Multi Bit-Rate Video on Demand for
P2P networks

Master’s Thesis

t £ 5T K-

Riccardo Petrocco






Multl Bit-Rate Video on Demand for
P2P networks

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

COMPUTER ENGINEERING

by

Riccardo Petrocco
born in Rome, Italy

%
TUDelft

Tribler Research Group
Department of Parallel and Distributed Systems
Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.pds.ewi.tudelft.nl



(© 2008 Riccardo Petrocco.
Cover picture: A. Petrocco, increasing speed - increasiradjtg.



Multi Bit-Rate Video on Demand for
P2P networks

Author: Riccardo Petrocco
Student id: et1339702
Email: r.petrocco@gmail.com

Abstract

The Internet has become in the last years more and more a mkenisveyance
for multimedia delivering. Many solutions have been pragb® gain high quality of
service for video on demand in client-server environmenith) adaptive algorithms
that adjust the bit-rate of a video stream depending on thetd available bandwidth.
Providing video on demand over decentralized peer-to-pggiems is an active re-
searchfield. The variable bit-rate environment that chierezes peer-to-peer networks
causes significant difficulties to ensure quality of serdnd playback continuity for
video on demand applications.

This thesis addresses the challenge of serving high quatigo on demand by
designing and implementing a multi bit-rate video on demanctiitecture for peer-to-
peer networks. We propose a switching scheme, an encodithgpdw@ogy and a novel
algorithm for multiple bit-rate video streaming over péepeer networks. Identical
video content is encoded into three different sets of steewsith different average
bit-rates. The novel multi bit-rate algorithm will switclylamically between the three
sets of streams depending on the available bandwidth. Ghrageries of experiments
we present the effectiveness of this architecture in flusigdandwidth scenarios.

Thesis Committee:

Chair: prof. Dr. Ir. H. J. Sips, Faculty EEMCS, TU Delft
University supervisor. Dr. J. Pouwelse, Faculty EEMCS, T&lfD
Committee Member:  Dr. F. A. Kuipers, Faculty EEMCS, TU Delft






Preface

This document describes my MSc thesis research conceriiiteg ¥n Demand in a variable
bit-rate environment for the Tribler peer-to-peer netwoftle research was performed at
the Parallel and Distributed Systems Group of the Facultglettrical Engineering, Math-
ematics, and Computer Science of Delft University of Tetbgy

| would like to thank all the members of the Tribler researchug for the support and

the nice working environment. | am also grateful to Dr. Ihdo Pouwelse for the support
and continuous incentive to "go further”, Dr. Ir. Jacco Taiadl Arno Bakker for the support
in designing the architecture, Dr. Jan David Mol for the suppand the helpfull discussions
about codecs and encoding formats. Special thanks go tosTe¥mko and Victoria Perez

for the continuous feedbacks through out the writing phdsthe thesis. Furthermore |

would like to thank prof. Dr. Ir. H. J. Sips for chairing theaawination committee, and Dr.
F. A. Kuipers for participating in the examination commtte

Riccardo Petrocco
Delft, the Netherlands
November 17, 2008






Contents

Preface iii
Contents v
List of Figures Vil
1 Introduction 1
1.1 P2P Networks . . . . . . . o e 2
1.2 BitTorrent . . . . . . . . o e e e e 4
1.3 Tribler . . . . . . e 5
1.4 Swarmplayer . . . . . . .. 5
1.5 Multi Bit-Rate VideoonDemand . . . . . . . . . . . .. ... . ..... 6
1.6 Contributions . . . . . . . . . e e 7
1.7 Thesisoutline . . . . . . . . . . . . . . e 7
2 Problem description 9
2.1 Heterogeneous Internetaccess . . . . . . .. ... ... 9
2.2 Streaming over bandwidth-fluctuate networks . . . . .. ...... . ... 11
2.2.1 Scalable video coding approach . .. .. .. .......... 11
2.2.2 Switching points, a novel approach for changing tyali . . . . . 12
2.3 Video standard restrictions . . . . . . . . .. ... e 13
2.3.1 Framesstructure . . . . . . . . .. e 13
2.3.2 CodecHeaders . . . .. . . . . . . e 15
3 Design 17
3.1 Switching enabling mechanism . . . . . ... ... ... ......... 17
3.1.1 MultiBit-Ratetorrent . . . .. .. .. ... . .. .. 18
3.2 Solution for quality switching . . . . . . ... .. ... 20
3.2.1 Codecs & containers comparison. . . . . . ... ... ..... 20
3.2.2 VLCmediaplayer ... .. ... .. . . ... .. .. .. ... 22

3.2.3 Alternatives for solving flickering problems . . . . . .. .. .. 24



CONTENTS

Vi

3.3 BitTorrent enhancement

3.3.1 Downloadingatorrent . .. .........

3.3.2 Priority assignment . . . .. ... ... ...

3.3.3 Dynamic priority assignment policy

3.3.4 The Multi Bit-Rate Algorithm . . . . . .. ..
Implementation

4.1 Encoding and Playing
Encoding methodology . . . . ... ... ..
Flicker free playback solution . . . ... ..
4.2 Multiple Bit-Rate algorithm
Tribler Enhancement . . . . ... ... ...
Download policy . . . .. .. ........
Algorithm analysis . . . . . ... ... ...

411
4.1.2

421
422
423

5 Experiments

5.1 Stable environment experiments
Highbit-rates . . . .. .. ... ... ....
Medium bit-rates . . . . ... ... ... ..
Low bit-rate . . . . . ... ... ... ...
5.2 Agility Experiments

511
51.2
5.1.3

6 Conclusions
6.1 Conclusions
6.2 Discussion/Reflection

Work . . ..

