function based on soil's
shear stress-strain behaviour as follows:

- rz/r1 -
(2.7)

(2.6)

where G =the initial shear modulus of soil, = Rf/t,,0k and R1 = a stress-strain curve fitting
factor (a soil material parameter) and the other parameters are as defined above.
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The response of the pile-soil system after reaching the peak friction capacity at the interface
can not be simulated only by considering the shear stress-strain behaviour as described above,
because of the slippage occurring at or near the pile-soil interface.

The slippage is often associated with large shear deformations at the pile-soil interface which
may be simulated through direct shear or ring shear test techniques. The additional deforma-
tions may be added due to rotation of the principal stress axes after the failure. The whole
phenomenon may be modelled by a post-peak strain softening part.

From direct shear tests on various soils, the slip displacement has been found(Kraft et al, 1981)
to be between 0.9mm and 1.3mm beyond the displacement at the peak shear stress point. The
direct shear test data indicated that tres/ti,eak ratio may be in the range of 0.8-1.0 for sand
specimens and between 0.6-1.0 for clay samples.

This approach may not be a perfect way to simulate post-peak behaviour of the pile-soil sys-
tern due to assumptions such as constant total normal stresses during the direct shear tests,
non-homogeneities in the soil layer, the geometrical and dimensional effects etc. Therefore,
the empirically simulated post-peak response may be modified by subtracting the rebound dis-
placement at the pile-soil interface during shear stress drop from t7ak to tr8, from that of the
deformation caused by the slippage as follows:

1
[(rI/ri - Rf)(1 - a58Rf)"'

(2 8Z - Z8,
(1 - Rj)(rj/r1 - a8Rf)"

in which 5z denotes the difference between the slippage and re-bounding displacements. ares
denotes the residual stress ratio which is defined as:

ares =
tpeak

ire,
(2.9)

The limit of the above expression may be obtained as z = z81 (i.e. öz = 0) when ares and R1
are assumed to be equal to unity. The physical meaning of this limit is that for the deepest soil
near the pile tip the axial rebound displacement after failure may be neglected which seems to
be quite rational w.r.t very small displacements often occurring near the pile tip. It is assumed
that the pile base is supported in a firm layer and hence the possibility of a punch through is
not considered here.

Fig.2.6 shows the characteristic shape of Kraft's (t-z) curve. A quite significant post-peak soften-
ing can be seen in the post-peak region which is due to the combination of slippage and shearing
as discussed above.

2.2.3 Disk modeffing of the axial pile-soil interaction
The idea of finite disk or strip idealization of soil medium around the pile has been introduced in
the recent years by Authors such as Grande and Nordal, (1979), Nogami and Konagai, (1988),
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Figure 2.7: Disk idealization of pile-soil system Figure 2.8: The stress and strain distribution
under axial loading over the soil disk around the pile

Wolf and Meek, (1992) and Svanø et al, (1993). The concept is based on idealization of the
pile-soil interaction as finite uncoupled circular disks as illustrated in Fig.2.7. Various forms of
soil disks have been used so far such as rigid, elastic deformable and hyper elastic deformable
and elasto-plastic disks.

In this section a new (t-z) model is. introduced which is developed based on the idealization of
the pile-soil system by a set of uncoupled imaginary finite disks. Each disk as shown in Fig.2.7
represents the axial interaction between the pile and the soil.

The new model is an extended version of Grandë and Nbrdal, (1979) and Svanø's initial disk
models. The differences are in terms of stress distribution for a soil disk based on energy ra-
diation theory in soil which is described in Chapter.4, the tangent stiffness formulation instead
of secant stiffness as applied in the previous model and also analytical solution obtained by the
author for the particular cases(see appendix.A). The maximum mobilized shear stress at the
pile-soil interface is determined based on Mohr-Coulomb theory. The approach is rather simple
and different from previous model. The axial force in the pile is carried and distributed through
these imaginary disks to the ground. The induced shear stresses may be assumed to vary expo-
nentially towards zero at the edges of each disk. Plane strain conditions are assumed over each
pile-soil disk (i.e. strain components do not vary along the pile (shaft) axis).

The soil condition is assumed to be undrained(clay) under short term loading hence its vol-
ume could be considered constant after undergoing shear deformations. The radius of each
finite disk rd is assumed to be i times the radius of the pile r. Where i factor may be chosen
in the range of 10-20 to be sufficient for approximation of the shear strain distribution in the soil.
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From simple continuum mechanics, the shear strain of the pile-soil y may be calculated as follows:

çr dr''
Jro

where r is the shear stress around the pile and GT is the tangent shear modulus of the soil
which may be calculated from the following empirical relationship obtained by Langø, (1990)
and Svanø et al, (1993) through a series of triaxial tests on clay:

GT = G(1 - as)'3 (2.11)

where G is the initial shear modulus of clay, a and /3 are material parameters found by Svanø
et al, (1993) for different soil type. The practical range of 3 is between 1 and 4. Equivalent
values of a and /3 are derived for sand type soil according to soil data(Daghigh, 1993) given in
appendix.A. s is the normalized shear stress factor defined as:

Ts= -
Tps

where T8 is the shear stress at failure and the variation of the shear stress around the pile may
be assumed as follows:

T = rjexpi (2.13)

where r, iS the shear stress at the interface, r is the radius of the pile or the radial distance of
the interface section from the pile center and so r is the corresponding radial distance at any
point around the pile (see Fig.2.8).

The radius of the soil disk rid around the pile is times the radius of the pile r. From Eq.2.13,
the shear stress r value approaches zero at the edges of the assumed pile-soil disk. As illustrated
on Fig.2.7, the axial loading on the pile is resisted through the shear stresses at the pile-soil
interface which cause distortion of the soil disk around the pile. Hence, the axial displacement
at the pile-soil interface may be obtained by integrating the shear strain 7 over the radius of the
disk. By inserting r(r) from Eq.2.13 into Eq.2.10 and after integrating, the following expression
may be obtained:

r1 (1 - a--expT ]dr7Gja(1_fl)1
and so the axial pile-soil displacement may be obtained as:

pr T8 - (1 - a-n- exp()'1]drz = / 7(r)dr
Ga(1 - 8) J,. Tp8Ir

The integration of Eq.2.15 may then be performed either numerically or analytically. The
analytical solution may only be achieved for the integer values of soil parameter /3 while the
numerical solution may be preferred to find answer for any possible real value of /3. For /3
2.5, the following tangent hyperbolic (t-z) relationship is fitted to the result of the numerical
integration of Eq.2.15 which is plotted on Fig.2.9:

l)tanh(0913D) ;fl 2.5 (2.16)

(2.10)

(2.12)

(2.14)

(2.15)



Figure 2.9: Numerical integra- Figure 2.10: Numerical inte-
tion result vs. the fitted (t-z) gration result vs. the fitted (t-
function(/9 <2.5) z) function(8> 2.5)

For 3 2.5, the following (t-z) function would provide the best correlation with respect to the
numerical integration data, as shown on Fig.2.10:

t a1
Z = Dtpeak(

I.Jj tpeakt

Eq.2.17 can be re-written as follows:

t = tpeak( + 0.5
Z

+ /(aXd2(a12 + a - a1a2) + z2 + ad(a1 + 3a2)z) (2.18)
2a2 2ada2

where C, is the initial shear modulus of the soil, a1 and a2 are curve fitting factors which are
obtained numerically to be equal to /3 - 0.83 and /3 - 0.67, respectively. ad is obtained as:
/3(1 - 0.27/3). All other parameters in Eqs.2.16 and 2.17 are as defined in Table.2.1.

Fig.2.11 quantifies the influence of the soil's overconsolidation on the tangent shear modulus of
soil. The linear relationship represents an ideal overconsolidated soil with the /3 and a equal
to unity. While the non-linear CT - t/tl,eak relationships represent normally consolidated soils.
Practical range of /3 is obtained from the triaxial database (Svanø et al, 1993), (Langø, 1991)
and (Daghigh, 1993) to be approximately between 1.0 and 4.0.

From Fig.2d1, a is found to be less than or equal to unity. According to the tria.xial test results
(Svanø et a!, 1993 and Langø, 1991) practical range of a for clayey soils may be between about
0.5 and 1.0. Eq.2.15 is valid for 3 > 1.0 . For an ideal linear C - s relationship for OC soil
(i.e. with /3 = 1.0), a simpler (t - z) relationship can be derived through Eqs.2.10 and 2.11(see
appendix.A). The peak skin friction tak may be computed from the Mohr-Coulomb criteria for
both normally consolidated (NC) and overconsolidated (OC) soils.

2.2. AXIAL PILE-SOIL INTERACTION MODELS 13

tpeak
(2.17)
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Figure 2.11: The normalized tangent shear modulus of soil vs. a normalized shear stress of soil

For contractant type soil such as NC clay, the (p'-q) stress path indicates some degradation (fall
back) which is ifiustrated schematically on Fig.2.12. On the contrary, for OC type clay, the (p'-q)
stress path does not exhibit any degradation. As illustrated in Fig.2.12 the deviatoric stress q
increases as the mean effective pressure p' increases. This distinct behaviour may be attributed
to the soil's tendency to hold together due to a possible new formation of the soil structure
during shearing. Hence, the OC clay tends to dilate during the subsequent loading which allows
the increase of its shearing capacity. The shear strength of the dilatant soil increases almost
linearly by increasing the mean effective stress p'. The increase of p' means that the excess pore
water pressure decreases and the effective stress on soil particles increases.
This means that the orientation of the principal stresses at the pile-soil interface will be differ-

ent from that of the NC soil as illustrated in Fig.2.13.

Comparing the principal stress orientations shown in Fig.2.13, for OC soils, the major principal
stress o is 90 degrees rotated with respected to the case of NC soil. This can be mathematically
explained by k, the lateral earth pressure factor as (Janbu, 1973):

0 h + a
0 I

For NC soil, o thus k' 1. For OC soil: 0h_-h, o, and so Ic' 1.

Another distinct feature of stress path of NC soil (in particular clay) as shown on Fig.2.13, is
that as the soil reaches the failure (Coulomb) line, the shear stress approaches an almost con-
stant level, while the soil contracts at strain levels in the magnitude of 0.5 - 2.0%.

This stress level may be defined as the undrained shear strength of NC soil (Janbu, 1973). After
this constant shear stress q stage, by increasing the shear strain q = 1/2(e1 - e3). the stress
path (state) moves almost linearly back along the Coulomb failure line and then at larger strains

(2.19)
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p'=mean effective suess

Figure 2.12: .A schematic illustration of p'-q undrained stress paths for dilatant and contractant
type soil behaviour

Figure 2.13: The orientation of principal stresses in NC and OC soils around the axially loaded
pile
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., .,

Figure 2.14: Definitions of soil failure and mo- Figure 2.15: Definition of ISO, equilibrium
bilization lines based on Mohr-Coulomb crite- and Failure lines for an ideal coulombian ma-
ria terial

(Cq percent 5 percent), it curves down in a parabolic shape until soil reaches its contraction
limit (rupture).The latter behaviour may be defined as the strain softening response of the NC
soil in the face of contraction.

In contrast, the stress paths of OC soils indicate a linear clilatant failure behaviour up to very
large strains in magnitude of q 5% - 10% (LDPT database of Clarke et al, 1992).

In analogy with the NC soil, the undrained shear strength (Sn) of the OC soil may be defined
as the shear stress level at reaching the p'-q stress path to the failure line (i.e. the shear stress
corresponding to the intersect point of the stress path with the Coulomb failure line).

By outlining these basic assumptions, the peak shaft friction (t7jeak) may be obtained as T8 from
the intersection of the Mohr's circle and the pile-soil interface failure line lp

tanö tan2çb
rp3 =a(it)(1±1 - (1+tan28)(1

1+tan2))

Eq.2.20 may be simplified and re-arranged as follows:

= sin26o(1 ± '1 - (.)2O)
V cosb

where a = 1/2(o + a) is the average of the effective major and minor principal stresses, de-
noted respectively with o and a (o os). Note that for triaxial test conditions: a = o.
From Eq.2.45, two values emerge for r,3, a minimum and a maximum which correspond respec-
tively to r,1 and r,8,2 as shown on Fig.2.16.

(2.20)

(2.21)
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Pile bead free

Figure 2.16: Mohr-coulomb criteria for an ax- Figure 2.17: An example of a laterally loaded
ially loaded pile-soil system pile-soil system with clamped and free heads

Based on the above discussion on NC and OC soil behaviour,, which were visualized on Fig.2.12,
the maximum mobilized shear stress (or skin friction) for NC case, may be calculated as
while for OC situation r,8,2 may be calculated as the peak mobilized shear stress (or tak).

The undrained shear strength S,. of soil is defined by(see Fig.2.18):

Initial effective stress state

Pre-loading stress history i.e. contractant (NC) or dilatant type(OC)

Coulomb failure line of soil or pile-soil

The shear strength in effective stress approach might be determined in a simple manner as
illustrated in Fig.2.20(Nordal, 1986):

3(N-1)M=
3+ (1 +b)(N 1)

in which M represents the slope of soil(Coulombian) failure line as shown in Fig.2.20. Parameters
b and N are defined as follows:

b = - (2.23)

N 1 + siri
(2.24)

1 - sznçl

where 0' denotes the effective internal friction angle of soil. For an undrained condition, the
variation of excess pore water press p' due to loading may be approximately taken as constant
(Note that in reality zp' may vary with the total stress level o and a3). Fig.2.20 illustrates
an effective stress path by assuming that p' = constant. According to this definition the

(2.22)
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Figure 2.18: Definition of effective stress circle according to Mohr-Coulomb criteria

Figure 2.19: Definition of S according to total stress approach for unconsolidated undrained
condition
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a -a

Figure 2.20: Definition of failure lines according to Mohr-Coulomb criteria for different effective
stress conditions

Figure 2.21: Comparison of effective stress based Mohr-Coulomb criteria for NC and OC soils
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Stress path

Unconsolidated undrained condition

Failure line

Figure 2.22: Dependency of stress path on the effective stress in the soil(Skempton's theory)

undrained shear stress S may be approximately expressed as follows:

S=.qN=M(p+ad)

where q = - a3 arid p the effective overburden pressure at rest may be defined as:

, 1po = (a0 + 2o)

ad denotes the dynamic attraction of soil and might be defined as the tensile strength of soil
under isotropic stress condition(see for e.g. Janbu, 1985).
The lateral earth pressure at rest may be defined as follows:

(2.27)
a + ad

For a NC soil condition as illustrated in Fig.2.13: a = o, and a = a and o, > o. Hence
from Eq.2.27: k < 1.

For an OC soil condition as shown in Fig.2.13: o = a = a and a = a, and a > a,. Hence
from Eq.2.27: k> 1.
Neglecting the small attraction term of ad compared to much larger a or a then k may be
simplified from Eq.2.27 as:

k = (2.28)

p,

Combining Eqs.2.26 and 2.28 will result:

= + 2k) (2.29)

(2.25)

(2.26)
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For a condition of: ad <<ph, S,. of soil will be:

S Mp'0 M(l2k)
- 6 vO

For e.g. for a clayey soil with ' = 30 from triaxiai compression test, from Eq.2.22 M 1. For
e.g. for NC soil with: k = 0.5 from Eq.2.30, S, = 0.33o,0. For e.g. for OC soil with: k = 2.0
from Eq.2.30, S,. =

The undrained shear strength (Sn) for the stress conditions represented in Fig.2.16 may be
defined as the radius of the Mohr's circle which is normal to the failure line at the point of
intersection:

S=crsin (2.31)

Note that for an isotropic stress condition the above definition may not be applicable. Another
definition of undrained shear strength is given by Das, (1985) for unconsolidated undrained
condition as follows:

s,. =

where Zcr = Oi - 03 as the deviatoric stress at failure.
From Mohr-Coulomb failure criteria S,. can be approximately obtained as follows:

S= a)= (N-1)(a+ad)
iNi
2 N )(cll+ad)

sinçb

- l+(a1+ad)

For e.g. for OC clay with ad <<cr, Eq.2.33 may be simplified as follows:

= jsinc (2.34)

Ladd, (1974) has introduced a correlation between S, OCR and o of soil as follows:

8,. = 0.22oOCR08 (2.35)

where OCR is defined as the ratio of the consolidated stress to the current effective stress:

OCR = (2.36)
7)

Combining Eqs.2.36 and 2.35:
S,. 0.22cr (2.37)

The latter approximation is quite close to the one obtained from the approximate Eq.2.34 for
= 20 - 30deg.

(2.30)

(2.32)

(2.33)
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k( can also be obtained for contractant soils as follows:

,1 sinp
o - ' 1 + sinp

And for the dilatant (OC) soils, the following expression may be obtained from Eq.2.28:

1+sinp
o - -

where p = the mobilized friction angle prior to loading.

It can be seen that the lateral earth pressure for OC soils is always greater than or equal to 1,
while the coefficient k is always less than or equal to unity. The Jaky's approximate formula
for the lateral earth pressure which is expressed as:

= 1 - sinçb (2.40)

which may be compared with Eq.2.38. For overconsolidated soils Meyerhof et al, (1976) has
modified Jaky's formula as follows:

= (1 - sin)v'OCR (2.41)

For the typical average friction angle of OC soil 28-34 deg and OCR greater than unity in the
ran_ge of 1-30, Eqs.2.39 and 2.41 give respectively, values in the range of 2.0-3.0 and 0.5-3.0. The
measured average values of the coefficient of the lateral earth pressure for such soils are in the
range of 1.7-3.5 which are quite close to the results of the Eq.2.19 above,
Janbu, (1985) presented an approximate formula for the OC soils as follows:

1.
stL SZfl C

In which o = the maximum past pre-consolidation stress in the soil which is given or measured
between 600-1200 KPa for the North sea offshore sites. The latter then results in the undrained
shear strength values in the range of 150-300 KPa which are typical of the North sea.

However, Janbu, (1985) has rejected any direct correlation between OCR and S, since based
on the Mohr-Coulomb criteria no such direct relationship may be established. Alternatively one
may relate k to the OCR ratio as follows:

k = akOCR' (2.43)

The correlation coefficient ak and the exponent term n are defined by Janbu, (1985). The
following approximate correlation may be obtained for non-cohesive soils:

k 2sinçb' (2.44)

The results of latter expression may be compared with those of API and NGI for plugged and
unplugged piles in silica and carbonate sands. The mean values recommended by API are 0.8

(2.42)

(2.38)

(2.39)
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and 1.0 for open and close ended piles, respectively. In comparison NGI survey (Lacasse, 1992)
has given the mean vaJues 0.88 and 0.46 for silica and carbonate sands, respectively. The corre-
lation above gives values which are about 20 - 35 percent higher than the mean values given by
NGI and API.

By combining Eqs.2.45 and 2.31, the maximum skin friction at the pile-soil interface may be
written as

sin2ö ± / cos2TPSTTnaX(1
V cos25) (2.45)

where r,, denotes the maximum shear stress at soil failure according to Mohr-Coulomb failure
criteria. Eq.2.45 may be compared with the API formulations given in Eq.2.5.

The expressions derived above are consistent with those of API for S, in their limits. For a
practical range of , this limit may be approximately expressed as follows:

0.5S (2.46)

or by substituting for S,. from Eq.2.46, the above inequality 2.33 may be expressed as follows:

0.5crsinØ r93 osinç5 (2.47)

which may give the following inequality for varying in the range of 20-30 deg:

0.2o r8 0.5oi (2.48)

The above expression may also be expressed in terms of the conventional mean effective stress
o,,, the deviatoric stress component o and the major stress component o.

For cohesive soils, the adhesion (c) or the equivalent attiaction parameter ad may be included
in the above equations. The soil's attraction which is often denoted by ad, may be defined
(Janbu, 1973) as an apparent hydrostatic tensile strength of soil. To include such an effect
mathematically, ad may be added to o component in all above derivations.

2.3 Lateral pile-soil interaction
Pile foundations of offshore platforms are subjected to frequent lateral loading induced by the
action of the environmental loads such as waves, cuErënts, winds and earthquakes etc. The in-
duced lateral loading on the pile head is resisted through the non-linear lateral pile-soil reaction
which is characterized by (p-y) curves.

The lateral pile-soil behaviour may simply be expressed by the following differential equation
(see Fig.2.17):

-- +p(y) = 0 (2.49)
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If the action of the axial forces on the pile is also included then Eq.2.49 may be modified as
follows:

EIz d2NY) +p(y) = 0 (2.50)

If N = f(Z) and p(y) are assumed or obtained from measurements then the above equation could
be easily solved to give (y) the pile-soil lateral deflection and so the shear force and bending
moment distribution along the pile shaft.

2.3.1 API's (p-y) model
2.3.1.1 (p-y) model for clay

The lateral pile-soil interaction (p-y) models recommended by API RP2A 1993 have been devel-
oped empirically. The empirical establishment of such (p-y) models have been based on the data
acquisition from large diameter pile tests under lateral loading in the form of the voltage data.
Such voltage variations initially were calibrated against simple tubular beam bending tests at
the lab. So that M is related to V2, the measured voltage changes at the sensor (gauge) station
installed along the pile's shaft then are transformed to the corresponding bending moment data
via such earlier obtained (M,V) correlations. Then the lateral load transfer(p) and the associated
pile deflection (y) can be computed from beams theory as follows:

I' = ff dZdZ (2.52)

By incremental loading SL, the corresponding bending moment at the pile will increase from M
to M + SM and so the corresponding lateral pressure p to p + Sp and the lateral displacement y
to y + Sy, hence a set of (p-y) data could be obtained in an incremental way. (p-y) curves which
are obtained in this manner are generally nonlinear with an early initial yield and then followed
by a work hardening part.

The empirical (p-y) models which have been proposed by API RP2A 93 for lateral loading in
clay briefly described in this subsection. The method has been initially proposed for soft clayey
soils, moreover API RP2A 93 has suggested that the (p-y) model recommended for soft clay has
to be modified for use in stiff clay situations. Due to more brittle behaviour of stiff clay soils
compared to soft clay, particularly the post-peak part of the (p-y) curves have to modified by
considering the possible degradation. The degree to which this degradation might be considered
depends strongly on the specific stiff clay soil. For e.g. in fully saturated(deep water) condition
with likely hydraulic scour effects a larger post-peak degradation might be considered(see for
e.g. Dunnavant et al, 1989 and Hamilton and Dunnavant, 1992).

It has to be noted that the API recommended (p-y) envelope curves are design curve. This means
that they may offer lower estimate of lateral or axial soil resistance. The (p-y) behaviour as shown
in Fig.2.23 is completely nonlinear with no post-peak degradation except for cyclic loading which

p - - (2.51)
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Figure 2.23: API (p-y) curves for soft and stiff Figure 2.24: API-RP2A 1993 (p-y) curve for
clayey soils under short term static loading sand under static loading

will be discussed in Chapter.4. The peak lateral resistance (p, = Ppeak) is correlated against
the undrained shear strength of soil (Su). For deeper soil layers API RP2A 93 recommended
Pu = (9 - 12)S, while for shallow parts of soil, it has given the following criterion:

Pu3Su+Z+J? Z<Z (2.53)

Pu X'u Z> Zr (2.54)

where D(Z) = the pile's outer diameter at depth Z, 'y = the effective unit weight of soil, in
weight density units, J = empirical constant varying from 0.5 for the Gulf of Mexico to 0.25 for
stiffer clayey soils such as those encountered in North sea area, Z = depth at the point along
the pile shaft (positive downwards), Z = depth at the point along the pile at the. bottom of the
reduced resistance zone (top soil) and x = 9 - 12.

Zr may be obtained by solving Eqs2.53 and 2.54 simultaneously as follows:

Z(y+ JSu(Z))
=(X-3)S(Z)D(Z)

where x p,(Z>Z,.)p,(Z=O) = 9 - 12. If Su(Z) = cte and D(Z) = cte then Zr may be obtaineds'
from Eq.2.55 as follows:

(x - 3)D
J+

In general 5,. would vary with depth so the solution of Z7 may be obtained by solving Eq.2.55
numerically or graphically. API RP2A 93 has recommended that Zr should not be less than 2.5

(2.55)

(2.56)
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times the average diameter of the pile Da as:

D0(Z)
D(Z).dZ

z

2.3.1.2 (p-y) model for sand

API RP2A 93 has proposed the following empirical (p-y) model for sand:

kZy
p = Aptanh(-,---)

'Wa

where A = (0.3 - 0.8Z/D) 0.9, k = the initial modulus of subgrade reaction which can be
determined graphically from Fig.2.26 as a function of the internal friction angle of soil q.

The ultimate lateral resistance p, or Pak of sand has been empirically found to vary with the
depth, according to the following equations:

Pu = (C1Z + C2Da(Z))'y'Z (2.59)

Pad = C3Da(Z)71Z (2.60)

where Pus and pad represent the ultimate lateral soil resistance for shallow and deep soils. API
RP2A 93 recommended that p, at any given depth to be calculated as the minimum values of
Eqs.2.59 and 2.60:

p = min(p,,p,) (2.61)

where in Eqs.2.59 to 2.60, 'y' = the effective soil weight, in weight density units. Da(Z) = the
average outer diameter of the pile from near surface to the depth Z. C1, C2 and C = the lateral
resistance coefficients which are determined from Fig.2.25 as a function of .

2.3.2 Reese's (p-y) model
A semi-empirical (p-y) model has been proposed by Reese et al, (1975) for lateral analysis of
the pile in stiff clay. The model has been developed based on analysis of the an instrumented
pile in hard and saturated clay. The initial condition of test site has been reported (Reese et
al, 1975) to have salty water which then has been inundated with fresh water before lateral pile
test. The following describes briefly the original (p-y) model by Reese et al, (1975).

The general procedure for deriving the lateral load transfer (p) and the corresponding pile-soil
displacement (y) is described in Sec.2.3.1. The characteristic shape of the (p-y) curve proposed
by Reese et al, (1975) is given Fig.2.27, which consists of an initial linear elastic part followed
by a nonlinear elasto-plastic part until reaching the peak. The post-peak portion of the (p-y)
curve shows a rapid degradation (strain softening) of soil's lateral resistance to a residual value
which is far smaller than (Piieak or Pu).

(2.57)

(2.58)
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Figure 2.25: The ultimate resistance coeffi-
cients for API's (p-y) model for sand
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Figure 2.26: Subgrade modulus of soil k for
sand under lateral loading according to API-
RP2A 1993
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Figure 2.27: Reese's (p-y) curve for stiff clay under static loading
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The extent of post-peak degradation that is simulated by this model may be attributed to the
particular soil condition in which the pile test has been conducted. The saturated clay at the
site has been reported (Reese et al, 1975) to contain salty water and it has been inundated by
fresh water before the pile test. The rapid post-peak degradation of the Reese's (p-y) model
may have been the result of either the slackness or the hydraulic erosion of the soil.

In contrast the initial response of Reese's (p-y) model is very stiff which will be discussed later
in Sec.2.7. The initial stiffness and peak response of this model are governed by the following
equations:

pi=kZy (2.62)

where k = an empirical stiffness correlated parameter which varies with S between 0.14-0.55.
The associated nonlinear pre-peak (p-y) response described as follows:

0.5

P2 = O.5Ppeak()
Yc

where Yc = D(Z), = strain at the half the peak resistance, and varies from about 0.007 for
hard clay to about 0.004 for very stiff clay (Reese et al, 1975).

The post-peak behaviour of the model is expressed by the following equations:

7)3 = O.SPpeak(_Y - 0.O55Ppeak(11
- 25 ;Ay 6Ay (2.64)

YYc Ay

P4 = 0.5p0k(6A)°5 - °4llPpeak -
0.0625

Ppeak(Y - 6Ay)
Yc

;yoyAy (2.63)

_n IA\O.5 flAil _fl'7 A . >1QAP5 - 'J"-'PpeakW I - ' Ppeak Ppeak , Y - Yc

In the above equation, Yc is the corresponding displacement of the peak resistance point on the
Reese's (p-y) curve and A = is an empirical non-dimensionalized parameter which correlates, the
mobilized lateral resistance with the soil depth (see Fig.2.28). The ultimate lateral resistance of
the pile-soil system Pak is computed from the following empirical relationships:

Ppeak,1 = 2S,,D(Z) + 'y'D(Z) + 2.83S,(Z) ; Z Zr (2.67)

Ppeak,2 = 11S(Z) ; Z> Zr (2.68)

And p will be:
Ppok = mzn(pak,1 , Ppeak,2) (2.69)

where Z = is the depth corresponding to the bottom of the reduced resistance zone or the top
soil as defined in section 2.3.1. Reese et al does not present any specific criterion for Zr. It only
indicates that Eq.2.67 could be used for depths near the surface while Eq.2.68 may be used for
the intermediate and deeper depths.

6Ay < 18Ay (2.65)
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Figure 2.29: A disk idealization of pile-soil
system under lateral loading( a "strip" of soil
disk)

2.3.3 Disk modelling of the lateral pile-soil interaction
A new (p-y) model is developed in this section on the basis of disk modelling of the pile-soil
system in a similar way to the (t-z) model which is derived in Sec.2.2.3. Several simplifying
assumptions are made based on our initial understanding of the lateral pile-soil behaviour under
monotonic loading. Again as for the axial loading case, the pile-soil interaction will be modelled
by a number of uncoupled finite disks which encircle the pile. Fig.2.29 gives a schematic view
of a pile section with a strip of soil disk around it and the normal/shear stress distribution over
the strip of soil disk.

Each disk may be assumed to have a radius several times of that of the pile. This is to enable
the pile-soil disk to distribute sufficiently the lateral load from pile to the soil. Based on the
failure theory of Janbu et al, it may be assumed that the normal stresses imparted into the soil
disk from the lateral loading of the pile-soil system could be resisted in the form of shear stresses
around the soil disk. Again it may be assumed that for each uncoupled pile-soil disk a plane
strain condition exist (i.e. the stress components may not vary with the disk thickness or pile
depth). Moreover, it is assumed that the clay is in undrained condition, i.e. the soil element
volume will remain constant or:

krl = kol (2.70)

The shear distortion then may be computed as:

7 = - (2.71)

By combining Eqs.2.70 and 2.71, then the radial strain will be:

(2.72)
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Figure 2.28: The correlation factor A (modi-
fied after Reese et al, 1975)
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Figure 2.30: Numerical integration of Eq.2.77
vs. the fitted hyperbolic function Eq.2.78 for
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Figure 2.31: Numerical integration of Eq.2.77
vs. the fitted hyperbolic function Eq.2.78 for
fl2.5

From Mohr's circle and by making use of the latter assumption, the radial strain around the pile
in the direction of y-axis may be calculated as follows:

(2.73)

where r is the shear stress close to the pile and GT is the tangential shear modulus of soil which
is calculated from Eq.2.11.

The shear stress distribution along a horizontal" compression-elongation" column may be as-
sumed in an exponential form as expressed in Eq.2. 13 which satisfies the boundary condition at
the pile-soil interface. The second boundary condition is also satisfied at the infinity distance
from the pile-soil interface. However, for a soil disk of a finite radius, this may be approximately
satisfied by assuming that rj = (, = 10 20)r. According to Janbu's concept, the lateral pres-
sure at the pile-soil interface might be resisted through the shear stresses on a failure surface as
shown on Fig.2.29 up to failure point. Recalling Janbu's empirical relationship ultimate lateral
resistance of pile-soil and the failure shear stress at failure as:

S = (2.74)

where ( = a pile-soil interface factor, ranging approximately between 1 and 2, for no gap and
full gap conditions, respectively. p,. = the ultimate lateral resistance, in terms of stress units,

= an undrained shear strength correlation factor which is between 4-5 down to depth 5D(Z)
from soil surface, varies almost linearly between 5 and 8 for depths between 5D(Z) and 8D(Z)
and further down may be assumed constant in the range of 8-10.
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Janbu's empirical relationship may be used to correlate the lateral pressure at the pile-soil
interface to the resisting shear stresses over the uncoupled disks as follows:

fPi
Nru

where p, = the lateral pressure at the pile-soil interface, 'rj = the mobilized shear stress at the
pile-soil interface, r5 =the maximum shear stress at the pile-soil interface at failure and other
parameters are as described above. The lateral displacement y may be obtained by integrating
the radial strains along the pile-soil disk as follows:

y = erdr = f' f dr
/1

2G7 [1 (1 a-n- exp].dr (2.76)

where r1 is the radius of the imaginary finite disk. By combining Eqs.2.75 and 2.76, (p-y)
relationship may be obtained as follows:

['.' Tp8
[1 (1 a e )'] dr (2 77)- Jr. 2G2a(1 - i3) NruD(Z)rps Xl)

where T8 may be found as a factor of Su from Mohr - Coulomb failure criterion as given in
Eq.2.45 of Sec.2.2.3. After the numerical integration of Eq.2.77, various mathematical forms
may be tried to fit the data. In this case a simple tangent hyperbolic function is fitted (Fig.2.31)
to the integration data as:

p',6'
t h(

2aGy
0.5a(1+B)

an

where f(', 8') is obtained from Eq.2.45 as follows:

cos2q5'= sin(2')(1 +

For practical range of the effective internal friction angle of soil ' and the effective pile-soil
interface friction angle 6', the above function f(', 6') might vary approximately between 0.5
and 1.0. By assuming that the a parameter might vary practically between 0.5 and 1.0 for
various NC and OC soils, then from Eq.2.78, the following ratio may be obtained at large
displacements where the value of the tangent hyperbolic function may approach unity.

f&i,8')
Pu a

The latter ratio may be defined as the overconsolidation influence factor. From Eq.2.80 is that
for dilatant soils with a = 1.0 and the same or 5' angles, the P/Pu ratio would be greater than
that for the contractant soils with a < 1.0. The implication of introducing this factor here is that
the larger bias (Horsnell and Toolan, 1996), (Lacasse and Nadim, 1996) often associated with
using Eq.2.5 of API RP2A 1993 or similarly Eq.2.45 for NC soils will be reduced. The latter will
be discussed further in Chapter 6 within the context of reliability study of pile-soil-jacket failure.

Ti= (2.75)

(2.80)

(2.78)

(2.79)
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Ftom Eq.2.78, the initial modulus of soil's lateral response may be obtained as follows:

= (2.81)dy,0

which after differentiation may be re-written in the following form:

k
4NG

2 82
O.9fl(/3+1)D ( )

in which x as the numerical correlation factor is obtained to be about as 2.22 and the other
parameters involved are as defined earlier. Eq.2.81 can be compared with the correlation given
by Yoshida, (1972) as follows:

k2 = ((1 + v)G2 (2.83)

where the correlation factor is given as between 2.4 and 3.6. Svanø et al, 1993 has obtained
the lateral modulus of soil as 5G which is closer to the average value of k from Eq.2.81 about
5.12G for ai, = 2 near the surface where Ni,. = tO. As shown in Eq.2.81, the initial modulus of
soil in lateral loading is a function of the depth, pile's diameter and shear stress-strain behaviour.

2.3.4 Dunnavant's (p-y) model
Dunnavant and O'Neil,(1989) have proposed a new (p-y) model based on back analysis of data
from large diameter pile tests carried out at Houston site. This (p-y) model has been basically
developed for lateral loading of submerged, stiff and heavily overconsolidated clays. The soil
condition based on which the model has been developed, resembles the offshore soil conditions.
The soil condition at Houston site will be described at Sec.2.7 which is dedicated to LDPT case
studies.

The model has been modified by Dunnavant and O'Neill, (1989) for cyclic loading effects. The
recent design codes such as API RP2A 93 have also considered this method in their commentary.
The empirical establishment of the model has been based on the general procedure described in
Sec.2.3.1. Further details of the derivation of the criteria is given by Dunnavant and O'Neill,
(1989). Two distinct features about this (p-y) model are a) taking into account hydraulic scour
(gap) effects. b) elastic coupling between various (p-y) curves.

The degrading effects of developing gaps around the piles during cyclic lateral loading are par-
ticularly severe. This will be discussed in Chapter.4. Meanwhile, the static lateral capacity
of saturated stiff clay could be reduced substantially by previous gap formations, during past
storms or earthquakes. Such degradation effects are simulated through softening of the (p-y)
response of the pile-soil system.

Dunnavant's (p-y) model includes the elastic coupling of the nonlinear (p-y) curves through
introduction of a relative pile-soil lateral stiffness parameter (K,.) as follows:

El
K,.

= EBL4
(2.84)
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where E = the elastic modulus of pile's material, I the moment of inertia of the pile, E8 =
the soil's elastic modulus, L = the pile's length.

The results of previous study by Baguelin et al, (1977) have indicated that the soil's subgrade
modulus may vary with the flexural rigidity of the pile and thus as a nonlinear function of pile's
diameter.

According to the results of study by Gazioglu and O'Neill, (1984) the critical pile length La,.
may be obtained as:

= 3D(Z)(E[)4)0.286 (2.85)

the critical pile length given above is defined as the pile length beyond which the lateral pile-soil
resistance may not be mobilized considerably. The critical length may be defined as effective
length for flexible long piles under lateral loading.. In the following sections, by means of nu-
merical simulations it is shown that the lateral pile-soil mobilization is often limited to such as
limited depth for e.g. defined by Eq.2.85.

Dunnavant's empirical (p-y) model is expressed as follows:

p 1.O2ptanh[O.537(J!_)0.7]
1150

y S 8Y50 (2.86)

where Pu = the ultimate lateral resistance of pile-soil has been obtained empirically by Dunnavnt
and O'Neill, (1989) as follows:

Pu = NSD(Z) (2.87)

where N = an undrained shear strength correlated parameter which is calculated as:

ci'N =2 + S,(Z) ± 0.4:t5 (2.88)

where ci, = the effective vertical stress and S, = the average undrained shear strength from
the soil surface to the depth in question (Z):

Sua
fS(Z)dZ

(2.89)

In Eq.2.86, 1150 is the corresponding displacement at the one half of the ultimate pile-soil resis-
tance which is correlated against Kr as:

1150 = 0.00635oD(Z)K (2.90)

where and D(Z) as defined in Sec.2.3.1.

Dunnavant's pile-soil test results indicated that N for ultimate mobilization of the degraded
stiff clay may be achieved (see Fig.2.32).
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Figure 2.32: Janbu's N correlation factor and Figure 2.33: p-y criteria of Dunnavant et al
LDPT test vs. depth for static loading

2.4 Calibration of pile-soil disk models

The disk models presented in Secs.2.2.3 and 2.3.4 were established theoretically based on some
simplifying assumptions such as uncoupling, plane strain and undrained conditions etc. The
calibration of the presented models against the empirical results would constitute an important
part of their developments. The presented models are calibrated against the recent empirical
results from Pentre and Tilbrook sites (Clarke and Mc Clelland, 1992).

2.4.1 Calibration of the axial disk model

The disk model presented for axial loading of pile-soil in Sec.2.2.3 is calibrated against the large
diameter pile tests at Pentre and Tilbrook sites, respectively. First, the initial axial stiffness of
the (t-z) model will be calibrated with respect to the tests. The influence of residual stresses
induced during pile installations may be considerable. The residual skin friction may be caused
by rebounding of the pile to the surface and/or consolidation of the soil (see Fig.2.35).

This may lead to an increase or decrease of the overall pile-soil stiffness. If at the depth of
interest the sign of residual skin friction is negative, it will result in an increase of axial pile-soil
stiffness in compression and vice versa in reduction of axial stiffness in tension. Otherwise will
be true for the case of positive residual skin friction.

Although, the LDPT results show an apparent effect on the maximum mobilized skin friction
(t7,eak) due to the presence of the residual skin friction, but there is no definitive criterion to
take it into account. Hence, the Eq.2.16 may be modified according to the empirical results, as

34 CHAPTER 2. STATIC PILE-SOIL INTERACTION
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Figure 2.34: The initial stiffness changes due Figure 2.35: The residual skin friction at the
to existence of negative or positive residual pile-soil interface caused by the rebounding of
skin friction at the pile-soil interface the pile and consolidation of the soil

shown on Figs.2.33 and 2.34, to allow for pre-loading stresses:

t (2.91)
tanh[tanh1[o(/3 + 0.3)] - tanh'{cE(/3 +

tpeakta72h()

in which t8 denotes initial skin friction at pile-soil interface. The above equation may hold true
for t 0. For negative values of t, the load transfer-pile 's axial displacement relationship
may be assumed linear up to the zero load level (t = 0), with the same stiffness as the initial
stiffness of the pile-soil at t = 0 according to Eq.2.16:

t$
(2.92)- KZD(Z)

And hence the modified (t-z) relationship may look like:

tpeaktaflh(
cK.D(Z)z)

t = (2.93)
tanh[tanh1[a(/3 + 0.3)] - afi'J

where /3' = . According to the measured data by Lambson et al, (1992), the stress path
p'-q for both sites show very little degradation effects (see Fig.2.36). The measured peak skin
friction profile (Clarke et al, 1992) does also verify the non-degrading nature of Pentre clay
despite the fact that it's being assumed as normally consolidated. The stress history on most
part of Pentre sOil profile (Fig.2.36) shows a dilatant behaviour, which is in contrast to the def-
inition of the NC soils as illustrated in Fig.2.12. This may be due to two different reasons, first
the clay at Pentre site may not be considered as essentially NC because of the k' profile which
indicates that lateral earth pressure coefficient k for large extent of the pile penetration depth
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is greater than unity (or the effective horizontal stress is greater than the effective vertical stress).

Secondly, the stress path plotted on Fig.2.36 have been obtained from triaxial tests on disturbed
undrained samples of the Pentre clay. Hence, one might expect that the stress history of those
samples may have been altered. The latter is verified by means of Fig.2.37 which indicates that
the stress path of the samples which are subjected to some pre-stress to remove the sampling
alteration stress, have shown quite different behaviour which are expected to be true response
of normally consolidated Pentre soil. Although at certain depths there are some tendencies to-
wards increase of shear stress, however, these are not significant and in-situ behaviour can be
considered as contractant with moderate degradation.

The OCR profile measured at NC Pentre site by Lambson et al, (1992) indicates that the over-
consolidation ratio is greater than unity (which means that the soil has been pre-loaded to some
extent in the past, due to some possible geological changes or water level variations.

Therefore, assuming the greater value of t7,eak from Eq.2.45, will be valid in this case. The latter
can also be verified by dividing the measured peak skin data by the S,. profile. The ratio of
N8

t(Z) derived from tests and Eq.2.45 are plotted in Figs.2.70 and 2.71 for Pentre and
Tilbrook sites, respectively. As shown the theoretical N8 ratio varies with depth between 0.1
and 0.85 for OC and 0.4 and 0.8 for NC sites, respectively. These results are in rather good
agreement with the measured ones.

Thus the stress path plot of the soil could determine the use of either sign in Eq.2.45 as described
in Sec.2.2.3. The post-peak skin friction resistance of the pile-soil system may be assumed to
be less than or equal to the peak skin friction value. The ares = tres/tpeak is assumed simply

100 150 200 250 300 360 400500600700800500
pirmean effective atress(KPa) pl=tnean effective stress(KPa)



2.4. CALIBRATION OF PILE-SOIL DISK MODELS 37

10

20

E

£0

NC:Pirflre site

OC:Tilbmok site

described in Sec.2.2.2, may be calibrated either against direct shear tests results or against the
(t-z) probe data during pile tests. The relative pile-soil displacement from the peak point until
reaching the residual skin friction resistance may be correlated numerically as follows:

Hence, using Eqs.2.16 or 2.17 and accounting for slippage by inclusion of zth9 as a function of
tpeak - t,.e5 determined from (t-z) probe data (Fig.2.6), a numerical post-peak correlation may

polynomial coefficient

/3-0.83
a2 flQ.67
a3 -11.0670
a4 47.8700
a5 7.2700
a6 0.5384

-0.0182
a8 0.0002

684 0.5 0.6 0.7 0.8 0.9
&pha_{res}=tres/tpeak

Figure 2.38: Residual skin friction cXres ratio derived from LDPT database (Clarke et a!, 1992)
vs. assumed range

to vary linearly from 1.0 near the soil surface to about 0.7 near the pile tip. This simplifying
assumption is based on the cyclic degradation of the upper soil near the ground level during pile
installation. Fig.2.38 compares the measured and assumed trends of ares. The measured trends,
as shown between about 0.97 near the surface to about 0.65 near the pile tip.

The post-peak softening behaviour due to slippage or rotation of principal stress axes, as

Table 2.1: The polynomial coefficients of (t-z) curve computed according to disk model of pile-soil
system

40

50

= Z3i Zrb (2.94)



Figure 2.39: The post-peak softening due to
slippage and/or rotation of principal stress
axes

be established as follows:
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where Z,, = the pile tip depth or penetration depth and c, are the fitted 5th order polynomial
coefficients given in Table.2.1.

2.4.2 Calibration of the lateral disk model
The (p-y) disk model presented in Sec.2.3.3 is calibrated against the large diameter pile test
results available from Tilbrook and Houston sites.

The effects of the previous (cyclic) lateral loading during past storms or earthquakes may be
accounted for by either modifying the static Eq.2.78, (see Chapter 4), for such cyclic loading
effects, or through introduction of the gap factor ((i) which has been modelled in Eq.2.78. The
effects of pile driving on the static lateral response of the pile-soil system may be considered
through adding the initial skin friction on the pile shaft. The initial (residual) skin friction
induced by for instance pile driving process may influence the initial stiffness of the pile under
axial loading.

The (intact) initial stiffness of the pile-soil disk model is given in Eq.2.81. A good correlation is
obtained between the initial stiffness of the (disk) (p-y) model and the test results (see Fig.2.40).

20 40 60 80 100 120 140
Initial stiffness of p-y curves (MNkn)

Figure 2.40: Comparison between the mea-
sured(Clarke et al, 1992) and the predicted
initial stiffness of (p-y) according to the lat-
eral disk model

(2.95)

The peak lateral resistance of the pile-soil system calculated from Eq.2.74 is compared with the
measured peak resistance results on Figs.2.42 and 2.43. As shown, satisfactory correlations are
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Figure 2.41: The characteristic shape of the modified post-peak (p-y) curves for cyclic effects

obtained between the disk model and the test results.

The correlation between the lateral disk model and the LDPT test results at large displace-
ments particularly at shallow depths, indicates a post-peak softening (degradation) behaviour
for the stiff and heavily overconsolidated soils even under static loading. Thus Eq.2.78 may be
empirically calibrated to simulate the brittle post-peak behaviour of stiff clay which are often
encountered in offshore North sea sites. Fig.2.41 illustrates the proposed modification of the
original (p-y) curve derived in Sec.2.3.3 for non-degrading soils.

The calibrated (p-y) relationship may be written as follows:

p=f(yy)(Z) ;ycYyres (2.96)

p = p7e8(Z) y Yres (2.97)

where pres(Z) = the residual lateral resistance of the pile-soil system for stiff OC soil, which varies
with the soil depth. For depth below Z, as described in Sec.2.3.1, no post-peak degradation
may be considered

p8(Z) =p70(Z) (2.98)

2.5 Computational procedure
The computational steps are summarized as follows:

1) simulation of the pile-soil behaviour by means of (t-z) and (p-y) interaction curves described
above
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Figure 2.44: A finite element model of the pile-soil system
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modelling the pile by means of two node beam elements (Fig.2.44)

using an incremental loading scheme for the analysis of the case

The (t-z) and (p-y) data are generated by FORTRAN program GENSODM and other MAT-
LAB programs(see Emami, 1998) and incorporated into a nonlinear FE analysis program USFOS
(Søreide et al, 1994) as a number of uncoupled non-linear spring/disk elements. The pile ele-
ment model can be generated either manually or automatically by the aid of computer program
PREFRAME (Dnv, 1992).

The solution approach may be a pure incremental method or combined with iterations. An ad-
vanced arc-length technique (Crisfield, 1991) is used for numerical solution of the system which
is described in Chapter.3.

2.6 Verification of pile-soil interaction models(case stud-
ies)

Reliable application of the described pile-soil models would require a number of case studies.
Through such case studies, the predictive ability of various (t-z) and (p-y) models, as described
in secs.2.2.1 to 2.3.4, may be assessed and some practical recommendations may be proposed.

In the following subsections, all together five cases will be studied which comprise, respectively:

A static compression pile test at Pentre site

A static compression pile test at Tilbrook site

A static tension pile test at Tilbrook site

A static lateral pile test at Tilbrook site

A static lateral pile test at Houston site

The reason for selection of these test cases and an overview of the soil conditions at each site is
give in the following subsection.

2.6.1 Selection of test cases
After a survey of several large diameter pile tests (LDPTs) which were carried out in the recent
years in the North sea and the Gulf of Mexico regions (UK and US) a total number of five tests
were selected.
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The selection of the LDPTs were based on the following criteria:

Pile size (diameter)

Pile depth (length)

Quality of the tests

Soil type

Undrained shear strength of the soil (Su)

Overconsolidation of the soil (OCR)

Plasticity of the soil (P1)

The selected test piles had diameters in the range of 0.76m-1.22m which were comparable to
those used for the platforms in the North sea, where pile diameters of 2 to 3 m are common.

Pile length less than 30m is not sufficient practically to represent the offshore pile behaviour
under axial loading. However, in the case of lateral loading this restriction may not be applied,
since the soil resistance may not be utilized in deeper depths and thus increasing the pile length
will have virtually no significant impact on its lateral capacity.

The soil type in the selected sites were considered to be predominantly silty clay to clayey silt
with very little gravel/cobble portions (Lambson et al, 1992). The details about the mineralogy
of Pentre, Tilbrook and Houston sites have been reported by Lambson et al, (1992) and Dun-
navant et al, (1989). The soil profile of Pentre site contained higher silt content than Tilbrook
and Houston sites which are presented in Figs.2.51 and 2.57. The studied sites were different
in terms of isotropy. The soil at Pentre and Houston sites were considered to be more uniform
than Tilbrook site (Lambson et al, 1992 and Dunnavant et al, 1989).

The average undrained shear strength of soil Su varies from over 100 KPa (stiff) for Pentre site
to about 45OKPa (very stiff) for Tilbrook Site. The stress history of the selected sites were quite
different while Tilbrook site and Houston sites were heavily overconsolidated, Pentre site was
essentially normally consolidated.

The overconsolidation ratio (OCR) profiles are presented in Figs.2.47, 2.53 and 2.59. As it will
be discussed later, studying the effective stress path p'-q or similarly the lateral earth pressure
would be useful to understand the stress history of each site. From these kind of information one
might gain a little more insight into the pre-loading behaviour of the soil and be able to predict
correctly the principal stress directions at the pile- soil interface prior and during the loading.
To enable the reader to comprehend the lateral earth pressure factor, the effective overburden
pressure (vertical stress) parameter is examined for each site in the following sections.
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The plasticity index of soil is considered to be one of important parameters to describe the soil
condition for various sites. The selected sites, Pentre, Tilbrook Grange and Houston had mean
P1 about 30 percent 40 percent which indicated that they are not too plastic (Lambson et al,
1992).

The soil profiles which are presented in following subsections 2.1 to 2.3 are derived from the
LDPT data (Lambson et aJ, 1992), Clarke et aJ, (1992) and Dunnavant and O'Neill, (1989).

2.6.2 Pentre site
The grain profile of soil at Pentre site as shown on Fig.2.45 comprises several silty clay to clayey
silt layers (with varying silt content, which is maximum at the upper layers near the soil surface
and decreases with the depth and also becoming much stiffer. However, occurrence of a thick
silty clay has been detected below depth 45m.

The plasticity index for Pentre site is presented on Fig.2.46 , P1 ranges between 10 percent 30
percent which seems higher with respect to the clay sized fraction which is below 20 percent.
The latter has been attributed to the geological features of the site (Lambson et al, 1992).

The overconsolidation ratio (OCR) of Pentre site has been estimated from P1 (Plasticity index)
correlation and also directly from oedometer tests. Fig.2.47 shows the OCR profile obtained for
the Pentre site. It is seen that OCR decreases rapidly from about 5.2 near the surface to about
1.2 at 60m depth.

The undrained shear strength (Su) profile for Pentre site is shown in Fig.2.48. The (Su) profile
is selected from tests on undisturbed and unconsolidated samples in accordance with API RP2A
1993 recommendations. The measured trend on Fig2.48 shows a nearly linear variation with
the depth. An idealized line is fitted to the test data a. shown Su varies from about 5OKPa near
the top of cased part of the pile (15m below ground level) to about 14OKPa at the pile tip.

The average bulk unit weight of the soil at Pentre site is about 19.46 KN/m3.. e50 of the soil at
Pentre which has been derived from the triaxial test results (Lambson et al, 1992) varies between
0.05 near the ground level to about 0.003 at 51.4m depth(see Fig.2.49).

The shear modulus of soil G has been plotted in Fig.2.50. The selected data has been taken
from pressuremeter measurements and compared with the (t-z) probe (Lambson et al, 1992).
The G value varies from about 28MPa near the ground level to about 65MPa close to the base.

2.6.3 Tilbrook Grange site
Fig.2.45 presents the soil description at the Tilbrook Grange site tested by BP mt. and NGI. The
stratigraphy of the site is rather uniform with two main strata, an 18m lowestoft Till overlying a
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Figure 2.45: Grain profile of soil at Penter site
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lower and thicker Oxford clayey stratum. The upper stratum is considered to be clay dominated
(Lambson et al, 1992). The upper layers consist of very stiff silty clay with medium plasticity
index (20% - 30%) (see Fig..2.52). Meanwhile the lower stratum comprises a hard fissured clay
with silt partings with high plasticity index (20% - 40%).

The OCR profile for the Tilbrook has been given in Fig.2.53, it decreases from nearly 30 at
about 2m below the soil surface to about 3.2 near the pile tip. It is therefore considered as
heavily overconsolidated (OC) site.

Fig.2.54 summarizes the undrained shear strength (Su) data (Lanibson et al, 1992) for Tilbrook
site. The measured 8,. trend shows a large variation of (Su) with the depth. The idealized
variation of (Su) is fitted to the test data in Fig.2.54. The average Su is more than 400KPa
which indicates the clay type is very stiff.

The average total unit weight of soil is about 21.2 KN/m3. of the soil at Tilbrook site which
has been derived from the triaxial test results (Lambson et al, 1992) varies between 0.023 near
the ground level to about 0.007 at 51.4m depth (see Fig.2.55).

The shear modulus of soil G is presented in Fig.2.56. The G data has been chosen from the
pressuremeter measurements (Lambson et al, 1992) and compared with the (t-z) probe (Clarke
et al, 1992). The G values from seismic cross-hafl tests were several times higher than G profile
derived from (t-z) probe.

a, 7220 20 40 25
h,5 &,.rmjbfsdI91Pa)
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Figure 2.51: Grain profile of soil at Tilbrook Figure 2.52: Plasticity Index (P1) Profile of
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2.6.4 Houston Site

A brief description of the soil input data used for the comparative study of the Houston pile
tested by Dunnavant and O'Neill, (1989) is given in this section. The details of the test are
given by Dunnavant and O'Neill, (1989).

The grain profile of the soil is plotted in Fig.2.57 which represents a stiff clayey soil with variation
of silt and scattered sand. The plasticity index P1 of the soil is derived based on the correlations
given by Ladd and Foott, (1974) and Das, (1985) for various clayey soils. This correlation is
further calibrated against Pentre and Tilbrook LDPT data. As shown on the soil's structure's
profile this site has higher plasticity index in average than Pentre and Tilbrook sites.

The OCR and Su profiles are shown in Figs.2.59 and 2.60, respectively, which indicate that the
clay type of Houston site is stiff and heavily overconsolidated. OCR of this site varies from about
30 near the soil surface to about 6 close to the pile tip. The strain at half the maximum princi-
pal stress as plotted in Fig.2.61 does not vary considerably with the depth and in average is
about 0.0125 which is somewhat higher than the recommended values by API RP2A 1993 and
Reese et al., (1975).

The corresponding average unit total weight of soil is about 21MN/m3. The shear modulus
profile for Houstonsite has been derived from (my) probe data based on Eq.2.82(see appendix.A).
G varies between 2OMPa near the stirface to 12OMPa at the maximum penetration depth.

6000
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Figure 2.57: Grain profile of soil at Houston Figure 2.58: Plasticity Index (P1) Profile of
site Houston Site

2.6.5 Summary of pile's structural description
The structural characteristics of the selected piles resembled those of the piles used as foundation
of North sea offshore Jacket platforms.

Pentre pile has been tested as cased at its upper 15m length. Therefore soil resistance is not
considered for this part. Details about fabrication and calibration of piles are given by (Cox et
al, 1992), (Clarke et al, 1992) and (Karisrud et al, 1992). Fig.2.63 gives a schematic view of the
Pentre, Tilbrook and Houston piles layouts. Table.2.2 describes the outer diameter, thickness
and the length and penetration depth of these three LDPT piles.

2.7 Axial loading cases
Three case studies of Pentre pile in compression, Tilbrook pile in both Tension and compression
are presented in the following subsections. The results of predictions by using different methods
described in Secs.2.2 and 2.3 are compared with the pile test results (Clarke, 1992). Both (t-z)
and the overall axial behaviour of the pile-soil systems are examined.

LDPT test Pile O.D t,, L
(m) (m) (m) (m)

Pentre(NC) 0.762 0.015 58.5 55.0
Tilbrook(OC) 0.762 0.030-0.040 33.5 30.0
Houston(OC) 1.220 0.016 11.4 11.0
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Figure 2.64: Predicted versus measured (t-z)
response of the pile-soil system at Pentre site
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2.7.1 Pentre pile
2.7.1.1 (t-z) response

Figs.B.1 to B.17 compares the generated (t-z) curves for Pentre (NC) site with the measured
curves at different depths. The measured (t-z) curves have distinct shapes in the deeper depths
(below z=-21m), with a prominent peak and a clear strain softening behaviour at the post-peak
region. Meanwhile the (t-z) curves probed (Cox et al, 1992) at the upper depths (near the sur-
face) have no well defined (distinct) shape. The latter curves have peaks close to their nominal
residual capacities at large displacements without any appreciable strain softening. This might
be. due to cyclic degradation of upper soil layers caused by pile driving. The latter will be briefly
discussed within the context of the dynamic modelling of pile-soil in Chapter 4.

It is observed that the (t-z) response of Pentre pile has been overpredicted by the (t-z) method
recommended by API RP2A 1993. The corresponding ultimate capacities are about 30 to 50
percent in average higher than the measured ones. This can be easily explained by Eq.2.5, in
which for NC soils with ,b = S,/p' ratio far less than unity it results in a ti,eak/Su ratio near
the unity. In this case, the ratio is about 0.27 which resulted in t73eak/S,. ratio about 0.97
while the average measured t7,eak/S,. as shown on Fig.2.70 is about 0.59. Meanwhile the average
tpeak/Su ratio obtained from Eq.2.45 for. the lower and upper bounds of the disk model as shown
on Fig.3.4.3.3 are about 0.60 and 0.68 which are very close to the actual measured value. It is
seen in Fig.2.64 that the disk model has fairly well predicted the trend and the average values far
better than API 93 but the local responses are stiffer near the surface, softer in the intermediate
depths and closer to the measured trend at the deeper depths near the pile tip.

The presented Kraft (t-z) curves in Fig.2.64 are calculated based on an idealized trend to the
measured LDPT data(Clarke, 1992) to see the match between the predicted (t-z) shape and
the measured curves. The comparison of the predicted peak and residual skin friction values of
Pentre pile according to Kraft et al, (1981) are discussed by Gibbs et al, (1992).

In this Chapter the (t-z) curves referred to as Kraft et al, (1981) are calculated according to the
method described in Sec.2.2.2. It appears that (t-z) curves generated by the theoretical model
Of Kxaft do match well the test results for Pentre pile. The discrepancies observed in Fig.2.64can
be attributed to the idealization of the test data and the inherent bias in the concentric model's
assumptions (see Sec.2.2.2 and Kraft et al, 1981).

Table 2.3: The load-displacement response of the Pentre pile under compression test
Method/Capacity Peak Capacity -

(MN)

API RP2A 1993 8.00 7.63 1.31
Kraft (t-z) model 7.16 6.38 1.18
Disk model 5.74 5.07 0.94

Residual Capacity Bias
(MN)
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Figure 2.66: The characteristic shape of API's (q-z) curve

2.7.1.2 Global pile response

The global load-deflection response of the NC pile at the Pentre site which is predicted by the
(t-z) methods described in Sec.2.2 are compared with the measured response in Fig.2.65. It can
be seen that various approaches have well predicted the initial response. However, Kraft's (t-z)
and the presented disk models have slightly underpredicted the initial stiffness of the pile. The
amount of discrepancies have considerably increased by increasing the pile's axial load above
3MN level. Above this level, Kraft's proposed model has provided rather stiffer response com-
pared with the disk model.

Near the failure the latter response curve has become much softer due to successive yielding
of soil. In the post-peak region there is considerable difference between the different response
curves. The post-peak softening simulated according to disk model is gradual while a slightly
steeper degradation can be observed in the response of Kraft's (t-z) model. In contrast to the
Kraft and disk models, the predicted residual response of the Pentre pile based on the API model
is quite different. The response predicted according to API (t-z) model softens very suddenly just
after peak and then it hardens steadily due to full mobilization of the shaft skin friction prior to
that (Le. at the peak) and then drop in the shaft skin friction to its residual limit which occurs si-
multaneously with increase in the pile tip displacement and gradual mobilization of it's capacity.

In overall the axial load-deflection behaviour of the Pentre pile has been very closely predicted by
the presented disk model. While the recommended (t-z) model by API RP2A 1993 has provided
the stiffest response compared with the measured and other predictions. The corresponding
peak and residual capacities have been given in Table.2.3. As shown the bias in computed peak
capacity is the highest for API 93 (t-z) model about 1.31 compared with 1.18 for Kraft's (t-
z) model and 0.94 for the current disk model. Note that the bias throughout this Chapter is
referred to the ratio of the predicted to measured capacity.



2.7. AXIAL LOADING CASES 53

2.7.1.3 tip (q-z) response

To be able to compare the performance of the (t-z) models, the load-deflection response of the
piles in this Chapter are computed according to API RP2A 1993 model. Fig.2.66 shows the
characteristic shape of the API's recommended (q-z) curve. As shown, the yield gradually oc-
curs at the pile tip with the first soil yield at a displacement of about 0.002 and the ultimate
yield at a displacement of about 0.1 times the outer diameter of pile.

The peak tip resistance qpeak for non-cohesive soils such as sand and gravel are obtained as:

q1ak,nc = Nqp' (2.99)

where p' represents the effective overburden pressure at the pile tip and Nq denotes an empiri-
cal tip resistance correlation factor which is given as a function of the pile-soil friction angle 5
according to API RP2A 1993. N varies from 8 to 50 for 5 varying from 15 deg to 35 deg. It is
known from soil mechanics experiments(Nordal et al, 1989) and also the Mohr-Coulomb criteria
that the pile shaft friction and tip resistance may not vary linearly with the effective overburden
pressure of soil. After a certain depth given by the practice codes such as API, the peak skin
friction and the tip resistance may reach a limit.

For very long piles, the effective overburden pressure j at the pile tip can be very large and hence
applying Eq.2.99 might overestimate API RP2A 1993 specifies a limit for q,ak as 12MPa.

For cohesive soils such as clay and silty clay, the peak tip resistance of the pile is determined as
follows:

where c, is given as 9 according to API RP2A 1993 and S denotes the undrained shear strength
of the soil. is empirically obtained and might vary depending on the soil's brittleness and
overconsolidation factor. For soft clayey soils, a value of is relevant while for heavily overcon-
solidated stiff clays such as those encountéréd in the North-sea region a value of 12 seems to be
more appropriate(see for e.g. Janbu, 1985, Clarke et al, 1992, Lacasse and Nadim, 1996).

2.7.2 Pentre pile in Tension
2.7.2.1 (t-z) response

The discussion of the local (t-z) response is given in previous subsection.

2.7.2.2 Global pile response

To investigate further the capability of the presented (t-z) models in tension, the Pentre pile
is considered here without end-bearing. Since there has not been any direct measurement of
the tensile capacity Of the Péntre pile available, the measured compressive response curve as
presented in Fig.2.65 is used to derive the tensile capacity by simply subtracting the measured
end-bearing(Clarke et al, 1992) from it. It is therefore assumed here that the contribution of

q7,ak,c = (2.100)
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Table 2.4: The load-displacement response of the Pentre pile under tension test

the pile-tip resistance may be neglected in tension.

The corresponding measured and computed response curves are plotted in Fig.2.67. As ob-
served, all three models have well predicted the initial response of the pile-soil system under
tensile loading. The discrepancies have appeared above a threshold of 1MN load level. This
point is the onset of the local yield at pile-soil element level (i.e. initial (t-z) yield at or near
surface). As the axial loading increases towards the failure, the amount of discrepancies increase
rapidly. However, the disk model response becomes gradually softer compared to the predicted
response curves by Kraft and API 93 models, which become increasingly stiffer until reaching
the peak. The proximity of the disk model prediction to the derived (measured) response is
even better than the previous compressive case. This may indicate that some of the discrepancy
observed in Fig.2.65 the compression case might have been due to the uncertainty(bias) involved
with the prediction of end bearing behaviour of the Pentre pile (which were used according to
API RP2A 1993).

At the post-peak region very significant discrepancies is observed between the predicted residual
capacities according to AP193 and Kraft (t-z) models. While the Kraft (t-z) model has simulated
a considerable post-failure softening after the full mobilization of the shaft's frictional capacity,
the API RP2A (t-z) method has given a sudden steep drop towards a constant residual axial
capacity due to the shape of it's (t-z) curves as shown in Fig.2.64.

The associated peak and residual capacities are given in Table.2.4 and the corresponding bias
with each peak is calculated against the measured one. As seen, the amount of bias is greater
than 1.0 (about 1.04) for disk model in the case of tensile loading compared with the value 0.94
obtained for the compression case. The bias again is larger for API 93 (t-z) model about 1.48
compared to Kraft's (t-z) model which is approximately 1.31. The design implication of such
large bias in the case of NC clay may be to use an alternative effective stress based method as
disk model or modify the current API RP2A 1993 formulation Eq.2.5 as recently discussed by
other authors (Lacasse and Nadim, 1996 and Horsnell and Toolan, 1996). It has to be noted that
the partial safety factors such as those given by API code are not applied for the pile capacity
values obtained throughout this Chapter.

Method/Capacity Peak Capacity Residual Capacity Bias
(MN) (MN)

API RP2A 1993 7.75 6.97 1.48
Kraft (t-z) model 6.84 5.69 1.31
Disk model 5.42 4.38 1.04
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Figure 2.67: Predicted versus measured load-deflection response of Pentre pile (NC) in Tension

2.7.3 Tilbrook pile in compression

2.7.3.1 (t-z) response

Load transfer-pile displacement (t-z) curves evaluated at several depths for the OC pile at the
Tilbrook Grange site are presented in Fig.B.18 to B.34 in conjunction with the measured curves.
The scatter is very wide at the shallow soil depth down to the 12m below ground level.

Both API RP2A and disk model have very significantly overestimated the axial pile-soil resis-
tance at the these depths (O-12m). However, the misleading fit between the Kraft's (t-z) curves
in Figs.B.18 to B.34 is because of using the measured trend data instead of A or methods as
presented previously by Gibbs et al, 1992.

The measured peak skin friction(Clarke et al, 1992) is an order of magnitude less than what can
be predicted rationally based on empirical API RP2A 1993 model or the presented disk model
based on soil mechanics theory.

It may be concluded that the difference is due to the other pre-loading degradation effects such
as pile driving effects, whip phenomenon as briefly discussed by previous authors such as Harnil-
ton and Dunnavant, (1992), Hobbs, (1992) and Gibbs et al, (1992) or possibly due to cyclic
degradation caused by pile driving which will be discussed briefly in Chapter.4.

The following tensile pile measurements by Cox et al, (1992) has confirmed this to a large extent.
The latter case will be studied in the following subsection. Gibbs et al, (1992) has concluded
that due to pre-loading degradation the peak skin friction capacity of Tilbrook Grange (OC)
pile has dropped to its residual capacity. Other authors such as Randolph, (1992) have analyzed
this based on the effective stress basis at the pile-soil interface and concluded that some changes
in the principal stress axes of soil may have occurred due to the pile installation.
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Figure 2.68: Predicted versus measured (t-z) Figure 2.69: Predicted versus measured ax-
response of the pile-soil system at Tilbrook site ial load-deflection response for OC pile at
in compression Tilbrook site in compression

In contrast to the upper soil levels, at the intermediate depths particularly (from 12.Om to
19.Om) the correspondence between the computed and the measured (t-z) curves is good. From
depth 22.0 to 30.Om near the pile tip the measured skin friction capacity is much larger than
the predicted values. Fig.2.71 compares the predicted and the measured t,0.Ok/S,. ratios with
the depth for Tilbrook pile. The average measured t7ak/Su ratio is about 0.38 compared with
the mean ratios of 0.41 and 0.61 obtained for the lower and upper bounds of the presented
disk model. The average t1ak/S, of API 93 model computed according to Eq.2.5 is about 0.36
which is very close to the test result. Eq.2.5 for S,/p' ratios far greater than 1.0 gives smaUer
tpeak/Su than 0.5 which is a reasonable agreement with the predictions of the disk model with
two different set of upper and lower c and 3 soil parameters (see the appendix.A for the input
data).

Table 2.5: The load-displacement response of the Tilbrook pile under compression test
Method/Capacity Peak Capacity

(MN)

API RP2A 1993 14.33 13.54 0.89
Kraft (t-z) model 16.04 14.32 0.99
Disk model 15.80 15.28 0.98

Residual Capacity Bias
(MN)
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Figure 2.70: Predicted vs. measured tak/Su Figure 2.71: Predicted vs. measured tyjeak/Su
for (NC) Pentre Site for (OC) Tilbrook Site

2.7.3.2 Global pile response

The predicted versus measured global response of the Tilbrook pile under compression are sum-
marized in Fig.2.69 and Table.2.5. As can be seen, there is a good match between the predicted
responses and the LDPT data (Gibbs et al, 1992). However, as the load level exceeds the thresh-
old of 5MN, the measured response appears to be softening which is associated with the local
yields at the element level at a faster rate than what's anticipated by various predictive methods.

The latter may be related to the observed softer (t-z) response of the pile-soil at the upper
layers near the ground level, which somewhat contradicts the general shape of the (t-z) curves
as described in Sec.2.2

Despite softer pre-peak response, the near failure response of the Tilbrook pile has been well
predicted by Kraft's (t-z) and the disk models. Although, AP193 approach ha.s resulted in a
lower anticipated peak capacity, nevertheless the ultimate residual capacity has been well pre-
dicted at larger displacements near the 80mm. The latter observation can easily be interpreted
by means of mathematical equations previously described in the Secs.2.2.1 to 2.2.3.

The API RP2A 1993 peak skin friction formulation (Eq.2.5) do somewhat underestimate the
tak values close to the pile tip where Se/p' ratio is much larger than 1.00, as shown in Fig.2.71.
As seen, the average discrepancy at these depths (below 25m) is about 20-25%. Since the majOr
contribution to the pile-soil's axial capacity in compression comes from these deeper depths near
the pile's base, therefore one may expect such an underprediction of the peak axial resistance as
observed which is about 5 percent in this case.

On the other hand, due to the compressibility of the pile (flexible pile El oc with an embed-
ded length about 30m, the difference between the axial displacement at the top and the tip of
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the pile wifi cause delayed phase in the full mobilization of the end-bearing compared to that of
the pile shaft.

As shown on Fig.2.69, while the overall axial capacity of the pile-soil system drops at the peak
point due to shear failure occurring at the interface after full mobilization of the frictional Ca-
pacity throughout the pile, only a small portion of the pile's tip resistance which is about less
than one third of it has been activated by moving end into the soil. Thus by passing the peak
a gradual hardening occurs due to this activation. The slope of post-peak softening and subse-
quent hardening depends on a number of parameters such as the ratio between the tip maximum
resistance or end-bearing capacity to the shaft resistance and also the shape of the response q-z
curve. In the current study, the q-z curves for all cases are computed according to API RP2A
1993 recommendations. This is to enable us to investigate the performance of (t-z) models.

2.7.4 Tilbrook pile in tension
The incentives for studying the tensile behaviour of the large diameter pile at Tilbrook site have
been:

to assess the ability of various (t-z) methods in predicting the pile-soil behaviour in tension

to study the skin friction differences between tensile and compressive loading of the pile

to quantify (indirectly) the influence of the end- bearing on the overall axial capacity of the pile

to verify the possible effects of soil degradation and excess pore water pressure generated by
driving of the reaction piles during the earlier compression test

2.7.4.1 (t-z) response

The measured (t-z) curves for tensile loading of the Tilbrook pile are plotted in Fig.2.72 versus
the calculated (t-z) curves. The predicted (t-z) curves have not shown any considerable post-
peak degradation except at elevation -28m where also a typical (t-z) response for intermediate
depths is observed. The ratio tres/tpeak ratio is about 0.80. The peak skin friction at the upper
to intermediate layers have been mobilized at displacements between 20-35 mm

The measured tensile (t-z) curves as shown, are closer to their predicted counterparts than the
compressive ones. This may explain that observed scatter in the previous compression case
might have been caused by other phenomena such as pile driving and prior cyclic degradation
which will be discussed in Chapter.4.

-

It is observed that at depth about 6m below the ground level, the disk and AP193 models have
well predicted the response of pile-soil, whereas the Kraft's (t-z) method has largely overpredicted
the tensile resistance of the pile-soil system. At 13m depth, the measured response is higher than
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Figure 2.72: Predicted versus measured (t-z)
response of the pile-soil system at Tilbrook site
in Tension
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Figure 2.73: Predicted versus measured tensile
behaviour of the pile at Tilbrook site

all other predictions. However the agreement between the predicted and the measured ultimate
tensile resistance of pile-soil at 25m depth below the ground level is good.

Table 2.6: The load-displacement response of the Tilbrook pile under tension test
Method/Capacity Peak Capacity Residual Capacity Bias

(MN) MN

2.7.4.2 Global pile response

The predicted and measured load-deflection curves of the tensile pile at Tilbrook site are com-
pared in Fig.2.73 and Table.2.6. It is observed that the initial response(stiffness) of all the
presented methods are very close to the measured one up to the load level about 6MN. However,
the peak and the ultimate capacities of the pile-soil system have been significantly underesti-
mated by all the applied (t-z) methods. Initially, it looks surprising that the measured tensile
capacity of the OC pile(Clarke et al, 1992) is even higher than its compressive capacity, since
it has been assumed that the tip resistance would be negligible in tension as confirmed by the
measurements. However, further investigations showed that the possible effects of soil's con-
solidation and dissipation of the generated excess pore pressure in the elapse time between the
previous compression test and the later tensile test would have caused an increase in the effective
stresses in the soil and thus the shear strength according to Eq.2.45. This further increases the

API RP2A 1993 13.15 10.71 0.82
Kraft (t-z) model 14.36 11.46 0.89
Disk model 14.24 11.98 0.88
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peak skin capacity according to Eq.2.45 or Eq.2.5. Meanwhile the combined effect of reaction
frame piles and the direction of the loading on altering the orientation or magnitude of the major
effective stresses can not be neglected.

