
Multi Bit-Rate Video on Demand for
P2P networks

Master’s Thesis

Riccardo Petrocco

Multi Bit-Rate Video on Demand for
P2P networks

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

Riccardo Petrocco
born in Rome, Italy

Tribler Research Group
Department of Parallel and Distributed Systems
Faculty EEMCS, Delft University of Technology

Delft, the Netherlands
www.pds.ewi.tudelft.nl

c© 2008 Riccardo Petrocco.
Cover picture: A. Petrocco, increasing speed - increasing quality.

Multi Bit-Rate Video on Demand for
P2P networks

Author: Riccardo Petrocco
Student id: et1339702
Email: r.petrocco@gmail.com

Abstract

The Internet has become in the last years more and more a meansof conveyance
for multimedia delivering. Many solutions have been proposed to gain high quality of
service for video on demand in client-server environments,with adaptive algorithms
that adjust the bit-rate of a video stream depending on the client’s available bandwidth.
Providing video on demand over decentralized peer-to-peersystems is an active re-
search field. The variable bit-rate environment that characterizes peer-to-peer networks
causes significant difficulties to ensure quality of serviceand playback continuity for
video on demand applications.

This thesis addresses the challenge of serving high qualityvideo on demand by
designing and implementing a multi bit-rate video on demandarchitecture for peer-to-
peer networks. We propose a switching scheme, an encoding methodology and a novel
algorithm for multiple bit-rate video streaming over peer-to-peer networks. Identical
video content is encoded into three different sets of streams with different average
bit-rates. The novel multi bit-rate algorithm will switch dynamically between the three
sets of streams depending on the available bandwidth. Through a series of experiments
we present the effectiveness of this architecture in fluctuating bandwidth scenarios.

Thesis Committee:

Chair: prof. Dr. Ir. H. J. Sips, Faculty EEMCS, TU Delft
University supervisor: Dr. J. Pouwelse, Faculty EEMCS, TU Delft
Committee Member: Dr. F. A. Kuipers, Faculty EEMCS, TU Delft

Preface

This document describes my MSc thesis research concerning Video on Demand in a variable
bit-rate environment for the Tribler peer-to-peer network. The research was performed at
the Parallel and Distributed Systems Group of the Faculty ofElectrical Engineering, Math-
ematics, and Computer Science of Delft University of Technology.

I would like to thank all the members of the Tribler research group for the support and
the nice working environment. I am also grateful to Dr. Ir. Johan Pouwelse for the support
and continuous incentive to ”go further”, Dr. Ir. Jacco Taaland Arno Bakker for the support
in designing the architecture, Dr. Jan David Mol for the support and the helpfull discussions
about codecs and encoding formats. Special thanks go to Tamas Vinko and Victoria Perez
for the continuous feedbacks through out the writing phase of the thesis. Furthermore I
would like to thank prof. Dr. Ir. H. J. Sips for chairing the examination committee, and Dr.
F. A. Kuipers for participating in the examination committee.

Riccardo Petrocco
Delft, the Netherlands

November 17, 2008

iii

Contents

Preface iii

Contents v

List of Figures vii

1 Introduction 1
1.1 P2P Networks . 2
1.2 BitTorrent . 4
1.3 Tribler . 5
1.4 Swarmplayer . 5
1.5 Multi Bit-Rate Video on Demand .. 6
1.6 Contributions . 7
1.7 Thesis outline . 7

2 Problem description 9
2.1 Heterogeneous Internet access 9
2.2 Streaming over bandwidth-fluctuate networks 11

2.2.1 Scalable video coding approach11
2.2.2 Switching points, a novel approach for changing quality 12

2.3 Video standard restrictions 13
2.3.1 Frames structure . 13
2.3.2 Codec Headers . 15

3 Design 17
3.1 Switching enabling mechanism .. . 17

3.1.1 Multi Bit-Rate torrent . 18
3.2 Solution for quality switching 20

3.2.1 Codecs & containers comparison20
3.2.2 VLC media player . 22
3.2.3 Alternatives for solving flickering problems 24

v

CONTENTS

3.3 BitTorrent enhancement .. 27
3.3.1 Downloading a torrent . 27
3.3.2 Priority assignment . 28
3.3.3 Dynamic priority assignment policy 29
3.3.4 The Multi Bit-Rate Algorithm . 31

4 Implementation 37
4.1 Encoding and Playing . 37

4.1.1 Encoding methodology . 37
4.1.2 Flicker free playback solution 39

4.2 Multiple Bit-Rate algorithm .. . 40
4.2.1 Tribler Enhancement . 40
4.2.2 Download policy . 43
4.2.3 Algorithm analysis . 47

5 Experiments 51
5.1 Stable environment experiments 52

5.1.1 High bit-rates . 52
5.1.2 Medium bit-rates . 54
5.1.3 Low bit-rate . 56

5.2 Agility Experiments .56

6 Conclusions and Future Work 61
6.1 Conclusions . 61
6.2 Discussion/Reflection .. 62
6.3 Future work . 63

Bibliography 65

vi

List of Figures

1.1 The increasing popularity of P2P systems 1
1.2 The centralized client-server architecture versus thedistributed P2P architecture 3
1.3 Tribler Core . 5
1.4 The interface of the Swarmplayer 6

2.1 Bandwidth consumption over time during P2PTV measurements 10
2.2 Measured bandwidth consumption in [Kbps] for differentIPTV systems 10
2.3 Spider plot of the bandwidth consumption of the five investigated IPTV appli-

cations . 11
2.4 Multi bit-rate controller 12
2.5 Group of pictures .14
2.6 Switching point in concomitance with new I-frame 15
2.7 Demuxer and decodes architecture 16

3.1 Switching points along the quality streams of an encodedMBR .torrent file . . 18
3.2 The VLC architecture .. 23
3.3 Codec header pre-reading 24
3.4 VLC control flow for a multiple decoders solution, chapter 3.2.3.1 25
3.5 Chunk and file boundaries comparison 27
3.6 Normal order of enumerated files in a torrent 28
3.7 Final order needed for download efficiency 28
3.8 Give-to-get priority sets assignment 29
3.9 Low quality priority assignment 30
3.10 Medium quality priority assignment 30
3.11 High quality priority assignment 30
3.12 Quality improvement priority assignment 31
3.13 Final priority assignment 31
3.14 Initial priority assignment 31
3.15 State diagram for the current VoD implementation 32
3.16 State diagram for the MBR implementation in a stable environment 33

vii

LIST OF FIGURES

3.17 State diagram for the MBR implementation in a safe fallback scenario 34
3.18 Final state diagram for the MBR implementation 35

4.1 Encoding methodology .. 38
4.2 Partial architecture for the Video on Demand architecture in Tribler’s Core . . . 41
4.3 State diagram for the MBR algorithm 43
4.4 Haste choice scenario .. . 44
4.5 Add current Stripe to the player’s buffer 44
4.6 Crossroad of the haste choice scenario 45
4.7 Safe fallback scenario 45
4.8 No safe fallback .45
4.9 Relaxed choice scenario .. . 46
4.10 Relaxed choice scenario 46
4.11 Optimistic quality improvement 47

5.1 High quality, stable environment 51
5.2 Stable environment; risk factor = 3 53
5.3 Stable environment; risk factor = 3.5 53
5.4 Medium quality, stable scenario 54
5.5 Stable scenario, risk factor = 3 55
5.6 Stable scenario, risk factor = 2 55
5.7 Low bandwidth limit .56
5.8 3 spikes down, risk factor = 2 57
5.9 3 spikes down, risk factor = 3 58
5.10 Variable quality, bandwidth fallback and resume 58
5.11 Variable quality, bandwidth drop 59
5.12 Variable quality, variable bandwidth 59

6.1 Mixed scenario, client-server arch. + P2P network 62

viii

Chapter 1

Introduction

Peer-to-peer (P2P) has been, for years, a small field of research in computer architecture.
The first networks with such an approach were studied back in the’60s for some of their
properties considered already interesting at that time, such as the ability to operate in a
completely decentralized way, the computational power associated with such an architec-
ture and other characteristics.

Initially P2P networks were investigated only in scientificand academic environments,
only later some important companies such as IBM and Sun understood the potential of this
architecture. The architecture was widely developed just in the early years, figure 1.1, due
to one of its strongest characteristics: thefile sharing.

Figure 1.1: The increasing popularity of P2P systems

1

1.1 P2P Networks Introduction

P2P networks have reached this success thanks to the large scale content distribution.
Most of the P2P applications allow to download large amount of data in a fast way. Cur-
rently most of the P2P traffic is used to distribute video files, normally a user has to down-
load the video file before he will be able to watch it, suffering from a long start-up time.
Recently we have seen the emergence of many systems that integrate the P2P network with a
client/server architecture, for delivering of multimediacontent, reducing the server’s work-
load [12][26][41][10][39].

The current solutions to provide VoD over P2P networks, we will see later the Swarm-
player, present constrains regarding the bandwidth availability. For the survival of the VoD
functionality over a P2P network users could download only as much as they upload, re-
stricting users with a low upload bandwidth such as ADSL users.

In this thesis we propose a novel solution for serving VoD over P2P networks, char-
acterized by a variable bandwidth environment. Our Multi Bit-Rate, MBR, VoD solution
switches between three different quality streams depending on the available bandwidth. It
has shown to behave good in bandwidth-fluctuate environments, when a constant bandwidth
is not guaranteed, and in stable environments.

In this introduction chapter we will first give an introduction on P2P networks in section
1.1. In section 1.2 we will present BitTorrent, and then Tribler as an enhancement of it in
section 1.3. Finally in section 1.4 we will introduce Tribler’s Video-on-Demand function-
ality and in section 1.5 the motivations for a MBR VoD implementation are discussed.

1.1 P2P Networks

The common architecture designed for computer communication is generally a client-server
architecture, figure 4.6a. The most famous system designed with a server-client approach
is the world wide web. This scenario is characterized by a central server that handles the
client’s requests. This approach lacks of modularity, scalability and reliability. By the in-
creasing of requests, servers need to adapt by increasing the available resources, such as
available bandwidth and computational power, to satisfy the incoming requests. A server
could be a point of failure and could stop handling the incoming requests, making the system
unusable. On the other side P2P systems offer a solution to gain scalability and reliability
in computer communications.

Typically a P2P network is a computer network or any kind of network that does not use
a client-server approach, but an equivalent number of nodes(called peers) that serve both
as client and as server to other nodes. This network model is the antithesis of a client-server
architecture. Through this configuration any node is able tostart or complete a transaction.
The equivalent nodes may differ in the local configuration, the processing speed, bandwidth
and variations in the amount of stored data. In general we define the term P2P network as
two or more computers in which all computers occupy the same hierarchy. This modality is
normally known with the term Working Group, against the networks where there is a central

2

Introduction 1.1 P2P Networks

domain.
In a P2P system peers communicate using symmetric protocolsand they act both as

server and as client by sending and handling requests. The P2P research has gone along
over the years with the economical field of game theory. The reason for this is that a P2P
system has to provide enough incentives for the peers to share the resources with each other.
While on one hand P2P systems, in relation to client-server systems, are generally more re-
liable considering the possibility of a node failure on the other hand peers of a network are
less reliable than servers in terms of tastiness and security.

The classic example of a P2P network is a network to share files(File sharing). Over the
last years we have seen the emergence of an incredible amountof P2P file sharing networks
often including servers for particular functionalities. Often P2P file sharing application use
the support of servers, ending up in a mixed scenario where the P2P architecture and the
client-server architecture coexist. P2P file sharing clients such as BitTorrent [20] or Fast-
Track, implemented in Kazaa [24], are based on P2P networks but still use some servers
for locating files of connected peers. Other interesting P2Psystems are the Gnutella [18]
and the Kad Network1 that implemented a completely serverless network. Anyway those
networks still need to know before hand some peers of the network. As an example the
popular program eMule [14] takes advantage of both: serversfor file indexing and the Kad
network for additional sources. With the increasing popularity of P2P file-sharing networks,
systems such as the Kad Network demonstrate to react better than server based architecture
in localizing peers with content. Clearly the respond time is higher, given by the distributed
nature of the architecture. Innovative uses of the P2P technology include the deployment of
real-time generated high data streams such as television programs or movies.

Server

Client Client

Client

(a) Client-server

Peer Peer

Peer

(b) P2P

Figure 1.2: The centralized client-server architecture versus the distributed P2P architecture

1that actually implements the Kademlia P2P overlay protocol[23]

3

1.2 BitTorrent Introduction

1.2 BitTorrent

We will now introduce the BitTorrent P2P system, designed byBram Cohen in 2003, as
the core of Trible’s architecture. BitTorrent is both a protocol used for communications in
a P2P fashion, and a client that uses the protocol for file sharing. It has been designed to
allow a fast download of big files over a P2P network, limitingthe bandwidth consumption.
The protocol is based on an encryption algorithm, called Bencode, used for client/server
and client/client communications.

Unlike traditional file sharing systems, the goal of BitTorrent is to create and provide an
efficient system to distribute the same file to the largest number of available peers. This is
a mechanism to automatically coordinate the work of a multitude of computers, obtaining
the best possible common benefit. BitTorrent is a protocol that allows to distribute files of
any type. To facilitate the transmission, the original document is split into many small frag-
ments, called chunks, which then will be recomposed once at destination. The chunks have
a fixed size, for verification a fingerprint2 for every chunk is generated, using the SHA1
algorithm, and distributed along the peers.