6.3 Future

Bibliography

and Future Work



1.1
1.2
1.3
1.4

2.1
2.2
2.3

24
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16

List of Figures

The increasing popularity of P2P systems . . . . 1

The centralized client-server architecture versusil:ttelbuted P2P archltecture 3

Tribler Core . . . . . . .
The interface of the Swarmplayer . . . . . . . .. ... ... ... .... 6
Bandwidth consumption over time during P2PTV measungsne . . . . . . . 10
Measured bandwidth consumption in [Kbps] for differdhtV systems . . . . 10
Spider plot of the bandwidth consumption of the five itigaded IPTV appli-
CationNS . . . . . . e 11
Multi bit-rate controller . . . . . . . . . ... 12
Groupofpictures . . . . . . . e 14
Switching point in concomitance with new I-frame . . . . . ... ... .. 15
Demuxer and decodes architecture . . . . ... ... ... ... 16
Switching points along the quality streams of an encddB® .torrent file . . 18
The VLC architecture . . . . . . . . . . . .. . 23
Codec headerpre-reading . . . . . . . . .. ... ... e 24
VLC control flow for a multiple decoders solution, cha@@e2.3.1 . . . . . .. 25
Chunk and file boundaries comparison . . . . . . . ... ... . ... .. 27
Normal order of enumerated filesinatorrent . . ... ... ...... . ... 28
Final order needed for download efficiency . ... ... .. .......... 28
Give-to-get priority sets assignment . . . . . . .. ... oL 29
Low quality priority assignment . . . . . . . . .. ... ... 30
Medium quality priority assignment . . . . . . ... ... ... ... ... 30
High quality priority assignment . . . . . . . .. .. .. ... ....... 30
Quality improvement priority assignment . . . . . . . ... ... ... L. 31
Final priority assignment . . . . . . . . . .. ... .. ... e 31
Initial priority assignment . . . . . . . . ... e 31
State diagram for the current VoD implementation . . ...... < ¥4
State diagram for the MBR implementation in a stablerenment ...... 33

Vii



LIST OF FIGURES

viii

3.17
3.18

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
411

5.1
5.2
5.3
5.4
55
5.6
5.7
5.8
59
5.10
511
5.12

6.1

State diagram for the MBR implementation in a safe #aloscenario . . . . . 34
Final state diagram for the MBR implementation . ... ...... ... ... 35
Encoding methodology . . . . .. .. .. . .. ... e 38
Partial architecture for the Video on Demand architecin Tribler's Core . . . 41
State diagram for the MBR algorithm . . . . . . . ... ... ... .... 43
Haste choice scenario . . . . . . . . . . . 0 i i i i i e 44
Add current Stripe to the players buffer . . . .. ... ... ... ... .. 44
Crossroad of the haste choice scenario . . . . .. ... ... ....... 45
Safefallback scenario . . . . . . . . ... e 45
Nosafefallback . . . . . . .. . . . . . . . . . 45
Relaxed choice scenario . . . . . . . . . . . . . . ... .. 46
Relaxed choice scenario . . . . . . . . . . . . . . . ... . 46
Optimistic quality improvement . . . . . . . . . . .. ... . ... . ... 47
High quality, stable environment . . . . . ... ... ... ... ... .. 51
Stable environment; riskfactor=3 . . . . . . ... e 53
Stable environment; risk factor=3.5 . . . . . . .. ... a ... 53
Medium quality, stable scenario . . . ... ... ... ... ... ..., 54
Stable scenario, risk factor=3 . . . . . . ... e . 55
Stable scenario, riskfactor=2 . . . . . ... ... ... .. 55
Low bandwidth limit . . . . . . . . . . . . . . . . 56
3spikesdown, riskfactor=2 . . . . . . ... ... L. 57
3spikesdown, riskfactor=3 . . . . .. ... .. ... ... 58
Variable quality, bandwidth fallback andresume . . ...... . . . ... ... 58
Variable quality, bandwidthdrop . . . .. .. .. .. .. ... ....... 59
Variable quality, variable bandwidth . . . . . .. ... ... ... ..... 59
Mixed scenario, client-server arch. + P2P network . . ...... . . ... ... 62



Chapter 1

Introduction

Peer-to-peer (P2P) has been, for years, a small field ofnds@acomputer architecture.
The first networks with such an approach were studied backei®®s for some of their
properties considered already interesting at that timeh ss the ability to operate in a

completely decentralized way, the computational poweo@ated with such an architec-
ture and other characteristics.

Initially P2P networks were investigated only in scientdiod academic environments,
only later some important companies such as IBM and Sun stwtet the potential of this

architecture. The architecture was widely developed jushé early years, figure 1.1, due
to one of its strongest characteristics: fie sharing

Cachelogic Research | Internet Protocol Breakdown 1993 - 2006

91yje.] J8UISIU| Jo aFeuadlad

Figure 1.1: The increasing popularity of P2P systems



1.1 P2P Networks Introduction

P2P networks have reached this success thanks to the laigecsnitent distribution.
Most of the P2P applications allow to download large amodirtata in a fast way. Cur-
rently most of the P2P traffic is used to distribute video filegmally a user has to down-
load the video file before he will be able to watch it, suffgriinom a long start-up time.
Recently we have seen the emergence of many systems tlgzhietéhe P2P network with a
client/server architecture, for delivering of multimediantent, reducing the server’s work-
load [12][26][41][10][39].

The current solutions to provide VoD over P2P networks, wiksee later the Swarm-
player, present constrains regarding the bandwidth aitiiia For the survival of the VoD
functionality over a P2P network users could download oslyraich as they upload, re-
stricting users with a low upload bandwidth such as ADSL siser

In this thesis we propose a novel solution for serving VoDrdv2P networks, char-
acterized by a variable bandwidth environment. Our MultiBate, MBR, VoD solution
switches between three different quality streams depgnalinthe available bandwidth. It
has shown to behave good in bandwidth-fluctuate envirorsnestiten a constant bandwidth
is not guaranteed, and in stable environments.

In this introduction chapter we will first give an introduami on P2P networks in section
1.1. In section 1.2 we will present BitTorrent, and then Teikas an enhancement of it in
section 1.3. Finally in section 1.4 we will introduce TrildeVideo-on-Demand function-
ality and in section 1.5 the motivations for a MBR VoD implemtegion are discussed.