Fom effective stress point of view, it can be argued that the shear strength as mentioned earlier
is related to the lateral earth pressure factor k( as expressed in Eq.2.19 which is a function of
the major and minor effective stresses o' and O3. The effective vertical stress may be altered
from what is often assumed as the effective overburden pressure p' in Eq.2.5 The latter change
then may affect the lateral earth pressure and so the shear strength and the failure stress level
as discussed above. Such combined effects however have not resulted in very significant change
in the case of tensile loading of Tilbrook pile as observed.

As seen on Fig.2.73, the proximity of the Kraft's (t-z) model with the measured peak skin fric-
tion data used as input indicates that the bias and uncertainty in the characteristic form of the
model is far less than the bias related to his A and a peak skin methods as previously shown by
Gibbs et a!, (1992).

The close results between Kraft's and disk model may be explained in this way, the Kraft's (t-z)
and disk models as described in Sec.2.2.2 and 22.3 , respectively, have been developed based
on the theories of non-linear elasticity with using different techniques. By looking at the basic
derivation of two models, it may be said that Kraft's (t-z) model is a particular case of disk
model with assuming fi equal to unity. Bearing in mind that for heavily overconsolidated soil
as Tilbrook value normally varies between 1.0 to 2.5 according to the interpretation of the
triaxial and the shear modulus data, it is easy to understand why these two theoretical models
would give closer results than other methods.

2.8 Lateral loading cases
In the following subsections the behaviour of Tilbrook and Houston piles under lateral loading
are studied. The p-y and the global lateral responses of the pile - soil are predicted by using
API's soft clay approach, stiff clay method of Reese et a!, (1975), criteria of Dunnavant and
O'Neill, (1989) and the presented modified (p-y) method.

2.8.1 Tilbrook pile
2.8.1.1 (p-y) response

The predicted load transfer (p-y) curves are compared with the measured data (Clarke et a!,
1992) in Figs.C.2 to C.8.

The measured load transfer (p) has been obtained simply by double differentiation of the mea-
sured bending moment (M) along the pile and (y) the pile displacement has been found through
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Figure 2.74: Predicted versus measured (p-y) Figure 2.75: Predicted versus measured global
response curves for Tilbrook site lateral response of the pile at Tilbrook site

double integration of (M).

The predicted (p-y) curves based on API RP2A 1993 recommendations for soft clay, Reese's stiff
clay approach, Dunnavant's p-y and disk models for various depths are plotted in Fig.C.2 to
C.8. It is seen that the (p-y) response predicted according to API RP2A 1993 recommendations
are generally much softer than the measured and other predicted curves for their initial parts.
In contrast to the measured curves and those predicted according to the stiff clay method of
Reese, these curves do not exhibit any post peak degradation and yield at much higher ultimate
capacity for lateral displacements larger than 100 mm.

The (p-y) curves predicted by the stiff clay method of Reese et al, (1975) have peaks much
higher than the measured response and also have exhibited very significant post-peak degrada-
tion which resulted then in much lower ultimate lateral resistance of soil. The reason for this
sort of behaviour may be sought in the empirical foundation of this method. Reese's stiff clay
method as described briefly in Sec.2.3.2 have been derived from lateral loading tests in a stiff
clay soil with high degree of hydraulic degradation in the soil (see Reese et al,1975). It may
be worth of notice that this intensity of post-peak degradation may be expected during cyclic
loading of the pile-soil.

In comparison with the test data, Dunnavant's stiff clay method has resulted in slightly stiffer
initial response but closer ultimate response. The agreements between the result of disk model,
Dunnavant's method and test are very good.
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Table 2.7: The bending moment response of the Tilbrook pile under lateral loading test

2.8.2 Global lateral response of pile
The predicted and measured (Clarke et al, 1992) lateral load versus displacement curves at the
(OC) pile head are summarized in Fig.2.75 and Table.2.7.

The observed initial response of the Tilbrook pile has been rather softer than the anticipated
behaviour by the empirical and theoretical models described in Sec.2.3. The reason for the ex-
isting discrepancy might be the effects of the cyclic loading prior to the static loading. Also the
LDPT data (Clarke et al, 1992) has been taken from the end of the first cycle loading which
may not exclude completely such cyclic effects, however it is assumed that such measured data
would be representative of a short term (monotonic type) static loading.

The studied models Dunnavant 's (p-y) model, Dunnavant (p-y) model and the presented disk
model have resulted in fairly close responses.

The stiff clay approach of Reese has overpredicted the initial lateral load by about 20 percent to
50 percent whereas its ultimate response is less stiffer response. This is because of the observed
significant post-peak degradation of the local (p-y) response curves in Figs.C.2 to C.8 lateral load.

It may be argued that since the initial phase of (p-y) curves will mostly be utilized for the case
of design storms in the offshore piles, thus the existence of a larger bias in the initial response
might reduce the reliability of the designed platform. However, the latest studies (see Chapter.6)
have shown that the reliability index of the jacket-pile-soil system near collapse might be less
influenced by the uncertainties in (p-y) modelling.

Some improvement in the larger lateral displacements is observed. However, it's expected that
the Reese response curve would be softened faster as the displacement increases further thus
under-estimating the ultimate response.

As far as API soft clay (p-y) model is concerned, it has given the stiffest response by far. Because
of non-degrading nature of these (p-y) curves as shown in Fig.C.2 to C.8, it may be anticipated
that the amount of over-estimation would increase further.

Similar trends can be observed for the induced maximum bending moment versus the lateral
pile head load from Fig.2.76. However, the amount of the discrepancies are lesser which may be

Method/Capacity Lateral load
(MN)

Maximum bending moment
(MN.m)

Bias

API RP2A 1993 1.85 2.98 0.63
Reese (p-y) model 1.85 2.92 0.62
Disk (p-y) model 1.85 3.82 0.81
Dunnavant (p-y)model 1.85 4.73 1.00
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2 2 4 5 5

Figure 2.76: Predicted versus measured maximum bending moment response for lateral loading
of Tilbrook pile

beneficial from the point of view of the pile design.

The proposed disk (p-y) method has given fairly good predictions of both initial and ultimate
responses. The corresponding maximum discrepancy varies between 7 - 23 percent with pene-
tration depth of pile. The discrepancies in predicting the bending moment are less than those
related to the load-deflection response. This low sensitivity to the choice of the (p-y) method
used in the analysis of pile will be a beneficial factor for the offshore pile designer. On the other
hand, relatively larger differences in the pile head lateral load and stiff±iess calculations would
have an adverse effect on the global behaviour of the platform under sea loading(see Chapter 3
and 5).

2.8.3 Houston pile
2.8.3.1 (p-y) response

The derived and predicted (p-y) curves for the tested pile of Dunnavant and O'Neill, (1989) may
be compared in Fig.C.9 to C.12. The deviations are comparatively larger than those observed
for Tilbrook lateral pile test. However, the (p-y) trends and the range of peaks in the curves are
fairly well predicted by the described methods.

As seen in the case of Tilbrook pile, the peaks and post-peak degradation have been overpre-
dicted by Reese's stiff day method while API's soft clay approach has not taken into account
any such degradation but still has resulted in softer (p-y) curves.

Closer correlations have been obtained for the proposed (p-y) method based on disk modelling of
pile-soil. The initial response has been well predicted according to Dunnavant 's (p-y) method
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Figure 2.77: Predicted versus measured (p-y) Figure 2.78: Predicted versus measured global
response curves for Houston site lateral response of the pile at Houston site

while the ultimate lateral resistance of the soil has been overestimated. This method might
produce even stiffer response by using the recommended values Eo = 0.005 and 0.01 instead of
the measured value of 0.025(Lambson et al, 1992).

Table 2.8: The bending moment response of the Houston pile under lateral loading test

2.8.3.2 Global response

The measured (Dunnavant, 1989) and predicted behaviour of the pile under static lateral load-
ing are presented in Fig.2.78 and Table.2.8. It is seen that the (p-y) disk model presented in
Sec.2.3.3 has provided the best prediction.

In comparison, the soft clay approach recommended by API RP2A 1993 has given much softer
lateral response which may be due to the large uncertainty(bias) involved in estimating the key
model parameter Yc as described in Sec.2.3.1.

While Dunnavant and O'Neill, (1989) (p-y) model has resulted in fairly close prediction to the
test and the disk model, the stiff clay (p-y) approach of Reese et a!, (1975) has overestimated

Method/Capacity Lateral load
(MN)

Maximum bending moment
(MN.m)

Bias

API RP2A 1993 0.82 1.97 0.98
Reese (p-y) model 0.82 2.07 1.03
Disk (p-y) model 0.82 1.88 0.94
Dunnavant (p-y)model 0.82 1.82 0.90
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Figure 2.79: Predicted versus measured maximum bending moment response of Houston pile

the capacity.

It can be seen on Fig.2.79 that the computed maximum bending in the pile is less sensitive to the
choice of (p-y) method which may benefit the pile design. However, the large scatter observed
in Fig.2.78 in terms of the pile, head stiffness based on API model may demand the use of an
improved empirical model 'such as Dunnavant's method or a mechanistic and non-specific model
based on stress-strain behaviour of soil such as disk model. The response of the jacket platform
under extreme loading condition might depend on the stiffness and the ultimate capacity of the
pile foundation. This issue will be discussed in Chapter.3.

2.9 Concluding remarks
The pile-soil interaction problem may be studied efficiently by means of (t-z) and (p-y) models.
The current practice (t-z) and (p-y) models have been established mostly based on one or few
onshore pile tests or based on elastic half and nonlinear subgrade modulus theories.

Two new (t-z) and (p-y) models were developed based on Mohr-Coulomb failure criteria and
disk modelling of pile-soil system. The presented disk models were calibrated against the the
LDPT test results at Pentre, Tilbrook and Houston sites.

The performance of the current practice pile-soil interaction models recommended by API RP2A,
Reese, Kraft and Dunnavant, were assessed in extreme offshore soil conditions by means of five
case studies.

Satisfactory correlations were obtained between the predictions and the LDPT test data for
Kraft's (t-z) model, Dunnavant's (p-y) model. More improved correlations were obtained for the
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calibrated disk models.

Predictive ability of various models generally improved with the depth. The maximum discrep-
andes were found near the soil surface due to possible top soil degradation during pile driving.
Comparatively larger discrepancies were found for the lateral loading cases which showed the
limits of the lateral pile-soil models.

The observed discrepancies might be partly due to the soil degradation near the surface prior
to loading, the nature of the test data used for calibration of the model which may contain
some bias and the underlying simplifying assumptions of model. Despite such uncertainties, the
bending moment response were predicted well by all the studied models.



CHAPTER 3

NONLINEAR STATIC ANALYSIS OF
JACKET-PILE-SOIL SYSTEM AT

THE ULTIMATE COLLAPSE

3.1 Introduction
The aim of the current Chapter is to investigate the static behaviour of the jacket-pile-soil system
at ultimate collapse. In this connection, the influence of the pile-soil foundation on the global
performance of the system near the ultimate collapse will be the main topic of this Chapter.

When a jacket platform is subjected to the environmental loads such as those induced by extreme
waves and currents or severe earthquakes, the system might exhibit a non-linear behaviour due to
possible yields in either soil or structure or both. This possible non-linear behaviour demands a
different treatment than the traditional methods of linear elastic analysis of such system. In the
recent years, several tools have been developed to account for the non-linear behaviour of maiiily
jacket structures. Among those are phenomenological models developed by for e.g. Marshall et
al, (1977) and Zayas et al, (1980) and general non-linear beam models by for e.g. Sugmimoto
and Chen, (1985) and Chan, (1989) and plastic hinge beam-column models by (Nonaka, (1973),
Ueda and Rashed, (1974), Rashed, (1980), Moan et al, (1985), Søreide et aJ, (1986), Abbassian,
(1991), Eberg et al, (1993) and Hellan, (1994)). The developments of the pile-soil interaction
models in the past two decades such as those empirical models by Matlock, (1970), Reese et al,
(1975), Dunnavant and O'Neill, (1989) Hamilton and Dunnavant, (1992) and theoretical/semi-
empirical models by Grande and Nordal et al, (1979) , Kraft et al, (1981), Svanet al, (1992 and
1993), Gabr, (1994) and Ernami et al, (1998) have provided necessary tools for an integrated
jacket-pile-soil analysis. Within the context of this Chapter, we shall employ the plastic hinge
beam model of Søreide et al, (1986, 1994) and the pile-soil interaction disk and API RP2A
1993 recommended models as described in Chapter.2 to assess the overall static response of the
jacket-pile-soil system.

67
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3.2 General
As mentioned in the introduction, the jacket platform is exposed to the environmental loads
induced by the extreme waves and currents or earthquakes. The imposed forces on the structure
are transferred into the soil through the piles supporting the jacket platform. Such imparted
extreme loads may cause partial or complete yield of soil either in tension or compression or
under lateral loading or a combination of these. It may be noted that a torsional type shear
failure in the soil may be neglected because of the load transfer mechanism of the jackets.

The resulting potential failure modes of the jacket foundation might be either pull out failure or
plunging or the plastic hinge failure in the pile or a combination of these failure modes. Since the
wave induced axial and lateral forces and bending moments act simultaneously on the pile head,
hence, the failure mechanism of pile foundation of a jacket platform may involve a combination
of the pile-soil failure modes.

The soil failure usuaily starts at the upper layers near the mudline due to the potential weakness
of the top soil and also because of the base shear transfer mechanism into the soil which only
involves a limited depth of soil from mudline. For a base shear type failure mode of the jacket
platform the soil yield under lateral loading and consequently plastic hinge formation in the pile
are likely scenarios of the foundation failure. Whereas for an overturning type collapse mode of
platform, the pull out or plunging of piles might be considered as the likely forms of pile-soil
collapse. As mentioned, a combined failure mode can occur for a case which involves comparably
large base shear and overturning moments at the pile-soil-jacket interface.

The soil failure can affect the structural member failure mechanisms by changing the bending
moment or axial force transfer in the critical members. The foundation failure may change the
stiffness and/or the ultimate collapse strength of the jacket-pile-soil system. The term jacket-
pile-soil interaction which is used in this Chapter will refer to any of these possible effects.

The main focus of this study is near failure type interaction between the jacket structure and its
foundation. However, the linear elastic type interaction will not be excluded from this definition.

It is shown within the cases studied in this Chapter that the potential of the jacket and pile-soil
foundation interaction whether is linear or non-linear may not be ignored. Since, such ignorance
may result in an unrealistic estimation of the initial stiffness, the peak ultimate collapse capacity
and residual strength of the system.

However, the consequence of the jacket-pile-soil interaction can be more crucial for the ultimate
limit state of collapse assessment of the jacket platforms particularly with the usual uncertainties
in the soil's resistance parameters. The latter issue will be pursued further in the Chapter.6.

In most of the previous studies, the jacket-pile-soil interaction has been ignored such as recent
works by Eberg et al, (1993), Hellan et al, (1993), Sigurdsson et al, (1993), Stewart et al, (1993).
Other most recent works have included the nonlinear pile-soil-structure interaction by using un-
coupled Winkler spring models, such as studies by Bea et al, (1993), Emami et al, (1995-1996)
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and Schmucker, (1996). The currëht Chapter will consider both the existing and the developed
pile-soil models, as described in Chapter 2.

Two different analysis methods exist for progressive collapse analysis of jacket-foundation sys-
tem, respectively:

Jacket-pile-soil interface analysis approach

fully integrated analysis method

The interface analysis approach is implemented into a linear structure and non-linear pile-soil
system interaction analysis program SPLICE(Dnv, 1992) and also implemented for dynamic
analysis of a simplified non-linear jacket-pile-soil model (see for e.g. Emami et al, 1996). The
integrated jacket-pile-soil analysis approach will be discussed throughout this Chapter.

To be able to make proper comparisons and quantify the effects of pile-soil-jacket interaction
on the overall behaviour of the platform, throughout this Chapter three different supporting
systems are considered as follows:

fixed support system

linear spring support (lumped system)

non-linear pile-soil system (consistent FE system)

The influence of the pile tip plug (end-bearing) on the ultimate collapse response of the jacket-
pile-soil systems is investigated within this Chapter.

Concerning the loading, both gravitational loads(dead plus live loads) and environmental loads
induced by waves and currents are considered.

Two different static pushover analysis methods are applied namely, traditional wave load incre-
mentation (WLI)method(Emami et al, 1995 and Hellan, 1995) and a more refined wave height
incrementation(W1ll) approach. The influence of wave load modelling is illustrated within the
cases studied in this Chapter.

-

To illustrate the methods, 2D and 3D jacket models with the different soil and foundation models
will be analyzed throughout this Chapter. The results of some of these static pushover analyses
will be later compared with those of cyclic quasi-static and dynamic analyses in Chapter 5.
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U

Figure 3.1: A two node finite beam element with 6DOFs at each node

-1 -0.5 0 0.5

Figure 3.2: The yield and bounding surface concept associated with a 2node beam element
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>

Plastic hinge

3

>

Figure 3.3: Dividing a beam element into two sub-elements after plastic hinge formation at the
mid-span of element

3.3 Integrated pile-soil-jacket interaction analysis
3.3.1 Elasto-plasticity formulation of two node beam element
In the integrated jacket-pile-soil analysis approach, the changes in the stiffness of structure and
foundation is considered through updating the system stiffness matrix at each step of the anal-
ysis as described in the following.

The procedure involves the establishing the elastic element stiffness matrices of both struc-
tural and pile-soil elements. Applying plasticity theory to establish the elasto-plastic (tangent)
stiffness matrices of the structural and pile-soil elements and then transforming them into the
global system stiffness matrix. Applying an incremental load and solving the system of non-
linear force-displacement equations by means of familiar methods such as Newton-Raphson,
Arc-length, Load limit point etc.

3.3.1.1 Element definition

Each actual structural member is modelled by using a two node beam element. Each node of
beam element has 6DOFs as shown in Fig.3.1. A new node is introduced at the mid-span of
the element after a plastic hinge is formed(see Fig.3.3). The beam element is then divided into
sub-elements and the stiffness matrix of each sub-element is established and then incorporated
into the super-element's stiffness matrix through a static condensation method.

3.3.1.2 Element (elastic) stiffness

A potential energy approach is formulated in an incremental form in USFOS program (Søreide
et al, 1994) to compute the tangent stiffness matrix KT of each finite two node beam element

1(2 112
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shown in Fig.3.1. An approximate Von-Karman form of Green strain function is used to calculate
the strain as follows:

12 12= u, , , (3.1)

with u,v and w denoting the displacement components in x,y and z directions, respectively (see
Fig.3.1). The strain energy expression is established by using virtual work principle as follows:

u 1/ Td (3.2)

in which a, and v denote the general stress, strain vectors at their final values and the ele-
ment volume. Eq.3.2 is referred to Clapyron's theorem. Considering the general stress-strain
relationship according to continuum mechanics theory, we will have:

in which W is a matrix relating the stresses and strains in a linear elastic body such as two node
beam. E and 11 denote the Young modulus and the poisson ratio respectively. For e.g. for a
unidirectional stress-strain, we may write according to Hook's law:

a = E.e (3.4)

Now substituting for a in Eq.3.2 from Eq.3.4, we may obtain the following relationship for the
strain energy contribution due to the axial force in a bar element:

U = EA f(u, +v2,1 + w2,)2.dx (3.5)

Similarly the bending moment contribution can be added to the R-H-S of Eq.3.5 as:

U = EA j(u, +v2 + w2)2.dx + f (EI,v2,xx + EIw2, xx).dx (3.6)

where the indices ,x and ,xx denote the first and the second derivatives with respect to x. Now
taking a variational form of the strain energy according to Eq.3.6 will yield:

p1 ,1 NSU = EAJ u, .5u, .dz + J EI(v,5v, -
0 0

N p1

+J EI(w,8w, - --w,öw,)dx - J (N + EAu,)5zz,.dx (3.7)
0 0

Considering the general shape function relating the deformation of any point on the two node
beam to the nodal displacement will yield:

U =

v =
w = qq

(3.8)
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where s denote the .shape functidns corresponding to the displacement components of the two
node beam element in directions (i.e x,y and z) as:

= [coshkx/l sirihkx/l kx/l 1]

= [coskx/l .sinkx/l kx/l 1] (3.9)

where the buckling coefficient k is given as: k = JN/EI. in which N and EI denote the axial
force and the fiexural rigidity of the beam-column member. The coefficients of the generalized
coordinate q are obtained according to the boundary conditions of the beam-column element.
For the beam elements without axial force a third order poiynomial shape function is used instead
and an analytical (closed form) solution is obtained for the tangent stiffness matrix relationship
in USFOS(see Søreide et al, 1994). A variational form of the incremental strain energy would
be expressed as:

özU = 8uT f EAq5,q5?jdxzu
0

N+övT I -
Jo

+wT f -

+ovTf
I

+ 5uT (
0

I I

+SwT f EAcb,w,qdthu + 5uT I
0 Jo

+6vT I + äwT [ EAw;xw2,zcbzdxw
Jo

+öwT I + övT I
Jo Jo

After arranging the integral terms in Eq.3.11, the components of the USFOS beam element
(elastic) stiffness matrix is expressed as follows:

k

Ke = (3.12)

in which the subindices denote the submatrices which are given in order as integral terms in
Eq.3. 11. As seen, both linear elastic terms and second order terms due to rotation of the beam
element are present in the above formulation. The coupling between the two translational degrees
of freedom v andw (see Fig.3.1) are also present as the last integral term in Eq.3.11.

3.3.1.3 Plasticity formulation

The increment of plastic displacement is normal to the yield surface which is often referred to
as normality rule expressed as follows:

I5v [91

0 11zA11
0 g2jL2]Gu (3.13)

(3.10)

(3.11)
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in which u, = an increment of the plastic displacement, 9i and 92 are the green function
element of USFOS beam model which are defined in the following. is a vector containing
scalar values of and iA2.

T or

where F defines a plastic interaction function for the tubular section as:

irN jM2+M2z
F=cos(2N) M

=0 (3.15)

Si in Eq.3.14 refers to a general force vector at node i of beam element. A kinematic (strain)
hardening rule and partial yield formulation is used for the beam element according to a bounding
surface concept(Dafailas and Popov, 1975 and Hilmy, 1984). The concept is illustrated in Fig.3.2.
This model consists of a yield surface which is encircled by an outer bounding surface representing
the ultimate limit state of collapse as shown. The inner and outer surfaces in Fig.3.2 represent
the initial (fiber) yield and the full plastification of the element cross section. The region inside
the inner yield surface represents the elastic state of the stress. According to the consistency
law the stress state must remain on the yield surface that is:

r=o (3.16)

Hence, the transition from the initial yield state to full plastiflcation can be achieved by the
translation of the inner yield surface towards the outer plastic surface in a unidirectional man-
ner(the gradients of the stress vector are unidirectional at both surfaces). At the point of contact
the stress state reaches the full plastification of the cross section. To avoid the intersection of
these two translating surfaces, the shape of each surface is maintained however the size of the
yield surfaces may vary(Isotropic hardening). The additional strain hardening may be modelled
as follows:

Fb=f(
ZbaYZP

(3.17)

in which rb represents the bounding surface function, = the mapping of the stress vector
onto the outer bounding surface, fi = is a shift (translation) parameter, Zb = an extension
parameter, o = the yield stress of the beam element material( such as steel) and Z, =the
plastic section modulus of the element. The kinematic hardening may be used to account for
Bauschinger effects, however, for cyclic plasticity the changes of the yield and bounding surface
may be considered due to changes in the elastic region of the material. The material parameters
f3, and Zb can be obtained from the standard material and cyclic tests. Hellan et al, (1991) and
(1995) has calibrated these parameters against the cyclic tests results of Gra.nli, (-) and Ogawa
et al, (1987). It is recognized that the changes in the size of the yield and bounding surfaces can
take place gradually during a cyclic load process. However, in the current USFOS model, the
transition from monotonous state to a stabilized cyclic state is set instantaneously. The cyclic
transition is assumed to take place when the accumulated plastic work at the plastic hinge of
element exceeds a threshold value as follows:

Ii
LTI OTA i TAT -hznge -' p > threshold threshold.L .Lp

i=1

(3.14)

(3.18)
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in which Whinge and Wthre31d denOte the wOrk consumption at the plastic hinge and a threshold
set for the plastic work in USFOS. 9threshoid similarly denotes the threshold for the formation of
a plastic hinge in the beam elements. The tangent(elasto-plastic) stiffness matrix KT of each
finite two node beam element of Fig.3.1 can be established as follows. The incremental force
-displacement relationship reads in matrix form:

IS = KTLVe (3.19)

in which Ve represents the elastic displacement increment as follows:

Ve = - (3.20)

Combining Eqs.3.19, 3.20 and 3.13, the following emerges:

= KT(v - G,4A) (3.21)

The consistency rule requires that the force vector during yieldhas to remain on the yield surface
that is:

= = GS =0 (3.22)

Pre-multiplying both sides of Eq.3.21 with G and using the consistency rule of Eq.3.22, the
following can be written:

GS =
Hence, A is obtained from Eq.3.23 as follows:

- G.A) = 0 (3.23)

= (G'KTGu)GKTzv (3.24)

Substituting for z.A from Eq.3.24 in Eq.3.21 leads to the tangent stiffness relationship as follows:

K"(v -
= (KT -

= Kepv (3.25)

An integrated pile-soil-jacket analysis is performed by considering the pile-soil elements as a
part of the whole structure. This method would allow to establish a global system stiffness
matrix with inclusion of pile-soilinteraction effects in it. Likewise an integrated frame structure
analysis, in which interaction between various members are reflected through the changes of the
tangent stiffness system stiffness matrix such as buckling, plastification of elements, redistribu-
tion of forces and elastic unloading, etc.

3.3.2 Elasto-Plasticity formulation of General one node spring equiv-
alent to disk

A general elasto-plasticity model for a general one node spring has been implemented into US-
FOS program(Eberg, 1996) which iä describedin the following. This model is used here with the
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stiffness characteristics (load transfer-displacement) (t-z) and (p-y) curves calculated according
to the disk model as described in Secs.2.2.3 and 2.3.3 of Chapter.2. The main features of the
static disk and the non-linear one noded spring models are the same. In a sense, the spring is
an idealization of the static disk in a finite element sense. The basic assumption of the model
may be described as follows:

Plasticity model includes an isotropic type hardening/softening which implies the extention or
contraction of the yield surface is allowed.

Hardening or softening may be associated with the presented disk model for axial and lateral
loading of pile-soil system.

The model accounts for the change in the loading direction in the XY plane by means of an
interaction surface(Eberg, 1996).

No scaling of load step due to plastification of the pile-soil interaction element is performed.

No coupling is allowed between the axial and lateral disks(or springs).

3.3.2.1 Element definition

One node spring element (equivalent to the soil disk) with 6 DOFs are defined as follows:

u=[w ] (3.26)

where w and denote the subvectors of translational and rotational degrees of freedom, respec-
tively. Each containing 3 DOFs.

3.3.2.2 Element stiffness (Linear)

The elastic stiffness matrix of the pile-soil system may be established as follows:

S = KeU (3.27)

where ke is a 6x6 matrix in general, however, the rotational DOfs often set to zero and then ke
reduces to a 3x3 matrix.

3.3.2.3 Plasticity formulation

Generalized strains can be computed as follows:

qTq (3.28)

S=TQ
(3.29)
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Decomposing the incrementai displacement as follows into an elastic and another plastic part,
we will have:

dUdUe+dup (3.30)

The corresponding elastic force-deformation relationship can be written as follows:

dS=kedfle (3.31)

The corresponding plastic strain rate then can be written according to the normality law as
follows:

du = dAäi (3.32)

The isotropic hardening relationship can be applied as follows:

dR = HR.dA (3.33)

The yield condition then can be written as follows:

r=Is-xI- R(u)=0 (3.34)

The gradient to the yield surface then can be computed as follows:

OF
(3.35)

9R =
OF

(3.36)

The elasto-plastic stiffness may be established by considering the consistency condition:

aF=çdS+çdR=0 (3.37)

Combining Eqs.3.27 to 3.37, the following matrix, relationship can be written:

gTk(du - gdA) + gRHRdA = 0 (3.38)

Re-arranging Eq.3.38, we get:

(gTkeg - YRHR)dA = gTkedu (3.39)

Hence, dA can be obtained as:

d) (gTkg - gRHR)1gTkdu (3.40)

The elasto-plastic incremental relationship can then be written as follows:

dS = kepdu = ke(du - dun)
= ke(dU - gdA)

= kedU kg(gTkg - gRHR)'gkdu
= [k kg(gTkg - YRHR)lgTke]dU (3.41)

It can be seen in Eq.3.41 that the elasto-plastic stiffness of the pile-soil system can be calculated
as a function of elastic non-linear stiffness, gradient and the isotropic hardening.
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M

Figure 3.4: Scaling the load vector back to the yield surface

3.3.3 System stiffness formulation
The computed structural and pile-soil element matrices are transformed from local into the
global coordinate system as follows:

k2ep,g = )Tik2epAi (3.42)

in which )'. indicates the cosine direction vector of element (i) (see for e.g. Przemieniecki, 1968
and Zienkiewicz, 1989). The transformed element matrices then are assembled in a global system
stiffness matrix as:

Kr = E ATikiep,9AT (3.43)

in which A is a transformation matrix of xuai size relating the element dofs to the global dofs(see
for e.g. Przemieniecki, 1968 and Reddy, 1985). Alternatively a superposition approach might be
utilized to assemble the element stiffness matrices into the system stiffness matrix. The system
stiffness matrix K7 is updated after each incremental step.

3.3.4 Solution procedures
3.3.4.1 Size of load increment

The load increment size is primarily set to capture the load-displacement response of the jacket-
pile-soil system. In particular, smaller sizes are used as the load level reaches the ultimate
collapse. However, the load control algorithm in USFOS scales the load increment as soon as
plastification of an element takes place or a maximum specified displacement increment is ex-
ceeded in Arc-length approach. The scaling of the load is done to ensure that the load vector
remains at the yield surface after element plastification occurs. Fig.3.4 illustrates schematically
how the scaling of the load back to the yield surface is performed.
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Figure 3.5: A schematic illustration of pure
incremental solution method

Figure 3.6: A schematic illustration of
Newton-Raphson(Incremental/Iterative) solu-
tion method

To control the possible drift-off from the yield surface due to plastic hinge formation in the
structural elements or yield of pile-soil elements, the following scaling criteria is applied in
USFOS(Søreide et al, 1994):

&Ui,g PmaxUi,g (3.44)

and is determined as follows:

= ,k = 1,n ,n = 1

E Lukivik2

=\J >Wk
,k=1,n ,n1 (3.45)

in which zu1,9 and refer to the limits of displacement increment at step 1 and i, respectively.
Uk and Vik refer to the displacement and weighting factors in various dofs. The sign of the load
increment is defined according to a current stiffness parameter (Bergan et al, 1978):

U'1.R1 (AA.)
3 46- (\) (uT)P (

where u and R are the incremental displacement and forces vectors. S, indicates the current
stiffness parameter at incremental step (i). If the S becomes zero indicates an unstable (bifur-
cation) point for the system which occurs at the collapse(peak) point.

if S becomes negative, the systemis softening and a global un-loading is occurring. In a spring-
back behaviour S after reaching zero at peak collapse point then starts increasing rapidly as
the system un-loads. The increase of S is often reversed after reaching a new equilibrium of
external and internal forces in the system.
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Figure 3.7: A schematic illustration of Arc- Figure 3.8: A schematic illustration of load
length solution method limit point solution method

3.3.4.2 Pure incremental solution method

The matrix load-displacement relationship of the system may be solved by using a pure incre-
mental method by updating the system tangent stiffness matrix after each incremental step as
a function of the calculated displacement response. However, as ifiustrated in Fig.3.5 due to
accumulation of the un-balance forces between the external and internal forces of the system at
the end of each load step often an undesirable drift-off occurs from the true path of response.
The magnitude of the drift-off might be controlled by varying the size of the load increment
step. For e.g. a minimum load increment step size of 0.001 times the first load increment is
often used in static pushover analysis in USFOS which yields reasonably accurate results.

However, the smaller load increment size requires far larger number of analyses steps which is
often too costly to perform. For e.g. a static pushover analysis of a 3D jacket-pile-soil system
with only 0.001 step size near collapse and at post-peak consumed 15 times more CPU time than
that of an incremental analysis with only 0.01 step size. The pure incremental matrix solution
may be expressed as follows:

KTj.rj = (3.47)

where K",, /r and LR represent the tangent stiffness matrix, the increment of displacement
vector and the increment of external forces vector at the incremental step (i). Since no iterations
are allowed hence, KT2_1 is calculated instead from the response values at previous step. Thus,
the equilibrium of the external and internal forces will read:

= KTj_i.rj + öR (3.48)

in which 5R represents the unbalance force at end of incremental step (i). The total forces are
then computed by simply summing up the contribution of various steps as follows:

= R11 + zi (3.49)
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Similarly the total displacements r2 are computed as follbws

r = T_1 + r2

3.3.4.3 Newton-Raphson incremental/iterative solution method

To avoid the large drift-off from the true path of response and reducing the load increment to a
very small size, a combined incremental/iterative procedure might be used which is referred to as
the Newton-Raphson's method(see for e.g. Crisfield, 1991). The procedure involves computing
first the tangent stiffness matrix at each load step according to Eq.3.48 and then performing
correction iterations as follows:

KT_1,,_1.8r2,3 = 5R. (3.51)

The iterations are performed until reaching the true path as illustrated in Fig.3.6. In practice
a limit (tolerance) is set for termination of iterations during each incremental step. if the con-
vergence criterion is satisfied, the algorithm proceeds with a new incrementation. The updated
incremental displacement response at the increment step i after jth iteration can be obtained as
follows:

(3.50)

There are several versions of incremental-iterative procedures such as Newton-Raphson, modified
Newton-Raphson and the initial stress method(Crisfield, 1991). The technique so-called as
predictor-corrector is also a version of incremental/iterative method.

3.3.4.4 Arc-length solution method

The arc-length approach in essence is an incremental/iterative approach. But the difference be-
tween this method and the Newton-Raphson type method is that after each iteration the position
of the un-balance force is obtained through a normal in the direction of the arc passing from the
intersection point between the force increment vector which is tangent to the load-displacement
path at the point of incrementation and a constant total force level line as illustrated in Fig.3.7.
The detail mathematical formulation can be foUnd for e:g. in Crisfield, (1991).

3.3.4.5 Load limit point solution method

The iterative procedure sometimes fails to converge at the point of bifurcation. To find a stable
solution, a switch can be set so that after detecting a change in the sign of current stiffness
parameter or the determinant of the tangent stiffness matrix, the iteration procedure is halted
until reaching a stable load-displacement path again. During the un-stable path(around the
bifurcation point) a pure incremental approach is therefore used. After reaching the stable
points, the iterations once again are switched on(see Fig.3.8). The latter is referred to as load
liniit point approach.

3.4 Case studies
In order to investigate the influence of the pile-soil interaction on the progressive collapse of
the jacket system, the static pushover analyses are performed with considering three different

= + 8r (3.52)
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Figure 3.9: Lumped spring to ground and pile-soil foundation models

supporting conditions:

a fixed support condition

a linear spring support system

a non-linear pile-soil system

For the fixed support case, the pile-soil interaction is disregarded. Thus only the collapse will
occur due to failure of the structure (jacket), such as buckling of the legs, buckling and tensile
failure of bracings, joint failure, loss of global stability (p - 8) or a combination of these failure
modes. However, in the real pile-soil-jacket system, either linear or nonlinear interaction would
exist between the pile-soil and the structure.

For a foundation system which is too stiff compared to the structure, an equivalent linear spring
model could be used. The linear stiffness of the equivalent spring may be obtained from the
initial tangent stiffness of the pile-soil system at the mudline, as a first order approximation to
the real pile head stiffness value.

Using a linear spring model may only be justified for small displacements of the pile-soil system.
Fig.3.9 ifiustrates different support conditions for the jacket system.
These two different models are considered in the following case studies.
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2D-Jack5t Model

Figure 3.10: FE Model of the 2d Jacket frame with pile-soil foundation

Table 3.1: Structural member description of 2D Jacket case

3.4.1 CASE 1: A 2D-Jacket Frame
3.4.1.1 Structure description

The jacket structure is considered to be a two storey plane frame, as shown in Fig.3.10. The load
carrying system consists of two vertical main legs connected with horizontal and the cross brac-
ings to provide the necessary redundancy and the reserva strength. The deck structure has been
modelled as an equivalent horizontal tubular beam whose dimensions are given in Table.3. 1. The
pile-soil connections which consist of shear plates and sleeves have been modelled by equivalent
frames.

Fig.3.10 shows the finite element model of the jacket and the pile-soil system. As shown, each
real structural member is modelled by one two node beam element and the top deck module
supporting system (truss) is modelled with one single horizontal beam element with equivalent
stiffness. The pile sleeves are modelled with two connection frames with the vertical elements
modelling the sleeves and and the horizontal and cross bracings replacing the shear plates. The
topside facilities are not modelled in the frame model shown in Fig.3.10.

Structural Member O.D/H
(m)

tm/B
(in)

Legs 2.0 0.06
Braces 1.5 0.05
Deck beam 2.0 0.06
Piles 2.5 0.06
Sleeves 2.6 0.05
Shear Plates 1.0 0.05
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This kind of simple two dimensional model may be analyzed to simulate the behaviour of the
equivalent frames of the complex 3D jacket in the direction of the its main planes (end on or
broadside) or any other dominant wave angle. The equivalent stiffness of the plane frame can
be determined by a simple linear elastic analysis. The integrated non-linear pile-soil-structure
analysis then can be performed on 2D plane frame which is less costly than analysis of 3D jacket
with pile-soil system.

Table 3.2: Linear lumped spring stiffness data for 2D Jacket case

Table 3.3: NC clay soil description for 2D Jacket case

Table 3.4: OC clay soil description for 2D Jacket case

3.4.1.2 Pile-Soil description

The foundation of the jacket comprises two single vertical piles driven 20m deep into the soil.
The piles are tubular sections made of steel with yield strength of 470 MPa. The structural
characteristics of the piles are described in the Table.3.1.

The piles are considered to be plugged from the equilibrium of the internal shaft friction and
the tip plug resistance as follows:

f tdS8 = f qtipdSgug (3.53)

where t8 = the internal shaft skin friction, qttp = the tip resistance S = the internal area of
the shaft and S7, = the tip plug area.

Two different soil conditions axe studied for this case, namely, NC and OC clay. The corre-
sponding soil data are summarized in Tables.3.3 and 3.4. As seen, the average shear strength of
the soil is about 8OKPa and 225 KPa for NC and OC clay profiles. The OCR varies between 30
and 2.8 for OC soil and for NC clay OCR is taken as unity. The average strain at half principle

kij(N/m) k22(N/m) k33 (N/m)
1.889E+08 2.053E+09 7.557E+09

Layer Z(m) 'y(t/m3) Ø(deg) Su(KPa) G0(MPa) Tma(KPa)
1

20
1.0
20.0

20.5
20.5

-

-

7.5
150.0

500
1200

0.01
0.01

4.33
86.56

Layer Z(m) y(t/m3) (deg) Su(KPa) G0(MPa) T(KPa)
1

20
1.0
20.0

20.5
20.5

-
-

150.0
300.0

500
1200

0.025
0.025

2.72
81.91
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stress EO of the soil are 0.01 and 0.025 for NC and OC soil, respectively.

The pile-soil interaction is modelled by several non-linear disks connecting the pile to the sur-
rounding soil. The pile members connecting these disks are modelled by two node beam elements
as the other structural members.

The values of a and parameters related to tangent stiffness of soil disks as described in
Secs.2.2.3 and 2.3.3 of Chapter.2 are assumed to vary between 0.75-0.99 and 1.5-2.5 for NC clay
and for OC clay 0.75 and 1.0, respectively.
API RP2A 1993 soft clay and (t-z) and (p-y) disk models are applied as described in Chapter.2.

Table 3.5: Load description for 2D Jacket case

3.4.1.3 Load description

The loading on the jacket system consists of gravity and environmental loads. The equivalent
vertical and horizontal joint loads are applied at the specifiednodes of the structure in Table.3.5.
The concentrated vertical loads are the sum of the dead weight of the structure and foundation,
the weight of topside facilities and vertical component of the wave and current load. The con-
centrated horizontal loads are the sum of the wave and current induced loads only.

The wave is simply simulated by a deterministic regular wave and its kinematics are calculated
by WAJAC program(DnV, 1992) according to a modified Airy theory(Dean and Dairymple,
1984). The current velocity profile varies stepwise with the water depth from 0 at mud-line to
about 1.05m/sec at the still water level.

The wave and current combined forces on the structure are calculated by using a computer
program WAJAC (DnV,1992) based on the modified Morison's equation(Dnv, 1992).

Table 3.6: Pushover static analyses results for 2D-Jacket case with various foundation models
Static(pushover)

load (MN)

Vertical(Dead + wave) 20

Horizontál(wave+ current) 22

Fixed support Linear spring Non-linear spring
First member failure(RFY)
Ultimate collapse(RSU)
Residual strength (RItES)

1.99
3.15
2.92

1.94
2.89
2.56

.158

.802
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Figure 3.11: FE Model of 4leg (Malaysian) jacket platform

L
Figure 3.12: Plan view of 4leg jacket platform
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Figure 3.13: Global Load-displacement response of 2d jacket frame
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Figure 3.14: Axial mobilization curves of the Figure 3.15: Axial mobilization curves of the
compression pile tension pile
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10-Y mobilization of compression pile CASE-2D
x 108 p-y mobilization of tension pile CASE-2D

2.5

12
0

1.5

0

01

0.5

With respect to the minimum requirements for the ultimate limit state design (ULS) for which
the safety factor may be calculated as:?lr = 'YE7M where ii,. is the required level of safety factor

0 0.02 0.04 0.08 0.08 01
Latorai displacement of pile-soil(m)

0.02 0.04 0.06 0.08 0.1 0.12
Lateral displacement of pile-soiI(m)

Figure 3.16: Lateral mobilization curves of Figure 3.17: Lateral mobilization curves of the
compression pile tension pile

3.4.1.4 Summary of results

Table.3.6 and Fig.3.13 summarize the global load-displacement response of the 2D jacket-pile-
soil system with fixed, linear lumped spring and non-linear pile-soil support systems.

As observed the initial stiffness of the jacket with fixed support system is comparatively much
higher than that with linear and non-linear foundation systems. The linear spring modelling in
this case has offered an improvement with respect to the initial response of the structure in the
range of small displacements for e.g. serviceability limit state(SLS) design. However, as seen
the linear support system has failed to predict well the ultimate collapse response of the system.
The ultimate capacity of the jacket-pile-soil system has been over predicted almost twice with
respect to the non-linear pile-soil system.

In a more realistic non-linear model of the pile-soil system, the collapse of the system is ob-
served far earlier than the structural failure as observed for the fixed and linear spring support
systems because of the pull-out of the tension pile. Figs.3.14 and 3.15 show the axial pile-soil
mobilization (t-z) curves for the compression and tension piles at the mud.line level, lOm depth
below mudline level and near the pile tip. It can be seen that el.22 and 42 connected to the left
tension pile have been fully mobilized. The displacement at the head of tension pile is almost
the same as pile tip about 450mm.

For the latter two cases, the failure of the system has occurred due to the plastic hinge formation
at the leg near the ground support. These failure points are represented in the colour pictures
of the deformed model of the structure by the red colours(see also colour display in appendix.H).
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related to the combined effect of environmental loads a.nd structural/foundation resistance for
the jacket-pile-soil system, 'YE = the partial safety factor related to the environmental loading
for e.g. as 1.3 according to NPD rules, (1992) 'YM = the partial safety factor related to the
material strength of the jacket. 'YM is taken as 1.15 for steel material according to NPD rules,
(1992) and as 1.2 and 1.3 for the soil material for an effective stress and the (undrained) total
stress based pile-soil analyses, respectively.

In the current case study, the pile-soil load -displacement transfer curves are generated according
to the disk model of soil as described in secs.2.2.3 and 2.3.3 based on an effective stress approach.
Hence, a partial safety factor of 1.2 may be applied for the soil material. 7T will therefore be
computed as 1.56. A more elaborate approach is introduced by Moan et al, (1997) for safety
assessment of jacket-pile-soil systems near the ultimate collapse. This approach involves appli-
cation of safety factors on both environmental and structural as well as pile and soil elements
simultaneously. The latter method is not applied here. Table.3.6 shows that for the non-linear
model of the pile-soil system this requirement can not be met. This means that the design of
the foundation in this case is inadequate to comply with ULS requirements. It is observed that
in this case the pre-mature failure of the system occurs due to pull-out failure of the tension(Ieft
corner) pile. To meet the required level of safety by NPD regulations for e.g. the following
remedies may be considered:

increasing the length of the pile to provide sufficient skin friction in tension

increasing the diameter of the pile which will proportionally increase the skin friction capacity
of the pile both in tension and compression

to build a resisting block at the tip of the pile or grouting the pile tip to the surrounding soil
by cement (see Pile design methods for e.g. Poulos, 1978)

insert an additional skirt pile to provide sufficient axial and lateral strength

Methods (iii) and (iv) may be considered for re-strengthening an existing (built) pile founda-
tion while the other options described may be appropriate for a preliminary design of foun-
dation. There might be restriction regarding increase of pile diameter for the piles inserted
through(inside) the leg of the jacket, however, this method could be used for the skirt pile de-
sign. For a constructed skirt pile foundation, the possibility of grouting the pile tip may also be
considered. Detail of re-design or re-strengthening of the pile foundation is out of the scope of
the current study and will not be discussed further in this Chapter.

3.4.2 CASE 2:A 4-leg jacket case
3.4.2.1 Structure description

The structure is a light 4-leg jacket installed in shallow waters offshore Malaysia. The finite
element model of the jacket and its 4 single pile foundation is shown in Fig.3.11. The bracing
system of the jacket comprises only cross (X-type) bracings. The deck supporting module has
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Table 3.7: Structural member description for 4-Leg(Malaysian) Jacket case

been modelled by an additional light frame at the top of the jacket with a height of about 7.5tn
above mean water level. The jacket-pile connections have not been modelled. The plan view of
the jacket and the wave directions are shown in Fig.3.12. Table.3.7 describes the key structural
characteristics of the jacket.

Table 3.8: Linear lumped spring stiffness data for 4-Leg(Malaysian) Jacket case

Table 3.9 Sand soil description for 4-Leg(Malaysian) jacket case

3.4.2.2 Pile-soil description

The fonndation of the jacket consists of only single vertical piles as shown in Fig.3.11. The piles
are made of steel tubular sections with a yield strength of 47OMPa which are driven into a depth
of about 45m. The pile cross sectional data is given in Table.3.7. The piles are supposed to
be un-plugged and hence the most contribution to the axial resistance of the pile is from shaft
(external and internal) friction.

Three different soil types are studied namely, sand, NC clay and OC clay. The corresponding
soil input data are summarized in Tables.3.9, 3.10 and 3.11.

The load transfer-displacement (t-z), (p-y) and (q-z) curves are generated according to API
RP2A 1993 and disk model as described in Secs.2.2.1 to 2.3.3 in Chapter.2.

3.4.2.3 Load description

The load vector consists of gravity, wave and current induced components. The gravity load on
the structure is computed as the sum of the jacket seffweight , the weight of deck top facilities and

Structural Member O.D/H
(m)

tm/B
(m)

Legs 0.6 0.03
Braces 0.4 0.02
Deck beam 0.6 0.03
Piles 0.6 0.05

k11 (N/rn) k22(N/m) k33(N/m) k44(N/m) k55(N/m) k66(N/m)
1.45E+08 1.45E+08 1.065E+09 3.49E+08 3.49E+08 1O.00E+10

Layer Z(m) 'y(t/m3) (deg) Su(KPa) G0(MPa) T,,,,(KPa)
1

30
1.5
45.0

20.0
20.5

.34.5
37.5

-
-

-

-

-
-

5.04
151.19
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Table 3.10: NC clay soil description for 4-Leg(Malaysian) jacket case

Table 3.11: OC clay soil description for 4-Leg(Malavsian) jacket case

that of piles(see Table3.12). The selfweight of jacket is distributed over the joints of structure
proportionally. The weight of topside deck is distributed at four corner nodes of deck 510,520,530
and 540, respectively. The corresponding wave and current input data is given in Table.3.13.

3.4.2.4 Summary of results

Fig.H.1 shows the failure mode of the 4-leg jacket with a fixed supporting system. As seen, the
main leg element 110 at the lower right corner (first bay) has buckled (elasto-plasticaUy) due
to combined compression and bending moment induced by the lateral wave +current load and
vertical gravity loads on the jacket.

The red colour fringe of the element represents the plasticinteraction value of 1.0. The axial force
and bending moment interaction curve, the yield and bounding surfaces of el. 110 are plotted
on Figs.3.19, 3.20 and 3.21 which indicate that at the peak load of collapse, most of the force
contribution in the critical leg element 110 is compressive force As the plastic hinge forms at
mid span of element 110 and it starts buckling the axial force is reduced and the bending moment
portion increases significantly. The shift of yield surface with respect to the bounding surface
as shown in Fig.3.21 is considerable and is due to the kinematic type hardening associated with
the material model of element 110.

The plastic utilization of other elements are much lower than unity which shows the dependence
of the system collapse on only one critical leg element. The global load-deflection response of
the platform shows almost no reserve strength beyond the first member failure as plotted in
Fig.3.30. Also seen that the ratio of the ultimate residual to the peak capacity of the jacket
system with the fixed support system is about 1.7/3.0 which is due to the lack of properly
designed redundancies in this lattice structural system. However, with respect to the applied
100-year design wave combined with the current induced load and the existing gravity loads on
the structure, the obtained ultimate capacity of 1.7 times this design load normally satisfies the
requirement for the ultimate limit state design(see for e.g. NPD rules or APT RP2A 1993 code).
However, this may not be sufficient to declare this structure safe since in the case of a weak(soft)
soil supporting the jacket, the assumption related to fixed support system may not be valid.
To investigate any possible soil-structure interaction a lumped linear spring to ground model of
foundation is considered for the 4-leg jacket. The static pushover analysis of the 4-leg jacket

Layer Z(m) 'y(t/m3) q(deg) Su(KPa) G0(MPa) - T(KPa)
1

30
1.5
45.0

20.0
20.5

-
-

47.40
70.49

500
1200

0.025
0.025

20.57
57.73

Layer Z(m) 'y(t/m3) q5(deg) Su(KPa) GO(MPa) - Tm(KPa)
1

30
1.5
45.0

20.0
20.5

-
-

94.75
600.49

1000
3000

0.025
0.025

29.16
277.35
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P1c Intsrctlon vsft

Figure 3.18: Failure mode of 4-leg (Malaysian) Jacket with fixed support (For colour display see
Appendix.H)

Figure 3.19: The local axial force vs. local bending moment interaction of el.11O of 4-leg
(Malaysian) Jacket with fixed support
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Figure 3.20: The stress state at reaching the yield surface of el.110 of 4-leg (Malaysian) Jacket
with fixed support

Figure 3.21: The stress state at reaching the bounding surface of eI.110 of 4-leg (Malaysian)
Jacket with fixed support
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Figure 3.22: The Failure mode of the 4.-leg (Malaysian) Jacket with linear spring to ground (For
colour display see Appendix.H)
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Figure 3.23: The axial force vs. bending moment interaction curve of el.11O of the 4-leg
(Malaysian) Jacket with linear spring to ground model
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Figure 3.24: The axiaJ force vs. bending moment interaction curve of e1.120 of the 4-leg
(Malaysian) Jacket with linear spring to ground

Figure 3.25: The Failure mode of the 4-leg (Malaysian) Jacket with non-linear pile-soil model(NC
clay) (For colour display see Appendix.H)
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Figure 3.26: The Failure mode of the 4-leg (Malaysian) Jacket with non-linear pile-soil model(OC
clay) (For colour display see Appendix.H)
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Figure 3.27: The axial force vs. bending moment interaction curve of el.120 of the 4-leg
(Malaysian) Jacket with non-linear pile-soil model(OC clay)
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Figure 3.28: The axial force vs. bending moment interaction curve of el.11O of the 4-leg
(Malaysian) Jacket with non-linear pile-soil model(sand)

Figure 3.29: The failure mode of the 4-leg (Malaysian) Jacket with non-linear pile-soil
model(sand) (For colour display see Appendix.H)
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Table 3.12: Load description for 4-Leg(Malaysian) Jacket case

Table 3.13: Wave and current description for 4-Leg(Malaysian) Jacket case

with linear support system has been performed and the global load-displacement response is
shown on Fig.3.30.

The pre-peak stiffness of the jacket-pile-soil system as seen is lower than that of the fixed jacket
due to the additional displacement at the deck level induced by the deformation of the linear
spring to ground.

As seen, the ultimate (peak) capacity of the system in this case is just slightly higher than that
of fixed support system.

The post-peak softening behaviour of theses two models are aiso quite similar. The unloading
has occurred in both systems after the plastic buckling of the two main leg members (el. 110 and
el.120). The equilibrium of the forces after the leg member failure required to reduce the total
external forces on the jacket. The residual capacity of the linear supported system is about 1.24
compared to 1.69 of fixed system. Regarding the ultimate limit state design of the jacket, the
rapid degradation of post-peak strength in the case of linear spring supported system may pose
a risk.

Fig.H.2 shows the failure mode of the jacket with linear spring to ground system. In comparison
the failure mode is more symmetric for the jacket system with the linear spring system.

The axial force-bending moment interaction curves are shown in Figs.3.23 and 3.24 for the buck-
led leg elements 110 and 120 which were visualized in Fig.H.2. Similar to the fixed system, as
the legs started buckling plastically, the contribution of the bending moment has increased con-
siderably due to rapidly growing lateral displacement at the mid-span of buckled element. Hence

load (MN)

selfweight of jacket 2.977
weight of topside deck 9.810
horizontal wave+current force 1.646
vertical wave+ current force -0.552

Water depth(d) 47.5m
100 year wave height(Hjoo) 24.Om
Wave period(Tioo) 12.Osec
Current velocity(V) 0.7m/sec
Wave direction (o) West-East
Drag coefficient(Cd) 0.77
Inertia coefficient(Cm) 2.0
Friction coefficient(C) 0.0001
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Table 3.14: Pushover static analyses results for 4-Leg(Malaysian) Jacket case with various foun-
dation models

the axial force contribution has been reduced which is quite well understood from static point of
view since the plastic interaction formula of a beam column (see for e.g. Søreide, 1986) is based
on a combination of axial force and bending moment components and as the bending moment
increases in the member's cross section at full plastification, the axial load has to be reduced to
satisfy the plastic equilibrium of forces.

Though the lumped linear spring model could in a simplified manner simulate the soil-structure
interaction but it is still not known whether any such large forces carried through the pile to the
soil would likely result in soil yield and hence influencing the global response of the jacket-pile-
soil system or not? To answer this question, a non-linear finite element model of the pile-soil
has to be considered. This model enables us to simulate any possible yield in the soil or any
possible buckling or plastic hinge formation in the pile itself induced due to large axial forces
or excessive lateral deformations in the surrounding soil. The pile-soil failure may influence the
super-structure's (jacket) response and vice versa the failure of the jacket structure may influence
the near collapse behaviour of the pile-soil system. Such interaction is analyzed here through
an integrated jacket-pile-soil analysis by means of USFOS program(Søreide at al, 1994). The
non-linear pile-soil interaction is represented by static disk model as described in Secs.2.2.3 and
2.3.3 of Chapter.2 and generated by a number of Matlab language programs(see Appendix.C).
Three main soil types are also investigated namely, norriiàlly consolidated clay, overconsolidated
clay and medium dense sand.

As first non-linear soil case, a NC clayey soil is considered as described in Table.3.10. The global
load-displacement response of the jacket-pile-soil system is much softer than the response of the
fixed and linear spring supported jacket as compared in Fig.3.30. The peak (ultimate) collapse
strength of the jacket is about 1.6 compared with 3.03 and 3.05 for the fixed and linear spring
supported jacket systems, respectively. The ultimate residual strength of the jacket-non-linear
pile-soil system is about 1.40 compared to 1.69 for fixed and 1.24 for linear spring supported
jacket. As shown on Fig.H.5 a plastic hinge formation is seen in the upper parts of piles close
to the mudline level which is the result of excessive lateral soil deformation in upper soil parts.

This can be verified visually through inspecting the deformed model of the jacket-pile-soil system
and numerically through the pile-soil mobilization (t-z) and (p-y) curves for both tension(left)
and compression(right) piles. The mobilization curve of el.200123 at the tip of the tension (left)
pile in Fig.3.32 does not indicate the failure of the tension pile. While inspecting the tip (t-z)

Static(pushover)
(RFY) (RSU) (RRES)

Fixed support 2.786 3.027 1.692
Linear spring 2.75 2 3.050 1.238
Non-linear pile-soil (NC Clay) 0.200 1.560 1.395
Non-linear pile-soil (OC Clay) 0.301 2.497 1.294
Non-linear pile-soil (SAND) 0.311 2.716 1.165
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mobilization curves of els.200002 and 200030 suggests collapse of the right corner pile in com-
pression. The lateral mobilization (p-y) curves plotted in Fig.3.33 show that the soil has yielded
near the surface under lateral loading. The maximum lateral soil displacement at depth 1.5m
below the mud-line level is about 110mm. It is also seen that the soil has been mobilized only
down to depth about 12.Om below the mud-line. The results of this case study indicates that,
applying a fixed or linear spring type soil support system will significantly overestimate the
collapse load of the jacket in a soft clay soil condition as described above.

The global load-displacement response of the jacket-pile foundation on OC clay is also repre-
sented in Fig.3.30. As seen, the spring back behaviour occurs just after the ultimate collapse of
the system due to buckling of a critical leg member eLl2O(see Fig.H.4). This behaviour is not
observed in the case of soft NC clay for which the global failure of system was governed by the
pile-soil failure in compression and under lateral loading.

The spring back response in this case is due to the very stiff overconsolidated soil which has
not reached its collapse (peak) point under the imposed loading on the jacket. Since after the
plastic buckling failure of leg els.110 and 120 the external loading on the jacket had to be reduced
to compensate for the loss of these two main load carrying elements, the only possibility left
for the attached pile-soil system has been to unload elastically because the plastic un-loading
(softening) can not be allowed for the soil. While in the case of NC soil such behaviour is not
seen due to slide(yield) of the pile-soil which has initiated the global collapse of the system. Also
the mechanisms of the collapse for fixed and linear support systems are mainly dependent on
the structural behaviour since for the fixed case no ground displacement is allowed and for the
linear foundation case the deformation of the linear support has been quite small compared to
that of structural distortion. Its effect can be seen in the hardening/softnening of the post-peak
unloading part.

The axial and lateral mobilization curves for the OC case do not indicate a pile pull-out or
plunge failure. Although as shown on Figs.3.34 and 3.35, the axial mobilization of soil near the
mud-line is much higher. The mobilization curve of el.200002 at the top of compression (right)
pile shows that the soil at this point has initially yielded in compression due to the transferred
compressive forces from the jacket but just after the buckling of the leg member in compression
the axial stress in el.200002 has been reversed through an elastic un-loading and then started
re-loading in tension. This behaviour is manifested in a global spring back response as shown
on Fig.3.30. The same kind of un-loading is also observed for the el.200030 at the tip of the
compression pile as plotted in Fig.3.34.

The axial force and bending moment interaction curve for the critical leg member (el.120) is
given in Fig.3.27. The peak point of this curve corresponds to the peak collapse load on the
jacket which implies that the failure mainly has occurred due to compressive force in the mem-
ber while as seen after the peak point the contribution of the bending moment has increased
dramatically which is accompanied with the plastic budding of the member at its mid-span.

The lateral mobilization curve of el.200002 also verifies the above conclusion concerning the
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Figure 3.30: Global Load-displacement responses of the 4-leg jacket with various support systems

elastic u.n-loading of the soil element and the lack of full lateral mobilization of the soil. The in-
fluence of the OC clay on the ultimate collapse capacity of the jacket-pile-soil system is observed
to be considerable by reducing it from 3.03 for the fixed system to about 2.50. The post-collapse
strength of the jacket supported on OC clay as shown is considerably lower than that of the
fixed jacket system due to very brittle behaviour of the soil.

As a last case, the influence of the sand type soil on the global response of the 4-leg jacket is
investigated through a static pushover analysis. The pile-soil interaction curves are generated
according to API RP2A 1993 (t-z) model for sand. The global load deflection response of the
latter system is plotted in Fig.3.30 and. compared with the other soil models. As seen the initial
(pre-peak) response of the system supported on the sand is almost the same as the system sup-
ported on OC clay up to load level of 2.2 and small disäepancy is observed after this load level.
The peak capacity of the system is given in Table.3.14 which is quite close to that of system
supported on OC clay but their post-collapse responses are completely different.

The latter model's post-peak response is much softer due to sandy soil's response nature under
axial and lateral loading. As seen on Fig.H.6 the collapse of the system though has been initiated
by soil's yield but no pull-out or pile plunge failure is observed in this case. In terms of the
residual strength of the system, the reduction has been less severe for the case of sand which is
obtained to be about 1.17 compared to L69 for the fixed jacket model.

The global failure mode of the pile-soil-jacket system, as shown in Fig.H.6 is initiated by the
yield of the top soil elements. However, the collapse of the System is observed to occur after the
buckling of the main legs (els. 110 and 120) due to increase in the bending moment which is
induced by the excessive soil deformation near the mudiline.

The plastic interaction value of the element 110 clearly illustrates the generated failure media-
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Figure 3.31: Axial mobilization curves of com-
pression pile at three different depths for NC Figure 3.32: Axial mobilization curves of ten-
clay sion pile at three different depths for NC clay

4

z

.2

0

.402 0 0.02 0.04 0.06 0.08 0.1 0.12
Laterai pffe-sofl dIspIarnent (m)
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Figure 3.34: Axial mobilization curves of com-
pression pile at three different depths for OC Figure 3.35: Axial mobilization curves of ten-
clay sion pile at three different depths for OC clay

nism by the pile-soil displacement. As seen in Fig.3.30at the point of first plastic hinge formation,
the axial force has dropped considerably while the contribution of the bending moment has been
maximum. The axial force versus the lateral displacement at the mid-span of the element 110 is
shown in Fig.3.28 for 4-leg jacket with pile foundation in sand. It is apparent that the buckling
capacity of the leg has been reduced by introduction of pile-soil non-linearities by about 12%.

3.4.3 CASE 3: An 8-leg Jacket-Pile-Soil system
3.4.3.1 Structural model

The finite element model of the jacket structure used in the case study is shown in Fig.3.9.
The structure consists of two longitudinal and four transversal frames. Longitudinal frame's
bracing system comprise mainly single diagonal braces and only X-braces at the first and the
fifth storeys. The transversal frames have only K-braces. The supporting deck has been modelled
as a truss and the top deck facilities have been modelled by a pyramid frame. Tables.3.15 and
3.16 summarize the descriptions of the structural and non-structural elements of the 8-leg jacket
platform.

3.4.3.2 Foundation model

The foundation of the jacket system in this study is modelled as equivalent single piles penetrat-
ing to a depth of 28m below the mud-line. Due to the relatively short lengths of the designed
skirt piles in this case, they have been grouted at the bottom where the piles have penetrated
into a sand layer. Hence, the pile-tip is considered to be plugged to ensure end-bearing. Since
the lateral resistance may be mobilized at the upper part of the soil, the designed pile condi-
tion is not modified and will be used in the first part of this study. The pile-soil interaction is

401_!5.8dI S55tIm

T., Pile

-4 -3 -2 -t 0
Ale p0e-.ell dleplene,d (n,)

1 2

I 10



CHAPTER 3. NONLINEAR STATIC ANALYSIS OF JACKET-PILE-SOIL SYSTEM AT THE
104 ULTIMATE COLLAPSE

Table 3.15: Structural member description of 8-Leg Jacket case

modelled as non-linear disks as described above. The detail description of soil profile is given in
Table.3.17.

3.4.3.3 Hydrodynamic model

Two different hydrodynamic models are used in the present study. The main difference being
the modeffing of non-structural elements, such as anodes etc. These two models therefore yield
different loads corresponding to the 100 year-design wave heights and so the given global load
factors associated with collapse. For clarity, these two models and their results are treated
separately. However, the results obtained by each model can be used to study the effect of for
instance wave load scaiing vs. wave height incrementation approach.
The 100-year wave height and period and the current velocity are described in Table.6.4.

In the early part of our study, we used Model-i(WAJAC) as the reference. However, since it
was not possible to use this model in cyclic analysis Model-2(USFOS) was adopted.

Model-l(WAJAC load model) contains non-structural members as risers, conductors, landing
docks, bottle legs and pile guides. Drag and mass coefficients are 0.77 and 2.0, respectively.
Model-2(USFOS load model) does include boat landings and pile guides and uses drag and mass
coefficients of 0.7 and 2.0, respectively. In Model-i no marine growth was specified whereas in
Model-2 marine growth profile was assumed to vary from zero at mudline level to about 10cm
at mean water level.

Model-i was primarily applied to perform static pushover analyses and recently to study the
wave height vs. wave load incrementation as well as foundation effects. The more recent Model-2
was applied to study the cyclic (quasi-static) response of the jacket-pile-soil system.

Structural Member O.D/H
(m)

tm/B
(m)

Legs 1.60-3.00 0.147-0.060
Braces(horizontal-l. 1) 0.90-1.30 0.025-0.035
Braces(diagonal-l.1) 0.60-1.60 0.020-0.050
Braces(horizontal-l.2) 0.90-1.00 0.025-0.035
Braces(cliagonal-l.2) 1.00 0.035
Braces(horizontal-l.3) 1.40 0.030
Braces(diagonal-l.3) 1.20-1.40 0.035-0.040
Braces(horizontal-l.4) 1.00-1.20 0.045-0.030
Braces(diagonal-l.4) 1.10 0.050-0.055
Deck:Braces(horizontal-l.5) 0.90-1.10 0.035-0.050
Deck:Braces(diagonal-l.5) 1.60 0.075
Piles 2.88 0.04
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Table 3.16: Hydrodynainic(non-structural) member description of 8-Leg Jacket case

3.4.4 Static behaviour

The static response of hydrodynamic Model-i and 2 under end-on and broad-side loading are
summarized in Tables.3.19 to 3.22 and plotted in Fig.3.36. The global load factors corre-
sponding to the first member failure(RFY), the ultimate static capacity(RSU) and residual
strength(RRES) of the system under end-on and broad-side loading are given in Tables.3.19 to
3.22 respectively, for hydrodynamic Models 1 and 2. (Note that the reference load for these
global factors is the 100 year wave load). In general good consistency is seen between the re-
sults with respect to the different structural, foundation and hydrodynamic models used in each
studied case which will be described in the following.

3.4.4.1 Static response of the platform under end-on loading(without the effect of
pile-soil)

As seen from the static analyses results(see Fig.3.36 and Tables 3.19 and 3.20), the structure(both
hydrodynamic models) under end-on loading exhibits quite substantial reserve strength beyond
the first member failure (about 30% or more of the ultimate static capacity). This kind of
behaviour is mainly attributed to the load shedding capacity of the bracing system of the lon-
gitudinal frames which enable the jacket system to re-distribute smoothly the forces after the
first member failure. The equilibrium of the forces is very quiddy achieved after first member
failure and hence the system has not lost any considerable strength. Successive failures of several
diagonal and horizontal braces occur before the ultimate collapse of the system is reached when
all the remaining reserve strength in the system has been exhausted gradually.

The post ultimate response of the system(Model-1) show a slow degradation of the strength
and hence a rather ductile behaviour. The post-peak strength degradation of the system is only
about 7 - 8% for the end-on loading.

Non-structural Member O.D/H
(m)

Cd Cm

Conductors 4.59-11.1 0.7 0.339-0.168
Conductor guide 0.94-5.20 0.77 0.72-2.0
Risers 12.75"-36" 0.7-1.0 2.0
Docking sleeve 2.70-5.40 0.7 1.10-0.72
Boat landing -1.0 0.432 2.0
Walkways -1.0 0.7 2.0
J-tubes -1.0 0.64-0.7 2.0
Fire and sea caissons -1.0 0.66-1.02 2.0
Launch legs 1.8-4.1 0.77-1.5 2.0-1.30
Pile guide -1.0 0.18 2.0
Bottle legs 1.8-13.24 0.77 2.0-2.5
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Table 3 17 Soil description for 8-Leg(North-sea) iacket case

Table 3.18: The wave and current description for 8-leg Jacket platform
The wave direction wave height

()
wave period
(s)

current velocity
(mIs

3.4.4.2 Influence of foundation model on the static behaviour of system under
end-on loading

To investigate the influence of foundation modelling and in particular the pile-soil failure effects
on the near collapse behaviour of the jacket platform, the, response of three different foundation
models was studied considering, namely, linear spring to ground, non-linear plugged pile and
tin-plugged pile.

The pre-collapse response of the jacket platform with plugged type pile foundation and linear
type foundation model are stiffer than that of the un-plugged system(see Fig.3.36). The softening
of the response for the latter case may be attributed to the rapid yield occurring in the soil along
the pile shaft with a relatively smaller contribution than the tip resistance. The proximity of
the pre-collapse response of the linear and the plugged case is due to far larger end-bearing con-
tribution than the un-plugged pile foundation (an order of magnitude higher than the total skin
friction along the pile). This may indicate that for a design load level a linear spring idealization
of the platform might be as good as plugged model of the pile-soil system. However, the linear
idealization apparently would be quite unconservative with an un-plugged pile. With respect to
the plugged design of the foundation for this platform, a linear springto ground assumption may
be considered to be an appropriate model for serviceability analysis. For the ultimate limit state
design, the results indicate that even an initially stiff linear lumped spring system of foundation
is unconservative, especially w.r.t the broad-side loading of the platform(with un-plugged piles).

Layer Z(m) y(t/m3) q5(deg) Su(KPa) G0(MPa) T(KPa)
1 3.5 20.5 37.0 0 31.5 0 10.3
2 4.5 20.5 37.0 0 47.5 0 23.5
3 5.5 20.5 37.5 0 53.1 0 30.0
4 6.5 20.5 38.0 0 5&2 0 36.6
5 8.5 20.5 38.0 0 65.1 0 45.8
6 10.5 20.5 38.0 0 73.3 0 58.0
7 12.5 20.5 38.0 0 80.6 0 70.3
8 14.5 20.5 38.0 0 87.3 0 82.5
9 15.9 20.5 38.0 0 92.6 0 94.0
10 18.5 21.6 0.0 174 58.0 0.013 99.7
11 23.5 20.5 34.0 0 109.6 0 104.2
12 25.5 21.6 0.0 180 60.0 0.011 121.4
13 29.5 20.5 37.0 0 125.7 0 115.8

West-East wave 30.2 16.7 1.1
North-South wave 27.3 15.8 1.05
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Table 3.19: Pushover response of the jacket platform with plugged pile foundation under end-on
loading(Model-1)

Static(pushover)

Table 3.20: Pushover response of the jacket platform with plugged pile foundation under end-on
loading(Model-2)

The interaction between soil-pile(plugged case) and jacket has resulted in increased system ca-
pacity as observed in Fig.3.36. The axial resistance of the plug at the pile tip(about 325MN) has
allowed the system to carry higher overturning moment at the mud-line level. It is observed here
that the jacket with the linear spring foundation model has failed at a global load level about 2.6
under broad-side loading, while the same jacket Model-i with the plugged type pile foundation
has resisted about 15% higher load. Under end-on loading, the ultimate static strength of the
system apparently has not been influenced much by the different foundation modelling.

It is also seen that the plugged piles have provided sufficient ductility for the system at the
post-collapse range, while the jacket with the linear spring system was found to be less ductile.
The implication of this fact on dynamic response of the system will be discussed in Chapter.5.

3.4.4.3 Static response of the platform under broad-side loading (without the effect
of pile-soil)

For the jacket with linear spring to ground system, a dramatic load shedding can be seen just
after the collapse. As seen, the behaviour of the system is linear elastic up to the collapse
and the system does not possess any noticeable reserve strength beyond first member buckling.
This behaviour is attributed to the K-brace configuration of the transversal frames. When the
compression member of a K-brace system failed, the axial force in both members of the bracing
have to be reduced to satisfy the equiiibriuxn of the forces. This corresponds to the peak(ultimate
collapse) point and after that when the lateral displacement increases the load drops further in
the system, since both tensile and compressive members of K-bracing system are shedding force
at the same rate(Stewart, 1995 and Hellan, 1995).

Wave Load Incr. Wave Height Incr.'
First member failure(RFY) 1.99 1.94
Ultimate collapse(RSU) 3.15 2.89
Residual strength(RRES) 2.92 2.56

Static
Wave Load Incr. Wave Height Incr.

RFY 1.99 1.96
RSU 2.79 2.55
RRES 2.58
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Table 3.21: Pushover response of the jacket platform with plugged pile foundation under broad-
side loading(Model-1)

Table 3.22: Pushover response of the jacket platform with plugged pile foundation under broad-
side loading(Model-2)

3.4.4.4 Influence of foundation on the static behaviour of system under broad-side
loading

The static load-deflection response of the jacket with hydrodynamic Models 1 and 2 with plugged
foundation under broad-side loading are summarized in Tables 3.21 and 3.22. The jacket system
with plugged pile foundation is seen to possess considerable amount of reserve strength beyond
its first member failure(ranging from 17 - 30% of the ultimate capacity). This reserve strength
has been induced by the ductility provided by the gradual yield of the soil particularly at the
pile tips. It can be seen from Fig.3.36 that the jacket's ultimate static capacity with plugged
pile foundation is about 15% higher than that with a linear spring support system. It can also
be seen in Fig.3.36 that the pre-ultimateresponse ofthë ilugged system is somewhat softer than
that of jacket with linear support system. The post-ultimate response of the plugged system in
this case is comparatively much stiffer than that of the jacket with linear support system.

The residual strength of the jacket with a plugged pile foundation system is found to be about
82% of the ultimate static capacity while the residual strength of the jacket-linear spring to
ground system is found to be less than 75% of the ultimate static capacity.

In comparison, the static load-deflection response of the jacket with un-plugged pile system is
much softer than that of the jacket with plugged and linear spring support system. The ultimate
capacity of the jacket with un-plugged pile system has been mobilized at a lateral displacement
of about 2.Om which is 5 times higher than that for the plugged system. The corresponding
ultimate capacity is only about 2/3 of the jacket with the plugged pile foundation system. In-
specting the global failure mode of the latter system shows that the platform has failed due to
the pull out of the tension piles.