Every file-sharing program designed on a P2P network need some share-ratio3 enforce-
ments to guarantee the survival of the system. The sharing-ratio enforcement is the set of
rules that enforce peers to share their upload bandwidth with other peers of the system. In
BitTorrent, the share-ration enforcement is guaranteed bythe tit-for-tat [9] protocol, that
tries to gain a high sharing-ratio between peers. Tit-for-tat is designed in a bidirectional
way, a peer will be able to download from another peer if it is uploading some content to
that one. This gives peers an incentive to be available and donate bandwidth to the Bit-
Torrent network. Furthermore it gives a solution for the freeriding problem by stimulating
cooperation [2].

The research of available content is done in a centralized way through web sites where
.torrent files are located. The torrent file is a simple file, small, which can be published for
example on a Web page. In order to take advantage of the system, it is therefore necessary,
first of all, to download a file with the .torrent extension. This file acts as an index, with
a description of all packages in which the original file was divided, including hash keys
that ensure the integrity of the various pieces. The torrentfile contains the address of a
BitTorrent tracker. The tracker is used to discover the connection properties of the group
of downloaders of this torrent. The total group of downloaders of a torrent is called the
download swarm.

2 The fingerprint in computer science is a string that identifies a given file. It is used to ensure the authen-
ticity and security of files and also to quickly identify filesdistributed over a file-sharing network.

3ratio between the total amount of uploaded data and the totalamount of downloaded data of a peer in the
network.

4

Introduction 1.3 Tribler

1.3 Tribler

Tribler [38] is the name of a software designed and implemented since February 2006 in the
Parallel and Distributed System group of the Faculty of Electrical Engineering, Mathematics
and Computer Science of TU Delft. Initially only a small enhancement of the ABC client
[1], it now integrates many functionalities that make this software unique.

Tribler differs from other popular BitTorrent clients suchas Vuze [47] and uTorrent
[45] due to some of its features. Tribler adds keyword searchability to the BitTorrent file
download protocol using a gossip protocol. The software includes the ability to recommend
content. After a dozen downloads the Tribler software can roughly estimate the download
taste of the user and recommends content. This feature is based on collaborative filtering,
also featured on websites such as Last.fm and Amazon.com. Another feature of Tribler
is a limited form of social networking and donation of uploadcapacity. Tribler includes
the ability to mark specific users as online friends. Such friends can be used to increase
the download speed of files by using their upload capacity [5]. The last evolution of the
software ingrates new functionalities to prevent free-riders and garantee fairness [33].

1.4 Swarmplayer

As the GUI of Tribler, the Swarmplayer is just an interface toTriber’s API, see figure 1.3,
that enhances Tribler with the VoD functionality. The Swarmplayer is responsible of han-
dling the download and manage the video playback. It has beendesigned for the integration
in web pages, in Tribler’s GUI or as stand alone player. To obtain the VoD functionality
some characteristics of Tribler, more precisely of the BitTorrent client, had to be modified.
For this purpose a new algorithm, called Give-to-Get [34], has been designed and imple-
mented to handle the download and upload policies.

Figure 1.3: Tribler Core

5

1.5 Multi Bit-Rate Video on Demand Introduction

Figure 1.4: The interface of the Swarmplayer

We implemented the novel VoD approach described in this thesis into the Swarmplayer.
The high modularity of Tribler’s architecture allowed to easily enhance the Swarmplayer
with new functionalities in a transparent way for the existing VoD implementation.

1.5 Multi Bit-Rate Video on Demand

The poor quality and the typology of the current Internet accesses are a great limit for the
spread of a VoD P2P technology. In our days Internet accessesare mostly ADSL and nor-
mally the available download bandwidth is much higher than the upload bandwidth. While
it is prefered to have a higher download ratio when serving onthe web, this is a limitation
when considering P2P systems. Considering the VoD functionality discussed in the previ-
ous section a peer could only download as much as it uploads for the survival of the system.
It is logical that, in a completely decentralized system, a peer can rely only on other peers
of the system and therefore on their upload bandwidth.

Another limitation of the current VoD functionality is thatit relies on the current down-
load rate of a peer. While this is applicable in a client-server architecture, where servers
provide a fixed bandwidth, it presents problems due to the uncertainty of the available band-
width in P2P systems. In P2P systems the available bandwidthdepends on the amount of
connected peers and on their connections. If a peer drops outof the system, while we are

6

Introduction 1.6 Contributions

watching a video file in a VoD fashion, it can stall the player’s playback because of the
sudden drop of available bandwidth.

In this thesis we present design and implementation of a novel VoD functionality, called
Multi Bit-Rate VoD, that aims to smartly react to sudden bandwidth variations. The Multi
Bit-Rate (MBR) VoD functionality will switch between threedifferent quality streams de-
pending on the current available bandwidth. We designed a novel encoding methodology to
create the three quality streams in a particular way. Furthermore we modified the multime-
dia player VLC to allow a flicker-free playback of our encodedstreams.

1.6 Contributions

The contributions of this thesis are as follow:

• We study the current VoD solutions and their design decisions. In particular we anal-
yse the state of the art of codecs and containers that could allow a MBR VoD func-
tionality to be implemented.

• We propose a novel encoding methodology that creates a torrent with three different
quality streams, aimed to serve our novel MBR VoD solution.

• We modified the demuxer module of the multimedia player VLC toallow a flicker
free playback of chained Ogg streams4.

• We present a novel algorithm that handles the download and playback of three pro-
portional quality streams of a torrent file, depending on theavailable bandwidth.

1.7 Thesis outline

The remaining parts of the thesis are organized as follows. Chapter 2 will describe the prob-
lems related with the current P2P VoD solutions and with the approaches aimed to gain a
VoD functionality in variable bandwidth environments. Chapter 3 will present the design of
our novel MBR VoD architecture. In this chapter we will discuss the design decisions that
guided us through the nine month thesis project. In Chapter 4we will show how the design
of Chapter 3 has been implemented by enhancing Tribler’s core and the Swarmplayer. In
Chapter 5 we present the result of our experiments that showsthe behaviour of our novel
MBR VoD functionality. Conclusions, discussions and recommendation for further investi-
gations are presented in Chapter??.

4a stream created by concatenating different streams

7

Chapter 2

Problem description

First we consider the problems related with the Quality of Service, QOS, of video on de-
mand for peer-to-peer networks.

In section 2.1 we will discuss how the network condition of the Internet is not reliable
because the bandwidth and the load of Internet often change acutely. But the transport bi-
trate of media source is mostly constant. So it will affect the quality of Video-on-Demand
such as delay and jitter. Further more the actual access bandwidths of many users, peers
in our case, who attempt to watch the same media program are different. Some users with
high access bandwidth can’t get better video quality and some users with very low access
bandwidth have not enough bandwidth to watch video. So it is necessary that media source
can provide more than one bitrate to adapt to complex networkcondition.

In section 2.2 two different approaches to stream over a bandwidth-fluctuate network
are discussed. The enormous attention that variable quality video-on-demand got over the
last years brought to such encoding technologies as thescalable video coding, that would
avoid handling big restrictions, explained in section 2.3

2.1 Heterogeneous Internet access

The Internet is constantly growing, and the connections speed with it. The nature of the
environment is not reliable because bandwidth and load could change unexpectedly. Also
the access bandwidths of the users, peers in our case, differ. Some peers might have an
access bandwidth that is in order of Megabytes/s while otherpeers hundreds of Kilobytes/s.
This diversification is the most important factor that brings the need in our days of a variable
bandwidth environment where the Quality of Service is guaranteed. The current working
solutions are majority server based [26] [41].

The simplest way is that media server prepares several mediafiles for the same video
file. The bitrates of these files are different from each other. The server redirect a client to a
corresponding media file according to the client’s selection on the bitrate.

The current services on the Internet that provide a Video on Demand (VoD) functionality

9

2.1 Heterogeneous Internet access Problem description

have been analysed to determine which were their design decisions concerning bandwidth
allocation. Our analysis takes in consideration YouTube asthe most popular VoD service but
there are at least other 40 video-sharing websites1. We will show also ”Joost”, ”Zattoo” and
PPLive as the most popular video on demand distributed systems based on P2P technology.
The results shown in figure 2.1 and figure 2.2 are taken from [21], where those popular
video content delivery mechanism are studied. P2P technology has proved to be the future
solution for VoD systems, offering a better reaction to a sudden increase in requests. On the
other hand setting up the environment might take longer thanin a server/client architecture
when requests and content distribution over the P2P system is rather low [27].

Figure 2.1: Bandwidth consumption over time during P2PTV measurements

Figure 2.2: Measured bandwidth consumption in [Kbps] for different IPTV systems

As we can see from figure 2.3 YouTube is the VoD system that requires less bandwidth
consumption. It needs at least a 315,47 Kbps as download bandwidth to be able to watch a
video stream without stalling, see figure 2.2. This bandwidth consumptions are taken into
account to design our quality streams in a proper way. We are going to see, chapter 3.1.1.2,
how our lowest quality stream will need only a 256 kbps connection to be able of being
watched fluently. Therefore all the users with a low speed connection will benefit from our
architecture, without having to wait a certain time for the buffer pre-fill.

1http://en.wikipedia.org/wiki/List_of_video_sharing_ websites

10

Problem description 2.2 Streaming over bandwidth-fluctuate networks

Figure 2.3: Spider plot of the bandwidth consumption of the five investigated IPTV appli-
cations

2.2 Streaming over bandwidth-fluctuate networks

Internet is considered a bandwidth-fluctuate network whereheterogeneous connection speeds
coexist and interact with each other. While the difference is not evident in a server-client
environment, it is one of the biggest problems in a peer-to-peer or client-client environment.
In a P2P environment the connection speed of a peer relies only on the connection speed
of other peers, making the bandwidth capacity of a P2P systemvariable depending on the
connected. It often happens that the upload bandwidth of a peer completely saturates the
bandwidth needs of a second peer, while it will need a large set of peers to saturate it’s band-
width. This instability is the key point for a multi bit-rateimplementation. Not only peers
with low and medium connection speed benefit but also peers with a high speed connection
that want to watch a video file held by peers with a slower connection.

Before presenting our final solution to gain a Multi Bit-Rate(MBR) video on demand
functionality, we will analyse the state of the art for variable bit-rate encoding. The next
subsection will present a possible approach based on scalable coding where an encoded
video file is composed of a base layer and a certain number of extra information layers
that improve the video quality. The following chapter will present our novel solution that,
seeking for a codec agnostic approach (considering the limitations explained in section 2.3),
encodes the video file into three different quality streams and switches at run-time between
those depending on the available bandwidth.

2.2.1 Scalable video coding approach

One possible solution for streaming over bandwidth-fluctuate networks is thescalable video
codingapproach. Since 2003 when the Moving Pictures Experts Group(MPEG) made a
proposal for scalable video coding (SVC) a lot of effort has been put in that direction. SVC
will became the name given to an extension of the H.264/MPEG-4 AVC video compression

11

2.2 Streaming over bandwidth-fluctuate networks Problem description

standard. The SVC has been developed to offer the possibility of encoding into an high qual-
ity bit stream split into different sub streams or layers that can be decoded independently.
Such an approach will offer a simple solition to archive a variable bit-rate video on demand
system where the base bitstream will be encoded to advantagelow bit-rate clients and ad-
ditional streams could be downloaded by faster peers. Even though the fact that this will
be the best solution in terms of modularity, scalability etc., there is still no open-source im-
plementation. The current free software encoding library corresponding to the H.264, that
could be used to encode the original video, is the X.264. It isalso used by the VideoLan
player (VLC, discussed in section 3.2.2) that is the currentvideo player used in the Tribler
project for the Video on Demand implementation. The big problem concerning this imple-
mentation is that there is still no implementation of the X.264/SVC (scalable) extension and
we will take this approach into consideration only once the open-source implementation
will be available. Of course as soon as it is a stable technology to relay on it has to be taken
in consideration as a valid alternative. Therefore in the next sections and for the rest of the
research a Scalable Video Coding approach is not taken into consideration

2.2.2 Switching points, a novel approach for changing quality

The novel approach proposed in this thesis is aswitching pointstechnique. This technique
aims to switch at run-time between different quality streams. Every stream stored in a dif-
ferent buffer, therefore to switch between different quality buffers. How to switch between
buffers will be handled by a controller that will try to switch to an higher quality level as
soon as there is enough saved buffer of the current quality, see figure 2.4.

Figure 2.4: Multi bit-rate controller

The major problem deriving from this design is the alignmentbetween quality buffers.
If the buffers holds different qualities, than the informations held at a particular time will not
be the same in time for other buffers. How to switch between buffers regards the ”switching
point problematic” and will be addressed in section 3.2.

The switching point problem has different impacts at different levels of the architecture.
The download engine, BitTorrent??, will be affected in the download policy. The new
policy will have to download the needed quality based on the available bandwidth. This
is easily archived in a client-server environment where theserver sends a quality stream
depending on the client feedback. This interaction betweenpeers is not possible in our P2P

12

Problem description 2.3 Video standard restrictions

environment, therefore the ”client” peer will have to adaptregardless of other peers, in an
automatic way.

The MBR Controller will have to fill in the right way the three quality buffers and than
serve them to the video player. The algorithm has the responability of preventing stalling
and determining when to attempts a quality switch.

The last but heaviest problem concerns the video playback, as we are going to see in
the next chapter, where getting an alignment between the streams resulted in a complicate
analysis of different container and codec formats, that will allow to manage streams in the
desired way.

2.3 Video standard restrictions

As previously discussed, the main problem concerning the video playback is the quality
buffers alignment. Thanks to the previous work [34] we know that downloading a torrent
file in an ordered way, with only one video file, and streaming it to a multimedia player is
possible to realize. This approach is quite useful considering only one stream. On the other
side, considering such an approach for handling different streams involves some changes
on the player side.