1.1 P2P Networks

The common architecture designed for computer commupit&igenerally a client-server
architecture, figure 4.6a. The most famous system desigitacavgerver-client approach
is the world wide web. This scenario is characterized by drakeerver that handles the
client’s requests. This approach lacks of modularity, atwéity and reliability. By the in-
creasing of requests, servers need to adapt by increagngvtilable resources, such as
available bandwidth and computational power, to satiséyititoming requests. A server
could be a point of failure and could stop handling the incmmiequests, making the system
unusable. On the other side P2P systems offer a solutioniricsgalability and reliability

in computer communications.

Typically a P2P network is a computer network or any kind dfvaek that does not use
a client-server approach, but an equivalent number of n@mled peers) that serve both
as client and as server to other nodes. This network mode iaritithesis of a client-server
architecture. Through this configuration any node is abkda or complete a transaction.
The equivalent nodes may differ in the local configuratibwe, processing speed, bandwidth
and variations in the amount of stored data. In general waeldfie term P2P network as
two or more computers in which all computers occupy the saeratthy. This modality is
normally known with the term Working Group, against the rate where there is a central



Introduction 1.1 P2P Networks

domain.

In a P2P system peers communicate using symmetric protacolghey act both as
server and as client by sending and handling requests. TRedx2arch has gone along
over the years with the economical field of game theory. Thsam for this is that a P2P
system has to provide enough incentives for the peers te sharesources with each other.
While on one hand P2P systems, in relation to client-seng&ems, are generally more re-
liable considering the possibility of a node failure on tlilees hand peers of a network are
less reliable than servers in terms of tastiness and sgcurit

The classic example of a P2P network is a network to shardfilessharing). Over the
last years we have seen the emergence of an incredible awfdR2P file sharing networks
often including servers for particular functionalitiesft&h P2P file sharing application use
the support of servers, ending up in a mixed scenario wher@®#P architecture and the
client-server architecture coexist. P2P file sharing tliesuch as BitTorrent [20] or Fast-
Track, implemented in Kazaa [24], are based on P2P netwarkstli use some servers
for locating files of connected peers. Other interesting B®ems are the Gnutella [18]
and the Kad Network that implemented a completely serverless network. Anywage
networks still need to know before hand some peers of thearktwAs an example the
popular program eMule [14] takes advantage of both: seffeefile indexing and the Kad
network for additional sources. With the increasing poptyaf P2P file-sharing networks,
systems such as the Kad Network demonstrate to react badteserver based architecture
in localizing peers with content. Clearly the respond tiskigher, given by the distributed
nature of the architecture. Innovative uses of the P2P tdoby include the deployment of
real-time generated high data streams such as televisigmngms or movies.

Peer Peer

~AR-EaN]

-

(a) Client-server (b) P2P

Figure 1.2: The centralized client-server architectumswgthe distributed P2P architecture

Lthat actually implements the Kademlia P2P overlay prot{2?)



1.2 BitTorrent Introduction

1.2 BitTorrent

We will now introduce the BitTorrent P2P system, designedBbgm Cohen in 2003, as
the core of Trible’s architecture. BitTorrent is both a il used for communications in
a P2P fashion, and a client that uses the protocol for filergiatt has been designed to
allow a fast download of big files over a P2P network, limitthg bandwidth consumption.
The protocol is based on an encryption algorithm, calledcBda, used for client/server
and client/client communications.

Unlike traditional file sharing systems, the goal of BitEnt is to create and provide an
efficient system to distribute the same file to the largestbemof available peers. This is
a mechanism to automatically coordinate the work of a nudétof computers, obtaining
the best possible common benefit. BitTorrent is a protocat! @lows to distribute files of
any type. To facilitate the transmission, the original dueut is split into many small frag-
ments, called chunks, which then will be recomposed oncestration. The chunks have
a fixed size, for verification a fingerpridtfor every chunk is generated, using the SHA1
algorithm, and distributed along the peers.

Every file-sharing program designed on a P2P network neeé share-ratié enforce-
ments to guarantee the survival of the system. The shaaitig-€nforcement is the set of
rules that enforce peers to share their upload bandwidth atiter peers of the system. In
BitTorrent, the share-ration enforcement is guaranteetheytit-for-tat [9] protocol, that
tries to gain a high sharing-ratio between peers. Tit-fbrid designed in a bidirectional
way, a peer will be able to download from another peer if itpoading some content to
that one. This gives peers an incentive to be available andtddandwidth to the Bit-
Torrent network. Furthermore it gives a solution for theefiding problem by stimulating
cooperation [2].

The research of available content is done in a centralizgdtivaugh web sites where
.torrentfiles are located. The torrent file is a simple file, small, ihian be published for
example on a Web page. In order to take advantage of the syistsrtherefore necessary,
first of all, to download a file with the .torrent extension. i file acts as an index, with
a description of all packages in which the original file wagdid, including hash keys
that ensure the integrity of the various pieces. The torfiatcontains the address of a
BitTorrent tracker. The tracker is used to discover the eation properties of the group
of downloaders of this torrent. The total group of downlaadef a torrent is called the
download swarm.

2 The fingerprint in computer science is a string that iderstifigjiven file. It is used to ensure the authen-
ticity and security of files and also to quickly identify fildstributed over a file-sharing network.

Sratio between the total amount of uploaded data and thedotalint of downloaded data of a peer in the
network.



Introduction 1.3 Tribler

1.3 Tribler

Tribler [38] is the name of a software designed and impleetksince February 2006 in the
Parallel and Distributed System group of the Faculty of tleal Engineering, Mathematics
and Computer Science of TU Delft. Initially only a small enbament of the ABC client
[1], it now integrates many functionalities that make troftware unique.