Static
Wave Load Incr. Wave Height Incr.

First member failure(RFY) 2.05 1.79
Ultimate collapse(RSU) 2.99 2.73
Residual resistance(RRES) 2.71

Static
Wave Load [ncr. Wave Height [ncr.

RFY 2.15 1.89
RSU 2.52 2.32
RRES 2.06
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3.4.5 Comparison of wave height incrementation(WHI) and wave
load incrementation(WLI) approaches

In a conventional static pushover approach, the environmental loading such as that induced by
wave and current are imposed incrementally on the structure until the ultimate collapse occurs.
This method does not take into account the variation of the sea surface elevation during each
increment of loading.

The variation of the sea surface elevation changes the wet zone on the platform and hence the
resultant total base shear and the overturning moment. Additional forces may be imparted on
the structure if the extreme wave's crest reaches the cellar or main deck areas. With respect
to these effects, a new pushover approach is established based on incrementing the wave height.
The procedure involves several increment of the wave height and if a wave on deck is encountered
then the additional deck forces are calculated according to the draft Sec.17 of API 1994.

It is seen that the ultimate strength factors(for both hydrodynamic models of jacket) obtained
in conventional static pushover analyses are about 8 - 9% larger than those corresponding to
the wave height incrementation method.

Fig.3.36 compare the results of pushover analyses based on load and wave height incrementation
methods for end-on and broad-side loading. It is seen that the near collapse response of the
platform during wave height incrementation is more soft. The maximum discrepancy which
occurred near the ultimate collapse, is about 9 percent. This is mainly due to the additional
forces imparted on the upper part of the structure including part of the cellar deck (about 1.1
m at collapse), and to changes in the distribution of the forces over the structural elements. It
is seen that the ductility of the jacket has not been changed in a significant manner. Since only
the wave height is incremented, while the current velocity is kept fixed, there is still some place
for speculation whether the observed trends might be really due to wave height incrementation.
However, recent investigation by excluding the current induced loads show the same tendency.

3.5 Conclusion
It is shown that the influence of soil types as well as pile-soil modelling can be significant on the
global static behaviour of the jacket-pile-soil system. In particular, stiff OC type and sand show
much stiffer behaviour than soft NC clay on the global response of the system.

It is shown that a linear modelling of foundation may provide a significant improvement over
a fixed support system without any account for structure-soil interaction. However, the latter
might overestimate particularly the overall stiffness of the pile-soil foundation. It is also shown
that in some cases the linear model of soil may result in a significant overestimation of the
ultimate static capacity of the jacket-pile-soil system.

A more realistic non-linear pile-soil model is applied for the cases studied in this Chapter and
shown that a significant yield in the soil can result in pile failure either in tension, compression or



3.5. CONCLUSION 111

under lateral loading which might significantly influence the global load-displacement response
of the jacket near the collapse.

It is observed that a plugged pile foundation may exhibit quite different response than that of
an un-plugged one. The influence of the pile tip load transfer-displacement modelling is shown
to be quite significant on the overall response of the jacket-pile-soil system. It is shown that
for e.g for a short pile system, the plug resistance may have much more significant contribution
than the total shaft skin friction resistance. The associated response of the jacket with plug pile
foundation is found to be much stiffer than that of un-plugged case.

It is concluded that the effect of wave load modelling can be important on the ultimate static
resistance of the jacket-pile-soil system. It was observed that a wave load modelling based on
wave height incrementation resulted in 8-9% lower ultimate static strength than the traditional
wave load scaling approach for the studied case here. The latter discrepancy may be attributed
to the change of wave load distribution, shift of load centroid due to variation of wet zone over
structure and the other possible effects due to large deformation and accumulated (cyclic) plas-
ticity.



4.1 Introduction
The response of a jacket platform under the action of environmental loading such as waves or
earthquakes may be influenced by the interaction between the pile and soil. As described earlier
in Chapters 2 and 3, the collapse behaviour of such systems as jacket-pile-soil are often con-
sidered as quasi-static due to the relatively low frequency associated with the environmental
loads such as extreme waves and currents. However, due to comparatively higher frequency of
vibration associated with earthquakes and other possible dynamic loading on the jacket platform
such as collision with ship or explosion on the deck etc., the static pile-soil interaction models
such as disk model described in Chapter.2 may not be relevant since the dynamic stiffness of
the pile-soil foundation may vary significantly with the frequency of vibration. Several basic
modelling approaches have been developed to analyze the dynamic interaction between the pile
and soil such as continuum finite element representation of the soil(see for e.g. Langø, 1991),
boundary element modelling(see for e.g. Kaynia and Kausel, (1982) and their combinations or
extensions). These are referred to as rigorous methods and are often applied for refined analysis
of a foundation.

Although these methods may offer very accurate solutions, they are nevertheless very time con-
suming and hence very costly to apply for analysis of a large number of piles. Other alternative
solutions which have been developed in the recent years are mainly based on a plane strain ideal-
ization of soil and are similar in principles to the static models presented in Chapter.2, however,
with addition of dynamic properties (see for e.g. Nogami and Konagai, 1986 and 1988).

In the most recent years, a new soil dynamic approach referred to as cone modelling was pre-
sented by Meek and Wolf, (1992), which is on the basis of strength of material method. The
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cone modelling is an indirect boundary element approach with respect to the cone's geometrical
extension to the iiiifinity.

The basic derivations by Meek and Wolf, (1992) were based on linear-elastic and homogeneous
soil assumptions. The idea was developed by Wolf et al, (1994) for pile-soil foundations with a
rigid or flexible pile embedded in an elastic soil hail space. As illustrated in Fig.4.6, a multi-stack
of disks represents the pile and the cones are used to model the interaction between the pile and
the surrounding soil.

The interaction between the disks via cones are illustrated schematically in Fig.4.1. This inter-
action via the soil cones may be referred to as coupling which represented by equivalent springs
in Fig.4.7. This coupling between disks actually represents the displacement contribution at the
location of each disk caused by the loads acting on the other disk or equivalently displacement
generated at the position of other disks. In physical sense, coupling is due to the transmission
of the wave through soil media from a point at pile (source disk connected to the pile) back to
the pile at another point(receiver disk) via cones(see Fig.4.3). In a sense, the coupling between
disks represents the interaction which takes place from one cone to another in the full space of soil.

The coupling between disks in this Chapter is only applied for the linear elastic type soil since
it is based on the principle of superposition.

The pile itself can be represented in this model by elastic beam elements. The mass of the soil
inside the pile may be removed from that of the system(Wolf and Meek, 1992) and the mass of
the pile can be condensed at the disks(nodes). The model is capable to include both material
and radiation damping.

The radiation damping is an inherent property of the cone model due to its geometry which
extends (rapidly)towards infinity and thus carries away a significant proportion of the input
excitation energy. The material damping may be considered to be less important than the ra-
diation damping for the cone-disk system. However, the influence of material damping on the
dynamic response of the pile-soil system will be investigated. The material damping is included
as visco-elastic or linear hysteretic for an elastic type soil.

An extension of the cone model for non-homogeneous and/or non-linear soil behaviour is pre-
sented in this Chapter. Also two different models are used within this Chapter to represent the
non-linear elasto-plastic type pile behaviour. These are namely, USFOS beam model (Søreide
et al, 1994), which is briefly described within the context of Chapter.3 and the Bouc's general
purpose non-linear hysteretic structural element model(Bouc, 1968).

-

Various models of pile-soil are formulated in frequency and time domains such as 1) rigid pile and
linear elastic soil, 2) flexible(elastic) pile and linear elastic soil with linear hysteretic damping 3)
flexible(elastic and elasto-plastic) pile and non-linear(elasto-plastic and hyper-elastic) soil with
non-linear hysteretic type damping.



4.2. CONE-DISK MODELLING OF SOIL 115

In the frequency domain analysis, he first two pile-soil models are applied while the non-linear
soil models are considered in the time domain analysis. As mentioned, the coupling between
various disks is considered in the frequency domain analysis. but only in each loading direction
not between the horizontal and vertical motions of disk. However, in the non-linear time domain
analysis the coupling between disks is not applied.. A kinematic hardening rule is used for the
elasto-plastic soil model. Both static disk and dynamic cone-disk models are implemented in thern
time domain analyses and the influence of the excitation frequency is accounted for by modifying
the the static stiffness of the disk model.

Extreme wave and seismic response analyses of pile-soil systems are performed here. Due to the
low frequency of sea waves, the corresponding dynamic stiffness is estimated to be close to that
of the static stiffness of pile-soil system. The impedance ftinctions of several piles in half space of
soil obtained according to the cone-disk model are verified against the results of existing rigorous
methods such as boundary element solution(Kaynia and Kausel, 1982), direct boundary integral
method (Apsel and Luco, 1987) and the analytical approaches of Nogami and Konagai, (1986)
and (1988).

Simplified equivalent (non-linear) lumped models such as SDOF, 2DOF and 3DOF of pile-soil
are also used to get further physical insight into the dynamic pile-soil behaviour by performing
a number of parametric studies. The influence of several important soil and pile parameters
on the pile-soil system's dynamic stiffness coefficients and interaction are investigated through
these simplified analyses.

4.2 Cone-Disk modelling of soil

4.2.1 General
The idea of linear cone modelling of soil was initiated by Meek and Wolf, (1992) based on the well
known Boussinesq theory of soil mechanics and the rèsülts obtained from rigorous elastic wave
propagation analysis of Miller and Pursey, (1955), boundary element analyses by Kayn.ia and
Kausel, (1982), direct integral method of Gazetas et al, (1984) and (1987), direct integral method
of Apsel and Luco, (1987). Based on the Boussineseq's theory, the stress/strain distribution in
an elastic half space of soil under a concentrated vertical load is illustrated in Fig. 4.8. It is
shown that the stress/displacement contours form cones (or wedges) with their apex points
taken at a distance above the loaded surface. The stress/strain distribution in the horizontal
direction near the loaded plane is neglected according to this theory. Meek and Wolf, (1992)
considered these unidirectional uiifolded cOnes to carry the applied load at a given point in soil
to the infinity. Nonetheless, in the linear cone model of Wolf et al,(1994) the radiation in the
horizontal direction is neglected. This neglected radiation is particularly related to the near
loaded plane of soil. Fig. 4.9 shows schematically that the stress or energy can be transmitted
through soil within spheres (or semi-sphere) in radial directions.

The neglected.radiation energy may be represented in this model by the cut off areas(see Fig.4.8).
It can be seen that the. ratio of the neglected (cutoff) energy may be small compared to the total
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Cone-disk representation of pile-soil

Amui doubIee of soil

Figure 4.3: fliustration of interaction(coupling) between various disks via their associated double-
cones in (the fullspace) of soil

ler(u0)

Figure 4.2: A single cone representation of the
semi-infinite soil medium under a loaded disk

Figure 4.1: A double cone representation of located at the surface (with special cases of
the dynamic pile-soil interaction cone as wedge and a prismatic bar)



Figure 4.4: A multi-stack of deformable pile-
soil interaction disks connected via pile ele-
ments

Cone-Disk Model of Pile-Soil

Figure 4.6: A multi-stack of the rigid pile disks
connected to each other via pile elements and
to the ground via soil cones representing the
interaction between the pile and soil

Figure 4.5: A multi-stack of rigid disks con-
nected to the ground via equivalent non-linear
springs representing the pile-soil interaction

Figure 4.7: A multi-stack of rigid disks con-
nected to each other via pile elements and also
coupling (ground) springs and attached to the
ground via. equivalent non-linear springs rep-
resenting the pile-soil interaction

1174.2. CONE-DISK MODELLING OF SOIL
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Sofi

D Contouis undav load

P

Figure 4.8: Displacement contours of Boussi- Figure 4.9: A schematic illustration of wave
nesque under a (concentrated) loaded disk in energy transmission sphere in soil(After Wolf,
an elastic half-space of soil (1994)

amount of the energy transmitted. In analogy to the surface disk concept, the idea of embedded
disk has been introduced by Meek and Wolf, (1992), which constituted the basis for a multi-stack
of disks model. Similar to a loaded surface disk, it is assumed that for the embedded disk the
stress distribution can take place within a double-cone as ifiustrated in Fig. 4.10. These double
cones intersect at the disk plane, the intersect area as shown is equal to the cross-sectional area
of the rigid loaded disk.

Wolf's disk model basically consists of a multi-stack of uncoupled rigid disks with their associated
linear double cones which can transmit any translational as well as rotational motion into the
soil separately. The rigid disks are connected to each other via rigid or linear elastic beam (or
rod) elements (see e.g. Timoshenko and Goodier, 1982).

The extension of initial cone idea(Meek and Wolf, 1994) to a non-linear pile-soil system is de-
-

scribed in the following. Different methods might be used for solution of the non-linear cone
model. The first approach was introduced by Emarni and Moan, (1996) involves modification of
the linear cone model of the Wolf and Meek, (1994) based on non-linear disk assumption. The
idea is to modify the corresponding linear cone properties such as the soil's shear modulus G
and hence the corresponding wave velocities c, and c8 as functions of the displacement response
of the pile-soil system. In other words, this approach is an indirect solution of the non-linear
cone model of soil.

In the second approach, a non-linear version of Wolf's cone model is directly obtained based
on general non-homogeneous and non-linear soil medium assumptions. The disks in the model
shown in Fig.4.7 are coupled in each loading direction, axial, lateral and rocking but are un-
coupled between these degrees of freedom, except between the lateral and rocking motions. The
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Figure 4.10: A schematic illustration of the
double-cone concept of soil (after Meek and
Wolf, 1992)

Auri1CngafSj]

Figure 4.11: Equilibrium of dynamic forces for
a thin slice of soil cone

interconnecting elements of the disks are assumed to be defôrmable and in general as elasto-
plastic beam (rod) elements(see Bouc, 1967 and Przemieniecki, 1967). The geometric as well as
material non-linearities are considered for the interconnecting finite two node beam elements.

A more sophisticated two node beam element of USFOS(Søreide et al, 1994) for pile including
material and geometrical nonlinearities Is also used. The pile-soil interaction is modelled by
Winkler type springs as shown in Fig.4.5. The damping is hence modelled only as hysteretic
damping in the soil which occurs due to its yielding. Two different types of soil behaviour are
considered namely, elasto-plastic and hyper-elastic. The latter type does exclude any hysteretic
soil damping and is only used to quantify the soil's in-elastic damping effects on the response of
the pile-soil system. The structural model of USFOS is described in Chapter.3.

4.2.2 Geometrical properties of a non-linear cone model
In this section, geometrical properties of the soil cone are defined by means of a simple case of
wedge (a special case of cone see Fig.4.2). These common properties will have the same meaning
for all types of soil cones discussed here.

The geometry of a cone in general is defined by two parameters, namely, the apex height (or sim-
ilarly apex angle) and the radius of the disk associated with the cone as illustrated in Fig.4.12.
The apex angle of a non-linear cone in general will vary with the soil depth and the time. How-
ever, for simplicity it may be assumed that the associated angle of each cone would remain
constant.

In a more realistic analysis, the variations of cone angle can be considered at specific discrete
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Figure 4.12: Geometrical properties of the non-linear cone of soil under various motions

points of soil space such as location of disks (or nodes in finite element model of pile-soil system)
and at the boundaries of various layers. For the disk i located within a layer of soil shown in
Fig. 4.12, the apex height and associated disk radius with the cone are denoted as z, and r,
respectively. The aspect ratio and the corresponding apex angle of a non-linear cone 0, can be
related to the velocity ratio of the vertically and horizontally propagating waves towards infinity
as shown in Fig. 4.12. In triangles ACD and AOB, the following geometrical relationship can
be written:

CD OB r
tgei = = =

where (ID can be written as:
CD = r + ch.t (4.2)

and AC can be written as:
AC = z + c,.t (4.3)

thus: = = tg0, Assuming the shear wave velocity in general as a function of the tangent
shear modulus and Poisson ratio of soil as:

Cj = f(GT, z')

(4.1)

;i=h,v,r (4.4)

in which h,v and r refer to the horizontal, vertical and rocking motions, respectively and the
tangent stiffness modulus of soil GT = IGT (u, z, T), hence the opening angle of a layered soil
cone may be written as:

0 _l(fh(fG(zL,z,r),v)'- 9 " f(fc(u, z, r), ii)

The corresponding 0 and z/r ratios for particular cases of disk's motion are given in appendix.D

(4.5)
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4.2.3 Dynamic formulatiOn of the cone model in a half space of
soil(with only radiation damping)

According to Meek and Wolf, (1992) a soil medium around a dynamically loaded rigid disk may
be modelled as a single (or double cone) as illustrated in Fig.4.l0 and 4.11. The basic dynamic
equation of equilibrium may be obtained for a slice of cone with an infinitesimal thickness as
shown in Fig. 4.11 as follows:

ô2u(w)
dN(w) - pdv - 0

for a harmonic type of excitation, that's : u(w) = Csin(wt) or Ccos(wt), we will have:

a2u()

Hence, we will have:
dN(w) + pA.dzw2u() = 0 (4.8)

Knowing that the force-stress relationship is:

N(w) = o(w).A(z) (4.9)

And the stress-strain relationship may be written as:

o(w) = E.f() (4.10)

Substituting the latter in Eq. 4.9 will result in:

N(w) = E.e(w).A(z) (4.11)

Now differentiating N(c14 with respect to z will give:

dN(w) = .e(i).A(z).dz + .A(z).dz + E.E(w). .dz (4.12)

Combining Eqs. 4.8 and 4.12, we get:

.w).A(z) + .A(z) + E.f(W).a + pA(z).w2.u(w) 0 (4.13)

According to the simple continuum mechanics theory with the assumptions of small strain f(w)
may be written as follows:

Ez = (4.14)

By substituting for e(w) in Eq. 4.13, we will have:

+ E..A(z) + + p.A(z).c1..'2.u(w) = 0 (4.15)

For non-linear and non-homogeneous soil, the elastic modulus of soil E may be written in
general as a function of shear strain m the soil(see Appendix.D). Since the soil displacement can
be related to the shear strain (see Secs.2.2.3 and 2.3.3), hence E can be written as:

E=FE(zo,ro,u,ü,...) (4.16)

- Cci2sin(wt)

(4.6)

(4.7)
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in which z07r0 refer to cone's apex height and disk radius and u and it represent the soil dis-
placement and its first derivative with respect to z.

Also E can be related to the tangent shear modulus of soil, GT via ii as follows:

E=2(1+v)GT (4.17)

E can be re-written as follows:
E=E(z,r).fE(u,it,...) (4.18)

in which E, indicates the initial elastic modulus of soil which in general is a function of z and r
which may be approximately decoupled as follows:

E = fE(z,r) fE,,z(Z).fE1,(T) (4.19)

Now combining Eqs. 4.17 and 4.18, we will have:

E(z,r).fE(u,it, ...) = 2(1 + v)GT (4.20)

Thus:
QT E,z,r)

fE(uit )= G(z,r).fE(u,it,..) (421)

On the other hand, the shear modulus of soil C1' can be written in general as:

GT=f(r) (4.22)

The tangent shear modulus of the soil C2' may be defined as:

(4.23)

By inserting the shear stress function i- in Eq. 4.23, GT may be obtained theoretically(see Ap-
pendix.D).

The normalized tangent shear modulus 9T may then take the following form:

= g + a1s + Q28 + (3S + ... + (? (4.24)

in which g, and s are the normalized shear modulus and stress parameters:

g = g- (4.25)

(4.26)
Tps

where r here is considered as the failure shear stress at the pile-soil interface as determined
in Sec.2.3.2 based on the soil mechanics theory (Mohr-Coulomb criteria). The coefficients of
general Eq. 4.24 may be determined through procedure described in appendix.D.
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For example a truncated form ofEq. 4.24 has been proposed by Svanø et al, (1993) for clayey soils
which is described in Secs.2.2.3 and 2.3.3. Other relationships have been proposed by Ramberg-
Osgood, (1943), Hardin-Drnevich, (1972), Richart, (1975), Janbu, (1976), Hara, (1980), Molenkamp,
(1980) , Finn and Lee, (1982), for both sand and clay. Langø, (1991) obtained similar correla-
tions from cyclic triaxial tests on several clayey sites in Norway and he applied the CSM model
of Svanø, (1992) to fit his obtained triaxial test results. Due to efficiency of Svanø's model
in having only two unknown parameters which can capture main characteristics of the soil, it
is adopted here for the current study and has been calibrated for sand by using Finn's more
complex cyclic model (see appendix.D).

A particular form of CT is derived based on the CSM model of Svanø et a!, (1993) for clay as
follows:

GT= Gi(0'm+ad)(l A7G1) (427
/1J.4_h-yG

V AG+1
In which ) and h3 are material related coefficients which are obtained for e.g. by Langø, (1991)
and Svanø et a!, (1993) for NC and OC clays. Eq.4.27 may be used for sand by calibrating the
appropriate parameters (see appendix.D).

Another mathematical form of GT can be expressed as(Svanø et al, (1993):

CT = G(1 - o.$)' (4.28)

In which c and /3 are the material parameters of soil which may be obtained directly (from
triaxial tests) or can be obtained from h8 and ) by equating the right hand sides of Eqs.4.28
and 4.27 (see appendix.D)

Hence, comparing Eqs. 4.21 and 4.28, we will have:

fE(u, ...) = (1 - (4.29)

T = fr(U) (4.30)

where fr() is often referred to as (t-z), (p-y) and (q-z) fünctions(see Chapter.2).
Combining Eq. 4.29 and Eq. 4.30, the following can be written:

(4.31)
Tp8

(4.32)

(4.33)

E =
Tp8

(4.34)

and from Eq. 4.18 as:
f(u)E=E.(1 a-)

Tp8

E may be in general expressed as:

E = E2(z = z0,r = ro).fr.(z,r)

By combining Eqs. 4.32, 433, 4.19 may be re-written as follows:
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Now differentiating E with respect to z will result in:

OfE,(u)= E,0. ôfE (z)
fE,r (r) fE,u (u) + (z) .fE1,r (r).

The following part by part partial derivative equation can be written:

OfE,(U) f9fE,(U) au
Oz - Ou az

For a non-homogeneous soil the following simple and convenient variation with the soil depth
may be assumed:

fE1,(z) (.)m
zo

in which m is the order of distribution function. Thus, we will have:

OfE,,(Z) !(m_1 = .fE,(z)zozo z

inserting the latter into Eq. 4.35, will yield:

OE 7Th 0fE,u thL= E,o.fE,z.fE1 r.(.fE, +z Ou ôz

A(z) also can be in general assumed to vary with z as:

A(z) = A(zo)()2 (4.40)
zo

thus:
OA(z) - mA(z)

Oz - zozo z

Substituting for into Eq. 4.15 and re-arranging the terms will produce:

p.w2

0Z2 fE,u Ou âz z Oz Ei3OIE,Z.fE,IL

in which fE, is dropped, since it is assumed that E profile only varies with depth (z).

4.2.4 Discussion about different solution procedures for non-linear
cone model

In this section several different methods for solution of non-linear cone model are discussed.
Adhering to our simple to more complex approach which is followed throughout this work, we
adopted first a much more simplified method for solution of a non-linear cone model based on
modification of the Green functions associated with the linear cone model of Meek and Wolf,
(1992) and Wolf et al, (1992).

(4.41)

= 0 (4.42)

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)
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The second approach is introduced in the following subsection as a semi-analytical solution of
the cone model based on a step-wise linearization of the non-linear differential equation in an
incremental form. Although this approach is more complex than the first method, it still is
approximate and does not account for the non-linear terms in the differential equation emerg-
ing from the variation of the tangent shear modulus of soil within a small incremental step(see
Eq.4.42).

To avoid deviation from the true path of response due to neglecting the non-linear terms associ-
ated with variation of fE with respect to displacement (u), a predictor-corrector approach may
be applied which is outlined in the following.

The fourth solution approach may be applied based on the finite difference method. This nu-
merical method might be slightly more costly due to discretization of the cone and solution of
the differential equation over all the discretized nodes of the cone, nevertheless it is more reliable
than the three first methods.

The most complex and costly solution approach might be a continuum mechanic solution based
on full discretization in space and time. This approach is based on finite elements of soil cone
or in general the soil surrounding the pile.

4.2.5 Indirect solution of non-linear disk-cone model

Based on the disk-cone idealization(Meek and Wolf, 1992 and Wolf et al, 1994) an efficient ap-
proach is introduced for the solution of a non-linear pile-soil system. Evaluation of the associated
dynamic stiffness of an embedded foundation such as pile-sOil system is provided by Ema.mi and
Moan, (1996). The non-linear response functions of the system approximated by a synthesis
of impulse response functions which are classified according to Wolf et al, (1994) to horizontal,
vertical and rocking motions. Each impulse function gjj is obtained as the displacement response
of the soil medium at a distance from the point of source disk (i) as shown in Fig.4.13.

The differential equation for a unit load impulse is given in appendix.D. The displacement due
to unit impulse function at time(t) due to impulse generated at time (r) may be obtained as
follows:

= g(aj3, t - T, c) + g(aij, t - T, c) (4.43)

where Yij is a function of distance between the receiver disk (j) and the source disk (i) as
shown in Fig.4.13, time interval between the present time (t) and the time of load impulse r at
the source disk (i) (This time interval is often referred to as the retardation time) and also the
wave velocity (c). The frequency dependent Green function g(a, w) can be computed through
a Fourier transformation from gjj(a, t, c). As expressed each .qij impulse function is dependent
on the wave propagation velocity in soil (c). c may be expressed as a function of tangent shear
modulus of soil GT as:

VP (4.44)
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soil surface

02

Figure 4.14: Variation of shear wave velocity vs. shear stress at pile-soil interface

-I

diskj

diski

a..
'J

a

ii

Figure 4.13: Representation of source, receiver and mirror of source disks

where the explicit forms of the f(u) function is given in Appendix.D for P, S and R-waves. GT
might be related to the shear stress r at the pile-soil interface as follows:

GT = G1(1 - (4.45)
T8

Combining Eqs.4.44 and 4.45 may lead:

-
y T,8

For e.g. for a particular case of normally consolidated soil with 3 = 2, from Eq.4.46 a simple

0.8

(4.46)
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linear relationship is obtained between c and r as:

1c = c2(1 - a.)
T8

c/c2 vs. r/r8 relationships for different values of /3 are plotted in Fig.4.14. It is observed that
C/cj varies with r/r7,5 ratio depending on the /3 parameter. The plotted limits 3 = 1.0 to 4.0
represent a practical range from heavily overconsolidated to essentially normally consolidated
soils. It can be seen that the shear wave velocity (c) decreases more rapidly with the increase
of shear stress for a normally consolidated soil than a heavily overconsolidated one. For e.g. at
a half collapse shear stress level (i.e. T/TPS = 0.5) the wave velocity for OC soil(/3 = 1) is about
0.78 times the initial wave velocity (ci) while at the same stress level the wave velocity (c) is
only about 0.37 times the initial wave velocity (ci) for NC soil with (/3 = 4.0). Now substituting
for c from Eq.4.47, in green functions in Eq.4.43, we can obtain:

Similarly f and f can be obtained. The mass, however, is not affected by the variation of
the tangent shear modulus CT. Hence, it is possible to compute the dynamic response of the
embedded foundation(pile) in the time domain taking into account the non-linear properties of
soil such as CT, c, a and /3.

The complex Green functions for an elasto-plastic soil half space may be Modified after Meek
and Wolf, (1992) as follows:

= .j, c(CT, ii)) + 9'jj (t, c(CT,z,)) (449)

where a2 and represent respectively, the distances from the source disk j and its mirror image
to the receiver disk i as shown in Fig.4.17. The superindex (a) indicates the integration step
and c represents the wave propagation velocity in the soil which is a function of tangent shear
modulus CT and the Poisson's ratio v of soil(see also appendix.D). Combining Eqs.4.49 and 4.45
may result in:

= c(C(1 - a. ), v)) + c(C(1 - a.) , v)
fT(u) fT(u)

Tp8 i_ps
(4.50)

where f1. relationship for e.g for the axial loading of disk is obtained according to Sec.2.2.3 as
follows:

U = (i_) Ga(1 /3) ! [1_ (1 ai!br(r))1] dr (4.51)

hence, after inversing, we obtain:

Ch = fh fh(htci\ f('u, CT, a, /3))
1 a

T8

f(u)

(4.47)

(4.48)

(4.52)
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4.2.6 An approximate semi-analytical solution of non-linear cone
model

Considering an incremental form of Eq. 4.42 as:

By assuming that the tangent shear modulus or equivalently fE,. is approximately constant
within a sufficiently small incremental step Su then the second term in Eq.4.53 may be neglected
which results in the following step-wise linearized form:

ô2c5u m + n Oc5u p.w2
+ ( )- + .8u(w) = 0 (4.54)

z Oz E2,ofE,z.fE,o,.

The general solution of the following linearized differential equation may be obtained through
an iterative procedure as follows:

zmöü, + (in + n)zm_lc% + Böu = 0 (4.55)

where fE,u determined from the response known at the previous incremental step as follows:

fE,ou = (1
fr(uj_i + 5Ui))

(4.56)
T8

where 5u2 is initially predicted for e.g from previous step as 5u_i.

The predicted solution of the linearized differential Eq.4.55 then will become:

5u, = [c1J± 1(±/T2i) ± c2Y1(±/zP)] (4.57)

where p: predicted valuej (m+n-1) Bessel function of first order and first kind.
= ') Newman function of first order and first kind. (see for e.g Spiegel, 1968)

The predicted value of B as coefficient of the last term on R-H-S of Eq.4.57 will be:

B (4.58)
Ei3OIEATL,P

c1, c2 = coefficients of Eq.4.57 can be determined from B.C. conditions as:

öu(z = 0) =
öu(z -+ co) -+ 0 (4.59)

where m = exponent of E function, n = the order of the cone. The corrected fE,ou will be:

f7(u_1+5u,)
fE,ou,c - (1 ) (4.60)

a2ou 1 ôfEu Ou&5u OöiL 2()ôz
m+ri 05u p.w2

0 (4.53)i- + -.----.
13Z fE,6u Ou

-- +
f3Z ôz + ( )-z ôz

+ .c5u(w)
Ej,ofE,.fE,o
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where C2 = 0 and C4 = 1 (m+n), the coefficients C1 and C3 can be obtained from the boundary
conditions of the cone system. The displacement of the disk at z = z0 is assumed to be known
or öu(z) = öu(z = z0). The second boundary condition may be imposed as öu(z *) = 0
or Su(z = = . The application of the latter is described later for a particular case of the
cone model. For (rn + n) > 1 the coefficients C1 and C3 can be obtained as follows: C1 =0 and
C3 = 8u(zo).zm )1 Inserting these in Eq. 4.65,. we will have:

z 1-(m+n)
8u = Su(zo).() (4.66)

8u can be corrected from solution of linearized differential equation above as:

8u = z1' [CiJn±(±s/z2in) ± C2Ym+n_i2(±Zmn)] (4.61)

The above steps may be repeated until the desired convergence is obtained:

6u = öuj,, + tol(8u2) (4.62)

where to1(8u) =the tolerance value of which depends on the desired level of accuracy. Iter-
ations may be switched off or only one iteration used depending on the need for greater speed
in calculations.

A truncated from of the latter might also be applied for the pile-soil system where the last nodes
in each mesh of cone could be considered at the tip of the pile. For the long piles under action
of dynamic loads applied at the pile head this procedure may be correct because the displace-
ment at or near the tip may be assumed to be negligible even in dynamic case compared to the
upper layers of soil near the pile head. Nevertheless, for the seismic ground motion which may
propagate from tip of the pile upwards the latter assumption may not be applicable.

For a high frequency case a series solution may be found by inspection as follows:

öu(w) = (4.63)

It can be verified that the latter is the general solution(i.e. for all values of w) for a particular
case of the cone with 71 + m = 0,2. Wolf and Meek, (1994) presented a proof of the initial
version of Eq. 4.63 with one parameter n. This implies ri = 0,2 for homogeneous soil for which
rn = 0, n = 1,1 for linear soil profile m = 1 and n = 0 for a parabolic soil profile m = 2. n = 0
according to Eq. 4.40 represents a constant area or a prismatic rod(see Fig.4.2), n = br - 1
represent linearly varying (decreasing or increasing) in area (translational wedges) and ri = 2
denotes a parabolically varying (transnational cone) etc.

For w = 0 (the static case), the general solution of non-linear cone can be obtained in series
form as follows:

8u = C1ZC2 + C3zC4 (4.64)

Substituting for Su from latter in Eq. 4.54, we may obtain, the following characteristic solution:

= C1 + (4.65)
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For a prismatic bar (n = 0) and homogeneous soil (m = 0), the above solution may not be
valid since the condition in + n > 1 is not met for the boundary condition related to the
infinity. However, the practical solution of this may be sought through use of second (a modified)
boundary condition such as one described above. For the latter case, we may obtain the following
solution:

6u
5UOZ + = t5tL(

Z - Z)
(4.67)

ztipzo zoztip ztipzo
in which it may be assumed that - = 0. It is evident that the latter assumption may not be
valid for a disk with the associated cone or double-cone located at or near the pile-tip. Hence,
for the upper disks located near the pile head, we may have a simpler approximate form for
small strain condition from Eq. 4.67 as:

6u c5uo(1
ztip

(4.68)

For a long pile, the latter approximate form (Eq. 4.68) is valid since it satisfies the boundary con-
ditions both at the surface and the tip which is also valid only for small incremental displacement.

The solution obtained here is similar to the initial linear cone model solution of Wolf and Meek
and Wolf, (1994). The differences are the replacement of the variables with their incremental
forms, and addition of a new parameter in for the non-homogeneous soil condition:

5u(z) = u(zo) a()(7*m)_1 (4.69)

where the coefficients of the series on the right hand-side of Eq. 4.69 can be easily determined
from a numerical trial procedure. For a simpler single term, the summation sign can be dropped.

The static and dynamic stiffness of the soil cone can be obtained by using the Eq.4.11 as follows:

6N(w) = E.e(4A(z)

By substituting for E(w) from Eq.4.14 we will have:

t5N(w) = E.0A(z)
By combining the latter and Eq.4.63, we will have:

t5u0 n+rn iwz
5N(w, z = zo) = E(z = zo)A(z =

2zo

Now the interaction force increment ÔP(w, z = z0) at the disk-cone interface can be easily
obtained as:

ötLo fl+rfl iWZ
= z0) = 5N(,z = z0) = E(z = zo)A(z = Zij)-( + -) (4.73)

z0 2 c

The corresponding dynamic stiffliess S(w) may be obtained as follows:

6P(w,z = z0)
S(w) = ôu

(4.74)

(4.70)

(4.71)

(4.72)
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By inserting Eq.4.73 in the latter, the following expression emerges:

S(w)
E(z = zo)A(z = zo) [(fl + m)

+ (475)
2 c

Comparing the latter equation with the general expression of dynamic equation of motion:

Mu + Cu + Kt = f(w) (4.76)

where 1(w) = a harmonic excitation force for e.g as foexp(iwt). Now assuming that u(w) =
uoexp(iwt) and substituting into Eq.4.77 will yield:

± Ciw + K)u(w) = Au(w) (4.77)

Eq.4.77 represents a standard complex eigen-value problem which can be

(S(w) - AI)u(w) = 0 (4.78)

where I denotes the unit matrix and 5(w) represents the dynamic complex stiffness of the cone-
disk in general as:

S(w) = K + iwC - w2M (4.79)

From which for a free-undamped SDOF system, the natural frequency emerges as:

K
M

Based on Eq.4.75, the dynamic stiffness parameter K and the damping parameter C may be
obtained at the location of the disk z = z0 as:

K
(fl + Tfl) E(z = zo)A(z = zo)

(481)
2 z0

= E(z=zo)4(z=zo)
(4.82)

For a special case of the cone with rn + n = 2, the corresponding dynamic spring and dashpot
coefficients can be obtained from Eqs.4.81 and 4.82 as follows:

K E(z = zo)A(z = z0) pcA(zo)
(4 83)

E(z = z:)A(z = z0) = peA(zo) (4.84)

It can easily be shown from Eq.4.63 that in general (z z0), K and C will be functions of w.
Eq.4.79 in a general form can be re-written as follows:

S(w) = K(ka,(w, c) + zwcd(w, c)) (4.85)

where K8, kdv and c represent the static spring stiffness, dynamic (spring)coefficient and the
dynamic dashpot coefficient, respectiveiy. For the special case of z = z0, we have for e.g kd 1

and Cdi, =

where A = fo/uo.
re-written as:

w = (4.80)
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A discretized truncated
uni-directional cone
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n
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Figure 4.15: A discretized truncated (uni-
directional) cone of soil along its central axis
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Figure 4.16: Discretization of a bounded soil
medium around an embedded foundation by
general (continuum) finite elements and uni-
directional cone elements

4.2.7 A predictor-corrector based semi-analytical solution of non-
linear cone model

To avoid the inaccuracies due to neglecting the non-linear terms related to variation of Jr with
respect to u on the left hand side of Eq.4.53, a predictor-corrector approach might be applied
to overcome this difficulty. The approach involves first a predicted solution of the linearized
differential equation (Eq.4.54). After determining the predicted response u, from Eq.4.57, the
initially neglected non-linear terms on the L-H-S of Eq.4.54 can be determined as a function
of displacement response u. The obtained unbalance term may be equated with an equivalent
last term of Eq.4.54 to obtain the modified equivalent terms as Bp,eq. The updated linearized
differential equation with inclusion of unbalance term can be easily obtained from Eq.4.57.

This procedure can be applied iteratively until the corrected displacement response u is obtained
from the last iteration u up" + tol(u) where tol(u) represents a pre-set tolerance value for
termination of the response calculation.

4.2.8 A numerical solution of non-linear cone model based on finite
difference approach

Based on finite difference approach, the first and the second derivatives of the response can be
expressed as follows:

ôz
ui+1 -

(4.86)

02u uj+2 - 2u2i + 'U
- z2

(4.87)
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fE, , fE,z can be determined numerically according to Eqs.4.31 and 4.34 at point (i) of the cone
mesh shown on Fig.4.15. Then the differential Eq.4.42 can be written in a finite difference form
as follows:

u+i-2u+u_i +__( Ui_i) +(7n+n)ut u,_1
+ u,=O (4.88)

fE,ui Zi Zj Ei,ofE,zfE,

Writing Eq.4.88 over all the nodes of the cone's mesh (ito n), n equations are established with
(n+2) variables. Two more needed equations may be obtained from the boundary conditions
for nodes (0) and (n+1). The B.C. may be expressed as follows: IuoI = 1u21 and IuI
w.r.t the geometry of the cone. Node (0) can be assumed as the mirror image of node (2) and
hence its displacement would be the same as node (2) from the upper cone. While node (n+1)
is far outside the cone's mesh and hence the dip1acement associated with it may be taken ap-
proximately as that of node (n), since node a is assumed at 'the far field of soil.

Solving (n+2) non-linear algebraic equations by means of classical numerical engineering meth-
ods (see for e.g. Przemieniecki, 1968, Clough and Penzien, 1968 etc) in terms of (n+i) variables
of response at the discretization points might yield the solution of the non-linear cone problem
in a numerical manner.

4.2.9 General finite element solution approach for an embedded foun-
dation in a bounded medium

The most complex approach to solve the embedded foundation problem (in particular a pile)
would be to make use of continuum type finite elements for a bounded medium of soil. In this
approach as shown in Fig.4.i6 a truncated area of bounded medium can be discretized by using
3D continuum finite elements with various shapes(see for e.g. Zeinkiewich, 1989). The appropri-
ate boundary conditions have to enforced so that the missing soil effect could be accounted(such
as reflection, refraction from the boundary) and also the size of the soil's global stiffness matrix
and the number of elements needed could be limited.

Several previous studies have employed this more rigorous method either for linear elastic soil for
e.g. Wolf and Song, (1995) and Wolf et al, (1996) and also with utilizing the general plasticity
rules for the non-linear soil such as Langen, (1991) and Madshus, (1997). This method is
considered to be extremely demanding in terms of computational time required particularly for
time domain analysis of pile-soil system. Therefore, the application of this approach has been
so far limited to some relatively small size or very sensitive problems such as design of pile
foundation of nuclear power plant etc. Due to numerical complexity and time consumption
it is recognized that this approach may not be very feasible at the current stage of offshore
technology for analysis of pile foundation of jacket platforms. However, advances in terms of
supercomputing systems might allow the designer and analysts to apply such more rigorous and
accurate methods in near future.
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Figure 4.17: Geometrical properties of the non-linear cone of soil under various motions

4.3 Material damping associated with the cone model

4.3.1 General

The radiation damping as illustrated in the previous section is an inherent property of the dy-
narnic cone model. While the radiation damping is considered to account for the most significant
loss of energy in the soil medium, nevertheless some material damping will always be present
in the pile-soil system. This material damping is mainly due to the friction between the soil
particles and also partly caused by the friction between the pile's steel material and the soil.

A proper physical model to describe this kind of damping is perhaps the frictional damping
model itself which can also be based on the degree of soil's frictional mobilization or indirectly
based on the normal force components inducing the frictional loss in the soil or between the pile
and the soil. Except frictional damping, there are other forms of material damping which can be
applied such as visco-elastic(Voigt type), linear hysteretic(non-causal) and non-linear hysteretic
type damping.

Although linear hysteretic and Voigt's VE models are in essence of the same family of dampers,
nonetheless, there is a substantial difference between these two models. According to the Voigt's
visco-elastic model the damping may be assumed to be linearly proportional to the frequency of
vibration while in the linear hysteretic (non-causal) model, the material damping is considered
to be constant. The corresponding damping ratio often is obtained according to each mode of
the vibration. These two models are often applied for frequency domain analysis of the pile-soil
systems.

On the other hand, the non-linear hysteretic model can also be applied for material type energy
absorption in the soil. The corresponding energy loss is assumed to take place within each cycle
of vibration as represented for a half cycle by the shaded area in Fig.4.18. The area enclosed
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Figure 4.18: Illustration of hysteretic energy loss during cyclic loading of soil

within each hysteresis loop actually represent the amount of the total energy in one cycle. This
part of work or energy as equivalently used can not be recovered even after unloading the pile-soil
system. Non-linear hysteretic behaviour of soil will be discussed further subsequently.

An overview of each of these material damping models and their applications are given in the
following subsections.

4.3.2 Voigt's visco-elastic damping
The basic kind of material damping which can be applied for the dynamic cone-disk model of soil
is the Voigt's visco-elastic type damping. The Voigt model postulates that the damping can be
defined as a linear function of frequency of excitation w. Thus the model is suitable for pile-soil
analysis in the frequency domain. According to the correspondence principle, the stiffness and
damping coefficient of the dynamic system may be modified to accommodate the linear material
damping 7m = amw according to Eq.4.85. am is a coefficient which is inversely proportional to
the natural frequency of the vibration of the cone w,.

The correspondence principle may be described as : "A linear hysteretic material damping can
be introduced into the dynamic system by multiplying a complex term as 1 + 2j7m corresponding
to the material damping ratio 1m with the elastic stiffness properties of the soil such as shear
modulus G(see for e.g. Wolf and Meek, 1994 and Appendix.D)". Hence, the shear velocity
and its functions such as K8, kd, and Cdy will be modified accordingly. The dynamic stiffness
function with considering the material damping from Eq.4.79, then can be decomposed as derived
in Appenix.D, by assuming that the 'im is often small, thus its square may be omitted:

[real(S(w))]* = + (1 + irlm)2Kstkdy(w, c(1 + i'im)) (4.89)
[imag(S(w))J* = (1 + i'im)wK8tcdv(w, c(1 + i'im)) (4.90)

in which asterisk symbols indicates a modified form of S(w), am is the linear material damping
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coefficient. M represents the mass of the soil which will be considered as trapped (added) mass
underneath of disk, while the mass of the soil inside the pile cylinder will be excavated mathe-
maticafly, hence, here M in this Eq.4.89 will be substituted by M representing the trapped mass
of soil. It may be worth noting that this trapped mass might only exist for the disk located at
the pile tip.

Eqs. 4.89 and 4.90 can be re-written as:

K(ui) Mw2 2iamw)K= + (1+ (4.91)

As mathematically shown in Eqs. 4.93 and 4.94, introducing a linear frequency dependent visco-
elastic damping results in modifying the initial dynamic system by augmenting a dashpot with a
coefficient of Cve = 2amKkdy(w, c) and a mass of = amKstcdy(w, c*). Therefore, in general,
the dynamic stiffness parameters of visco-elastically damped model are non-linear functions of
frequency of excitation w.

4.3.3 Linear hysteretic (non-causal) damping
The linear hysteretic damping which is also known as non-causal damping( Wolf et al, 1994) is
another version of linear hysteretic damping which as mentioned above assumes that damping
ratio is constant and can be obtained according to each eigen-mode of vibration.

If we replace the frequency dependent material damping in Eqs. 4.93 and 4.94 with a constant
material damping i another modified dynamic stiffness system is obtained as a function of ,

in general. If the kd is considered as a linear function of w and introducing a constant material
damping as i, it will still be a linear function of w. Figs.4.19 through 4.24 compare the spring
and dashpot parameters of the dynamic system computed according to the described damping
models.

As shown in Fig.4.19 kd decreases linearly with the frequency of excitation. By taking an
inverse Fourier transformation of the response according to the frequency independent linear
hysteretic damping model, no causing force can be obtained at the initial part of the response.
This spurious response theorem has been investigated by Meek and Wolf, (1992) for the case of
unmodified ka (i.e only K8 is assumed to be affected by the material damping).

As discussed by Meek and Wolf, (1992), this kind of spurious response despite its non-causality
is accurate and valid in comparison with causal Voigt type damping or other experimental test
results.

= (1+ iami4iCw (4.92)

And Eqs. 4.91 and 4.92 can be simplified as follows:

K*(w) = (M'2 + K) + 2iamwK = (K - Mw2) + iwC,
iwC(w) = iwC - amw2C = iwC - W2Mve

(4.93)

(4.94)
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The dynamic stiffness expression with the presence of linear hysteretic type material damping
may be obtained as follows(see Wolf and Meek, (1994) and appendix.D):

S*(ao) = Mtc2 + K(1 + 2iamw) + iwC(1 + iamw) (4.95)

After re-arranging and substituting the relevant terms in latter, the stiffness will be(see also
appendix.D):

S(ao) = K3 I_ !0a2 z0c8 1 2 4(L Z0 zoCsl17ma0I +iaoK8
ro roc j [ao r0 rocj7mao + -

in which all the parameters are as defined above. The dynamic spring and dashpot coefficients
then follows from the real and the imaginary parts on the R-H-S of Eq. 4.96 as:

ELCZ0 2 Z0C8k,(ao) = 1 - ---a0 - llmaoirc2r0 r0c
2T)m 2rm0 ZC=-- ---a0+--
a0 irc2-r0 r0 C

For a vertical motion of disk for v 1/3 the trapped mass is omitted (i.e. i = 0), hence the
dynamic stiffness parameters given in Eqs.4.97 and 4.98 will be simplified as follows:

c (as)

z0 C8k,(ao) = 1 - ao?)m--
r0 C

c,(ao) = +
a0 r0C

With the visco-elastic material damping assumption (i.e. im = am,vew) and knowing that w =
aoc8/ro, we will have:

am,veaocs
1m = r0

Substituting Eq. 4.101 into Eq. 4.99 and 4.100, the coefficients of dynamic stiffness for visco-
elastic type material damping becomes:

k(ao) = 1 -
C8 Z0C8

cd,V(ao) = 2am,ve + --
T0 TOC

(4.96)

(4.99)

(4.100)

(4.101)

(4.102)

(4.103)

Eqs. 4.99 and 4.102 are plotted in Fig. 4.19 with solid and dashed lines, respectively(marked
with LH and yE).
Though the visco-elastic and non-causal linear hysteretic dampers may provide the basis for the
dynamic analysis of damped pile-soil systems in frequency domain but they may not be very
relevant for the time domain analysis of such systems.

(4.97)

(4.98)
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4.3.4 Frictional type material damping
A frictional damping model might be more relevant for a pile-soil system in the sense that the
actual material damping in the soil arises from friction between the soil particles caused by the
rubbing. Similarly at the pile-soil interface, frictional stress exists between the soil and steel
material of pile. It is observed that the frictional force N may be created by the lateral forces
P in the soil as follows(modified after Wolf et al, 1994):

p=2.4ir(v-1/3) ;1/3< v 1/2
=0 ;v<1/3

The following dynamic stiffness functions can be obtained(see appendix.D):

4c5z0 p c 2z 2kd(ao) = 1 ?)m.---.ao () .aircr0 ir C r0

cd(ao)=--+ 11m P Zo C8 28
C rO

.() iaO

in which 6 represents the friction angle of the soil. 8qfl is a sign function which determines the
sign of the argument inside the parentheses. It is observed that the frictional force in general will
be non-linear w.r.t the sgn function. If the sgn function is chopped in Eq.4.104 and 8 is assumed
as a constant friction angle of soil (Coulombian response), N(w) will be a linear function of u.
Index i in Eq.4.104 is an indicator of various components of dynamic force(restoring, damping
and inertia, respectively). C coefficient in Eq.4.104 is obtained as : C1 = 2C2 = C3 = 1.0.
The lateral force P may be decomposed into its components as follows:

P = Klu uoI + CIü uoI + iMIu - uol (4.105)

The first term on the R-H-S of Eq. 4.105 is the contribution of the spring force, the second term
is that of dashpot and the last term is related to the trapped mass underneath the disk which
can be considered for an incompressible soil (Wolf et a!, 1994):

= ppr (4.106)

where p is a coefficient obtained as follows:

(4.107)

Thus by combining Eqs.4.104 and 4.105, N(w) may be re-written as follows:

N(w) =
(4.108)

Applying Eq.4.108 the impedance functions related to a frictional damping system are derived
by inclusion of the inertia terms(see appendix.D).

N() = CPtan(ö,)sgn(u, ii, ii,, ...) (4.104)

(4.109)

(4.110)



4.3. MATERIAL DAMPING ASSOCIATED WITH THE CONE MODEL 139

Comparing Eqs. 4.109 and 4.110 with Eqs. 4.97 and 4.98, it can be seen that the first terms on
both spring and dashpot terms are the same but the difference is a factor 4/ir instead of one in
the terms involving the material damping factor . If the damping parameter 7m in the latter
equation is replaced by (ir/4)iim then the truncated frictional damping relationship for the spring
coefficient will turn out to be exactly the same as the linear hysteretic model. In geotechnical
practice, the observed maximum difference of about 0.17 may not be considered very significant.

4.3.5 Discussion about the influence of visco-elastic and linear hys-
teretic damping on dynamic stiffness coefficients of the cone

In this section, we discuss the influence of various types of material damping described in the
previous subsections on the dynamic stiffness coefficients of soil cone. To illustrate these vari-
ations particularly with the frequency of vibration, initially we consider the Voigt's VE and
Linear hysteretic(non-causal) type damping. To observe the limits of such variations, lower and
upper bounds of the soil compressibility as v = 0 and ii = 0.5 respectively are considered. The
soil's compressibility is defined with its ability to dilate and contract. The compressible soils
such as dry sand or clay may be considered to propagate the compressive or P-waves into the
infinity while perfectly incompressible soils such as saturated clays could be considered as less
able to expand or contract hence less able to radiate P-waves towards the infinity. At the limit
for a perfectly incompressible soil with (ii = 0.5), there is no possibility for the soil rod to con-
tract to dilate even for a very long wave, therefore, the energy can not be transmitted as P-waves.

It is shown in the following, this characteristic of soil will also play an important role in de-
termining the impedance functions of the cone-disk model which are essential in predicting the
dynamic response of the pile-soil system.

As illustrated in Figs.4.19 and 4.20, the spring coefficient at a0 = 0 is equal to unity ac-
cording to both visco-élastic and non-causal linear hysteretic damping models.

This verifies the consistency of the dynamic stiffness relationship with the static case. However,
significant differences in terms of shape or degradation of damped spring coefficient k(ao) are
observed in the dynamic range (ao > 0). For \risco-elastic type damping model, the degradation
is parabolic with a0 and approaches oo when a0 -+ 00. At a0 = k,(ao) = 0
which physically represents a cutoff frequency for the cone's spring coefficient under vertical
motion of disk. Since the w values for which this cut off occurs, are in the order of 100 HZ,
therefore this certainly will not cause any problem for the extreme sea waves with very low
dominant frequencies in the range of 0.05 to 0.1HZ. For the extreme seismic motions of soil with
typical main frequencies in, the range of 0.5 to 50HZ, the cone spring coefficient will be a positive
value.

In comparison, the spring coefficient k0 decreases linearly with a0 for a linear hysteretic damp-
ing model as shown in Fig. 4.19. The degradation in this case is slower than that for the
visco-elastic case for higher frequencies. As shown, the addition of the trapped mass beneath
the pile-soil disk (for compressible soil) changes the linear variation of to a parabolic re-
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lationship but decreases with a smaller magnitude than that of the visco-elastic model without
considering the trapped mass. The dashpot coefficient as plotted in Fig. 4.20 is constant for
the visco-elastic damping model with a magnitude of 2a,7 + ., while for the linear-hysteretic
model it is a hyperbolic function which decreases rapidly with a0 and approaches an asymptotic
value of about at very large frequency of excitation(i.e. ao -4 oo) which is represented by a
dashed curve. Inclusion of the trapped mass also changes the damping parameter considerably
for large frequencies (ao >> 1.0). As shown in Fig. 4.20 is zero at a0 = irc/(2rmpcs) and
negative after that. Hence, this point can be considered as the cut off frequency of the corre-
sponding cone under vertical motion.

In the following section horizontal, vertical and rocking motions of disk are considered and for
each case the spring and the dashpot coefficients(i.e. impedance functions) are obtained for
different material properties.

(I) For vertical motion of the disk:

c = c, ;0 1/3; (compressible soil)

c = 2c8 ;1/3 < v 1/2 (incompressible soil)

Sn = -
'.0 4 Ca1

k,(ao) 1
4z0c8 /.1c82z0 2.= ---1ma0irr0 C

C= 1 - llm(1 - v)ao - (1 - v)a02
Cs

For e.g. for z, = 1/3, im = 0.25 and p = 0, we have:

k,(ao) = 1 - O.33a0 (4.112)

for which the cut-off frequency is about a0 = 3 or w0 = = 150HZ. This actually represents a
high frequency which is often associated with the machine vibration. For lower frequency seismic
and sea waves, the corresponding spring coefficient will be positive.

The dashpot coefficient for the vertical motion of the soil disk can be obtained as follows:

)=+-r0c a0irc,(ao

= (1 - Z/)() + -
4 c8 a0ir

For e.g. 1 = 1/3, lim = 0.25 and p = 0 gives:

c(ao) (

2
= 1 u) + -

ira0

p z0 c82 8- 77ma0
ir r0 c2 ir

(1 - z')2lmao

(4.113)

(4.114)



Figure 4.19: Modified dynamic coefficient of
single pile-soil system under vertical motion
vs. non-dimensional frequency aO for non-
causal linear hysteretic and visco-elastic type
damping

Fig. 4.19 shows lower and upper bounds of k(ao) corresponding to v = 0 perfectly compress-
ible soil and for ii = 1/2 perfectly incompressible soil, respectively.

The dynamic spring coefficient is seen to be higher for the compressible soil than that of the
incompressible soil. Nevertheless, the differences are smaller for visco-elastic damping for two
types of soil.

The dashpot (damping) parameter c(ao) is plotted in Fig. 4.20 for incompressible as well
as compressible soils. The damping relationship is seen to be non-linear (hyperbolic) type for
both cases, however, is smaller for the incompressible soil than that for the compressible one.
The ultimate damping coefficient for very high frequency is about /ir/4 for 1 0 which is
v' times of that for the perfectly incompressible soil ii = 1/2 for which c(v = 1/2) = .Jc3.
This conclusion is physically sound based on our understanding of frictional loss in the soil. A
nearly incompressible soil, the soil can not be compressed or dilate to allow for the P waves
to propagate, while in a partially saturated or dry soil the compressive waves can propagate
by compressive deformation of the soil elements which can be allowed by filling the void space
in the soil volume. Thus comparatively, the total amount of the energy which can propagate
towards infinity is much higher foE the latter type soil.

(II) For horizontal motion of the disk we have:

c=c5 for ally values

Figure 4.20: Modified vertical dashpot coéffi-
cient of single disk-cone system under vertical
motion vs. non-dimensional frequency aO for
non-causal linear hysteretic and visco-elastic
type damping
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Figure 4.21: Modified dynamic spring coeffi-
cient of single disk-cone system under hori-
zontal motion vs. non-dimensional frequency
aO for non-causal linear hysteretic and visco-
elastic type damping

Figure 4.22: Modified dashpot coefficient of
single disk-cone system under horizontal mo-
tion vs. non-dimensional frequency aO for non-
causal linear hysteretic and visco-elastic type
damping

Hence, the spring and the dashpot coefficients (k,h(ao) and c,h(ao)) will be computed as
follows:

4z0c8 ac82z0 2k,h(ao) = 1 - ??mao - ---a0 (4J15)irr0c irc2r0
C3 2=1 2 - v)ao - (2 -

The k,,(ao) which is plotted in Fig. 4.21 starting from unity at a0 = 0 and decreasing linearly
2with a0 and approaching oo at a0 = cc. kY,h(ao) = 0 at a0 - (2i) (for j = 0) which

indicates the cut off of the cone's spring coefficient.

In a similar manner, the dashpot coefficient cdY,h(ao) can be derived as follows:

* Z0C8 277m4 pzoc8
cd h(ao) = -- + -- -

r0 c a0 ir 7rr0c7r

= (2 - zì) + - t(2 - v)2mao

which is a hyperbolic relationship in terms of a0 as shown in Fig. 4.22 decreasing from infinity
at a0 = 0 to an asymptotic value of (2 - z') at very large frequencies a0 cc for = 0.

(III) For the rocking motion of the disk:

(4.116)

0

-1

0

-3

-4

8

7

6

S

0
-S4

3

2

00

rHtem*

VEMsro-!asft

C.ConmssibIe

IC:in-CompressbIe

"LH(!C)

VE(C)'

1(1C)

LHO

H:Unearttyste,Uc

VEsco-E1as5c

C.compsossih!e

lCin-ampmssib1e

0 2
a0wiOIcs

3 4 2
aD=wr0/cs

3 4

142 CHAPTER 4. DYNAMIC ANALYSIS OF PILE-SOIL iNTERACTION



4.3. MATERIAL DAMPING ASSOCIATED WITH THE CONE MODEL 143

c=c ;foro<zi<1/3

c=2c3 ;forl/3<zi<1/2

= -
1.0 32' I'c/

Hence, the dynamic spring coefficient follows from Eq. D.26 as follows:

4z0c5 pc52zo 2k,(ao) = 1 - ---rimao - ----a0irr0c irc2r0

1: C= - (1 - zi)()llmao - (1 - v)ao2
Cs

For e.g. z' 1/3 and lm = 0.25, we obtain:

kay,r(ao) = 1 - (4.118)

which is zero for a0 = 8/3 2.67. The spring coefficient is plotted in Fig. 4.23 vs. a0 for both
compressible and non-compressible sOil types. It is observed that k,r(ao) decreases for both
cases from a unity at a0 = 0 towards oo for a0 = oo. As observed for the vertical motion of the
disk, the spring parameter is larger for the compressible soil than that of incompressible one.

The dashpot parameter for the rocking motion of the soil disk can be obtained from Eq. D.26
as follows:

Z0C8 2?1m4 LLZo8r(ao) = -- + - Timaor0c a0 ir irr0ir
+ - (1 - Li)1?mao(_)232(1 LI)

a0ir 4ir

For e.g. LI = 1/3 and Tim = 0.25, we have:

(4.117)

(4.119)

c,,(ao) = + --- (4.120)

For in-compressible soils(c = 2c5) then we can obtain:

9ir 8Tim tz08
cd,?(ao) = (1 - LI) + - - 7lmao (4.121)[0 ira0 irr0ir

For e.g. for a perfectly non-compressible type of soil v = 1/2 and Tim = 0.25, we can obtain:

(4.122)

Fig. 4.23 compares the dashpot coefficient vs. a0. It is seen that the relationships are hyperbolic
for both soil types, but with higher magnitude for the compressible soil compared to that of
incompressible one. The limit values of Cyr(ao) are oc and 9irv'/32 1.25 for LI = 1/2 and
LI = 0, respectively. This observation is consistent with that made for the vertical motion of the
disk above.
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Figure 4.23: Modified dynamic spring coeffi-
cient of single disk-cone system under rocking
motion vs. non-dimensional frequency aD for
non-causal linear hysteretic and visco-elastic
type damping
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Figure 4.24: Modified dashpot coefficient of
single disk-cone system under rocking motion
vs. non-dimensional frequency aO for non-
causal linear hysteretic and visco-elastic type
damping

Figure 4.25: Rayleigh wave transmission in the radial direction
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Figure 4.26: Comparison of kdy of a 2D-wedge Figure 4.27: Comparison of Cd of a 2D-wedge
and a 3D-cone model of soil and a 3D-cone model of soil

4.3.6 Discussion about negative dynamic stiffness properties of a
cone-disk model

As illustrated in the previous section, the dynamic stiffness coefficients kd5(ao) and cd(ao) can
be negative for a range of frequencies. This phenomenon can be physically interpreted as well
as using the mathematical relationships obtained above.

Let us first consider an undamped dynamic system consisting of a rigid disk on a half space or a
layer of soil with its associated cone. For poisson ratio v of soil less than 1/3 (for compressible
type soil) such as dry sand, as the disk starts vibrating under the applied loading, there will be
no trapped mass of soil to vibrate with the disk hence the dynamic stiffness will be only dom-
inated with the spring and dashpot of the disk-cone system. Hence, the corresponding kd(ao)
and cd(ao) coefficients will remain positive for all frequencies of excitation.

However, for an incompressible soil such as saturated clay with a poisson ratio of 1/3 < ii 1/2,
a trapped mass will exist underneath the disk which will start vibrating in phase with the disk,
hence, it will influence the dynamic stiffness and damping coefficients. The tendency towards
negative stiffness occurs when the inertia takes over from the spring. The resonance or spring
cut-off occurs also due to the influence of the trapped mass of soil. Although the mass is moving
in phase with the disk but due to the negative sign of inertia force in the dynamic stiffness
term as :S = K + iwC - w2M and also the square term of frequency the dynamic stiffness
then becomes negative after the cut-off frequency as defined above. For soils with v < 1/2 the
dynamic stiffness can reach a peak negative value and return to become positive by increasing
the frequency.

This recovery may be physically explained as follows. As the frequency of vibration increases
beyond a critical value, the trapped mass either vanishes (detaches from the disk) or possibly
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moves in negative phase with the disk's motion. For a perfectly incompressible soil(zi = 1/2),
however, this kind of stiffness or damping recovery is not observed. Physically speaking, in the
latter case, the trapped soil mass moves the whole time with the disk in phase and does not
vanish.

So far we discussed the negative dynamic stiffness phenomenon for the undamped cone-disk
systems. However, in reality every dynamic system such as cone-disk possesses some material
damping whose effect on modifying the dynamic stiffness properties of the cone-disk system were
described through the mathematical relationships which presented in the previous section.

It is shown above that the linear hysteretic damping results in modification of the stiffness prop-
erties of the cone-disk model through augmenting equivalent spring and dashpot elements which
are proportional to the original damping and spring coefficients of the cone-disk system C and
K, respectively, and also proportional to the material damping coefficient of soil am. Hence, the
dynamic stiffness can be written as:S(w) = (K - K:h) + i(C + C1) - u2(M). where K,C as
earlier are the original stiffness parameters, K1,, and Cjh are the augmented spring and dashpot
which are added due to the presence of the linear hysteretic material damping.

It is evident that the spring action will be dominated by an augmented frequency dependent
spring Klh in parallel with the original spring K. The augmented spring Kjh increases paraboli-
cally with the frequency of excitation but with an opposite sign and rapidly takes over from its
original counterpart. Hence, the result will be cut-off and then negative spring stiffness. On the
contrary, the augmented dashpot term Ca which is proportional to the original spring stiffness
K has the same sign as the original dashpot (positive sign) and is frequency independent will
not cause any variation in terms of kd.

On the other hand, in the case of a visco-elastic type hysteretic material damping which is
linearly frequency dependent, as described in the previous, there will be an added mass pro-
portional to the damping coefficient C as Mve = 2amCcsj2 and another augmented dashpot
proportional to the original spring stiffness K as Cve = 2amKc'2. For this case, the dynamic
stiffness of the system will be:S(w) = K + iw(C + Cve) - w2(M + Mve). When this system
starts to vibrate, the inertia term may not reduce significantly the dynamic stiffness for lower
frequencies but as the frequency of vibration increases the effect of added masses (trapped and
augmented) will start to dominate the cone-disk model's dynamic response. This will result in
resonance and then by increasing further the frequency will result in negative value for the real
part of S(w) which corresponds to the spring's stiffness.

In contrast to the half space of soil, the dynamic stiffness for a disk on a layer of soil might
recover due to possible reflections from the boundaries of the system which is discussed in a
subsequent section. Though the trapped mass effect may not be so significant as the augmented
mass or spring, nevertheless it will reduce the spring stiffness in the same manner as the other
added mass. The variation of dashpot coefficient Cdy with the material damping though is not
significant as for the spring parameter but nevertheless implies that the material damping
does indeed affect the radiation damping.
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As observed in earlier section, in certain frequencies, the linear hysteretic material damping
may result in the cut-off of the energy transmission. Depending on the frequency of excitation,
damping and Poisson ratios of soil, an effective added mass can be defined which relates to the
active mass or inertia term for each range of these parameters.

It is shown that a considerable non-linear material damping caused by the yield of soil might
reduce the amount of radiation damping through soil cone. Analogously, any discontinuity such
as gapping or separation of pile from soil might result in partial or complete cut-off of radiation
damping (see for e.g El Naggar and Novak, 1995). The effect of the non-linear material damping
is discussed in the following section.

4.3.7 Non-linear hysteretic type material damping of soil
The strain and displacement dependent material damping can also be associated with the cone
model. Such models might be more relevant for the time domain analysis of pile-soil systems than
the visco-elastic, linear hysteretic and the frictional models as described above. In a following
subsection, we will illustrate the effects of using each of these models on two simplified 2DOF and
3DOF systems. However, before that a simple concept of strain dependent material damping is
given in this subsection. For a single iini-directional cone, a relationship may be obtained between
the displacement and its derivative strain according to the theory of continuum mechanics as

= f(u, ü, ...). Such relationship then can be combined with the material damping relationship
as:

= amC (4.123)

Inserting Eq. 4.123 into the dynamic equation of motion of SDOF the cone, we will have:

Mu± K(l + 2iamfUc ")u = Fe(t) (4.124)

The imaginary term in Eq. 4.124 may be replaced by its real counterpart as follows:

C = iaK
uc

(4.125)

In a more advanced dynamic soil mobilization type non-linear hysteretic damping model (for
e.g Svanø et al, 1992-1993 and Madshus, 1997), the linear stiffness term in Eq. 4.124 is replaced
with a non-linear tangent stiffnessfunction as K = f(G0, z, r, u, oFm, w, ...) with the parameters
involved as described in previous subsection. Hence, the damping in this case is more inherent
property of the soil's inelastic behaviour.

By utilizing the Green function approach and the dynamic properties of the non-linear cone, the
latter model might be capable of taking material non-linearity through u variable, geometrical
non-homogenity through z and r variables, pore-excess or cyclic degradation effect through a
parameter and the frequency of excitation effect by parameter.
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0
p.

Figure 4.30: A characteristic (butter fly) type Figure 4.31: A characteristic type q'-p stress
q'-p stress path for dilatant type soils path for contractant type soils

branch 1), again increases as the loading proceeds and the deviatoric stress which is an indicator
of the magnitude of shearing which occurs in the soil. The shear stress vs. mean effective stress
relationship is almost linear for this part of loading. It is observed that upon the unloading(on
branch 2) both the deviatoric and the mean effective stress decrease almost linearly proportion-
ally. On the re-loading branch(3) on the negative shear stress side. (see Fig.4.30), a mirror of
stress pattern in branch 1 is observed. The branch 4 is also similar to branch 2 on unloading part.
This kind of behaviour as discussed by Madshus, (1997) may be considered by a non-associative
plastic flow ride (for e.g a Fuzzy type model Klisinski et al, 1988).

Fig.4.31 shows a different kind of soil response which is often observed for essentially normally
consolidated type soils. It is seen that the excess pore pressure p' decreases as the shearing in
the soil increases up to a peak point denoted here by B. After this point, the deviatoric stress
component decreases as the excess pore water pressure further increases.

Throughout this Chapter, it is assumed that the soil response(yield and/or bounding surface)
might be shifted during the cyclic loading. The latter is better known as an associated kinematic
hardening rule. We applied this kind of kinematic, hardening rule based on a direct distance
from the yield surface to the bounding surface which is discussed in a general form in Chapter.3.

4.4 A cone model for layered soil
4.4.1 General
The idea of unfolded cone model is basically derived from the Boussinesq displacement and stress
contours (see for e.g Das, 1985 or Wolf et ai, 1994) for a statically loaded disk resting on the
surface of an elastic half space of soil which is illustrated in Fig. 4.8.
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Figure 4.32: A cone model of a near surface
layer of soil

Figure 4.33: An embedded disk with double
cone model of soil

The linear and non-linear cone models which were described above are applicable for a uniform
half space of soil which extends to infinity However, in a real situation the soil may consist
of several layers with different properties(such as shear modulus and poisson ratio). Each layer
may be confined within its own boundaries with adjacent layers such as free surface, a bed rock
surface or a flexible layer surface. While in a semi-infinite soil medium, it may be assumed that
no wave would reflect or refract, in a layered medium, however, it might be the case, particularly
for a layer with a rigid boundary such as rock underlying it and a free surface boundary overlying
it. For sub-sea strata, qiniilar conditions may be encountered such as a layered soil overlying a
bed-rock.

Based on the echo phenomenon from the physics of acoustics, Meek and Wolf, (1992) proposed a
cone model for layered soil which is derived initially for a surface layer as described above which
can be extended for sub-surface layers with different boundary conditions as well. The following
subsections describe the basic model of Meek and Wolf, (1992) and its extension to sub-surface
layers with general assumption of the cone's geometry and non-linearities of the soil.

4.4.2 A disk on a surface layer with associated single cone model
Let us consider a layer of soil as shown in Fig.4.32 which is located between the surface and an
underlying bedrock. Due to the relatively much higher rigidity of the bedrock compared with
the overlying soil, it may be assumed that no transmission of motion would take place through
bedrock or the displacement at the bedrock surface may be assumed as zero. This implies that
the displacement components of the incident and the reflected waves must have the same mag-
nitude with opposite signs. On the other hand, the boundary condition for the free surface is to
have zero stress there which means that it can deform freely. Thus the displacement components
of the incident and the reflected waves must be the same which is mathematically shown later.
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Now if a rigid disk located on the surface of the considered layer is excited by a concentrated
load such as F2, the waves will propagate from this surface downwards towards the underlying
bedrock carrying the energy within the associated single cone with its apex at a distance z
above the surface as described in the previous subsection. The emitted wave from the surface
after traveling a distance of h, encounters the bedrock surface where it can not pass through and
hence will be reflected back towards the surface. In analogy with the Boussinesq distribution,
it may be assumed that the angles of both incident and reflected envelopes are the same. The
latter is analytically and also numerically proven by Miller and Pursey, (1955) and Meek and
Wolf, (1992) and (1994) for elastic homogeneous type soil.

By assuming the identical apex angles of the incident and the reflected cones, their apex height
ratio may be obtained as: and hence the intersection area of the reflected(upward) cone
at the surface will be proportionally larger than that of the downward one(Fig. 4.32). The re-
flected waves from bedrock after reaching the free surface of the layer will reflect back towards
the bedrock due to the separation or cutoff in the free boundary.

For a mudline surface, of course, the vertical stress would be equal to that of the hydrostatic
and hydrodynamic pressure of water column above the mud-line. Hence, the assumption of free
surface can not be applied at mud-line level.

The successive reflection of the propagating waves within their corresponding folded cones as
shown in Fig. 4.32 would carry the energy to the infinity horizontally. As described by Wolf et
al. according to the echo phenomenon of physics the horizontal radiation would require longer
travel distance and hence longer time than the spherical or cylindrical forms of radiation in a
unified half space as described above. This is also simulated numerically in a following subsec-
tion. Based on the above outlined basic concept of Wolf et al, the extended non-linear cone
model for a near soil surface layer is described in the following subsection.

4.4.3 An embedded disk in a sub-surface layer with associated double
cone model

Let us consider somewhat more general case, a sub-surface layer of soil located between two
arbitrary boundaries with the given properties. A loaded disk which may be associated with
a pile-soil system is considered at a point of space within this layer as shown in Fig.4.33. The
loaded disk generate waves which can propagate both upwards and downwards in general. It is
assumed that the propagation takes place within identical cones(double cones) but with opposite
apex positions(see Fig.4.33).

The generating displacement function for a given point in a cone space at a distance a, from the
loaded disk (i) may be defined as(Wolf et al, 1994): u2(t - ) where the index i refers to the
position of disk i and c denotes the wave velocity in the soil layer. u2 represents the generating
function at the location of disk (i) as shown in Fig.4.33. The fraction in the argument of
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Figure 4.34: Variation of dilatational wave velocity with 11

generating displacement represents the delay or retardation time which is needed for the wave to
travel from the disk (i) to the point at the distance a1 from it. (For compressible soils with the
Poisson's ratio 0 <ii 1/3, the wave velocity may be assumed as c,, while for the incompressible
soils (1/3 < v < 1/2) as 2c8). The limit of the P-wave for ii = 1/2 will become:

2G1 - iilim112 = lim
p 1 - 2u

00 (4.126)

while cr's limit for u = 1/3 at the boundary between the compressible and incompressible soil
is:

limc...,113 = = 2c8 (4.127)

Hence an asymptotic value of 2c8 is applied for 1/3 < ii < 1/2 as shown in Fig.4.34.
For a non-homogeneous and non-linear soil type, c may vary as a function of both distance
a2 and also the displacement response itself u(t, a2), and hence the displacement response at a
certain point within the layer can be expressed as: u = u2(t - -y). At the boundary position
the propagating wave may partly reflect and partly refract(or pass through with a change in
the angle of propagation with respect to the incident wave angle). The reflected wave may be
considered to travel back within a cone with a modified angle due two reasons, first the change
in the properties of the soil(material damping) and secondly due to the portion of the energy
refracted(radiation damping). If we consider a non-linear hysteretic energy dissipation within
the distance a2 and the time t, then the angle of opening of the cone model may be written
as(see appendix.D for details):

u(t - s---Ii '' c(t,aj)
A. U\ c(0,O)

However, if we consider the angle of the cone to remain constant then the only consideration is
to account for the refracted energy. We consider the ratio of the refracted wave energy to the

(4.128)
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incident wave energy as: i. Hence, the displacement response of the incident wave propagating
along the upper cone will be:

z hz
UU,1 = h + z c(t, h - (4.129)

in which z is the apex distance from the surface of the disk (i), z is the distance between the
disk (i) and the underlying layer. It is seen in Eq. 4.129, the displacement amplitude varies as
an inverse function of the corresponding distance measured from the apex of the cone.