The major characteristic of the current video on demand functionality is a constant bi-
trate encoding. Through the bit-rate estimation it is possible to easily predict when to start
playing a video depending on the current download bit-rate.If the current download2 bit-
rate is higher than the playing bit-rate than it is possible to start watching the video directly,
without having to wait for a buffer pre-fill. In other words ifless time is needed to download
the video than to watch it, than it is possible to watch it downloading the video pieces in
an ordered way. Even if the download speed is lower than the needed time, through the
constant bit-rate encoding it is possible to predict when itwill be possible to start watching
the video without future ”predicted” interruptions.

This entire approach is based on a bit-rate value that can be stored in the torrent header
or automatically detected by analysing the video headers stored at the beginning of the
stream. Anyway such an approach will not be valid in a variable bit-rate environment with-
out restricting the codec choice. We need at least differentbit-rates for different qualities to
be more flexible when encoding the video file. On the other handas we will see in the next
section a constant bit-rate encoding would solve some alignment issues to switch buffers.

2.3.1 Frames structure

A movie is mostly composed of at least two streams: one for theaudio and one for the
video. Our concerns goes more for the video stream considering that most of the encoded
information is carried here. Even though the audio has to be considered when encoding to

2The current download measurement is always an approximation of the average over a certain period of
time

13

2.3 Video standard restrictions Problem description

Figure 2.5: Group of pictures

different qualities and synchronised with the video, what plays the biggest rule for a quality
difference is the video stream.

MPEG is the most common family of standards used for coding audio-visual infor-
mation. Each MPEG-coded video stream consists of successive Group of Pictures, GOPs
figure 2.5. From the MPEG pictures contained in it the visibleframes are generated. A
GOP can contain the following picture types [31][36]:

• I-picture or I-frame (intra coded picture) reference picture, corresponds to a fixed
image and is independent of other picture types. Each GOP begins with this type of
picture.

• P-picture or P-frame (predictive coded picture) contains motion-compensated differ-
ence information from the preceding I- or P-frame.

• B-picture or B-frame (bidirectionally predictive coded picture) contains difference
information from the preceding and following I- or P-frame within a GOP.

• D-picture or D-frame (DC direct coded picture) serves the fast advance.

The I-frames contain the full image, they don’t require any additional information to
reconstruct the image. Therefore any errors in the streams are corrected by the next I-frame
(an error in the I-frame propagates until the next I-frame).Errors in the P-frames could
propagate until the next I-frame. B-frames do not propagateerrors.

The more I-frames the MPEG stream has, the more it is editable. However, having more
I-frames increases the stream size. In order to save bandwidth and disk space, videos pre-
pared for Internet broadcast often have only one I-frame perGOP.

The most used are the I/B/P-frames and concerning our switching point problem when
to switch between buffers we should always start with a new clean image provided by
the right I-frame. If we would just jump in the middle of the buffer without taking in
consideration the beginning of a group of picture we’ll moreprobably end in the middle of
a GOP reproducing P-frames and B-Frames that do not have the correct I-frame as reference.

14

Problem description 2.3 Video standard restrictions

Figure 2.6: Switching point in concomitance with new I-frame

Considering our switching points problem, to avoid the error propagation caused by a
missing I-frame, we should set our switching points in concomitance with the beginning of
GOPs, see figure 2.6.

A constant bit-rate encoding will help this approach offering a way of localizing the I-
frames in a video. Also some particular encoding configuration would allow to easily locate
the I-frames in a stream but it will give a big limitation in the kind of codec to be used and
in the flexibility of the encoding.

2.3.2 Codec Headers

The audio and video coded headers contain vital informationfor decoding such as frame
rate and resolution that, if changed without re-initialising the decoders, will cause problems
in our implementation. A big problem, when analysing the different approaches, is how
to handle thos codec headers. Every video and audio stream will be decoded based on the
information held in the header. Different container formats offer different header structure
but normally the codec informations are stored at the beginning of the video file. Those in-
formation is used by video players, in particular by demuxers (see section 3.2.3) to initialize
decoders that will handle the stream at run-time, figure 2.73. In most containers the codec
headers are saved only at the beginning and some times at the end of the stream because
during the video playback the streams information are not planed to change. In our situation
we will have to change headers information at run-time depending on the available down-
loaded quality. One solution for the header localization would be to download the initial

3picture taken from:http://cutebugs.net/files/multimedia/decoder.png

15

2.3 Video standard restrictions Problem description

bytes(ref, meaning) of every quality stream and store them to be used once is needed.

Figure 2.7: Demuxer and decodes architecture

Another problem that derives from such an approach is thepresentation time stamp
(PTS) and thedecoder time stamp(DTP) synchronization that provides the decoders with
information concerning ”when to decode” and ”when to present” every frame of a video
stream [6]. That information is needed because often we willhave a decoder order that
differs from the presentation order.

The amount of frames will change with the quality, thereforeeven if the same I-frame
appears in different buffers4, it will never have the same values of PTS and DTS because
the decoder will have already processed a different amount of frames. This problem could
be solved be changing the PTS and DTS values at run-time, but will bring an extra amount
of computational overhead to the system. Another aspect that has to be taken into account
is that more ”hard coded” is the solution less modularity will be given to the architecture.
The proposed solution, section 3.2.3.2, will not handle thevideo stream for modifications
at run-time.

4happens only if specifically encoded

16

Chapter 3

Design

The architecture design was done by dividing the study in relation to the issues addressed.
The first half of the time spent on the project was used to studya possible solution to the
switching point policy. We obtained the simplest possible switching point solution using
the characteristics of containers and codecs. This has led to a profound analysis of the
multimedia player VLC [46] used in Tribler and after variousarchitectural choices to a
small backwards compatible modification to the software.

To obtain a P2P integration the quality streams will be encapsulated into a single torrent.
The torrent will be therefore holding three different copies of the same video file encoded
into different qualities.

At first sight it was clear that the only way to go was to exploitthe possibility of as-
signing different priorities to different files of a torrentto be able to download only the
interesting part by not loosing bandwidth downloading unnecessary files . As we are going
to see later this feature is the heart of the download controller that deals with download-
ing the right chunks in the right order. The download controller has been analysed and
implemented during the second half of the project.

3.1 Switching enabling mechanism

The problem of how to change the quality was the first to be addressed. Because of its big
importance in the project, it has been considered from various points of view.

Let us analyse what advantages and disadvantages a codec agnostic solution will bring.
To create the switching points depending on I-frames or on particular points in the stream
also means to bind the architecture to the type of coding, by restricting future project devel-
opments or the modularity of the architecture. As seen in (ref section before), this solution
greatly restricts the used encoding parameters. In addition a constant bit-rate should be ap-
plied or the three buffers should be analysed at run-time forsynchronization, which would
cost too much in terms of computational consumption.

To avoid restrictions on encoding parameters, the video player should be able to detect
a change of quality in the stream (in other words a quality switch) and re-initialize the audio
and the video decoders with the correct values. With the usedmultimedia player, VLC, we

17

3.1 Switching enabling mechanism Design

Figure 3.1: Switching points along the quality streams of anencoded MBR .torrent file

will see in the following sections how also the video and audio outputs are re-initialized
with the right codec informations such as the frame size. This is usefull considering that
different qualities can be encoded with different resolutions.

The final solution is atime basedalignment, see figure 3.1. This approach will locate
the switching points on a time scale. The original video willbe encoded into many small
files holding few seconds of the video/audio streams. Every file, calledStripe, is encoded in
a different way, storing the codec headers needed by the player’s decoder at the beginning.
This approach makes every file able to be played independently. During our experiments
we encoded a new stripe for every three seconds, offering thepossibility of switching buffer
every stripe, therefore every three seconds. Creating the switching points based on time was
found to be the successful choice to have a codec independentapproach. For our design we
decided to use a particular codec and container, but a time based alignment between buffers
could be used with every codec as long as the player allows it.

3.1.1 Multi Bit-Rate torrent

In this section we will explain how the torrent has to be created to accomplish the design.
First we are going to explain howStripesare saved in the torrent file. In section 3.1.1.2 the
conditions that brought us to such a configuration, like the stripes size, are explained and
the motivations are given.

3.1.1.1 Stripes

The original video is divided into a number of pieces, calledStripes, dependently on its
duration:

number of stripes=
duration of the video file
duration of each stripe

The name of every created stripe consists of a character who specifies the quality, in our
case ”l” for low quality, ’m’ for medium quality and ’h’ for high quality, and a value that
will increase for each stripe. To specify that it is a torrentcontaining a video for this par-
ticular architecture, a text file calledmultibitrate.infothat contains additional information is

18

Design 3.1 Switching enabling mechanism

also written in the torrent. Table 3.1 gives an overview of the files kept by the torrent created
from a 21 seconds video file, with switching points every three seconds. This will create a
torrent suitable only for use with Tribler, at a later time the user may decide whether to re-
gain the video with the original quality by sequentially combining the stripes of the highest
quality or not.

low quality medium quality high quality other files
l0.ogg m0.ogg h0.ogg multibitrate.info
l1.ogg m1.ogg h1.ogg
l2.ogg m2.ogg h2.ogg
l3.ogg m3.ogg h3.ogg
l4.ogg m4.ogg h4.ogg
l5.ogg m5.ogg h5.ogg
l6.ogg m6.ogg h6.ogg

Table 3.1: .torrent file containing multiple files

Every stripe will have a different size, variable bit-rate encoding, and naturally the lower
the quality is the smaller the stripe is. The size differencebetween stripes is the fundamental
condition to be able to download at different connection speeds. Table 3.2 gives an idea of
what could be the size for the different qualities. In particular those are the average sizes of
the final stripes created with our encoding algorithm 4.1.1 (see later).

Quality low medium high
Size per Stripe ≃ 91kB ≃ 202kB ≃ 425kB

Table 3.2: stripe sizes with configuration later discussed in section 4.1.1

3.1.1.2 Exploring Stripe size dependency

The values of table 3.2 have been chosen depending on the upload speed of ADSL connec-
tions (Asymmetric Digital Subscriber Line). As we discussed in the previous chapter, in a
P2P system a peer could only download as much as it uploads. For our studies we took into
consideration a connection with 256kbit/s as lower bandwidth bound and as upper bound a
connection with 1,4Mbit/s as upload speed. The upper bound can be increased depending
on the quality of the original video file, while we found that our lower bound, 256kbit/s as
upload rate, is a reasonable value considering the current available ADSL connections.

Before going further explaining why we chose such values, let’s first introduce a con-
cept of which we will use extensively in the next chapters. While designing the architecture
of the multi bit-rate Video on demand system, we had to alwaysconsider the possibility

19

3.2 Solution for quality switching Design

of loosing bandwidth, due to a loss of connection or a peer connection closed in advance.
Therefore a safe quality fall-back scenario has to be considered and, while downloading a
higher quality, the lower quality will always be downloadedin background (chapter 3.3.3).
In the following tables we will show how our stripes have beenencoded to gain the best
results for the most typical ADSL connections.

In table 3.3 the minimum speed requirements for every quality are shown. The low and
medium quality values are typical upload limits for commercial ADSL connections.

Quality low medium high
Minimum ADSL upload limit ≥ 256kbit/s ≥ 798kbit/s ≥ 1,4Mbit/s

Table 3.3: Minimum ADSL upload speed limit for a continuous playback

Table 3.4 shows the reasons for choosing the stripe sizes. Aswe can notice from the
table, the minimum required speed for continuous playback of one quality in a safe fall-back
scenario is upper bounded by the upload limits of commercialADSL.

- Low quality: 30,3kByte/s< 31,25kByte/s

- Medium quality: 97,8kByte/s< 98kByte/s

- High quality: 171,3kByte/s< 175kByte/s

3.2 Solution for quality switching

In this section we are going to analyse what have been the crucial design decisions that
brought us to gain a flicker free playback. The main addressedissue was to avoid the few
milliseconds latency between stripes. This was made possible thanks to the correct choice
of codecs and containers, allowing a simple management of the audio and video streams.

Further than choosing codecs and containers a small modification had to be done to the
default Tribler multimedia player, VLC. This modification affects only a library used by
the player, leaving the structure and behaviour of the same unchanged. In section 3.2.2 the
modifications of the ogg demuxer library of VLC are explainedin a detailed way.

3.2.1 Codecs & containers comparison

After the analysis of section 2.3 we will now describe the reasons that have caused us to use
the ogg container. First of all:

the ogg container is a free software [25], therefore patent-free.

20

Design 3.2 Solution for quality switching

Quality low medium high

Size per 3 second
Stripe

≃ 91kB ≃ 202kB ≃ 425kB

Minimum required
speed for contin-
uous playback of
only one quality

30,3kByte/s 67,5kByte/s 141KByte/s

Minimum required
speed for
continuous
playback of one
quality in a safe
fall-back scenario

low quality low + medium low + high
⇒ 30,3kB/s ⇒ 30,3kB/s+67,5kB/s ⇒ 30,3kB/s+141KB/s

30,3kByte/s ≃ 97,8kByte/s ≃ 171,3kByte/s

Bandwidth limit
(kbit/s)

≥ 256kbit/s ≥ 798kbit/s ≥ 1,4Mbit/s

Bandwidth limit
(kByte/s)

31,25kByte/s 98kByte/s 175kByte/s

Table 3.4: Stripe size dependency

Ogg specifications are publicly available. The libraries ofreference for encoding and de-
coding are released under BSD license1 . The official instruments to manage the containers
are licensed under the GNU General Public License (GPL)2.

The main reason that prompted us to OGG rather than Matroska3 was one of its design
characteristics:

The internal structure of an Ogg file allows the binary concatenation of streams.

The resulting Ogg file perfectly complies with the specifications. The same specifications
provide the so-calledchained streams. As we know Ogg is just a format that specifies how
the data should be sorted in the data stream. The audio or video encoded by a specific codec
will be included in the Ogg container [37]. The container cancontain streams encoded
differently, for example, an audio/video file containing two streams encoded with different
codecs.