Tribler differs from other popular BitTorrent clients suels Vuze [47] and uTorrent
[45] due to some of its features. Tribler adds keyword seatiility to the BitTorrent file
download protocol using a gossip protocol. The softwarkighes the ability to recommend
content. After a dozen downloads the Tribler software camgity estimate the download
taste of the user and recommends content. This feature esl lmescollaborative filtering,
also featured on websites such as Last.fm and Amazon.conoth@nfeature of Tribler
is a limited form of social networking and donation of uplozabacity. Tribler includes
the ability to mark specific users as online friends. Suabnfis can be used to increase
the download speed of files by using their upload capacity [3je last evolution of the
software ingrates new functionalities to prevent freersdand garantee fairness [33].

1.4 Swarmplayer

As the GUI of Tribler, the Swarmplayer is just an interfaceTtber's API, see figure 1.3,
that enhances Tribler with the VoD functionality. The Swalayer is responsible of han-
dling the download and manage the video playback. It has esigned for the integration
in web pages, in Tribler's GUI or as stand alone player. Taiobthe VoD functionality
some characteristics of Tribler, more precisely of the &itént client, had to be modified.
For this purpose a new algorithm, called Give-to-Get [34]s been designed and imple-
mented to handle the download and upload policies.

Main client

Tribler GUI SwarmPlayer

I S
Tribler Core (API)

Configurable

B e Buddy | Coop | Remote

Cast DL Query SocNet

l TCP/UDP Connection

Figure 1.3: Tribler Core



1.5 Multi Bit-Rate Video on Demand Introduction

L i

ante_Dream, HDLinky

Figure 1.4: The interface of the Swarmplayer

We implemented the novel VoD approach described in thigghet® the Swarmplayer.
The high modularity of Tribler's architecture allowed toség enhance the Swarmplayer
with new functionalities in a transparent way for the exigtMoD implementation.

1.5 Multi Bit-Rate Video on Demand

The poor quality and the typology of the current Interneteasses are a great limit for the
spread of a VoD P2P technology. In our days Internet accessasostly ADSL and nor-

mally the available download bandwidth is much higher thanupload bandwidth. While

it is prefered to have a higher download ratio when servinghenwveb, this is a limitation

when considering P2P systems. Considering the VoD funalityndiscussed in the previ-

ous section a peer could only download as much as it uploadsdsurvival of the system.

It is logical that, in a completely decentralized systemeargcan rely only on other peers
of the system and therefore on their upload bandwidth.

Another limitation of the current VoD functionality is thitrelies on the current down-
load rate of a peer. While this is applicable in a client-serarchitecture, where servers
provide a fixed bandwidth, it presents problems due to themaioty of the available band-
width in P2P systems. In P2P systems the available bandweftends on the amount of
connected peers and on their connections. If a peer dropsf tlue system, while we are



Introduction 1.6 Contributions

watching a video file in a VoD fashion, it can stall the plageplayback because of the
sudden drop of available bandwidth.

In this thesis we present design and implementation of al v functionality, called
Multi Bit-Rate VoD, that aims to smartly react to sudden baialth variations. The Multi
Bit-Rate (MBR) VoD functionality will switch between thre#fferent quality streams de-
pending on the current available bandwidth. We designedrel mmcoding methodology to
create the three quality streams in a particular way. Furtbee we modified the multime-
dia player VLC to allow a flicker-free playback of our encodsicbams.

1.6 Contributions
The contributions of this thesis are as follow:

e We study the current VoD solutions and their design decssitmparticular we anal-
yse the state of the art of codecs and containers that cdold aIMBR VoD func-
tionality to be implemented.

e We propose a novel encoding methodology that creates antawith three different
quality streams, aimed to serve our novel MBR VoD solution.

e We modified the demuxer module of the multimedia player VLGlow a flicker
free playback of chained Ogg streafns

e We present a novel algorithm that handles the download aaybatk of three pro-
portional quality streams of a torrent file, depending onaveilable bandwidth.

1.7 Thesis outline

The remaining parts of the thesis are organized as followsp@r 2 will describe the prob-
lems related with the current P2P VoD solutions and with fhygr@eaches aimed to gain a
VoD functionality in variable bandwidth environments. @ter 3 will present the design of
our novel MBR VoD architecture. In this chapter we will dissuithe design decisions that
guided us through the nine month thesis project. In Chapiez @ill show how the design
of Chapter 3 has been implemented by enhancing Triblers and the Swarmplayer. In
Chapter 5 we present the result of our experiments that stilehaviour of our novel
MBR VoD functionality. Conclusions, discussions and reaoendation for further investi-
gations are presented in Chap®ér

“4a stream created by concatenating different streams






Chapter 2

Problem description

First we consider the problems related with the Quality afvige, QOS, of video on de-
mand for peer-to-peer networks.

In section 2.1 we will discuss how the network condition af thternet is not reliable
because the bandwidth and the load of Internet often changelg But the transport bi-
trate of media source is mostly constant. So it will affeet tjuality of Video-on-Demand
such as delay and jitter. Further more the actual accessmidthd of many users, peers
in our case, who attempt to watch the same media program féeecdt. Some users with
high access bandwidth can't get better video quality andesosers with very low access
bandwidth have not enough bandwidth to watch video. So icessary that media source
can provide more than one bitrate to adapt to complex netaankition.

In section 2.2 two different approaches to stream over apltia-fluctuate network
are discussed. The enormous attention that variable guwédieo-on-demand got over the
last years brought to such encoding technologies asdakable video codinghat would
avoid handling big restrictions, explained in section 2.3

2.1 Heterogeneous Internet access

The Internet is constantly growing, and the connectiongdpeith it. The nature of the
environment is not reliable because bandwidth and loaddcchidinge unexpectedly. Also
the access bandwidths of the users, peers in our case, ditene peers might have an
access bandwidth that is in order of Megabytes/s while gibers hundreds of Kilobytes/s.
This diversification is the most important factor that barige need in our days of a variable
bandwidth environment where the Quality of Service is goeed. The current working
solutions are majority server based [26] [41].

The simplest way is that media server prepares several rfiedidor the same video
file. The bitrates of these files are different from each othke server redirect a client to a
corresponding media file according to the client’s selectin the bitrate.