It can be assumed that a part of incident wave reflects from the boundary and other portion of
it could pass through the boundary (refract). in general, the reflected portion of wave energy
may be assumed to be: a) ( - 1)u(t, a). In which i may be called refraction factor of
wave which may be considered as:

= 0 for rigid bed-rock boundary for which the whole portion of incident wave will reflect

= 1 for two adjacent layers with the same material properties G1_1 = a special case of a
uniform half-space of soil

= 2 for a free-surface for which stress-free condition must be ensured, hence uj,,. =

for a surface subjected to stress such as the mud-line at sea-bed which is subjected to the
combined hydrostatic pressure of still water column and hydrodynainic pressure induced by the
action of waves the refraction factor i may be obtained by enforcing the stress condition as
follows:

2hl
)] = q(z)

From which ij can be easily derived as follows:

E( '(Z1 (z+2h)2 \ c 1 z-+2h c dt k c

It is evident from Eq.4. 131 that for zero stress condition 2. However, for an arbitrary two
soil layer boundary 11j may be assumed or obtained from the physics of wave refraction between
two layers with given material properties as refraction coecients(see Appendix.D).

The reflected wave's amplitude from the upper boundary can be computed as follows:

= ('7' - l)/iZu(t
c(t,hz) (4.132)

This reflected wave travels down towards the lower boundary of the layer where its amplitude
decreases as follows:

layer where its amplitude
decreases as follows:

q

(4.133)(4.133)

I z 2/i z ldu(2 - ij)E(z) -)cu(t -Lz + 2h)2 z + 2h C dt
(t
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A part of this incident wave on the lower boundary will reflect back towards the upper boundary
as: 2hz

Uj,.,1 = ('li - 1)(?12 - 1) u(t (t,2h -2hz c

At reaching the upper boundary the amplitude of this wave will be:

z , 3hz
= (ij - l)(?12 - '3h zU c(t,3h -

The subinclices 1 and 2 denote the number of wave reflections and differentiate between the
portions of each reflection depending in general on the traveled distance from the origin of prop-
agation and the non-linear and non-homogenity of the layer boundaries in the soil space. The
sequence of incident and reflected waves can continue towards infinity and as obtained from
Eqs.4.132 to 4.135, the amplitude of the reflected waves decrease with the traveled distance and
will diminish after a finite number of wave reflections. The series converge quite fast and hence
only a few first terms may be sufficient.

Waves will also propagate at the same time along the downwards cone as shown in Fig. 4.10.
The first incident wave from the downwards cone can be computed as follows:

zi z
= u(t )z+z c(t,z)

The reflected wave then will be:

Uz,i = (i - 1)u(t
c(t,z)

(4.137)

The reflected wave from the lower boundary after traveling a distance of h across the layer will
strike on the upper boundary with an amplitude of:

zi z
u(t= - c(t,h+z)

This wave then reflect back with an amplitude of:

(4.134)

(4.135)

(4.136)

(4.138)

Uur,1 = (?7j - 1) (2 - 1) h + + zi u(t
c(t, h+ z)

(4.139)

Continuing the above transmission in a successive manner, the amplitude of response at any
point of time may be obtained as follows:

( - 1)z z + 2jh
+

(ii, - 1)'; 2jh - z
(t u2(t ) (4.140)z+z+2jh 2jhz+z c(t1,2jh+z)

where ii,, z, h denote the reflected portion of energy, the apex height of the original double cone
(i) and the thickness of the layer (i). Eq.4.140 is formulated at the lower boundary of the layer (i).

The first summation term on the right hand side of Eq. 4.140 represents the contribution from all
the upwaves and dowuwaves striking and reflecting, respectively from the boundary (e.g. lower
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boundary) generated from the initial lower cone and the second summation term represents the
contribution of all the upwaves and downwaves associated with the upper cone.

It may be argued that with assuming that the direction of the loading is downwards then if
the upper cone is activated, it should indeed propagate tensile waves which are usually in the
case of soil neglected. Hence, for a single concentrated uni-directional load, only the first or the
second summation term will be sufficient. It is evident from Eq. 4.140 that at the location of
the disk (i) where z = 0 the first summation term on R-H-S of Eq. 4.140 for j = 0 will yield
u (t) which is the assumed generating response function at the disk location. It is seen from the
latter equation, the higher terms of both summations will be smaller and approach zero as the
j increases towards infinity.

Eqn. 4.140 can be re-written in a compact form as:

u = (ij - 1)j,duj(t - 7,d) + (ijj. - 1)2j,u(t - 7)
j=O j=1

in which the first sum indicates the contribution from the upper and the lower cones, respectively.
The second sum denotes the contribution of all one sided cones with a geometry parameter
r. z ,- i A h p z+j2h A P 2jhz- 2jhz+z, '),d - z+z+2jh j,d - c(t+2jh) - c(t,2jh+z)
above function inside the sum m.ay be referred to as cone's echo function. The other dynamic
properties related to the echo function will be utilized in a following section.

4.4.4 Dynamic properties of a layered cone
By having a general sub-surface layered cone model relationship established in the previous
section, it is possible to obtain the corresponding dynamic stiffness properties by means of a
Fourier transformation as follows:

e_tf(t - a)dt = ef(w) (4.142)

where f(t - a) may be replaced with the R-H-S of Eq. 4.141 which will yield:

u(c)
=

f e_tudt = (ij - +

The force-displacement relationship in the frequency domain may be written as:

P(w)
' 'K(k+icic)

Substituting for u(w) from Eq. 4.143 into Eq. 4.144 yields:

u(w) = > (i - 1)2((j,de_2' + (iue')K(k
+ iwc)j

(4.141)

(4.143)

(4.144)

(4.145)
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20

15

" 2dt = - = Tec
C C

T= - = Techo (4.148)

By knowing that the dynamic stiffness in frequency domain 5(w) can be written as:

S(w) =
u(w)

(4.146)

then by combining the latter with Eq. 4.145, we would have:

-_
S(w) = E0(' - 1)(j,de ± (i - l)i(j,e_iTi, (4J47)

By decomposing Eq. 4.147 to real and imaginary parts, the corresponding spring and dashpot
coefficients of the sub-surface layered (non-linear) cone can be obtained for example numerically
for a finite but sufficiently large value of j.

Figs.4.35 and 4.36 show the variation of the dynamic spring and dashpot parameters with the
non-dimensionalized frequency of excitation a0 = wro/c8 for a single disk embedded in a layer
of soil with varying thickness d/rO from unity to a very large value of 1000 which represents
physically a semi-infinite layer. It is observed that for certain frequencies the dynamic stiffness
and damping parameters approach zero which represent the resonance of the system. It is
observed that for the layer with a thickness ratio as unity almost perfect resonance occur at a0
corresponding to the eigenfrequencies of the layer as w = ir/Tec,w which can be explained as
follows:

2 4 6 8 10 12
aO=wr0/cs

Figure 4.35: Dynamic axial stiffness of a sin-
gle disk embedded in a soil layer vs. non-
dimensionalized frequency of excitation for dif-
ferent layer thickness ratios d/rO

2 4 6 8 10 12
arWcs

Figure 4.36: Dynamic axial dashpot parame-
ter of a single disk embedded in a soil layer
vs. non-dimensionalized frequency of excita-
tion for different layer thickness ratios d/rO
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Figure 4.37: Dynamic lateral stiffness of a sin-
gle disk embedded in a soil layer vs. non-
dimensionai.ized frequency of excitation for dif-
ferent layer thickness ratios d/rO
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Figure 4.39: Dynamic stiffness properties of a
non-lineax (NC clay) layer with fi = 1.1 and
depth ratio d/rO 1 under vertical motion
of an embedded disk vs. non-dimensionalized
frequency of excitation a0 = n'o/c8 with
an upper free-surface and a lower bed-rock
boundaries
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Figure 4.38: Dynamic lateral dashpot param-
eter of a single disk embedded in a soil layer
vs. non-dimensionalized frequency of excita-
tion for different layer thickness ratios d/rO

Figure 4.40: Dynamic stiffness properties of a
non-linear (NC clay) layer with 3 = 1.5 and
depth ratio d/rO = 1 under vertical motion
of an embedded disk vs. non-dimensionaiized
frequency of excitation a0 = wro/c8 with
an upper free-surface and a lower bed-rock
boundaries

3 3.5
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Figure 4.41: Dynamic stiffness properties of a
non-linear (NC clay) layer with fi = 2.0 and
depth ratio d/rO = 1 under vertical motion
of an embedded disk vs. non-dimensionalized
frequency of excitation a0 = wro/c3 with
an upper free-surface and a lower bed-rock
boundaries

Figure 4.43: Dynamic stiffness properties of
a non-linear (NC clay) layer with = 2.5,
a = 0.99 and depth ratio d/rO = 1 under
vertical motion of an embedded disk vs. non-
dimensionalized frequency of excitation a0 =
wro/c8 with an upper free-surface and a lower
bed-rock boundaries

Figure 4.42: Dynamic stiffness properties of a
non-linear (NC clay) layer with = 2.5 and
depth ratio d/rO = 1 under vertical motion
of an embedded disk vs. non-dimensionalized
frequency of excitation a0 = wro/c8 with
an upper free-surface and a lower bed-rock
boundaries

Figure 4.44: Dynamic stiffness properties of
a non-linear (NC clay) layer 3 = 1.0, a =
0.75 and a depth ratio d/rO = 1 under ver-
tical motion of an embedded disk vs. non-
dimensionaiized frequency of excitation a0 =

ro/c with an upper free-surface and lower
rigid bed-rock boundaries
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Figure 4.45: Dynamic stiffness properties of a
non-linear (NC clay) layer with a depth ratio
d/rO = 1 under vertical motion of an embed-
ded disk vs. non-dimensionalized frequency
of excitation a0 = ir0/c8 with an upper free-
surface and a lower bed-rock boundaries

The corresponding a0 emerges as:

a0=nir ;n=2m+1

2d 2r0Tec,j = - = -
C 2c3

Substituting the latter into Eq.4.149, we will have:

irc8Wa = -

By substituting T = 1/f,. in Eq.4.148, and f,. = w,./2ir, the following can be obtained:

= = (4.149)

Figure 4.46: Comparison of dynamic stiff-
ness properties of a non-linear (NC clay) layer
with depth ratios d/rO = 2 under vertical
and horizontal motions of an embedded disk
vs. non-dimensionalized frequency of excita-
tion a0 = wro/c5 with upper and lower rigid
bed-rock boundaries

in which w represents the eigenfrequency of the soil layer with a thickness of d and the wave
propagation velocity of c. As observed in Fig. 4.36, for the vertical motion of the disk in
the layer with a thickness ratio of d/ro = 1, the corresponding resonance frequencies occur at
a0 = ir, 3ir, 57r, . .. ,2m + hr which is investigated as follows: For the vertical motion of disk:

_r- (4.150)
Cs

(4.151)

;m=0,1,2,..,n (4.152)

It is also seen that as the depth ratio of the layer increases towards infinity kd, and Cdi, approach
to asymptotic values with average of about unity. This can also be easily verified by considering
that in a semi-infinite layer the echo time according to Eq.4.148 becomes nearly infinity and
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hence the corresponding eigen-frequency of the semi-infinite layer approaches zero which means
no oscillations as observed in Figs.4.39 to 4.44. The amplitude becomes unity by vanishing the
echo functions in the denominator of Eq.4.147.

It is observed that the dynamic spring changes sign with increasing the frequency of excitation,
this phenomenon is associated with the reflection functions in the denominator of Eq.4.147.
Physically speaking, this means a phase angle from zero to 2ir for the spring parameter which
are caused by the procession of the reflections up and down the layer which arrive at 180 deg
phase with the applied load at the disk position at the same time of t for particular frequencies
as simulated in Figs.4.39 through 4.44.

As for the dashpot coefficient Cd5 no such phase angle or sign change is observed. The radiation
damping is either positive or zero. The increase in the amplitude of kd5 for lower layer thickness
is associated strongly with the echo phenomenon in the layer as described above. As observed,
by increasing the layer thickness to infinity no wave can travel back within the allowed time
and hence no fluctuation occurs. However, for a semi-infinite (half-space) of soil there will be
oscillations which are actually associated with activated slices between the disks in a pile-soil
system. This kind of layering which is not a soil structure's property rather related to the finite-
element discretization of the pile-soil system allows to have finite slices (layers) of soil in between
the disks and hence the overall dynamic stiffness at the pile head may vary with the frequency
though not very significantly. This aspect is illustrated in a subsequent section.

Fig. 4.45 illustrates the variation of the dynamic stiffness of a disk embedded in a layer of soil
with a thickness ratio of d/ro = 1 and normally consolidated clayey soil condition with a poisson
ratio of ii = 1/3. As shown, the normalized spring coefficient kd, which is represented by a solid
line decreases non-linearly from unity at a0 = 0 for the static case and reaches a cut-off point at
the normalized frequency of about a0 = 2.7 which corresponds to 6ir/7. The spring stiffness has
an opposite phase with the displacement response after this point as shown in the plot.

The dashpot coefficient Cd5 plotted with a dashed line in Fig. 4.45 decreases non-linearly from
zero at zero frequency towards a negative peak of about 0.4 at about a0 = 0.4 7r/8 and then
increases towards a positive peak of about 1.0 at a frequency of about a0 = 2.5 4ir/5. There-
after, the dashpot coefficient falls very rapidly towards a second cut-off and negative damping
values. Hence, the observed cut-off frequencies of dashpot in this cases are about ir/4 and ir.

Fig. 4.46 is another example to show how the layer cut-off occurs for the spring and dashpot
properties at certain frequencies corresponding to a layer with a thickness ratio of d/ro = 2 and
elastic behaviour with double rigid boundaries. It is observed that the spring cut-offs in this
case occur at nearly peaks and valleys corresponding to c and hence with half the frequency
intervals as those of damping of the layer. Apparently the damping cut-offs correspond in this
case to the normalized frequencies of a0 = ir, 2ir, 3ir (i.e. both odd and even multiples of the
layer's fundamental natural period). It is interesting to see that the cut-off for doubly rigid
boundaries occurs more often than that of the layer with a free upper boundary and a lower
rigid bed-rock.
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R-wave

Figure 4.47: Propagation of waves from a ver-
tically loaded disk in horizontal and vertical
planes

P-wave

R-wave ___I\/\..,.

Figure 4.48: Propagation of waves from a hor-
izontally loaded disk in horizontal and vertical
planes

This phenomenon may be explained as follows, in the case of double rigid-bed rock the waves
generated at the embedded disk which propagate upwards and downwards the whole energy is
reflected and of course with an elastic assumption of the soil there is no plastification or yield
in the soil to absorb any part of the input energy, thus the occurrence of the peaks and valleys
are absolutely distinct and quite frequent which can be easily predicted from the echo return
period as described above. However, in the case of a free upper boundary and lower rigid rock
boundary with an elasto-plastic soil the energy of the generated wave partly can be absorbed in
the soil as material(near field) damping and the remaining energy reaches the edges of the layer
and the paat of upward travelling waves do not hundred percent as the case for rigid boundary
reflect and result in deformation Qf the surfaëe thi also alters the outcome of the frequency of
cut-off as illustrated. Hence, It is naturally expected to observe larger intervals for the cut-off
in the latter case. This conclusion is verified here for a layer with much larger thickness ratio
for which the period of return of the downward propagating waves are so long that there is no
visible fluctuation in the dashpot and spring curves.

4.5 Discussion about the validity range of dynamic cone
and static disk models

Each loaded disk transmits the waves into the soil's infinity via cones. The waves are spread
as compressive-dilatational (P), shear(S) and Rayleigh (R) waves into the soil. It is well known
from physics of wave propagation that the P-waves take a more significant portion of the trans-
mitted energy under a vertical motion of disk-cone while shear waves have a more significant
contribution to energy dissipation under a horizontal loading. Fig.4.50 schematically illustrates

P
Q

P-wave

P-wave S-wave
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M

P-wave

Figure 4.49: Propagation of waves from a disk under rocking motion in horizontal and vertical
planes

P

Figure 4.50: Partition of energy related to P, S and R waves in a semi-infinite medium of soil
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the energy partition of the P,S and R waves.

Although the cone model is capable to predict the dynamic response of the soil half space (mci.
layered medium of soil) very well with respect to its underlying assumptions and its performance
for higher frequency range. However, its validity limits with respect to the Rayleigh wave trans-
mission and the frequency range of application have to be discussed.

In this section, we will examine the different underlying assumptions for disk-cone model and
discuss why they work and for what range of frequencies? For this aim, we may consider the hor-
izontal propagation of the waves known as Rayleigh. Fig. 4.25 illustrates schematically a radial
propagation of waves around a loaded disk located in the soil. The radius of this semi-sphere is
about half times that of Rayleigh wave length )'R which is assumed to be proportional inversely
to the frequency of vibration w and its depth is equal to one Rayleigh wave length .XR(WOLf et al,
1994). It is evident that as the frequency of the vibration approaches zero both the radius and
also depth of the semi-sphere approaches infinity. Hence, for this static limit, an idealization of
radial disk with a much larger radius than that of pile is justifiable.

On the contrary, as the frequency increases towards infinity the depth of the Rayleigh cylinder
approaches zero and the boundary of the far-field and near-field of the soil is shifted towards
the pile's shaft at the upper limit. This signifies that first of all application Of static radial disk
for such high frequency range is invalid, secondly the Rayleigh (horizontal)wave propagation
becomes almost zero for such hIgh frequencies of vibration and third implication is that for
this high frequency limit no radal spreading of the waves occurs and hence the u.ni-directional
assumption related to the cone model is exact at this limit.

The above discussion would imply that for low frequency vibrations such as those induced by the
extreme sea waves the static disk model which is based on the assumption of shear stress-strain
distribution in horizontal planes as described in Secs.2.2.3 and 2.3.3 might be more relevant than
cone model, whereas for the high frequency vibrations such as those induced by seismic ground
motion or machine vibrations, the cone model will be applicable.

To quantify the rate of energy transmission, a power function N(ao) may be defined as follows:

1 T du(w)
N(ao) = f dN(w) dt

dt (4.153)

in which T refers to one period of wave as:T = and N(w) and u(w) denote the force and the
displacement response, respectively.
Fig. 4.51 shows the normalized power rate N(ao) of a disk under vertical loading versus the nor-
malized frequency of excitation a0 = wro/c5 for the range a0 = 0 10. 'The soil is assumed to be
homogeneous with a shear modulus of G = 35MPa and ii ranging from 0.01 0.499 corresponding
to perfectly compressible and incompressible soils, respectively. It can be seen that distinguished
peak occurs for the upper limit of ii. In Fig. 4.51 the peak point of power (or resonance in a
sense) occurs at about a0 = 1.16 whereas the dashed and solid curves corresponding to ii = 1/3
and 0.01, respectively, have no peaks within the plotted range and approach unity near a0 = 10.
The resonance of power for the case ii = 0.499 is due to the added mass of the soil underneath
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the disk.

Fig. 4.52 shows the results of normalized power N(ao) under horizontal motion vs. a0 for a disk
in the latter soil type for ii = 0.01, 1/3 and 0.499, respectively. The same trend is also observed
here, there is a distinguished peak for the higher limit of ii = 0.499. While for the compressible
soil cases u = 0.01, 1/3 there are no such distinguished peak at least within the plotted range of
a0.

It is observed that the magnitude of power rate is dependent on i'. But the maximum observed
value of power is unity and independent of poisson ratio of soil. The peak value of power rate
as vertical case occurs at about a0 = 1.16. The power rate N(ao) as seen in Figs.4.51 and 4.52
approaches exponentially towards zeros at higher frequencies (i.e.ao 10). This means that
in a perfectly incompressible soil no energy is transmitted at very high frequencies. This is of
course, physically correct, since at very high frequencies of vibration of disk, the Rayleigh wave
transmission becomes zero and the only way wave can propagate is downwards vertically. Since
in an incompressible soil v = 0.499, the dilatational waves are not possible, hence the power
becomes zero at higher a0.

On the other hand for the rocking motion of disk as shown in Fig. 4.53, the peak normalized
power for the ii = 0.499 (dash dotted line) occurs at about a0 = 4 which much higher than
translational cases but with the same magnitude as unity. The post-peak magnitude of power
decreases almost linearly with a0. For two other compressible soil cases with ii = 0.01, 1/3, there
is no peak within the range of a0 plotted and the difference is very small in terms of magnitude
of N(ao) (almost independent of ii).

Figure 4.51: Variation of power rate of a disk
N(ao) with a0 under vertical motion for v =
0.01,1/3 and 0.499

Figure 4.52: Variation of power rate of a disk
N(ao) with a0 under horizontal motion for ii =
0.01, 1/3 and 0.499
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Figure 4.53: Variation of power rate of a disk N(ao) with a0 under rocking motion for ii
0.01, 1/3 and 0.499

4.6 Discussion about dimensional performance of the cone
model

As described above, the cones are three dimensional whose geometry are defined by their apex
angle and the disk radius at least for linear and homogeneous soil. It can be shown that the
three dimensional cone model(n = 2) compared to the two dimensional wedge model (n 1) is
more accurate in dealing with an axially symmetric foundation such as pile-soil system.

It can be shown that the damping coefficient of the wedge model approaches infinity at the
zero frequency limit while the high frequency limit of c, approaches pcAo which is derived from
Eq.4.63.

For the three dimensional cone, however, the lower frequency limit (static) starts from (n -
1)pc2A/zo as derived from Eq.4.69 and the high frequency limit of it approaches npc2A/2zo.
Hence, the high frequency limit of the dashpot coefficient is the same for both three dimensional
cone and a two dimensional wedge.

Analogous to Eqs.4.89 and 4.90, the radiation damping can also be represented separately in
the dynamic stiffness S(ao) based on the correspondence principle as:

S(ao) = Kkd(1 + 2irim + 2i?J) (4.154)

in which parameters and ,. are the material and radiation damping coefficients, respectively.
Comparing the latter with a general form of the dynamic stiffness as follows:

S(ao) = K8t(kd(ao) + iaocd(ao)) (4.155)
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and neglecting the material damping will result in radiation damping expression as:

aocd(ao)
= 2k(ao) (4.156)

Hence, the damping ratio i',. can be defined as half the ratio between the imaginary and real
parts of the dynamic stiffness S(ao), approaches infinity for the two dimensional wedge model
compared to a far smaller value for the three dimensional cone model. This difference in radia-
tion damping property of the two and three dimensional models are often misinterpreted based
on their inherent geometrical properties.

It is often assumed by nature that a three dimensional soil model can radiate energy at higher
rate than its two dimensional counterpart. This basic assumption is considered to be due to
the cross sectional area of the cone at each given depth. However, a closer examination reveals
that in fact the opposite is true, that's the two dimensional cone model radiates energy more
than the corresponding three dimensional soil model. The reason is that for a given frequency of
excitation the radiation damping which is defined in Eq.4.156 is inversely proportional with the
dynamic spring coefficient It is observed that kd is smaller for the two dimensional cone
than that of a three dimensional one (see Fig. 4.26). This implies that with assuming the same
Cdy, the ratio of radiation will be greater for the two dimensional wedge model than the three
dimensional cone system.

Comparing the rigorous elastodynamic boundary element of soil solutions with the two dimen-
sional cone model results, it is shown in a subsequent section that the discrepancies in terms of
kd and are quite small and for practical purposes can be neglected.

For cone models with material damping the radiation damping ratio can approach zero and
infinity for particular cases of spring and dashpot cut-off, respectively. For instance, it was ob-
served above that for a particular frequency limit kd may approach zero while the corresponding
c1 may be a positive value. This means that the radiation damping ratio 1)rad may approach
influity as follows:

c,j,(ao)a
17,. = , 00

'dy a0

in which the particular frequency a is illustrated in Figs.4.26 and 4.27. While for the corre-
sponding three dimensional model with only radiation damping allowed, the damping ratio is
far less than infinity.

The radiation damping ratio for lower and higher frequency limits can be obtained from Figs.4.26
and 4.27 according to Eq.4.156 as follows:

(4.157)

?12d(ao = 0) 00 (4.158)

17(ao = 0) = 0 (4.159)
aozo

(4.160)?72d(ao -4 oo)
=

a0z0
(4.161)
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S

Figure 4.54: A schematic illustration of
a cyclic degradation "slotting" phenomenon Figure 4.55: A two way cyclic shear stress at
caused by the gap at the pile-soil interface the pile-soil interface

Eq.4.158 shows that the radiation damping for static case in a two dimensional wedge type
model is infinity whereas the true damping ratio is zero for static case as obtained by the three
dimensional cone model in Eq.4.159. While it is shown in Eqs.4. 160 and 4.161 that the radiation
damping for the two dimensional model is twice as that for the three dimensional cone for the
higher frequency limit.

The cut-off limit in the dynamic stiffness of the cone is observed to occur at very high frequencies.
Since the frequency range of the extreme sea and seismic waves are usually less than these high
frequency limits, thus the overestimation of radiation damping would be less significant.

4.7 Discussion about the loading rate effects

Previous studies by Bea et ai, (1980, 1982), Bradshaw et al, (1984), Polous, (1982), Randoif,
(1990), Rigden and Semple, (1983) show that the dynamic loading rate effect may increase sig-
nificantly the ultimate capacity of the axial or laterally loaded piles. In particular, Bea et al,
(1980, 1982) observed that in large scale pile tests, the dynamic ultimate shaft skin friction has
a linear lognormal relationship with the rate of the loading. Bea and Audibert, (1979) obtained
that for low cycle extreme waves the rate effect factor 3,, Tdy,pk might be in the order of 1.0-.t,p..k
1.5 while for high frequency loading such as those induced by earthquakes the increase in the ulti-
mate capacity of the pile might be in order of 0.8-1.0 times the static capacity(i.e. 3,, 1.8-2.0).

For e.g. Polous, (1982) presented a lognormal relationship between the dynamic shaft skin



168 CHAPTER 4. DYNAMIC ANALYSIS OF PILE-SOIL INTERACTION

friction and that of static loading as:

Tdyn,peak = Tst,peok(1 + F,,log'-)

Tdy,peak = T8tpeak[1 + a() I
V0

(4.162)

in which Tdyn,pak, Tstpak represent the dynamic and static peak shaft skin friction capacities, re-
spectively. ) and denote the loading induced displacement rate and a reference displacement
rate(see Poulos, 1982). Poulos suggested 0.1 <F,, <0.25.

Randoif et al, (1990) has also suggested that the resistance of the pile during a dynamic loading
process for e.g. driving may be affected by the inertia and damping reaction forces. Randoif,
(1990) has presented the following relationship for the dynamic skin friction stress adjacent to
the pile:

(4.163)

where iv is the relative velocity at the pile-soil interface and v0 is a reference velocity of im/sec.
The a and fi parameters in Eq.4.163 are suggested as 1.0 and 0.2, respectively(Randolf, 1992).
For e.g. considering an average relative velocity of pile-soil as 0.lm/sec at the ultimate collapse
of the jacket-pile-soil system, which is induced by the pile-soil failure in tension, we may obtain
Tdr,peak = l.63Tst,peak. This increase of about 60% in the shaft skin friction seems to be uncon-
servative w.r.t to the slow motion(strain rate) of the pile under an extreme wave loading. This
might be due to the fact that the parameters defined on the R-H-S of Eq.4.163 have no direct
dependency on the loading rate or strain rate etc. A better estimate might be obtained from
Eq.4.163 for low and intermediate type loading rates, if the parameters a and 3 axe determined
as function of the loading rate or even frequency of vibration of the pile-soil system.

The increase in the dynamic shaft friction capacity of the pile might be due to the activation
of the inertia and damping forces in the soil surrounding the pile(Randolf, 1990), the breaking
the bonds between the soil and pile material(Bea et al, 1982) and also re-structuring the soil
itself due to high frequency vibrations, rapid changes in the excess pore water pressure in the
soil volume (Nordal, 1998).

4.8 Discussion about the counteracting effects of cyclic
and dynamic loading

In the previous section, the positive effect of the dynamic loading effect on the increase of the
pile's mainly shaft skin friction capacity is briefly discussed. Such positive effects may be coun-
teracted by the cyclic loading effects such as 'slotting' or 'post-holding'. This phenomenon is
schematically illustrated in Fig.4.54.

During the cyclic loading of the offshore pile, a gap may develop between the pile and the
surrounding soil which is often larger near the surface and decreases with the depth. This gap
may be filled by water during cyclic loading in the opposite side as shown in Fig.4.54 which
would result in the loss of the effective interface area between the pile and the soil and hence
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Figure 4.57: The dynamic rate effects on the
ultimate dynamic shear stress at collapse of
the pile-soil system(Data from Bea and Au-
dibert, (1980) and Poulos, (1982)

reduce the static capacity of the pile either in axial or lateral loading. It may be noteworthy
that the gap is mainly the result ofthe lateral cyclic loading of the pile which is often combined
with the axial loading in the case of jacket pile foundations.

The cyclic degradation effects on the pile's axial and lateral capacities have been the subject of
several investigations such as works by Bea et al, (1980), Janbu et al, (1976 and 1985), Nadim
and Dahlberg, (1996), Rigden and Semple, (1983), Svanø Ct al, (1993) etc. These investiga-
tions showed that the pile's shaft skin friction capacity may be reduced considerably due to the
cyclic loading induced by the extreme waves etc. Recent investigations by Nadim and Dahlberg,
(1996) , Langø, (1991), Svanø et al, (1993) indicated that the cyclic loading effect also depends
on the average shear stress in the soil Tav, the ratio of the cyclic increment to the average shear
stress zr/r0 and the ratio of the cyclic shear stress to the peak shear stress at collapse of
the pile-soil system(Tcyc/ra(i), as illustrated in Fig.4.55. As shown, the average shear stress
may indicate that the cyclic loading is one-way or two-way (i.e. one-way cycling of soil if always

> 0, and two-way cycling of soil if exists ITcdcI/7cyc <0).

For e.g., for a two-way cyclic loading with assuming an average shear stress as zero, the ultimate
cyclic shear stress for 10 cycles of extreme wave loading might be about 0.8 times that of the
static loading. While for a cyclic one-way loading with an average shear stress to peak shear
stress ratio of about 0.5, the cyclic shear stress at collapse might be less than 0.4 times that of
static loading(see Fig.4.56).

Theses negative effects may be counter balanced with the positive effects of the inertia and
damping. Hence, the effective cyclic (dynamic) peak shear stress associated with the pile-soil
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failure might be obtained as:
Tdy,peak Tcyc,peak

Tcyc,dy,peak -
Tt,peak Tt,peak

Tc,jc,dy,peak then would be written in general as:

(4.164)

Tcyc,dy,pzk = f(e/e, AU/U, N,w, Tjc/Tav, , .Tc7j/Tij, ...) (4.165)

in which , e, u, u, w and N represent the increment of the shear strain, shear strain, the
increment of excess pore water pressure and excess pore water pressure in the soil, the frequency
of the vibration of the soil and the number of shear stress cycles. Other parameters are as
pre-defined.

There is still great deal of debate and skepticism in the offshore industry about inclusion of any
bias greater than one(observed greater than computed capacity) in the current practice codes.
This may be due to the lack of extensive test database related to cyclic, dynamic large diameter
pile tests, the relative high safety of the designed pile foundations of the jackets in the past two
to three decades based on a static ultimate capacity approach, the other recent problems such
as subsidence at the sea-bed facing some of the existing jacket platforms in the North-sea and
other areas.

In the following case studies, it is assumed that the dynamic loading rate effects are counteracted
by the negative cyclic soil degradation effects and hence the ultimate capacity of the pile-soil
system are assumed as the same as static one. However, the dynamic stiffness is assumed as a
function of the frequency of the vibration of the pile-soil system and the embedment ratio of the
pile(e/ro) as described in the previous subsections. The cyclic stiffness degradation is formulated
(see appendix.D), but it is not implemented in the response calculations.

Hence, in overall, we believe that our response calculation approach might be rather conservative
with regard to the above discussion. This decision was taken due to the lack of precise data on
the cyclic degradation of the pile cases studied in Chapter.4. However, it is recommended that
in the cases that there is sufficient evidence supporting the cyclic degradation or rate effects, the
ultimate capacity of the pile-soil may be modified accordingly.

4.9 Analysis methods of pile-soil system

4.9.1 General
In general two different methods for dynamic analysis of pile-soil system exist as any other me- -

chanical system, namely, frequency and time domain analysis methods. In the frequency domain
analysis, the time history of the input excitation is decomposed by means of spectral analysis
into its contents harmonic(see for e.g Clough and Penzien, 1968). The dynamic response of
the pile-soil system subjected to each single harmonic force component can be computed after
establishing a matrix stiffness relationship of system. By applying all the force components
associated with the frequency contents of the input excitation force.
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The response of the pile-soil system under the given drnaixiic load then can be obtained by
superimposing all the individual responses of the system. The applied principle of superposition
in frequency domain analysis might only be valid for linear elastic soil. By assuming a linear
elastic behaviour of soil, it is also possible to apply the coupling between various pile disks as
illustrated in Fig.4.7. Since a linear soil behaviour is assumed in the frequency domain analysis
throughout the following section, therefore linear hysteretic or Voigt type visco-elastic material
damping are considered as relevant.

Although traditionally linear assumptions are applied for frequency domain analysis due to the
resulting efficiency in computation of response, nonetheless, the non-linear analysis of pile-soil
system can also be performed in the frequency domain(see for e.g Angelides and Rosset, 1980)
but this approach is computationaily very time consuming.

The time domain analysis of pile-soil systems will be performed with assuming a non-linear soil
behaviour. The procedure involves establishing a stiffness formulation of the pile-soil system
based on the dynamic equation of motion and considering the non-linearities of soil hence using
a tangent stiffness approach.

A recursive approach(Wolf et al, 1994) is applied to calculate the necessary Green functions
instead of direct integration the Duhamel's integral. The approach is computationally more ef-
ficient than direct integration of Duhamel's integral. Then a numerical integration over a finite
number of time steps is performed by means of a standard scheme such as Newmark fi method.
Special considerations are given to the elastic response of the pile-soil system with a small mass
of pile and a smaller trapped mass of soil disk. In such cases, an additional numerical damping
is introduced to avoid the numerical instabilities (see for e.g Nogami and Konagai, 1988 and
Wolf et al, 1994 etc.).

Althoughfrequency and time domain analysis methods are completely independent, nonetheless,
it is possible to transfer from frequency domain to time domain by means of Fourier transfor-
mations(see for e.g. Clough and Penzien, 1968). This approach has been extensively applied for
foundation analysis of gravity type platforms in the North sea region by Madshus, (1997).

4.9.2 Dynamic stiffness formulation in frequency domain
4.9.2.1 A rigid pile and linear soil

The dynamic equation of motion for a pile-soil system according to D'Almbert's principle may
be written as follows:

P(w) = {M,]u(w) + [C(w)Ju(w) + [K3(w)Ju(w) (4.166)

which for a harmonic excitation with linear hysteretic damping as described above, Eq. 4.166
can be expressed as follows:

P(w) = {K8(w)(1 + 2iim) - w2M5Ju(w) (4.167)
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where K5() is the undamped dynamic stiffness of the pile-soil system. If we consider a massless
disk system then Eq. 4.167 will be reduced to a quasi-static type of interaction formula as follows:

= [K8(w)(l + 2i7im)1U(ü) = [Sqs())]u())

Holding the inertia (mass) term in Eq. 4.167 and re-writing it:

P() = [Sdv(w)]u(w)

P(i) = {M8]u9

(4.168)

(4.169)

where [Sdy (w)] can be called the damped dynamic stiffness matrix of the rigid pile-linear soil
system. K,,8 can be computed as the inverse of the flexibility matrix [G()]:

{K,,3(w)] = [G(')]' (4.170)

Hence, the dynamic stiffness matrix may be expressed as:

[Sd(w)] = [G1d(w)(1 + 2jiim) - w2M] (4.171)

The dynamic flexibility matrix [G(w)] can be established as(Wo]f et a!, 1994):

[G(w)} = [g22(a) +g2'(a')J ;i,j = 1,2,...,n (4.172)

in which the elements of the dynamic flexibility matrix can be computed independent of the
pile-soil displacement. 9ij (a) element referred to as Green function element for the receiver disk
i and the source disk j and its image j', is defined as the displacement at the receiver disk i
due to the unit force applied at the source disk j and its image j'. [Sd(w)] can be determined
according to the Green function approach (Meek and Wolf, 1992) as functions of double cone
parameters of soil and the seismic wave velocities (the compressive and the shear wave velocities
c,, and c,). The latter are functions of soil's elasto- plastic properties such as the shear modulus
G and the poisson ratio v. It is assumed that 9ij in this case is constant w.r.t u. Therefore
Eq. 4.172 can be computed independent of the pile-soil displacement (see appendix.D). gjj (a)
function in general may be expressed as follows:

gzj(a) = gij(a, r0, z, G, ii, w) (4.173)

In which a, r0 and z2 are the double cone parameters (Wolf and Meek and Wolf, 1994) as shown
in Fig. 4.12. As shown here, the dynamic stiffness matrix of the virgin soil Sdy is coupled via
Green's functions gj3. Now considering Eq.4.168 it is seen that the disks are coupled through
the full-space of soil as modelled by cones and also via beam elements of pile itself.

The displacement response of the pile-soil system may then be obtained from Eq. 4.167 as follows:

u(w) [Sd,(w)]'P(w) (4.174)

By knowing the applied loads and the boundary conditions (I.0 and B.C) then the reduced
matrix equation may be solved to obtain the unknown displacement and reaction forces. For
example for a seismic input case the force vector P(c.) on the right hand side of Eq. 4.174 may
consist of the ground acceleration vector times the corresponding mass matrix as follows:

(4.175)
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where we have:
ii9 = [iig,1Ü9,2...Üg,n]

u(w) = [Sd,(w)]' [M3]wu9,sin(wt +

(4.176)

in which u9, represents the ground acceleration time histories at the location of soil disk (i). In
practice, it is usually assumed that the earthquake time histories are fully correlated for a small
area with a dimension such as a single pile, thus u9, = u which refers to the center of the
pile-soil field or any other base point at the vicinity of that where the ground acceleration is
given for. If such measurements are not directly available for the given site, then a record from
far field for the virgin soil (halfspace) may be used with a filtering procedure in general:

in which H8 is called the site-specific transfer function (see for e.g Caltech 1995, Bessason, 1993)
which filters the measured remote earthquake to the site specific response. H5 can be a function
of various parameters such the spherical coordinate of the site relative to the station (the great
and local seismic circles) and the material properties of the site. A random type excitation such
as an earthquake record can be decomposed to its primary harmonic components which may be
used as input in Eq. 4.174 to determine the individual response components as follows:

= > u9,sin(wt + i) (4.178)

in which u9,, w and çb are the amplitude, frequency and the phase angle of each component.
Thus the total response may be obtained by superposition of all individual responses according
to Eq. 4.174 as follows:

(4.179)

4.9.2.2 A flexible pile and linear elastic soil

The dynamic equation of motion expressed in Eq. 4.167 may be modified to account for the
flexibility of the pile as follows:

P(w) = ([K,](w)(1 + 2irlm) + [Kr] - w2[M3])u(ci) (4.180)

in which the added term [Kr] corresponds to the static stiffness of the non-rigid pile (El oc)
which may be obtained according to the beam (rod) theory of elasticity (see for e.g Timoshenko
and Goodier (1982)).

A classic finite element method can be applied to establish [Kr] from the corresponding pile
element stiffnesses (see for e.g Przemieniecki, (1968), Reddy, (1985) and Zienkiewicz and Taylor,
(1989) etc.).

Wolf and Meek, (1994) considered a mathematical subtraction of the soil properties from Eq. 4.174
to replace the soil cylinder with that of the pile. Since the elastic modulus of the soil cylinder
is much smaller than that of the pile, hence neglecting the subtraction of soil stiffness from pile
may not effect the dynamic stiffness matrix [Sd (w)] appreciably. However, the subtraction of
the mass may be applied. Considering an added mass of the soil around the pile and a trapped

U9 = H8u9,o (4.177)
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mass inside the pile then the effect of the mass subtraction from inside the pile may diminish
A complete procedure may involve all the mentioned items.

It may be worth mentioning that while the pile's stiffness contribution enters as purely static
(independent of w), however the stiffness of the pile-soil disk elements is a function of frequency
w. To reconcile this with the explicit expressions established by Wolf and Meek, (1994), we may
consider the associate mass or inertial contribution (terms) or in other words if we decompose
Eq. 4.180 into two separate parts we will get:

= [S3(w) + S(w)]u(w) (4.181)

where [S} and [S] are the dynamic stiffness contributions of the pile and the interaction between
the pile and soil, respectively as:

{S3()] = [K3(w)(1 + 2im)] (4.182)

S(w) [K - 2M] (4.183)

The latter equation shows that all the material damping is considered in the form of linear
hysteretic soil damping and the pile is assumed to be linear elastic.

The procedure for computing the displacement and reaction forces may be the same as described
in the previous subsection. The dynamic stiffness at the pile-soil head may be obtained by
applying unit displacements at the pile head in each direction.

P(w) = [00...1...0} (4.184)

By combining Eqs. 4.181 and 4.184,we may obtain the corresponding stiffnesses as follows:

[S,d] = (([S() + S8()]'))' (4.185)

4.9.3 Dynamic stiffness formulation in time domain
The direct time domain stiffness formulation presented by Wolf, (1994) may be modified to
obtain the dynamic response of a non-linear pile-soil system without any need for Fourier trans-
formation from frequency domain solution as presented in the previous section.

The basic dynamic interaction formula for an embedded foundation (Wolf et al,1994) can be
modified for a non-linear single pile-soil system by using appropriate tangent stiffness matrices
of pile-soil system as follows:

P0, = [S(t) + S(t)]u - [S9(t)]u - [M]u - [S5(t)]u' (4.186)

In which P is the interaction forces at the pile-soil interface and consists of two components
as follows:

Pon Po + 0: (4.187)
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where superscripts k and i refer to the kinematic and the inertial components, respectively
expressed as follows:

= [S9(t)J(u(t) - u9(t)) = [S(t)]u1(t) + [S9(t)]u(t) (4.188)

where Ug (t) denotes the displacement of the ground system and is given as (Wolf et al, 1994):

where S (t) and S1 (t) represent the dynamic stiffness matrices of the ground soil system and
that of the free field soil, respectively. u' (t) is the free field motion of the pile-soil nodes (disks).
The inertia component P0 can be expressed as follows:

P0 = [M](ü(t) - ü9(t)) (4.190)

in which ü(t) and ü9(t) stand for the accelerations of the pile-soil system (total) and the ground
system (excavated). The mass matrix [M] can be established as concentrated at the disks
(lumped) follows:

[MJ = [mj] ;i,j = 1,2,...,nd (4.191)

where = 0 for i j and rnjj 0 for i = j. Considering a kinematic interaction the
Eq. 4.186 may be re-formed to produce the Eq. 4.188. Hence the kinematic interaction is in-
herent in Eq. 4.186. However, substituting the inertial interaction Eq. 4.190 into Eq. 4.186 only
satisfies the equilibrium condition for the first term. Thus the remaining ground force(mü9)
must be enforced on the system as the external load.

The term [S3(t) + S(t)] denotes the combined stiffness of the pile-soil system. The non-linear
dynamic stiffness matrix of the pile-soil multi-stack of disks system [S(t)] may be computed as
a function of the non-linear Green functions as follows:

g2(t,a) = fg(GT,a,t) (4.192)

in which g(t, a) is a Green function element which represents the displacement of a receiver disk
i due to the unit load at the location of a source disk and its mirror image (Wolf et al, 1994).
CT is the tangent stiffness of the pile- soil system as defined in Eq. 4.23. Now combining the
Eq. 4.22, 4.30 and 4.192 will result in:

gjj(t,a)=fg(fc(f7(u,...)),a,t) (4.193)

The latter equation is formulated in a parametric form and may be solved numerically (see ap-
pendix.D)

The pile's non-linear stiffness matrix [S(t)] can be established based on the classical beam
(rod) theory (see for e.g Timoshenko) by accounting for the pile's both material and geometric
non-linearities as follows:

[S(t)] = [Sp(t)Im + [S(t)]9 = [fp,m(U, lit, ...)] + [f,9(u, ü, ...)] (4.194)

u9(t) = [S(t)]'[Sf(t)]uf(t) (4.189)
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in which the first term on the right hand-side of the Eq. 4.194 corresponds to the tangent struc-
tural stiffness matrix and the second term denotes the geometric stiffness matrix which may
become significant for large displacements.

The total displacements from Eq.4.186 can be applied, if [S (t)] matrix is established based on
initial or a secant soil stiffness. However, in the case of tangent stiffness an incremental form
has to be applied. This is because at the collapse of pile-soil system ,the term [S8(t)] becomes
zero which results in zero restoring force if the total form is applied. By using an incremental
form, however, at the collapse the total restoring force increment becomes zero which is correct
by definition.

An incremental form of Eq. 4.186 is considered by subtracting the force components at each
time step from their values at the previous time step as follows:

= [S8(t) + S(t)]u - [S(t)}u - [M]u - [S,(t)]w' - 8P0_1 (4.195)

in which the last term on the R-H-S of Eq.4.195 indicates an unbalance force at the end of last
time increment step (n-i) as:

= zP0_1 - [S5

To solve Eq. 4.195, a numerical integration method may be applied such as Newmark family of
methods. Expressing the incremental velocity and the displacement terms at the time station

(n) in terms of the incremental displacement ,velocity and the acceleration terms at previous
time steps and the acceleration term at the same time step as:

= Ün_i + (t) [iu_1 + (4.197)

= u_1 + (t)ü0_1 + ( - fi)(t)2u1 +fl(At)2Au (4.198)

For some particular values of fi parameters a physical meaning may exist, such as fi = or
which correspond to the constant and linear acceleration methods. Combining the Eqs. 4.197,
4.198 and 4.186, the following may emerge:

([A]T[S,,9(t) + S,,(t)]0[A] /3(t)2 [M])u = iPo, + [A}T[S,,3(t)]ozü

+[M](_fl(t)2ufl_i + + [AlT [S,, (t)]u1) (4.199)

in which term ZÜr, denotes a recursive displacement vector which may be calculated based on
the previous values of displacements as follows( Wolf et al, 1994):

(t) +S (t)]Iu_1 + [S (t)]ii2_1 + [M] /u_1 + [S,,3 (t)]w_1 (4.196)

k=i
(4.200)

in which [G_k] represents the Green matrix at time station ii (i.e. t = nSf) due to a linearly
varying load around time station k (i.e. increasing from zero at tk_j to about unity at k and
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then decreasing to zero at time station k + 1). It is asunied here that for a non-linear pile-
soil interaction, the off-diagonal members of the Green matrix {G_k] are set to zero thus the
coupling terms are avoided. However, for the linear elastic soil, the superposition principle is
applied in calculation of the elements of [Ga_k] matrix. Hence, the off-diagonal members are
computed.

The last term on the right hand-side of Eq. 4.199 may be. computed as follows:

LPn_i = [S8(t)]_iu_i - [S5(t)]_1u_1 (4.201)

where the increment of displacement u,_i has already been computed (known) at the previous
time station (n-i). The first term on the right hand-side of Eq. 4.201 is the dynamic stiffness
matrix of the pile-soil disk (free-field) which can be easily computed in terms of the Green func-
tions g(t) (see appendix.D).

The Green function associated with the nth time station due to load at unit loads at the time
station k th time station may be computed in a recursive manner as follows (see appendix.D for
details): =! =L Z

LUn=k+1 = a(e ' - 2e + 1)-uk
in which all the parameters are as defined above. For a unit impulse, the coefficient a will be
equal to . Combining Eqs. 4.199 and 4.202, the numerical integration can be performed over
a given interval of time history.

The discussion of the stability of this method is given in the appendix.D and other literature con-
cerning the Newmark's integration methods. However, it is worth mentioning that the existence
of [M] on the right hand-side of Eq. 4.199 may result in a numerical instability for particular
values of 3 parameter such as . The remedy may be to avoid the trapped mass at the tips of
the stack. However, in practical cases due to the presence of a large mass of the super-structure
which is connected to the pile (at the interface), the procedure seemed to be stable.

4.9.4 Bouc's non-linear hysteretic system stiffness
A modified form of Bouc's non-linear hysteretic model(Bouc, 1968) is adopted here to simulate
the response of the equivalent SDOF model of pile. The model is well suited for non-linear
dynamic analysis of oscillatory systems. The non-linear hysteretic response is illustrated in
Fig. 4.58.

The dynamic equilibrium according to the modified Bouc's model may be expressed as:

p(u, it) = mu + fh(u, it) + f(u) (4.203)

in which mit, fh(u) and f(u) are inertia, hysteretic and non-liuiear functions of the displacement
response u(and its derivatives with respect to time). The latter equation may be expressed as

(4.202)



178 CHAPTER 4. DYNAMIC ANALYSIS OF PILE-SOiL INTERACTION

4x 10

?.*)difiedBoucs Mode!

2

-4

8 -0.6 -0.4 -02 0
y(m)

02 0.4 08

Figure 4.58: Modified Bouc's non-linear hysteretic model

follows (Constantinou and Tadjbaksh, 1985):

p(u,it)=mü+3+(1 /3)Fzb
UI,

(4.204)

in which u, and f are the initial yield displacement and force of the hysteresis damper and
/3 is the ratio of the post-yield stiffness to the elastic initial stiffness. For e.g. /3 = 1 will
simulate a linear elastic system, while by inserting /3 = 0 an elastic-perfectly plastic response
can be simulated. 3 <0 can simulate a system with post-peak degradation. z4 is a hysteresis
parameter which is related to the displacement u and it through the following equation(Bessason,
1993):

UZI = - C11IUIIZbl Zb - C2UIzbI + a3u (4.205)

in which , are shape parameters, c determine the amplitude of the restoring force (hys-
teresis) ioop, n represents the elatso-plastic transition which determines the smoothness of the
transition from elastic to plastic. It may be worth of noting that u excludes any rigid body
motions of the pile and hence only represents the pile element's distortion.

The solution of Eq. 4.205 has been given for instance by (Spiegel, 1968):

Zb = zje4(th lho) + __(e u-L0) - 1)
ttyCb

(4.206)

where Zb,i and u0 may be known from the initial conditions. And parameter Cb can be determined
as follows:

1= --(cici + c2a2)
UI,

where parameters c1 and C2 can be determined as follows:

c1=1 ;il0

(4.207)

c1 = 1 ;it < 0 (4.208)
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Figure 4.59: A NPS-SDOF system

c2=1 ;zbO c2=-1 ;zb<O (4.209)

Since the value of c2 depends on the sign of zb which is also a function of c2, it can be determined
through an iterative procedure (see appendix.D).
The tangent stiffness parameter of the pile element then may be obtained as:

= = + (1 - 3)F( + CbZb) (4.210)
U U u

The dynamic stiffness of an equivalent spring (lumped model of pile for e.g. SDOF system) then
may be calculated in a simplified manner by modifying the elastic modulus of pile element E
as a function of displacement u and the velocity ü as follows:

kT(n.
(4.211)= k.kT( =U0U= u0)

in which 83 and refer to the dynamic and static stiffnesses of ij of the pile, respectively.
k'(u, it) and k'(u = uo, ii = it0) denote the current and the initial values of the tangent stiffness
parameter as described in Eq. 4.210.

The above procedure is well suited for the discrete element (lumped parameter) equivalent model
of pile-soil system (such as SDOF, 2DOF and 3DOF systems). For time domain analyses which
are carried out in this Chapter due to smaller plastic utilization of the pile, the elastic assumption
for pile elements is considered as relevant. However, the pile behaviour is simulated by using a
simplified equivalent model as described in this subsection and also by using a more sophisticated
plastic hinge beam model of USFOS(Søreide et al, 1994) which is described in Chapter.3.

4.9.5 A nonlinear SDOF system
The simplest dynamic system may be used to model a single pile case with the nonlinear soil as
shown in Fig. 4.59. The stiffness formulation of the nonlinear SDOF system in the time domain
may be established as a special case of Eq. 4.186 in the following form:

mü0 + mü9 + K8(u, it)zuo = 0 (4.212)
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In which Iu0 and ii() and /ü9 represent the displacement increment of the single degree of
freedom system , its second derivative with respect to time. and the increment of the ground
acceleration. K7,8 is the tangent stiffness of the pile-soil system which is a function of the
total displacement u and its first derivative it. To solve Eq. 4.212 in the time domain, an
explicit algorithm can be established by using a predictor-corrector technique based on familiar
Newmark's family of methods (see Newmark, 1959). The incremental acceleration term ÜO,n+j
at the time station (ii + 1) may be obtained from Eq. 4.212 as:

= --(mü9,i + K7,8 ,1tXuo,) (4.213)

In Eq.4.213, K7,8,1 represents the pile-soil tangent stiffness at step (n+1). K7,3,1 is a function
of u1 and it, which represent the displacement and its first derivative at step (n+1). So far,
only the values of the response are known at the end of the previous step n. Hence, K7,5,+1 will
be replaced with K7,8,. This implies an unbalanced force which must be added to the R-H-S
of Eq.4.212 to hold the equilibrium of the external and internal forces. Then the incremental
acceleration at step (n+1) can be written as:

ps,n+1 .. .. P8,fl= Ug,n+1 + m
- + ± -uo,) (4.214)

The predictor equation for u0,1 can be written as:

= + dtzit0, + (4.215)

and the predictor expression of o,fl+1:

= tLO,n + (4.216)

and üo,,1 from Eq. 4.213 emerges as:

= _!(müg,+j + K7,8uo,+i) (4.217)

The corrected incremental velocity term can now be written as:

1tLO,n+1 = tLO,n+1 + UO,n+l (4.218)

The total displacement, velocity and acceleration terms then can be computed as:

uo,n+1 = uo,n + uo,n+1

UO,n+j = UO,n+1 + 4UO,n+1

UO,n+1 = UO,n+1 + UO,n+1

= + vo,1 (4.219)

Vn+1 = + V+i
n+1 = Vfj + Vm+1 (4.220)

It can be shown that above explicit algorithm is conditionally stable which means that for time
step size larger than dt> the solution may not converge (Hahn, 1991). This explicit algorithm
is quite efficient in dealing with simple nonlinear systems such as simplified equivalent models
of pile-soil systems. The procedure described here is applied for the analysis of the simplified
non-linear model of pile-soil system in the following.



4.9. ANALYSIS METHODS OF PILE-SOIL SYSTEM 181

A 2DOF SYSTEM OF PILE-SOIL

Figure 4.60: A NPS-2DOF system

4.9.6 A 2DOF non-linear system
A non-linear 2 degree of freedom system as shown in Fig. 4.60 system can represent another
class of pile-soil system. For instance a single rigid pile with horizontal and rocking degrees of
freedom which may be considered as coupled in a pile-soil system. The basic equation of motion
again can be derived from Eq. 4.186 as follows:

mü9 + mü0 + mh0 + K5uo = 0 (4.221)

in LUg + mLü0 + mhA0 ± K,5Avo = 0 (4.222)

where u0, v0 represent the translational(for e.g horizontal) and rotational (e.g rocking) move-
ments of the rigid pile foundation, respectively. u9 represents the displacement of the effective
ground motion. K3 and Kr,ps represent the corresponding translational and rotational stiffnesses
of the rigid pile and non-linear soil system which can be computed according to the relation-
ships described in previous sections (see Sec.4.3.2.1). Hence, in this simple 2DOF system, the
input excitation force müg will be resisted through the inertia of the pile and the non-linear
hysteretic damping of soil.

The procedure for solving the latter non-linear 2DOF system may be established in analogy to
the non-linear SDOF system described in the previous subsection. First for e.g, we consider the
translational incremental displacement Luo,1, it can be calculated from the values known at
the previous station according to the following truncated (Taylor) expansion:

dt2
= + ü0,dt + UO,nT (4.223)

Then the corresponding incremental velocity term may be predicted at the current time step n
as follows:

dt
uo,n+1 = uo,n + (4.224)
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From Eq.4.221 the incremental acceleration term can be obtained as follows:

where refers to the predicted acceleration at the current time station and since its actual
value is not yet known at this stage of calculation, thus we may use its value from the previous
time station (n) i.e: VO,n+l =

The predicted value of the velocity from Eq.4.224 now can be corrected as follows:

O,n+1 = O,n+1 + dt

VO,n+1 = h h mh

Now the rotational velocity increment iO,n+1 can be corrected as follows:

= O,n+1 + dt

(4.226)

Similar expression can be obtained for the (rotational) rocking motion of rigid pile. The rota-
tional displacement increment at the current time station n can be computed as follows:

dt2
Vo,+i = L1Vo, + 0,dt + (4.227)

The rotational velocity increment 1'O,n+1 can be predicted as follows:

= + dt (4.228)

The rotational acceleration increment is obtained from the Eq.4.222 as follows:

Üg,n+1 Üo,n+l K,8,,Avo,+1 (4.229)

in which all the terms on the R-H-S are known or computed previously(see Eqs.4.227 and 4.225).

(4.230)

in which Tmin is the smallest eigenperiod of the system. However, the efficiency of this algorithm
is in fast arid easy use in non-linear structures with fewer degrees of freedom such as the two

We recall that on the R-H-S of Eq.4.225, is assumed as its previous value for the first
iteration. Now we can substitute for with the value obtained in Eq.4.229 and hence
repeat the calculations from Eq.4.225. This iterative procedure can be used until the corrected
value of each acceleration term becomes approximately the same as its predicted value at the
previous step of iteration scheme as:

Ün+l,i+l - Ün+l,i < tol(abs(üj)) (4.231)

The algorithm is stable with the following condition:

dt < (4.232)
7r

uo,n+1 = ug,n+l - ho,+1 (4.225)
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Figure 4.61: A NPS-.3DOF system

last examples. For a non-linear MDOF system, this scheme may not be very efficient due to the
above stability criterion for the highest vibration mode of the system. Thus within the specified
limitations, this technique is expected to perform well. It's also worth mentioning that the
accuracy of the response of the non-linear system will depend on how the (seismic or sea wave)
loading time history is sampled. (i.e. the time step length). For illustration, an example would
be a system such a 2DOF as discussed in this section, it's observed that the governing criterion
will be the latter one. (i.e. to define sufficient samples within each cycle (wave) of the loading
time history). Sometimes with fewer point in each cycle some secondary variations such as
local peaks or valleys may not be simulated). Also for wave and seismic loading, it's sometimes
customary to filter the original record for variety of reasons, more importantly, for creating a
high pass or low pass filtered data which does not have the corrupted components, diffracted
and splash waves from other neighboring structures etc. And also sometimes the original record
may be altered to create synthetic loading histories (see for e.g. Bea et a!, (1993)).

4.9.7 A lumped 3DOF pile-soil system with frictional damping

The dynamic equations of equilibrium of a 3dof system consisting of a translational dof for the
soil, a rotational dof for soil and a translational degree of freedom for the pile with a frictional
type material damping of soil as ifiustrated in Fig. 4.61 may be written as follows:

rnü(t) + rnüo(t) + mhio(t) + KIu(t)ltg8sgn(ü) + CI(t)lsgn(ü) = mü9(t4.233)

mü(t) + müo(t) + mhio(t) + K5Iuo(t)Itg5sgn(o) + = mü9(t(4.234)

mü(t) + rnüo(t) + mhio(t) + K,8It7o(t)Jtg8sgn(io) + C,sIo(t)Isgn(io) = mü9(t4.235)
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Figure 4.62: A short-term memory of the augmented frictional dynamic elements

The following set of predictor-corrector equations can easily be written:

St2..
U = + SttL_j +

St..= U_ +
St2..

UO,n = UO,n_i + 5tu0,_ + Tuo,Th_1

- . St..
uo,n = uo,n_I + --uo,n_l

at2
vo,n = vo,n_1 + Stvo,fl_l + -1-vo,fl_1

- . at..
vo,n = uo,n_i + --uo,n_i

From Eq.4.233 the acceleration term ü, can be obtained as:

tL9, - UO,n - Kp/mIünItgc5in (4.242)
1 + C/mIuItg5

where term uo, and refer to the predicted acceleration terms which for the first iteration
may be assumed as: üO,n_l and i0,fl1, respectively. The velocity term I I in the denominator
of the R-H-S of Eq.4.242 refers to the predicted absolute value of the velocity term ü from the
starting time station until time station n as illustrated in Fig. 4.62.

Similarly from Eq.4234 the acceleration term related to soil U0,, can be obtained as follows:

u9,n - Un - hi0,n - K3/mlUo,nItg5üo,nuon =
1 + Cps/mIüo,nItgS

(4.236)

(4.237)

(4.238)

(4.239)

(4.240)

(4.241)

(4.243)
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The velocity term in the denominator of the R-H-S of Eq.4.242 refers to the predicted
value of the velocity term ü from time zero to the current time station n.

And from Eq.4.235 the rotational acceleration term i30,n would be obtained as follows:

Üg,n Un - - Kr,ps/rnIVo,nItg8Uo,n
O,n ,- / 2It + Lr,p5f V, ;tfl (4.244)

where term Io,n I
denotes the predicted absolute value of the velocity term i from time zero

until current time station n. After obtaining the above acceleration terms at the time station n
the predicted velocities in Eqs.4.237 through 4.241 can be corrected as follows:

ot..
= u,, + --u,, (4.245)

ot..
UO,n = ZIOn + UO,n (4.246)

8t..v0, = v0,, + --vo,n (4.247)

The above predictor-corrector scheme can be repeated to also correct the values of the accelera-
tion terms until the convergence criterion is satisfied that 's : U, = U,,.1 + (tol(U) <<ufl,j_1)

4.10 Numerical examples
In this section, we will analyze several cases of the pile-soil foundation systems to illustrate
the predictive ability of the methods described in the the previous sections. We will consider
different soil behaviour such as elasto-plastic, hyper-elastic and also study different soil models
such as static disk model, dynamic cone-disk model, Winkler-spring model of API-RP2A 1993;
also simplified lumped models such as SDOF, 2DOF and 3DOF. Different loading types will
be considered such as impulse load, wave load applied at the pile head, seismic ground motion
applied along the pile and at its tip. Two different solution method as described above will be
used namely, frequency and time domain approaches.

The focus will be on the axial and lateral motions of the pile which are of primary importance
for the analysis of jacket pile foundations. However, we will also consider rocking motion com-
bined with a horizontal motion of a rigid pile in a simple 2DOF system analysis. The results of
the cone-disk models will be verified against those obtained based on rigorous methods such as
boundary element method and other analytical approaches.

In the last part of this section, we shall present the results of several simplified equivalent pile-
soil analyses. These parametric studies are mainly aimed to give more physical insight into the
dynamic behaviour of single pile-soil systems. In particular, the influence of key soil and pile
parameters on the stiffness properties of the pile-soil system and the interaction between pile
and soil are of interest.
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Figure 4.63: Comparing the displacement responses of a single pile-soil system under an idealized
earthquake

1 2 3 4 5 6 7
tfme(sec)

, solld:RigId pile & linear soil eta=025
-' dashed: Linear pile-soil eta=025

/ ' dash dotted:Non-iln ear pile-soil
I, I

Figure 4.64: Comparing the displacement responses of a single pile-soil system under an idealized
sea load (Tn = 12.5 - 15.Osec)
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Figure 4.65: Displacement response of a single pile-soil system under an impulse(STI) loading
(Td = 1.Osec)
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Figure 4.67: The ground acceleration vs.
global displacement history at the pile-
head under Taft-EQ-ground acceleration for
Tilbrook pile at OC clayey soil

Figure 4.69: The prescribed displacement his-
tory vs. the displacement response at the pile-
head under Taft-EQ-ground for Tilbrook pile
in OC clayey soil(elasto-plastic)
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Figure 4.68: A sample mobilized t-z hysteretic
curves at lOm depth below the ground sur-
face under Taft-EQ-ground acceleration for
Tilbrook pile at OC clayey soil
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Figure 4.70: A sample mobilized t-z hysteretic
curves at lOin depth below the ground sur-
face under Taft-EQ-ground acceleration for
Tilbrook pile in OC clayey soil(elasto-plastic)
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Figure 4.71: A sample mobilized t-z hysteretic
curves at 0.5m depth below the ground sur-
face under Taft-EQ-ground acceleration for
Tilbrook pile in OC clayey soil(elasto-plastic)
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Figure 4.73: The ground acceleration vs.
global displacement hitory at the pile-
head under Taft-EQ-ground acceleration for
Tilbrook pile at OC clayey soil(hyper-elastic)
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Figure 4.72: A sample mobilized t-z hysteretic
curves at depth 31 below the ground sur-
face (pile-tip) under Taft-EQ-ground accelera-
tion for Tilbrook pile in OC clayey soil (elasto-
plastic)

Figure 4.74: A sample mobilized t-z hysteretic
curves at lOm depth below the ground sur-
face under Taft-EQ-ground acceleration for
Tilbrook pile at OC clayey soil(hyper-elastic)
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Figure 4.75: The lateral displacement re-
sponse at the pile-head under Taft-EQ-ground
acceleration for Tilbrook pile at OC clayey
soil(elasto-plastic)

Figure 4.77: The lateral displacement re-
sponse at the pile-head under Taft-EQ-ground
acceleration for Tilbrook pile at OC clayey
soil(hyper-elastic)

Figure 4.76: A sample mobilized p-y hys-
teretic curves at lOm depth below the ground
surface under Taft-EQ-ground acceleration for
Tilbrook pile at OC clayey soil(elasto-plastic)
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Figure 4.79: Comparison of the lateral dis-
placement response at the pile-head under
Taft-EQ-ground acceleration for Tilbrook pile
at OC clayey soil (elasto-plasic) of a)disk
model-la and b) API-RP2A 1993 p-y model

Figure 4.80: Comparison of the lateral dis-
placement response at the pile-head under
Taft-EQ-ground acceleration for Tilbrook pile
at OC clayey soil(hyper-elastic) of a)disk
model-la and b) API-RP2A 1993 p-y model

4.10.1 Axial case(vertical motion of the pile)

An example of a non-linear pile-soil analysis in the time domain is presented in the following.
The pile has an outer diameter of about 1.Orn and a thickness of about 0.03m and a length of
about 30m. The soil condition is normally consolidated soft clay with an average shear modu-
lus of about G = 35MPa and the poisson ratio of about ii = 0.45 which is typical for highly
saturated soils. The pile-soil system is subjected to a short sinusoidal type impulse load with a
duration period of about 1.0 sec which resembles an idealized low intensity(scaled) earth-quake
loading half-cycle. The choice of this type load is intended to show the free damped vibration
of a nearly elastic pile-soil system.

The analysis is carried out in the time-domain according to Eq.4.199. It is seen on Fig. 4.65,
the plotted normalized response curve (dashed line), the displacement response quickly dies out
after the impulse time due to the numerical damping introduced by a 'y 0.6 > 0.5 and also a
non-linear hysteretic damping of soil. Fig.4.66 shows that the tangent stiffness degradation is
very small in this case, hence, the magnitude of the hysteretic damping (for this case with lower
intensity of impulse load) is regarded to be quite small compared to the numerical damping.
The latter was taken to prevent any numerical instability due to minus sign of the inertia term
on the L-H-S of Eq.4.199. By using a small time step and due to relatively smaller mass of the
pile-soil system some numerical instability may occur for linear systems. As will be shown in
the following cases, for a non-linear pile-soil with high degree of soil's yield the effect of this
numerical damping will be overridden by the dominant hysteretic damping. Hence, it is not
necessary to introduce any numerical damping in such non-linear pile-soil cases.
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Fig. 4.63 compares the response of a rigid pile and linear soil without and with linear hysteretic
damping( = 0.25), a linear pile-soil system with the specified damping = 0.25 and a non-
linear pile-soil system with in-elastic hysteretic damping under an idealized earthquake. The
pile-soil data are described in Table.D.5 of Appendix.D. It is seen that the response of the rigid
pile-linear soil system is quite regular with participation of two main frequencies of vibration
which are manifested in the form of double peaks. The response of the same pile-soil system
with introducing a linear hysteretic damping with a ratio of i = 0.25 is somewhat lower but the
pattern of response basically is the same which verifies that the linear hysteretic damping may
not change the eigen-periods of the system in this case.

The response of the linear pile-soil system with a linear hysteretic damping of about = 0.25
is plotted in Fig. 4.63 by a dash dotted line which is even somewhat higher than that of the
un-damped rigid-pile and linear soil system. This is because, for the linear pile-soil system the
deformation of the pile has increased the amplitude of the vertical displacement at the pile head.
The peak vertical displacement of the linear pile-soil system is slightly less than 25mm compared
to about 17mm in this case of the rigid pile-linear soil system with exactly the same damping.
The pattern of response It is observed that has also been altered for the linear system due to
pile's own deformation. However, the frequency of the forced response has not been considerably
changed.

The marked line in Fig. 4.63 shows the response of the non-linear pile-soil system with in-elastic
hysteretic damping, It is observed that the amplitude of the response is significantly higher in
the case, due to the lower stiffness which is the result of gradual yield in the soil. The peak
vertical displacement at the pile head in this case is about 44mm compared with about 23mm
and 17mm for the linear pile-soil and rigid pile-linear soil cases, respectively.

It is also shown that the pattern of the response has changed (for e.g the occurrence and pro-
portion of the secondary peaks and valleys in the response are altered and also there is a shift
in the response towards the negative displacement due to the significant yield in the soil.

Fig. 4.67 shows the response of Tilbrook pile at OC clay under Taft earthquake excitation applied
at the head of the pile. The related pile and soil data for this case are described in Chapter.2.
The pile-soil is modelled as illustrated in Fig. 4.5. The displacement response is represented
by the solid line in the plot whose peaks can be compared with the peaks in the ground ac-
celeration. A phase is observed between the response and the predominant eigen-period of the
response corresponding to that of the ground input displacement.

The axial pile-soil mobilization hystereses are plotted in Fig. 4.68 which show that the soil at
depth lOm below the ground level has been fully mobilized. The shift in the peaks of the hystere-
ses manifest the kinematic hardening in the soil. The maximum observed vertical displacement
at the depth lOm is about 0.058m.

Fig. 4.69 shows the displacement response at the head of a 31m long pile with an outer diameter
of O.D = 0.762m at heavily over- consolidated clayey soil with elasto-plastic behaviour with an
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average shear soil modulus of G = 35MPa an average undrained shear strength of S,. = 75KPa.
The site is subjected to the strong motion of Taft-earthquake (record, 1966) which has been mod-
ified (Caltech, 1995).

It is seen that the time history of vertical pile head displacement has followed more or less that
of the ground but with participation of higher eigen-frequencies of the pile's response in the
vertical direction (the higher frequencies effects are represented by the secondary peaks in the
aforementioned history response denoted by the solid curve in Fig. 4.69).

Due to the plastic yield occurring in the soil under vertical motion of the pile as identified in
the axial pile-soil (interaction) mobilization hystereses plotted in Figs.4.70, 4.71 and 4.72, the
displacement response curve at the pile head has shifted towards negative displacement after
t = 8sec ref. to the acceleration history plot of the ground and the corresponding displacement
history which is denoted in the same plot Fig. 4.69, the highest peaks have occurred just after
this time (t = 8sec).

The observed magnitude (amplitude) of the displacement response at the pile head in this case
is lower than that of the ground displacement due to the observed plastic yields in the pile-soil
elements (springs) which has absorbed significant part of the energy in the form of hysteretic
energy or analogously part of the ground displacement has been dissipated in the form of per-
manent deformation (or plastic displacement) of soil (see for e.g. Fig. 4.71 etc.).

The corresponding fundamental eigen-frequency of this pile-soil system is about (0.82) which is
closer to that of the ground displacement but far larger than that of the velocity or acceleration
of the ground. As shown, the linear dynamic magnification effects have been heavily damped
out by the in-elastic yield in the soil.

On the other hand, the magnitude of the displacement response is computed to be closer or even
larger than that of the ground for the same site with hyper-elastic soil behaviour as plotted in
Fig. 4.73. It is seen that displacement response at the pile head for the latter case has been
magnified due to dynamic (DAF) effects after t = 8sec, the observed dynamic amplification
factor is (DAF = 0.043/0.0375 = 1.15). This amplification factor is allowed due to the lack of
the hysteretic soil damping which is observed in the previous elasto-plastic case to absorb very
significant portion of .the ground displacement input energy. Since plastic utilization of pile steel
material itself for both cases have been insignificant (about 0.02 - 0.04), hence no considerable
damping has occurred in the pile itself.

It can be seen that for the latter hyper-elastic case, the pile response oscillations denoted by
solid line in Fig. 4.73 has closely followed those of the ground as denoted by the dashed curve in
the same figure. Again the higher frequency effects can be seen particularly in the initial part
of the response up to t = 6secs in the form of secondary peaks.

As mentioned above, in both these (vertical motion of pile) cases, the response has been sensitive
to the ground displacement not to the ground acceleration or velocity because of higher eigen-
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Figure 4.81: Influence of coupling between double cones(disks) on the displacement response of
a single flexible pile-soil system

period of the pile-soil which is in the range of dominant frequency of the effective displacement
input of ground. Of course, for a pile alone without assigning the mass of the super-structure
(for e.g jacket which carries a mass comparatively several order of magnitude higher than that
of a single pile), the natural period of the pile-soil system would be far smaller for e.g as given in
simpler examples above T7, = O.O43sec etc. whose response as observed are quite different and
more sensitive to the ground acceleration or velocity.

The effects of coupling on the response is illustrated through the following example of a single
pile-soil analysis. The coupling between the disks as described above are both introduced through
the soil full-space between the cones and also through the interconnecting pile elements. The
results are plotted in Fig. 4.81 which show an increase in the dynamic flexibility of the pile-soil
system due to presence of off-diagonal Green functions gus. To verify that this coupling has only
taken place between the same degrees of freedom associated with the disks, another simulation
is performed by using relatively rigid pile elements E = 2.le + l4Pa, the coupling effect between
cones has vanished due to the full coupling between the disks in the rigid pile.

4.10.2 Comparison of dynamic lateral response of disk and API-93
models

The dynamic response of Tilbrook pile at OC clay under prescribed TAFT-EQ ground acceler-
ation is analyzed according to the presented multi-stack of disks model as shown in Fig. 4.4 and
the p-y model recommended by API-RP2A 1993.