As a form of containment, Ogg can integrate third-party codecs (like DivX, Dirac, XviD,
MP3, etc.) but is usually used with the following codecs:

1further reference:http://en.wikipedia.org/wiki/BSD_licenses
2further reference:http://en.wikipedia.org/wiki/GNU_General_Public_Lic ense
3The Ogg container is not the only free software, also the Matroska container offers a good alternative.

Matroska is an open standard project developed by the Matroska Development Team and licensed under GNU
LGPL4 designed as a compromise between the strong-copyleft GPL and permissive licenses such as the BSD
license.

21

3.2 Solution for quality switching Design

• Audio Codec

– Lossy

Speex : handles the compression of the human voice to low bit rate (8-32 kbit
/ s / channel)

Vorbis : Manages moderate compression of audio generic (16-256 kbit / s /
channel)

– Lossless

FLAC : Manages audio generic preserving all the information of the original
signal

• Text Codecs

Write : codec for the management of the text in subtitled movies

• Video Codec

Tarkin : experimental codec that uses wavelet transforms 3D. Development is cur-
rently suspended, as the focal point of development is currently Theora

Theora : video compression codec based on VP3 of On2

Of these, only FLAC is also commonly used without the ogg container. Out of this list of
codecs we decided to use Vorbis for the audio stream and the Theora for the video stream.
Both codecs are free and open-source, developed directly bythe Xiph.org foundation5. We
chose the Theora codec because it scales from postage stamp to HD resolution, and is con-
sidered particularly competitive at low bitrates. It is in the same class as MPEG-4/DiVX,
and like the Vorbis audio codec it has lots of room for improvement as encoder technol-
ogy develops. The Vorbis codec has been designed to completely replace all proprietary,
patented audio formats [32]. Vorbis is an open source algorithm for lossy compressing
digital audio-type, direct antagonist of other standards such as MP3, VQF, AAC. With the
same quality, allows greater compression than the MP3 format, thanks to advanced psy-
choacoustic research. Among the qualities that are commonly attributed to Vorbis, refer-
ring especially to the inevitable comparison with the de facto standard MP3, we consider a
greater extension and a cleaner sound at high frequencies (above 16 kHz), native support for
multi-channel and a general better preservation of the spatiality of the sound of the original
signal . One of the only defects, compared to other codecs like MP3, is the heaviness of the
algorithm while decoding.

3.2.2 VLC media player

VLC media player [46] is a highly portable multimedia player, capable of supporting var-
ious audio and video formats (MPEG-1, MPEG-2, MPEG-4, DivX,mp3, ogg, ...), as well
as DVDs, Video CDs and various streaming protocols. VideoLAN is a free open source

5reference:http://xiph.org

22

Design 3.2 Solution for quality switching

Figure 3.2: The VLC architecture

project released under the GNU General Public License and therefore can be modified and
distributed within the Tribler software without any patentproblems. The core of VLC media
player, LibVLC, is built in a modular way, allowing an easy modification and integration of
every feature of the program.

The core gives a framework to do the media processing, from input (files, network
streams) to output (audio and/or video, on a screen or streamed on the network), going
through various muxers, demuxers, decoders and filters. Even the interfaces are plugins for
LibVLC. It is up to the developer to choose which module will be loaded. VLC is heavily
multi-threaded and, as we can see from figure 3.2, taken from [46], is a layered system
where layers are created in a hierarchical way.

The problem concerning the media player is the audio and video decoder threads recre-
ation for every stripe encountered while reading an Ogg chained-stream. In figure 3.2 the
thread responsible of the decoders creation is highlighted. The programs responsible of

23

3.2 Solution for quality switching Design

the stream management are created and managed by the chosen demuxer. The demuxer
is responsible of killing a thread when and ”end of stream” or”end of page” occurs. The
time needed by the audio and video decoders to decode the firstbytes of a stream and send
them to the audio and video outputs is what actually causes the 20−60mslatency between
stripes. We will address a solution to this issue in the next section.

3.2.3 Alternatives for solving flickering problems

As we sad in the previous section the ogg demuxer is responsible for the decoders creation.
First we will give an overview of what was the initial design to allow a flicker free playback,
and then we will present our proposed solution.

3.2.3.1 Multiple decoders approach

The initial idea was to create multiple instances of the samedecoder working in parallel
and serving the same audio and video outputs. Figure 3.3 explains the concept in an easy
way. The two decoder instances will alternately handle incoming Stripes serving the same
outputs at the right time. In figure 3.4 the modifications thatwould have been done to
achive this goal are shown. The demuxers modules would have to be modified to initialize
two instances of the same decoder for every stream. Those instances will have the same
reference of video and audio outputs.

Figure 3.3: Codec header pre-reading

This solution would have brought multiple advantages like acodec independent ar-
chitecture. On the other hand the many disadvantages that derive from this solution are
discouraging such an approach:

- It would be a big modification to the behaviour of the application, moving away from
the original architecture.

- All the used demuxers would have to be modified wisely.

- It would bring extra computational requirements for everyvideo opened by VLC
media player.

Therefore our final solution to gain a flicker free playback will only concern the ogg
demuxer as we will see in the next section.

24

Design 3.2 Solution for quality switching

Control flow for Stripe i

Control flow for Stripe i+1

Figure 3.4: VLC control flow for a multiple decoders solution, chapter 3.2.3.1

25

3.2 Solution for quality switching Design

3.2.3.2 The ogg demuxer approach

As we already explained in section 3.2.1 one of the main reasons that brought us to choose
the Ogg container as our encoding target is his chained-streams functionality. When con-
concatenating6 Ogg streams, most of the players handle a chained stream as a single stream
providing by default a flicker free playback. This was not thecase for the VLC media player
where the chained streams where handled like a sequence of different files. The only differ-
ence from the demuxer side was that once a new header is found the old decoder threads are
terminated and new threads for the new audio and video streams are created. As explained
in the previous section this brings the undesired playback block for few milliseconds.

To prevent the video from stalling, the Ogg demuxer has been modified to avoid the
thread recreation while decoding a chained-stream of the same quality. As we can see from
figure 3.2 the demuxer is responsible of creating, and therefore terminating, the audio and
video decoders. Our modification to the ogg module concerns thedemuxingprocess where
a page is read and, if no stream is found, a signal is sent to thestream manager to terminate
the decoders. Where on one side this functionality could be useful considering chained ogg
streams encoded with different codecs, on the other side there is the need of a controller to
check whether to spend time re-initializing the decoders ornot. Our modification makes the
input module responsible for terminating the demuxer at theright time, and therefore the
decoders, once theend of fileis reached.

Let us now consider our situation in a more detailed way. Our three buffers, holding the
three different qualities, will be seen from VLC as three items in its playlist. The buffers
will be filled up at run-time while downloading the video, once there is the need of a quality
switch will we start filling the buffer referenced by the nextitem in the playlist. After few
seconds the player will reach the end of the file for the current item and switch to the next
item in the playlist, the next quality. This is the only time when re-initializing the input
also terminates the decoders and initializes them again with the right values of the new
quality. The proposed solution ensures that a ”hang” in the video will occur only with a
playlist item or quality change, when there is the real need for decoders re-initialization.
The stripe headers will still be processed by the ogg demuxer, but they will not be sent to
the decoders for elaboration. The codec headers, interpreted by the demuxer aswrongdata
will be handled as garbage and skipped by the audio and video outputs.

The same modification has been applied to many different versions of VLC media player
without encoring in any restyling of the ogg module. The versions that have been tested
(with the modified module) go from the 0.8.6a, the oldest version used by Tribler in Febru-
ary 20087, until the latest development version 0.9.3 that is planed to be used in future
versions of the Tribler project. For all the tested versions8, the ogg module’s behaviour and
implementation did not change, except for few minor code enrichments, therefore the same

6to arrange into chained list
7The beginning of my project
8VLC media player versions: 0.8.6a, 0.8.6b, 0.8.6d, 0.8.6e,0.8.6f, 0.8.6g, 0.8.6i, 0.9.0, 0.9.1, 0.9.3

26

Design 3.3 BitTorrent enhancement

patch9 has been applied successfully.

3.3 BitTorrent enhancement

In this section we will analyse the design decisions and the algorithm that allows a multi bit-
rate implementation. First we will see some details of how a generic torrent is handled by
BitTorrent(ref), after we will explain our crucial algorithm that integrates with BitTorrent.

3.3.1 Downloading a torrent

One of the main reasons that brought the torrent protocol to be a widely used is its capacity
of downloading big files in a fast way. This is given by the factthat the torrent protocol
does not allow people to swap complete items, such as music tracks or entire TV series,
but it breaks each piece of information into tiny fragments,calledchunks. At the time of
the torrent creation it is possible to determine a particular chunk size10. Every downloaded
chuck will be controlled and verified by the Tribler core oncedownloaded.

The chunk boundaries are independent from the stripe boundaries. As we saw earlier a
stripe has a variable size. The stripe size will affect more peers with a low speed connection,
who are able to watch only the low quality stream.

Figure 3.5: Chunk and file boundaries comparison

Considering that chunk boundaries do not coincide with stripe boundaries, we need to
have stripe ordered in the right way into the torrent to optimize the download efficiency. In
figure 3.6 we see how the download efficiency is related to the order of the stripe in a torrent
file. If the stripes are not ordered, we will end up downloading unneeded chunks. While
this is not a problem considering high quality stripes, thisis a big issue with the low quality
stripes. Experiments at chapter 5.1.3 have shown that when downloading the low quality
stream, the size of the chunks is an important factor. Depending on the size of the chunks
and on the size of the stripes, it is often found that one chunkcan hold multiple stripes with
a small amount of information (the credits of a movie is an example).

9A patch is a small piece of software designed to update or fix problems with a computer program or its
supporting data.

10The size of a chunk can only be a power of 2, normally±216

27

3.3 BitTorrent enhancement Design

Figure 3.6: Normal order of enumerated files in a torrent

Figure 3.7: Final order needed for download efficiency

Therefore the order of the stripe in the torrent, see figure 3.7, is an important requirement
for the design of the application. This issue has been solvedin an easy way. Rather than
taking care of how the files are referenced by the torrent, ourencoding algorithm 4.1.1 will
start naming stripes from a value that depends on the duration of the original video file.

Initial value for Stripe naming= Number of stripes+X,

where ”X” could be any value but for simplicity in our encoding algorithm it is rounded up
to the closest power of 10 value.

3.3.2 Priority assignment

Every chunk can be downloaded with a different priority. Torrents are normally downloaded
with a rarest first priority. This is implemented to offer an equal availability of the chunks
over the Internet.

For every chuck four different priority values can be assigned:

• Low priority→ L

• Medium priority→M

• High priority→ H

• Never download→ redline

This implementation will not download the torrent in an ordered way but will try to
download the entire torrent as soon as possible. A differentdownload implementation is
already provided by theGive-to-get[34] algorithm.

28

Design 3.3 BitTorrent enhancement

Figure 3.8: Give-to-get priority sets assignment

Figure 3.8 shows how the priorities are assigned depending on the playing position into
the stream. Pieces that have an early deadline are taken first, therefore a high priority is
assigned to them. Piece that are going to be played in the future will have a lower priority
depending on the distance with the playback position. Except for the highest priority set,
where chunks are downloaded in order, for the medium and low sets the Piece Picker11 will
download with a rarest first policy.

3.3.3 Dynamic priority assignment policy

Our algorithm will act more or less like the Give-to-get algorithm. The main difference
is that we will have to switch between three buffers/streamsand therefore we will have to
take in consideration the priority assignments when switching buffer for changing the qual-
ity. Our algorithm will not directly manage the chunk priorities, like the Video on demand
does, but it will set the priorities on the file. This is an indirect way of managing chunks
priorities. Thefile selector12 will than be responsible of setting the right priority to theright
chunk.

Below is a clear explanation on how the priorities for the different qualities are set.

• Low qualities will be downloaded in a similar way to the give-to-get algorithm. The
medium and the high quality will not be downloaded, figure 3.9.

• For medium qualities a safe fall-back scenario has to be taken into consideration.
While downloading the medium quality also the low quality will be downloaded to
provide this functionality, figure 3.10.

• The high quality download is a similar scenario to the mediumquality. Therefore
only the medium quality will not be downloaded, figure 3.11

• A different priority schema is applied when the algorithm assumes that there is enough
bandwidth to increase quality. This means that we have enough downloaded buffer to

11The piece picker is responsible of downloading the chunks ofa torrent
12The file selector allows to set a particular priority, fig 3.3.2, for every file in a torrent

29

3.3 BitTorrent enhancement Design

Figure 3.9: Low quality priority assignment

Figure 3.10: Medium quality priority assignment

Figure 3.11: High quality priority assignment

safely start downloading the higher quality, figure 3.12. More information on when
this happens and how the algorithm decides to apply this schema is explained in the
further section 3.3.4.

• Once the end of the stream is reached and we stopped playing the video file, all the
file priorities will be set to ”normal” or medium priority. The current implementation
will then download them with a rares first policy, figure 3.13.

• The only other set of priorities will be set before starting the playback. At this time the
algorithm as no idea of the available bandwidth. Therefore aparticular optimistic set
of priorities is applied, figure 3.14, taking in consideration the possibility of increas-
ing the quality as soon as possible. For high speed connections we want to increase
the quality every stripe, reaching the highest quality inX seconds. WhereX is given

30

Design 3.3 BitTorrent enhancement

Figure 3.12: Quality improvement priority assignment

Figure 3.13: Final priority assignment

Figure 3.14: Initial priority assignment

by:

X(seconds to start playing the higher quality)=×duration of a stripe(number of qualities−1

For an easy understanding from now on we will talk about file priority and not anymore
about chunk priorities.