The current services on the Internet that provide a Videoem&nd (VoD) functionality



2.1 Heterogeneous Internet access Problem description

10

have been analysed to determine which were their desigsidesiconcerning bandwidth
allocation. Our analysis takes in consideration YouTulib@snost popular VoD service but
there are at least other 40 video-sharing web3it®e will show also "Joost”, "Zattoo” and
PPLive as the most popular video on demand distributed mgstased on P2P technology.
The results shown in figure 2.1 and figure 2.2 are taken frorh [2kere those popular
video content delivery mechanism are studied. P2P techpdias proved to be the future
solution for VoD systems, offering a better reaction to adsudincrease in requests. On the
other hand setting up the environment might take longer ithanserver/client architecture
when requests and content distribution over the P2P systeathier low [27].

4000 = 700 = 1400 —
explore channels |~~~ up = up & i 5 - up
(TCP downlink) | —TCP down 600 — TGP down e 1200 Swtch,  TGPidawi
—3000 ---UDP up -=--UDP up ---UDPup
2 —UDP down ESDO —— UDP down g 1000 — — UDP down
e} o a
= start movie = . o channel
400| 800|
= : = starting TV E UDP start
3 2000 (TGP downlink) ubpP 5 | (TCPdown) ] downlink  vop
H \ uplink £ 300 £ 600 Vi
5 UDP k] k]
5 downlink & 200 & 400
o
1000 UDP down
i 100 200|
oM oo e ol i a g, 3 by I
50 100 150 0 20 40 60 80 100 120 0 50 100 150 200 250 300 350 400 450 500
time [s] time [s] time [s]
(a) Joost (b) Zattoo (c) PPLive

Figure 2.1: Bandwidth consumption over time during P2PT\Asueements

TCP uDP up down | TCP(up) | TCP(down) | UDP(up) | UDP(down)
Joost (short) 86.12 | 391.01 91.46 | 356.14 9.08 77.04 88.99 302.15
Joost Movie 985 | 546.75 69.24 | 487.08 3.02 6.82 66.32 480.48
Joost (Japan) 9.07 | 522.78 12.88 | 516.33 1.06 8.01 11.84 508.77
Zattoo (short) 285.15 | 104.27 28.68 | 359.51 11.44 27371 19.06 86.83
Zattoo show 578.11 92.18 | 108.85 | 561.12 17.67 560.44 91.47 0.68
PPLive (short) 209.29 | 479.17 9426 | 582.08 44.68 164.63 50.90 428.44
PPLive 11795 | 586.80 | 19643 | 502.29 4222 7575 155.82 430.95
PPLive (Japan) | 159.73 | 547.79 | 196.69 | 509.95 42.15 117.59 154.58 392.73
YouTube 326.63 0.21 11.19 | 315.49 11.17 31547 0.02 0.02

Figure 2.2: Measured bandwidth consumption in [Kbps] féfedént IPTV systems

As we can see from figure 2.3 YouTube is the VoD system thatinesgjless bandwidth
consumption. It needs at least a 315,47 Kbps as downloadméthdto be able to watch a
video stream without stalling, see figure 2.2. This bandwiinsumptions are taken into
account to design our quality streams in a proper way. We @rgydo see, chapter 3.1.1.2,
how our lowest quality stream will need only a 256 kbps cotinacto be able of being
watched fluently. Therefore all the users with a low speedeotion will benefit from our
architecture, without having to wait a certain time for thefér pre-fill.

Lhttp://en.wikipedia.org/wikilList_of video_sharing_ websites



Problem description 2.2 Streaming over bandwidth-fluauagtworks

TCP down
UDP down 560.44 kbps

480.48 kbps Zattoo show

YouTube

kbps Down
561.12 kbps
“S~PPLive

4222 ypp up

KbPS 455 82 kbps

Figure 2.3: Spider plot of the bandwidth consumption of tkie fhvestigated IPTV appli-
cations

2.2 Streaming over bandwidth-fluctuate networks

Internet is considered a bandwidth-fluctuate network wheterogeneous connection speeds

coexist and interact with each other. While the differerscaadt evident in a server-client
environment, it is one of the biggest problems in a peereerpr client-client environment.
In a P2P environment the connection speed of a peer religsoonthe connection speed
of other peers, making the bandwidth capacity of a P2P systgiable depending on the
connected. It often happens that the upload bandwidth ofa gampletely saturates the
bandwidth needs of a second peer, while it will need a largefgeeers to saturate it's band-
width. This instability is the key point for a multi bit-ratenplementation. Not only peers
with low and medium connection speed benefit but also pedhsaniigh speed connection
that want to watch a video file held by peers with a slower cotioe.

Before presenting our final solution to gain a Multi Bit-R&kBR) video on demand
functionality, we will analyse the state of the art for vatabit-rate encoding. The next
subsection will present a possible approach based on $ealalling where an encoded
video file is composed of a base layer and a certain numbertcd @formation layers
that improve the video quality. The following chapter witiegent our novel solution that,
seeking for a codec agnostic approach (considering thaliimns explained in section 2.3),
encodes the video file into three different quality streants@witches at run-time between
those depending on the available bandwidth.

2.2.1 Scalable video coding approach

One possible solution for streaming over bandwidth-fluetueetworks is thecalable video
codingapproach. Since 2003 when the Moving Pictures Experts G{RIREG) made a
proposal for scalable video coding (SVC) a lot of effort hastbput in that direction. SVC
will became the name given to an extension of the H.264/MREAY-C video compression



2.2 Streaming over bandwidth-fluctuate networks Problescrijgtion

12

standard. The SVC has been developed to offer the possitiigncoding into an high qual-
ity bit stream split into different sub streams or layerd tten be decoded independently.
Such an approach will offer a simple solition to archive dalale bit-rate video on demand
system where the base bitstream will be encoded to advalwageit-rate clients and ad-
ditional streams could be downloaded by faster peers. Ewvaumgh the fact that this will
be the best solution in terms of modularity, scalability. gtwere is still no open-source im-
plementation. The current free software encoding libranmyesponding to the H.264, that
could be used to encode the original video, is the X.264. diss used by the VideoLan
player (VLC, discussed in section 3.2.2) that is the curvéateo player used in the Tribler
project for the Video on Demand implementation. The big fobconcerning this imple-
mentation is that there is still no implementation of the64/5VC (scalable) extension and
we will take this approach into consideration only once tperssource implementation
will be available. Of course as soon as it is a stable teclyydio relay on it has to be taken
in consideration as a valid alternative. Therefore in thda sections and for the rest of the
research a Scalable Video Coding approach is not taken amtsigeration