The results are plotted in Figs.4.75 through 4.80 for elasto-plastic and hyper-elastic soil be- -

haviour, respectively. It is seen that for the elasto-plastic soil type, the API-RP2A 1993 soft
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Figure 4.82: Comparison of impedance func-
tion of disk-cone model and boundary el-
ement solution of Kaynia and Kausel, (1982)
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Figure 4.84: Comparison of impedance func-
tion kd,,h of disk-cone model and boundary el-
ement solution of Kaynia and Kausel, (1982)
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Figure 4.83: Comparison of impedance func-
tion Cdy,v of disk-cone model and boundary el-
ement solution of Kayrna and Kausel, (1982)
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Figure 4.85: Comparison of impedance func-
tion Cdy,h of disk-cone model and boundary el-
ement solution of Kaynia and Kausel, (1982)
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Figure 4.86: Comparison of impedance fu.nc-
tion of disk-cone model and boundary el-
ement solution of Apsel and Luco, (1987)
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Figure 4.88: Comparison of impedance func-
tion kd,h of disk-cone model and boundary el-
ement solution of Apsel and Luco, (1987)
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Figure 4.87: Comparison of impedance func-
tion CdV,v of disk-cone model and boundary el-
ement solution of Apsel and Luco, (1987)
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Figure 4.89: Comparison of impedance func-
tion Cdy,h of disk-cone model and boundary el-
ement solution of Apsel and Luco, (1987)
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Figure 4.90: Comparison of impedance func-
tion kdy,r of disk-cone model and boundary el-
ement solution of Apsel and Luco, (1987)
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Figure 4.92: Comparison of impedance func-
tion of disk-cone model and boundary el-
ement solution of Nogami and Konagai, (1986)
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clay p-y model, has given much larger response than that of the disk model. The fundamental
eigen-period of the response associated with the dash dotted curve of API-93 model, is appar-
ently slightly higher than that of the solid line corresponding to the response of the disk model.
This is because the corresponding stiffness of API-93 p-y model is less than that of the disk
model. This was also observed for the static case in Sec.2.5 of Chapter.2.

The participation of the higher eigen-frequencies are visible in the disk model response curve
whereas not seen in the displacement response of API-93 model. The largest peak according to
disk model occurs at t = 8sec while for the API-93 model peak resonance is seen at t = 9.9sec.
A more considerable shift is observed in the API-93 response curve after t = 8sec when the
largest ground displacement peak is observed.

In comparison, the response of the disk model has less shifted after t = 8sec. The latter obser-
vation can also be easily verified by examining the p-y mobilization hysteretic curves for eg. at
depths 0.5m and lOm below the ground as plotted in Fig.4.76.

On the other hand, the peak responses of the two aforementioned models are comparatively
closer for the hyper-elastic soil case as shown in Fig. 4.80. It is seen that for the latter case,
the disk model response as denoted by the solid line in Fig. 4.80 has a peak of about 0.27m at
time t = 8.66sec. The response of API-93 model as denoted by dash dotted curve has a peak of
about 0.32m at t = 9.3lsec.

The maximum discrepancy related to the peak response is only about 15% - 18% which is
quite satisfactory in geotechnical terms. However, the eigen-periods of the two responses are
quite different as seen, the fundamental eigen-period of the disk model's response in the region of
t = 6- l0sec is almost twice as large as that of API-93 model. This can be verified by examining
Fig.4.79. It is observed that the API-93 mobilized p-y curve which is much softer than its disk
model counterpart has not reached at the prescribed horizontal motion of ground to its peak
point and still can be considered as semi-elastic with much higher current stiffness value than
that of the disk model which has already reached the collapse and consequently has resulted
in comparatively larger eigen-period of response. This problem is actually due to displacement
controlled nature of the response while in a load controlled system one may expect opposite to
happen.

4.10.3 Verification cases of impedance functions of pile-soil
The dynamic stiffness parameters so called the impedance functions at the head of pile-soil
system are computed for a wide range of frequencies of excitation as a = 0.01 to 0.5, 1.0 and
compared against rigorous boundary element by Kaynia and Kausel, (1982), the results of direct
boundary integral solution by Apse! and Luco, (1987) and also the rigorous solution of Nogami
and Konagai, (1986) and (1988) for vertical, horizontal and rocking motions of the pile.

Fig. 4.82 shows the dynamic stiffness function kdy, as a function of non-dimensionalized fre-
quency a0 = wro/c8 for a pile with an embedment ratio of e/ro = 30 in homogeneous soil with
shear modulus of G = 15OMPa (see also Table.D.7 of Appendix.D). It is seen that kdy,v Of
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disk-cone model varies from 1.0 at ao = 0. to about 1.3 at a0 = 1 compared to the rigorous BE
solution of Kaynia and Kauasel which shows a slight fluctuation about the obtained solution
here. The agreement is very good with respect to the selected range of frequencies. The mean
value of is about 1.18 according to BEM and about 1.14 according to the disk-cone model
solution.

Fig. 4.84 shows a comparison between the dynaniic impedance function kd,h for horizontal mo-
tion of a foundation with an embedment ratio of e/rO = 30(see Table.D.7of Appendix.D). A
slight variation is observed in the dynamic stiffness of the system with increase of the frequency
of excitation a0 from 0 to 1.0. The agreement between the disk-cone results presented here by a
solid line and those of boundary element solution of Kayma and Kausel, (1982) are quite good.
The mean values of kd,h according to BEM and disk-cone modelsare 1.02 and 1.12, respectively.

The dashpot coefficient Cdy,v of a deeply penetrated pile with an embedment ratio of about e/ro =
30 under vertical motion in a homogeneous soil with the shear modulus of G = 15OMPa(see
Table.D.7) is plotted in Fig. 4.83. The solid line represented the impedance function obtained
here by using the disk-cone as described above whereas the asterisks show the BEM results of
Kaynia and Kausel, (1982). The correlation between the results are quite good. The average
discrepancy is about 6.5 percent for the overall range of ao. As observed here, the damping
coefficient begins from nearly 4.8 at about a0 = 0 and decreases quite rapidly with increasing
the frequency of excitation up to about a0 = 1 and afterwards it decreases almost linearly with
increasing the frequency of vibration. At the highest limit of the plot a0 = 1 the damping ratio
is around 2.0 which is only 42 percent of its static value!

Fig. 4.85 shows the damping function Cdy,h for the latter pile-soilsystem under horizontal motion
of ground. The damping coefficient calculated according to the disk-cone model as denoted by
the solid line on Fig. 4.85 decreases non-linearly(almost exponentially) from nearly 4.8 at the
static case to about 0.50 at a0 = 1.

Fig. 4.92 compares the disk-cone model solution with that of rigorous solution by Nogatni and
Konagai, (1986) for axial loading of a very deeply embedded pile e/ro = 75 in a homogeneous
layer of soil with a thickness of d/ro = 150 which is overlying a bed-rock surface(see Table.D.7
of Appendix.D).

It is observed that there is a considerable increase in the vertical dynamic stiffness of the pile-soil
system over a practical range of frequencies of excitation a0 = 0-0.5. The dynamic stiffness
has smoothly increased from unity at or near a0 = 0 to about 1.5 at a0 = 0.5. The agreement
for this range of e/ro and a0 is very good.

Fig. 4.93 verifies the results of disk-cone modelfor kdy,h by using the results obtained by Nogami
and Konagai, (1988) for a laterally loaded pile-soil system whose details as given in Noganii and
Konagai, (1988).

The results of disk-cone model are also verified against those of a more rigorous direct bound-
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ary integral method of Apsel and Luco, (1987) for both axial and lateral loading of embedded
foundations. Apse! and Luco, (1987) have presented results for embedment ratios of e/ro = 2.
which are used in Figs.4.86 through 4.91 for comparison.

The dynamic impedance function of the foundation as described in the latter case is com-
pared in Fig. 4.86 with those obtained by Apse! and Luco, (1987). Similar to the horizontal
case, the normalized dynamic axial stiffness of the analyzed shallow foundation varies slightly
from unity (its static stiffness) These results may imply that for a small embedment ratio,
the translational dynamic stiffness of foundation can be assumed as the static stiffness for a
time-domain analysis.

The impedance function kd,,h of a shallow foundation with an embedment ratio of about c/rU = 2
under horizontal motion computed according to the disk-cone model and the rigorous boundary
integral method of Apse! and Luco, (1987) are compared in Fig. 4.88. It is observed that the
normalized lateral stiffness has a small variation about the unity, for the overall agreement be-
tween the results of disk-cone model and those of the Apsel and Luco, (1987) is quite good. The
mean discrepancy is about 8 percent.

Fig. 4.90 shows the dynamic impedance function kd,,. for the rocking motion of an embedded
foundation with an embedment ratio of e/rO = 2 in a homogeneous soil with shear modulus of
C = 35MPa and ii = 0.4 (see Table.D.7 of Appendix.D).

It is observed that the dynamic stiffness response computed by disk-cone model as described
above, well agrees with the results of rigorous boundary integral method by Apsel and Luco,
(1987). The solid line represeiits the kd,,. computed by modelling the foundation system with
only 7 disks while the dash dotted line represents the computed based on a much finer
model of 30 soil thsks. It can be seen that even with only 7 disks the dynamic response of the
foundation is very closely predicted. For this shallow foundation, using 5-7 disks provides quite
satisfactory results in practical terms. The normalized rocking stiffness is about unity for the
static case a0 = 0 while it decreases rapidly for higher frequencies up to a0 = 1 for frequencies
higher than a0 = 1 there is slight variation of

The dashpot coefficient of the latter foundation under vertical motion is plotted in Fig. 4.87.
The solid line represents the response of the disk-cone model by using only 7 disks whereas the
dash dotted line denotes the computed response according to much finer model of 30 soil disks.
These results are compared in the same plot with the dynamic vertical stiffness obtained by
Apse! and Luco, (1987) based on boundary integral method. It is observed that though there
is small discrepancy for the frequency range lower than about a0 = 2, nevertheless, the overall
agreement is quite good. For the finer mesh of 30 disks the obtained dynamic stiffness for the
higher frequency range (i.e. a0 > 2.5) is almost exact in comparison with the rigorous BIM
solution of Apse! and Luco, (1987).

-

The plotted response in Fig. 4.87 compares the modelling effect on the dynamic impedance func-
tion as well. The solid line represents the response of the disk-cone model by using only 7 disks
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whereas the dash dotted line denotes the computed respOnse according to much finer model of
30 soil disks. These results are compared in the same plot with the dynamic vertical stiffness
obtained by Apsel and Luco, (1987) based on boundary integral method. It is observed that
though there is small discrepancy for the frequency range lower than about a0 = 2, nevertheless,
the overall agreement is quite good. For the finer mesh of 30 disks the obtained dynamic stiffness
for the higher frequency range (i.e. a0 > 2.5) is almost exact in comparison with the rigorous
BIM solution of Apsel and Luco, (1987).

Fig. 4.89 shows the damping coefficient Cdy,h under horizontal motion of the latter described
foundation. The solid line represents the computed Cdy,h according to the disk-cone models with
7 elements, while the dash dotted line indicates the results obtained here by using 30 disk-cone
elements. The asterisks denote the results obtained by Apsel and, Luco, (1987) based on bound-
ary integral method. The correspondence between the these latter results is extremely close.
The discrepancy in this case is even less than one percent.

The dashpot coefficient Cd,,7 of the latter foundation under rocking motion is shown in Fig. 4.91.
It is observed that damping coefficient starts from nearly 0.21 at a0 = 0 for the static case
and increases non-linearly with the frequency of excitation a0 towards an asymptotic value of
about 0.8 near a0 = 4. It is seen that the damping coefficient computed according to the disk-
cone model by using about 7 disks which is represented by solid line on Fig. 4.91 has been
well estimated for the lower frequency range of a0 0 - 2, while it has been overpredicted for
higher frequencies than this. The dash dotted line corresponding to a pile modelled by 30 disk
elements, has represented more accurately the response of disk-cone model with only 2-5 percent
discrepancy for the overall range of a0. The obtained results are excellent with considering the
simplicity of the disk-cone model compared to the referred rigorous solution methods.

4.10.4 Economic comparison of disk-cone and rigorous methods
The computer(CPU) time required to calculate these dynamic stiffness and damping properties
of disk-cone model ranges between 1-5 minutes compared to several hours needed for the rigorous
methods such as boundary element method.

For a single pile-soil system modelled by 30 disks the required time was about 5 mins compared
to 1mm for a 5 disk model of the same system.

4.11 Illustrative examples of simplified systems
Figs.4.95 through 4.99 show three examples of simple SDOF systems under the earthquake ac-
celeration.

The natural eigen-period of the first SDOF system is about T = 1.74sec. The response of linear
and non-linear systems are plotted in Figs.4.95 and 4.94, respectively.
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Figure 4.94: Normalized ground acceleration
and displacement response histories of a non-
linear SDOF system under seismic loading
Tn = 1.74sec

Figure 4.96: Normalized ground acceleration
and displacement response histories of a non-
linear SDOF system under seismic loading
Tn = 0.43sec

Figure 4.95: Normalized ground acceleration
and displacement response histories of a En-
ear SDOF system under seismic loading Tn =
1 .74sec

Figure 4.97: Normalized ground acceleration
and displacement response histories of a lin-
ear SDOF system under seismic loading Tn =
0.43sec
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Figure 4.98: Normalized ground acceleration
and displacement response histories of a non-
linear SDOF system under seismic loading
Tm = O.O87sec

Figure 4.99: Normalized ground acceleration
and displacement response histories of a lin-
ear SDOF system under seismic loading Tn =
0.O87sec

peak displacement response as shown in Fig. 4.94
e maximum ground acceleration is observed at
about 0.076m for this simple system.

The peak displacement response of the linear system as plotted in Fig. 4.95 has occurred at
t = 1.75secs while the peak acceleration of the ground has been observed at about t = 0.S7sec.
The displacement response for the linear case corresponds to the ground displacement rather
than the ground acceleration.

In comparison, for the nonlinear soil system, the
has occurred at about t = 2.2secs, whereas th
t = 0.87sec. The peak displacement response is

The displacement response of a linear SDOF system with a natural period of about 0.43 is
plotted in Fig. 4.97. It is observed that the peak displacement has occurred at t = 1.85secs
which has about 1.0 sec time lag with that of the peak ground acceleration. In contrast, the
response of the non-linear pile-soil system shows a peak at about t = 1.lsec which is about 0.25
sec after that of the peak ground acceleration. The eigen-period of the response is apparently
influenced by the soil non-linearities. This has been manifested in the increased eigen-period of
the response due to reduced stiffness after yielding of the soil. The peak ground displacement is
0.24m in this case compared with the smaller value of 0.125m in the linear case.

Fig. 4.99 shows the displacement response of another SDOF system with a natural period of
0.O87sec under the plotted acceleration of the ground. It is observed that a resonance has oc-
curred just after the peak acceleration of the ground. The observed resonance is due to the
proximity of the natural fundamental period of the system to that of the ground input motion.
By contrast, the resonance effect is not observed in Fig. 4.98 for the non-linear soil case due to
the in-elastic hysteretic damping occurring in the soil and changes in the natural period of the
system as a function of the system's tangent stiffness. The peak displacement in the system is
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Figure 4.100: The normalized ground acceler-
ation and the displacement response of a linear
2DOF system under a scaled EQ-record with
max Acc=3.42g on an OC type clayey soil

about 26mm which is sufficient to cause yield of the soil.

As an example of a simple system of pile-soil, Figs.4.100 and 4.101 show the displacement re-
sponse of linear and non-linear 2DOF systems, respectively, in which one degree of freedom
represents the displacement response of the soil and the other dof denotes the distortion of the
pile's structural element.

Fig. 4.102 shows the displacement response of another equivalent lumped model of pile-soil
system with 3DOFs representing, the translational motion of pile and soil and rotational dis-
placement of soil, respectively. The mass of the system is subjected to an acceleration history of
a corrected earthquake (Taft-EQ) for a duration of only 4secs (time of the record is scaled by a
factor of 5). The maximum acceleration of the ground which is un-scaled is about 0.34g at time
0.87sec.

The soil condition is assumed to be heavily overconsolidated (OC) clay as typical of North-sea
offshore sites. The solid line represents the distortion of the pile element itself while the dash
dotted and heavy solid lines denote those of the soil. Amplification of the response is observed
after the peak ground acceleration has passed which is due to the eigen-period of the system
which is very close to that of the ground-disp 1.23sec. The peak distortion of the pile is about
0.06m at time t = 3.4sec vs. peak displacement of soil as 0.05m at t = 3.2sec and that of the
pile-soil system rotation as 0.0025rad at t = 3.4sec. The rotational displacement shows that
foundation has tilted towards one side and also the translational response of soil has shifted
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Figure 4.101: The normalized ground acceler-
ation and the displacement response of a non-
linear 2DOF system under an un-scaled EQ-
record with max.acceleration=0.34g on an OC
type clayey soil with linear and non-linear soil
response
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Figure 4.102: Normalized ground acceleration and Displacement response ZLT of pile distortion,
u0r the pile-soil displacement and v0r the pile-soil rotation a non-linear 3dof system with a
natural period of T = 1.23s (Td = 4sec)

somewhat due to its plastic yield.

4.12 Summary of other parametric studies by using sim-
plified methods

The Fig. 4.103 through 4.108 show the results of the analysis by applying the described simpli-
fied pile-soil systems in the previous sections.

These first set of plots show that the normalized dynamic stiffness coefficient of a single rigid
pile under vertical motion. It's assumed that the embedment ratio e/rO varies between 10 to
about 30 to simulate shallow to very deep foundations. r0 is considered as the radius of the pile
and throughout this section is assumed as 0.5 or diameter of pile as 1.00. The other pertinent
parameters are given in Appendix.D.

Each embedded foundation (or pile) is subjected to a seismic wave which induces the loading
on each assumed pile-soil disk idealizing the pile-soil interaction as defined earlier in Chapter.2.
It may be assumed that an initial incident dilatational type (compressive or P) has induced the
vertical motion of the disks (pile-soil). The pile is assumed as rigid and no material damping
is introduced into the system. Hence, the reducing effects of the linear hysteretic damping as
discussed earlier and that of attached trapped mass underneath the pile-soil disk will not be
considered in this set of parametric study.

It is observed that the spring coefficient or the real part of the dynamic stiffnesses does not
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Figure 4.103: Dynamic axial spring coefficient
of pile-soil system vs. non-dimensional fre-
quency aD for embedment ratios e/rO =10,20
and 30

Figure 4.105: Dynamic lateral spring coef-
ficient of single pile-soil system vs. non-
dimensional frequency aO for embedment ra-
tios e/rO =10,20 and 30

Figure 4.104: Dynamic axial dashpot coef-
ficient of single pile-soil system vs. non-
dimensional frequency aO for embedment ra-
tios e/rO =10.0,20 and 30
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Figure 4.106: Dynamic lateral dashpot co-
efficient of single pile-soil system vs. non-
dimensional frequency aO for embedment ra-
tios e/rO =10.0,20 and 30
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Figure 4.107: Dynamic rotational(rocking)
spring coefficient of single pile-soil system vs.
non-dimensional frequency aO for embedment
ratios e/rO =10,20 and 30

Figure 4.108: Dynamic rotational(rocking)
dashpot coefficient of single pile-soil system vs.
non-dimensional frequency aO for embedment
ratios e/rO =10.0,20 and 30

vary very significantly for the range of frequency of excitation typical for extreme sea waves
or even low seismic waves. However, there are significant variations for the higher frequencies
of vibration than for e.g. (ao = 0.5). It may be noteworthy that this sort of variations may
not be seen in the real pile-soil system with the corresponding embedment ratios, due to the
reducing effects of inertia associated with the pile/soil mass, the material damping effects and
the pile's fiexibility(possible yield). This example is intended to only illustrate the variability of
the stiffness parameters of the pile-soil with the frequency of vibration.

It can also be observed that the dashpot coefficient is also more or less constant with increasing
the frequency of input excitation for the range of extreme sea waves.

The other feature about these results is that, the dynamic spring and dashpot coefficients in-
crease by an increase in embedment ratio e/rO. However, the rate of increase is not linear and
as shown in the plot. But even for the case of a rigid pile, there is a difference between the two
curves (K8 vs. e/rO and Cd vs. c/rU).

The dynamic stiffness coefficients for a rigid pile under horizontal motion are simulated in
Figs.4.105 and 4.106 . It is assumed that the piles (foundations) have been subjected to verti-
cally propagating shear waves (Sr).

The plotted kd and Cdy curves in Figs.4.103 to 4.106 show somewhat variation with the non-
dimensionalized frequency a0 = for the typical range of frequency of excitation of extreme
sea waves or low frequency seismic waves, however these fluctuations are not very significant
and can be neglected for practical purposes. Thus using an equivalent non-linear static stiffness

0.5 15 2 2.5 3 3.5 0.5 1.5 2 2.5 3.5
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Figure 4.109: Power spectrum of the ground Figure 4.110: for dominant frequency of
effective input acceleration excitation

k8 (w = 0) and c (w = 0) may not result in a significant loss of accuracy in a dynamic stiffness
formulation.

It is observed that the stiffness parameter k3(w) increases non-linearly and almost exponentially
with increasing the depth of the foundation e/rO. It may be worth mentioning that in a real
practical case where a pile has a finite stiffness (flexible) the latter results may not be applied
particularly for larger e/rO ratios. In the latter cases, the pile -soil interaction as shown in
Chapter.2 for a static case, can only be mobilized down to a certain depth of pile and increasing
the pile may be considered approximately fixed at that level against any lateral movement so that
further adding the pile length may not increase the lateral capacity of the pile. Such effective
length of the pile may also be implemented explicitly in the above procedure for a rigid pile
calculation to obtain reasonable results for practical cases with large e/rO ratios as:

where aey represents the effective pile length ratio. The evaluation of the dynamic stiffness
values for rocking and torsional degrees of freedom have also been shown in Figs.4.107 and 4.108.

It is observed 'that the response under the rocking (rotational) motion is significantly different
from vertical and horizontal (translational) cases as observed before. In the latter case the
dynamic spring coefficient k(w) and the dashpot coefficient c,3(w) vary dramatically and non-
linearly from near zero to much larger values than unity at higher frequencies a0 - 4 or
w=(3-4)c3/ruJ.

Also the c3(ao) curves have an asymptotic part which as described above for larger a0 3 4
may be approximately considered constant for low embedment ratios(shallow type foundations).

0.1 0.4 0.50.2 0.3

(e/r0)htibe = (4.248)
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On the other hand, the dynamic spring coefficient, k8(ao) varies with lesser intensity with a0
for shallow foundations. However, the rate of variation as for other previous rigid pile cases
increases rapidly and exponentially as the embedment ratio increases towards large numbers
(about 100 i.e. infinitely long piles).

It may also be assumed that for shallow foundations k3 (w) = cte. However, it would be more
relevant to determine the dynamic stiffness coefficient according to the dominant frequency of
the excitation W1ak. As illustrated in Figs.4.109 and 4.110 for an example of the seismic analysis
of a pile-soil system in a homogeneous layer of OC clayey soil with G = 35MPa and ii = 0.4
and pile embedment ratio of e/ro = 30 subjected to a vertical ground acceleration with the
plotted power spectrum, the peak powers occur at two distinct frequencies of ground oscillation,

= 5.1HZ and w2 = 12HZ which are typical of a high frequency seismic oscillation. The
corresponding dynamic stiffness of the predominant peaks denoted by 1 and 2 are shown in
Fig. 4.110. The ratio of the corresponding dynamic stiffness of the pile-soil system to its static
one

kd,,(1)/k3t = 1.15 and kd,(2)/k9t = 1.48, where k5 = kd,,(ao = 0).

These obtained ratios indicate that the axial dynamic stiffness of the pile-soil system can be
significantly modified due to the acceleration of the ground. It may be shown that for a low
frequency of vibration such as corrected and scaled TAFT-EQ used in simulations above, the
predominant frequencies associated with the peak powers as plotted in Fig. 4.109 are far lower
than 2HZ (0.51HZ and 1.2HZ, respectively). The corresponding normalized dynamic axial stiff-
nesses of the pile-soil system are about L007 and1.01 which are quite close to that of the static
one (kd, = 1). This would indicate that taking the static stiffness for the time-domain analysis
in the related simulations is well justified.

However, for the cases that the time axis of the earthquake or the duration was scaled which
resulted in higher frequency vibrations, the dynamic stiffness and damping coefficients were
obtained from the frequency domain analyses and used for the time-domain analysis. In this
manner, the frequency effects are also taken into account in the time domain analysis. For very
low frequency of excitation, k9 () can be assumed as the static spring coefficient or k8 (0).

It is observed that for the higher frequency of excitation than a0 = 3 - 4, the dynamic stiff-
ness of a rigid-pile in elastic half-space dramatically increases. In contrast, for a flexible pile
with non-linear soil assumption, the maximum dyna.rnic stiffness for a0 = 3 - 4 is several times
smaller. However, for the extreme sea waves and strong seismic motions, the dominant frequency
of content is usually lower than this range for which the discrepancy can be expected to be small.

dk8
k8 =

de/rO
(4.249)

in which k8 may characterize the variability of the dynamic stiffness of the spring with respect
to the embedment ratio. It is evident that the influence of the pile's stiffness is more significant
for the case of rocking and torsional degrees of freedom.
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Figure 4.111: Dynamic axial spring coefficient
of single pile-soil system vs. vertical loading
ratio V/VU for =0.1 and 100HZ with em-
bedment ratio e/rO = 10
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Figure 4.112: Dynamic axiai dashpot coeffi-
cient of single pile-soil system vs. vertical
loading ratio V/VU for w = 0.1 and 100HZ with
embedment ratio e/rO = 10

It can be seen that for higher frequencies than a0 = 4, the dynamic spring coefficients may
decrease for even translational motions (horizontal). Such variations may imply taking some
degree of caution in applying any constant value of spring coefficient in general.

Figs.4.111 through 4.128 show the results of parametric study by using above described models.
The effects of several key parameters in the dynamic response of the pile-soil can be studied
through these results.

The studied parameters include, the hysteretic damping ratio for the pile and soil, the radiation
damping effects, the pile's slenderness or embedment effects etc. The influence of the non-linear
and hysteretic energy absorption on the equivalent pile-soil system response is also considered.

The cost effective feature of the applied approach together with the good performance of the
models discussed would be a preference in comparison to accurate but rigorous elasto-dynamic
solutions as boundary element method of Kayn.ia and Kausel, (1982) and other less accurate
and much more time consuming non-linear approaches such as Pseudo-dynamic methods etc.

The effects of several key parameters such as load ratio, frequency of excitation and embed-
ment ratio on the dynamic stiffness and damping coefficients for vertical, horizontal and rocking
motions for a semi-infinite homogeneous soil are shown in Figs.4.111 through 4.128. It is ob-
served that the dynamic stiffness of the embedded foundation decreases almost exponentially
towards zero with the increase of the loading ratio towards unity. For higher frequency limits

= 100), significant variations are observed in the value of the function for axial load ratio
v/VU > 0.5 - 0.7. For deeper embedment ratios e/ro = 50, the observed fluctuations begin from
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Figure 4.113: Dynamic axial spring coefficient
of single pile-soil system vs. vertical loading
ratio V/VU for w = 0.1 and 100HZ with em-
bedment ratio e/rO = 20
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Figure 4.115: Dynamic axial spring coefficient
of single pile-soil system vs. vertical loading
ratio V/VU for w =0.1 and 100HZ with em-
bedment ratio e/rO = 50

Figure 4.114: Dynamic axial dashpot coeffi-
cient of single pile-soil system vs. vertical
loading ratio V/VU for L' = 0.1 and 100HZ with
embedment ratio e/rO = 20

Figure 4.116: Dynamic axial dashpot coeffi-
cient of single pile-soil system vs. vertical
loading ratio V/VU for = 0.1 and 100HZ with
embedment ratio e/rO = 50
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Figure 4.117: Dynamic lateral spring coeffi-
cient of single pile-soil system vs. horizon-
tal loading ratio H/HI, for u =0.1 and 100HZ
with embedment ratio e/rO = 10
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Figure 4.119: Dynamic lateral spring coeffi-
cient of single pile-soil system vs. horizon-
tal loading ratio H/HI, for w =0.1 and 100HZ
with embedment ratio e/rO = 20

Figure 4.118: Dynamic lateral dashpot coeffi-
cient of single pile-soil system vs. horizontal
loading ratio H/HI, for w = 0.1 and 100HZ
with embedment ratio e/rO = 10
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Figure 4.120: Dynamic axial daslipot coeffi-
cient of single pile-soil system vs. horizontal
loading ratio H/HI, for w = 0.1 and 100HZ
with embedment ratio e/rO = 20
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Figure 4.121: Dynamic lateral spring coeffi-
cient of single pile-soil system vs. horizon-
tal loading ratio H/HU for w =0.1 and 100HZ
with embedment ratio e/rO = 50
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Figure 4.123: Dynamic rocking spring coeffi-
cient of single pile-soil system vs. bending mo-
ment ratio M/MU for w =0.1 and 100HZ with
embedment ratio e/rO = 10
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Figure 4.122: Dynamic lateral dashpot coeffi-
cient of single pile-soil system vs. horizontal
loading ratio H/HU for w = 0.1 and 100HZ
with embedment ratio e/rO = 50

Figure 4.124: Dynamic rocking dashpot coef-
ficient of sIngle pile-soil system vs. bending
moment ratio M/MU for w = 0.1 and 100HZ
with embedment ratio e/rO = 10

0.8

0.6

=1oo

0.4

02

00 0.2 0.4 0.6
H/Ku

0.8



214 CHAPTER 4. DYNAMIC ANALYSIS OF PILE-SOIL INTERACTION

wr1OO -

Figure 4.125: Dynamic rocking spring coeffi-
cient of single pile-soil system vs. bending mo-
ment ratio M/MU for w =0.1 and 100HZ with
embedment ratio e/rO = 20

Figure 4.127: Dynamic rocking spring coeffi-
cient of single pile-soil system vs. bending mo-
ment ratio M/MU for w =0.1 and 100HZ with
embedment ratio e/rO = 50
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Figure 4.126: Dynamic rocking dashpot coef-
ficient of single pile-soil system vs. bending
moment ratio M/MU for w = 0.1 and 100HZ
with embedment ratio e/rO = 20
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Figure 4.128: Dynamic rocking dashpot coef-
ficient of single pile-soil system vs. bending
moment ratio M/MU for = 0.1 and 100HZ
with embedment ratio e/rO = 50
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Figure 4.129: Ductility demand ratio of a sin-
gle pile-soil system vs. the natural period ratio
a = T/T0 for an overload ratio of F = 0.26
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Figure 4.131: Ductility demand ratio of a sin-
gle pile-soil system vs. the natural period ratio
a = T/T0 for an overload ratio of F = 1.59
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Figure 4.130: Ductility demand ratio of a sin-
gle pile-soil system vs. the natural period ratio
a = T/T0 for an overload ratio ofF = 0.53
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Figure 4.132: Ductility demand ratio of a sin-
gle pile-soil system vs. the natural period ratio
a = T/T0 for an overload ratio of F = 2.0
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Figure 4.133: Variation of the frequency ra-
tio rw a single pile-soil system with the pile's
embedment e
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Figure 4.135: Variation of the frequency ratio
r a single pile-soil system with the poisson's
ratio of soil

Figure 4.134: Variation of the frequency ra-
tio rci a single pile-soil system with the mass
parameter rm = m_i/m8j

Figure 4.136: Variation of the frequency ra-
tio rci a single pile-soil system with the shear
stress ratio of soil S =
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v/v,. > 0.6 as seen in Fig. 4.115 while for the lower embedment ratio e/ro = 10, considerable
variations occur after v/v,. = 0.8 as seen in Fig. 4.111. More significant variations are observed
for the largest embedment ratio (e/ro = 50).

For the horizontal motion of the shorter pile, the dynamic stiffness kd,h decreases almost ex-
ponentially up to the collapse load. For e/ro = 50, kd,,h decreases up to a load level of about
H/H,. = 0.4 from where some fluctuations are observed in the value of the impedance function.
As shown in Fig. 4.117, the amplitude of the variation of kd,,, decreases towards the ultimate
capacity of the pile. In comparison for the deeply embedded pile with e/ro = 20, a very sig-
nificant variation is observed at about H/H,. = 0.9. This may be interpreted as the change in
the phase of response with respect to the wave propagation at this point due to change in the
tangent stiffness of the pile-soil system which may have been caused the system to respond out
of phase with the input excitation.

For the rocking motion, the near static (low frequency limit) of the normalized dynamic stiffness
decreases exponentially from unity towards the zero at a bending moment ratio M/MU = 1.0.
A peak is observed for the high frequency range at about M/M = 0.85 for the embedment ratio
of e/ro = 50. The amplitude of the variation genera11r decreases as the load ratio increases.

For the lower embedment ratio, the amplitude and the corresponding load levels, the fluctuations
Of the dynamic stiffness related to the higher frequency limit are smaller than those observed
for higher embedment ratios.

For very deep foundation with e/ro = 50, the variation is much more significant and at much
higher load level M/MU = 0.8 - 0.9. At the observed peak in Fig. 4.127 the absolute value of
the corresponding dynamic stiffness is about 6 times of that for static one.

The damping coefficient of the vertically loaded pile Cdy,v decreases non-linearly from a static
value towards zero. For the latter frequency limit the dynamic stiffness coefficient of dashpot is
lower than that of the low frequency (static case) up to almost collapse. For the e/ro = 50 case,
it exceeds that of the the low frequency limit after V/VU = 0.77. A small peak is observed at a
load level of about V/V,. = 0.8 which corresponds to the change in the dynamic characteristic
of the system with respect to its tangent stiffness and the frequency limit.

It is seen in Fig. 4.116 the dashpot coefficient under vertical loading of the pile with embedment
ratio of e/ro is far smaller for the high frequency limit of w = 100 than the low frequency limit,
for the lower load ratios up to V/V,. = 0.7. At V/VU = 0.8, the damping parameter Cdy,v reaches
a small peak and after that it decreases towards zero. The ratio of Cdy,v of the high frequency
to that of low frequency limit at zero load level is about 0.37. This reduction in the damping is
also expected from the earlier discussion about the cone model's behaviour. We observed above
that the damping ratio can be far greater fOr the low frequencies than that of high frequencies
of vibration for translational motion of pile.

For the horizontal case, the same trend is observed. The damping coefficient for the high fre-
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quency limitw = 100 is under the static values for the whole range of loading ratio H/H, = 0-1.0
for e/ro = 10 case. The damping ratio of the dynamic high frequency case is about 0.25 times
of the low frequency one at a load ratio of about H/H,L = 0.35 for an embedment ratio of
e/ro = 50. The normalized Cdy,h values are closer at zero load and near collapse where both
stithiesses approach zero. For the higher embedment ratio e/ro = 20, the dashpot coefficient
related to the high frequency limit starts just under its static value and decreases up to the load
ratio of about H/HU = 0.85 thereafter it increases and attains a peak value of about 0.09 times
at the zero load level.

Figs.4.123 to 4.128 compares the influence of the load ratio on the low and high frequency limits
of the pile-soil's rocking vibration. Generally the observed rocking damping coefficient for the
high frequency limit is far higher than that for the static case. At the zero load level, the static
damping coefficient is an order of magnitude less than that of the high frequency limit. The
damping ratio decreases very rapidly close to the collapse load level. The observed behaviour
may be partly associated with the overall stiffness decrease. The physical explanation is that at
higher load levels the soil yields and hence the radiation damping becomes less effective due to
a kind of created imaginary bounding in the near field of the soil. In a real pile-soil loading also
this can be observed due to creation of the gaps and hence discontinuity in the soil surrounding
the pile which results in partial cut-off of radiation damping (see for e.g. El.Naggar and Novak,
(1995)).

The observed gradient of the damping curve in Fig. 4.126 , of the dynamic high frequency cor-
responding to an embedded pile with e/ro = 20 is higher. For the deepest foundation with
e/ro = 50, the slope of the low-frequency curve is quite slow with no fluctuations around it.The
damping for the high-frequency limit starts from about 0.8 and decreases rapidly towards zero
near the collapse load.

The potential damage of equivalent simplified pile-soil systems are investigated through ductility
demand analyses. The corresponding spectra are plotted in Figs.4.129 through 4.132. It is
shown that the ductility demand ratio p which is defined as the ratio between the maximum
displacement at the pile head and the first yield of the pile-soil system generally decreases with
the increase of the pile-soil's effective natural period Te11 which is defined as:

M
Teji = 2ir f(KT(u)) = CXe11Kps

where M8 is the total mass of the pile-soil system and K(u) is the tangent stiffness of the
pile-soil system which is equal to the real part of the dynamic stiffness S(ao) as defined above,

may be suggested as 0.001 - 0.01 for relatively soft to very stiff soils.

As seen in the plotted spectra, the ductility ratio of pile-soil increases with the increase of
the overload ratio F,, which is defined as the ratio of the maximum dynamic acceleration to a
reference acceleration which corresponds to the restoring force capacity of the system as:

F
ag,ref

(4.250)

(4.251)
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where is the maximum ground acceleration, and g,ref is defined as:

Frx
a9,71 = MPS

(4.252)

where Fr,maz is the maximum restoring force(static capacity) of the pile-soil system. This topic
is further discussed in the following Chapter.

The influence of pile's embedment ratio on the system's response is investigated through a fre-
quency ratio r = Weq/wp vs. a stiffness ratio parameter r5 = w8ro/c5 as plotted in Fig.4.133.

and r5 both characterize the interaction of the pile-soil system through an equivalent SDOF
frequency parameter of Weg and a pile frequency parameter w = ,/kp/mp where k and m
are the stiffness and mass of the pile itself. Other parameters involved are the pile embedment
parameter e, a reference embedment ratio e0,the pile radius r0 and the shear wave velocity c5.

It is observed that the frequency ratio r decreases exponentially by increasing the ratio r5
which can be interpreted as increasing the interaction between pile and soil as the soil becomes
relatively softer(i.e. for e.g when c8 decreases). Since the ,, parameter is at the numerator of
the r8 relationship, it can be concluded that increasing the pile's stiffness relative to the soil, will
also result in increased pile-soil interaction. Increasing the pile's embedment e increases the r
ratio which means that increasing the stiffness of the soil relative to the pile's stiffness and hence
reduces the pile-soil interaction. The influence becomes smaller for larger values of embedment
e, because for example in the case of a laterally loaded pile increase of pile length than d 10
practically has far less effect on increasing its stiffness and failure capacity.

The effect of mass variation on the pile-soil response is investigated by using simplified equivalent
SDOF and 3DOF systems which are shown in Fig.4.134. It is observed that increasing the mass
of the pile-soil system reduces the frequencyratio r which can be interpreted as increase of the
pile-soil interaction.

The influence of two other important soil parameters as shear stress ratio and poisson's ratio are
also studied here by means of the equivalent implified lumped models. The results are shown
in Figs.4.135 and 4.136. As observed, the effects of the shear strength is more pronounced than
that of the poisson ratio of the soil on the change of the pile-soil's equivalent response eigen-
frequency. As observed, by increasing the soil's shear stress r5 or decreasing s, the frequency
ratio r increases which means that the interaction effect is reduced. Also by increasing the soil's
poisson ratio ii from 0.0 towards 0.499 (i.e. a saturated type) the r slightly increases. Which
means that the effect of equivalent pile-soil interaction is somewhat higher for a compressible
soil than that of an incompressible, one.

4.13 Concluding remarks
A non-linear disk-cone model for the pile-soil systems is' established in this Chapter. The model
is an extension of Wolf's linear disk-cone model. The formulation of the non-linear and non-
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homogeneous cone model is introduced in an incremental form and solved analytically by using
a step-wise linearization approach. Several other solution procedures of non-linear cone model
are also disscussed.

It is shown that both radiation and material damping can be formulated into the disk-cone
model. The radiation damping is shown to be an inherent property of the disk-cone model. It
is illustrated that various material damping form can be formulated into the disk-cone model
of pile-soil system. Voigt's visco-elastic, linear hysteretic, frictional and non-linear hysteretic
damping are among those which are formulated and discussed within this Chapter.

It is shown that the Voigt's VE and linear hysteretic type damping can be conveniently con-
sidered in a disk-cone model formulation in frequency domain while non-linear hysteretic and
frictional types of damping are more relevant for time domain analysis of the pile-soil system.
It is also demonstrated that these damping can be easily implemented with simplified lumped
models of pile-soil system such as SDOF, 2DOF and 3DOF etc. It is shown that physically a
linear hysteretic type damping can be modelled as equivalent mass, spring and dashpot with
their properties dependent on the original model's properties.

It is also demonstrated that the disk-cone model can be applied for both layered and homoge-
neous soil. In this connection, both surface and embedded disks are modelled with corresponding
single and double cones. It is shown that various boundary conditions can be applied with the
disk-cone model of pile-soil. Refraction as well as reflection of the waves from the boundaries
are modelled.

It is illustrated that equivalent simplified lumped models can be quite efficiently applied for the
dynamic analysis of pile-soil systems. The capability of these models are demonstrated in an
extensive parametric study.

The disk-cone model of the pile-soil system is formulated both in frequency and time domains in
a simple and familiar matrix form. The principle of superposition is applied for the solution of
the pile-soil system in the frequency domain. The approach is illustrated for a rigid pile or elastic
pile in a linear elastic soil. The matrix solution of the non-linear pile-soil system is derived in
the time domain by applying a hysteretic type soil damping.

It is shown that the dynamic stiffness and damping properties of a single disk-cone depend signif-
icantly on the soil's non-linearities and non-homogenities as well. It is observed that the dynamic
spring and dashpot coefficients of the disk-cone can vary significantly with the frequency of the
vibration. It is shown that the dynamic stiffness of a disk-cone system can be negative (l8Odeg)
out of phase with the input excitation force.

-

The predictive ability of the disk-cone model are demonstrated in analyzing several examples
of large diameter pile under for e.g. seismic ground excitation, simple impulse and harmonic
loading at the pile head. Several comparisons of the disk-cone model predictions with those
of other models such as API RP2A 1993 and also refined methods such as boundary element
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method are performed. Satisfactory cOrrelations are obtained for the studied cases. It is also
shown that the accuracy of the predictions depends on the mesh size or number of disks never-
theless with modelling the pile-soil with only 5-7 disks still quite satisfactory results are obtained.

Some interesting results are obtained by using simplified equivalent pile-soil models such as the
effects of loading rate and frequency of excitation on the dynamic stiffness and damping prop-
erties of the pile-soil systems, the influence of the embedment ratio and other important factors
on the dynamic pile-soil interaction etc.
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CHAPTER 5

NONLINEAR DYNAMIC ANALYSIS
OF JACKET-PILE-SOIL SYSTEM AT

THE ULTIMATE COLLAPSE

5.1 Introduction
The dynamic performance of jacket type fixed offshore platforms has been an important topic
concerning the recent developments in the field of offshore structures. Until recent years, the
general belief was that the behaviour of jacket type structures under environmental loading may
be assumed to be quasi-static and hence the ultimate collapse response of jacket platforms were
mainly analyzed by using conventional static pushover method as described in Chapter.3. As a
consequence the tools which were developed for ultimate and progressive limit state designs did
not include any dynamic(inertia) effects. The issue of nonlinear dynamic assessment of jacket
platforms was highlighted after recent events such as hurricanes in the Gulf of Mexico and severe
winter storms of extreme intensity in North sea area. On the aftermath of such extreme sea
storms, the following questions were raised:

Why do the jacket platforms with different structural characteristics behave so differently
under extreme sea waves and earthquakes?

How does a jacket platform behave under various loading time histories with the same inten-
sity?

Whether a jacket platform designed for a static loading can sustain (pass safely through) a
dynamic loading with a larger intensity?

223
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4) What is the effect of pile-soil interaction on the overall dynamic performance of the structure?

Several recent studies(Bea and Young, 1993, Eberg et al, 1993, Emami et a!, 1995 and 1996 and
Fajfar et a!, 1993, Moan et al, 1997 and Schmucker and Cornell, 1994 and 1996 and Stewart
et al, 1993 and 1995) have addressed some of these issues. The current chapter will provide an
overview of these recent findings and mainly focus on the work done by the author.

To get an insight into the non-linear dynamic behaviour of jacket platforms a ductility demand
approach is developed based on the analyses of simplified systems such as SDOF, plane frames
and also more complex MDOF systems.

The global ductility ratio of (structure-foundation)system is defined as the ratio between the
maximum sustainable displacement (regarding the global stability of the structure) and the first
global yield displacement of the platform at the deck level(see Fig.5. 1). The dynamic overload
(overcapacity) ratio is defined as the ratio between the maximum (ultimate) dynamic load and
the ultimate static resistance of the structure(see Fig.5.2).

Since the near failure non-linear dynamic behaviour of the platform is influenced by changes
in both its structural characteristics and also the dynamic loading effects, therefore a ductil-
ity spectrum method is developed to relate the natural period as a key measure of structural
and foundation's stiffness and mass characteristics to the ductility ratio as an indicator of the
overall maximum displacement response of the system and the dynamic overload ratio. These
three parameters will be referred to hereafter as the main parameters in ductility spectra analysis.

Hence, the main focus of the ductility spectra analyses in this chapter will be on these three
key parameters. However, the effects of other important parameters such as in-elastic hysteretic
behaviour, post-peak degradation, equivalent viscous damping ratio, soil's shear modulus (stiff-
ness), duration and the shape of the loading history, frequency content and randomness will also
be among the topics which will be discussed in this chapter.

The ductility spectra can be applied either:

to predict the maximum dynamic overload ratio(ultimate dynamic capacity) of a given plat-
form system

or to estimate the required maximum overall ductility(potential damage) for a given platform
for an extreme loading history

or to obtain a design natural period of the system to answer for the given limits of both
ductility(maximum damage) and overload ratio

The ductility spectra method may provide a valuable tool for the global assessment of the
jacket-pile-soil systems at the limit state of collapse. A procedure is established in this chapter
for ductility demand analysis which involves following key steps:
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Figure 5.1: A schematic illustration of ductil-
ity characteristics of a SDOF system
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Figure 5.2: A schematic illustration of dy-
namic overload ratio

a static pushover analysis as described in Chapter.3 to determine the ultimate and residual
static resistance (factors) of the platform and its first global yield displacement which may be
assumed as the first major yield or buckling event in the structure which results in a considerable
change in its (lateral) stiffness (see Fig.5.1)

a series of iterative-incremental dynamic analyses to obtain the ultimate dynamic collapse load
and the maximum displacement associated with that

finding the ductility ratio and the overload ratios for each studied system

varying the stiffness or mass parameters of the SDOF or MDOF system and hence its natural
period and obtaining the related overload and ductility ratios

The overload factor of a jacket system can be predicted by using either the established ductility
spectra as described above or the relationships obtained based on analyses of simplified systems.

Hence, the methodology in this chapter involves using simplified approaches for e.g. based on
SDOF systems to predict the overall ductility response of the more complex MDOF systems and
utilizing the results of MDOF system analyses to validate the relationships established based
on simplified models. Although the simplified relationships may not be able to precisely predict
the dynamic performance characteristics Qf a more complex system due to their lack of account
for the local member failure (such as plastic hinge, buckling) and interaction between various
components, load distribution, p-S effects etc, nevertheless, they could provide efficient tools for
first order prediction(screening) of the overall dynamic response parameters of a more complex
jacket-pile-soil system. Based on such initial predictions of the dynamic strength or ductility
demand of the equivalent simplified model of a jacket-pile-soil system, the designer then can
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Figure 5.3: A SDOF idealization of overall Figure 5.4: Tangent stiffness definition of a
jacket-pile-soil motion general restoring force system

decide whether or not to perform more refined MDOF analyses of system.

Within the context of this study, we shall also investigate the non-linear dynamic interaction
between the jacket and the pile-soil system at the ultimate limit state of collapse and its effects
on the overall ductility demand of the jacket platform.

5.2 Ductility demand analysis of simplified structural mod-
els

5.2.1 General
A simple non-linear single-degree-of-freedom (SDOF) system might be used initially to only
indicate the overall dynamic behaviour of the jacket platform. The motion of SDOF system
might only represent for example the jacket's lateral load-displacement response at the deck
level(see Fig.5.3). The mass, spring and dashpot in this simple system can be used to represent
the total mass, the overall lateral stiffness and the damping properties of the real jacket system.
In the case of a non-linear SDOF system as is used in this chapter, the inherent in-elastic
hysteretic damping in the non-linear spring's response is mainly considered. However, in some
cases the equivalent viscous damping is also applied to account for other sources of damping in
the system such as hydrodynamic, proportional structural and soil damping.

The tangent stiffness assigned to the SDOF system is a well known Bouc type hysteretic model
which is described in Chapter.4. By varying the parameters of Bouc's model in special cases,
elastic-perfectly-plastic and bi-linear models can also be represented. The fundamental natural
period of the (equivalent) SDOF system is defined as T = 2ir/7 where k is the initial
stiffness of the system.
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To establish the desired ductility relationships from analyses of SDOF systems, the amplitude of
applied load history is scaled up successively to illustrate various overload ratios ( Fr). The mass
of the SDOF system is also varied to simulate various levels of natural period ranging from about
0.5 to 5.Osecs. The maximum displacement is determined after each analysis corresponding to
a certain overload ratio and the mass(natural period). The corresponding first global yield
displacement of the system can be obtained from an idealized form of the Bouc's stiffness model
as shown in Fig.5.4. The displacement corresponding to the first yield point is assumed as the
basis of the ductility calculations.
The spectra results for various loading histories are given in a following subsection.

5.2.2 Theory background
The dynamic equilibrium equation for a SDOF system can be expressed as follows:

Fj(t)+Fr(t)+Fd(t)Fe(t) (5.1)

in which F2 (t) =the inertia force, Fr (t) = the spring restoring force, Fd(t) = the damping force
and Fe(t) = the excitation(external) force.

It is evident from Eq.5.1 that the ultimate dynamic capacity of a system can be greater than its
maximum static resistance due to the contribution of the inertial F1 (t) and the damping forces
Fd (t). A dynamic overload ratio F can be defined as follows:

F = Fe,max /Fr,maz (5.2)

in which Fe,nw.x is the maximum dynamic excitation force and is the ultimate restoring
force(or static capacity) of the system which may be determined from a pushover analysis. The
global load factor corresponding to the first yield of the system may be expressed as:

RFY = F,1/F1oo (5.3)

in which F100 corresponds to the 100-year wave load and refers to the first global yield load.
The static strength of the system is also conveniently expressed by the ratio RSU as:

RSU = Fr,max/Figo (5.4)

The residual resistance factor of the system may be expressed as follows:

RRES = Fr,7e8/Fioo (5.5)

in which Fr,re8 denotes the residual resistance of the system. Similarly dynamic ultimate strength
factor RDU may be defined as:

RDU F;/Fi00 (5.6)

Combining Eqs.5.2, 5.4 and 5.6, the overload ratio may be re-written as:

F = RDU/RSU (5.7)
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The associated ductility ratio p of a non-linear system may be defined as follows:

/2 = U,n,x/QLfy (5.8)

in which u,, is the maximum (sustainable) displacement of the system and u1, is the dis-
placement corresponding to the first global yield of the system (Fig.5.1). From the non-linear
dynamic point of view, a system's overload factor would depend upon two counteracting effects,
a beneficial inertia resistance and detrimental dynamic amplification.

For a non-degrading elastic-perfectly-plastic system which possesses sufficiently large ductility
(i.e p >> 1.0) then the system can in principle accelerate to resist the overload factors up to
infinity.

On the other hand, if the period of the excitation force matches the natural period of the system,
the response will be dynamically amplified. For a brittle system(p = 1), the dynamic amplifi-
cation effect may reduce the overload factor F,,. The effects of post-peak degradation may also
be considered to further reduce F,, (see e.g. Schmucker, 1996, Moan et al, 1997). These issues
are discussed further subsequently.

For a non-linear and hysteretic Bouc's type SDOF system, Eq.5.1 may be re-written as follows:

mu + Fh(u,ü) + F(u) = Fe(t) (5.9)

in which Fh(u, 1i) = a hysteretic function of displacement and velocity responses of SDOF system
and F(u) = a non-linear function of the displacement response as given by Bouc, (1968). Double
integrating Eq.5.9 with respect to time, we may obtain the following:

mu - mu0 = jf [F(t) Fh(u,ü) - F(u)]dtdr (5.10)

where indices max and 0 indicate the maximum and the initial values of the displacement
response, respectively. Hereafter, we will drop subindex max and refer to p as simply p. By
knowing the initial conditions for example u0 = 0 then the maximum displacement response and
hence the ductility ratio p of the non-linear and hysteretic SDOF system can be obtained as
follows:

i f [.e(t) - - (1 - + ____(e_1L0) - 1))] dtdr (5.11)
Uy Uyb

where all other parameters involved on the R-H-S of Eq.5.11 are as defined above and in Sec.4.8.1.
DAF represents the dynamic amplification factor(displacement magnification factor) as:

DAF Udy,nm

Ust,max

where Ud,,,,,x and denote the peak static and dynamic displacements, respectively. It is
seen that, the ductility ratio might be obtained as a function of both the loading history and the
response history. Thus the latter requires a numerical (time domain) integration of the response

(5.12)
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first by using for e.g. the predictor-corrector technique based on Newmark's family of methods.
The overload ratio in general may be expressed as follows:

F,, = f(p, T, T, 'Z-eB, k) (5.13)

where T, ares and k denote the wave period, the residual ratio and the tangent stiffness
parameter of the SDOF system. c = Fr,reS/Fr,X is defined as the ratio of the residual to
ultimate static capacity of the system. Based upon the time integration of Eq.5.11 and those of
3DOF systems the following simple relationship may be suggested:

1 cxres.Tre1.Tn 16TF,,= 1+( )1og,,,p.( )zI 2

DAF (5.14)

in which Tff represents the effective natural period of the system which may be expressed as a
function of the tangent stiffness of the system as:

T11 = 2ir/j- (5.16)
V neff

which indicates that the effective natural period of an elastic-perfectly-plastic SDOF system will
approach infinity at the collapse when the effective (dynamic) stiffness value becomes nearly
zero. This implication is physically sound since at the ultimate collapse, the system can not
oscillate back to its dynamic equilibrium state(i.e. the time needed to structure to shake down
is infinity). Fr,res and on R-H-S of Eq.5.15 represent the residual and the maximum
restoring (static) strengths, respectively.

The ratio (T) represents the variability of the p with the natural period of system T and
also with the extreme wave period T. The base of the logarithmic function is set as p which
is considered to be about 10 for practical purposes. A damage level of p,> 10 is considered
to represent an ultimate collapse of the structure in practice.

The associated function with the period variability is considered to be exponential which decays
as seen on the spectra with increase of T towards values greater than 3 - 5.0 secs. Trei may
be defined as a reference period for e.g. .lsec. The exponent term of Tn/(Tre1Tw) function is
/9/2 = 1/2(1 !2n_) which is a function of the residual strength ratio, the natural period and
the effective period of the oscillatory system. The physical importance of this is that the effect
of natural period is associated with the system's non-linear response and thus with its stiffness
and strength degradation, unlike linear SDOF assumptions made by Schmucker, (1996).

5.2.3 Discussion on physical aspect of T/TW effect on ,u
The effects of wave period duration are considered to be important on the damage inflicted on
the structural system. Based on physics of SDOF system, it can be judged that the maximum

T Trei.Tw j

/3 is an indicator of the collapse behaviour of the jacket system which is defined as:

Fr,res
/9 - (5.15)

Fr,max Teii
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Figure 5.6: Extreme wave ductility spectra
Figure 5.5: Ductility spectra for a simulated for a simulated wave(H8 = 12.75m and T =
extreme wave(H3 = 15.0 m, T = 15.8 sec) 12.5s)

displacement response of the system might increase as the wave period increases, because as the
system accelerates during an extreme wave event beyond its static capacity limit to compensate
for the dynamic overload, the time to reach to the maximum velocity and then return to the
zero velocity(momentum) will strongly depend on the input force duration. If the input load is
reduced (quickly) within a shorter duration period then the system would less likely to accelerate
further and hence increase the displacement further beyond what statically is expected.

The amount of the effective overload will depend on the wave duration (period) and also the
shape of the wave. If the wave shape allows to have a quicker unloading or deceleration to
take place after the passage of crest then the time to reach to the zero velocity is shortened
and hence the damage will be less on the system and it will likely survive the extreme wave.
Schmucker, (1996) found that the waves of smoother shapes such as squared sinusoidal shape
may be more damaging than the triangular shape waves. He in particular considered a dura-
tion period related to the crest passage of the wave and investigated these two type shape effects.

It can be argued that for asymmetric wave loading histories on the platforms which occur near the
collapse when the wave height reaches upper parts of the jacket (for e.g. cellar deck or possibly
main deck), the shape effects might play an important role. It might be expected that for such
waves near collapse the wave becomes sharper which might lessen to some extent (slightly) the
damaging effect of the wave compared to a squared or smoother shape but the exceeded forced
which has to be balanced off in decelerative phase of response with the reduction of the wave
load would possibly take place rather over longer time due to smaller and wider (flatter) part of
the trough of the wave load. Sometimes, it might not be possible to balance off the input energy
(force) during this trough period and the structure then encounters a new large wave before the
velocity has really reached zero(i.e the displacement still increases at this point). The result
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will likely be an incrementally increasing displacement response which in most cases causes the
ultimate dynamic collapse of the system.

5.2.4 Discussion about selection of the /3 parameter
It is evident that if the system ideally could maintain its static ultimate collapse(peak) capacity
up to very large displacements, then /3 will be simplified as:

(5.17)
Te11

For a practical case, 0 < T < Teff which means that 0 < /3 < 1. It has to be noted that in
Eq.5.14, we assumed that Te1 is an effective dynamic period near collapse which is neither the
same as the natural period of a static system at that point nor is equal to the initial natural
period. By this definition Teff carries a notion of both inertia and the tangent stiffness.

The implication of the above relationship is that for a brittle system with (/3 = 1), no effective
gain from positive inertia resistance can be expected. By definition, Teii becomes equal to
infinity at the collapse of a completely brittle system. For a dynamic system with a generous
allowance of ductility as EPP, then of course, we may be allowed to include the observed beneficial
inertia effects in Tff taken to be as:

Tel! = 2ir/-- (5.18)

where may be taken in the range of for e.g 0.1 - 0.001, with the lower and upper bounds
corresponding to the very highly inertia effective and very low mass dominated systems, re-
spectively. In analogy to the dynamic stiffness of pile-soil system, we may obtain the following
general relationship for Te11(see Appendix.E):

Teii = 2)) (5.19)

where S(w) = K11 + iwC.

5.2.5 Other simplified SDOF based F vs. p relationships
If we replace T1 with T in Eq.5.15 and neglect the other effects such as the effects of natu-
ral period, wave period, shape factor, the following simplified relationship emerges which was
obtained by Emami et a!, (1995) for semi-ductile fixed type frames with T = 0.5sec:

F = (5.20)

This relationship might be physically justified, since for an EPP-SDOF system which can main-
tain its ultimate(peak) capacity almost indefinitely, the ductility would allow the system to
override any small linear dynamic effect, if exists in the system.
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In comparison, for a ductile system with a maximum admissible ductility level for example for

Figure 5.7: Extreme wave ductility spectra for Figure 5.8: Ductility spectra for severe earth-
variation of viscous damping quake(El Centro, 1940)

In other words, the gain in terms of the positive non-linear inertia effect overrides the detrimen-
tal effect of dynamic amplification effect if included in Eq.5.20 as F = 1/DAF./z.

It can be seen from eq.5.20 that for an ideally ductile system the overload ratio can be infinitely
large. On the contrary, for a very brittle system no real positive inertia contribution can be
utilized and the system will be susceptible to detrimental dynamic effects even before reaching
to its ultimate static capacity level. Therefore, the linear DAF effect has to be certainly present
in the F - p relationship which is the case in Eq.5.14.

For a very brittle system (i.e. = 0 hence; /3 = 1) with a ductility ratio very close to unity
then from Eq.5.14 the dynamic overload-ductility relationship can be derived as follows:

F = (5.21)

This may indicate that for a brittle Jacket system with a natural period of much less than that
of wave period, if the linear dynamic effects are neglected (i.e. DAF = 1) then the maximum
dynamic overload ratio will be equal to unity. In general, for a very brittle system, the maximum
dynamic capacity may be less than or equal to its peak static capacity).

For a semi-ductile jacket platform, the residual capacity can not be neglected as for a very brittle
system(i.e. 0 < Fy58 < Fr,nw.x or 0 </3 < 1). In terms of ductility classification, a semi-ductile
system can be defined as a system with a ductility ratio (1 <a << oc). However, in engineering
practice, a structure may be considered as semi-ductile with a 0.7 < a83 < 0.9. For a semi-
ductile system, the average overload ratio may be obtained to be in the range of 1.02 - 1.1 for
typical extreme sea waves with for example T,L, = 12 - 20 sees for North-sea.
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a jacket type frame system as p 5 - 10, the dynamic overload ratio may be in the range of
F,, = 1.1 - 1.2, for typical extreme (sea) wave periods. It may be noteworthy that the max-
imum admissible p may be required in practice with respect to the damage inflicted to the
non-structural elements caused by very large deformation of the jacket, even if the global in-
stability of the structure does not occur. Also other local restraints such as member fracture
and joint flexibility limits may not allow the structure to sustain larger deformations such as
Ures = /.L.Ufy (5 - 10)uf.

Stewart et al, (1988) has suggested the overload ratios in the range of 1.0-1.07 for a semi-ductile
structure and overload ratio F,. 1.2 for ductile structures. For seismic waves, however, larger
F,, might be expected than those suggested here for the extreme sea waves due to typically
smaller T values. For severe earthquakes, T typically is less than 1-2 secs and hence according
to Eq.5. 14, F,, can be even larger than 2.0 for fixed type frame structures as jackets. The latter
suggestion is also confirmed with the findings of Bea and Young, (1993) and Fajfar et al, (1993).

The following overload vs. ductility ratio relationship is obtained by Bea and Young, (1993)
based on analyses of ND EP SDOF systems:

F,, = /2p - 1 (5.22)

The above relationship is suggested for a natural period of structure about 1.Osec and damping
ratio of about 5%. Bea and Young, (1993) also suggested another relationship for an elasto-
plastic SDOF system with post-peak strength degradation and for natural period range of 2.Osec
and damping ratio of about 5% as:

F,, = ares.p (5.23)

It has to be noted that these two relationships have been suggested for seismic analysis re-
sults(Bea and Young, 1993). The comparisons made here show that the latter two relationships
might somewhat underestimate the overload ratio for ductility ratios closer to unity while they
tend to overestimate the overload ratio for far larger ductility values than 1.0 for extreme wave
loading. However, for quite moderate ductility ratios (1 <p < 2), the latter two relationships
might provide rather reasonable estimates of F,, even for extreme wave loading(see Bea and
Young, 1993). For a very brittle system(i.e. a = 0), Eq.5.23 gives a F,, = 0 which is fài lower
estimate. On the other hand, for a completely ductile system (i.e ares 1.0), Eq.5.23 of Bea
offers a proportional F,, versus p. It may be argued that the resulting overload ratio of 5-10 may
not be attained for jacket systems under extreme wave loading even with a ductility ratio as
high as 5-10(see also Steawrt, 1995). It seems that Eqs.5.22 provides better results under severe
earthquake loading(Bea and Young, 1993). Hence, using these relationships to compare the
results from MDOF analysis of jacket system under extreme waves with much larger duration
period than earthquake loading seems less relevant.
Schmucker, (1996) obtained an ovetload-ductility ratio relationship based on analysis of an
idealized bi-linear type elasto-plastic SDOF system as follows:

F,,
DAF

+ a [--()2(p - 1)] (5.24)

in which T and td denote the fundamental natural period of the structure and the crest du-
ration(about half cycle period) of the sea wave, respectively. The coefficients "a" and "b" in



CHAPTER 5. NONLINEAR DYNAMIC ANALYSIS OF JACKET-PILE-SOIL SYSTEM AT THE
234 ULTIMATE COLLAPSE

Ufy Umax Uma
0.2 0.4 0.6

kW
0.8

Figure 5.9: A schematic illustration of (bi-
linear) elastic-perfectly-plastic and post-peak Figure 5.10: Variation of coefficients "a" in
degrading SDOF systems Eq.5.24 with k/k

Eq.5.24 depend on the load history "shape" and the structural natural period. Schmucker,
(1996) has suggested that for squared-sinusoidal shape waves (similar to the shape of sea wave
force) the coefficient "a" may be taken as 2.2 and the exponent term "b" as 0.5.

These suggested values are obtained for a bi-linear elasto-plastic SDOF system as shown in
Fig.5.9 in which ks/k, -+ 0. Although Eq.5.24 has been proposed for EP-SDOF systems, nonethe-
less, it is basically derived based on linear dynamics assumption(i.e the restoring force is assumed
to vary linearly with displacement response of SDOF system) Eq.5.24 of Schmucker indicates
that the natural period of the system is taken as constant throughout the elasto-plastic response
of SDOF system.

This may contradict the underlying assumptions for determining the coefficients "a" and "b"
(see also Schmucker, 1996). Obviously this is not the case for a (gradually yielding) elasto-plastic
SDOF system. For such a system the effective natural period of system may increase with the
decrease of the system's tangent stiffness according to Eq.5.18.

5.2.6 Discussion on bi-linear SDOF based F,L - p relationship
If T is replaced in Eq.5.24 with Teff from Eq.5.16, then the following modified relationship is
obtained:

F = + a [()()2(/L 1)] (5.25)

The latter implies that for an EPP-SDOF system, regardless of its fundamental natural period
at the collapse the overload ratio will approach infinity. However, this might only be correct
for EPP-SDOF system with sufficient ductility (i.e. p >> 1.0). The last term in the latter
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expression indicates that this iafinity overload is possible for any p > 1.0. This is obviously not
correct. We seek to find out why this effective natural period seemingly does not fit into the
Eq.5.25 (i.e. what is the physical or mathematical reason behind this paradox?)

Based on Schmucker, (1996) own derivations for a bi-linear EP-SDOF system, it is possible to
find the link as follows. We therefore here quote the three Equations obtained by Schmucker,
(1996). For a quasi-static response of a bi-linear SDOF system as shown in Fig.5.9, the following
can be written:

Urp.az,qs = Uy +

Eq.5.26 can be re-written as follows:

kF= l+(-)(pl) (5.27)

The argument in the parentheses on the R-H-S of Eq.5.27 is given(Schmucker, 1996) as follows:

Ybi
1(T)2(

- 1) (5.28)

where j denotes a normalized loading history quantity which is defined by Schmucker, (1996)
as follows:

Ybi =
Fr,mazt

- Ur,mz)
(5.29)

,j can be considered as equivalent term to p, though as seen these two are mathematically quite
different. The latter expression can be related to the loading history in a quasi-static manner
(see for e.g Schmucker and Cornell, (1994)). By combining Eqs.5.27 to 5.29, Schmucker, (1996)
has obtained the following:

= 1 + 4ir2()2()&j (5.30)

By comparing Eqs.5.30 and 5.24, Schmucker, (1996) has obtained the coefficient a as follows:

a 41r2()2() (5.31)

Now by combining the Eqs.5.25 and 5.31, we obtain:

F DAF
+ [42-2)1 1b

(p - 1)b
,, kj (5.32)

Taking the limit of F at the collapse point will yield:

Fr,max - Ff
k

(5.26)

which for a quasi-static case without linear dyna.mk effects (i.e. DAF = 1) results in unity.
This is certainly correct for only a quasi-static response of an EPP-SDOF system which means
that it excludes the extra resistance gained by activation of the inertia forces. To include inertia

DAF (5.33)
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terms into the above relationships of Schmucker, (1996) for Q-static response, it can be suggested
that the following form could be used:

Fe,rr&ar = F + IXFy,mox + Fa,2 + Fi,,nax (5.34)

where Fe, = the maximum excitation dynamic force, F, = the corresponding first yield force,
Fy,maz = Fr,maz - F = the reserve strength of the SDOF system beyond the first yield(for a

bi-linear system), =the damping force and = the maximum inertia force activated
after first yield. If one assumes simpiy that the overload is related to the maximum displacement
hence the damping force may be neglected since at u = Uwax the velocity response of SDOF
system i = 0.

It may be appropriate to take the Fd as nonzero at the time of the peak dynamic load.
at the peak load will have nonzero value in general and it can be negative if there is any phase
between the acceleration response and the input excitation force. However, we are interested in
positive effect of inertia at this point.

The bi-linear relationship given by Schmucker, (1994) can be modified as follows:

F= DAF+aL4
1 Ii k T2 b

(5.35)

where k11 may be taken for a gradually yielding system as kff = f(kt). Simple forms of this
could be a secant stiffness:

keji = ksec =
U,rp.ax

(5.36)

or as a weighted function of the initial and tangent stiffness near collapse (for e.g with /c =
(0.1 - 0.01)k3).

5.2.7 Comparison of SDOF based relationships by means of numer-
ical examples

A numerical comparison based on F - p relationships described above may allow us to judge
their predictive abilities for the real jacket cases which will be considered subsequently. We
consider primarily the relationship that we presented in the above section for e.g for a typical
natural period range of jacket T = 1 5sec and both with and without DAF effects, and ductile
as well as brittle type of response. Then we also compare the results with the typical predictions
of the other relationships as given for e.g by Bea and Young, (1993), Schmucker, (1996) and
Stewart et al, (1988).

At this stage no comparisons are made with the plane frame and MDOF Jacket analyses. The
aim is to see whether the results of these simple formulations for the typical range of parameters
relevant for a jacket platform can be justified. The results for instance given in Appendix.E
indicate that Eq.5.14 yields very reasonable results for the given range of parameters of interest.
The upper and lower limits of F, are also in close agreement with the range suggested by Stewart
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Figure 5.11: A schematic illustration of post- Figure 5.12: An illustration of stiffness degra-
peak behaviour of SDOF systems dation of a SDOF system

et al, (1988). We usually obtain overload ratios of about 0.9 to 1.3 for very brittle to quite duc-
tile systems, respectively. The DAF is also applied to representative the jacket's superimposed
resonance response under for e.g extreme waves or earthquakes.

The results obtained based on Schmucker's formula seems to be quite reasonable at least for the
range of parameters investigated here. Nevertheless, if we apply Eq.5.31 for coefficient "a" in
Eq.5.24 of Schmucker instead of his suggested 2.2 value, then it may significantly overestimate
F. Coefficient "a" in fact as plotted in Fig.5.10 increases exponentially with increase of k/k1.
The value of "a" is mathematically zero for k/k 0 which results then in F = 1/DAF (or 1.0
for the case of DAF = 1). We also obtained the same result through modified relationship given
in Eq.5.35, which we referred to as a paradox. Thus we and Schmucker,(1996) have reached in
principle the same conclusion that the value of "a" can not be taken neither at initial intact case
nor at the ultimate collapse where k = 0. Hence effective values of a or Teff have to be used.
The sort of paradox mentioned above and the need for such large scale calibration of coefficient
"a" can be avoided by using a non-linear SDOF based relationships that we presented above.

The SDOF based F - t initial relationships obtained by Bea and Young, (1993) and Emami
et al, (1995) are considered to overestimate largely the overload ratio if the apparent ductility
ratio is used as so far defined. If the underlying assumptiOns of these simple relationships are
examined carefully, it can be easily understood that these relationships are obtained based on
non-degrading elastic-perfectly-plastic assumption for SDOF systems. However, in most realistic
cases, EPP assumption may not hold true, hence the associated relationships with it tend to
overpredict the dynamic capacity of the corresponding jacket-pile-soil system.

If we bear in mind this fact, then the use of apparent ductility may not be permissible for all the
cases. Therefore, we define an effective ductility ratio here which can be related to the apparent
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Figure 5.13: Seismic ductility spectra for vari-
ation of soil's shear modulus G(E1 Centro, Figure 5.14: Seismic ductility spectra for van-
1940) ation of yield stress fy(El Centro, 1940)

ductility ratio and the residual strength ratio of the system in a simple manner as follows:

/.Lef/ (5.37)

The three systems shown in Fig.5.11 have different effective ductility ratios. For system(a) which
behaves absolutely brittle the and the residual strength drops to zero just after the peak capacity
of the system is reached, both apparent and effective ductility ratios are zero by definition.
For the system (b) which apparently possesses some ducti]ity (i.e the maximum displacement
is apparently larger than that of the first yield) but with sharp reduction in the system's load
carrying capacity to a smaller level than that of the peak ultimate capacity the effective ductility
is smaller than that of the apparent duCtility(ILeff/p 1.0). For the system (c) the effective
ductility ratio is the same as the observed(apparent) ductility ratio = ji). Now it is quite
clear that the use of apparent ductility ratio must only be limited to the structures behaving
like SDOF system (c).

5.2.8 The results of ductility analyses of simplified systems
The results of dynamic analyses of non-linear SDOF systems described above are presented in
this subsection in the form of ductility spectra. As mentioned in the introduction, the concept of
ductility spectrum is used here which enables us to relate several key parameters associated with
the structural characteristics, response and the dynamic load history and the spring (stiffness).

For the ultimate collapse response, the best indicator of the damage can be the peak displace-
ment(or its normalized form ductility ratio). For the extreme dynamic loading, the overload
ratio may be used as an indicator of the loading intensity. Therefore, the main three parameters
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Figure 5.15: Seismic ductility spectra for vari-
ation of band-width parameter a1 Cen- Figure 5.16: Seismic ductility spectra (Santa
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of ductility spectra are taken as the natural period of the system T, the ductility demand ratio
p and the overload ratio Ft,.

Of course, a dynamic system will in general have damping which reduces the damage to the os-
cillatory system. Equivalent viscous as well as in-elastic (hysteretic) damping are studied here.
Both damping forms are considered in the ductility spectra analyses.

Concerning the dynamic loading history, other important parameters such as wave period T for
example corresponding to the 100 year return period for the sea waves, the dominant ground
shaking period for the seismic loading and the duration period of the loading history will also
be studied in this section. The effect of randomness(periodicity) of loading history have been
studied for e.g by Bea and Young, (1993).

Ductility spectra for different wave and earthquake conditions are given in Figs.5.5 to 5.19.
The reference values for G, f and a1 parameters are chosen to be 42MPa, 35OMPa and 0.1,
respectively.

It is seen that in the established spectra, the ductility demand ratio (p) of system generally
decreases by increasing its natural period. There are some peaks and valleys(humps) associated
with the most of the spectra, which are especially in the range of T 2.0 3.Osecs. They might
be due to the resonance effects related to the multiples of the primary force harmonics(Morison,
1992). Meanwhile, for large overload ratios F,, > 1.0 - 1.1, the dynamic amplification effects
might have been dominated by the dynamic overload related to the positive inertia effects.