3.3.4 The Multi Bit-Rate Algorithm

In this section our Multi Bit-rate algorithm will be presented. This will only define the de-
sign decisions for the algorithm. In chapter??we will analyse the algorithm more in depth.
We will now analyse the different ”status” of the algorithm.Every status will determine
a priority change as we saw in the previous chapter. With the current video on demand
implementation there is only one major status.

31

3.3 BitTorrent enhancement Design

Figure 3.15: State diagram for the current VoD implementation

During the normal status the stream pieces are sequentiallydownloaded. Once a chuck
has been downloaded it will be sent to the player and new priorities will be assigned.

3.3.4.1 State analysis

The MBR algorithm has different status that will determine witch sets of priorities will be
assigned to the files.
We will now consider only the case of astable environment, no bandwidth loose and no
peer dropping of the system, in other words we do not considera safe fall-back scenario.
The algorithm does not send the stripe as soon as it is downloaded, but it waits until the
player’s buffer is too small and we have to take a decision otherwise the playback will stall.
The only time a stripe is sent to the player’s buffer, withouthaving a short deadline, is when
we actually increase the quality by switching buffer. To be more precise, the stripe sent to
the player will not be added to the current buffer but will initialize a new buffer, that will
then be added to the player’s playlist.

In figure 3.16 ”S” represents the reference to the current stripe that can be increased
sequentially, i+1, or by quality, q+113. ”X” & ”Y” are values of the algorithm that can be

13example: i++⇒m123.ogg→m124.ogg;q++⇒m123.ogg→ h123.ogg

32

Design 3.3 BitTorrent enhancement

Figure 3.16: State diagram for the MBR implementation in a stable environment

modified to change its behaviour. ”D” is the set of already downloaded stripes.
As we see in figure 3.16 we switch between two status.

• In the normal state the algorithm will download stripes sequentially, assoon as a
stripe is requested, because the player’s buffer is to small, the algorithm will send it.

• The algorithm will switch to theQuality improvementstate once there is enough safe
buffer 14. The algorithm will than switch back to theNormal state if the player’s
buffer is too small or it will update the current stripe to therelative stripe of the
higher quality buffer, if a higher quality stripe has been downloaded.

Figure 3.17 shows the algorithm behaviour in a dynamic environment. For simplicity
the graph does not show the previous discussed scenario, assuming theQuality improvement
state previously explained. For a complete picture of the status diagram please refere to
figure 3.18.
In this environment a new state appears.

• The algorithm will switch to thesafe fall-backstate once the player’s buffer is too low
and the current referenced stripe is still not downloaded. In this case we have to take
a decision as soon as possible to serve the player with a new stripe. The algorithm

14The safe buffer is defined as the amount of downloaded stripesthat still have not been sent to the player

33

3.3 BitTorrent enhancement Design

Figure 3.17: State diagram for the MBR implementation in a safe fallback scenario

checks if the stripe of lower quality relative to the currentone has been downloaded.
If it has been downloaded, than the algorithm will send it to the player’s buffer and
update the current stripe with an instance of it.

3.3.4.2 Signal analysis

Figure 3.18 shows how the two scenarios are interrelated. Inthis diagram we explain when
the algorithm tells the player to switch to a new buffer, quality improvement or low quality
fall-back transaction, but we assume the player is already reproducing video. We will now
analyse when the algorithm will tell the player to start, pause or stop the playback.

Start The algorithm will tell the player to start the playback oncethe player’s buffer has
been filled with a certain amount of video. For our experiments we decided to start
the playback once the first 6 seconds of video have been downloaded.

Pause We will pause the video once it is not possible to switch from asafe fall-backto
a normal status. In other words once the a safe fall-back is not possible, when the
relative stripe of lowest quality is not available. When this happens we reinitialize
the playback position and we have to wait until the player’s buffer is filled with the
amount of data specified for thestart condition.

34

Design 3.3 BitTorrent enhancement

Figure 3.18: Final state diagram for the MBR implementation

Stop The playback will be stopped only when we reach the end of the stream. When this
happens all the remaining stripes will be downloaded with a normal priority, with a
rarest first policy.

In this final section we saw the state diagramm for our MBR implementation. We
will use the final state diagram of figure 3.18, modifying it tofigure 4.3, to explain the
algorithm’s implementation, section 4.2.2.

35

Chapter 4

Implementation

In this chapter we are going to present at a high level the implementation of our novel MBR
design. The chapter is divided into two sections. The first section will talk about the ”side
effects” of the proposed solution. Section 4.1.1 will explain how the encoding algorithm
works and what is the quality difference between quality stripes. Section 4.1.2 will briefly
explain how VLC’s ogg demuxer module has been modified to gaina flicker free playback.
Section 4.2 will describe in a deeper way the behaviour of ournovel algorithm proposed in
chapter 3.3.4.

4.1 Encoding and Playing

As side effect of our design decisions we had to define a new encoding methodology, sub-
section 4.1.1, and a new flicker free playback solution, see subsection 4.1.2.

4.1.1 Encoding methodology

As previously discussed in section 3.1.1.1 we have some constrains about the stripe1 sizes.
Those constrains will put some limitations on the encoding procedure. Figure 4.1 gives a
graphical overview on how the encoding algorithm creates a new torrent aimed to provide
the three quality streams encoded into stripes.

The original video file is parsed by the encoder algorithm. For every three seconds three
different quality Stripes are created: high, medium and low. We considered multiple tools
to encode in a more efficient way the video file. After a short investigation we decided to
use ”FFmpeg” as major encoding program.

FFmpeg [17] is a complete software suite to record, convert and play audio and video
files. It is based on libavcodec library for encoding audio/video streams. FFmpeg is de-
veloped on Linux, but can be compiled and run on any major operating systems including
Microsoft Windows, therefore quite useful considering theplatform independent approach
of Tribler. FFmpeg is also used by the current Video on Demandfunctionality to detect the

1A three second independently encoded video file

37

4.1 Encoding and Playing Implementation

Figure 4.1: Encoding methodology

bit-rate of a video stream if it is not specified in the torrentmetadata2. The theora library
used by the standard ffmpeg installation is still a little bit ”buggy” and it is still not possible
to fully appreciate the power of the theora codec. A better implementation is offered by the
program ”FFmpeg2theora” [15] that allows to encode a video stream using the theora codec
specifying a quality level for the frame encoding. The reasons for not using FFmpeg2theora
to encode our Stripes is that the resulting ogg files can not beconcatenated into a chained-
stream. We need the chained-stream functionality offered by the ogg container format for
a fluent audio/video playback, section 3.2.1. Therefore we will use ffmpeg to encode our
Stripes, considering to modify the encoding parameters once the theora library, included in
ffmpeg, is able to manage frame quality settings.

We are not trying to get an average bit-rate for the quality streams. We noticed that
specifying the audio or video bit-rates did not have a consequence on the final Stripe size,
considering the theora and vorbis codecs. All our concernesgo to the Stripe size, sec-
tion 3.1.1.1. On the other hand parameters such as the frame size and frame rate for the
theora codec, brought us to the searched proportionality between Stripe qualities. Regard-
ing the audio stream we noticed that encoding with Vorbis, the sampling rate and the quality
adjustment had a bigger influence on the final size rather thanmodifying the bit-rate3.

Table 4.1 shows the parameters used to encode the quality streams used during our ex-

2The .torrent metadata holds information about the locationof trackers, file sizes and file hashed for detect-
ing corrupted files. For the current Video on Demand functionality an additional field, for storing the bit-rate
value of the video file, has been added to the metadata. This additional field is not needed for the multi bit-rate
architecture, the algorithm does not relay on the bit-rate assuming that mostly the minimum available down-
loading bit-rate is higher or equal to the low quality streambit-rate.

3probably because of the short duration of each Stripe

38

Implementation 4.1 Encoding and Playing

audio sampling audio quality
encoding parameters frame rate frame size rate [0-10]

High quality Stripe 24 1024x576 48000 10
Medium quality Stripe 18 768x432 24000 8
≃ 3/4×high quality
Low quality Stripe 12 512x288 24000 5
≃ 1/2×high quality

Table 4.1: Encoding parameters used during the experiments

periments of chapter 5. Those have shown to be valid values from the final user experience.
Even the percieved quality when watching the smallest stream is comparable to the quality
experienced watching YouTube videos. Those values has beenchosen depending on the
target Stripe sizes of table 3.2 motivated in section 3.1.1.2.

The encoding parameters proportionality between quality Stripes clarifies the propor-
tionality of the final stripe sizes. Considering only the video stream and the proportion
between a low quality Stripe and a high quality one, we see howwe halved the frame rate
and the frame size. Therefore the final video stream size willbe:

low q. video stream=
1
2
(high q. frame rate)×

1
2
(high q. frame size)

⇒ low q. video stream size=
1
4
(high q. video stream size)

The final low quality Stripe size will be 13-15% smaller that the quarter of the high
quality encoded Stripe, given to the different encoding of the audio stream.

4.1.2 Flicker free playback solution

In this section we are going to discuss in a superficial way themodifications applied to gain
a flicker-free playback. It is not of scientific interest to take a close look at the actual modi-
fication that has been applied to the VLC’s Ogg demuxer module.

The major modification has been applied to theDemuxfunction of the module. This
function is responsible of reading and demuxing data packets received from the input mod-
ule. This function runs in an infinite loop until an error or anend of streamoccures. Once
an end of streamoccurs, in our case at the end of every Stripe, a signal to terminate the
decoders is sent to the appropriate module. Our modificationconsists of keeping track of
the id, or reference, of the audio and video streams. Once we reach the end of a Stripe, if
the id of the demuxer is still the same4 and the the audio and video stream of the next Stripe

4In case of a chained-stream, the Ogg demuxer will not be terminated but just re-initialized, holding the
same id or reference

39

4.2 Multiple Bit-Rate algorithm Implementation

are encoded in the same way as the current one, we skip the demuxer re-initialization. This
is done by sending the header packet to the decoders. The Decoders will detect the codec
header and handle it asgarbageinformation, skipping to the next data package that would
be the first data package of the following Stripe.

This architecture has some limitations considering that not always theDemuxfunction
can detect correctly the typology of Streams and the qualitychange between Stripes. It was
not into the scope of this document to provide a detail investigation about codec and con-
tainer formats, but moreover to prove that a variable bit-rate Video on Demand is possible
to realize using the existing BitTorrent protocol.

As last consideration regarding the quality Stream switch:When switching between
qualities, in our case items of VLC’s playlist, all the threads managed by the playlist will
be re-initialized, figure 3.2. During this operation the decoders re-creation is the most time-
consuming step. This can not be avoided considering that many parameters, such as the
frame size, differ between qualities, ending up creating decoders and outputs in a different
way 5.

4.2 Multiple Bit-Rate algorithm

In this section we are going to discuss the enhancements thathave been applied to the
BitTorrent download policy. Subsection 4.2.1 will give an high level view on the modifi-
cations applied to the Tribler Core. Subsection 4.2.2 will give a first introduction to the
novel download policy. We will analyse how the sets of priorities presented in section 3.3.3
will be applied based on the ”current state”, defined by a set of variables managed by the
algorithm.

4.2.1 Tribler Enhancement

We are going to briefly describe the crucial changes applied to the core of Tribler. The mod-
ularity of Tribler’s Core allowed to apply the needed modifications in a transparent way for
the current VoD implementations. Figure 4.2 describes the major classes used to manage
a VoD streams. As the Tribler’s GUI also the Swarmplayer is anexternal interface used to
interact with Tribler’s Core. The API of Tribler allow to manage every kind of supported
download with few lines of code.

The Swarmplayer is actually nothing more than an interface that sets the right parame-
ters in theDownload Configclass and initializes also theDownloadclass in the proper way.
The Swarmplayer will locate the video file6, the bit-rate if specified and other useful infor-
mations from the torrent metadata file. This information together with the specific callback

5Eg. the video output has to be re-initialized for every new frame size, for every processed quality stream
6If more than a video file is detected in the .torrent file, the Swarmplayer will ask the user to select a specific

one.

40

Implementation 4.2 Multiple Bit-Rate algorithm

Torrent metadata Swarmplayer

Download config

BitTorrent download

Download

Mult iple Download

Tribler Core

Piece Picker

UserCallback
 Handler

Torrent Share X

Single Download

MovieOnDemand
 Transport

MBR Controller

VLC

Figure 4.2: Partial architecture for the Video on Demand architecture in Tribler’s Core

functions will be saved in the download configuration. Once the download configuration
parameters have been set propertly, the Swarmplayer will initialize aDownloadobject that
indirectly initializes aSingle Downloadobject. Currently every kind of download, Video on
Demand, live streaming or normal BitTorrent download, is handled by Tribler’s Core as a
Single Downloadobject. TheSingle Downloadtogether with theDownload Configuration

41

4.2 Multiple Bit-Rate algorithm Implementation

will be responsible of initializing with the right configuration and callbacks theBitTorrent
downloadthat will start the actual download process. It is not intention of this thesis to pro-
vide a clear understanding of the classes involved in the downloading process of a torrent
file. Therefore in this chapter we will only focalize our attention on the major enhance-
ments provided by the VoD and MBR implementation. For the VoDimplementation the
BTdownloadwill initialize a particularPiece Pickerthat will download the torrent pieces
following the order of the Give2Get algorithm described in section 3.3.2. The other class
that is shown in figure 4.2 is the MovieOnDemand Transport that will communicate with the
Swarmplayer through the callback functions specified in thedownload configuration and a
specific set of events. The events used by the VoD implementation are:

start once enough pieces to watch the video stream without interruption have been down-
loaded .

pause if we are running out of buffer and the downloading bit-rate is not the same as pre-
viously predicted.

resume follows the pause signal if the same conditions as for the start event occur.