2.2.2 Switching points, a novel approach for changing quaty

The novel approach proposed in this thesis $svétching pointgechnique. This technique
aims to switch at run-time between different quality streafavery stream stored in a dif-
ferent buffer, therefore to switch between different gyabuffers. How to switch between
buffers will be handled by a controller that will try to swht¢o an higher quality level as
soon as there is enough saved buffer of the current quadiyfigure 2.4.

:. player buffer
Controller

medium .—’ switch file

||||
based on the

buffer size

=

Figure 2.4: Multi bit-rate controller

The major problem deriving from this design is the alignmeetiveen quality buffers.
If the buffers holds different qualities, than the inforioas held at a particular time will not
be the same in time for other buffers. How to switch betwedfelmiregards the "switching
point problematic” and will be addressed in section 3.2.

The switching point problem has different impacts at défdrlevels of the architecture.
The download engine, BitTorrer®?, will be affected in the download policy. The new
policy will have to download the needed quality based on tf&lable bandwidth. This
is easily archived in a client-server environment wheredbever sends a quality stream
depending on the client feedback. This interaction betvpeams is not possible in our P2P



Problem description 2.3 Video standard restrictions

environment, therefore the "client” peer will have to adeggardless of other peers, in an
automatic way.

The MBR Controller will have to fill in the right way the threeigjity buffers and than
serve them to the video player. The algorithm has the regjpldgaof preventing stalling
and determining when to attempts a quality switch.

The last but heaviest problem concerns the video playbackyeaare going to see in
the next chapter, where getting an alignment between tearats resulted in a complicate
analysis of different container and codec formats, thataillibw to manage streams in the
desired way.

2.3 Video standard restrictions

As previously discussed, the main problem concerning tbeoviplayback is the quality
buffers alignment. Thanks to the previous work [34] we knbattdownloading a torrent
file in an ordered way, with only one video file, and streamintg ia multimedia player is
possible to realize. This approach is quite useful congigesnly one stream. On the other
side, considering such an approach for handling differgleams involves some changes
on the player side.

The major characteristic of the current video on demandtfonality is a constant bi-
trate encoding. Through the bit-rate estimation it is guledio easily predict when to start
playing a video depending on the current download bit-rttthe current download bit-
rate is higher than the playing bit-rate than it is possiblstart watching the video directly,
without having to wait for a buffer pre-fill. In other wordsléss time is needed to download
the video than to watch it, than it is possible to watch it dmading the video pieces in
an ordered way. Even if the download speed is lower than thdeatbtime, through the
constant bit-rate encoding it is possible to predict whenilltbe possible to start watching
the video without future "predicted” interruptions.

This entire approach is based on a bit-rate value that catoleslsn the torrent header
or automatically detected by analysing the video header®dtat the beginning of the
stream. Anyway such an approach will not be valid in a vaeiddil-rate environment with-
out restricting the codec choice. We need at least diffdsitrates for different qualities to
be more flexible when encoding the video file. On the other lzsnge will see in the next
section a constant bit-rate encoding would solve some ralig issues to switch buffers.

2.3.1 Frames structure

A movie is mostly composed of at least two streams: one foratidio and one for the
video. Our concerns goes more for the video stream consgiéniat most of the encoded
information is carried here. Even though the audio has todbsidered when encoding to

2The current download measurement is always an approximafithe average over a certain period of
time

13



2.3 Video standard restrictions Problem description

14

Encoding &
transmission
order

Frame

B I B P B PBEPEB I npe

g Display
order

Figure 2.5: Group of pictures

different qualities and synchronised with the video, wHayp the biggest rule for a quality
difference is the video stream.

MPEG is the most common family of standards used for codirdjoavisual infor-
mation. Each MPEG-coded video stream consists of sucee&sivup of Pictures, GOPs
figure 2.5. From the MPEG pictures contained in it the visiiotanes are generated. A
GOP can contain the following picture types [31][36]:

e |-picture or I-frame (intra coded picture) reference piefucorresponds to a fixed
image and is independent of other picture types. Each GORdweith this type of
picture.

e P-picture or P-frame (predictive coded picture) contaimgiom-compensated differ-
ence information from the preceding I- or P-frame.

e B-picture or B-frame (bidirectionally predictive codedcpire) contains difference
information from the preceding and following I- or P-framéhin a GOP.

e D-picture or D-frame (DC direct coded picture) serves ttst &lvance.

The I-frames contain the full image, they don't require adgitional information to
reconstruct the image. Therefore any errors in the streagnsoarected by the next I-frame
(an error in the I-frame propagates until the next I-framEjrors in the P-frames could
propagate until the next I-frame. B-frames do not propagaiars.

The more I-frames the MPEG stream has, the more it is editétdeever, having more
I-frames increases the stream size. In order to save batidasd disk space, videos pre-
pared for Internet broadcast often have only one I-frame3i2p.

The most used are the I/B/P-frames and concerning our sngtgioint problem when
to switch between buffers we should always start with a nesarclimage provided by
the right I-frame. If we would just jump in the middle of theffar without taking in
consideration the beginning of a group of picture we’ll mprebably end in the middle of
a GOP reproducing P-frames and B-Frames that do not haveltteztl-frame as reference.



Problem description 2.3 Video standard restrictions

torrent file

Qriginal file ~700MB

Medium size

Smaill file ~100MB

torrent block {1..n chunks)

T

GOP Group of pictures:
- I-frame
- B-frame

k - P-frame

I-frame

Figure 2.6: Switching point in concomitance with new I-fram

Considering our switching points problem, to avoid the epmpagation caused by a
missing I-frame, we should set our switching points in canitance with the beginning of
GOPs, see figure 2.6.