The general trend as shown by the fitted curves in Figs.5.5 through 5.20 is the increase of (p) by
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Figure 5.17: Seismic ductility spec- Figure 5.18: Seismic ductility spec-
tra(Woodfords, 1995) tra(Parkfield, 1994)

decreasing T towards 0.5sec. As shown in the presented ductility spectra, the relative maximum
displacement (ductility demand) of the system is highly dependent on the overload ratio (F)
for the range of T 2.0 - 3.Osecs.

The influence of the structural stiffness related parameters(of Bouc's model) such as the first
yield strength f and the hysteretic width parameter a1 as an indicator of the in-elastic energy
absorption in the system are illustrated in Figs.5.14 and 5.15.

The observation is that increasing f or a resulted in shifting the ductility spectra towards
smaller T values. The latter might be interpreted as the change of effective (natural) period
of the structure due to change in its stiffliess. This seems to be a beneficial effect in the sense
that the required ductility ratio is reduced. However, the peak ductility demand is not altered
very much in Figs.5.14 and 5.15. It may be expected that the variations to be larger for higher
overload ratios than 1.0. This is because for the overload ratio equal to unity there is not much
ductility demand except for the range of about T < 1.5sec.

It can be seen on the tails of spectra plotted in Figs.5.14 and 5.15, the required ductility is even
less than unity for higher natural periods for the given overload ratio of unity. This reduction
may be attributed to the combined inertia and damping effect in the system. The latter can
be mathematically proven by using one of the basic equations obtained based on EPP-SDOF
system. Let us consider an expanded form of Eq.5.10 as follows:

p = 1.0+
4ir2Jtm ft Fr,max(Fg, 1)_ Fd,hys(u,iL)dtd

t,.,m t,.,m Fr,max
(5.38)

in which Fd(u, u) represents a general form of the non-linear hysteretic damping force in the

as0.5 1 1.5 2 as
,lnnzT
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Figure 5.19: Seismic ductility spectra(Taft, Figure 5.20: Variation of ductility ratio p with
1952)

SDOF system. For F = 1, Eq.5.38 can be re-arranged as follows:

= - ft"
ft F,h8(u,

dtdT (5.39)
tr,maz tr,mai

If T is replaced with Te11 in Eq.5.39 , p will be nonzero but can be less than unity due to
existence of the the damping term.
The ductility spectra obtained by Bea and Young, (1993) for several extreme waves (hurricanes)
and earthquakes show similar results. Bea and Young,(1993) obtained the ductilityratio p up to
a natural period of about 5 secs for overload ratios of 1 and even higher for e.g. 2. Those results
show that for lower overload ratios in the range of 1.0-2.0 the tail of the required ductility can
be less than 1 0

If the linear damping such as equivalent viscous or linear hysteretic damping of soil are neglected
in Eq.5.39, then p will always be greater than or equal to unity. For e.g. Schmucker, (1996)
suggested that p - 1 must appear under square root which implies that p 1.0. It is easy
to show mathematically by using Schmucker's proposed relationship that p can be less than or
equal to unity for F = 1.0. If for instance, we convert Eq.5.24 of Schmucker, (1996), p can be
obtained versus F as follows:

F---1--- S

p=l+( L DAF)1/b4.2(±)
a T

It can be seen in Eq.5.40 that the limit of p becomes unity for F = 1.0 and DAF = 1.0.
But if DAF > 1.0 then p > 1.0 which is quite reasonable. For DAF < 1.0 case, the decay of
response occurs due to the presence of damping in the SDOF system (which is not considered
in Schmucker's original formulation) then it is evident from Eq.5.40 that for F = 1.0, we will
have: p < 1.0. This is because the second term on the R-H-S of Eq.5.40 in this case is negative.

(5.40)
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For an undamped SDOF system, will be unity if the resonance effects (DAF) could be ne-
glected. However, in the case of extreme sea waves, some resonance effects might be present
due to the odd and even multiples of the primary force components induced by the non-linear
drag term in the Morison's equation. (see for e.g Moe and Moan et a!, 1987 and Morison et a!,
1992). These effects may be superimposed on the non-linear dynamic ductility response of the
platform system (Bea and Young, 1993).

There could be other second order non-linearities added into the ductility demand of an ideal-
ized platform system induced by the combination of the sea surface fluctuation and the current
stretching or extrapolation into the instantaneous water surface (see for e.g Hahn et al, 1995).

For the earthquake type loading, however, the resonance effects may be attributed to the high
frequencies associated with the ground motions(e.g accelerations). In many cases the dominant
frequencies which are associated with the peaks in the power spectrum of the energy(note that
this is a different kind of spectrum on which the horizontal axis is taken as the frequency of
vibration) might be close to the fundamental natural period of the system and hence they might
induce some resonance in the ductility response. Such resonance may manifest itself in the form
of either higher major peaks associated with the maximum non-linear dynamic demand or in the
form of some secondary (smaller) peaks in the ductility spectra(see for e.g spectra in Figs.5.5 to
5.20).

The influence of soil's stiffness on the overall ductility demand of SDOF system is also inves-
tigated. The soil's shear modulus G is used as the main indicator of the soil's stiffness and
varied between 0.3 to 3.0 times an initially taken shear modulus G0 = 42MPa as reference. The
corresponding spectra are presented in Fig.5.13. It is observed that the peaks are reduced by
increasing the soil's shear modulus particularly in the range of T < 2.0 - 3.Osecs. These ef-
fects are comparable with those seen in Figs.5.14 and 5.15 for the structural stiffness parameters.

The influence of the equivalent viscous damping (with the assumption that it accounts for other
sources of damping such as Hydrodynarnic, soil and structural) is illustrated in Fig.5.7. It is
observed that generally increasing the equivalent damping ratio reduces the ductility demand.
The influence of the damping for shorter periods is much greater than that for larger periods.
The higher damping as seen damps out the peaks in the spectra. The reduction in terms of
the ductility peaks of spectra is a non-proportional with the damping ratio. Increasing damping
ratio from 0.01 to 0.05 has reduced the peak ductility demand by a factor of about 2.8 compared
to only 30% reduction of the peak demand for increase of damping from 0.05 to 0.10. It is
hence, expected that increase of more damping will have less significant effect on reducing the
maximum response of the system.

It may be worth noting that the effects of the in-elastic hysteretic damping for the response
of the system under extreme loading can be expected to be more significant than the viscous
damping. The latter can be investigated by comparing the maximum ductility demands for e.g
observed in Figs.5.14 and 5.15 with those peak values in Fig.5.7. It is seen that, the magnitude
of the maximum ductility demands for the in-elastic hysteretic damping is comparatively far
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lower than those obtained for a SDOF system with equivalent viscous damping for the same
overload factor(s).

It is also observed from Figs.5.5 through 5.20 that the ductility demands for extreme wave load-
ing are higher than those for seismic loading for the same overload ratios. The difference might
be due to the much longer duration of extreme waves than that of the earthquakes. The loading
duration effect may cause the system to reach its ultimate capacity sooner than it might have
been anticipated in a static loading.

It will be shown subsequently that the effects of such linear DAF effects are seemingly less pro-
nounced for more ductile jacket systems than those with brittle behaviour. It is observed from
Figs.5.5 through 5.20 that the ductility demands for extreme wave loading are higher than those
for seismic loading for the same overload ratiOs.

The variation of the ductility demand for different waves and earthquake records can be seen
on Figs.5.5 to 5.20. The highest peaks for a given overload ratio varies significantly for different
earthquake or wave loading time histories. For e.g. for a significant wave height of H8 = 12.75m
with a corresponding mean crossing period of about T = 12.5 secs, the maximum ductility
for an overload factor of unity is about one third of that for a significant wave height of about
H5 = 15m and a mean period T = 15.8secs.

This large difference may be attributed to the energy carried by each wave, as we know the energy
carried through one cycle of the. wave has a proportion with the square of the wave amplitude
and also the wave we talking here is an irregular wave simulated based on Jonswap's energy
spectrum which has non-linear proportionality in terms of generated wave height with the input
H3 and T, besides the energy carried in each cycle depends strongly on the duration(period) of
the wave cycle. Thus the outcome will be a nonproportional relationship between /2 and H8 and
T for the same structural system and overload ratio.

For the earthquake records studied here, significant variations are observed in terms of the duc-
tility demand ratio. For e.g for Santa Cruz earthquake with a peak ground acceleration of about
a9 = 1.2m/s2 and a duration period of about Td = 53.5sec the required ductility is about 50%
higher than that for the Taft record with peak ground acceleration of about = 0.83rn/s2
and duration period of about Td = 42.7sec. The variability of the ductility demand with the
periodicity of the earthquake is also studied by several authors (see for e.g Bea and Young, 1993,
Bazzuro and Cornell, 1988). Bea and Young, (1993) found that for the synthetic seismic records
the maximum ductility ratios are in average lower than those obtained for the recorded ones
with the same maximum acceleration and the frequency content. The observed difference is
attributed to the phasing(randomness) of the simulated earthquakes versus the recorded earth-
quakes.

However, for the extreme sea waves, it has been observed that the peak required ductility ratios
are lower for the real recorded extreme waves such as recent Hurricanes (for e.g Andrew, Elena
etc.) than the simulated waves with the same amplitude and frequency of content characteristics.
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These results imply that the ductility spectra presented here (for the simulated extreme sea and
the recorded earthquakes) might be somewhat conservative(see for e.g. Bea and Young, 1993).

5.3 Ductility analysis of plane frame systems

5.3.1 General
To establish the ductility-overload relationship for frame systems, we initially consider three
simple portal frames (a) a single braced one storey plane frame (b) a double braced one storey
plane frame (c) a double braced two storey plane frame.

The natural periods of both single and double braced one storey plane frames are taken as
O.5secs. This particular natural period is of interest for us since this may indicate the lower
bound for the typical natural period range of jacket platforms. We selected this period also
because it was observed from SDOF analyses in Sec.5.2 that for this lower bound of natural
period, the ductility demand ratio is generally higher than those for the larger periods.

5.3.2 Ductility analysis of a one-storey plane frame
To determine the desired natural period of the plane frame a simple linear eigen-value analysis
was performed for each case. The mass is lumped at the upper two nodes of the plane frame.
The loading is considered as a concentrated horizontal at this upper beam level. The time his-
tory of the loading is shown in Fig.5.22 which is generated for a regular wave. First the static
pushover analysis of plane frame is carried out to determine the ultimate peak capacity Fr,z
and the residual strength the displacement corresponding to the global first yield u1,.
The loading history is scaled up proportionally and applied successively and the corresponding
maximum displacement response is obtained as UW.ax.

We may consider that Fe, = SCF.Frei,max, where denotes the reference(unfactored)
load history's maximum amplitude and SCF as a scaling factor. Then F,, can be simply re-
expressed from Eq.5.2 as follows:

F,, = SCF'
Fr,maz

5.3.3 The results of ductifity analysis of the one-storey plane frame
The results of the analyses of the single and double braced plane frame of Fig.5.21 are presented in
Figs.5.23. A simple relationship is obtained by fitting a curve to the obtained data as represented
by a solid line in Fig.5.23 as follows:

F,, = (5.42)

This correlation fits well for the ductility data obtained for both single braced and the double
braced plane frames. The results of single and double braced frame analyses are denoted by plus

(5.41)
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Figure 5.21: A double-braced one storey plane Figure 5.22: A single SQS type wave load im-
frame posed on one storey plane frame

and asterisks signs, respectively, in Fig.5.23. A larger scatter is seen for the larger values of p.

The fitted relationship of Eq.5.42 is denoted by a solid line. It is seen that this correlation is
somewhat unconservative for the larger values of p than 5. This obtained simple correlation
might only be applicable for fixed support type jacket frames(i.e with disregarding the effects of
the soil-structure interaction) with a natural period of about T = 0.5 sec.

Fig.5.24 compares the results of equivalent single and double braced frames with those of SODF
and MDOF analyses of a 12 leg drilling type jacket platform(Bea and Young, 1993). It is seen
that the F, corresponding to the plane frame with a single brace is far lower than those ob-
tained for plane frame with double bracing system, SDOF and MDOF analyses of the 12 leg
jacket system. It is also observed that the Eq.5.42 matches well with the results of the plane
frame analysis with single brace system and 5% damping. In comparison, the SDOF relationship
of Bea and Young, (1993) has provided a better fit for the results of double braced plane frame
analysis with 5% damping and those obtained from analyses of an equivalent SDOF system.

Eq.5.42 is a particular form of Eq.5.14 with /3 = 0. Eq.5.42 in essence is similar to the relation-
ships obtained by Bea and Young, (1993) and Schmucker, (1996). The exponent term 0.5 is seen
in all these three correlations, however, the coefficients terms are significantly different. Bea and
Young,(1993) assumes a function of 2p 1, which implies a minimum value of p = 0.5, Eq.5.42 is
valid for single irregular type waves.. It is argued subsequently that including the multiple wave
effects, the non-linear pile-soil interaction, incrementing the wave height instead of wave load
scaling and varying T of the structure may lead to considerable changes in the overall ductility
demand of the system.
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5.3.4 Ductifity analysis of double braced two storey plane frame sys-
tem

To further investigate the effects of variation of T on the plane frame's ductility ratio, series
of ductility demand analyses are carried out here by using another simple double braced two
storey plane frame as shown in Fig.5.21. The stiffness and the mass of the plane frame system
is varied to simulate the natural periods of interest close to 0.5 sec(the most demanding region
in the ductility spectra).

The ductility demand analysis as described above is carried out for each case through pro-
portional scaling of the load history. The corresponding maximum displacements response are
normalized against the first global yield displacement of the plane frame. The first global yield
of the plane frame system is obtained from the static pushover analysis. Figs.5.26 through 5.28
show the examples of the obtained dynamic overload and ductility ratios.

5.3.5 The results of ductifity analysis of 2 storey plane frame
The plane frame is fixed at its base and the mass is concentrated at the upper two nodes of the
structure as shown in Fig.5.25. The loading consists of gravity and seismic loading and applied
at the same upper corner nodes where the mass is lumped.

The seismic excitation force is assigned by multiplying the seismic acceleration and the top
mass. The aim of this simple model is to get some idea about the variation of the overload and
ductility ratios for the loads with far shorter duration such as seismic excitations. From our
study on SDOF and 3DOF systems, we found that the dynamic overload ratio may vary quite

1.5 2 2.5 3 3.5 4
Dullhty demand ratio (mu)

Figure 5.24: Comparison of the F vs z rela-
tionships from SDOF, MDOF and plane frame
analyses results for the case of 12 leg jacket
platform(Bea and Young, 1993)
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Figure 5.25: A double braced two storey plane
frame model
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significantly for the seismic loads compared to the wave loads. It is observed in the ductility
spectra shown in Figs.5.5 to 5.20 that the ductility demand ratio p is comparatively smaller for
the seismic type loading.

The susceptibility of structure in the case of earthquake loading is higher to the linear dynamic
(resonance) effects due to proximity of the natural period of the structure and the ground oscilla-
tion. As in the case of extreme sea waves, these resonance induced response will be superimposed
on the non-linear response of the frame for overload ratios larger than unity.

In this section, dynamic analyses of the double braced two storey plane frame with three different
natural periods 0.28, 0.55 and 0.82 secs are performed. These periods are chosen to represent
the most demanding region in the ductility spectra based on the results of SDOF systems.

The corresponding dynamic analysis results of the plane frame are denoted by asterisks symbols
and compared with the predicted F vs. p response curves based on Eq.5.14 obtained here and
the Eq.5.24 obtained by Schmucker, (1996). It is seen that the Schmucker's relationship has pro-
vided an upper bound to the obtained frame results. In comparison, our relationship has given
slightly lower F values than the those of plane frame analyses. There is a scatter in terms of F
ratios obtained from the 2D-plane frame analyses which is mainly seen for the larger ductility
ratios p 5.0. The scatter related to the upper bound might be related to the termination of
the response at a failure cycle before a complete passage these cases are assumed to represent a
much higher overload ratio than mean predicted trend. In overall, the predicted response curves
according to Eq.5.14 is much closer to the mean observed response trends.

For practical jacket type frame systems, the range of interest for ductility demand p may be
considered to be less than about 5(Stewart, 1995). This consideration is mainly due to the oper-
ational limits of the platform. The global instability and joint capacities to sustain p larger than
let say 5 - 10 will be definitely limiting the maximum ductility demand for any jacket platform.

Referring to the observations in Fig.5.26, for p < 1.0 the relationship between F and p is almost
linear. The major change in the capacity is seen to occur right after p = 1 level, where the static
capacity is exceeded. If we take an average level of overload ratio for the p range greater than
1.0, a mean dynamic overload of about 10% - 20% is obtained.

This beneficial effect due to reaction of inertia of system has been predicted by our simplified
relationship Eq.5.14 by accounting for the changes (shift) in stiffness of the system through an
effective period Tejt as described in Eq.5.16.

We have accounted for duration effect of the loading history through Tn/TV, ratio in Eq.5.14.
The ratio is about 0.5 for this frame case and the result is seen as higher p demand for F > 1.1.
This is also seen in the presented ductility spectra for SDOF systems above. As the natural
period of the system decreases, the ductility demand p generally increases. p becomes much
higher for the smaller values of T than say 1.Osec. Now, we shall investigate a double braced two
storey plane frame with a natural period of almost twice as the first case (i.e T = 0.55sec). The
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results of plane frame analyses and the prediction based on simplified methods are presented in
Fig.5.27 in the same manner(by using the same symbols) as for the previous case. It is seen that
the maximum FL, obtained for the latter case is about 1.95. This is mainly due to the effect of
increase in the duration of the seismic loading cycles.

A significant yield is observed, when system surpasses its static capacity level which occurs
around p = 1.3. An apparent hardening can be seen in F, - p response by increasing the
maximum displacement (p). This observation is also consistent with our findings based on the
results of SDOF analyses.

At a maximum ductility of about p >= 10, the system's dynamic strength has become almost
1.5 times its static capacity (computed earlier as its total base shear). This signifies the fact that
for a seismic loading with comparatively smaller duration period T, the dynamic overstrength
of the system can be significantly higher than an extreme sea wave with much larger duration.
With respect to above discussion, larger the wave duration period becomes more destructive it
will be. It is noted that a ductility ratio of p = 1.3 is observed for an overload ratio of about
F = 1.0. This indicates the presence of linear dynamic in the elastic range of response. This
resonance is due to the proximity of the linear(initial) natural period of the system and the
period of duration of seismic wave which is nearly 1.0 for this case.

The predicted F - p curves are plotted in Fig.5.27 according to the described predictive re-
lationships show a good fit for the practical range of p < 4 - 5 for jacket systems. Eq.5.14
has given a more conservative prediction compared to the analyses results. In comparison, the
relationship of Schmucker, (1996) has somewhat over-predicted FL, in this case.

A third case is studied which is a double braced two storey plane frame with a natural period
of T = 0.82sec. The computed F, - p response of the plane frame is compared with those
obtained based on simplified methods in Fig.5.28. Again a scatter is observed particularly in the
initial part of this response. A large variation in terms of FL, is observed which actually is related
to different load cases. Although the structure is the same but different load cases have pro-
duced different maximum responses which are mainly associated with their static failure modes.
However, a better trend is seen for the post collapse range of the response. The predictive re-
lationship of Schmucker, (1996) has given the best estimate in this case. Our predicted FL, - p
response curve is more conservative in this case. The response predicted based on a = 0.01 is
closer than the prediction based on a = 0.001.

It is evident that for these three cases with relatively low duration of seismic loading, an a
value of greater than or equal to 0.01 more appropriate. This might also be associated with the
relatively large inertia resistance in these cases.

-

It is also found here that the overload ratio FL, is significantly larger for the system with the
larger natural period than the one with the smaller period. The maximum predicted value of FL,
is obtained to be about 3.0 for the latter case compared to the frame with a natural period of
T = 0.28sec which was only slightly higher than 1.2. The general trend observed.in the ductility
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Figure 5.29: The wave load incrementation vs. Figure 5.30: The new model of the 8-leg
wave height incrementation approach jacket-pile-soil system

spectra above hence is also partly verified here for 2D-framed systems. The significance of the
duration therefore is highlighted for the seismic response of the framed systems with lower
natural periods than for the systems with longer period of vibration exposed to the loading
histories with larger duration such as extreme waves.

5.4 Ductility demand analysis of 3D-Jacket-pile-soil sys-
tem

5.4.1 General
The dynamic performance of jacket platform under extreme loading might be influenced by the
interaction between the structure and its foundation and the dynamic loading effects as well.
The ductility behaviour of the structure and the pile-soil foundation will determine how much
dynamic overload structure can sustain beyond its static capacity.

The jacket-pile-soil interaction might provide the required ductility level(beneficial effect) and
also can be detrimental if it results in collapse of the pile-soil foundation prior to full plastic
utilization of the structural members.

With respect to the pile-soil modelling, in the cases that the soil is much stiffer and the piles are
sufficiently strong (i.e. for e.g plugged in the case of end bearing piles or very long in the case
of floating piles), the pile-soil-structure interaction may be modelled as linear. In such cases,
the overall ductility response of the system may be less influenced by the structure-foundation
interaction.
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Figure 5.31: A plan view of deck w.r.t end-on
and broad-side loading directions
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Figure 5.32: Ductility vs. overload ratio re-
spouse of the original model of jacket platform
under end-on loading(regular wave)

To study the effects of soil non-linearities on the dynamic response of jacket, we will consider
both linear and non-linear soil-structure interaction thioughout this section. The effects of pile
tip modelling on the ultimate dynamic response of the system will also be studied in this section
through considering plugged and un-plugged pile foundation systems.

The influence of the hysteretic soil damping on the potential damage to the system is also studied
in the following.

5.4.2 Time domain dynamic analysis
A brief theory background and the solution strategy adopted in computer program USFOS(Amdahl
and Eberg, 1992) for time domain dynamic analysis is described in the following subsections.

5.4.2.1 Equation of motion

Dynamic equilibrium of motion is expressed according to Eq.5.1.

5.4.2.2 Mass matrix

- -
pN'NdVa

The inertia of the discretized system is represented by the consistent mass matrix:
rae!M=/ aTJi=1 1,

where p is the density and N the element interpolation polynomialvector. a, is the transformation
vector from element system to assembled system. A consistent mass matrix for a 4DOF beam
with third order polynomial shape functions is used. Concentrated masses may be specified at
nodes. Added mass for submerged elements will be included.

(5.43)

ad-on loading Plan view of deck

Broad-side loading
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5.4.2.3 Damping

Based on the distributed material damping property C, the well known equivalent viscous damp-
ing model is given by:

Fd=Cü (5.44)

where the damping matrix is given by:

C =f aTf C1NTNdVaj (5.45)

For computational (normal mode approach) reasons the damping matrix C is usually expressed
in terms of mass and stiffness matrices of system in the form of Caughy series as follows:

C = M(MK)k (5.46)

The expansion reduces to a Rayleigh damping form when the series is truncated after two first
terms and after adding a viscous term will have the following form:

C=Co+aiM+a2K (5.47)

The a Rayleigh damping factors are calculated from modal damping data available for struc-
ture(see e.g Clough and Penzien, (1976) and Warburton, (1976)).

5.4.3 Solution procedures
The dynamic equation of motion is solved in the time domain by using a - HHT method (Hilber,
1976) instead of conventional Newmark's-/3 method. The governing equations are expressed as:

Mü1 + (1 + a)Ci1 - aCü + (1 + a)Ku1 - aKu = (1 + a)F,+j - aFe,n (5.48)
= iz, + t(1 - 'y)Ü + At'yü1 (5.49)

= ? + + 2_(1 - 2fl)u + t2/3ü1 (5.50)

The only difference between Eqs.5.48 to 5.50 and the conventional Newmark's-3 approach is
introduction of some new terms in the stiffness, damping and load expressions. The incremental
equations are developed as follows:

M(u1 - u) + (1 + a)C(üj - ) + (1 + a)K(u1 - u)
= (1 + a)(Fe,n+i - Fe,n) + F - Mü - Cu - Ku (5.51)

1 1.- = - 1..
= tL (5.52)

Au+1 = - 7 7. 7 - 1)u (5.53)= - - t(

Combining Eqs.5.51 to 5.53 yields:

Ii 1 1 17 7.M + (1 + a) {-u1 - - t( - 1

l)ÜnJ C- -
+(1 + a) [u1} K = (1 + a)(Fe,n+i - Fe,n) + aFe,n - Mu - Ci - Ku (5.54)
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In which the only unknown is 2u1. Collecting all unkijown terms on the LHS yields:

[(1 + a)K + (1 + a)C+ M] Un+i = (1 + a)(Fe,n+i - Fe,n) + Fe,n - Mu

Cu - Ku + + M + [(1 + + - i)u] (5.55)

The damping term may be considered to consist of a viscous term and a proportional damping
term as expressed in Eq.5.47. In this way, the governingincremental equation can be transformed
into:

AUfl1 - e,n+1

where the effective stiffness becomes:

K = (1+ cE)(1 + )K + (1+ a)Co + + (1+ a)] M

which can be re-written in a compact form as:

K = aK+aC+amoM

where a, ao and amo are functions of the integration parameters 3 and 'y, the proportional
damping coefficients a1 and a2 and the time increment size t according to Eq.5.57. The
incremental force- displacement relationship then will follow as:

=(1+a) [Fen+i Fe,n+ (n+t( - 1)Ün)Cj+(n+(_1)Ün)M+FenCÜn_KUn
(5.59)

Similar to Newmark's-/3 method, the total displacements, velocities and accelerations at step
n + 1 can be computed as:

Un+1 = Un + Un+1

un+1 = jUn+l + (1 -

Un+1 = Ufl.4

The predictor-corrector approach is adopted as the solution procedure. Eqs.5.60 to 5.62 are split
into two parts as:

u1 =ü+t(1y)u (5.63)

Zhn+l U1 + t')'Ü,1 (5.64)

u1 (5.65)

= u1 + t2ü1 (5.66)

- t( - 1)u

- + (1 -

(5.56)

(5.57)

(5.58)

(5.60)

(561)

(5.62)
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The predictor equations which are denoted by a superscript p in the latter equations are evaluated
on the basis of the values at step n. It is assumed that u, is zero in the predictor equations.
Now the iterations can be performed by means of Eq.5.66 as follows:

i+1 - tLn*1 + A1n+1U n+1

(u1 1 -
Un+1 - t23

i+1Ui = + u;F+lity

where superscript i denotes the iteration steps, z' denotes the iterative displacements at the
iteration step i + 1 and u denotes the corrected value of u. Using the predictor-corrector ap-
proach would reduce any possible large drift from the yield surface. Both effective load vector
and effective stiffness matrix are non-linear functions of it and so various displacement compo-
nents vary non-proportionally within each time step t. The time scaling may be achieved by
means of a bi-section technique(Amdahl and Eberg, 1992).

This technique involves the solution of dynamic equilibrium equations in the corrector phase.
Once the scaled time increment is determined the dynamic equilibrium is solved in the corrector
phase keeping t constant. Equilibrium iterations will then ensure that the force vector position
will remain on the yield surface hence the consistency criterion like for static case is also satisfied.

5.4.4 Ductifity analysis(procedure) of 3D-Jacket system
Similar to analysis of SDOF model, a simple procedure can be established for ductility analysis
of MDOF model of jacket-pile-soil system involving the following steps:
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a static pushover analysis based on for e.g the wave load scaling approach(WLI) as described
above, to determine the ultimate static resistance (RSU) and the displacement corresponding to
the first yield(u1) of the jacket-pile-soil system

a (cyclic) dynamic analysis for the given wave height(WHI) or wave load level(WLI) starting
from a certain wave height for e.g 100 year wave height

scaling up successively the wave height(WHI) or load(WLI) to the ultimate collapse of the
system and repeating the analysis for each wave height or load level

computing p and F,, from the results of steps (i) to (iv) according to Eqs.5.2 and 5.8

varying T of the jacket-pile-soil system and repeating steps(i) to (v)

plot F,, vs. p and T

The design approaches may involve determining either:

a) from obtained ductility spectra for the given p and T

or b)the required p for the given F,, and T

or c)T for the given F,, and p

It may be noted that for a jacket platform, the mass of the deck top facilities are usually ob-
tained from design while the stiffness and strength capacities of the jacket and pile-soil might
be varied. Since the mass of the jacket or pile-soil is often less than 1/3 of the deck itself, hence
the mass may be assumed as constant then the stiffness can be varied. Varying the stiffness of
the jacket-pile-soil system may result in change of p. For e.g if RSU of system is kept fixed and
K, of the system is increased then Ufy will be reduced and thus the p will increase, if u,, is
also constant. Varying RSU instead, will result in change of F,.,. Hence, the desired T may be
obtained iteratively.

5.4.5 Structural model

The fiiñte element model of the jacket structure used in the case study is shown in Figure 5.3.
The structure consists of two longitudinal and four transversal frames. Longitudinal frame's
bracing system comprise mainly single diagonal braces and only X-braces at the first and the
fifth storeys. The transversal frames have only K-braces. The supporting deck has been mod-
elled as a truss and the top deck facilities have been modelled by a pyramid frame.
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5.4.6 Foundation model
The foundation of the jacket system in the following case studies is modelled as equivalent:

lumped linear springs attached to the ground at each corner of the jacket

single end-bearing (plugged) piles penetrating to a depth of 28m below the mud-line

as (b) without plugs at the pile tips

The pile-soil interaction is modelled as:

non-linear springs recommended by API RP2A 1993

non-linear disks as described in Secs.2.2.3 and 2.3.3

We will initially consider lumped linear spring to ground Model of foundation. Part of this
investigation was carried out earlier by using WLI approach(see the hydrodynamic model) and
reported by Emami et a!, (1995). Another part of this study was performed recently by using a
new WHI method(see the hydrodynarnic model).

Subsequently we will use plugged model of foundation to investigate the dynamic near collapse
behaviour of the jacket-pile-soil system. This corresponds to the initial design condition of the
pile foundation. Due to the relatively short lengths of the designed skirt piles in this case, they
have been grouted at the bottom where the piles have penetrated into a sand layer. Hence, the
pile-tip is considered to be plugged according to the design to ensure sufficient end-bearing.

In the final part of this section, we shall also consider the influence of un-plugged type pile
foundation on the global dynamic response of the platform near collapse.

5.4.7 Hydrodyimmic model
Three different hydrodynamic models are used in the present study. The main difference being
the modelling of non-structural elements, such as anodes etc. These three models therefore yield
different loads corresponding to the 100 year-design wave heights and so the given global load
factors associated with collapse. For clarity, these three models and their results are treated
separately. However, the results obtained by each model can be used to study the effect of for
instance wave load scaling vs. wave height incrementation approach and dynamic vs. static.

In the early part of our study, we used Model-0(WAJAC) as the reference(Emami et a!, 1995).
However, since it was not possible to use this model in cyclic analysis (WHI approach) Model-
1 (TJSFOS) was adopted.

Model-i (WAJAC load model) contains non-structural members as risers, conductors, landing
docks, bottle legs and pile guides. Drag and mass coefficients are 0.77 and 2.0, respectively.
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Figure 5.35: A simulated sea state according to the envelope approach

Model-i (USFOS load model) does include boat landings and pile guides and uses drag and mass
coefficients of 0.7 and 2.0, respectively. In Model-i no marine growth was specified whereas in
Model-2 marine growth profile was assumed to vary from zero at mudline level to about 10cm
at mean water level.

Model-2(USFOS) was recently created almost identical to Model-1(WAJAC) as cited above.
This was done after new options became available in USFOS model to include specific hydro-
dynamic coefficients for various elements. This is done primarily to verify the USFOS model
results and also to perform cyclic dynamic analysis without need for calibration of the base shear.

Model-i was primarily applied to perform static pushover analyses and recently to study the
wave height vs. wave load incrementation as well as foundation effects. The more recent Model-i
was applied to study the cyclic (quasi-static) as well as dynamic response of the jacket platform.

5.5 The influence of hydrodynamic modelling and wave
load history on the dynamic performance of the jacket-
pile-soil system

In the following subsections, we will consider the regular as well as irregular wave loading. The
regular wave is initially applied to investigate the influence of the wave period T on the dynamic
overload vs. ductility response of the platform. The duration of the regular wave is assumed
to be one cycle. But in a real storm situation, the largest wave may be proceeded with several
smaller waves and then after reaching a maximum peaks they are followed usually with few
smaller waves(see for e.g Fig.5.34). In the recent years, several methods are introduced to model
the extreme wave load with multiple cycles. For e.g. Tiomans et al, (1991) presented a new

' 1040 1XO 10
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extreme wave theory which according to that an extreme sea state may be simulated sufficiently
accurately by as few as may be two or three build up cycles with increasing height and then an
extreme wave cycle (the largest corresponding to collapse) and then subsiding part of the storm
towards the 100 year wave height. Stewart et al, (1993) also introduced a method to simulate
a synthetic storm by taking a 100 year wave and scaling it up to the collapse height level and
then decreasing it gradually to the 100-year wave height in successive cycles.

In this section, another approach is introduced for simulation of the extreme sea waves. The
method is based on a successive scaling of the wave from nearly zero to the ultimate collapse
wave height and proceeding for a period of two most extreme wave cycles and then decreasing
linearly towards zero(see Fig.5.35).

The method is therefore based on a wave envelope which mimics the random sea state real-
izations (Fig.5.34) simulated by WAJAC program(DnV, 1992). It is seen that, the simulated
random sea state varies somewhat from this idealized form nevertheless, it captures the main
pattern of the extreme storm in its most severe portion. The current particle velocities are
superimposed on the wave induced velocities in the Morison's equation to calculate the total
wave induced load on the structure.

The irregular wave approach is applied with both Model-i and Model-2 to be more representative
of the sea state. The irregular wave is simulated for the duration of 8 cycles (about 150 sees).
Due to the simulation length of about 150 secs and the number of analyses(at least 10-15) needed
to achieve the ultimate collapse of the system, parametric(sensitivity) studies are considered to
be less feasible option with this approach.

5.5.1 Ductility analysis of the jacket(Model-1) with plugged pile foun-
dation under regular wave loading

Fig.5.32 shows the dynamic overload versus ductility demand ratio results obtained from several
full 3D-Jacket analyses for harmonic wave periods of 12.5secs, 14.Osecs, 15.8secs, 18.5secs and
20.Osecs. Also on the same plot we have shown the predicted F - p response curves according
to bi-linear EPP-SDOF model of Schmucker, (1996) and gradually degrading EP-SDOF model
established in Eq.5.14. It is seen that in the elastic range of response the discrepancies in terms
of F are far less significant than in near yield(or collapse) region of the response curves (close
to F,. = 1 where the response has reached the ultimate static capacity).

Even slightly below this level, we observe some differences for different periods of wave loading.
The smaller the wave period is the lesser the dynamic overload capacity has become. The trend
is more visible for p > 1.0. The differences are particularly more significant for wave periods
between 12.5 and 15.8secs. As the wave period has increased from 15.8secs towards 2Osecs (the
upperbound period), the observed discrepancies have become less significant. The observation
from our 3D-analyses here at the first glance looked paradoxical with respect to our initial
understanding of SDOF systems under regular wave loading. But a closer examination later
revealed that this can even be predicted based on SDOF analysis of the system with the proper
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Figure 5.36: Comparison between the base
shear response of the jacket platform(Model-
1) under end-on loading with wave periods of

= 12.5 secs and 18.5 secs

load history. We discuss this further in the following.

5.5.2 Discussion about the influence of wave period on F
To be able to interpret the numecical Observations in Sec.5.5.1, we need to examine the static
and dynamic base shear and overturning moment as well as displacement histories for two cases
with clear differences seen in terms of F0,(or jt) between them. Let us consider for example two
different periods 12.5 secs and 18.5 secs. The corresponding response histories are plotted for
two points marked in Fig.5.32. These points correspond to the same wave heights 39m but not
necessarily the same base shear or overturning moments. Due to different periods associated
with these wave heights the corresponding velocity and acceleration terms calculated according
to the relevant wave theory(for e.g stoke's 5th order.) are different, hence, the computed drag
and inertia terms from Morison's equation will be different.

According to the base shear histories plotted in Fig.5.36, the calculated total dynamic base shear
for the wave with larger period of 18.5secs is considerably higher than that of wave with 12.5
secs duration period. The static base shear response histories indicate that the total imposed
wave loading on the structure. It is seen that the dynamic base shear response curves show
some superimposed oscillatory effects likely due to the superharmonics of the waves, the pre-
peak stiffness degradation of the jacket-pile-soil system (and some other possible contributors of
less importance which are out of the scope of this study).
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Figure 5.37: Comparison between the
displacement histories of the jacket
platform(Model-1) under end-on loading
with wave periods of T = 12.5 secs and 18.5
secs

The larger resonance effects can be seen in this case for the wave with the larger period(18.5secs)
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Figure 5.38: Comparison between the base
shear histories of the (Model-i) jacket plat-
form under broad-side loading with wave pe-
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Figure 5.39: Comparison between the dis-
placement response of the (Model-i) jacket
platform under broad-side loading with wave
periods of T12 = 14 sees and 20 sees

than the wave with smaller period(12.5secs). Comparing these base shear with the associated
displacement response histories plotted in Fig.5.37 reveal that the dynamic displacement re-
sponse has been smaller for the wave with i2.5secs period than the statically predicted response
and far smaller than the maximum dynamic response corresponding to the wave with period of
18.5secs. It seems that for the smaller period the beneficial effects of inertia has reduced the
maximum observed displacement.

On the contrary for the wave with larger period(18.Ssecs) the dynamic response has been

Table 5.1: Comparison of the maximum overturning moment according to wave load incremen-
tation (WLI) and wave height incrementation (WHI) methods

Static(pushover)
wave load incr. wave height incr.

Maximum base shear(MN) 191.7*2.3568

Maximum overturning moment(MN.m) 32500
45i.8
35780

generally higher prior to the collapse (largest observed peak) and at reaching this peak due to
domination of the non-linear inertia the oscifiatory effects have disappeared and both responses
have almost converged at the onset of the major yield.

-

Other examples are given in Figs.5.38 and 5.39. It is seen that the maximum displacement
response of the studied jacket system under a regular wave with period of i4 sees is significantly
higher than that of a wave with a period of 20 sees. The corresponding maximum base shears
are almost the same for both waves in this case. Fig.5.38 shows that the wave with a period
of l4secs has a more rapid build-up than the wave with a period of 20secs. The jacket system
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seemingly in this case had less time to compensate for the dynamic overload beyond its static
capacity which is also combined with the observed linear dynamic effects. In contrast, the base
shear history of the wave with the period of 20 secs is gradually increased to the same maximum
value and the system probably had the possibility to compensate. This besides the fact that
for the larger wave of 20secs compared to the jacket's initial natural period, the linear dynamic
effect is less than that for the wave with a smaller period of l4secs.

Although the higher resonance effect can be considered as partly contributor to the difference
in terms of dynamic overload ratios but it may not be the only cause. The other possible cause
might be the shape of the wave load history. Other authors such as Bea and Young, (1993)
and Schmucker,(1996) have also observed such effects. The trouble arises for a steeper wave
with shorter period when the force input into system during the acceleration phase of response
is either not well compensated during a subsequent unloading, or the gradual build up of the
forces is not allowed and consequently system faces a kind of non-linear dynamic impulse (w.r..t
the duration and magnitude of loading rate).

The observations indicate that the steeper waves induce more asymmetric and impulsive load
history than flatter waves. More impulsive wave load history means possibility of higher poten-
tial damage to the structure. As we know, the steepness of the wave is characterized by the wave
height and period parameters. Therefore, variation of the wave period might result in change of
wave steepness and consequently the potential damage to the system.

The distribution of the wave forces on the structural members might also change as a result of
variation in the corresponding wave period. The different distribution of the forces may change
both base shear transfer mechanism and also the overturning moment calculated with respect
to the mud-line.

It is believed that such effects could be more important for the overturning type failure modes
of jacket-pile-soil systems which might be caused for e.g by the pile pull-out or pile plunge,
leg member buckling. However, as we found from visualization of the global coUapse modes
corresponding to these two wave periods, the governing failure mechanism has been base shear
for both cases, since the main failure occurs in the bracings of the system and also plastic hinge
in the pile is formed due to the failure of the soil under lateral loading.

The max mum overturning moment values given in Table.5.l revealed that the difference in terms
of overturning moments is considerable for the same maximum base shear. But this observed
difference has not resulted in the change of overall failure mode from a base shear type to an
overturning type. Nevertheless, the latter has contributed largely to the mobilization of soil in
axial directions and hence it may have altered the overall jacket-pile-soil interaction.

In fact, due to existence of the plugs in the pile tips the increase in overturning moment associ-
ated with the higher wave height has not been able to cause the platform to overturn into sea.
It will be later discussed that the consequence of such overturning moment increase can be quite
different for jacket supported on the un-plugged type piles.
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The predicted SDOF response curves as shown in Fig.5.32 are obtained according to Eqs.5.14
and Eq.5.24 of Schmucker, (1996) with assuming a 100 year return period of T,L, = 15.8 secs for
the this direction of wave. The observed correlations between the SDOF predicted response and
the MDOF analysis of jacket are quite good considering that the simplified relationships do not
take into account component failure of structure and only able to capture one degree of free-
dom response of the system. Nevertheless, they have been quite capable to capture the overall
response of the system near failure. Our observation here and previous studies by Schmucker,
(1996) showed that for jacket-pile-soil systems the failure response is often dominated by one
single mode which can be easily simulated by an equivalent SDOF system. At most may be two
or three degrees of freedom be enough to represent the collapse mechanism of jacket-pile-soil
systems(see for e.g Emami et al, (1996)).

The SDOF based predicted response is in about 4-5% of range of the response predicted for the
west wave with a 100 year return period of 15.8secs. Since the likelihood of having an extreme
wave with a height of say 42m with a duration period of less than that of a 100 year wave
(with a far smaller height of about 27.3m for example the west direction) is very low in a prob-
abilistic sense, therefore, considering the mean level for the predicted responses for the sake of
comparison seems to be more rational. Comparing the predicted results in a deterministic man-
ner also requires to choose a base curve corresponding to the same assumed l00year wave period.

From design point of view, since a most probable period associated with an overload factor of
over 1.0 or 1.1 will likely be much higher than 15.Ssecs. Hence taking this point with the observed
higher F,,s for the larger periods than 15.8secs, we may conclude that the predicted response by
SDOF relationships are even slightly conservative (in average about 5% for the end-on loading
of jacket platform). With considering a deterministic under-estimation inherent in the studied
SDOF systems for the practical range of /.L = 1 - 5, we may anticipate to have conservative
estimate of response in most cases.

A similar investigation is launched for the broad-side response of the platform under action of
North-bound wave. F,, versus response curves obtained from MDOF and SDOF non-linear
dynamic analyses of the 8-leg jacket-pile-soil system are plotted in Fig.5.33. As shown the
predicted response based on SDOF methods are closer to about mean values of the response
obtained from MDOF analyses denoted by discrete points for different wave periods.

As seen in Fig.5.39, the peak displacement (amplitude) corresponding to the shorter period
T = 14.Osecs is significantly larger than that of a wave with a longer duration(period) of about
T,L, = 20.Osecs and for the same F,, value.

The peak response has occurred at time about t = 12.5secs where the peak base shear at the
mud-line level has also been observed. The peak displacement corresponding to the wave with a
period of about 20 secs has occurred at about time t = 17.Osecs when the maximum base shear
is observed. The ratio between the maximum displacements is about 0.76/0.38 2.0. We will
discuss the reasons behind the observed difference for the considered wave periods.
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Figure 5.40: The effect of increasing wave pe- Figure 5.41: The effect of wave shape on the
nod on the potential damage to the system potential damage to the system

From our knowledge based on understanding of elasto-plastic type SDOF system's behaviour,
we recall that for a wave with a larger period the damage (normalized maximum displacement)
is expected to be larger than a wave with a shorter period. This point is also illustrated in
Fig.5.40. As seen for instance for a simple harmonic wave with longer duration and an am-
plitude above the static capacity(F > 1.0), the time which is required for system to balance
this excess force denoted by t is larger than that foE a shorter wave length tb,s. tb,l and tb,5
physically indicate the duration periods within which system's inertia reaction force is active (or
the inertia dominated phase of structure). As shown during these periods, the system's static
resistance capacity is exceeded and hence it starts accelerating. The acceleration will go on
until the excess force or energy is still added to the system that is until the time t when the
excess force becomes zero. Thereafter the system enters a deceleration phase since the force is
reduced from static capacity level and this phase may be called dynamic unloading of the system.
Although the system at deceleration(negative acceleration) phase, but its velocityis not yet zero.

The system's momentum (velocity) becomes zero at the time when the whole unbalanced force
is compensated which corresponds to times tb,8 for e.g for shorter wave. A this point of time
the displacement is maximum and hence the potential damage to structure will depend on this
time length. If the time for balance of dynamic forces on the system becomes longer then the
induced damage on the system will be larger. This implies that F - p response curve has to be
somewhat softer for a wave with longer duration period than that of a shorter wave.

Another point of view is related to the wave shape effect (Schmucker, 1996). Referring to Fig.5.41.
a steeper or sharper wave such as a triangular wave has less damaging effect than a squared-
sinusoidal type or (smoother and flatter) wave with the same amplitude and duration period.
This is because the unbalance area is smaller for the STI than SQS and thus the time needed
to reach a balance is comparatively smaller. On the contrary to these implications the MDOF
analyses of the full 3D-model of jacket in both loading directions indicate that the dynamicover-
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Figure 5.42: The ductility vs. overload ratio Figure 5.43: The ductility vs. overload ratio
response of Model-2 of 8-leg jacket platform response of Model-2 of 8-leg jacket platform
under end-on loading(irregular wave) under broad-side loading(irregular wave)

load ratio in average is relatively smaller for the waves with shorter periods. Although we have
too observed from 3D-Jacket-pile-soil system analysis for the end-on direction that in some cases
the maximum displacement induced for the same wave height was larger for the longer wave.
But it should be noted that the corresponding base shear has been different so the observations
based on the same wave height have not changed the overall picture.

It seemed that the waves with smaller periods have induced wave load histories which are steeper
than those of longer waves. These waves become more impulsive towards the collapse, the im-
pulsive nature of the force does not allow the system to take the force gradually and hence
might initiate undesirable dynamic effects. In addition to this, it is observed for e.g in Fig.5.38
that for wave height near failure the wave load history is becoming more asymmetric for shorter
waves compared to longer ones. Recalling what we discussed above, the unbalance time will
become longer for such a non-symmetric wave load because the system receives a larger amount
of unbalance force above the static capacity level and has far smaller reduction in the trough
side, hence the overall balance in one cycle is not achieved when it encounters another peak with
added force which induces more acceleration.

It is evident that higher acceleration implies larger displacements (or damage). Sometimes
this undesirable accumulation of dynamic unbalance forces leads to the ultimate collapse of the
system. Therefore, it is not only the period and the maximum amplitude of dynamic force which
determines the required ductility but also the shape of the load history which plays a significant
role.
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5.5.3 Ductility demand analyses of modified model(Model-2) of 8-leg
jacket-pile-soil system

As described in the previous section, the dynamic performance characteristics of the jacket-pile-
soil system is studied by two key parameters as the overload ratio and the maximum damage
indicator(ductility demand ratio). The results given in Fig.5.42 show the relationship between
the F,, and p for the west wave direction for the duration of the whole storm (Td = l50secs).

The predicted response according to non-degrading type(ND EPP) and gradually yielding type
elasto-plastic(GYEP) SDOF systems are also plotted in the same Figure. As shown the initial
part of the response up to p = 1 is linear and the effects of linear dynamics are seen to be quite
negligible. The maximum computed p for a F,, = 1 is nearly 1.0. The post-ultimate response of
the system is considered to be less hardening with respect to the inertia effects gained beyond
the static capacity of the system. The predicted response according to the simplified models as
seen are fairly conservative for the practicalrange of p <5.0. The underprediction for this range
of ductility is inherent in the nature of SDOF systems, because it is assumed that the inertia
is activated rather for maximum displacement larger than the assumed sustainable maximum
displacement for a jacket-pile-soil system.

However, from the MDOF analysis of the jacket system, we observe such considerable gain even
for p values far lesser than 5. This is because the inertia has been actually activated during the
initial elastic part and also other initial cycles of the loading which has resulted in the increase
of the F,,. The activation of the inertia prior to the so-called inertia dominated phase is an issue
which has been also studied by previous authors such as Schmucker, (1996). Schmucker, (1996)
reported that due to changes in the stiffness of the system prior to the ultimate collapse and
also possibly due to some linear dynamic effects , the F,, - p relationship may change for this
smaller range of ductility.

Furthermore, the damping effects present in both the structure and the pile-soil at the onset of
ultimate collapse of the system might increase the dyn.mic resistance of the system according
to Eq.5.1.

From p 1 to p = 1.25 the SDOF models have slightly overpredicted the response. This may
be related to the initial stiffness degradation and also resonance effects during the elastic range
of the response accumulated and manifested in lowering slightly F,, for this small range of p.
But as seen, the beneficial effects of the inertia soon has more than compensated for this small
loss of capacity. As observed the response has hardened rapidly due to a combination of the
inertia and damping resistance up to p = 1.5 where the dynamic resistance of the system has
effectively exceeded 10% above the static capacity.

From this point on the MDOF response has become almost flat up to a ultimate collapse duc-
tility obtained at about 4.8. Very slight increase of the dynamic overcapacity of only about less
than 5% is observed for an increase of about in terms of p. This is because as the system
accelerates in this range further, at the same time its static capacity is reduced to a post-peak
(residual) level which is about 10% or slightly more less than that of its static ultimate capacity.
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The total gain in terms of the inertia increases is likely over 20% as the z increases. However,
this benefit is at the expense of losing some static resistance due to failure of main load carrying
components of the system. So the net benefit of the dynamic resistance then has become at the
end something like 13% which is indeed a significant and absolutely realistic and achievable gain.

The predicted SDOF based response according to Eq.5.14 which accounts for the effective nat-
ura.l period changes due to the rapid degradation of the tangent stiffness of the jacket-pile-soil
system is shown with solid line. The k/k is taken as 0.01 which has resulted in Teif 10T.
This means that the ,8 parameter according to Eq.5.14 has become about 0.91 which is an indi-
cator of the system's residual strength and stiffness degradation effects.

The maximum predicted dynamic capacity according to our simple SDOF based model is about
1.11 at a ductility level of about 5. The ultimate discrepancy in terms of the predicted ultimate
dynamic capacity of the system between SDOF and MDOF methods is about 2.3% in the range
of p = 4-5. The maximum discrepancy between SDOF and MDOF methods in this case is
about 5.3%. The linear dynamic effects combined with the pre-peak stiffness degradation effects
totally account for about 2 - 5% loss of capacity at p range of 0.94 to 1.25.

The results obtained here are consistent with the recent findings of Stewart,(1995) on the fixed
framed structures(such as jackets). He concluded that the overcapcity in terms of the dynamic
resistance of such systems can be expected to be in the range of 1.1-1.2 with a ductile type re-
sponse. The more realistic analyses carried out here confirm this suggestion and also our earlier
findings in the previous sections from the analyses of plane frames.

In the following, we investigate the dynamic overload versus the ductility demand response of
the same modified jacket-pile-soil system under broad-side(North-bound wave) loading. This
direction of loading according to our earlier studies (see for previous section) was found to
represent a more brittle response than the west bound direction. Even with inclusion of the
non-linear pile-soil system, we found that the residual strength of the system is lesser for this
direction than the west bound wave. The residual strength ratio is observed to be less than 0.8.
To investigate the influence of the residual strength on the ultimate dynamic resistance of the
system, we consider the lower and upperbound of k/k ratios as 0.01 and 0.001.

From our knowledge based on SDOF system analysis, the k/k = 0.001 might be considered as
a reasonable value accounting for the rapid post-peak degradation effects.

The sensitivity of the F,, - p relationship is also assessed to the changes in terms of Tff. We
discussed above that Te11 represents the effective dynamic stiffness of the system with accounting
for inertia and damping effects. The predicted results based on these two values representing the
lower and upper-bound for the k/k are plotted in Fig.5.43 together with the response obtained
from MDOF analysis and also the predicted response according to Schmucker, (1996).

As we anticipated, the lower bound ks/k. = 0.001 matches well to the computed MDOF response
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while the prediction based on = 001 has overpredkted the dynamic capacity by about
10%. The response predicted according to EP-SDOF based relationship of Schmucker,(1996)
has overestimated the ultimate response by about 28% at p = 35. Since this level of ductility
is usually unattainable for system's such as jacket platforms as we discussed earlier, hence, a
practical range of say p <= 5 is considered for our comparison. For this range the maximum
discrepancy observed for response predicted based on SDOF approach of Schmucker,(1996) and
the MDOF analyses results here is in the range of 10 - 15%.

It is worth mentioning that the observed F - p response very well matches in the elastic range
up to about F = 1.0 with the obtained results from 3D-Jacket analysis. The results obtained
here and also the findings of Bea and Young, (1993), Stewart, (1995) might indicate that for semi-
ductile type behaviour of the framed jacket system as studied here, the dynamic overstrength
may be less than or equal to 1.05-1.10.

Comparing the results presented in Figs.5.43 with those presented in Fig.5.42, it can be seen
that the ultimate F obtained for the North-bound wave (broad side) loading is found to be
about 10% less than the west-bound(end-on) loading. The reason is evident by comparison of
the post-ultimate static behaviour of the jacket platform under the two different loading direc-
tions. While under the end-on loading the residual strength of the platform is about 0.9 times
of its ultimate static capacity(ductile behaviour) under broad-side loading its response has been
almost semiductile with a residual strength factor of slightly less than 0.8.

The consequence of this is that while the system has gained a lot (may be totally around
20 - 25%)from positive action of inertia by allowing for large displacements to develop due
to the presence of plugged piles with sufficient axial resistance which has provided enough duc-
tility compared to a linear or fixed foundation case (see for e.g the following sections). But this
much gain plus the damping resistance has been just enough to compensate for the post-peak
degradation of the static resistance for the broad-side loading and at the end we have obtained
something like 5% net gain.

For the end-on loading, we have obtained over 10%(precisely about 13% net gain in terms of
inertia) which is due to the less strength. degradation at the post-peak range(p > 5). Stewart,
(1995) suggested that foE a ductile jacket system, we may expect to gain in terms of positive
inertia and damping, totally about 20 - 25% if the system is semi-ductile. For e.g. for a semi-
ductile system with a residual strength of about 0.8. times that of the ultimate static capacity,
the dynamic overstrength of the system may be less than 10%.

For a system with very brittle behaviour, then the expectation would be a zero dynamic over-
strength or even likely dynamic understrength(i.e F < 1) due to possible negative inertia(linear
dynamic) effects(see the following sections).
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Figure 5.44: The base shear response of the
jacket(Model-i) with linear spring to ground
under end-on loading

Figure 5.45: The displacement response of the
jacket(Model-1) with linear spring to ground
at deck level under end-on loading

5.6 The influence of foundation modelling on the dy-
namic vs. static response of the jacket system

5.6.1 Ductility demand analysis of Model-i with linear spring to
ground under end-on loading

The base shear response of the jacket with hydrodynainic Model-i and linear spring to ground
under end-on loading is shown in Fig.5.44. it is seen that the base shear history is strongly
asymmetric with largest peaks in the crest side. This might be due to the addition of the cur-
rent forces, the effect of wave reaching the cellar deck area during the passage of the crest which
induces larger forces and possibly the effect of plastic deformation of the structure. The peak
base shear response is observed at about t = 60 sees.

The displacement response of the jacket Model-i with linear spring to ground is plotted in
Fig.5.45. It is seen that the collapse of the system has occurred at the time between t = 75 - 77
secs. This time actually corresponds to the passage of the second largest wave crest through the
upper frame above the jacket(the cellar deck level). It is interesting to note that the structure
has passed safely through the first largest peak but it's collapsed during the subsequent peak of
about 0.98 times the first peak at t = 76 sees.

The deck has moved about 3.5m in about 2 secs which implies a velocity of about i.8m/sec.
(It has to be noted that the displacement response near 77 sees is cut in the plot. This is done
in some of the response plots where showing a very large displacement might have prevented
visualizing the smaller peaks prior to the ultimate collapse). At near collapse the velocity of the
deck is about 2m/sec. Viewing the deformed model of jacket shown on Fig.H.7, it is found that
the diagonal bracings in the third floor have failed and subsequently plastic hinges have formed
at the connection between the second and the third and the third and the fourth storeys of the
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Figure 5.46: a)The normalized displacement
vs. base shear response of the jacket (Model-
1) with linear spring to ground under end-on
loading

jacket (a frame mechanism).

Figure 5.47: The deformed model of the
Jacket(Model-i) with linear spring to ground
under end-on loading (For colour figure see
Appendix.H)

Visualization of the response show that the left diagonal braces fail in tension and the one in
the right bay buckles under compression at about t=76secs and then the lateral load is resisted
through the frame action and by increasing the wave load finally a sway mode frame mechanism
takes place at about t = 77 secs.

The base shear type failure mechanism is observed in the longitudinal frame of the jacket at the
collapse at the third floor which also close to the centroid of the wave force on the structure.
Very large permanent (plastic) deformation observed in the structure does not allow the platform
to recover even after the passage of the largest crest at about 78 secs(incremental collapse).
Subsequent smaller crest induce even larger displacement peak at deck level. With respect to
the observed high plastic utilization of the structure and the global peak displacement of in order
of 3m, the corresponding wave height of about 45.5m is considered as the ultimate collapse wave
height.

5.6.2 Ductility demand analysis of Model-I with linear spring to
ground under broad-side loading

The base shear response of the jacket platform with hydrodynarnic Model-i and linear springs
to ground under broad-side loading is plotted in Fig.5.48. The first largest peak has occurred at
about t = 67 secs and the second one at about t = 83 secs with almost the same magnitude as
the first largest peak. Fig.5.50 shows that the platform has passed safely through the first peak
and collapsed during the second one.
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Figure 5.48: The base shear response history
of the jacket (Model-i) with linear spring to
ground under broad-side loading
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Figure 5.50: The normalized base shear vs.
displacement response of the jacket (Model-i)
with linear spring to ground under broad-side
loading
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Figure 5.49: The displacement response his-
tory of the jacket (Model-i) with linear spring
to ground at deck level under broad-side load-
ing
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Figure 5.51: The deformed model of the jacket
(Model-i) with linear spring to ground under
broad-side loading (For colour figure see Ap-
pendix.H)
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Figure 5.52: The base shear response of the Figure 5.53: The base shear response of the
jacket (Model-i) with plugged pile foundation jacket (Model-i) with plugged pile foundation
under end-on loading under broad-side loading

The displacement response of the system is plotted in Fig.5.49. The deck of the platform has
been displaced about 6m within 3 secs (t = 80 - 83 secs) which implies an average velocity
of about 2m/sec. This is a quite considerable velocity compared to the water particle velocity
of about 15m/sec induced by the Ultimate wave height of 48.2m. Since the deck response is a
slow motion type response, hence the relative velocity effect on the wave force distribution on
the jacket members could be considerable. This subject will be further discussed in a following
section.

The collapse of the system under broad-side loading has been caused by the increased base shear
and the overturning moment. The deformed model of the jacket system with linear spring model
of foundation under broad-side loading is shown in FigH.8. It is seen that the deck of platform
has tilted during the passage of the second largest crest. The global failure of the structure is
initiated by the collapse of the K-bracing system at the first peak and then by formation of the
plastic hinges in the frame, the jacket system has ultimately collapsed.

5.6.3 Ductility demand analysis of Model-i with (plugged) pile foun-
dation under end-on loading

The base shear and displacement response histories of the platform obtained by dynamic collapse
analysis under end-on loading are plotted in Figs.5.52 and 5.54, respectively. The observed
base shear history is asymmetric with larger peaks occurring at crest loading as compared to
trough. As seen from the displacement response history in Fig.5.54, the ultimate collapse of
the platform occurs at time about t = 76.5secs which corresponds to the largest peak of the
wave loading (Fig.5.52). The vertical and horizontal response histories at the pile heads and
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Figure 5.56: The global load-displacement(P-
5) response history of the jacket with plugged
foundation model under end-on loading

Figure 5.54: The displacement history at the Figure 5.55: The displacement history at the
deck level of jacket with plugged pile founda- deck level of jacket with plugged pile founda-
tion and hydrodynamic Model-i under end-on tion and hydrodynamic Model-i under broad-
loading side loading

Figure 5.57: The global load-displacement(P-
5) response of the jacket with plugged founda-
tion model broad-side loading
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Figure 5.58: The deformed plastic interac-
tion model of platform with plugged non-
linear pile-soil system under end-on load-
ing(For colour display see Appendix.H)
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Figure 5.59: The deformed plastic interaction
model of platform with plugged pile-soil sys-
tem under broad-side loading(For colour dis-
play see Appendix.H)

tips are also examined which did not indicate any pile-soil pull-out, plunge or lateral collapse
mode. A permanent plastic deformation is seen to have developed incrementally prior to the
ultimate collapse which is also shown at the beginning of the dynamic response corresponding
to the ultimate failure cycle (solid line in Fig.5.54).

The observed displacement response history of the platform at the deck level is asymmetric,
with larger displacements occurring in the positive global X-axis(wave direction). This fact may
be partly due to the loading asymmetry and partly due to the mentioned permanent (plastic)
deformations developed in the jacket.

Fig.5.56 compares the static base shear-deflection (P-8) response of the platform (plugged
pile)with those from the failure cycles corresponding to quasi-static(cydic) and dynamic analy-
ses. It is shown that the quasi-static(cyclic) response curves have lower peaks due to the wave
load modelling effects. Moreover, the dynamic response is somewhat stiffer than those of static
and cycic(quasi-static) ones mainly due to the inertial effects.

Table 5.2: Pushover response of the jacket platform with plugged pile foundation under end-on
loading(Model-1)

Static Dynamic
wave load mcr. wave height incr. wave height incr.

RFY 1.99 1.96 2.38
RSU/RDU 2.79 2.55 2.86
RRES 2.58 -
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Fig.H.11 shows the collapse mode of the plugged pile-soil-jacket system indicating that most of
the plastically utilized members are located in this area. Also the horizontal members in the
bottom bay connected to the main legs at the corners have buckled. A plastic hinge formation
is seen in the left pile in Fig.H.11 at about upper one third of pile depth. This signifies that
a lateral plastic interaction has taken place between the soil- pile at this point. This may be
initiated mainly by the base shear transferred to the pile-soil system at the interface level. No
axial failure mode(such as pull-out or plunge)is observed for the end-on loading of platform.

5.6.4 Ductifity demand analysis of Model-i with (plugged) pile foun-
dation under broad-side loading

Fig.H.12 shows the collapse mode of the jacket with a plugged support system. The most plas-
tically utilized (failed)members are situated at the second and the third bays from the bottom,
and at the bottom bay all four horizontal bracing members have failed in compression.

As shown in Fig.3.36 (Chapter.3), the response under broad-side loading of the jacket with
foundation modelled as linear springs at the sea-bed is rather brittle and the maximum RSU
factor is about 2.64 compared to the 2.99 factor obtained with a plugged non-linear pile-soil
model(WAJAC load).

This is mainly due to the ductility provided by the foundation which has changed the ultimate
collapse mode from a brittle to a semi-ductile one. The effect of un-plugging on the ultimate
collapse behaviour of the platform is even more pronounced, as seen in Fig.3.36 the RSU factor
is then reduced to 1.94. The corresponding initial and near collapse (static) responses are closer
to the linear spring case and much stiffer than the unplugged pile case(see Fig.3.36).

Table 3.21 shows the global load factors corresponding to first member failure (brace buckling),
the ultimate collapse and the residual strength of the jacket -plugged pile-soil system under
broad-side loading. The reserve strength of the system beyond its initial member failure is less
than that for the end-on loading (see Tables 3.19 to 21). The ratio of residual to ultimate capac-
ity of the system is lower than that for the end-on loading which indicates a post-peak degrading
system under broad-side loading.

Table &3: Pushover response of the jacket platform with plugged pile foundation under broad-
side loading(Model-1)

Static Dynamic
wave load incr. wave height incr. wave height incr.

RFY 2.15 1.89 1.76
RSU/RDU 2.52 2.32 2.23
RRES 2.06
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The dynamic ultimate resistance of the jacket under broad-side loading is about 22% lower
than that under the end-on loading. This difference can be explained by examining the static
load-deflection response of the jacket under these two loading directions. It is observed that the
jacket-pile-soil system behaves in a more brittle manner under broad-side loading with a sharp
reduction of about 20% in the residual strength of the system, while the end-on response is much
softer with a smaller reduction in the system's capacity of about 9%. This is expected on the
basis of the apparent ductility of the system.

Although the behaviour of this jacket-pile-soil system is mainly dominated by ductility(non-
linear response), nevertheless some linear dynamic amplification (DAF) effects may have been
present due to the odd and even multiples of the primary force components computed from the
drag term of Morison's equation and surface elevation (Moe and Moan, 1984).These effects may
be more pronounced for a random sea state with a range of frequency content. In the current
simulation, however, the DAF effect may be considered as secondary to the main effects of F,
and parameters.
Table 5.4 compares the results of MDOF dynamic analyses of jacket with plugged pile founda-

Table 5.4: The ultimate capacity and overload ratio of Jacket platform with plugged pile foun-
dation (Model-i)

RSU RQS RDU F,
End-on 2.79 2.55 2.86 i.i2
Broad-side 2.52 2.322.23 0.96

tion under end-on and broad-side loading, respectively.
The results given in Tables.5.2 and 5.3 indicate that the ultimate strength factors for quasi-
static analysis based on wave height incrementation are about 8% 9% lower than the ultimate
strength values obtained by the traditional static pushover analysis based on wave load scaling
approach. The observed difference may be mainly dñe to the change of the wet zone on the
jacket (hence shifting the centroid of the forces on the structure upwards) and possibly due
to the change in the wave load distribution on the structural members. As the centroid of the
forces moves upwards, the shear wave transfer and also the resultant overturning moment change.

For base shear type failure mechanism, as observed in this case, shifting the centroid of the wave
forces towards upper bays has likely reduced somewhat the ultimate capacity. The change is
resulted not only because of the increased overturning moment but also due to the change in the
shear force transfer mechanism as the result of shifted centroid. This is because the governing
failure mechanism for this case(jacket with plugged piles) is base shear (see Fig.H. i2).
The ultimate static capacity for the broad-side loading of the jacket is found to be about iO%
lower than the ultimate capacity obtained for the end-on loading while the ultimate dynamic
capacity for the broad-side loading is found to be about 20% less than that for the end-on loading.
The observed reduction in the capacity is due to less static redundancy of the transversal frames
compared with the longitudinal frames.
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Figure 5.60: The base shear response history
of the jacket (Model-i) with un-plugged pile
under end-on loading

B1SO of the Jat-UPPS sy60m

Figure 5.62: Comparison of dynamic and
quasi-static(P-5) response of the jacket system
with hydrodynamic (Model-i) and un-plugged
foundation model under end-on loading
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Figure 5.61: The dynamic displacement re-
sponse of the jacket with un-plugged pile foun-
dation under end-on loading
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Figure 5.63: Comparison of dynamic and
quasi-static displacement response of the
jacket system with hydrodynamic Model-i and
un-plugged foundation model under end-on
loading
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Figure 5.64: The deformed model and plastic interaction model of the jacket(Model-1) with
un-plugged pile foundation under end-on loading(For colour figure see Appendix.H)

5.6.5 Ductifity demand analysis of Model-i with un-plugged pile
foundation under end-on loading

The base shear response of the jacket with hydrodynaniic Model-i and un-plugged pile-soil model
is plotted in Fig.5.60.

The deformed model of the system near ultimate collapse is visualized in Fig.H.9. It is seen
that, the jacket-pile-soil system has collapsed at the passage of the largest crest at t = 76
secs. The maximum displacement of about 8m(which is not shown in the response plot to be
able to visualize the smaller peaks) has occurred in about 5secs implying an average velocity of
about 1 .6m/sec. This is about 11% of the maximum water particle velocity. At the passage of
the largest crest a sway mode frame mechanism is observed at the second and the third eleva-
tions(storeys) of the structure. The base shear frame mechanism has occurred after the failure
of the main bracing system in all the three bays of the third floor. The diagonal braces at the
left and the middle bays of this elevation have failed in tension and the one at the right bay has
budded under compression which is visible in Fig.H.9. Another diagonal member on the right
bay of the fourth elevation has failed in tension. The compressive X-brace at the left bay of
the first storey has too buckled under compression transferred from the higher elevations. Also
the horizontal bracings at the left and middle bays of thesecond and the thirdfioors have budded.

Consequently the lateral force(base shear) has been transferred to the legs at the joints where
the connected diagonal members have already failed. Subsequent increase of the wave load up
to the crest point has resulted in plastic hinge formation at the connections between the third
and fourth, third and the second floors at the right leg and also between the connections of the
flrt and the second and the second and the third floors on the left leg. The transfer of the base
shear to the soil via pile has resulted in a plastic hinge formation at the upper section of the
left corner pile. This plastic hinge in the left pile indicates that the soil yield may have occurred
under lateral loading transferred from superstructure at the mud-line.
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Figure 5.65: The axial pile-soil mobilization(t-
z) curve at tension pile head near mud-
line(el.4701) for jacket(Model-1) with un-
plugged pile system under end-on loading

Figure 5.67: The lateral pile-soil
mobilization(p-y) curve at position of
plastic hinge near tension pile head near
mudiine(el.5201) for jacket(Model-l) with
un-plugged pile system under end-on loading
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Figure 5.66: The axial pile-soil mobi]ization(t-
z) curve at compression pile tip(el.6902) for
jacket(Model-1) with un-plugged pile system
under end-on loading
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Figure 5.68: The lateral pile-soil
mobilization(p-y) curve at compression pile
head near mudline(el.4702) for jacket(Model-
1) with un-plugged pile system under end-on
loading
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This ca.n be easily verified by inspecting the lateral soil mobilization (p-y) curves plotted at
the position of the plastic hinge on the left pile and the head of compression pile located on
the opposite side (see Figs.5.67 and 5.68). The soil has deformed by about 140mm close to the
tension pile shaft at the observed plastic hinge area. At the compression pile head(el.4702), the
maximum lateral displacement of soil is more than 70mm. The large area under (p-y) curves also
indicate a significant hysteretic soil damping under lateral loading at the upper parts of the piles.

Figs.5.65 and 5.66 show the axial mobilization(t-z) curves of soil close to the tension pile head
and the compression pile tip. The vertical movements of the tension pile head and the com-
pression pile tip are about 35mm and 8mm, respectively. These movements do not indicate any
form of pile pull-out or plunge for this case.

Comparing the dynamic and quasi-static(WHI) displacement histories of the platform at the
deck level in Fig.5.63, it is seen that significant dynamic amplification effects are present at the
initial part of the response prior to collapse (up to t = 50 secs). The resonance is particularly
significant at the second and third peaks at about t = 3Osecs. and 45 secs. DAFs associated with
these peaks are 1.42 and 1.29, respectively.

As the response approaches the onset of collapse (non-linear region), considerable deamplifica-
tion occurs(about maximum 34% at the fourth peak at time t = 60 secs). At time t = 77 secs,
the system has reached the ultimate dynamic collapse. For the purpose of comparison, we have
excluded the dynamic response after this from Fig.5.63.

The base shear vs. global diplacement of the platform (P-8) curves related to the dynamic and
quasi-static response(WHI) are given in Fig.5.62. The initial parts of dynamic and static P-delta
curves have almost the same stiffness up to a total base shear of about 200MN corresponding to
a global load factor of about 1.92. After this point a major difference seen between the dynamic
and quasi-static response. The corresponding static stiffness is much lower than the dynamic
stiffness due to the activation of the large inertia force in the deck. At a total base shear of about
239.6MN(RQS=2.30), an elastic unloading is observed in the quasi-static response after passage
of the largest wave crests. This actually indicates a partial relaxation(shake down) of the system
with sustaining considerable damage(a permanent deformation of in order of 1.Om at deck level).

Due to numerical problem associated with the plastic un-loading of the system during wave
crest (increase of loading), we decided to terminate the quasi-static analyses at this level (an ex-
treme maximum wave height of about 45.5m). With respect to structural collapse mode observed
here we believed that the real RQS factor may be slightly higher by maximum 3 - 5%(RQS of
2.4 instead of computed value of 2.3).

On the contrary the dynamic response has been successfully predicted up to the ultimate col-
lapse of the system as shown in Fig.5.62. The major yield in the dynamic response has occurred
somewhat above the ultimate static response of the system due to combined effects of inertia
and damping of the system.
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The dynamic peak ultimate capacity is reached at the total base shear of about 291MN(corresponding
to a global load factor: RDU = 2.79). The corresponding overload ratio F is obtained as
F = RDU/RQS = 1.16 - 1.21. The lower bound of F corresponds to the anticipated value of
RQS = 2.4 while the upper bound of F is related to the obtained value of RQS = 2.3 here.

5.6.6 Ductility demand analysis of Model-i with un-plugged pile
foundation under broad-side loading

Dynamic base shear and displacement response curves of the jacket platform with hydrodynamic
Model-i and un-plugged pile foundation under broad-side loading are shown in Figs.5.69 and
5.70. After the first major wave crest at the time t = 50 secs some plastification is observed in
the response. The system has partially shaken down after the passage of the subsequent peak
(the largest crest). But it has finally collapsed at the passage of the third largest peak at about
time t = 80 secs. The deck has been displaced by about 3m from time t = 77 secs to t = 80 secs
with an average velocity of about i.Om/sec compared to the maximum water particle velocity
of about 12.88m/sec. The latter may imply about 15% reduction in terms of drag force on the
structural members.

It is evident that the displacement of the lower elevations of the structure is much less than this
and hence the reduction of the total wave force would be far less than 5%. This topic is further
discussed in the following.

Fig.H.10 shows the deformed model of the jacket with unplugged pile-soil system under broad-
side loading. At the collapse the compression K-bracing members have buckled in the third
storey along the four transversal frames. Meanwhile, the left pile has been partially uplifted and
the opposite pile plunged into soil due to lack of plug at the pile tip.
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Figure 5.71: The normalized base shear vs.
displacement response of the jacket(Model-1)
with un-plugged pile foundation under broad-
side loading

F'

Figure 5.72: The deformed model and plastic
interaction model of the jacket(Model-1) with
un-plugged pile foundation under broad-side
loading(For colour figure see Appendix.H)

Fig.5.78 compares the quasi-static and dynamic displacement response at the deck level for the
jacket with hydrodynamic Model-i and un-plugged pile foundation under broad-side loading.
The response curves up to the time t = 50 secs are almost identical. Between the time t = 50
secs and t = 80 secs, some dynamic amplification of response is observed. The maximum DAF
of 1.21 is observed at the time about 70 secs. The observed resonance might be due to the
superharmonics of the wave induced by the drag term.