The callback function located in the Swarmplayer will handle the video stream sending
the right signal to the video player, VLC, depending on the given event.

The classes highlighted with red have been introduced for the novel MBR implementa-
tion. We introduced majorly two classes that will manage thetorrent download in a different
way than the current implementation. We decided to merge ourimplementation with the ex-
isting Swarmplayer following the same design decisions. Inour case the Swarmplayer will
detect if the provided .torrent file is a Multi bit-rate encoded file7 and will initialize differ-
ently theDownloadandDownload configobjects.

We are not interested in the bit-rate of a specific video file but in keeping track of the
piece range of every Stripe. A different set of information will be taken by the Swarm-
player from the torrent metadata and used to initialize wisely the download configuration.
A different callback function is used to handle events, and anew set of events has been
introduced. We added anext event that will add the next quality stream to player’s playlist.
Once the player reaches the end of the item it’s playing it will automatically switch to the
next item in the playlist, the next quality stream. The classresponsible of managing events,
downloading properly the Stripes and manage the quality streams is theMBR Controller.
Already introduced in section 2.2.2, theMBR Controllerwill manage the execution of our
novel MBR algorithm.

The MBR algorithm is performed and re-scheduled every half asecond by the controller.
Two time per second our algorithm analyses the download process, the video playback

7This is done by parsing the multibitrate.info file and performing a general check for some characteristics
of the video files, or Stripes

42

Implementation 4.2 Multiple Bit-Rate algorithm

status and reacts by sending events to the Swarmplayer, applying different priority sets and
managing properly the quality streams.

4.2.2 Download policy

Before analysing directly the algorithm we found to be easier to give an introduction with
the help of graphical examples. The download policy is handled by the MBR algorithm, a
greedy algorithm that sequentially analyses the state of the download. As explained in the
previous chapter the algorithm will be executed half a second, therefore also the status of
the download will be periodically updated. From the algorithm design of section 3.3.4 we
now propose a modified version of figure 3.18. In figure 4.3 we added a number for each
state transaction, making easier to relate during the algorithm explanation.

Figure 4.3: State diagram for the MBR algorithm

From figure 4.3 we can see how the algorithm’s decisions mostly depend on the status
of the playbuffer, transactions1, 2 and 5. The first crossroad of the algorithm actually
considers only the status of the playbuffer. The next two subsections will consider the two
different paths.
Subsection 4.2.2.1 will discuss the haste choice scenario where we need to take a decision
because the player’s buffer is too low. On the other hand if wehave enough player buffer
we will have time to try to improve the quality of the stream. This scenario is discussed in
subsection 4.2.2.2

43

4.2 Multiple Bit-Rate algorithm Implementation

4.2.2.1 Small buffer: Haste choice scenario

This scenario occurs if while we are playing a stream we potentially run out of buffer,
figure 4.4, transactions1,2,5 of figure 4.3. The algorithm holds a minimum buffer size
value, ”X” in figure 4.3, that in the following examples will be of 3 seconds, the same
duration as a stripe.

Figure 4.4: Haste choice scenario

(a) Before (b) After

Figure 4.5: Add current Stripe to the player’s buffer

We have to consider that, differently from the current VoD implementation, we will not
send a video piece, in our case Stripe, as soon as it is downloaded but we will wait until
we haveto. This particular implementation allows to consider until the last moment the
possibility of switching to a higher quality stream.

• If the current Stripe has been downloaded, figure 4.5a (transaction1of figure 4.3), add
the current stripe to the player’s buffer and update the ”download time”, figure 4.5b

– If we are in low quality and the next Stripe has not been downloaded, download
it as soon as possible. Figure 4.6a

– otherwise, if we are not in low quality or the next Stripe has already been down-
loaded, assign normal priorities. Figure 4.6b

• Otherwise if a safe-fallback is providen, figure 4.7a. It means we do not have the
next Stripe for the same quality stream, therefore we will switch to the lowest quality
stream, transactions2 and than4 of figure 4.3.

and as for the previous case:

– If next Stripe of the lowest quality has not been downloaded,download it as
soon as possible. See figure 4.6a

44

Implementation 4.2 Multiple Bit-Rate algorithm

(a) Low quality, haste choice (b) Switch to relaxed scenario

Figure 4.6: Crossroad of the haste choice scenario

(a) Before (b) After

Figure 4.7: Safe fallback scenario

– Otherwise assign normal priorities. As in figure 4.6b

• If we can not provide a safe fallback than we have to download the lowest quality
Stripes as soon as possible, figure 4.8

Figure 4.8: No safe fallback

It is clear that if we would not be able to download the low quality Stripe before the
payer’s buffer finished, we would have to pause the video playback. After the initial
conditions for starting the playback are satisfied we can send a ”resume” signal.

4.2.2.2 Enough buffer: Relaxed choice scenario

In this case scenario the minimum amount of payer buffer is satisfied, for our examples the
player’s buffer size will be longer than 3 seconds. In the relaxed choice scenario we count
on other values to take our decisions. We will mostly rely on the so called ”safebuffer”,
representing the amount of downloaded buffer in the future.In other words the safebuffer

45

4.2 Multiple Bit-Rate algorithm Implementation

will be the Stripes that we already downloaded and that we could add to the player’s buffer.
For simplicity, in the following examples, the value of the safebuffer will be of 3 seconds,
the duration of a stripe, the ”Y” value in figure 4.3.
The first crossroad of the algorithm at this point will by trying to improve the quality stream
depending on the available safebuffer.

• Check if we can improve the quality stream, only if we are not currently playing the
highest quality one(transaction3 of figure 4.3). Figure 4.9 gives an example of the
satisfaction of this condition.

Figure 4.9: Relaxed choice scenario

– If we already downloaded the higher quality Stripe, figure??. This is a con-
dition that will be satisfied once the algorithm has gone through the next step.
For a computational reason we need to provide this check before the algorithm
performs the next step, but logically we will have a higher quality Stripe only if
the algorithm performed the following step in one of its previous iterations.

Figure 4.10: Relaxed choice scenario

If we have the higher quality Stripe, send it to the player’s buffer and update the
algorithm status.

– Try to set the priorities for the next quality stream in an optimistic way depend-
ing on the givenrisk factor. This is one of the crucial steps of the algorithm. To
check the condition for a quality improvement we need to haveenough down-
loaded buffer for the current quality stream. In our implementation it means we
need enough saved safebuffer, and to check it we introduced aso-called ”risk
factor”. The risk factor is a value that multiplied by the safe buffer duration
determines the condition for trying the quality switch.

46

Implementation 4.2 Multiple Bit-Rate algorithm

Figure 4.11: Optimistic quality improvement

As we see from figure 4.11 we will set the priorities for the higher quality
Stripes. This means that we will start downloading the higher quality stream,
hoping that one of the future iterations will end up in the previous step, improv-
ing the quality stream. This is defined as transaction6 of figure 4.3.

– If we did not start the playback just fill the player’s buffer

• Otherwise if we completed the download of the current Stripeand we did not start
the playback, just fill the player’s buffer

• If none of the previous conditions has been satisfied, continue without doing anything.

4.2.3 Algorithm analysis

In this section we are going to discuss the pseudo-code of ournovel MBR algorithm. After
the design analysis of section 3.3.4 and the theoretical analysis of the previous sections we
can now easily understand the algorithm’s code.

From line 1 to 10 are the variables used by the algorithm to keep track of the status of
the download and to take decisions.

The first set, from line 2 to 6, represents values that determines the algorithm’s be-
haviour. We will see in the experiments chapter, chapter 5, how changing the value of those
parameters has a big impact on the algorithm’s behaviour andcorrectness. The lower is the
bufferTime, the earlier we will have to take a decision of witch Stripe tosend to the player’s
buffer, haste choice scenario, subsection 4.2.2.1. ThepriorityDepth and forceLowDepth
variables are only used as parameters for calling the setPriorities function. Those variables
will determine how in depth the algorithm will assign priorites. For example during our
experiments we decided to assign priorities to the next 10 Stripes. Of course the function
will take into consideration the architecture design. Therefore it will assign priorities to
the medium and low quality stream when downloading the medium quality, to high and
low quality stream when downloading the high quality, and only to the low quality after a
fallback or for low bit-rate connections. TheforceLowDepthvariable is used when, during
the downloading of the low quality stream, the next low quality Stripe is not available. In
our experiments we found useful to assign priorities only tothe next 2 or 3 following Stripes.

47

4.2 Multiple Bit-Rate algorithm Implementation

Another important variable that determines the stability of the algorithm is theriskFac-
tor. For low values the algorithm will often try to improve quality stream (lines 49-51)
while for high values a longersafeBufferis needed. The second set of variables (from line 7
to 10) represents the variables used by the algorithm to keeptrack of the current status. The
currentvariable is a reference to thefollowing Stripe. As we already explained, we will not
send thecurrentor following Stripe as soon as it is downloaded, considering the possibility
of changing thecurrentreference for an higher quality Stripe until we are not running out of
buffer (transaction5 of figure 4.3). In the proposed pseudo-code we consider the possibility
of changing thecurrent reference to the next Stripe in the same quality stream,current+1
(eg. lines 22 and 33), or to the next Stripe in a different quality stream, modifying the value
of current.quality (lines 26, 37 and 45).

Line 11-12 represents the first check for the end of the stream. If we reached the end of
the stream we will start downloading all the remaining Stripes to increase the pieces avail-
ability (figure 3.13). After this initial check we have the major crossroad of the algorithm:
from line 13 to 39 the haste choice scenario, while from line 40 to 68 the relaxed choice
scenario.

The three bullets of subsection 4.2.2.1 correspond to the three conditions at lines 15, 24
and 35. All the time a Stripe is sent to the player’s buffer, eg. line 16, we will update the
reference to thecurrentStripe, eg. line 22, and increase thedownloadTimeby the duration
of a Stripe, in our case three seconds, eg. line 23. A new function, called safeFallback,
appears on line 24. This function will only check if the relative Stripe of the lowest quality
stream has been downloaded or not. The result of this check will be the necessary condition
to switch to the lowest quality stream in case there is not enough bandwidth to stay on the
current quality.

During the relaxed choice scenario, from line 40 to line 68, the algorithm will try to
increase the quality stream. Because the algorithm will never download an unnecessary
quality stream, except for the low quality one, for the switch we need to perform two steps.
The fist step consist of assigning priorities to the higher quality stream. This happens if the
condition of line 49 is satisfied, in other words is the amountof already downloaded Stripes
of the current quality, calledsafeBuffer, is larger that thepreBu f f er× riskFactor. After
assigning priorities to the higher quality stream the algorithm will start downloading it, and
if during one of the following iterations the higher qualityStripe, relative to thecurrentone,
has been successfully downloaded, line 44, the algorithm will switch to the higher quality
stream.

48

Implementation 4.2 Multiple Bit-Rate algorithm

MBR Algorithm
1: //Parameters used to change the algorithm’s behaviour
2: priorityDepth //how in depth we assign priorities
3: f orceLowDepth //how in depth we assign priorities for ”force low”
4: bu f f erTime //minimum duration of the player’s buffer
5: preBu f f er //minimum duration of the already downloaded Stripes
6: riskFactor //determines the condition for a quality change

//Parameters used by the algorithm to keep track of the downloading status
7: current //the current processed Stripe
8: playTime //playback position
9: downloadTime //the duration of the already downloaded Stripes: the player’s buffer

10: sa f eBu f f er //duration of the already downloaded Stripes of the currentquality

11: if end of streamthen
12: setPriorities()

13: else if (playTime≥ 0)&& (downloadTime− playTime≤ bu f f erTime) then
14: //we need to take a decision, buffer too small
15: if current is completethen
16: downloadBuffer.add(current)
17: if (current.quality == low)&& (current+1is not complete) then
18: setPriorities(f orceLowDepth)
19: else
20: setPriorities(priorityDepth)
21: end if
22: current← current+1
23: downloadTime← downloadTime+ length(Stripe)
24: else ifsafeFallback()then
25: //check the presence of the low quality piece
26: current.quality← low
27: downloadBuffer.add(current)
28: if current+1 is not completethen
29: setPriorities(f orceLowDepth)
30: else
31: setPriorities(priorityDepth)
32: end if
33: current← current+1
34: downloadTime← downloadTime+ length(Stripe)
35: else
36: //we need to download the low quality Stripe as soon a possible
37: current.quality← low
38: setPriorities(f orceLowDepth)
39: end if

49

4.2 Multiple Bit-Rate algorithm Implementation

40: else
41: //Normal iteration, we have enough player’s buffer
42: //check for improving quality
43: if (current.quality 6= high)&& (sa f eBu f f er≥ preBu f f er) then
44: if current.quality(next) is completethen
45: current.quality← current.quality(next)
46: downloadBuffer.add(current)
47: current← current+1
48: downloadTime← downloadTime+ length(Stripe)
49: else if (sa f eBu f f er≥ preBu f f er× riskFactor)&& (playTime) > 0 then
50: //try to set priorities on an optimistic way
51: setPriorities(increase quality)
52: else if playTime== 0 then
53: //fill the player’s buffer
54: downloadBuffer.add(current)
55: setPriorities(priorityDepth)
56: current← current+1
57: downloadTime← downloadTime+ length(Stripe)
58: end if
59: else if(currentis complete)&& (playTime== 0) then
60: //fill the player’s buffer
61: downloadBuffer.add(current)
62: setPriorities(priorityDepth)
63: current← current+1
64: downloadTime← downloadTime+ length(Stripe)
65: else
66: wait to complete the current piece or to switch to a differentquality
67: end if
68: end if

50

Chapter 5

Experiments

In this chapter we present the experiments performed with our novel algorithm. We will
demonstrate how changing the algorithm’s parameters, suchas the risk factor or the size of
the buffers, will change the algorithm’s behaviour advantaging certain scenarios.
The values used for graphs are taken from a log file updated every iteration of the algorithm.
This gives an approximation of around half a second, as the algorithm is re-scheduled two
times per second.