A constant bit-rate encoding will help this approach ofigra way of localizing the I-
frames in a video. Also some particular encoding configaratvould allow to easily locate
the I-frames in a stream but it will give a big limitation inettkind of codec to be used and
in the flexibility of the encoding.

2.3.2 Codec Headers

The audio and video coded headers contain vital informdtordecoding such as frame
rate and resolution that, if changed without re-initigithe decoders, will cause problems
in our implementation. A big problem, when analysing thdedént approaches, is how
to handle thos codec headers. Every video and audio stretimevdecoded based on the
information held in the header. Different container forsnatffer different header structure
but normally the codec informations are stored at the béggnof the video file. Those in-
formation is used by video players, in particular by demsxXeee section 3.2.3) to initialize
decoders that will handle the stream at run-time, figure*21@ most containers the codec
headers are saved only at the beginning and some times atdhef ¢he stream because
during the video playback the streams information are ranigd to change. In our situation
we will have to change headers information at run-time ddjpgnon the available down-
loaded quality. One solution for the header localizatioruldtdoe to download the initial

Spicture taken fromhttp://cutebugs.netffiles/multimedia/decoder.png

15



2.3 Video standard restrictions Problem description

bytes(ref, meaning) of every quality stream and store theebetused once is needed.

Decoder

Subpicture
‘ Decoder '| Synchronization
Video
Decoder
Decoder |

Figure 2.7: Demuxer and decodes architecture

Another problem that derives from such an approach isptiesentation time stamp
(PTS) and thedecoder time stam(DTP) synchronization that provides the decoders with
information concerning "when to decode” and "when to présemery frame of a video
stream [6]. That information is needed because often wehaille a decoder order that
differs from the presentation order.

The amount of frames will change with the quality, therefeven if the same I-frame
appears in different buffer§ it will never have the same values of PTS and DTS because
the decoder will have already processed a different amduinames. This problem could
be solved be changing the PTS and DTS values at run-time, ibltring an extra amount
of computational overhead to the system. Another aspeth#sato be taken into account
is that more "hard coded” is the solution less modularityl W given to the architecture.
The proposed solution, section 3.2.3.2, will not handlevideo stream for modifications
at run-time.

“happens only if specifically encoded

16



Chapter 3

Design

The architecture design was done by dividing the study it to the issues addressed.

The first half of the time spent on the project was used to stuggssible solution to the
switching point policy. We obtained the simplest possibldétching point solution using
the characteristics of containers and codecs. This haoledprofound analysis of the
multimedia player VLC [46] used in Tribler and after varioaschitectural choices to a
small backwards compatible modification to the software.

To obtain a P2P integration the quality streams will be esgkgbed into a single torrent.
The torrent will be therefore holding three different cap@ the same video file encoded
into different qualities.

At first sight it was clear that the only way to go was to exptoi¢ possibility of as-
signing different priorities to different files of a torretd be able to download only the
interesting part by not loosing bandwidth downloading wassary files . As we are going
to see later this feature is the heart of the download cdetrthat deals with download-
ing the right chunks in the right order. The download com#rohas been analysed and
implemented during the second half of the project.

3.1 Switching enabling mechanism

The problem of how to change the quality was the first to bees$ad. Because of its big
importance in the project, it has been considered from uarpmints of view.

Let us analyse what advantages and disadvantages a codestiagolution will bring.
To create the switching points depending on I-frames or atiqodar points in the stream
also means to bind the architecture to the type of codingestyicting future project devel-
opments or the modularity of the architecture. As seen iins@etion before), this solution
greatly restricts the used encoding parameters. In additiconstant bit-rate should be ap-
plied or the three buffers should be analysed at run-timeyachronization, which would
cost too much in terms of computational consumption.

To avoid restrictions on encoding parameters, the videgeplshould be able to detect
a change of quality in the stream (in other words a qualityawiand re-initialize the audio
and the video decoders with the correct values. With the madtimedia player, VLC, we

17



3.1 Switching enabling mechanism Design

18

torrent file

Original file ~700MB

Medium size

Small file ~100MB

Figure 3.1: Switching points along the quality streams oéacoded MBR .torrent file

will see in the following sections how also the video and aualitputs are re-initialized
with the right codec informations such as the frame size.s Thusefull considering that
different qualities can be encoded with different resolusi

The final solution is dime basedlignment, see figure 3.1. This approach will locate
the switching points on a time scale. The original video Wwélencoded into many small
files holding few seconds of the video/audio streams. EvkrydalledStripg is encoded in
a different way, storing the codec headers needed by therdajecoder at the beginning.
This approach makes every file able to be played indepernddntiring our experiments
we encoded a new stripe for every three seconds, offeringdabsibility of switching buffer
every stripe, therefore every three seconds. Creatingithiehdng points based on time was
found to be the successful choice to have a codec indepeapprdach. For our design we
decided to use a particular codec and container, but a tisedlignment between buffers
could be used with every codec as long as the player allows it.

3.1.1 Multi Bit-Rate torrent

In this section we will explain how the torrent has to be adab accomplish the design.
First we are going to explain ho@tripesare saved in the torrent file. In section 3.1.1.2 the
conditions that brought us to such a configuration, like thipess size, are explained and
the motivations are given.