It is seen that the dynamic and quasi-static response curves have converged after the time t = 78
sees at the onset of the ultimate collapse of the system. It is worth of noting that a plastic de-
formation of about 1.5m is observed prior to the ultimate collapse.

The dynamic and quasi-static P- response curves of the system are compared in Fig.5.77. It is
seen that the quasi-static response is somewhat stiffer than the dynamic response, particularly at
the last(failure) cycle. The peak quasi-static capacity is about 295MN vs. the ultimate dynamic
resistance of 289MN. The corresponding global load factors are RQS = 2.18 and RDU = 2.14,
respectively. Thus the associated dynamic overload ratio is obtained as F = RDU/RQS = 0.98.
This indicates a 2% reduction of the static capacity due to the deleterious effects of dynamics
combined with the brittle behaviour of the structure. The obtained global load factors meet
the minimum requirement of NPD,(i992) for ultimate limit state(ULS) design of jacket-pile-soil
systemfor this case as 1.56. Significant safety margins are available as: SMQS = RQS/RNP -
1 = 39% and SMDU = RDU/RNP 1 = 37%.



CHAPTER 5. NONLINEAR DYNAMIC ANALYSIS OF JACKET-PILE-SOIL SYSTEM AT THE
282 ULTIMATE COLLAPSE

105

1

-2

2x10' Lmemi aoll mobfflzalion j7ve

Figure 5.73: The axial(t-z) mobilization
curves at the plastic hinge position in the
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Figure 5.75: The lateral(p-y) mobilization
curves at the tension pile head(el.4703) for
the jacket(Model-1) with un-plugged founda-
tion model under broad-side loading
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Figure 5.74: The axial(t-z) mobilization
curves at the plastic hinge position in the
right(compression) pile head under broad-side
loading
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Figure 5.76: The lateral(p-y) mobilization
curves at the compression pile tip(el.6902) for
the jacket(Model-1) with un-plugged founda-
tion model under broad-side loading
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and quasi-static response of the jacket system
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Figure 5.79: Comparison of overturning mo-
ment according to WLI and Will approaches
for the jacket(Model-i) with plugged pile foun-
dation under end-on loading
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Figure 5.78: Comparison of dynamic and
quasi-static displacement response histories of
the jacket (Model-i) with un-plugged founda-
tion model under broad-side loading
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5.7 Comparison of the results(linear spring case) accord-
ing to WLI and WHI approaches

Fig.5.79 compares the overturning moment histories for the jacket with plugged pile system
and according to the wave load scaling approach (Emarni et al, 1995) and the present study
based on cyclic Will approach. The maximum overturning moment corresponding to the latter
method(Wffl) is about 2.47/2.34 = 1.06 times that for the former approach(WLI). The differ-
ence mainly due to the shift of the centroid of the loading on the structure and partly due to
the load distribution pattern on the structure.

This 6% in terms of overturning moment may explain partly the observed different responses.
However, the influence of vertical force may not be ruled out as we observe in the case of latter
analysis the vertical forces vary with time and at the point of maximum base shear they seem
to be negligible. With respect to the stabilizing effect of downward vertical forces, lack of such
forces may cause the structure to loose its stability. Fig.5.80 shows the time history of the
vertical force component.

It is seen that, the vertical force component varies with time and in some points of time is
positive or upwards which means that the stabilizing force on the tension piles which is only
gravity(verticai forces) has turned into an upward force pulling the pile out of ground. In
contrast, the upward component of the wave does not exist in WLI method and the vertical
forces are found to be positive during the history of the response and at the time of maximum
base shear at the mud-line the gravitational(vertical) forces are negative or downwards which
help to stabilize somewhat the tension pile. Hence, we observed a partial pull-out failure of pile
in the case of scaled dynamic loading.

5.8 Influence of member fracture on the dynamic be-
haviour of jacket system

5.8.1 General
The jacket systems even with sufficient redundancy or global ductility may experience member
or joint fracture due to the large global deformations near collapse.

The jacket platforms are usually manufactured of several sections of various sizes. There may
be some small cracks developed during the manufacturing process of these components. After
the platform enters its operation, these small size cracks may grow due to frequent or excessive
loading such as those induced by extreme waves and earthquakes etc. If the crack growth con-
tinues, it may result in member or joint failure and hence loss of system's overall capacity.

If the joints are well manufactured such as cast nodes, they might be assumed as rigid. How-
ever, in the cases that joints are expected to behave as flexible, there is a possibility for the joint
rupture due to development of large deformations near the collapse of the jacket system.
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At the present study, we shall assume that the frame joints are rigid. Hence, we will investigate
the influence of the member fracture on the global response of the jacket platform near failure.

The strain level in the members under tensile forces has to be checked and if it exceeds a certain
limit, the member is considered to be ruptured. The forces then has to be distributed on the
adjacent members connected to that member, this is done in for e.g. computer program USFOS,
(Søreide et al, 1994) by introducing an internal load case. The external loading after the load
re-distribution can continue on the fractured element.

The fracture check is based on the so-called "load 3" CTOD criterion(Nss, 1985). A simplified
model is adopted here for calculating the strains in the plastic hinges. The crack tip open-
ing displacement "CTOD" is computed on the basis of the nominal strain, the corresponding
stress(which may be raised due to hardening) and an assumed crack length as follows:

CTOD - crit <1re.a (5.70)

in which CTOD-crit= the critical crack tip opening

= the ultimate strain at the rupture

= the yield stress of the member

= the ultimate stress at the fractured member( 1.3 ,)

a = the flaw size

The choice of the flaw size depends strongly on the crack length growth mechanism and is a
highly stochastic parameter related to the loading history, the geometry of the crack and other
relevant parameters. Hence, an appropriate selection of this parameter must be made to reflect
the uncertainties involved.

5.8.2 Ductility demand analysis of the fractured model of jacket with
hydrodynamic Model-i (without the effect of pile-soil) under
end-on loading

Dynamic base shear and displacement histories of the fractured model of the jacket platform
with linear spring to ground and hydrodynamic Model-i (without the effect of pile-soil) are plot-
ted in Figs.5.81 and 5.82.

The displacement response of the intact and the fractured model of the jacket are almost iden-
tical prior to collapse. After time about t = 76 secs, a small discrepancy is observed between
the results. The base shear response also indicates the same. However, the interesting difference
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emerges in P - 8 response curves plotted in Fig.5.85. It can be seen that the fractured model of
jacket degrade at much faster rate(more brittle) than the intact model. The residual strength
of the fractured model is about 0.8 compared to 0.93 for the intact model under end-on load-
ing. This means that a ductile. system has become a semi-ductile due to loss of member ductility.

It is seen that the ultimate dynamic capacity of intact and the fractured systems are almost
the same. The wave heights corresponding to the ultimate collapse of the intact and fractured
models are obtained as 45m and 45.5m, respectively. The corresponding RDU ratio is obtained
to be: RDUfrau?ed/RDUjnta = 0.98. This indicates that for a ductile structure the member
fracture check may not be very important compared to a more brittle structure. This topic is
further pursued in the following.

5.8.3 Ductility demand analysis of the fractured model of jacket with
hydrodynamic Model-i (without the effect of pile-soil) under
broad-side loading

The dynamic response time histories of the jacket platform with linear spring to ground and hy-
drodynamic Model-i are plotted in Figs.5.83 and 5.84. It is observed in Fig.5.83 that the ultimate
collapse base shear of the fractured model is about 0.95 times that of the intact model(without
ruptured member).

Some discrepancy is observed in the displacement response of the fractured and intact models
after time about t = 50 secs. It is seen that, the fractured model has collapsed at about time
t = 67 secs about 18 secs prior to the ultimate collapse of the intact model. It is seen that the
deck of the platform has moved about 6m within 3 secs implying an average velocity of about
2m/sec. This velocity may be compared to the maximum particle velocity of about 15m/sec for

-5 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8
Dioplacement at deck tuvel(m) Dtupfacemant at deck Ievel(m)
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Figure 5.88: Comparison of the displacement
response of the 8-Leg jacket(Modei-1) with
plugged pile foundation with and without cur-
rent

Comparing the P-delta response of the two models in Fig.5.86, it is seen that the initial parts of
the response are almost identical. The fractured model shows sign of rapid degradation than the
intact one. The ultimate dynaniic(base shear) capacity of the intact model is about 5% higher
than the fractured one. The post-ultimate response of the fractured model is much softer than
the intact one. For example at the failure cycle, the total base shear capacity of the intact model
increases even after observing a global displacement in excess of 2m at the deck level. This is
because of the activated inertia and damping reaction forces at such observed large displacements
while the fractured model has not gained much from the positive inertia effects due to loss of
member ductility.

5.9 Influence of current on the dynamic response of the
jacket with hydrodynamic Model-1(without the ef-
fect of pile-soil) under end-on loading

Dynamic base shear and displacement(near collapse) histories of the jacket with hydrodynamic
Model-i (without the effect of pile-soil) under end-on loading (with and without current) are
plotted, respectively, in Figs.5.87 and 5.88. Fig.5.89 compares the P-S response of the 8-Leg
jacket with linear to ground model of foundation under end-on loading(with and without cur-
rent).

The response of the system without current load included appear to be somewhat stiffer com-
pared to the response associated with combined wave and current loading. The ultimate collapse

I
20 40 60 00 100 l 140

Th,e(sec)

Figure 5.87: Comparison of the base shear
response of the 8-Leg jacket(Model-l) with
plugged pile foundation with and without cur-
rent

the collapse wave height of about 48.25m.
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Figure 5.89: Comparison of P-c5 response of the 8-Leg jacket(Model-1) with plugged pile foun-
dation with and without current

factor of the jacket under wave load is about 5% higher than that for combined wave and cur-
rent loading. This discrepancy can be compared to that of static response obtained in Chapter.3
which is about 7.5%. The slight difference may be attributed to the inertia and damping effects.

The response of the system under combined wave and current loading appears to be more
asymmetric compared to that obtained under only wave loading action. The difference may be
attributed to the change in the water particle velocity due to the combined wave and current
action and distribution of the drag and inertia forces on the structural members. Since the
current is on-line with the wave, hence at the crest the peak wave load is larger than that for
the trough where the direction of the current is opposite to that of the wave.

5.10 Relative velocity vs. absolute velocity based dy-
nanlic overstrength

It is observed that during the recent investigation that relative velocity of the jacket near the
collapse might have a considerable influence on the ultimate load factor of the system. For e.g
Schmucker, (1996) found that the relative velocity based wave force calculation may result in
10 - 15% reduction of the overall base shear for relatively slender jackets compared to a fixed
based system.

Our investigation showed that for the relatively stiffer jacket system (with plugged pile founda-
tion), the reduction in the total base shear is about 5%. The difference between our finding here
and those of Schmucker, (1996) can be explained as follows.

The magnitude of the modification of the drag term in the Morison's equation depends on the
amplitude of the water particle velocity and the velocity of the jacket structure itself. It is
evident that the velocity of a more rigid structure will be less than that of a more flexible one.
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Also the ultimate collapse wave height of the stiffer structure would be higher than a more
flexible one. For e.g for slender jackets which were studied by Schmucker, (1996), the ultimate
wave height at the collapse of the structure was in the range of 60-75ft(about 18m-22.5m).

Comparing these with our example of the 8-leg North-sea jacket with a 100 year wave height
in the range of 27.3-30.2m and the collapse wave heights in the range of 40-50m for different
wave directions and also considering that the water depths is about 109.5m. These will imply
that for the larger wave heights the water particle velocity are higher in this case than those
associated with the relatively smaller wave heights as studied by Schmucker, (1996). The result
is the smaller structural velocity compared to much larger water particle velocity (say about
1 - 2%) which has yielded slight modifications of drag force in Morison's equation.

Our analyses showed that the maximum wave height corresponding to the ultimate dynamic
collapse of the jacket (Model-i) is increased from 42in for the end-on loading to about 43m as
shown in Fig.5.90. This corresponds only to about 4% increase in terms of the ultimate dynamic
capacity of the system. For the broad-side loading of the Model-i of the 8-leg jacket platform,
a maximum wave height of about 42m is obtained here corresponding to the collapse of the
system vs. a wave height of about 41m which represents again about 4% increase in terms of
the ultimate dynamic(base shear) capacity.

It is observed that jacket platform with un-plugged pile foundation which deforms much larger
due to pull-out of the tension pile, the ultimate wave height is increased by about 1 .5-2m (from
41.m to about 42.75m)for the end-on loading of the system. The increase in terms of the total
dynamic capacity was obtained to be about 7% compared to about 4% as we obtained for the
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previous cases of the modified jacket with plugged piles.

Based on these recent findings, it may be expected to have about 5 - 15% gain with respect to
the relative velocity of structure. The lower bound may be considered for much stiffer jackets
with higher collapse wave heights as the cases we studied and the higher bound for more flexible
jackets with lower associated collapse wave height.

if we combine the effects of positive inertia and relative velocity of structure, a gain of up
to 20 - 25% can be achieved beyond the ultimate static strength for ductile systems. This
desirable effect can not be neglected in the re-assessment studies of of the most jacket platforms
particularly those which are facing other problems such as subsidence in the sea-bed and wave
in deck forces and are at the limit of being declared unsafe, The implication of an increase of
ultimate dynamic capacity of the system by about 10 - 20% might be quite significant for such
systems in terms of avoiding lots of costs for restrengthening and frequent monitoring/inspection
which otherwise have to be sustained.

Table 5.5: The predicted verSus computed overload ratios of jacket platform with plugged pile
foundation under end-on and broad-side loading(Model-1)

5.11 Comparison of the MDOF and SDOF analyses Fe-
suits

The predicted dynamic overload values according to SDOF and MDOF analyses are summarized
in Tables.E.15 to E.18 of Appendix.E. The cases include the original and the modified models
of the 8-leg jacket platform with different foundation models as described above. The predictive
methods are based on MDOF and simplified SDOF analyses of the systems as outlined in the
previous sections.

Generally good correlations areobtained between the results of the simplified SDOF and MDOF
analyses methods. In particular the simplified relationship presented in this chapter has offered
very close predictions of the ultimate dynamic capacity of the jacket system. There is also good
correlation in most cases between the presented relationship here and that of Schinucker, (1996)
based on a bi-linear idealization of an elasto-plastic SDOF system. The latter relationship is
shown to give somewhat higher estimates of the overload ratio fOr brittle systems (with larger

Predictive Method F F
(end-on) (broad-side)

MDOF(abs.velocity) 1.12 0.96
MDOF(rel.velocity) 1.16 0.99
Stewart et al, 1993 1.10-1.20 <1.00
Schmucker, 1996 1.04 0.91
Eq.5.14 1.13 0.96
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post-collapse degradation). Schmucker's approach is found to be rather conservative for ductile
and semi-ductile systems with less load shedding after the ultimate collapse load.

In contrast, the simplified approach based on gradually yielding SDOF system indicated fairly
very good predictive capability w.r.t the overload capacity of the brittle as well as ductile sys-
tems studied here.

It is seen that the correspondence is quite good between the results obtained from recent analyses
based on varying sea surface elevation(WHI method). While the overload factors obtained from
previous analyses of jacket platforms(Bea and Young, 1993 and Emarni et al, 1995) based on
a fixed sea surface elevation(WLI approach) seem to be somewhat conservative. In particular,
an overload ratio of about 1.36 is obtained from analysis of the jacket platform(Model-1) with
linear spring model of foundation under end-on loading(Emami et al, 1995).

Similarly overload ratios of somewhat higher than 1.2-1.3 obtained by Stewart, (1995) for a plane
frame of a jacket model without accounting for foundation failure and member fracture effects.
Bea and Young, (1993) also obtained overload factors of slightly higher than 1.3 from analysis
of a 12-leg jacket platform as quoted in Table.5.4. On the contrary, the results of the recent
analyses of the 8-leg jacket platform with varying the sea surface elevation and accounting for
the structure-foundation interaction, has resulted in more realistic overload ratios which are in
the range of 1.12-1.16 for the ductile and 0.96 to 1.07 for the brittle to semi-ductile response of
the jacket system. These results well match the predicted results based on Eq.5.14 and other
simplified formulations as presented in Table 5.4.

The results obtained by Stewart, (1995) also indicated that the jacket platform might possess
dynamic overstrength in the range of 1.1-1.2 for ductile system while for semi- ductile type sys-
tem up to 1.05 and for more brittle systems with DAF effects less than or equal to 1.0.

It seems that the relationship based on ND EPP SDOF system as presented previously by Bea
and Young, (1993) and Emami et al, (1995) for particular range of natural periods may be valid
for the jacket systems without accounting for strength and stiffness degradation. Such relation-
ship seems to offer fairly reasonable first order estimates of overload ratio under seismic loading
with much shorter duration than the extreme sea waves.

Our proposed relationsh.ip(Eq.5.14) also gives good estimates for the seismic ductility demand of
the jacket type fixed frames. For smaller values of (T/T) typical for seismic loading, Eq.5.14
results in higher values of F than those obtained for the studied wave load periods. As shown
in Sec.5.3.1, overload ratios in the range of 2-3 can be obtained for a double braced two storey
plane frames with natural periods of 0.3-0.8 secs under seismic loading with duration period of
0.5-1.0 sec.



5.12. CONCLUDING REMARKS 293

5.12 Concluding remarks
It is shown that the dynamic performance of a jacket-pile-soil system near the ultimate state
of collapse may depend on structural, pile-soil as well as dynamic load characteristics. In the
present work, we studied some of the most important parameters related to the dynamic per-
formance of the system.

The concept of ductility spectra is developed to facilitate the study of the key parameters such
as ductility, overload ratio and the natural period of the system. Simplified non-linear SDOF
as well as more complex MDOF models of jacket-pile-soil systems are employed. The ductility
spectral analysis concept based on simplified SDOF and 3DOF systems is introduced. This
approach offers efficient means to study the influence of key structural as well as loading param-
eters on the dynamic response of the system near collapse.

A procedure is developed to establish the ductility spectra based on static and dynamic pushover
analyses of equivalent simplified models. A simple relationship is obtained based on the results
of analyses of simplifiedmodels. The predictive capability of the obtained formulation is assessed
against the results of more complex 3D-Jacket analyses, 2D-plane frame analyses and also other
existing relationships.

It is shown that the suggested relationship here offers reasonably good first order estimate of the
dynamic overload ratio of the system. The capability of the model is attributed to the account
taken of several important parameters such as gradual yield of the system(tangent stiffness vari-
ation), the post-peak strength degradation, the wave duration, natural period of the system and
the wave shape and height effects.

The obtained SDOF based relationships seem to offer good first order estimates of the ductility
demand or dynamic overload of a more complex MDOF jacket system. These simplified models
may provide useful tools for a preliminary assessment(screening)of the dynamic performance of
the jacket systems.

The inertial resistance of the structure is shown to be important in providing an additional re-
serve strength for structures with sufficient ductility. It may also be concluded that the effect of
ductility can be significant in providing an overload factor of large than unity. Overload factors
in the range of 1.1-1.2 were obtained for the systems with ductile behaviour. On the contrary,
overload ratios slightly lower or closer to unity were found for systems with semi-brittle type
behaviour.

The foundation modelling is found to have significant influence on the near collapse behaviour
of the system. Hence, it is concluded that realistic (nonlinear) pile-soil models should be used
in the ULS based analysis.

-

The effects of superimposed harmonics are shown to be important in reducing the overload ratio
for brittle behaving systems. Such reduction for jacket system under wave loading studied here
found to be less than about 5%.



CHAPTER 5. NONLINEAR DYNAMIC ANALYSIS OF JACKET-PILE-SOIL SYSTEM AT THE
294 ULTIMATE COLLAPSE

It is observed that for the relatively stiff(rigid) jacket systems studied in this chapter, the ul-
timate dynamic collapse capacity is increased in the range of 3 - 7% through accounting for
relative velocity in the wave load calculation. The smaller influence was obtained for the linear
spring type foundation model and the plugged type pile foundation with relatively smaller dis-
placement response at the deck level compared to the jacket with un-plugged pile for which we
found a greater influence.

In the cases studied here, it is observed that the maximum displacement response of the jacket
at the deck level often exceeds the largest diameter of the leg member and also found that no
high frequency motion is involved at the deck level. The observations indicate that the relative
velocity effect on the ultimate near collapse behaviour of the jacket-pile-soil system may not be
neglected.
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6.1 Introduction
There is a need for reliability based analysis of jacket-pile-soil system due to uncertainties associ-
ated with the structural, pile-soil resistance as well as environmental loading. The uncertainties
might be related to both geometrical and material parameters of the structure and pile-soil
foundation as well as ultimate resistance calculation models associated with both structure and
foundation. In a similar manner, the sea state parameters are considered to be random (by
nature) and also the wave and current load calculation model is associated with some degree of
uncertainty.

In the past two decades, various methods for reliability based analysis of fixed jacket type off-
shore platforms have been developed. These methods are either based on component or the
system reliability assessment such as works by Bea, (1991), Baker and Vrouwendvelder, (1992),
Karamchandani, (1990), Moses and Liu, (1992), Olufsen and Moan, (1989), Shetty, (1992), Sig-
urdsson et al, (1993), Wu and Moan, (1989). In the recent studies, the effects of pile-soil-jacket
interaction have been analyzed such as works by Bea, (1993, 1995), Hansen et al, (1995), Sainier
et ai, (1994).

While systems reliability approaches are not yet applied in the design of new structures, they are
used in reassessment of existing jackets when simple conservative methods are insufficient(API
1994, Digre et al, 1995). This is because more realistic and complex procedures would then pay
off in making decisions which affect safety and significant costs of replacing or modifying the
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structure. Use of system based reliability assessment approach is initially motivated by the sig-
nificant reserve strength beyond the first member failure which is the basis for the conventional
design methods(Lloyd and Clawson, 1983).

The so-called "direct" system reliability approach may require very significant computational ef-
forts when it comes to consider the jacket-pile-soil interaction. Such direct methods so far mostly
applied for re-assessment of fixed jacket platforms (for e.g. Sigurdsson et ai, 1993). Hence, the
recent research is focused on establishing computationally efficient system reliability methods(for
e.g. Bea, 1993, Hansen Ct a!, 1995, Samier et al, 1994 and Vugts and Edwards, 1992). Such
simplified methods are often based on a system limit state function which relates the system
resistance (R) to the total base shear at mudline for e.g. as an indicator of the load (S). After
establishing the appropriate uncertainty measures related to various jacket, pile-soil, sea state
and wave load model, the failure probability is evaluated by using first order and second order
reliability methods (FORM/SORM), bounding techniques or other simulation techniques(see for
e.g. Madsen et al, 1986, Moan, 1997 etc).

The annual maximum load parameter (S) is defined as the total base shear(BS) and related to a
specific wave height,i.e.100 year wave height(H1). The BS - relationships are established
for two main wave directions, namely, North and West. The wave load calculation procedure is
modified based on the draft version of API RP2A, (1994).

The annual system strength parameter(R) is considered as a probabilistic function of the random
pile, soil parameters and pile-soil interaction modelling and a function of the model uncertainty
in structural strength calculation, sea-state parameters and wave load model.

A simplified linearized relationship is used to relate S to the deterministic base parameter So and
the first derivatives of S with respect to all pile-soil random parameters. An iterative scheme is
adopted to converge at the design point. The inaccuracy introduced into the reliability calcula-
tions by this linearization is compensated by the performed iterations.

Two different approximations of the failure surface in the vicinity of the design point are used
for reliability analysis respectively a first and a second order methods.

The uncertainties in the wave load modelling is accounted for by introduction of a model un-
certainty in wave load calculation and modelling the maximum annual wave height as random.
The structural uncertainty is also considered through a model uncertainty in system strength
(R) calculation.
A simulation procedure is established for generating the pile-soil resistance characteristic (t-z),
(p-y) and (q-z) curves, system ultimate strength, wave and current induced load calculation and
reliability analysis of the jacket-pile-soil system under extreme wave loading by using computer
programs GENSODM (Emami, 1994), USFOS(Søreide et al,1994), WAJAC(DNV, 1992) and
RELAP (Hovde, 1995), respectively. (see Appendix.G).

Reliability analysis program RELAP (Hovde, 1995) is formulated based on an annual probabil-
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ity failure function for the ultimate limit state of collapse of the pile-soil-Jacket system. The
annual failure probability function is defined as the probability that the annual maximum load
parameter(S) exceeds the (annual)system strength (R).

To study the effects of the uncertainties in the soil and pile parameters, the pile-soil interac-
tion modelling and the wave load modeffing on the near failure behavior of the pile-soil-Jacket
systems, a series of simulations are performed for each of random parameters involved. The
importance factors for each set of random parameters and the reliability indices are computed
for both wave directions.

6.2 Theory background
6.2.1 Ultimate limit state failure function of the pile-Soil-jacket sys-

tern
The collapse behaviour of pile-soil-jacket systems is a function of non-linear structural behavior,
pile-soil interaction, load pattern and their interaction. Each of theses parameters are subject
to uncertainties which are either iiherent or due to fabrication, measurement and modelling.

For instance, the structural uncertainties might be due to randomness in geometrical and ma-
terial properties as well as model uncertainty associated with non-linear structural analysis
particularly at large displacements near the ultimate collapse of the platform.

An extensive study of uncertainties affecting the strength of the jacket-pile-soil system has been
carried out by (Hovde and Hellan, 1992). In the present study, the overall model uncertainty is
considered through a model uncertainty factor for the system strength(R). The mean value for
model uncertainty of system strength (R) is taken as 1.0 and the corresponding COV of 0.15.
The latter has been selected conservatively as an order of magnitude of the uncertainties in the
calculation of system strength. However, in the previous studies by (Hovde and Hellan, 1992),
(Sigurdsson et al, 1993) and (Hansen et al, 1995) the COV of strength model uncertainty has
been varied in the range of 0.05-0.15.

The pile and soil parameters and pile-soil interaction modelling are defined as random to account
for the uncertainties involved in each of these parameters. The wave load model uncertainty is
taken into account by assuming wave height as random in calculation of (S). The ultimate limit
state of collapse function is defined as follows:

g(x) = R(x) - S(x) (6.1)

where g(x) is the failure function, S(x) is the load function, R(x) as the system strength function
and (x) representing the corresponding random parameters.

The annual probability of failure would be defined in the following form:

Pf(a) = P(ga(x) <0) (6.2)
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where Pf(a) is the annual probability of failure of the pile-soil-jacket system. It may be note
worthy that S(x) and R(x) have to be calculated at the design point. For annual probability
of failure Pf(a), the annual maximum load at the first iteration S(x) and the annual ultimate
system strength at the first iteration R(x) may be considered. Also note that S(x) is calculated
from base shear vs. wave height relationships and R(x) is obtained at the first iteration as a
function of the mean values of the random variables x. At the next iterations of the analysis, the
design values of the random parameters x* are considered(see also the following subsections).
It is also noteworthy that the load pattern related to calculation of S(x) may vary from the
initial values of the wave height to the final converged values close to the design point. However,
this variation effect is not considered to have a very significant impact on the reliability analysis
results, if the waves do not reach the deck of the platform.

6.2.2 System uncertainty modelling
In the present study, a simple approach is adopted by incrementing the gravitational loads
to unity and incrementing the environmental loads until collapse without factoring with their
partial safety factors. Hence, the ultimate capacity factors are obtained for the global system
strength for each variation of the random variable which is described in the following.

The system strength may be expressed as follows:

R(x) = R(xs,Xp,xp8im,xgt) (6.3)

where Xs, Xp, Xpsjm represent respectively soil, pile and pile-soil interaction modelling random
parameters and x denotes the model uncertainty in the calculation of structural strength.
In USFOS analysis, the ultimate strength R(x) is obtained as a function of the components
strength. Hence, parametric function Eq.6.3 is numerically evaluated in our reliability analysis
(RELJPS) procedure(no explicit form of these functions are given here). It may also be argued
that system strength function evaluated numerically from a non-linear pushover analysis might
be (in general) dependent on the wave pattern as well. While the global load function 5(x) may
be expressed as follows;

S(x) = S(Xwim,X38) (6.4)

where x,,,, represents the model uncertainty in the wave load modelling due to uncertainties in
evaluation of drag and inertia coefficients, current velocity profile and the wave theory itself. In
Eq.6.4 x88 denotes the random sea state parameters and is only taken as the annual maximum
wave height or H1.

6.2.3 Uncertainty measures of structural resistance parameters
The uncertainties related to the structural resistance parameters might be due to fabrication,
installation and measurements according to the standards of the materials. Actual structure's
material properties for each structural component(leg, brace, node etc.) has to be traced from
shop drawings, where the material standard certificate of each manufactured (steel) component
is issued etc. The actual distribution of the material properties can then be compiled from the
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referenced steel manufacturing certificates.

The work required to obtain the actual material properties is out of the scope of this work. The
required data is acquired from study carried out by Hovde and Hellan, (1992) based on survey
of Swedish yield stress data(Melchers, 1987) and also API database(API RP2A, 1993).
Based on study of Hovde and Hellan, (1992), the model uncertainty and coy values related to the
yield stress of the steel material of the jacket structure are taken as 1.04 and 0.07, respectively.
These values are somewhat conservatively chosen.

The initial imperfection is another source of uncertainty. Specially, the assumption of a linear
relationship between buckling strength and out-of-straightness may be questioned. At initial de-
formations ô/l (deflection to length of element ratio) between 0 and 0.001(0.002) which might
be realistic values, the relationship is non-linear or at least have a steeper gradient than the
(usually) applied linearization.

6.2.4 Uncertainty measures of pile-soil resistance parameters
The soil input parameters may be considered as random by nature. Due to this fact, the as-
sociated uncertainty with the pile-soil resistance characteristics is partly inherent. However,
other sources of uncertainty may also contribute to the pile-soil resistance calculations such as
measurement uncertainties(sampling and testing and reading methods etc.), statistical uncer-
tainties(due to limited database) and model uncertainty(related to the prediction of (t-z), (p-y)
and (q-z) curves).

The pile-soil parameters can be defined based on their mean values, standard deviations and
relevant probability of distribution functions. To obtain the mean and variance of the soil resis-
tance parameters, basic theories of statistics might be used (for e.g. see Nadim, 1988, Keaveny
et al., 1989 and Lacasse and Nadim, 1996).

Fig.6.1 summarizes the mean and coy values and distribution types adopted for various pile-soil
parameters in the current work based on survey of NGI and API databases (API RP2A 1993).
The. adopted coy values for clay and sand are somewhat conservatively taken with respect to the
values recommended in NGI report(Lacasse and Goulois, 1989). It is seen that the coy values
are generally taken somewhat higher than those for clay. This conservatism may be partly re-
lated to the dependency of the resistance of the pile on fewer parameters of sand which are quite
crucial such as internal friction angle of soil and lateral earth coefficient and partly to the testing
methods. However, in the case of clay, depending on the quality of the tria.xial tests such as
consolidated triaxial compression/extension, direct simple shear the coy may be taken slightly
less. The relative importance of each parameter in pile's axial or lateral resistance calculation is
another issue which has been considered in the choice of model uncertainty and coy values listed
in Table.6.1.
*model uncertainty values are based on the API RP2A 1993 pile-soil models.

-

**The upper bound value of COV for the random parameter would be used for which fewer data
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are available.

Each physical parameter in Table.6.1 refers to a random variable defined as x in Eq.6.9.

t'fuil list of random parameters are given in Appendix.F.
The choice of normal distribution function for most pile-soil material properties is because the
variation of soil parameters usually average out over a large volume of soil particularly for deeply
embedded foundations such as piles. The selection of a lognormal type distribution as for instance
for undrained shear strength of soil (Sn) is because such parameters can not have negative values.

As seen from Table.6.1, the COV values are higher for sand than for clay. Also the COV values
are chosen higher for the axial loading than those for the lateral loading. The COV value for
the end bearing is the highest in the pile-soil modelling due to large uncertainties involved in
anticipating the plugging condition at the pile tip(the effective plug area), the coefficient of tip
resistance etc. (see Chapter.2).

6.2.5 Uncertainty Modelling of pile-soil interaction
The axial pile-soil modelling is defined as t-z load transfer- displacement curve for sand and
clayey soils according to API RP2A 1993 (see Sec.2.1 and 3.1). A modified API model (Emami,

Table 6.1: The probability distribution and COV of random pile-soil parameters
Description Random

Param.
Physical
Param.

n COV% Distributior

Undrained shear strength (clay) x1 2 - 5 - 20 Lognormal
Total unit weight (clay-sand) 7tot,i 6 - 0 - 10 Normal
Friction angle (sand) x3 q5 4 - 2 - 5 Normal
Half of failure strain (clay) 2 - 40 Normal
Initial stiffness (sand) 4 40 Normal
Model uncertainty p-y (clay) x6 1 1.0 - 1.2 >= 15 Normal
Model uncertainty t-z, q-z (clay) - - - - -

in compression x7 1 1.0 - 1.2 15 Normal
Model uncertainty t-z, q-z (clay) - - - - -

in tension x8 1 1.0 - 1.2 15 Normal
Model uncertainty p-y (sand) x9 1 1.0 - 1.3 30 Normal
Model uncertainty t-z, q-z (sand) - - - - -

in compression x10 X8qc 1 1.3 40 Normal
Model uncertainty t-z, q-z (sand) - - - - -

in tension 1 1.0 - 1.3 30 Normal
Yield stress 4 - - Normal
Diameter 1 - - Normal
Thickness 1 - - Normal
E-modulus E2 x15 - - - Normal
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1994) for clay is used. The t-z curve for clay includes a post peak strain softening with an
ultimate residual axial soil resistance tres. The ratio t to tak varies from 0.99 to about 0.70
for clay from top to the bottom of pile. Due to degradation of the soil layers near the surface, t-z
curves in that zone have a tjak nearly equal to the theoretical tre8 value while this varies with
depth and for the bottom layers the value of tj,ak is modified (Emami, 1994) by a factor which
is greater than 1.0. The end bearing of the pile-soil system is modelled as q-z model defined in
API RP2A 1993 recommendations given in Chapter.2.

The lateral load-displacement behaviour of the pile-soil system is modelled according to the
(p-y) model of API as described in Sec.3.1 of Chapter2.
The associated uncertainty with pile-soil interaction (t-z), (p-y) and (q-z) models are obtained
based on the following:

Engineering judgment (expert opinion) for e.g. API, NGI etc.

Comparisons of the LDPT data with the prediction results (for e.g. ref. to Ch.2)

Statistical approaches such as Monte-Carlo simulations (see for e.g. Lacasse and Nadim, 1996
etc)

With respect to the above items the mean and coy values of various pile-soil parameters are
listed in Table.6. 1 which are used throughout this study.

6.2.6 Wave load uncertainty
The uncertainties in the wave load estimation as outlined briefly in the introduction above may
be partly due to the inherent randomness of the sea state parameters such as wave height and
period and partly because of the wave theory, the coefficients of mass and drag and the wave
load distribution pattern over the jacket structure (ref. to Chapters.3 and 5).

In the present study, the total uncertainty due to the sea-state and wave load calculation are
attributed to the model uncertainty of annual wave height (H1) and that of the wave load (S).
The mean value of the model uncertainty of sea load is considered as 0.9 which means that the
calculated procedure based on a single regular wave is assumed to be conservative compared to
a long term stochastic sea wave approach(see Yu-Lin, 1989 and Hovde and Hellan, 1992). It
may be argued that the mean value of 0.9 for the model uncertainty of sea load is based on
quasi-static response assumption for the jacket system. However, in the absence of a detailed
analysis and more data, it is assumed that this 0.9 adopted here could be a rather reasonable
value.

Previous studies by Sigurdsson et al, (1994) and Hansen et al, (1995) showed that the effects of
uncertainties in the prediction of the maximum annual wave height are dominant. The associ-
ated wave period with the H1 is not considered as an independent random variable.
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The wave load is computed according to the Morison's equation as follows:

FSeOFD+FI (6.5)

where Fsea represents the wave and current induced forces ,FD and F1 denote respectively drag
and inertia forces which are computed as follows:

FD = CD.P.U.IUI (6.6)

F1 = CM.P..D2.T (6.7)

where CD and CM are drag and inertia(mass) coefficients respectively, p is the density of sea
water, D is the element diameter, u and du/dt denote respectively the wave velocity and accel-
eration which are calculated as functions of wave height from an appropriate wave theory. Thus
computation of sea load on the platform is subjected to some major uncertainties in evaluation
of drag and inertia coefficients, wave height and the wave theory used for calculating the wave
kinematics.

The distribution of model uncertainty of load (S) is assumed to be lognormal with a mean value of
0.9 and COV of 0.25 (Yu-Lin, 1989). A lognormal distribution with mean value of 1.0 and COV
of 0.15 is used for the annual wave height parameter H1 (Hovde and Hellan, 1992). The values
might be compared with those computed by Hansen et al, (1995) and Olufsen and Moan, (1989).

The distribution function of the maximum annual wave height is computed according to the
long term exponential distribution of individual wave heights as follows(see e.g. Almar N as):

H1 = H100(1 - °") 0.77H10 (6.8)

where H1andH100 are respectively the most probable maximum wave heights for 1 and 100 years.
Alternatively the statistics of the observed annual maximum wave height can be used. H1 then
could be computed from the annual maximum significant wave height H8 obtained by long term
statistical procedure.

6.2.7 Evaluation of system strength
An approximate first order variational form is established for the system strength parameter (R)
as follows:

R(x) = R(xo) + (x - XO) (6.9)

where x0 represents the base or reference parameters. It is assumed that the first order vari-
ational form will provide sufficient approximation to the exact nonlinear relationship for small
variations of x parameters. The above partial derivatives are calculated numerically by 10 to
20 percent variation of each x parameter. The finite element model of the pile-soil system is
shown in Fig.6.1. The model consists of two node beam elements which discretize the pile
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Figure 6.1: 8-leg jacket platform with modified height of cellar deck

and a set of uncoupled nonlinear springs which idealize the pile-soil interaction. The stiffness
characteristics of the latter elements are defined by the tz, p-y and q-z curves as described above.

The basic assumption here is that all pile-soil parameters involved in p-y, q-z and t-z calculations
are the actual parameters and thus the only uncertainties are in the pile-soil stiffness calculations
as described by the preceding curves.

The model uncertainty and COV values given in Table6.1 of each of these interaction curves
for both sand and clayey layers are determined based on recommended values by NGI (Nadim,
1994) and Hansen et al, (1995) and the author's studies of several LDPT results (Clarke et al,
1992) and API test data base (API, 1993). For the lateral loading, we update the characteristic
lateral soil resistance (P(y)) after each iteration of reliability analysis as follows:

P2 = k,2P0(y) (6.10)

where k,2 is the design point factor for lateral loading computed at each iteration of RELAP
analysis, In Eq.6.10 Po is the reference lateral capacity as follows:

Po = f D).p).d( (6.11)

where p(() is the lateral load transfer as given in API RP2A 1993 or modified API 93 pile-soil
model (Emami, 1994). D(() is the diameter of pile which would vary with depth (. (Note that
(is taken differently from z which represents the axial displacement)

For the axiai loading, the shaft and tip resisting forces are combined as follows:

N = k.To + k,Q0 (6.12)

where k,2 and kq,j are the design point factors associated with the shaft skin friction and the
tip resistance of the pile. T0 and Qo represent the reference shaft skin friction capacity and
end-bearing resistance of the pile, respectively, which are defined as follows:

T0 = firD(.to(.d( (6.13)
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where to(() is the reference(base) axial load transfer as described in Chapter.2
Qo is the reference end bearing capacity of pile which is expressed as:

Qo = (6.14)

where q () is the reference end bearing load transfer and is the end bearing area which
for the unplugged pile is the pile wail area and for the plugged condition is the whole pile tip
area. It may be noted that the reference(base) case is referred to the mean values of the pile-soil
parameters.

6.3 Case studies

6.3.1 Structural description

The original structure (Model-Al) is an 8-leg Jacket platform located at a water depth of hOrn.
The jacket consists of two longitudinal and four transversal frames with diagonal, K and X
bracings at different levels (see Fig.6.1) The total height of structure is 142m and its horizontal
dimension at mudline 56mx70m. The module support system(MSF) is modelled by an extra
horizontal frame at deck level.
The structure has four pile connections to the ground. Each connection consists of 6 skirt piles
which are modelled as a centered equivalent pile throughout this study. Figure.6.l shows the
structural model of the studied 8-leg platform.

6.3.2 Foundation model

The foundation of the jacket system in this study is modelled as equivalent single piles penetrat-
ing to a depth of 28m below the mud-line. Due to the relatively short lengths of the designed
skirt piles in this case, they have been grouted at the bottom where the piles have penetrated
into a sand layer. Hence, the pile-tip is considered to be plugged to ensure end-bearing. Since
the lateral resistance may be mobilized at the upper part of the soil, the designed pile condi-
tion is not modified and will be used in the first part of this study. The pile-soil interaction is
modelled as non-linear disks as described above. The soil profile consists mainly of sand layers
with only two stiff clayey layers encountered at depths 18.5m and 25.5m below mudline level as
described in Table.6.2.

6.3.3 Loading

Gravity loading

The gravity loads are assumed as deterministic and include the topside loads,the weight of jacket,
pile, pile guides, bottle legs, mud-mats and buoyancy as given in Table.6.3.
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Table 6.2: The soil layer data for the foundation of the 8-Leg jacket platform

Wave and current loading

The wave and current loading is considered as random thus uncertainties are modelled as de-
scribed in the following section. A reference(base) load is defined as a combination of 100 year
wave with the 10 year current. Wave and current descriptions are given in Table.6.4. Model
uncertainty related to the wave calculation is described above.

Table 6.4: The 100-year wave height and period data

Table 6.3: The gravity loads related to the 8-Leg jacket platform

Layer Z(m) y(t/m3) q5(deg) Su(KPa) G0(Mn/m3) Tmaz(KPa)
1 3.5 20.5 37.0 0 31.5 0 10.3
2 4.5 20.5 37.0 0 47.5 0 23.5
3 5.5 20.5 37.5 0 53.1 0 30.0
4 6.5 20.5 38.0 0 58.2 0 36.6
5 8.5 20.5 38.0 0 65.1 0 45.8
6 10.5 20.5 38.0 0 73.3 0 58.0
7 12.5 20.5 38.0 0 80.6 0 70.3
8 14.5 20.5 38.0 0 87.3 0 82.5
9 15.9 20.5 38.0 0 92.6 0 94.0
10 18.5 21.6 0.0 174 58.0 0.013 99.7
11 23.5 20.5 34.0 0 109.6 0 104.2
12 25.5 21.6 0.0 180 60.0 0.011 121.4
13 29.5 20.5 37.0 0 125.7 0 115.8

Gravity load weight (tons)
Topside 22 339
Jacket* 9 401
equipment 2 012
bottle legs 2 976
mudmat 4 296
piles 3 750
buoyancy 9 400

The wave direction wave height wave period current velocity
(m) (s) (m/s)

West-East wave 30.2 16.7 1.1
North-South wave 27.3 15.8 1.05
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6.3.4 Total base shear-wave height relationship
The total wave load on the platform might be related to the wave height via a power relationship
by a series of single(regular) wave analyses. The following power relationships is obtained for
the total base shear at mudline:

BS,L, = a1H" + a2(H - Hd) (6.15)

in which H = the scaled wave height, Hd = the wave height that hits the bottom of the deck,
T = the period associated with a scaled wave height H, T100 = the period corresponding to the
100 year wave height, aandb = are the coefficients of the curve fitting (regression coefficients).
The coefficients of Eq.6.15 are given in Table.6.5. The values of exponents are between 1.5 and
2.0 which indicate a mixed drag-inertia regime for both directions and air gap conditions. The
fitted relationships above for the studied 8-leg Jacket platform are comparable with those found
by Heideman and Weaver, (1992) for the 8-leg Tern platform for three different storms from
N-NE and W-SW directions.

Table 6.5: The coefficients of base shear vs. wave height correlation

6.3.5 Reliability analysis at the design point
In Sec.6.2 an annual probability of failure function has been described. An ideal reliability
analysis requires evaluation of failure function f(x) at the design point x'1' as follows:

g(xt) = XRR(X*) - Xs.S(x*) = 0 (6.16)

where Xjm and Xs denote the uxtcertainties(bias) associated with system strength at the design
point and the loading, respectively. The resistance function R(x) in the above equation is
computed from the following:

R(x) = Ro(x) + /.XR(x) (6.17)

where R(x) is the sum of variations given in Eq.6.9 and becomes zero when x approaches x
i.e. the design point. An explicit form of the base shear vs. wave height relationship is used to
calculate S(x) function.

The distribution type of x* is assumed to be normal or lognormal at least for its central part.
For a normal distribution x might be computed from the following relationship for the load
(Hovde and Moan, 1994):

Xi = Pz(i + aj./3m.Vj) (6.18)

Case a1 a2 b1 b2 Hd
Northbound waves (m)
Model A0 0.77 0 1.54 0 oc
Westbound waves
Model A0 0.77 0 1.52 0 cc
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and for the system strength as follows:

= (1 - (6.19)

where is the mean value of x random parameter, V is the coefficient of variation for the x.
a is the square root of the importance factor for x and 1-3m is the reliability index which varies
for different failure modes.
A lognormal distribution form is used for S the undrained strength of clayey layers as follows:

S = /1s exp (Ci.I3m.Vi - 'V2) (6.20)

where in this case the square root of importance factor c is taken as 0.07 for clay. Eq.6.20
implies that S <= i.e. the design parameter (e.g. undrained shear strength) is smaller
or equal to the mean value of parameter. It should be noted that the computed design values
from the above equations are not the 'true' design values and only are used here in the first
iteration of reliability analyses.

The next step in the current simulation procedure is to generate the pile-soil stiffnesses or load
transfer-displacement data for the computed first iteration design values for the base case by
computer program GENSODM (Emami,1994).

The partial derivatives of S with respect to each of 62 selected random strength parameters (as
listed in Appendix.F) are computed in the third step of the analysis. This is achieved numer-
ically by varying each design pile-soil parameter by about 10 to 20 percent at a single run of
GENSODM program, thus generating 62 pile-soil interaction characteristic files. It is notewor-
thy that the design parameter here is referred to the mean value of the parameter multiplied by
a design factor obtained from previous iteration of the reliability analysis. Thus it may not be
the true design parameter of pile-soil.

In the fourth step a series of pushover analyses are performed by using nonlinear structural anal-
ysis program USFOS (Søreide et al, 1994) for each of the pile-soil characteristic files to calculate
the ultimate capacity of the system R.

The final step is the reliability analysis of the system by using the ultimate capacity values
obtained in the previous step and the model uncertainty and coy values given in Table.6.1. The
total base shear-wave height relationship as described in Sec.6.4 and the annual maximum wave
height formulation as given in Sec.1.3 are written as a subroutine called calno.f into the reliability
analysis program RELAP (Hovde, 1995). Subroutine calno.f calculates the ultimate limit state
function for each iteration of analysis.

Both FORM and SORM reliability methods are used in the RELAP analysis. In each method,
first the limit state surface is transformed into a standard normal U-space and then is approx-
imated by a first order tangent hyperplane or a quadratic surface at the design point u as
follows:

g(x) = g(T'(u)) - gu(u) = g(u,fi,a*) (6.21)
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The Taylor expansion of the latter might be expressed as follows (Tvedt, 1990):

9u(- (l)' g(u*)
1

k - 1 2 6 22u) - ii!
(u-u) - , ,...,n)

where gu(u) is the failure function in the U-space, n is the order of the approximation, u is the
u at the design point, the second term in the right hand side of Eq.6.22 is performed vectorially.

The first order form of Eq.6.22 may be simplified as:

gu(ZL) = _aT(u - u) = 3 - czTu (6.23)

which can also be written in the following form:

/3 = (6.24)

And also: O9u(u*)1(
= 1,2,...,n) (6.25)

The latter means that c is a unit vector normal to the failure surface with an inward direction
and this implies that &T.c* = 1 and thus from Eq.6.24 the following can be obtained:

= /3. (6.26)

The latter indicates that the design point is the nearest point on the g,, (u) surface to the origin
of the U-space and likewise /3 is the minimum distance from the failure surface to the origin(see
for e.g. Madsen et al, 1986).
From Eq.6.25, it is seen that c is a function of variations in each of x random parameters
at the design point therefore it is an indicate of importance of each of these variations. The

*2 is usually referred to as the importance factor and the pre-described derivatives are called
sensitivity factors.

A second order formulation follows by truncating the Taylor expansion in Eq.6.22 after two first
terms as:

1 Tf39th(U) 1gu(u) =gu,l(u)+j(u_u*) ,. (u-u )(z, = 1,2,...,n) (6.27)uu, 9UU /

For each iteration of the analysis, the design values used in the previous analysis are updated
by multiplying the initial values of the random parameters with the computed design factors in
the X-space from the last iteration.

Due to the number of non-linear pushover static analyses required in the iterative approach
which amounts to 62 in each wave direction, more iterations require much longer running time
of computer(in average about 62 * 2 * 4 * 1500/3600 207 CPU-hrs). It is therefore assumed
that a few number of iterations will be sufficient to reach the vicinity of design point. However,
the accuracy and the convergence of iterations depend on the reliability method used for the
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Figure 6.5: Variation of reliability index with the COV of t-z
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Figure 6.6: Variation of importance factors as a function of COV of system wave load
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Table 6.6: Failure mechanisms of the jacket-pile-soil system under end-on and broad-side loadings

Table 6.7: The annual probability of the failure and the reliability index results of jacket-pile-soil
system analysis

wave load direction 3 FORM P1 FORM SORM
I

Pf SORM

analyses. Therefore both FORM and SORM methods are used and the obtained results are
compared for each iteration.
Note that the above a values are chosen based on our judgment and then compared and corrected
against the analysis results. Since a 0.0, /3m 0.0 and V >= 0.0 then we might have the
following for the system strength: x <= . a1 values are taken for e.g. as 0.25 for sand
and 0.07 for clay, a, is taken as 0.45 for pile-soil modelling of sand layers and 0.30 for pile-soil
modelling of clayey layers. V values are given in Table.6.1.

6.3.6 Discussion of results
The annual probability of failure of the studied platform is found to be approximately an order
of magnitude higher for the North wave direction than that for the west wave direction as given
in Table.6.7. The agreement between the FORM and SORM results is good for both studied
wave directions.

It may be noted that the variations of the wave height indicated here are related to a reference
wave height used in RELAP program not related to the real sea surface variation). Also it may
be worth mentioning that we have applied wave load incrementation approach in this reliability
study. The corresponding real sea surface elevation generated by WAJAC program are far below
main deck level for all the iterations of the analyses.

The overall uncertainty contribution of the pile-soil interaction modelling for t - z and q - z
axial loading and end bearing is found to be significantly higher than those for Ps - y and Pc - 7k
lateral loading of both sand and clayey layers for both wave directions.

The importance factor of t - z and q - z for the broadside loading of platform is computed to
be 16.19% while that for the end on loading of platform is obtained to be 12.84%. Therefore the
uncertainty in the axial modelling of soil is more pronounced for the northern wave than that
for the westerly wave (see Tables.6.9 and 6.10).

The overall uncertainty contribution due to the model uncertainty in the calculation of the struc-
tural strength (R) is about 12.5 percent for the North and 12.8 percent for the west direction.
The sum of importance factors related to the uncertainties in soil parameters are calculated to

Wave direction pile-soil failure member failure
Broad-side(North) uplift (axial pile failure) K-bracing(elev.4-5)
End-on (West) axial failure & plastic hinge Diagonal-bracing(elev.5-6)

North(Model A0) 3.637 1.377E-04 3.592 1.640E-04
West (Model A0) 3.850 5.908E-05 3.807 7.027E-05
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Table 6.8: The reference wave height(H,e1) values after each iteration

Table 6.9: The importance factors related to the sea load and pile-soil modelling
parameterR(North-wave)

be around 8 percent for the North wave direction (broadside loading) and about 10 percent for
the West wave direction (end on loading) (see Tables.6.9 and 6.10).

The randomness in the annual wave height H1 accounts for almost 29.5% of the total system
uncertainty for each wave direction. However, the importance factor of model uncertainty in
the wave load calculation varies from 34.0% for the North wave up to 34.8% for the westerly
wave(see Tables.6.9 and 6.10). These results show that the total uncertainty in predicting the
platform's collapse behavior largely is due to sea state and wave load modelling.

Any further improvement in the pile-soil-structure model uncertainty may also reduce the global
uncertainty and thus would increase the reliability index values. Sensitivity studies indicate
that the index of reliability is largely dependent on the variation of COV of the annual wave
height and the wave load model(see Fig.6.7).

The effects of proportional reduction in the coy of (t-z) and (q-z) of pile-soil system is somewhat
greater than the effect of reducing the uncertainty related to the calculation of the ultimate
structural strength (R). By comparison, a proportional increase of coy in (t-z) and (q-z) has
smaller effect on the overall reliability index of the jacket-pile-soil system than the increase of
coy of the annual wave height and the wave load model(see Fig.6.5).

The results plotted in Figs.6.3 and 6.4 suggest that the reliability index does not vary much with
COV of (p-y) modelling. For instance, Fig.6.5 shows that the the reliability index varies with
the wave directions. The discrepancy increases as the cov/cov0 ratio varies from the unity.

Iteration
no.

wave height
(North)

wave height
(West)

1 30.2 27.3
2 31.5 28.7
3 30.7 28.5
4 31.3 28.3

random parameter
(North wave)

importance factor
Model AO %

Model uncert. of wave load 34.0
Annual wave height 29.5
Model uncert. of struc. strength 12.5
Axial pile-soil model 16.2

Lateral pile-soil model 0.0
Soil&pile parameters 8.0
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Table 6.10: The importance factors related to the sea load and pile-soil modelling parameters
(West-wave)
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Figure 6.7: Variation of reliability index with COV of wave height

The results also indicate that the decrease of the reliability index is relatively larger by an in-
crease of coy of (t-z) and (q-z) random parameters than the decrease for the same amount of
reduction of cov(see Fig.6.5). For instance, a reduction of about half in the coy of (t-z) and
(q-z) increases the reliability index by about 5 percent while an increase of the same magnitude
reduces the fi value approximately 10 percent.

The study of the results on variation of the mean value(model uncertainty/model uncertainty-
ref) suggests a power relationship between the model uncertainty of R and the reliability index.
As expected, the value of /3 increases rapidly with increasing the model uncertainty of R while
variation of coy of (t-z) & (q-z) less affects the /3 index.

It is seen that the reliability index increases with the increase of the model uncertainty in the
wave height calculation from (model uncertainty/model uncertainty-ref) equal to 0.2 up to 0.4
and is almost constant up to (model uncertainty/model uncertainty-ref) equal to 0.6 and then it
decreases almost linearly up to the beta/beta0 equal to 2.0. The change in the sign of variation
of /3 for (model uncertainty/model uncertainty-re!) less than 0.4 might be to prevailing effects
of other uncertain parameters such as current and also due to inaccuracy in the wave theory for

random parameter
(West wave)

importance factor
Model A %

Model uncert. of wave load 34.9
Annual wave height 29.4
Model uncert. of struc. strength 12.8
Axial pile-soil model 12.8
Lateral pile-soil model 0.0
Soil&pile parameters 10.1
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Figure 6.8: Variation of importance factors with COV of (t-z) & (q-z)

that range of wave height.

As shown in Figs.6.3 the model uncertainty in calculation of (p-y) curves has negligible effect
on the /3 index. This is largely due to the fact that the overturning moment induced by wave
and current loads on the platform is resisted by the axial pile-soil reaction.

The variation of /3 with (model uncertainty/model uncertainty-ref) suggests a full correlation
between the /3 versus model uncertainty of (t - z) & (q - z) of pile-soil system with respect to the
wave direction. The maximum discrepancy of /3 of wave height for two different wave directions
in the range of model uncertainty=0 to (model uncertainty/model uncertainty-ref) equal to 2.0
is around 10 percent.

The study of the global importance factors shows that using a 5% coy for model uncertainty-R
instead of 15% which is conservatively taken in this study, would reduce the overall importance
factor for model uncertainty-R to about 2% while increases the contribution of (t-z)&(q-z) model
of pile-soil system from about 16% to nearly 20% (see Fig.6.2). A similar parametric study on
the variation of coy of model uncertainty of S indicated that by increasing the coy of model
uncertainty of S, the importance factor of model uncertainty of S increases almost linearly while
those of other parameters decrease rather slowly(see Fig.6.6). For instance an increase of 10
percent in coy of model uncertainty of S, would increase the importance factor of model uncer-
tainty of S by about 20 percent while it would reduce the importance of (t-z) & (q-z) modelling
from around 16 percent to 10 percent (See Fig.6.8).

The results of parametric studies on variation of various importance factors with changes of coy
in the axial modelling (t-z) & (q-z) of pile-soil system are plotted in Fig.6.6.

It is found that a reduction of 10 percent in coy of the axial modelling of pile-soil would reduce
the corresponding importance factor from 16 to about 5 percent whilst a 10 percent increase of
coy in the (t-z) & (q-z) modelling, would increase the corresponding overall uncertainty contri-
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x
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Figure 6.9: Convergence of the anuual probability of failure(Pf) with no. of iterations

bution to about 38 percent.

The annual probability of failure of platform is an order of magnitude higher for broad-side
loading of platform (see Table.6.7). In general the second order reliability method has resulted
in higher probability of failure values.

The study also shows that the tension axial pile-soil failure particularly for the broad-side loading
is more sensitive to uncertainties in the axial modelling of pile-soil. Since there is no end-bearing
for tension piles ,the overall pile-soil uncertainty contribution is largely attributed to (t-z) mod-
effing. However for the compression failure of pile-soil system, the effects of uncertainties in (q-z)
modelling can not be neglected.

Since most layers in the site of the studied platform consist of sand, thus any improvement in
the axial pile-soil modelling would significantly reduce the existing uncertainty in the API RP2A
1993 model which are used in this study to model axial loading of sand layers. To extend the
modifications by (Emami, 1994) which, are specifically introduced for clayey soils to sand, further
verifications are required. Fig.6.9 shows the convergence of the annual probability of failure with
no of iterations. A convergence rate of about 1.OE-06 has been achieved for p.

6.4 Concluding remarks
The reliability analyses of the pile-soil-jacket system indicate that the contributions to the over-
all uncertainties are mainly due to the wave load and pile-soil modelling. This is because the
lateral pile-soil behaviour is'not governing in the failure mechanism of the platform.

The importance factors for random soil parameters are very small compared with those for the
model uncertainty of annual maximum wave height H1, the model uncertainty in load calcula-
tion and the model uncertainty of system strength calculation.

0.4
1.5 2.5 3.5
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The reliability index from the last iteration of analyses is found to be about 3.64 for the North
wave direction and 3.85 for the west wave direction. These results show that the annual proba-
bility of failure depends on the loading direction of platform and thus varies with the imposed
wave direction.

The overall uncertainty contribution of the annual maximum wave height and the model un-
certainty in the wave load modelling is found to be in the range of 60-65 percent. While the
importance factor of pile-soil modelling is obtained to be in the range of 12-16 percent. The
results also show that the uncertainty contribution of the structural strength calculation is less
important than those for the wave load and pile-soil modelling.

The importance of uncertainties in the lateral modelling of pile-soil system are quite insignificant
compared to those of axial pile-soil modelling.

Parametric studies on the variation of importance factors and the reliability index with COV of
(t - z) and (q - z) suggested that any further improvement of axial modelling of pile-soil system
might reduce the probability of collapse.

Further work is needed:
1)To study more structural models to investigate the effects of wave on deck.

2)To verify modification of (t-z) model of pile-soil for more LDP tests on sand.

3)To refine the wave theory and wave height estimation.

4) To investigate an overturning based failure function for jacket-pile-soil systems whose global
failure is governed mainly by pile pull out or plunge



CHAPTER 7

SUMMARY AND CONCLUDING
REMARK S

Static pile-soil interaction
A review of the most widely used state of practice pile-soil interaction models is done in Chap-
ter.2. In addition, two new (t-z) and (p-y) load transfer-displacement models for pile-soil sys-
tems are introduced. The presented models are based on disk idealization of the pile-soil system.

The disk models are established based on a Mohr-Coloumbian form effective/total stress rela-
tionship and a shear tangent stiffness criterion of the soil. The derivation of the model is based
on simple continuum and soil mechanics theories. However, the model's tangent stiffness pa-
rameters o and /3 are dependent on the available triaxial test data.

The advantage of the disk models are their simplicity, efficiency and fairly good accuracy and
non-site specificness. The disk model(s) in general can be applied for any kind of soil but they
are specifically validated in Chapter.2 against the recent large diameter pile tests in clay.

The comparison of the disk model results with LDPT data in Chapter.2 showed that they are
fairly capable in different soil conditions such as normally and overconsolidated clayey soils.
The studied cases showed that the current practice code of API RP2A 1993 model might be
unconservative in the case of the normally consolidated clay while the other cases indicate that
the API RP2A 1993 model for overconsolidated clay might be rather conservative. A recent
literature review is conducted which indicated that the current practice models of API RP2A
1993 are generally conservative.

Static jacket-pile-soil interaction
The static behaviour of the jacket-pile-soil systems under extreme environmental loading such
as hurricane intensity waves and severe earthquakes is studied in Chapter.3.

317
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The ultimate collapse response of the jacket-pile-soil systems were determined by static pushover
analysis approach. In addition of the traditional wave load incrementation(WLI) method, a new
approach based on wave height incrementation(WHI) is also applied.

The influence of foundation modelling on the static behaviour of the jacket platform near the
ultimate collapse is investigated in Chapter.3. It is shown that a linear lumped spring to ground
model might offer a fairly good estimate of the initial response (stiffness) of the jacket-pile-soil
system.

It is found that the linear spring model may not be capable to predict accurately the ultimate
collapse behaviour of the jacket-pile-soil system. It is observed that near collapse behaviour of
the jacket platform might be influenced by the pile-soil failure.

It is shown that soil-structure interaction may change the failure mode of the structural element
and hence the overall system. It is observed that for e.g a soil yield simulated by a non-linear
pile-soil model may cause a spring back behaviour of the studied 4-leg jacket-pile-soil system
while a linear spring or fixed support system was unable to capture such significant change of
behaviour after collapse.

it is also shown that a non-linear pile-soil model is capable to simulate the collapse of a 2D-jacket
system mainly due to pile-soil failure.

It is observed that the effect of pile tip plug can be quite significant on the near collapse be-
haviour of the jacket platforms supported on relatively short piles.

The influence of different soil types such as sand, normally consolidated clay and overconsoli-
dated clay on the overall response of the jacket-pile-soil system is also studied in Chapter.3. It is
shown that the global static collapse behaviour of the jacket-pile-soil system might significantly
vary depending on the soil condition.

The influence of the wave load modelling based on Will approach is studied for an 8-leg jacket
platform of North-sea. it is observed that a more realistic wave load modelling based on wave
height incrementation may result in slightly (about 8%-9%) less ultimate collapse capacity than
WLI approach. The observed discrepancy may be attributed to the change in the wave load
distribution on the structural members as well as the shift of the centroid of the wave load on the
entire jacket. The accumulated plasticity is also manifested on the onset of the collapse(faiiure
cycle).

-

Stiffness degradation is also observed in the quasi-static cyclic response histories. The observed
stiffness degradation might be attributed to the change in sea surface elevation as well as struc-
tural and pile-soil element stiffness/strength degradation.
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Dynamic pile-soil interaction
The static disk model of pile-soil established in Chapter.2 might only be applicable for the en-
vironmental load conditions with low frequency of vibration such as extreme sea waves with
typical duration periods of about 10-20 secs.

For the high frequency loading such as seismic loading due to strong earthquakes a static pile-soil
model may not be applicable due to its lack of account for the dynamic(non-linear and reso-.
nance) effects.

To this aim, a dynamic pile-soil model is introduced in Chapter.4 based on a cone-disk idealiza-
tion of the pile-soil system. The model is a non-linear and non-homogeneous version of Wolf's
model. An indirect formulation of the model is initially introduced by Emami et al, (1996) by
coupling the non-linear multi-stack of disks with dynamic soil cone properties.

The main feature of the dynamic disk-cone model is its use of finite and boundary elements si-
multaneously. The advantages of the cone-disk model are illustrated as its simplicity, efficiency
and fairly good accuracy.

By using the disk-cone model, more insight is gained into the dynamic behaviour of the pile-soil
systems. It is shown that disk-cone model is capable to account for radiation as well as material
damping. It is also shown that both radiation and material damping can be formulated with
the disk-cone model of pile-soil.

It is shown that the disk-cone model can be applied both in layered and non-layered soils with
different boundary conditions. Both reflections and refractions at the boundaries of layers are
formulated.

The solution procedures of the disk-cone model are established in frequency and time domains.
Although the frequency domain analysis procedure is established in Chapter.4 based on super-
position approach for the linear elastic pile-soil system. Nonetheless, the procedure can be easily
extended to the non-linear pile-soil system. The time domain solution procedure is derived for
the non-linear pile-soil system.

The disk-cone model is applied for several single pile-soil cases under dynamic loading. The
predictive ability of the disk-cone model is examined in comparison with the static disk and also
the current practice API RP2A 1993 pile-soil models.

The effects of soil non-linearity on the pile-soil response is illustrated within the studied examples.

The hysteretic soil damping effects are quantified by means of elasto-plastic and hyper-elastic
soil models.

Simple lumped models of pile-soil system such as SDOF, 2DOF and 3DOF are also presented in
Chapter.4. Such models are shown to be quite efficient to study the effects of various soil and
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pile parameters in an extensive manner.

A number of parametric studies based on simplified lumped parameter models of pile-soil are
presented at the end of Chapter.4. Such studies demonstrated the sensitivity of the pile-soil
stiffness to the variations of the soil and pile parameters.

Ductffity demand analysis of jacket-pile-soil systems
Dynamic performance of a jacket-pile-soil system is found to depend on both structural-pile-soil
characterestics and dynamic loading effects. The key structural characteresics of a dynamic
system are considered to be mass, stiffness related via natural period relationship. The key soil
parameter is chosen as soil shear modulus. The loading effects are considered to be intensity,
frequency content, duration, shape and randomness.

A ductility demand concept is introduced in Chapter.5 based on non-linear dynamic analyses of
jacket-pile-soil systems. The ductility ratio and overload ratios are defined as key elements to
the establishment of ductility spectra. The presented ductility approach can be applied either
to determine:

the maximum damage potential to a jacket-pile-soil system under a given extreme environ-
mental loading history

.or the maximum overload ratio for a jacket-pile-soil system with a given maximum ductility ratio

.or the natural period(stiffness or mass) of a jacket-pile-soil system for a given overload ratio
and ductility ratio

Simplified non-linear SDOF based analysis approach is established for ductility demand analysis
of equivalent jacket-pile-soil system. A simple ductility-overload ratio relationship is obtained
based on the analyses of simplified systems such as SDOF.

For the purpose of illustration of the approach, a number of ductility demand spectra are es-
tablished in Chpater.5 based upon the analysis of simplified dynamic models such as non-linear
SDOF and 3DOF.

The predictive capability of the obtained formulation is assessed against the results of more
complex 3D-Jacket analyses, 2D-plane frame analyses and also other existing relationships.

Several interesting results are obtained from ductility spectra analyses such as:
ductility demand of the jacket-pile-soil system increases in general with decreasing the natural

period of the system

Considerable peaks and valleys are observed in the ductility spectra in the region of T <
2 - 3secs which might be attributed to the resonance effects superimposed on the non-linear



dynamic response of the system

It is observed that the peaks in the ductility spectra decrease significantly by increase of the
damping ratio from ltolO%.

It is generally observed that ductility demand for the wave loading are much larger than that
of seismic loading.

It is shown that the increase of bandwidth of hysteresis loops shifts the spectra towards smaller
values.

The results of ductility spectra suggest that an effective period concept may better describe
the dynamic response near failure.

The following results are also obtained from MDOF analyses of jacket-pile-soil systems:

The inertial resistance of the structure is shown to be important in providing an additional
reserve strength for structures with sufficient ductility.

It may be concluded that the effect of ductility can be significant in providing an overload
factor of large than unity. Overload factors in the range of 1.1-L2 were obtained for the systems
with ductile behaviour. On the contrary overload ratios slightly lower or closer to unity were
found for systems with semi-brittle type behaviour.

The foundation modelling is found to have significant influence on the near collapse behaviour
of the system. Hence, it is concluded that realistic (nonlinear) pile-soil models should be used
in the ULS based analysis.

The effects of superimposed harmonics are shown to be important in reducing the overload
ratio for brittle behaving systems. The reduction for jacket system under wave loading studied
here found to be less than about 5%.

It is observed that for the relatively stiff(rigid) jacket systems studied in the Chapter.5, the
ultimate dynamic collapse capacity is increased in the range of 3 - 7% through accounting for
relative velocity in the wave load calculation.

The smaller influence was obtained for the linear spring type foundation model and the plugged
type pile foundation with relatively smaller displacement response at the deck level compared
to the jacket with un-plugged pile for which we found a greater influence.

In the cases studied in Chapter.5, it is observed that the maximum displacement response of
the jacket at the deck level often exceeds the largest diameter of the leg member and also found
that no high frequency motion is involved at the deck level. The implication of these observation
and those reported by previous studies is to consider seriously the relative velocity effect on the
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ultimate near collapse behaviour of the jacket-pile-soil system.

Reliability analysis of jacket-pile-soil system
It is concluded that the sea state and wave load modelling are the major contributors to the
overall uncertainty of the jacket-pile-soil system. The reliability analysis of the jacket-pile-soil
system indicates that the importance factors related to the sea state and wave theory are about
60-70%.

It is also observed that the soil and pile-soil interaction modelling together contribute about
20 - 25% to the overall uncertainty of the jacket-pile-soil system. The influence of the axial
pile-soil model is more than that of the lateral pile-soil model. This might be due to the fact
the overall wave and current forces on the jacket platform are mainly resisted through the axial
pile-soil resistance.

The bias in the calculation of the ultimate structural strength is found to be least contributor to
the overall uncertainty of the jacket-pile-soil system. The importance factor associated with the
structure's ultimate strength calculation is obtained to be about 9 - 10% for the studied jacket-
pile-soil system. Hence, assuming the structural model parameters (strength) as deterministic
may be quite reasonable.

An extensive sensitivity study of various jacket-pile-soil parameters are carried out showed that
increase of the uncertainty of the sea, wave load and pile-soil model random variables might
result in considerable reduction of the overall reliability index of the system.

Any improvement of the sea state or wave load modelling may enhance the reliability of the
system. Further improvement of the shaft friction and pile tip resistance modelling might also
result in reducing the probability of failure of the jacket-pile-soil system.

Main contribution of this work
The main contributions of this work may be listed as follows:

Evaluation of the current practice pile-soil interaction models which are widely used today in
the design of offshore pile foundations

Establishment of simplified (t-z) and (p-y) interaction models based on disk idealization of
pile-soil system

Validation of the static disk models based on recent large diameter pile test data carried out
by BP and NGI (complementary to API database)
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Modification of the Wolf's disk-cone model for non-linear and non-homogeneous soil conditions

Verification of disk-cone model results against other more rigorious methods such as BEM

Static and dynamic analysis of the integrated jaáket-pile-soil system

Assessment of the traditional static pushover analysis approach based on wave load incremen-
tation and a more realistic pushover analysis approach based on wave height incrementation

Investigating the influence of foundation (pile-soil) failure on the ultimate response of the
jacket-pile-soil system near collapse

Examining the influence of the wave load modelling on the ultimate response of the jacket-
pile-soil system near collapse

Performing other parametric studies to assess for e.g. the effect of member fracture on the
ultimate response of the jacket-pile-soil system

Establishing an efficient ductility demand analysis approach based on simplified SDOF and
3DOF models to evaluate the dynamic performance and loading effects on jacket-pile-soil systems

Introducing a simple procedure for reliability analysis of jacket-pile-soil system at the limit
state of collapse

Recommendations for further investigations
Throughout this work attempts made to get more insight into the non-linear behaviour of the
jacket-pile-soil systems near collapse. This work could introduce some ideas about the effects
such as influence of the pile-soil failure on the response of the jacket platform near failure,
structural/pile-soil as well as wave load modelling and dynamic effects.

The cyclic soil behaviour is considered in this study to be nondilatant type and hence the as-
sociated flow rules of plasticity are applied in modelling the pile-soil interaction. However, it is
mentioned that cyclic soil behaviour might be significantly different for dilatant type soils such as
OC clay and sand. It is recommended to consider the non-associative type hardening/softening
models in dealing with these kind of soils.

With respect to the static pile-soil modelling, the coupling effects under combined axial and
lateral loadings between (t-z) and (p-y) response are not treated. However, it is recognized that
the coupling might have some considerable effects particularly for the jacket pile foundations
under simultaneous axial and lateral loading. The effect might be more significant for the cyclic
loading of the piles due to extreme storms or earthquakes. The pile-soil interaction issue has to
be studied further by including the coupling effects under extreme cyclic loading.
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Within this study the jacket foundations are modelled as single piles and the pile-soil-pile interac-
tion(pile group effect) is not modelled. However, some preliminary studies have been conducted
by the author(SINTEF memo) and the topic has to be investigated further.

The ductility analysis approach established within this work proved to be a simple but effi-
cient tool for studying the ultimate dynamic response of the jacket-pile-soil systems. Studies
on several key parameters such as natural period, the overload ratio, ductility ratio, soil shear
modulus and hysteretic model parameters are performed. More ductility spectra studies of these
and other structural and pile-soil as well as load model parameters have to be considered.

In the dynamic analysis of the jacket-pile-soil systems under extreme waves, the main focus is
placed on the wave on jacket forces while the horizontal and vertical wave forces on the cellar
and the main deck are also considered. Due to the importance of the impulsive forces on the
deck, it is required to study more cases with inclusion of wave on deck forces.

The dynamic pile group effect is not treated in this study and is recommended to be considered
in future study of jacket platforms. This issue is quite crucial for the jacket pile foundations
subjected to strong ground motions or significant subsidence and encountering wave on deck
forces.

Further verification of the (t-z) and (q-z) models against the large scale pile test results are
needed to provide additional data about uncertainty model parameters. However, the assumed
values for bias and COV of pile-soil random parameters in Chapter.6 based on available API
and NGI database are thought to be quite reasonable.
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APPENDIX A

Static pile-soil disk model

A.1 (t-z) disk model for perfectly overconsolidated lay-
ered soil

For a special case of clay with fi = 1 from Eq.4.28, a linear relationship between GT and r is
obtained as:

GT = G(1 - L) (A.1)
7.ps

where r98 is defined in the main text of Chapter.2 as the failure stress at the pile-soil interface
and obtained in Eq.2.45 based on Mohr-Coulomb criteria.
The shear strain may be obtained as follows:

dr dr
(A.2)

rp

integrating the Eq.A.2 results in:
1aL

y=--1Ln( ') (A.3)aG 1 -
rp.