From our experiments we run the network on a local machine by setting up a tracker that
already hold the downloaded torrent. The Swarmplayer will connect to the tracker through
the localhost connection and start downloading our torrentfile. We used a functionality
offered by the Tribler Core to set the bandwidth limits, simulating different scenarious.

Figure 5.1 shows how the results are going to be presented. Onthe axis we have a time
line where the numbers represents the seconds of the player’s playback.

−3
23.09

50.27
74.57

101.95
1.17

4.65
8.5

11.89
15.73

19.56 27.16
31.19

35.21
38.66

42.7
46.28 53.59

56.92
60.75

64.1
67.94

71.19 79.07
82.94

86.33
90.19

94.07
98.57 106.45

110.42
114.37

118.32

0

200

400

600

800

1000

1200

1400

1600

1800

2000

playback quality download rate bandwidth limit

Time (Seconds)

B
it−

ra
te

 (
K

b/
s)

Figure 5.1: High quality, stable environment

51

5.1 Stable environment experiments Experiments

The progress of the blue curve represents the player’s playback time. The low, medium
and high quality streams are respectively located at 240 Kbit/s, 800 kbit/s and 1.6 MBit/s.
This is only a theoretical approximation, based on the stream’s average bit-rate, to facil-
itate reading the graphs. As we know from the design chapter stripes are encoded with a
variable bit-rate and the download process only depends on the stripe size, not on its bit-rate.

The set of date used to draw the graphs is initialized with thefirst iteration of the algo-
rithm. We can therefore see the start-up time, from the initialization of the download until
the start of the playback, as the time until the red curve starts. The normalstart-up time is
around the 3-5 seconds, for high speed connections (see figure 5.2 and figure 5.6), until a
maximum of 10 seconds for connections slower than 280 Kbit/s(see figure 5.7).

The red curve represents the downloading rate over time, while the dashed burgundy
curve represents the downloading rate limit used for our experiments. As the reader might
notice, some times the downloading rate exceeds the rate limit. This is caused by the fact
that the download rate is calculated over the amount of data downloaded on the rage of half
second.

Section 5.1 will show the results of running the Swarmplayerin a stable environment,
no peers disconnecting from the system and a constant downloading bit-rate. Section 5.2
will show the results in a variable bandwidth. We tested the system by changing at run-time
the available bandwidth, observing the reactions of the algorithm to a sudden bandwidth
drop or bandwidth increase.

5.1 Stable environment experiments

In this section we will show the results of executing the MBR algorithm in stable envi-
ronments. For high bit-rates we limited the bandwidth to 1.750-1.9 Mbit/s, for medium
bit-rates we limited it to 950 Kbit/s while for low bit-ratesto 280 Kbit/s1

5.1.1 High bit-rates

With high bit-rates the algorithms behaves in the correct way. Figure 5.1 shows how the
quality increases as soon as enoughsafebufferhas been downloaded. As we previously saw
in section 3.3.4 and section 4.2 the condition that determines a quality improvement is given
by theprebuffermultiplied to therisk factor. For all our examples we used a prebuffer of
three seconds and we see the reaction of modifying the risk factor from the different time
of quality switch between figure 5.1, figure 5.2 and figure 5.3.

For the experiment of figure 5.1 we used the value 2 for the riskfactor, while for figures
5.2 and 5.3 we increased the risk factor to values higher than3 and observed the behaviour.

1We where actually able to reduce the bandwidth limitation to226 Kbit/s by reducing the torrent chunk
size, see subsection 5.1.3.

52

Experiments 5.1 Stable environment experiments

−2
12.280.53

3.21
5.95

9.05 15.04
17.75

20.57
23.36

26.11
28.91

31.67
34.42

37.15
39.97

42.67
45.97

48.24
51

53.66
55.86

58.59
61.29

63.49
66.86

69.07
71.79

74.52
77.23

80.49
83.21

86.04
88.3

91.64
94.34

97.58

0

500

1000

1500

2000

2500

playback quality download rate bandwidth limit

Time (Seconds)

B
it−

ra
te

 (
K

b/
s)

Figure 5.2: Stable environment; risk factor = 3

−3 17.46
1.07

4.31
7.56

10.86
14.11 20.77

24.15
27.5

30.29
33.66

36.96
40.37

43.68
47.06

50.42
53.8

56.63
59.83

62.54
65.35

68.68
71.99

74.75
78.12

81.42
84.73

88.16
91.44

94.87

0

500

1000

1500

2000

2500

playback quality download rate bandwidth limit

Time (seconds)

B
it−

ra
te

 (
K

b/
s)

Figure 5.3: Stable environment; risk factor = 3.5

By increasing the risk factor we increase the time needed to reach the highest quality stream.

Thus with a low risk factor and abundant bandwidth our algorithm quickly shifts to the
highest quality stream. We will see in the next sections thatthe risk factor is not only related
to the quality switch time.

53

5.1 Stable environment experiments Experiments

5.1.2 Medium bit-rates

Figure 5.4 shows the algorithm’s behaviour with a bandwidthlimit of 940 Kbit/s. With
medium bit-rates we need to take in consideration differentaspect. We noticed that this
scenario is the most unstable. When downloading one of the intermediate quality streams
at a certain point the algorithm will try increase the quality.

−3 6.16
−1

0.57
3.35 8.41

10.18
13.08

15.54
18.59

21.01
23.49

25.97
28.36

30.87
33.29

36.26
38.72

41.26
43.63

46.06
48.47

51.56
53.96

56.43
58.9

61.41
63.9

66.38
69.51

72.55
75.03

77.49
79.91

82.35

0

200

400

600

800

1000

1200

playback quality download rate bandwidth limit

Time (Seconds)

B
it−

ra
te

 (
K

b
/s

)

Figure 5.4: Medium quality, stable scenario

In figure 5.5 and figure 5.6 is clearly visible how the algorithm switches to the lowest
stream 110 seconds of video playback. This behaviour is caused by a quality improvement
attempt, the spare bandwidth limits imposed buring the experiments and the larger size of
the following Stripes of the medium quality.
If the available bandwidth is just enough to download the current stream, the result of try-
ing to increase the quality could differ from what aspected.By concentrating the available
bandwidth on the higher quality stream we could loose important time do download the cur-
rent one. Once the quality increase attempt fails, if the following Stripes of the intermediate
quality are holding a big set of data, like those elected fromaction scenes, than the available
bandwidth could not be enough to avoid a quality fallback.

The difference between the two figures is given by a differentassignment of the risk
factor. Figure 5.5 shows a more stable reaction cased by a higher value for the risk factor.
The first fallback of figure 5.6 explains an earlier attempt for a quality switch.

We now see how it this scenario an higher value for the risk factor is prefered. This
contrasts with the lower value prefered in a high bandwidth scenario.

54

Experiments 5.1 Stable environment experiments

−5 66.97
3.88

13.11
21.83

30.63
39.93

48.88
57.88 75.92

85.07
94

103.22
112.2

121.13
130.13

139.29
148.4

157.78
167.01

176.42
185.22

193.95
202.79

211.93
220.83

229.6
238.19

247.02
255.96

265.05
273.94

282.82

0

200

400

600

800

1000

1200

playback quality download rate bandwidth limit

Time (Seconds)

B
it−

ra
te

 (
K

b/
s)

Figure 5.5: Stable scenario, risk factor = 3

−5
87.555.82

15.21
25.61

36.47
46.19

56.52
66.39

76.98 97.42
108

118.06
128.61

138.55
149.13

159.11
169.62

180.15
189.36

199.59
209.74

219.04
229.11

239.51
249.51

259.23
269.42

279.07

0

200

400

600

800

1000

1200

playback quality download rate bandwidth limit

Time (Seconds)

B
it−

ra
te

 (
K

b/
s)

Figure 5.6: Stable scenario, risk factor = 2

55

5.2 Agility Experiments Experiments

−11 −2 10.86
−9

−7
−4 0.75

4.37
8.02 13.67

17.29
19.08

21.68
24.34

27.12
30.86

34.04
37.38

39.33
42.25

45.85
48.72

51.83
54.85

57.31
60.2

63.18
66.17

69.19
72.7

75.62

0

50

100

150

200

250

300

350

playback quality download rate bandwidth limit

Time (Seconds)

B
it−

ra
te

 (
K

b/
s)

Figure 5.7: Low bandwidth limit

5.1.3 Low bit-rate

Figure 5.7 is an example of the algorithm’s behaviour in a lowbandwidth scenario. The al-
gorithm offers a good stability, given by the fact that differently than in a medium bandwidth
scenario trying to increase the quality stream is not dangerous. As we saw in section 3.3.3,
to provide the safe fall-back we will always download the lowquality stream together with
an higher one. Therefore the same priority set will be applied to the low quality stream even
when trying to improve quality.

Surprisingly performing the same experiments with torrentfiles created differently, tor-
rent files with a smaller chunk size perform better in low bit-rate scenarios. This will prob-
ably be caused by the internal implementation of the file selector of BitTorrent.

5.2 Agility Experiments

This chapter regards the algorithms behaviour in a variablebit-rate environment. This is
a quite frequent situation caused by the heterogeneous nature of the Internet accesses, see
chapter 2.1. It can occur because a seeder, with a fast uploadconnection, disconnects from
the system or because our available bandwidth is shared between different applications or
downloads.

Whatever is the condition that causes the decreasing of the available bandwidth the al-
gorithm performed quite good buring our experiments, as we can see from figure 5.10 and
figure 5.11.

56

Experiments 5.2 Agility Experiments

−2 74.62
6.67

15.03
23.29

31.67
43.02

55.63
66.35 82.53

95.08
106.58

118.34
129.58

138.1
148.82

161.26
171.73

178.8
186.65

194.75
202.73

210.15
218.06

225.74
233.83

241.61
250.04

0

500

1000

1500

2000

2500

3000

3500

playback quality download rate bandwidth limit

Time (Seconds)

B
it−

ra
te

 (
K

b/
s)

Figure 5.8: 3 spikes down, risk factor = 2

As we repeatedly saw, to provide a safe fallback and the algorithm will always down-
load the lowest quality stream together with the medium or high quality streams. Therefore
the algorithm will switch back to the lowest quality stream if the available bandwidth de-
creases and then trying to increase it if there is enough bandwidth.

In the experiments of figure 5.8 and figure 5.9 we simulated a three spike down scenario.
We suddenly reduced three times the bandwidth limit, from 1.87 Mb/s to 400 Kb/s, for six
seconds. It is clearly visible how increasing the risk factor encreases the stability of the
algorithm as previously saw.

In the experiment of figure 5.10 we reduce the bandwidth limitfrom 1.87 Mb/s to 400
Kb/s to see how the algorithm reacts to a sudden bandwidth drop. After few seconds we
increase the bandwidth limit first to 1 Mb/s and than back to 1.8 Mb/s to observe the time
needed by the algorithm to resume the high quality stream.
In the experiments of figure 5.11 we reduced the bandwidth from 1.87 Mb/s to 1 Mb/s ob-
serving the time needed by the algorithm to switch to the medium quality stream. During
a second experiment, in the same scenario as the experiment of figure 5.11, we increased
the risk factor increasing the stability of the algorithm. We can see from figure 5.12 how
increasing the risk factor from 2 to 3, increases the time needed for a quality switch.

Running multiple experiments in the same scenario we noticed that the algorithm per-
forms always differently. This is given by the dynamic nature of the environment. It depends
on the tracker status and downloading process that is unpredictable.

57

5.2 Agility Experiments Experiments

−3 75.83
6.03

14.19
22.66

30.88
39.95

51.87
64.08 88.68

101.25
111.98

120.15
128.75

136.96
147.71

159.61
171.33

183.62
195.92

207.84
220.09

232.36
244.7

257.06
269.71

281
293.02

0

500

1000

1500

2000

2500

3000

3500

playback quality download rate bandwidth limit

Time (Seconds)

B
it−

ra
te

 (
K

b
/s

)

Figure 5.9: 3 spikes down, risk factor = 3

−3 154.65
4.82

13.06
20.88

28.46
36.1

48.65
58.15

67.79
78.3

89.96
100.78

111.47
123.48

134.26
145.29 161.39

169.19
176.42

183.67
190.8

197.94
205.75

213.07
220.45

228.33
235.83

243.42

0

500

1000

1500

2000

2500

3000

playback quality download rate bandwidth limit

Time (Seconds)

B
it−

ra
te

 (
K

b/
s)

Figure 5.10: Variable quality, bandwidth fallback and resume

58

Experiments 5.2 Agility Experiments

−3 65.67
5.82

14.28
22.66

30.97
39.88

48.06
56.52 75.16

85.13
95.16

104.77
114.44

123.51
132.23

140.53
149.73

158.4
166.89

175.39
184.14

192.79
224.92

235.2
245.55

255.06
265.74

276.13

0

200

400

600

800

1000

1200

1400

1600

1800

2000

playback quality download rate bandwidth limit

Time (Seconds)

B
it−

ra
te

 (
K

b/
s)

Figure 5.11: Variable quality, bandwidth drop

−1
90.046.93

16.7
26.23

35.53
46.04

58.48
69.68

79.8 101.11
111.01

121.47
132.36

142.89
153.35

162.17
170.72

179.88
189.12

197.91
207.72

216.77
225.85

235.16
245.09

255.21

0

50

100

150

200

250

300

play time download rate bandwidth limit

Time (seconds)

B
it−

ra
te

 (
K

B
/s

)

Figure 5.12: Variable quality, variable bandwidth

59

Chapter 6

Conclusions and Future Work

In this chapter we give a summary of the project’s contributions. After the overview of
our conclusions in section 6.1, we will reflect on some characteristics of our architecture in
section 6.2. Finally, some ideas for future research will bediscussed in section 6.3.

6.1 Conclusions

Video-on-Demand has grown exponentially over the last years. Faster Internet accesses and
more powerfull technologies are the causes of this phenomenon. The current techniques
that implement a VoD functionality all rely on a constant bit-rate encoding. This splits the
audience in two major categories: users that have enough bandwidth to watch a video file
on streaming and users who have to wait a certain time to watchthe video file continuously.
This situation gets worse if we consider delivering VoD overP2P networks. The problem is
the heterogeneous Internet accesses that complicate a realtime multimedia delivery.

Theoretically, for the survival of a P2P system, peers coulddownload only as much
as they upload and, considering that the current Internet accesses are mostly ADSL, this
makes the introduction of a VoD functionality harder. In order to solve this problem, we
have designed and implemented a novel algorithm that, depending on the available band-
width, switches between three different quality streams. We also introduced a novel encod-
ing methodology to create a torrent file holding one single movie encoded into three quality
streams of proportional size. Furthermore we modified the internal behaviour of the multi-
media player VLC to allow a flicker free playback, needed for ahigh quality experience of
the user.

Our novel architecture allows every user to watch a video stream continuously, taking
advantage of their bandwidth. This particular implementation allows every user with at least
a 250 Kbit/s bandwidth connection to watch a video file on streaming over a P2P network.
Our algorithm will increase the quality stream as soon as enough bandwidth is available, un-
til the highest quality stream, who’s average bit-rate is around 1.5 Mbit/s. Our architecture
has been implemented into the Tribler project, introducingalso new functionalities such as

61

6.2 Discussion/Reflection Conclusions and Future Work

an ordered download process and VLC’s playlist management.

6.2 Discussion/Reflection

VoD solutions are a rather hot concept in our times. We propose the first open-source
implementation of a variable bit-rate solution for VoD. During the design of the architecture
some ideas came up:

• Considering the current state of P2P networks, our architecture could be revolutionary
if it would be widely used in the network community. Currently almost every peer
shares a large amount of video files to gain a high upload ratio. If a peer would like to
watch a movie, fist it has to be downloaded on the local machineand opened with a
multimedia player. Our idea of a future evolution would be a system where every peer
holds not more than 2-3 movies encoded with our methodology,to hold a good upload
ratio. If the peer wants to watch a video file they can just start watching it through
our novel architecture without having to wait for the download to be finished. This
scenario would aim at a more homogeneous distribution of multimedia content over
peers of a file sharing network.

• We belive that our implementation could achieve optimal results in a mixed environ-
ment. We have a mixed environment when a client-server architecture coexists with a
P2P network, figure 6.1. Considering that the majority of thecurrent VoD systems are
client-server based, this implementation would drastically reduce server’s workload.

P2P network

Client-server communication

P2P communication

Peer

Peer

Peer

Server

Figure 6.1: Mixed scenario, client-server arch. + P2P network

62

Conclusions and Future Work 6.3 Future work

• Our solution does not need a central server to coordinate peers or syncronize trans-
missions. The architecture has been designed to work in a completly decentralized
P2P environment.

• Unlike current VoD implementations our architecture does not rely on a constant bit-
rate encoding. Furthermore we do not think in terms of bit-rate but only in terms of
available bandwidth. We assume a peer has at least enough bandwidth to watch the
lowest quality stream.

• It is not into the scope of this thesis to consider the pieces availability for the pro-
posed MBR architecture. Anyway we think the algorithm performs well as any peer
in the network has interest in downloading the lowest quality stream, to provide a
safe fall-back scenario. Therefore even if peers are downloading different qualities
they will allways share the low quality stream. This allows bidirectional communica-
tion between peers, while normally the VoD architecture provides only unidirectional
communications.

6.3 Future work

During our research we have concluded that the following fields should be further investi-
gated:

• The encoding methodology has to be investigated. Currentlythe used codecs are
under development and still in an early stage. This has put some limitation in the en-
coding procedure, forcing to encode the streams using generic parameters. Once the
codec libraries will be completly merged with the encoding applications, we should
be able to encode the streams without changing parameters such as frame size or
frame rate. By only changing internal parameters of the decoders we could avoid re-
initializing them, getting rid of the 40-60 ms latency needed during a quality switch.

• The algorithm has to be simulated in a real world scenario. Observing the algorithm’s
behaviour when interacting with a real P2P network on the Internet

• The necessity of a dynamic risk factor has to be investigated. Depending on the
codec’s investigation results, if a flicker-free quality switch can not be implemented,
the necessity for an adaptive risk factor could be investigated. On the other hand a
static risk factor is prefered if we can gain an unnoticeablequality switch, having the
algorithm switching between qualities in a transparent wayfor the final user.

As future work we take into consideration the direct integration of a chunk priority
assignment, without using BitTorrent’s fileselector to assign individual priorities. During
our experiments we noticed some incongruences with the fileselector when downloading at
low bit-rates, see section 5.1.3. Another utility that willbe soon implemented is a progress
bar for the swarmplayer to convey the video progress.

63

Bibliography

[1] ABC: Another BitTorrent Client.http://sf.net/projects/pingpong-abc

[2] N. Andrade, M. Mowbray, A. Lima, G. Wagner, and M. Ripeanu: Influences on co-
operation in bittorrent communities.In P2PECON ’05: Proc. of the 2005 ACM SIG-
COMM workshop on Economics of peer-to-peer systems, 2005. ACM Press.

[3] P. Baccichet, T. Schierl, T. Wiegand, B. Girod: Low-delay peer-to-peer streaming
using scalable video codingPacket Video 2007, 12-13 Nov. 2007

[4] B.Birney: Intelligent Streaming. http://www.microsoft.com/windows/
windowsmedia/howto/articles/intstreaming.aspx May 2003

[5] A. Bakker, P. Garbacki, J. Pouwelse: Cooperative Download Extension, Ver-
sion 1 https://www.tribler.org/attachment/wiki/Cooperative Download/
CooperativeDownload-20060227.pdf February 27, 2006

[6] Al Bovik: Handbook of Image & Video Processing.Elsevierr Academic Press, 2005

[7] C. Y. Chan and Jack Y. B. Lee: On Transmission Scheduling in a Server-less Video-
on-Demand SystemSpringer-Verlag Berlin Heidelberg, 2003

[8] B. Cohen: Bittorent protocol.http://www.bittorrent.org/beps/bep_0003.
html

[9] B. Cohen: Incentives build robustness in bittorrent.In Proc. of the 1st Workshop on
Economics of Peer-to-Peer Systems, 2003.

[10] CoolStreaming broadcast TVhttp://www.coolstreaming.us/

[11] G.J.Conklin, G.S.Greenbaum, K.O.Lillevold, A.F.Lippman and Y.A.Reznikm: Video
Coding for Streaming Media Delivery on the InternetIEEE Transactions on Circuits
and Systems for Video Technology, Vol.11, No. 3, Mar. 2001

65

BIBLIOGRAPHY

[12] Philippe de Cuetos, Keith W. Ross: Adaptive rate control for streaming stored fine-
grained scalable videoACM Portal, NOSSDAV ’02: Proceedings of the 12th inter-
national workshop on Network and operating systems supportfor digital audio and
video, May 2002

[13] W. Dapeng, Y.T. Hou, Z. Wenwu, Z. Ya-Qin, J.M. Peha: Streaming video over the
Internet: approaches and directionsCircuits and Systems for Video Technology, IEEE
Transactions on Volume: 11 Issue: 3 Mar 2001

[14] Emule file sharing application:http://sourceforge.net/projects/emule/

[15] FFmpeg2theora: A simple converter to create Ogg Theorafiles.http://v2v.cc/ ˜ j/
ffmpeg2theora/

[16] FFmpeg documentation.http://ffmpeg.mplayerhq.hu/ffmpeg-doc.html

[17] FFmpeg: audio/video editing program.http://ffmpeg.mplayerhq.hu/

[18] Gnutella protol documentationhttp://gnet-specs.gnufu.net/

[19] Mei Guo, Yan Lu, , Feng Wu, D. Zhao, and Wen Gao: WynerZiv Switching Scheme
for Multiple Bit-Rate Video StreamingIEEE Tansactions on Circuits and Systems for
Video Technology, Vol.11, No. 5, May 2008

[20] D. Harrison, B. Cohen: BitTorrenthttp://www.bittorrent.org/index.html

[21] T. Hossfeld, K. Leibnitz: A qualitative measurement survey of popular Internet-based
IPTV systemsCommunications and Electronics, 2008. ICCE 2008. Second Interna-
tional Conference on 4-6 June 2008 Page(s):156 - 161

[22] C.Huang, P.A.Chou, A.Klemets. Optimal Control Of Multiple Bit Rates For Streaming
Media PictureCoding Symposium, San Francisco, CA, Dec. 2004.

[23] Kademlia specifications: http://xlattice.sourceforge.net/components/
protocol/kademlia/specs.html

[24] Kazaa P2P file sharing applicationhttp://www.kazaa.com

[25] Seth Kenlon. Video codecs and the free world: Volume 2008 ,In Linux Journal, Vol-
ume 2008, Issue 166 (February 2008), Article No. 10

[26] S. Kim, C. Kim, Y. Cho: An effective resource managementfor variable bit rate
video-on-demand serverEUROMICRO 97. ’New Frontiers of Information Technol-
ogy’. Short Contributions., Proceedings of the 23rd Euromicro Conference; 1-4 Sept.
1997 Page(s):74 - 79

[27] K. Leibnitz, T. Hofeld, N. Wakamiya, and M. Murata: Peer-to-peer vs. client/server:
Reliability and efficiency of a content distribution service in Proc. of ITC-20, (Ottawa,
Canada), June 2007.

66

BIBLIOGRAPHY

[28] Weiping Li: Overview of fine granularity scalability inMPEG-4 video standardCir-
cuits and Systems for Video Technology, IEEE Transactions on Volume: 11 Issue: 3
Mar 2001

[29] C. Loeser, P. Altenbernd, M. Ditze, W. Mueller: Distributed video on demand services
on peer to peer basisProceedings of the First International Workshop on Real-Time,
2002

[30] Chris Loeser, Franz Rammig: GRUSEL: A Self Optimizing,Bandwidth Aware Video
on Demand P2P ApplicationIEEE Computer Society. May 2004

[31] J.L. Mitchel, W.B. Pennebaker, C.E. Fogg, G.J. LeGall.MPEG video compression
standard.Champman & Hall, 1996

[32] Jack Moffitt: Ogg VorbisOpen, Free AudioSet Your Media Free. Linux Journal, Vol-
ume 2001 , Issue 81es, Art. No. 9, 2001

[33] J. J. D. Mol, J. A. Pouwelse, D. H. J. Epema, H. J. Sips: Free-Riding, Fairness, and
Firewalls in P2P File-SharingIEEE Computer Society, P2P ’08: Proceedings of the
2008 Eighth International Conference on Peer-to-Peer Computing, Sept. 2008

[34] J.J.D. Mol, J.A. Pouwelse, M. Meulpolder, D.H.J. Epemaand H.J. Sips: Give-to-
Get: Free-riding-resilient Video-on-Demand in P2P Systems. in P2P Systems, Proc.
of SPIE, Multimedia Computing and Networking Conference (MMCN), 2008

[35] MPEG systems overview, http://www.mpeg.org/MPEG/
mpeg-systems-resources-and-software/mpeg-systems-ov erview.html

[36] Multimedia Wikipedia.http://wiki.multimedia.cx

[37] S. Pfeiffer: RFC3533: The Ogg Encapsulation Format Version 0, RFC Editor United
States, 2003

[38] J. A. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yang,A. Iosup, D. H. J. Epema, M.
Reinders, M. R. van Steen, H. J. Sips: TRIBLER: a social-based peer-to-peer system
John Wiley and Sons Ltd., Concurrency and Computation: Practice & Experience,
Volume 20 Issue 2, Feb. 2008

[39] PPlive internet TVhttp://www.pplive.com

[40] R. Rejaie, A. Ortega: PALS: peer-to-peer adaptive layered streamingNOSSDAV ’03:
Proceedings of the 13th international workshop on Network and operating systems
support for digital audio and video, June 2003

[41] J. Rexford, D. Towsley: Smoothing variable-bit-rate video in an internetworkNet-
working, IEEE/ACM Transactions on Volume 7, Issue 2, April 1999 Page(s):202 -
215

67

BIBLIOGRAPHY

[42] S. Sen, D. Towsley, Z. Zhi-Li , J.K Dey: Optimal multicast smoothing of streaming
video over the InternetSelected Areas in Communications, IEEE Journal on Volume:
20 Issue: 7 Sep 2002

[43] Y. Shen, Z. Liu, S.S. Panwar, K.W. Ross, Y. Wang: Streaming Layered Encoded Video
Using PeersMultimedia and Expo, 2005. ICME 2005. IEEE International, 2005

[44] Xiaoyan Sun, Feng Wu, Shipeng Li, Wen Gao, Ya-Qin Zhang:Seamless switching
of scalable video bitstreams for efficient streamingMultimedia, IEEE Transactions on
Volume: 6 Issue: 2 Page(s): 291- 303 April 2004

[45] uTorrent P2P clienthttp://www.utorrent.com

[46] VideoLAN, VLC multimedia player,http://www.videolan.org/

[47] Vuze P2P programmhttp://www.vuze.com/

68