Now integrating 7 over the radius of the soil disk will result in the axial displacement z as a
function of - in the following form:

Ptid 1 -
z=J 7(r)dr= --Ln( Tp)

Jr. aG 1 - (A.4)
Dp

Substituting for T in Eq.A.4 from Eq.2.13 will yield:

z = Lra
r 1ar -

.
---Ln(

-
(A.5)

Integration of Eq.A.5 may be performed numerically. The results of numerical integration and
the fitted functions are prsenented in the following sections.
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340 APPENDIX A. STATIC PILE-SOIL DISK MODEL

A.2 A general case of (p-y) model for partially drained
soil

For the case of a partially drained soil, the radial strain after time (t) may be related approx-
imately to the circumferencial strain at time (t) and the amount of drained soil since loading
process begins at time (t = 0)as follows:

1e7(t)I = Ie(t)I + adIE(0)l (A.6)

in which Er(t) may be related to (0) in a simple way as follows:

e(t) = f(t).Er(0) (A.7)

Combining Eqs.A.6 and A.7, one might obtain:

kT(0)I f(t)
ke(0)I - ad - f(t)

The distortion caused by shearing in the soil infinitesimal element at time (t) y(t) may be
expressed approximately as follows:

b'(t)I = Ie(0)I[ad + 2(fe(t) ad)] (A.9)

From Eq.A.9, e(0) may be obtained as follows:

= ad + 2(f(t) - ad)
(A.1O)

Hence, f7(t) may be obtained from Eqs.A.1O and A.? as follows:

pr d'r
E(t) = J

' /
. (A.11)

To ad + 2(f(t) - ad) GT(t, T)

The lateral soil displacement function y(t) may be obtained through integration of (t) over the
disk radius as follows:

't) 1n'. r f(t) dr
d (A 12)- Jr Jr ad + 2(f(t) - ad(t)) G(1 - at)exp(-))'3
r

f (t) may be considered as consolidation function of soil and several empirical as well as theo-
retical forms exist in the soil mechanics literature for it(see for e.g. Das, (1985)).

A.3 Comparison of fitted functions and integration of (t.-
z) and (p.-y) disk models

(A.8)
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APPENDIX B

LDPT verification cases(Pentre,
Tilbrook and Houston)
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Figure B.1: Comparison of (t-z) response Figure B.2: Comparison of (t-z) response
curves for Pentre pile(NC case)at depth 15m curves for Pentre pile(NC case)at depth 16m
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Figure B.3: Comparison of (t-z) response Figure B.4: Comparison of (t-z) response
curves for Pentre pile(NC case)at depth 17m curves for Pentre pile(NC case)at depth 18m
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Figure B.5: Comparison of (t-z) response Figure B.6: Comparison of (t-z) response
curves for Pentre pile(NC case)at depth 19m curves for Pentre pile(NC case)at depth 20m
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Figure B.7: Comparison of (t-z) response Figure B.8: Comparison of (t-z) response
curves for Pentre pile(NC case)at depth 22m curves for Pentre pile(NC case)at depth 27m
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Figure B.9: Comparison of (t-z) response Figure B.1O: Comparison of (t-z) response
curves for Pentre pile(NC case)at depth 30m curves for Pentre pile(NC case)at depth 33m
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Figure B.11: Comparison of (t-z) response Figure B.12: Comparison of (t-z) response
curves for Pentre pile(NC case)at depth 36m curves for Pentre pile(NC case)at depth 40m
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Figure B.13: Comparison of (t-z) response Figure B.14: Comparison of (t-z) response
curves for Pentre pile(NC case)at depth 43m curves for Pentre pile(NC case)at depth 46m
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Figure B.15: Comparison of (t-z) response Figure B.16: Comparison of (t-z) response
curves for Pentre pile(NC case)at depth 49m curves for Pentre pile(NC case)at depth 52m
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Figure B.17: Comparison of. (t-z) response Figure B.18: Comparison of (t-z) response
curves for Pentre pile(NC case)at depth 55m curves for Tilbrook pile(OC case)at depth im
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Figure B19: Comparison of (t-z) response Figure B.20: Comparison of (t-z) response
curves for Tilbrook pile(OC case)at depth 2m curves for Tilbrook pile(OC case)at depth 3m
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Figure B.21: Comparison of (t-z) response Figure B.22: Comparison of (t-z) response
curves for Tilbrook pile(OC case)at depth 4m curves for Tilbrook pile(OC case)at depth 5m
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Figure B23: Comparison of (t-z) response Figure B.24: Comparison of (t-z) response
curves for Tilbrook pile(OC case)at depth 6m curves for Tilbrook pile(OC case)at depth 7m
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Figure B.25: Comparison of (t-z) response Figure B.26: Comparison of (t-z) response
curves for Tilbrook pile(OC case)at depth Sm curves for Tilbrook pile(OC case)at depth 9m
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Figure B.27: Comparison of (t-z) response Figure B.28: Comparison of (t-z) response
curves for Tilbrook pile(OC case)at depth lOm curves for Tilbrook pile(OC case)at depth lOm
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Figure B.29: Comparison of (t-z) response Figure B.30: Comparison of (t-z) response
curves for Tilbrook pile(OC case)at depth lthn curves for Tilbrook pile(OC case)at depth 16m
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Figure B.31: Comparison of (t-z) response Figure B.32: Comparison of (t-z) response
curves for Tilbrook pile(OC case)at depth 19m curves for Tilbrook pile(OC case)at depth 22m
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Figure B.33: Comparison of (t-z) response Figure B.34: Comparison of (t-z) response
curves for Tilbrook pile(OC case)at depth 25m curves for Tilbrook pile(OC case)at depth 31m
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APPENDIX C

LDPT verification cases (Tilbrook and
Houston)
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Figure C.1: Comparison of (t-z) response Figure C.2: Comparison of (p-y) response
curves for Tilbrook pile(OC case)at depth curves for Tilbrook pile(OC case)at depth
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Figure C.3: Comparison of (p-y) response Figure C.4: Comparison of (p-y) response
curves for Tilbrook pile(OC case)at depth curves for Tilbrook pile(OC case)at depth
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Figure C.5: Comparison of (p-y) response Figure C.6: Comparison of (p-y) response
curves for Tilbrook pile(OC case)at depth curves for Tilbrook pile(OC case)at depth
3.Om 4.Om



Figure C.7: Comparison of (p-y) response Figure C.8: Comparison of (p-y) response
curves for Tilbrook pile(OC case)at depth curves for Tilbrook pile(OC case)at depth
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Figure C.9: Comparison of (p-y) response Figure C.1O: Comparison of (p-y) response
curves for Houston pile(OC case)at depth curves for Houston pile(OC case)at depth
O.5m 1.Om
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Figure C.11: Comparison of (p-y) response Figure C.12: Comparison of (p-y) response
curves for Houston pile(OC case)at depth curves for Houston pile(OC case)at depth
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D.1 Geometrical properties of cone model
The following contains a list of geometrical properties of cone which are given for vertical,
horizontal and rocking motions, respectively.
(I) Vertical motion of disk:

For this case, the vertical velocity for 0 < ji 1/3 will be c,, and for 1/3 < ii 1/2 as 2c8

(Gazetas et al, 1984). The horizontal wave velocity for this case may be considered as Rayleigh
wave velocity denoted by CR (Wolf and Meek et al, 1994). Fig.4.47 illustrates schematically the
wave propagation from a vertically loaded disk. Now substituting the corresponding values of
ch and into Eq. 4.5, we will have:

= tg'() = tg'() (D.1)

CR may be obtained by equating the initial static stiffness of a disk under translational motion
to that of exact value obtained by Gazetas et al, (1984) as follows:

4C
CR = ir(1 -

As seen, the Rayleigh wave velocity is a function of C8, and ii. The shear and compression
wave velocities are given as functions of the soil's shear modulus and Poisson ratio (see for e.g.
Gazetas et al, 1984, Wolf et al, 1994) as:

1E8 1-2v
(D.3)C8 =

V2p 1ii V

/2G 1v
Vp1-2) (D.4)
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By substituting for c5 and c, in Eq. D.2, we will have:

2 /2G11-2v'
V

CR = ir(1u)
which implies that CR can be expressed as non-lineal function of time and space by means of
Eq. 4.28 in the following form:

CR = ir(1v)
After re-arranging the terms in 4.140 , we will have:

- 4 (C8)2

C9

- 1

ir(1zi)

(1_2V)1 V

(II) For a horizontal motion of disk:
ch may be assumed as a function of c., and c8 (or simply as an average of them):

C8 + C9
Ch=

2

From a horizontally loaded disk as shown in Fig. 4.48 two different types of waves may emanate
dilatational waves in the direction of the disk's motion with a velocity of c9 and shear waves
perpendicular to that moving with a velocity of c8. In the vertical direction, the wave will travel
with a shear wave velocity c = c3. Hence, the corresponding aspect ratio of the cone may be
obtained as follows:

= -'( Ch C + CS)

c, 2c8

Inserting Eqs.D.4 and D.3 into Eq.D.1O will result in:

= t9'(
+

2

ii 1/3

1/3 < ii 1/2

(D.5)

(D.9)

(D.1O)

(D.11)

From D.11 and D.1O the aspect ratio may be obtained as follows:

zi
D12

For e.g. for a perfectly compressible soil with ii = 0 the aspect ratio corresponding to the
horizontal motion of the disk will become:

2
0.83 (D.13)

r2 1+'
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and for a perfectly saturated soil(incompressible) with u = 0.5 the cone's apex height Corre-
sponding to horizontal motion of disk will approach zero. (i.e. the cone is transformed to a
plane disk). For a partially saturated soil with ii = 1/3 from Eq.D.12, we get:

2

r 3

Comparing the above obtained values based on cone model and the exact values from Gazetas's
solution as:

ziurn = - = 0.76
r,,.40 4

lim = (2 - ) = 0.65r1,113 8 3

lim = (2 - ) = 0.59r . 8 2

(D.14)

As seen the only theoretical shortcoming is associated with the case of v = 0.5 which is already
addressed. Since c, approaches infinity at this limit of v hence an asymptotic or limit is defined
for lirnc,05 2c8. Inserting this asymptotic value in Eq.D.10 will result in:

lim- = 0.67
r,,4112 -3

(D.18)

compared to exact value of 7r/4. The max. discrepancy for this limit of v is about 14.6%. For
the compressible soil the max. discrepancy is less than 6% which is very good.

(III) Rocking motion of disk:
For the rocking motion of the disk as shown in Fig. 4.49, the vertical wave velocity may be
considered as c = c while that of the horizontally propagating waves from the disk may be
considered as the Rayleigh wave velocity Ch = CR. Hence, the aspect ratio of the cone or the
associated apex angle for this case may be obtained as follows:

;v<1/3 (D.19)
Ch CR

; 1/3 < v < 1/2 (D.20)

Comparing the obtained values from latter with the exact solution of Gazetas et al, (1984) as:

(2 (D.21)

(D22)
4 c8

The discrepancy is about 10.7% which is quite satisfactory.
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D.2 Dynamic stiffness coefficients of a frictional system
The derivation of impedance functions kd(ao) and cd(ao) according to frictional damping model
are given in the following. For a harmonic type of response for which u = usin(wt), it =
wucos(wt) , ii = u,w2siri(wt) and it = w3u,,,cos(w) and with initial values u0 = ito =
ito = uo = 0, Then N(w) may be expanded as follows:

N(w) = Kusin(wt) + Kwutan(8)sgn(cos(wt)) + Cwucos(wt)
Cw2uO.5tan(5)sgn(sin(wt)) - M.w2u77.sin(wt) - M.w3u.tan (8) .sgn(cos(wt(J.23)

Now dividing Eq. D.23 by Ku will result in modified dynamic stiffness function based on
frictional damping as follows:

S(w) . Cw Cw2
= szn(wt) + tan(6)wsgn(cos(wt)) + _k_cos(wt) - 0.5tan(ö)ksgn(szn(wt)) -

zM2. M3
.szn(wt) - j?-_.w .tan(ö).sgn(co8(wt)) (D.24)

If the sgn function in Eq. D.24 is expanded by means of Fourier expansion, we wifi have:

5(w) . wC 4 1 . 1 wC
= szri(wt) - 1lm(SiflWt + 3szn3wt + szn5wt + ...) + kcoswt

4 1 1 2AM. 2M 4
+271m(COSWt - äcos3wt + cos5wt + ...) - w .k_.szn(wt) - w jj-.2iim.(Coswt

cos3wt + coswt + ...) (D.25)

Now truncating the above expansion by omitting the superharmonics would result in the follow-
ing approximate form:

S(w) 4z0c8 2M . z0c8 rlm4 2.M 4= (1 - ---?lmao - w )sznwt + ao(-- + 2-- - w .2i - m)coswt (D.26)
K ir r0 c K r0 c a0 ir K

D.3 Recursive computation of Green functions
The recursive method for evaluation of Green function fin-k as described earlier in the main text
of chapter.4 will be discussed in detail in this section. The basis for evaluation of fin-k may be
described as the correspondence between the coefficients of the following convolution integral
and a mathematical recursive function of a general response function in terms of its previous
values and its variables:

u(t) = f h(t - r)P(r)dr (D.27)

In which the unit impulse function h(t - 'r) which can be obtained from the solution of a the
following differential equation of a single linear cone (modified after Meek and Wolf et al, 1994):

- r)) + h1(t - r) = 5(t - r) (D.28)
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- r) =
=1;

The 8'(t - r) function may be defined as follows:

8'(t - T) = 1;
=1;

t=rtr
t=rtr

(D.30)

(D.31)

By combining Eqs. D.29 to D.31 and inserting into Eq. D.28, the equilibrium can be satisfied for
all values of t. (Including t = r in which the right hand-side exists). By comparison the original
solution given by Meek and Wolf et al,(1994) does seem to only satisfy the general differential
equation without the non-zero term at the time t = r as follows:

As seen the latter is a particular case of the solution given above for t T. To obtain the
solution of Eq. D.27 for a linearly varying stepwise load as described above. The following
recursive relationship is obtained by Wolf et al, (1994) for a general stepwise load variation
between two successive stations n-i and n as follows:

= ay_1 + b0x + b1x_1 (D.33)

in which y,,, Yn-i, x and x_1 represent the values of response and its variable (load) at time
stations n and n-i, respectively. By analogy between the convolution integration Eq. D.27 and
a the general recursive relationship of Eq. D.33, Wolf et al, (1994) obtained the coefficients of
the latter equation as follows:

a (D.34)

which is a particular form of Eq. D.32 by inserting r = 0 and t = 8t. And the two other
coefficients are computed as:

in which h1 (t - r) refers to the response in one degree of freedom, say vertical or horizontal etc.
at time t due to the corresponding unit impulse at time r. The term 8(t) on the right hand-side
of Eq. D.28 denotes a unit impulse load (force) applied only at time t = r so the value of the
latter function will be zero elsewhere (i.e. 8 = 0 for t r). The solution of Eq. D.28 may be
obtained by inspection as follows:

hi(t - r) = 8"(t r)Ce_t_(t_T) (D.29)

in which the first function on the right hand-side of Eq. D.29 may be defined as:

h(t - r) = (D.32)

bo

=

(D.35)

b1= K 8t +e ) (D.36)
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Now continuing the recursive relationship Eq. D.33 for the time stations (k+1), k and (k-i) ,we
may have:

Noting that zk_1 = 0, Xk 1 and Xk+1 = 0 and inserting these in Eqs. D.37 to D.39, we may
obtain:

Ilk = ak_l(abo + b1) (D.40)

in which all the parameters are as defined above. The latter equation is the only relationship
which is needed to calculate the flexibility (Green) matrix [Ga_k]. The explicit form of this
function is then written as:

Comparison of the Green unit impulse functions for the triangular pulse and a concentrated load
at infinitesimal time interval shows that the Green function of a concentrated load for the same
time station as the time of load application is several order of magnitude higher than that of a
triangular pulse within a finite time interval (25t = tk+1 - tk_1) it is assumed that the intervals
have the same lengths). The latter can be easily understood in both mathematical and physical
senses. From mathematics point of view, the impulse response function at the time of a unit
impulse within dt = di- time can be obtained from either Eqs. D.29 or D.32 as follows:

Using Eq. D.41 for n=k , we may obtain:

1 cOt cOt
9n=k = + e - 2)

C
h(t = r) = Kr, (D.42)

(D.43)

It is quite obvious that the for an infinitesimal time interval 5 = dt, the g,. = 0 which
means only an infinitesimal loading portion of the whole time history is considered, hence its
contribution as expected will proportionally be negligible. On the other hand, from physical
point of view, this means that the Eq. D.43 does not consider a unit load's very significant
contribution at the time of application or close to that time (after the incident). On the contrary,
Eq. D.42 considers only the effects of an impulse (shock) at an extremely short duration (dt). It
is clear from Eq. D.42 that the response of a unit impulse dissipates very rapidly in the medium
as the source load disappears and the waves earlier generated propagate towards infinity and
carry the energy to the far field of soil medium which is referred to as the radiation damping of
the cone model.
The implication of the latter discussion is that it is very important to recognize the loading
type for this cone model .(i.e. if the load is impulsive or consists of very short impulses such as
shock waves then the Green matrix must be assembled based on the concentrated load impulses
as given by Eqs. D.42 or D.32. However, for a steady-type of loading over a finite period of

Yk+1 = ayk + boxk+l + blxk (D.37)

Yk = ayk_1 + boxk + blxk_l (D.38)

Yk-1 ayk_2 + boxk_l + blxk_2 (D.39)

-(,-k) . i -cot
gn_k=e -(e+e -2) (D.41)
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duration which is often the case for e.g sea and seismic wave loading, then Eq. D.41 or D.43
would be relevant.
However, from mathematical point of view this discontinuity of two formulations at their limits
may be resolved by adding the corresponding concentrated impulse term on the right hand-side
of Eq. D.41 as follows:

Ynk = 9nk,d + 6(8t - dt)gn_jc, (D.44)

in which Dirac-ö function will be equal to unity for öt = dt and elsewhere will be zero.
A particular form of the Green function is the instantaneous Green function gjj (a, w) which can
be derived according to the above general procedure as follows:

gjj(a, w) = f f [iz(t - = ö(t - T)ie_t_T (tr)] exp(iwt)drdt (D.45)

where all the terms involved in the latter equations are as defined above.

D.4 A procedure for generating hysteretic ioops
The soil hysteretic behaviour may be simulated by using the backbone relationship and a stan-
dard procedure such as Massing's rule or other magnification methods such as constant with
linear elastic or hyper-elastic unloading, elasto-plastic re-loading or hyperelasto-plastic re-loading
etc. The latter models can be generated by applying the initial stiffness C2, the tangent stiffness
CT or secant stiffness GSCC of the soil (see for e.g. Langø et al, 1991 and Svanø et al,1993).
It can be seen from Eq. 4.21 through Eq. 4.28 that the nonlinear dynamic stiffness of the pile-soil
system is a function of the soil's shear modulus C. In the previous section, C assumed to be
constant for a linear type of pile-soil interaction. However in general, this modulus may vary
with the shear strain increase of soil and also the number of the hysteresis cycles as shown
schematically in Figs.4.29 and 4.28.
The following steps may be applied to generate the cyclic hysteresis from the above established
skeleton curve:

A loading branch can be generated by using 9T = fe(s) and the given displacement or
computed one at the time step i of analysis

The unloading may be detected through the variation of the internal loading which can also
be explicitly related to the changes in the displacement at element level based on the type of the
cyclic loading whether is load controlled or displacement controlled, respectively can be applied.
The latter check may be written as:

The unloading branch may be constructed by using the initial part of the hysteresis curve (or
the first branch of loading) and using the proper magnification or mirror rule as:

T - T98
=

- 'Yps

am! amf
(D.48)

Un1.Un <= 0 (D.46)

or similarly:
ji1.j3 <= 0 (D.47)
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where c may be defined as the magnification factor. For e.g Massing's rule assumes that
amf = 2 for a constant mirror hysteresis mf = 1 etc.

The above procedure may be applied similarly for the re-loading part of the this time with
the same curvature sign and according to the magnification rule Eq. D.48.

for a degrading hysteretic system, procedure described in steps a) to c) may be coupled with
an excess pore water pressure model such as the one proposed by Janbu, 1975. The following
cyclic degradation formula may be derived based on Janbu's cyclic resistance concept:

N + Nm N8 1
SN = log

Nm
(D.49)

in which 5N and .s correspond to the normalized shear stress as defined by Eq. D.75, at the Nth
and the 1st cycles, respectively. The other parameters involved such as Nm, N8 are determined
according to the cyclic resistance concept of Janbu, 1975 through a series of one -way and
two-way cyclic triaxial tests on various soil samples, including NC, OC clay and sand.
The unloading for soil type material may be assumed elastic or hyper-elastic depending on the
type of model used. The hyper-elastic model is particularly suited for the soil type materials
(see for e.g. Crisfield, 1991).

D.5 Refraction coefficients of cone at the layer bound-
aries

The refraction coefficient at the boundary of two flexible layers may be obtained as follows. The
displacement induced by the incident and reflected wave at the lower boundary may be obtained
as:

z z1 2d z
uj(z) = f(t - -) + g(t - - + -) (D.50)zj+z c zj+2dz c1 c1

The displacement associated with the refracted wave at the lower boundary u (z) can be obtained
as:

d du(z) h(t - - + - - -f-) (D.51)zd+z c1 C,. c,.

The normal cone forces associated with Ui (z) and U,. (z) may be obtained according to continuum
mechanics theory as follows:

N1(d, t) = o1.Ag = E,.1.A1 = pz.c2jAi. (D.52)

N,.(d, t) = u,..A,. = E,..e,..A,. = (D.53)

The strain components can be calculated according to Eqs.D.50 and D.51 as follows:

z1 1 Of z1 1

(Z1+Z) cIO(t_zI+z+(zj+2d_z)29+zz+2d_zO(t_

and so the strain component related to the refraction may be derived as follows:

h
zz,. Oh 1

f (z,+d)(zjd+z)2 +(
+d)(Z d+Z)O(td+d Z)( a,.)

2dz).() (D.54)

(D.55)
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Satisfying the equilibrium condition of the forces at the lower boundary between two adjacent
layers (i) and (i+1) where z = d and A1 = A, we shall have:

N,(d,t) = N7(d,t) (D.56)

Hence, we will have:

+ 1)g = (pjc, - pc)f Pii PrC2r
(PICI+prCr)g'+(+d Zr +d

From latter first order differential equation the refraction coefficient may be obtained for lower
and higher limits of the frequency range of excitation as follows:

Z,.lzm77j,d,0 = 1 +
±z,-f-d z,.

PlC! - PrCr1+lzmTh,d = PlC! + PrCr

For a more general form of cone(ri 1), the following coupled first order differential equation is
obtained as follows:

n Zj )fl pr.r.Ar.fl.(Z1Z(2 -1
9(Pl.c21.A1.(z±2d zj+2d-z z,+d

ZI
+(-pj.c1.A1.(

+ 2d +
+ Pr.Cr.Ar. lr(r d + Z))

= f(pj.c21.A1.(
n Zl )fl

zj+d z1±z z1+z
2 ZIZr(Zr d+ Z))fl( -1

+ f(p,.cj.Aj.( Zi )fl ZIZr(Zr -d+Q60)
+Pr.0 ,..Ar.fl. Pr Cr.Ar.zj+d Zrd+Z Zj+ ZI +

For the low frequency limit of the excitation(static case), the refraction coefficient may be
obtained as follows:

z+d z+d zg+d / z,.d+z)lim1,0 = 1 + (z,d+z) 1
(D.61)

pj.c21.Aj.( z,+dz ) ( z1+z )n + pr.c2 r.Ar.fl(' zz+d ) (z,.d+z)

For the higher frequency limit of the excitation (w oc), ijj may be obtained as follows:

z,z,.(z,.d+z)pj.c1.A,.(-- Pr.Cr.Ar.( z,+d (D.62)zi-f-z'lim7ij =1+
zj z,. (Zrd+z)Z )npi.cz.(Z+2d_Z + Pr.Cr.Ar.( zi+d )

By inserting z = d the refraction coefficients may be obtained at the lower boundary as follows:

pic21
z+d Zrlim11j,djo = 1 +
p1c2L ± 12r
zi+d Zr

Pi cz(n)Th' Prr
lim7jd =1+ )'+pr.CrP1Cl(z

(D.57)
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As seen, for the low frequency limit (static) the refraction relationship for a general cone(n >= 1)
is exactly the same as obtained in Eq.D.63 for a particular case of cone (n = 1). Hence, the static
energy transmission through one flexible layer of soil to the adjacent one does not depend on the
shape of the cone in general. Thus, even for n 0 a prismatic bar the refraction coefficient at
boundary of two considered layers ?7J,d will be the same. However, as Eq.D.62indicates ,the limit
of the refraction coefficient for the higher frequency of excitation is dependent on the shape of
the cone and the two adjacent layer properties but independent of the frequency of excitation.
For a particular case of cone n = 1 (or wedge) the latter equation results in Eq.D.59 which is
independent of the layer thickness and the shape of cone.

D.6 Particular cases of cone's refraction coefficients

If C1 >> C + Cj >> C which means a layer on the air, we will have from Eq.D.63:

The latter coefficient was used in the main text and was also obtained from a general relationship
for the mud-line. If C1 << C,. which is the case for a layer lying on a rigid bed-rock, we will
have: c1 << C? the following refraction coefficient can be obtained from Eq.eq:eta-refraction-
layer-static:

= 0 (D.66)

which means that no refraction occurs in this case and all the wave energy is reflected. Let us
consider another particular case, C2 = C,. when two layers have the same properties which is the
case of a homogeneous soil half space with finite element layering. From Eq.eq:eta-refraction-
layer-static, we shall have:

limr,j = 1 (D.67)

which means that the whole propagated energy is refracted through the boundary of the layers
and no portion of it will be reflected through the half-space layer. All the latter conclusions can
be easily verified by means of Eq.D.64. For an intermediate frequency of excitation, however, the
general solution of differential equation has to be obtained either in time or frequency domains.
For a harmonic loading with a frequency of u the solution of Eq.D.60 can be easily obtained as
follows:

1im7 = 1 +
zjz,.(z,.d+z)

p d2 - p,.c,..A,..n( , 1

z,-4-d ) (z,._d+z) + iw(pz.ci.Az(Y PiC?4i( z,+d
XL \fl + p,..C2,..A,..fl( n 1 ' iw(pj cj ( XL )n + p,..c,..A,..(z..._d

'ZL+2dX1 z,-f-d ) t'z,.d+z) zj-f2dz " z+d

limrj1>> = 2 (D.65)
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D.7 Cyclic degradation criterion for clayey soil
The derivation of the cyclic degradation formula of soil based on Janbu's resistance concept
(Janbu, 1976) and formula of Skotheim et al, (1982) which is presented in the main text:

d 1N dN
ucu =

TuJl No+N+Neq

where u is the generated cyclic access pore pressure of water, = the deviatoric shear stress
as r1 - O3, r,, = a resistance ratio obtained from cyclic triaicial test, N =number of the cycles
in a current shear stress block, N0 =a resistance reference no, Neq = an equivalent no of cycles
accounting for the past cyclic stress history of the soil Skotheim et al, (1982) presented a formula
based on Janbu's cyclic resistance concept as follows:

Neq = (N0 + l)eXP(UT2L) 1) (D.70)

Inserting Eq.D.70 into Eq.D.69 and integrating will result in:

j N+exp(-"-)(No+1)-1N3ut,, = .Ln (D.71)
r exp(-)(No+1)

Now considering that the principle of superposition may not apply for some particular cases of
cyclic soil mobilization a shear stress number may be considered to account for such interaction
effect and may be simply subtracted from the numerator of Eq.D.71 which will be re-written as

7d N+NmN81= .Ln (D.72)
m

where: Nm = exp()(No + 1) and N5 may be determined from cyclic triaxial tests for each
particular soil type such as NC and OC clays and sand.

D.8 Tangent shear modulus GT relationship
The relationship between the tangent shear modulus' of soil GT and its shear strain 'y may be
derived from Svanø's cyclic shear mobilization(CSM) model(Svanø et al, 1993) as follows:

9_9maz(+h ).$)

where g is the normalized shear modulus as:

- + ad

(D.69)

where G5 is the shear modulus of soil, o the mean effective stress and ad the dynamic attraction
of soil. In Eq.D.78, g is the maximum normalized shear modulus of soil which then is easily
followed from Eq.D.74 by only replacing G5 with h, A are curve fitting parameters obtained
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empirically and s is the normalized shear stress at the pile-soil interface which can be written
as:

8= T
(D.75)

,, + ad

where r is the cyclic shear stress at the pile-soil interface and the other parameters are defined
above. The relationship between r and y near the pile shaft may be written as:

T = G8.7

The tangent shear modulus of soil can be found as:

GT=

By combining Eqs.D.78 to D.77, yields:

GT + ad)(1 - As - Ahs2)
- (1+2hs)

By combining Eqs.D.78 to D.77, the following relationship between s and 'y is obtained:

1+ V"l +
2h

where b = and c = (b.A + 1). By combining Eqs.D.78 and D.79, GT is obtained as:

GT G2(1 - A)
(D.80)

'I1+4

where G, = 9max.( + ad). b and c are given above. By inserting b, c and G into Eq.D.80, the
following expression for the tangent of the pile-soil's skeleton curve emerges:

T_(0m+ D 1- 11--4_h7g,,
( .8

V .79m+1

From Eq.D.81, for 'y = 0, the initial shear modulus will be equal to C given in Eq.D.74, while
for y -+ oo the ultimate tangent shear modulus of soil will approach zero.

D.9 A simple procedure to determine the coefficients of
the tangent shear modulus of soil

Based on available triaxial test data for a specific type of soil such as NC or OC clay and sand,
a polynomial relationship may be fit as follows:

n

9 = a282 (D.82)
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where g and s refer as before to a normalized shear modulus of soil and a normalized shear stress
parameter. The coefficients of the polynomial a, may be determined through a linear regression
analysis or a simply a least square of error method(see for e.g. Matlab manual, 1992).
Particular cases of g function may be fit as described by for e.g. Langø, (1991) and Svanø et al,
(1993):

g = g(1 - a.$) (D.83)

The coefficients of the latter two parameter relationship can be obtained from triaxial test data
for any particular type of soil. For eg. Langø et al, (1991) has described some typical values of
c and 3 parameters obtained for NC and OC clays of Eberg, Gløva and Drammen in Norway.
A hyperbolic type relationship for g is described by Svanø, (1992) for clay soils with two material
parameters as h and .\ as follows:

1

99t(+h ).$)

Based on data provided by Daghigh, (1993), the parameters of Eq.D.83 are calibrated for sand
as given in the following Table:

Table D.1: Soil tangent stiffness related material parameters
soil parameter/type NC clay oc clay sand

(D.84)

D.1O An iterative procedure for calculating the coeffi-
cients of Bouc's model

The coefficients ci and c2 are determined with respect to the sign of ü and zb functions at any
time step. Since the value of function is dependent on c coefficient in Eq.4.206, hence, its
value from previous step is used to determine the coefficient c2 and so c. After initial prediction
of parameter c, zb can be updated from Eq.4.206 and its value is used to correct c2 and hence
c. This iterative procedure can be continued until the convergence criterion is satisfied.

D.11 Correspondence principle
The dynamic stiffness function S(u) according to Eq.4.77 can be expressed as:

S(w)= K+iwCcv2Mt (D.85)

where all the parameters are as defined in Chapter.4. According to the correspondence principle
the linear hysteretic type material may be introduced by pre-multiplying the elastic stiffness
properties of the soil such as G by a complex value as: (1 + 2jm) where 7)m denotes the material
damping ratio of the soil material.

a 0.5-1.0 0.5-1.0 0.5-1.0
1.5-4.0 1.0-1.5 4.0
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Figure D.1: Equilibrium of dynamic forces for a thin slice of soil cone

For e.g the shear wave velocity can be modified due to the influence of the material damping as
follows:

Considering that in (1 + = 1 + 2jllm - i the last term might be neglected if 17m << 1.0.
Then, Eq.D.86 may be simplified as follows:

= e(1 + ii,) (D.87)

Knowing that K = pd2A(z) and C = then it is evident that:

K(1 + 2j?1m - K(1 + 2jm) (D.88)

C = C(1 + i) (D.89)

D.12 A rotational cone model(modified After Wolf et a!,
1994)

For a slice of cone shown on Fig.D.1 the equilibrium of dynamic forces may be written as follows:

M + (M + dM) = pThdz (D.90)

where M =the bending moment at the depth z of cone, dM the difference of bending moment
at depth z, p = the mass density, I = the moment of inertia of the cone's cross section, i3 =

1JG(1±2i7lm

= cJ(1 + 27)m) (D.86)
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the rotational acceleration of the cone and dz = the infinitesimal thickness of a slice of cone as
shown in Fig.D.1. Note that the damping forces are inherent in Eq.D.90.
The bending moment-rotation relationship for a small strain condition may be written as follows:

= E.I.v, (D.91)

Combining Eqs.D.90 and D.91 will lead to:

d(EIv,) = plidz (D.92)

Expanding the L-H-S of Eq.D.92 will yield:

+ + - p.I.idz = 0 (D.93)

Assuming that E = fE(z) and I = fj(z) for a non-homogeneous arbitrary uni-directional
single(one-sided) cone, we will have:

E=(Z_)m (D.94)
zo

and so for I:
(D.95)

zo

Taking the first derivatives of E and I functions w.r.t z will lead to:

= E(z) (D.96)

and so:
81 n= .1(z) (D.97)

Now inserting Eqs.D.94, D.95, D.96 and D.97 into Eq.D.93 and noting that:

E(z) p.c2 (D.98)

will yield:
m+n

For a special case of homogeneous cone Wolf et al, (1994) obtained the following DEQ:

4V,zz+.V,z--;=0
z

c the wave's shear velocity in general is a temporal as well as spatial varying parameter for a
non-linear and non-homogeneous type soil as:

c = f(z, t) (D.101)

The approximate analytical solution of DEQ. of Eq.D.100 may be obtained through a step-wise
linearization. Let us write Eq.D.100 for an increment of rotation v + c5v instead of v:

m+n i+5i+ öv,) + (v, + 5v,) = 0 (D.102)
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By a linearization of the Taylor expansions will be truncated in two first terms as follows:

+ 5v) = + (D.103)

& dt2j(v+öv) =

Subtracting approximate Eq.D.102 from Eq.D.99 will yield:

m+n poi
+ = 0 (D.105)

z E(z,t)

which is an approximate incremental form of Eq.D.99 w.r.t time. E(z, t) function on the de-
nominator of last term on the R-H-S of Eq.D.105 is approximated as follows:

E(z,t2) = Et(z).fr(t) (D.106)

where E(z) denotes the initial soil's elastic modulus w.r.t time(response history). E2(z) varies
with z and indicates the soil's non-homogeneity w.r.t depth only.
Substituting for E(z, t) from Eq.D.106 into Eq.D.105 leads to:

m+n p
öv,,. + Sv,2 0 (D.107)

E(z = z0,t = 0)fT(tZ)

in which f,. (ti) is evaluated as the disk's non-linear (t-z) or (p-y) functions at the current time
station t.
Re-arranging Eq.D.107 as:

m 53
ôv,, + (m + n)zm_löv,z - 0 (D.108)E2(z = z0,t = 0)fr(t)

The solution of Eq.D.108 may be obtained analytically by using Bessel and Hankel's functions
as follows. Note that f,. (t) in the denominator of last term of Eq.D. 108 is assumed as constant
at the time interval (t, t + 8t) due to step-wise linearization.
Eq.D.108 can be written in frequency domain by assuming that öv = övosin(wt) as follows:

zm
5v, + (m + n)zm_löv,z

E1(z = z0,t= 0)f1.(t)
0 (D.109)

The solution of differential equation in the form of Eq.D.109 is discussed in the main text of
Chapter.4.

D.13 Linear hysteretic and visco-elastic type damping
The correspondence principle states that for a dynamic (e.g. pile-soil) system which is damped
the dynamic stiffness may be modified by simply multiplying the elastic stiffness properties of
the system by (1 + 2iiim) where i = Ji and represents the material damping ratio of the
soil. In this section, we shall try to establish the basis for the this principle which is referred to

(D.104)
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in the main text of Chapter.4.

Let us consider a simple linear SDOF system, with the mass, spring and a dashpot whose
parameters are denoted by M, K and C, respectively. The dynamic equilibrium of the forces
(equation of motion) can be written as follows:

Mu + Cu + Ku = F(t) (D.11O)

where u and Fe (t) denote the displacement response and the excitation force applied on the
dynamic system.

For a simple harmonic type excitation force such as Fe (t) = Foet where F0 is a constant which
is equal to initial excitation force at time (t = 0) and w represents the circular frequecny of
vibration of the system. The solution of Eq.D.110 may be written as: u = u0e. where u0
denotes the initial displacement response of the SDOF system. Inserting the latter function into
Eq.D.110 and simplifying it , we will have:

Mw2+iwC+K= (D.111)

where k0 represents the initial(linear) dynamic stiffness of the SDOF system. Now considering
the ratio of the equivalent viscous damping to the critical damping as , we have:

C C
= Ce,. = 2q?V

Noting that the fundamental natural frequency of the undamped
as w: 2K

- M
Substituting Eq.D.113 into R-H-S of Eq.D.112 , we get:

C C
= 2Mw, 2K

C can be obtained easily by inversing Eq.D.114 as:

2KC=?7.-
wn

Combining Eq.D.111 and D.115, we may write:

SDOF system may be written

2KMw2+z.+K=K0 (D.116)

Re-arranging the L-H-S of the Eq.D.116, we can re-write it as:

+ K(1 + 2i-.-w) = K0
wn

+ K(1 + 2iamw) = K0 (D.117)
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where am = '- represents a material damping coefficient for a visco-elastic type damping, which
is directly proportional with the critical damping ratio i and inversely with the circular natural
frequency of the SDOF system w,. Hence, 77m = am.w which is a classical representation of the
visco-elastic material damping of a SDOF system, can be written as:

w
77m = am.w =

Considering that K and M are constant for a linear SDOF type dynamic system, and also ij is
by the same virtue may be considered as a constant from R-H-S of Eq.D.115, then am tunis out
to be a constant which is equal to:

(D.118)

For a SDOF system, C representing the material (soil) damping C is often taken as 0.1 to 0.25
times the critical damping C. If the coefficient a,,, on the L-H-S of Eq.D.120 is replaced with
a'm = am.? then we will have:

The latter is a much simpler form representing a linear hysteretic type damping. In this case,
a',,, = ,. Therefore, for a linear hysteretic type damping, the elastic stiffness might be multiplied
by (1 + 2ii7) while for a visco-elastic system by (1 + i-w).

D.14 The modified dynamic stiffness properties of the
disk-cone model

The modified dynamic stiffness of a single disk-cone with material damping and attached (trapped)
mass may be exprssed as follows:

S5(ao) = M.'2 + K(1 + 2iamw) + iwC(1 + iamw) (D.121)

By assuming that M = 0 then Eq.D.121 may be re-written as follows:

S5(ao) = K8(1 + 2irim.ao) + iCao(1 + irimao) (D.122)

By taking the following ratio: Cz0
K c

Hence, S (ao) may be re-written as follows:

zo
S5(ao) = K[(1 + 2iimao) + zw.(1 + iimao)I

C

Cs ZOS*(ao) = K[(1 + 2i7Jmao) + zao.(1 + i1lmO)I
r0 c

C5Z0 2 C5Z0
S5(ao) = K5[1 - lm.mmao] + iaoK[217m + _._]C0 Cr0

(D.123)

(D.124)

am =
C

(D.119)

Mw2+K(l+2ia)=Ko (D.120)
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The spring and dashpot coefficients can be obtained from decomposition of Eq.D.124 into real
and imaginary parts as follows:

s Z0 2kd = 1 - llm...a0
r0
Cs ZO

Cdy = 27m + - - -
C r0

(D.125)

The dynamic stiffness coefficients expressed in Eq.D.125 are relevant for the visco-elastic type
damping as assumed above (i.e. a material damping linearly dependent on the frequency of
vibration of the disk-cone system).

For a disk-cone model with inclusion of the trapped mass of the soil (Me), the dynamic stiffness
may be modified as follows. The inertia (first) term on the L-H-S of Eq.D.121 may be re-written
as:

Cdy

prw2 i z0 r0 2Mao) - T' = K5..--.w
Itst 1iC C

/1ZoC 2SM,(ao) = (D.126)

Hence, for a visco-elastic type damping, the spring and dashpot coefficients may be written as
follows:

C5C5Z0 2 pZOC 2kd = 1 - am,ve.. ...a0 - ..-.a0r0 Cr0 lrr0c-
C5 C8Z0 /.LC5ZoC 2= 2am,ve. + -.- -
r0 Cr0 lrroroC2

In a similar manner, the expressions may be derived for the kd, and Cdy corresponding to a disk-
cone model with linear hysteretic type damping which are given in the main text of Chapter.4.

D.15 General discussion about earthquake loading
The earthquake usually occurs due to the. movement of the earth's crust at the fault(rupture)
lines. The intensity, direction of the propagation and the dissipation of the waves depend on the
tectonic plates movement with respect to each other at the fault lines.

In general, three main types of the seismic waves are generated after an earthquake happens,
namely, dilatational or contractant(P) waves, shear (S) waves, Rayleigh(R) waves (sometimes
referred to as love waves). The R-waves propagate at the earth's surface from the point above the
epicenter of the quake outwards along a main circle connecting it to the receiver point (station).
The motion of the earth under R-waves is perpendicular to the direction of its propagation.
Since R-waves and Love waves travel on the surface in tangential or radial directions from the
source towards the station they trail the body waves(P and S) waves(see for e.g. Fig.D.4).

(D.127)
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Figure D.2: A schematic illustration of body
and surface (seismic) waves
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Figure D.3: A schematic illustration of inter-
action between the seismic(far-field) wave and
the waves generated by the responding pile-
soil system(near-field)

Figure D.4: A sample seismogram (recorded) earthquake from Caltech seismic lab(1996)
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On the contrary, the P-waves and S-waves propagate from the epicenter of the quake often far
below the earth's surface towards the receiver(station). On their way, they encounter the bound-
aries of the various layers and so they reflect and refract. Among the body waves, P-waves travel
faster towards the station, because of their greater velocity than shear waves (For e.g. for a soil
with a poission ratio of v = 1/3, it is found that c1,, = 2c3 ). The direction of propagation of
the P-wave is the same as the soil's particle motion along that. The S-waves often take longer
time to arrive at the station due to their associated motion which is perpendicular to the their
direction of propagatiOn(see e.g. Fig.D.2).

The earth's motion or the corresponding seismic waves are modified while they travel in various
soil layers. The modification of the seismic waves in general, depend on the material and geo-
metrical properties of the encountered soil layers. For instance, when a rigid bed rock underlying
a softer layer of the soil is subjected to the earth motion, the waves which travel through the
soil towards the foundation located in the softer soil might be significantly modified.

When a foundation embedded in the soil such as pile is subjected to the seismic waves, it starts
responding (oscillating) depending on its mass, stiffness and damping characteristics. Hence, a
pile-soil system will act as a dynamic mass, spring and dashpot system under the prescribed
motion of earth. The motion of the pile might interact with that of the virgin soil(if there was not
any foundation built in it). This interaction may result in modifying the ground's motion. The
effective motion of the ground might therefore be applied on the dynamic pile-soil system. The
motion of the earth which reaches the foundation is often called far-field motion. The motion of
the ground(soil) at the vicinity of the pile foundation is often referred to as near-field motion. To
obtain the near field motion of soil from its far-field counterpart and also the kinematic as well
as inertial interaction of the foundatIon(pile) and the surrounding soil, various methods exist.
Various analytical as well as numerical treatments exist for solution of the modified seismic waves
such as those suggested by Clough and Peazien, (1968), Gazetas et al, (1976), Novak, (1968),
Poulos, (1976), Wolf, (1985,1994).

Fig.D.3 schematically illustrates the interaction between the waves approaching from the far-
field of the soil and the waves generated by the responding pile. Fig.D.5 illustrates a simple
method to obtain the modified(near field) motion of the ground from the motion an under-
lying bedrock(far-field motion). This method is basiaily introduced by Clough and Penzien,
(1968) which discretizes the soil layer above the bediock as a system of springs and dashpots
and masses lumped at the disk pOints. The far-field or bedrock motion is applied at the tip of
this multi-stack of disks and the response is calculated at the nodal(disk) points which corre-
spond to the modified or near field motion of the soil along the pile. It may be noted that this
multi-stack of disks only corresponds to the cylinder of (virgin) soil itself not to the pile cylinder.

-

After determining the response or near-field motion of the soil, it is applied at the nodes of the
multi-stack of disks-cones system representing the pile-soil foundation. The response is then
calculated in the same manner as for the near-field motion of the soil. It is noteworthy that this
may require more computing time, however, in most practical case, the following simplifying
assumptions often used:
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Figure D.5: illustration of soil seismic near-field response of the multi-stack of soil disks subjected
to an underlying bedrock(far-field)motion

an equivalent static load say about 10% of the gravity load is applied on the pile head as a
lateral load etc.

an equivalent earthquake loading is applied as the mass of the pile-soil multiplied by the
maximum ground acceleration etc. The frequency of such force might be taken as the dominant
frequency of the vibration of the ground etc.

an effective ground motion is applied at the pile tip where is closer to the bedrock as prescribed
displacement, velocity or acceleration.

an effective ground motion is applied at all the disks or nodes of the pile-soil system with full
correlation.

The first assumption is very simplistic, since no account of the real amplitude of the seismic
motion and the frequency of the vibration are taken. The second approach is often used only
with a lumped model (SDOF) model of the pile-soil system and may give just an estimate of
the response(with less accuracy). The third and fourth methods seem to be more relevant for
the seismic analysis of a single pile-soil system. In the case studies presented in the main text
of Chapter.4, we have applied the latter three methods.

D.16 Dynamic pile-soil input data
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Table D.2: Soil layer input data for dynamic stiffness and damping functions of Figs.4.35 to 4.38
d/ro C z.' soil type a /3

(MPa)
1-1000 35 1/3 NC 0.75 2.5

Table D.3: Soil layer input data for dynamic Stiffness and damping functions of Figs.4.35 to 4.38

Table D.4: Soil layer input data for dynamic stiffness and damping functions of Figs.4.35 to 4.38

Table D.5: The pile-soil input data for frequency domain analysis of pile-soil system Figs.4.63
and 4.64

Table D.6: The pile-soil input data for displacement response of a single pile-soil system in
Fig.4.65

Table D.7: The pile-soil input data for impedance function plotted in Fig.4.82 to 4.93
e/ro C ii S.C. a /3

0.4 OC 0.75 1.00
15 150 0.4 OC 0.75 1.00
30 150 0.4 OC 0.75 1.00
2.75 35.8 0.4 OC 0.75 1.00
2.0 35.8 0.4 OC 0.75 1.00
75.0 806.5 0.4 OC 0.75 1.00

d/ro C v soil type a /3
(MPa)

1.0 35 1/3 OC 0.75 1.1
1.0 35 1/3 NC 0.75 1.5
1.0 35 1/3 NC 0.75 2.0
1.0 35 1/3 NC 0.75 2.5
1.0 35 1/3 NC 0.99 2.5

pile type O.D. t soil type 97 S.C. a /3

(m) (m)
Rigid 0.762 0.03 linear-elastic 0.25 OC 0.99 1.0
linear-elastic 0.762 0.03 linear-elastic 0.25 OC 0.99 1.0
elasto-plastic 0.762 0.03 elasto-plastic - OC 0.99 1.0

d/ro G
(MPa)

ii soil type

1.0
1.0

35
35

1/3
1/3

NC
OC

0.99
0.75

2.5
1.0

pile type O.D soil type S.C. a '3
(m) (m)

elasto-plastic 1.0 0.03 elasto-plastic OC 0.75 1.00
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Table E.1: Ductility demand spectra results for extreme wave(Hs=12.75m, Tz=12.5secs)

383

APPENDIX E

Ductility demand analysis of
jacket-pile-soil systems

T
(sec)

p(F = 1) j(F = 1.15) ,t(F = 1.3)

0.5 1.24 4.04 6.07
1.0 1.12 3.82 4.72
1.5 1.29 2.13 3.71
2.0 1.01 2.02 2.92
2.5 0.62 1.12 1.50
3.0 0.28 0.62 1.14
3.5 0.34 0.67 1.09
4.0 0.39 0.79 1.31
4.5 0.39 0.84 1.25
5.0 0.34 0.60 1.10
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Table E.2: Ductility demand spectra results for an extreme wave (Hs=15m, Tz=15.8 esc)

Table E.3: Ductility demand spectra results for a simulated extreme wave with with H3 = 12.75
m and T = 12.5 sec with different viscous damping ratios

T 0.01) 0.05) (F 0.1)p.(F = 1.0, c = p(F = 1.0, c = = 1.0, c =
(see)
0.5 1.01 1.01 1.01
1.0 2.02 2.42 5.52
1.5 2.02 2.32 5.49
2.0 2.02 2.83 7.68
2.5 1.62 2.53 4.75
3.0 1.92 1.41 2.09
3.5 1.21 1.21 1.21
4.0 1.01 1.31 4.34
4.5 0.81 0.91 1.72
5.0 0.61 0.81 0.86

(sec)
T (F = 1) i(F = 1.15) p(F = 1.3)

0.5 0.84 1.49 7.67
1.0 2.80 2.48 9.16
1.5 2.80 6.94 12.13
2.0 5.61 9.42 14.36
2.5 3.36 5.70 9.41
3.0 1.68 2.73 4.46
3.5 1.12 2.73 3.71
4.0 2.24 3.47 5.45
4.5 1.12 1.49 2.18
5.0 0.95 0.99 1.31



Table E.4: Ductility demand spectra results for a severe earthquake(El Centro, 1940)

Table E.5: Ductility demand spectra results for a severe earthquake(El Centro, 1940) with
variation of soil's shear modulus with reference shear modulus of G0 = 42MPa

385

T
(sec)

p(F = 1.0) p(F,, = 2.0) p(F = 3.0)

0.5 1.54 3.33 8.33
1.0 1.03 2.05 4.23
1.5 0.77 1.54 3.85
1.75 1.03 1.67 3.92
2.0 0.77 1.79 3.59
2.25 0.77 1.54 3.01
2.5 0.71 1.41 2.76
2.75 0.64 1.28 2.31
3.0 0.51 1.24 1.90
3.5 0.51 1.05 1.58
4.0 0.38 0.77 1.28
4.5 0.32 0.64 1.06
5.0 0.26 0.51 0.90

T
(sec)

p(F = 1.0, GIG0 = 1) p(F = 1.0, GIG0 = 2.0) p(F = 1.0, GIG0 = 3.0)

0.5 1.54 1.31 1.36
1.0 1.39 1.26 1.30
1.5 1.34 1.20 1.20
2.0 1.20 1.16 1.13
2.5 1.11 1.06 1.05
3.0 1.07 1.10 1.08
3.5 1.07 1.05 1.06
4.0 1.05 1.05 1.06
4.5 1.07 1.06 1.06
5.0 1.05 1.05 1.06
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Table E.6: Ductility demand spectra results for a severe earthquake(El Centro, 1940) with
variation of bandwidth parameter

Table E.7: Ductility demand spectra results for a severe earthquake(Eig bear, 1940) with vari-
ation of post-peak hardening/softening parameter 3

T 1.0,8 = 0.1) p(F = 1.0,/3 = 0.5) = 1.0,/3 = 1.0)p(F = p(F,,

T p(F = 1.0, c = 1.0) p(F = 1.0, c = 0.1) jt(F = 1.0, c = 0.01)
(sec)
0.50 1.57 1.80 1.80
1.00 1.39 1.40 1.63
1.50 1.01 1.01 1.24
2.00 0.78 0.79 0.90
2.50 0.56 0.58 0.56
3.00 0.53 0.55 0.51
3.50 0.54 0.58 0.52
4.00 0.54 0.55 0.46
4.50 0.52 0.53 0.50
5.00 0.53 0.55 0.44

(sec)
0.26 0.39 0.43 0.50
0.52 0.79 0.83 1.08
0.78 0.52 0.57 0.62
1.04 0.59 0.61 0.67
1.30 0.50 0.50 0.52
1.57 0.49 0.49 0.49
1.83 0.48 0.48 0.49
2.09 0.47 0.48 0.48
2.35 0.47 0.47 0.47
2.61 0.47 0.47 0.47



Table E.8: Ductility demand spectra results for a severe earthquake(El Centro, 1940) with
variation of yield stress with reference f = 300 MPa

Table E.9: Ductility demand spectra results for a severe earthquake(Santa cruz, 1989)
T (F = 1.0) ji(F = 1.5)
(sec)

Table E.10: Ductility demand spectra results for a severe earthquake(Woodfords, 1995)

387

T a(F,
(sec)

l.0,f/fo = 0.2) t(F = l.0,f/fo = 1.0) p(F = 1°,fy/fyO = 5.0)

0.5 1.61 1.50 1.45
1.0 1.46 1.43 1.32
1.5 1.35 1.29 1.22
2.0 1.20 1.16 1.13
2.5 1.12 1.11 1.09
3.0 1.09 1.09 1.08
3.5 1.07 1.10 1.09
4.0 1.07 1.09 1.08
4.5 1.05 1.08 1.08
5.0 1.04 1.08 1.08

T p(F = 1.0) p(F,, = 2.0) p(F, = 3.0)
(sec)
0.32 3.87 6.27 1200
0.64 2.67 5.60 9.07
0.96 1.23 1.73 2.80
1.28 1.20 1.33 1.87
1.60 0.73 1.07 1.87
1.92 0.56 1.20 1.93
2.24 0.53 0.80 1.33
2.56 0.40 0.67 1.60
2.88 0.32 0.47 1.00
3.20 0.27 0.53 0.13

0.32 2.84 7.11
0.64 1.78 1.24
0.96 1.07 1.42
1.28 0.53 0.71
1.60 0.36 0.98
1.92 0.27 0.36
2.24 0.27 0.31
2.56 0.22 0.27
2.88 0.18 0.18
3.20 0.18 0.09
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Table E.11: Ductility demand spectra results for a severe earthquake(Parkfleld, 1994)

Table E.12: Ductility demand spectra results for a severe earthquake(Taft, 1952)

Table E.13: Comparison of the computed overload ratio of one storey plane frame with single
and double bracings

single braced
F p

double braced
F, p

0.26 0.19 0.40 0.30
0.26 0.34 0.72 0.23
0.50 0.49 0.36 0.53
1.00 0.53 0.52 0.60
1.00 0.64 0.74 0.68
1.00 1.06 1.44 1.06
1.24 1.74 1.38 1.74
1.00 2.00 1.24 2.04
1.96 1.96 1.76 2.64
1.48 2.72 1.46 3.17
1.46 3.21 1.70 7.25

T
(sec)

p(F = 1.0) p(F, = 1.5) p(F = 3.0)

0.61 2.56 2.81 6.00
0.94 1.19 1.65 2.66
1.25 1.14 1.31 1.81
1.55 0.70 1.06 1.79
1.88 0.53 1.11 1.94
2.18 0.41 0.63 1.23
2.49 0.60 0.39 1.45
2.79 0.29 0.44 0.63
3.12 0.24 0.44 0.48

T p(F = 1.0) p(F = 2.0) p(F = 3.0)
(sec)
1.0 1.60 7.00 15.60
1.5 1.28 3.30 5.60
2.0 0.80 3.20 3.60
2.5 1.00 2.00 4.00
3.0 0.40 1.50 2.40
3.5 0.40 1.20 1.40
4.0 0.20 1.80 1.20
4.5 0.20 0.80 1.30
5.0 0.20 0.80 1.20



Table E.14: The predicted versus computed overload ratios of double-braced two-storey plane
frame with varying natural periods from 0.28 to 0.82 secs

Table E.15: The predicted versus computed overload ratios of jacket platform with with hydro-
dynamic Model-i and plugged pile foundation under regular wave loading

Table E.16: The predicted versus computed overload ratios of jacket platform with with hydro-
dynamic Model-i and plugged pile foundation under multiple wave loading

Predictive Method F,, F,,
(end-on) (broad-side)

MDOF(abs.velocity) 1.14 1.04
Stewart et at, 1993 1.1-1.2 1.0-1.05
Schmucker, 1996 1.13 1.35
Eq.5.14 1.12 1.05

Table E.17: The predicted versus computed overload ratios of jacket platform with lumped linear
spring to ground foundation under end-on and broad-side loading(Model-i)

F,,Predictive Method
(end-on) (broad-side)
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F1,

Predictive method T7. = 0.28 sec T = 0.56 sec T = 0.82 sec
Plane frame analysis 1.10 1.98 2.77
Schmucker, 1996 1.57 2.13 2.67
Eq.5 .14 1.10-1.12 1.08-1.12 1.47-2.03

Predictive Method F,,
(end-on)

F,,
(broad-side)

MDOF(abs.velocity) 1.05-1.25 0.9-1.18
Stewart et al, 1993 1.1-1.2 1.0-1.2
Schmucker, 1996 1.16 1.15
Eq.5.14 1.10 1.09

MDOF(abs.velocity) 1.10 0.90
Stewart et al, 1993 1.1-1.2 <1.0
Schmucker, 1996 1.06 0.99
Eq.5.14 1.08 0.95
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Table E.18: The predicted versus computed overload ratios of jacket platform with plugged pile
foundation under end-on and broad-side loading(Model-1)

Predictive Method F F
(end-on) (broad-side)

MDOF(abs.velocity) 1.12 0.96
MDOF(rel.velocity) 1.16 0.99
Stewart et al, 1993 1.10-1.20 <1.00
Schmucker, 1996 1.04 0.91
Eq.5.14 1.13 0.96



APPENDIX F

Jacket-pile-soil random variables

The following is the list of input random variables used in the routine RELAP with their corre-
sponding mean ,std values and distribution types:
INPUT
Name: PilSoi-N4
Description: Pushover of Jacket - Pile/Soil foundation Analysis method: FORM and SORM
Joint study by: Geir Olaf Hovde and M.Reza Emami Azadi
Description of variables: Variable No. 1 - GamS : Gamma of sand - layer nos. 1,2,3 and 5
Variable No. 2 - GaxnC : Gamma of clay - layer nos. 4 and 6
Variable No. 3 - Phil : Phi of sand - layer no. 1

Variable No. 4 - Phi2 : Phi of sand - layer no. 2

Variable No. 5 - Phi3: Phi of sand - layer no. 3

Variable No. 6 - Phi5: Phi of sand - layer no. 5

Variable No. 7 - Su4 : Su of clay - layer no. 4

Variable No. 8 - Su6 : Su of clay - layer no. 6

Variable No. 9 - Epsc4: Epsc of clay - layer no. 4

Variable No. 10 - Epsc6: Epsc of clay - layer no. 6

Variable No. 11 - Tesmax: Tres/Tmax - all layers

Variable No. 12 - Tzzres : Tzzres - all layers
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Variable No. 13 - Tcmaxl: Tcmax - no. 1

Variable No. 14 - Tcmax2: Tcmax - no. 2

Variable No. 15 - Tcmax3: Tcmax - no. 3

Variable No. 16 - Tcmax4: Tcmax - no. 4

Variable No. 17 - Tcmax5: Tcmax - no. 5

Variable No. 18- Tcmax6: Tcmax - no. 6

Variable No. 19 - Tcmax7: Tcmax - no. 7

Variable No. 20 - Tcmax8: Tcmax - no. 8

Variable No. 21 - Tcmax9: Tcmax - no. 9

Variable No. 22 - TcmaxlO: Tcmax - no. 10

Variable No. 23 - Tcmaxll: Tcmax - no. 11

Variable No. 24 - Tcmaxl2: Tcmax - no. 12

Variable No. 25 - Tcmaxl3: Tcmax - no. 13

Variable No. 26 - Ttmaxl: Ttmax - no. 1

Variable No. 27 - Ttmax2: Ttmax - no. 2

Variable No. 28 - Ttmax3: Ttmax - no. 3

Variable No. 29 - Ttmax4: Ttmax - no. 4

Variable No. 30 - Ttmax5: Ttmax - no. 5

Variable No. 31 - Ttmax6: Ttmax - no. 6

Variable No. 32 - Ttmax7: Ttmax - no. 7

Variable No. 33 - Ttmax8: Ttmax - no. 8

Variable No. 34- Ttmax9: Ttmax - no. 9



Variable No. 35 - Ttmaxl0: Ttmax - no. 10

Variable No. 36 - Ttma11 : Ttmax - no. 11

Variable No. 37 - Ttmaxl2: Ttmax - no. 12

Variable No. 38 - Ttmaxl3: Ttmax - no. 13

Variable No. 39 - Gsl : Gs - no. 1

Variable No. 40 - Gs2: Gs - no. 2

Variable No. 41 - Gs3: Gs - no. 3

Variable No. 42 - Gs4: Gs - no. 4

Variable No. 43 - Gs5: Gs - no. 5

Variable No. 44 - Gs6: Gs - no. 6

Variable No. 45 - Gs7: Gs - no. 7

Variable No. 46 - Gs8: Gs - no. 8

Variable No. 47 - Gs9 : Gs - no. 9

Variable No. 48 - GslO: Gs - no. 10

Variable No. 49 - Gsll : Gs - no. 11

Variable No. 50 - Gs12 : Os - no. 12

Variable No. 51 - Gs13 : Gs - no. 13

Variable No. 52 - Dsptzdiam: Dsptz/diam - nos. 1-13

Variable No. 53 - Bias-Es: Bias of EsO+f(z)*Esl

Variable No. 54 - Nus: Nus

Variable No. 55 - Dspqzdiam: Dspqz/diam - nos. 1-13

Variable No. 56 - Diameter : Diameter
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Variable No. 57 - Pc-yc: Pc-yc

Variable No. 58 - Ps-ys: Ps-ys

Variable No. 59 - T-z,Q-z: T-z,Q-z

Variable No. 60 - Fy21 : Yield stress - Mat.no. 21

Variable No. 61 - Fy20: Yield stress - Mat.no. 20

Variable No. 62 - Hi: Annual maximum wave height

Variable No. 63 - Bias-L : Bias of load calculation

Variable No. 64 - Bias-S : Bias of strength calculation

Variable No. 65 - Bias-Hi: Bias of wave height

Variable No. 66 - Lcode: Type of load calculation

Variable No. 67 - Href: Wave height in strength calculation
Type of statistical parameters:
Distnb. No. 1 - Fixed: Value
Distrib. No. 2 - Normal: Mean, StD
Distrib. No. 3 - Lognormal: Mean, StD, Low
Declaration of variables:
Variable No. 1 - GamS : Normal 1.0000D+00 1.0000D-01
Variable No. 2 - GamC: Normal 1.0000D+00 1.0000D-01
Variable No. 3 - Phil : Normal 1.0000D+00 5.0000D-02
Variable No. 4 - Phi2 : Normal 1.0000D+00 5.0000D-02
Variable No. 5 - Phi3: Normal 1.0000D+00 5.0000D-02
Variable No. 6 - Phi5: Normal 1.0000D+00 5.0000D-02
Variable No. 7 - Su4: Lognormal 1.0000D+00 2.0000D-01 .0000D+00
Variable No. 8 - Su6 : Lognormal 1.0000D+00 2.0000D-01 .0000D+00
Variable No. 9 - Epsc4: Normal 1.0000D+00 4.0000D-01
Variable No. 10 - Epsc6 : Normal 1.0000D+00 4.0000D-0l
Variable No. ii - Tresmax: Normal l.0000D+O0 2.0000D-01
Variable No. 12 - Tzzres: Fixed 1.0000D+00
Variable No. 13 - Tcmaxl: Normal l.2000D+00 3.0000D-01
Variable No. 14 - Tcmax2: Normal l.2000D+00 3.0000D-01
Variable No. 15 - Tcmax3: Normal i.2000D+00 3.0000D-01
Variable No. 16 - Tcmax4: Normal l.2000D+00 3.0000D-Ol
Variable No. 17 - Tcmax5: Normal i.2000D+00 3.0000D-01
Variable No. 18 - Tcmax6: Normal i.2000D+00 3.0000D-0l



Variable No. 19 - Tcmax7: Normal 1.2000D+00 3.0000D-01
Variable No. 20 - Tcmax8 : Normal 1.2000D+00 3.0000D-01
Variable No. 21 - Tcmax9: Normal i.2000D+00 3.0000D-01
Variable No. 22 - Tcmaxl0: Normal 1.2000D+00 3.0000D-01
Variable No. 23 - Tcmaxil : Normal 1.2000D+00 3.0000D-01
Variable No. 24 - Tcmaxl2 : Normal 1.2000D+00 3.0000D-01
Variable No. 25 - Tcmaxl3: Normal 1.2000D+00 3.0000D-01
Variable No. 26 - Ttmax1 : Normal 1.2000D+00 3.0000D-01
Variable No. 27 - Ttmax2 : Normal 1.2000D+00 3.0000D-01
Variable No. 28 - Ttmax3: Normal 1.2000D+00 3.0000D-01
Variable No. 29 - Ttmax4 : Normal 1.2000D+00 3.0000D-01
Variable No. 30 - Ttma.x5: Normal 1.2000D+00 3.0000D-01
Variable No. 31 - Ttma.x6: Normal 1.2000D+00 3.0000D-01
Variable No. 32 - Ttma.x7 : Normal 1.2000D+00 3.0000D-01
Variable No. 33 - Ttmax8: Normal 1.2000D+00 3.0000D-01
Variable No. 34 - Ttmax9 : Normal 1.2000D+00 3.0000D-01
Variable No. 35 - TtmaxlO : Normal 1.2000D+00 3.0000D-01
Variable No. 36 - Ttmaxll : Normal 1.2000D+00 3.0000D-01
Variable No. 37 - Ttmaxl2 : Normal 1.2000D+00 3.0000D-01
Variable No. 38 - Ttmaxl3 : Normal 1.2000D+00 3.0000D-01
Variable No. 39 - Gsl : Normal 1.0000D±00 1.5000D-01
Variable No. 40 - Gs2 : Normal 1.0000D+00 1.5000D-01
Variable No. 41 - Gs3 : Normal 1.0000D+00 1.5000D-01
Variable No. 42 - Gs4: Normal 1.0000D+00 1.5000D-01
Variable No. 43 - Gs5 : Normal 1.0000D+00 2.5000D-01
Variable No. 44 - Gs6: Normal 1.0000D+00 2.5000D-01
Variable No. 45 - Gs7 : Normal 1.0000D+00 2.5000D-01
Variable No. 46 - Gs8 : Normal 1.0000D+00 2.5000D-01
Variable No. 47 - Gs9: Normal L0000D+00 3.0000D-01
Variable No. 48 - GslO: Normal 1.0000D+00 3.0000D-01
Variable No. 49 - Gsll: Normal 1.0000D+00 3.0000D-01
Variable No. 50 - Gs12: Normal 1.0000D+00 3.0000D-01
Variable No. 51 - Gs13: Normal 1.0000D+00 3.0000D-01
Variable No. 52 - Dsptzdiam: Normal 1.0000D+00 4.0000D-01
Variable No. 53 - Bias-Es: Lognormal 1.0000D+00 1.5000D-01 .0000D+00
Variable No. 54 - Nus: Lognormal 1.0000D+00 1.5000D-01 .0000D+00
Variable No. 55 - Dspqzdia.m: Normal 1.0000D+00 4.0000D-01
Variable No. 56 - Diameter: Fixed 1.0000D+00
Variable No. 57 - Pc-yc: Normal 1.1000D+00 1.6500D-01
Variable No. 58 - Ps-ys: Normal 1.2000D+00 3.0000D-01
Variable No. 59 - T-z,Q-z : Normal 1.2000D+00 3.0000D-01
Variable No. 60 - Fy21 : Lognormal 1.0400D+00 7.2800D-02 .0000D+00
Variable No. 61 - Fy20: Lognormal 1.0400D+00 7.2800D-02 .0000D+00
Variable No. 62 - Hi: Fixed 2.3273D+0i
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Variable No. 63 - Bias-L : Lognornial 9.0000D-01 2.2500D-Oi .0000D+OO
Variable No. 64 - Bias-S : Lognormal i.0000D+OO 1.5000D-01 .0000D+OO
Variable No. 65 - Bias-Hi: Lognormal i.0000D+OO 1.5000D-01 .0000D+OO
Variable No. 66 - Lcode: Fixed 1.0000D+OO
Variable No. 67 - Href: Fixed 3.1300D+O1



APPENDIX G

An algorithm for reliability analysis of
jacket-pile-soil system

G.1 Reliability analysis algorithm
The following describes an algorithm for reliability analysis of jacket-pile-soil system under ex-
treme wave loading. This algorithm is used in study of Chapter.6.

Generate the pile-soil load transfer-displacement (p-y), (t-z) and (q-z) curves by using the
mean values of the soil-pile input parameters as listed in Appendix.0
For this aim FORTRAN program GENSODM and MATLAB program GENSDISKD are used
in Chapter 6.

Use the generated pile-soil stiffness data and the mean values of structural input parameters
as listed in Appendix.c to perform a static pushover analysis at the reference point for all the
assumed random parameters
Program USFOS is used for pushover analysis of jacket-pile-soil system in Chapter.6.

Post-process the output from pushover analysis of step (2) to generate the global load-
deflection curves at the deck level
Program Postfos is used for post-processing of the analysis results of step (2) in Chpater.6.

Vary each random pile-soil and structural input parameter by about 10 - 20% and generate
the corresponding (p-y), (t-z) and (q-z) data from step (1) for each given variation

Perform static pushover analyses for each variation of the pile-soil and structural parameters
and post-process the results as described in steps (2) and (3)
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Establish a limit state function as described in Chapter.6 and compute the reliability index,
annual probability of failure and importance factors by using the values of the random parame-
ters from step (4) and the strength parameters from steps (3) and (5)
Program RELJPS is used in Chapter.6 to perform FORM and SORM reliability analyses of the
integrated jacket-pile-soil system at the limit state of collapse.

Post-process the results of the reliability analyses of step (6) and obtain the new values of
the random pile-soil and structural parameters
Program RELJPS is used to post-process the results of reliability analysis in Chapter.6.

Use the computed values of the random parameters in X-space to generate the corresponding
(p-y), (t-z) and (q-z) curves and repeat the steps(4) to (7) if the condition of step (9) is not
satisfied

Check if the maximum absolute difference between the current and the previous values of the
random parameters is less than a pre-defined tolerance value or a Euclidean norm as specified
in RELJPS algorithm then stop the analysis

Process and print the results of the reliability analyses

G.2 RELJPS algorithm
The following describes the algorithm for RELJPS program:

Input the mean values of the random parameters

Compute the limit state function g(x)

Compute the distance normal to the yield surface of the system

Calculate the load and strength from calno subroutine by using the base shear vs. the wave
height relationship as described in Chapter.6 and compute the limit state function as step (2)

Compute the reliability index and importance factors from FORM and SORM analyses

update the strength random table STRETAB from static pushover analyses and also the values
of the updated random variables, their derivatives and variations from previous RELJPS analysis

Follow the steps (1) to (6) if the convergence requirement set in step (9) of algorithm for
reliability analysis is not met
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G.3 GENSODM algorithm
The following is an algorithm which describes the generation of the pile-soil load transfer-
displacement curves according to disk and API RP2A 1993 (t-z), (p-y) and (q-z) models.

Define the pile geometry (length, diameter and thickness)

Define the soil profile( layers type, thickness, strength characteristic data such as shear
strength S, the effective overburden pressure p', the overconsolidation ratio OCR, the strain at
half deviatoric stress level etc).

Define cyclic soil parameter such as a8 and parameters no of cycles, one way or two way
cyclic indicator parameter such as Tav and r, stabilization, switch etc.

Assign the pile and soil layer data

Specify additional data such as hydraulic scour or gapping for API RP2A 1993 models

Compute other necessary soil data if not supplied as input such as OCR and G, according to
relationships described in Chapter.2.

Compute the effective soil parameters such as internal soil angle or interface angle if not
supplied

Compute the peak or ultimate values of the shaft skin friction, the lateral soil resistance and
the tip end-bearing and the associated displacement values according to the relationships given
in Chapter.2

Generate the (t-z), (p-y) and (q-z) curves according to the relationships described in secs.2.2.1,
2.3.1, 2.2.3 and 2.3.3 for API RP2A 1993 and disk models, respectively

Repeat the steps (8) and (9) for all the specified pile segments or the given soil layers in
steps (1) to (4)

If the force-displacement (MISOPL) record of USFOS is required then compute the corre-
sponding forces by integrating simply (t) and (p) stress or load transfer values over the segments
of the shaft at each layer

Calculate the tension (t-z), (p-y) curves with using the mirror image of the compression (t-z)
and (p-y) curves according to API RP2A 1993 recommendation or apply a reduction factor (due
to suction or reduction of the effective vertical stress in soil as described in Chapter.2
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Colour displays of deformed models
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Figure H.1: Failure mode of 4-leg (Malaysian)
Jacket with fixed support

Figure H.2: The Failure mode of the 4-
leg (Malaysian) Jacket with linear spring to
ground

PIdc nte,ncdon vh

Figure H.3: The Failure mode of the 4-leg Figure H.4: The Failure mode of the 4-leg
(Malaysian) Jacket with non-linear pile-soil (Malaysian) Jacket with non-linear pile-soil
model(NC clay) model(OC clay)
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Figure H.5: The Failure mode of the 4-leg Figure H.6: The failure mode of the 4-leg
(Malaysian) Jacket with non-linear pile-soil (Malaysian) Jacket with non-linear pile-soil
model(NC clay) model(sand)

Figure 11.7: The deformed model of the Figure 11.8: The deformed model of the jacket
Jacket(Model-1) with linear spring to ground (Model-i) with linear spring to ground under
under end-on loading broad-side loading
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Figure H.9: The deformed model and plastic
interaction model of the jacket(Model-1) with
un-plugged pile foundation under end-on load-
ing

Rntt E.n v; Tb.fl; fwud

Figure H.11: The deformed plastic interac-
tion model of platform with plugged non-linear
pile-soil system under end-on loading

Figure H.1O: The deformed model and plastic
interaction model of the jacket(Model-1) with
un-plugged pile foundation under broad-side
loading

Mfl bfl.,Uw. vSj ThT-54; nn.d

Figure H.12: The deformed plastic interaction
model of platform with plugged pile-soil sys-
tem under broad-side loading
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