3.1.1.1 Stripes

The original video is divided into a number of pieces, caldpes dependently on its
duration:
duration of the video file

number of stripes- - -
P duration of each stripe

The name of every created stripe consists of a character pduifies the quality, in our
case "I" for low quality, 'm’ for medium quality and 'h’ for lgjh quality, and a value that
will increase for each stripe. To specify that it is a torreabtaining a video for this par-
ticular architecture, a text file calladultibitrate.infothat contains additional information is



Design 3.1 Switching enabling mechanism

also written in the torrent. Table 3.1 gives an overview effites kept by the torrent created
from a 21 seconds video file, with switching points every ¢hgeconds. This will create a
torrent suitable only for use with Tribler, at a later time tiser may decide whether to re-
gain the video with the original quality by sequentially daining the stripes of the highest
quality or not.

low quality | medium quality| high quality | other files
10.099 mO0.ogg h0.ogg multibitrate.info
11.099 m1l.ogg hl.o9g
12.0099 m2.0gg h2.0g9g
13.099 m3.0gg h3.0gg
l4.0099 m4.0gg h4.0gg
15.099 m5.0gg h5.0gg
16.0099 m6.0gg h6.0gg

Table 3.1: .torrent file containing multiple files

Every stripe will have a different size, variable bit-rateeding, and naturally the lower
the quality is the smaller the stripe is. The size differemewveen stripes is the fundamental
condition to be able to download at different connectioresige Table 3.2 gives an idea of
what could be the size for the different qualities. In paitic those are the average sizes of
the final stripes created with our encoding algorithm 4.&€ek (ater).

Quality | low | medium | high
Size per Stripgl ~91kB | ~ 20%B | ~ 425B

Table 3.2: stripe sizes with configuration later discusseskettion 4.1.1

3.1.1.2 Exploring Stripe size dependency

The values of table 3.2 have been chosen depending on thedugpeed of ADSL connec-
tions (Asymmetric Digital Subscriber Line). As we discu$$e the previous chapter, in a
P2P system a peer could only download as much as it uploadsuFstudies we took into
consideration a connection with 256kbit/s as lower bantwiebund and as upper bound a
connection with 1,4Mbit/s as upload speed. The upper boandoe increased depending
on the quality of the original video file, while we found thatrdower bound, 256kbit/s as
upload rate, is a reasonable value considering the curvailtble ADSL connections.

Before going further explaining why we chose such valuds fist introduce a con-
cept of which we will use extensively in the next chapters.ild/tiesigning the architecture
of the multi bit-rate Video on demand system, we had to alwayssider the possibility

19



3.2 Solution for quality switching Design

20

of loosing bandwidth, due to a loss of connection or a peenecition closed in advance.
Therefore a safe quality fall-back scenario has to be censitiand, while downloading a
higher quality, the lower quality will always be downloadadackground (chapter 3.3.3).
In the following tables we will show how our stripes have besiwoded to gain the best
results for the most typical ADSL connections.

In table 3.3 the minimum speed requirements for every quatié shown. The low and
medium quality values are typical upload limits for comni@réDSL connections.

Quiality | low | medium | high
Minimum ADSL upload limit | > 256kbit/s | > 79&bit/s | > 1,4Mbit /s

Table 3.3: Minimum ADSL upload speed limit for a continuouaypack

Table 3.4 shows the reasons for choosing the stripe sizesveAsan notice from the
table, the minimum required speed for continuous playb&ckie quality in a safe fall-back
scenario is upper bounded by the upload limits of comme/AdzSL.

- Low quality: 30 3kByte/'s < 31,25Byte/s
- Medium quality: 978kByte/s < 98kByte/s

- High quality: 1713kByte/s < 175Byte/s

3.2 Solution for quality switching

In this section we are going to analyse what have been theatmesign decisions that
brought us to gain a flicker free playback. The main addreissest was to avoid the few
milliseconds latency between stripes. This was made pesianks to the correct choice
of codecs and containers, allowing a simple managemenedaublio and video streams.

Further than choosing codecs and containers a small mdaifidaad to be done to the
default Tribler multimedia player, VLC. This modificatiorfects only a library used by
the player, leaving the structure and behaviour of the samobanged. In section 3.2.2 the
modifications of the ogg demuxer library of VLC are explained detailed way.

3.2.1 Codecs & containers comparison

After the analysis of section 2.3 we will now describe thesozes that have caused us to use
the ogg container. First of all:

the ogg container is a free software [25], therefore pdieet-



Design 3.2 Solution for quality switching

Quiality | low \ medium \ high
Size per 3 seconq| ~91kB ~ 20X%B ~ 425%B
Stripe

Minimum required|| 30,3kByte/s 67,5kByte/s 141K Byte/s

speed for contin-
uous playback of
only one quality

Minimum required || low quality low + medium low + high
speed for = 30,3kB/s | = 30,3kB/s+ 67,5kB/s | = 30,3kB/s+ 141KB/s
continuous

playback of one 30, 3kByte/s ~ 97, 8kByte/s ~ 171 3kByte's

quality in a safe
fall-back scenario

Bandwidth  limit || > 256bit/s > 79&bit/s > 1,4Mbit /s
(kbit/s)
Bandwidth  limit || 31,25kByte/s 98kByte's 175%Byte/s
(kByte/s)

Table 3.4: Stripe size dependency

Ogg specifications are publicly available. The librarieseférence for encoding and de-
coding are released under BSD licehs&he official instruments to manage the containers
are licensed under the GNU General Public License (&PL)

The main reason that prompted us to OGG rather than Matroske one of its design
characteristics:

The internal structure of an Ogg file allows the binary coewation of streams.

The resulting Ogg file perfectly complies with the specifimag. The same specifications

provide the so-calledhained streamsAs we know Ogg is just a format that specifies how
the data should be sorted in the data stream. The audio ar gitepded by a specific codec

will be included in the Ogg container [37]. The container camtain streams encoded

differently, for example, an audio/video file containingotatreams encoded with different

codecs.

As aform of containment, Ogg can integrate third-party csdéke DivX, Dirac, XviD,
MP3, etc.) but is usually used with the following codecs:

Lfurther referencehttp://en.wikipedia.org/wiki/BSD_licenses

2further referencehttp://en.wikipedia.org/wikiGNU_General_Public_Lic ense

3The Ogg container is not the only free software, also the d&k# container offers a good alternative.
Matroska is an open standard project developed by the Matidsvelopment Team and licensed under GNU
LGPL* designed as a compromise between the strong-copyleft G®pemissive licenses such as the BSD
license.

21



3.2 Solution for quality switching Design

22

e Audio Codec

— Lossy

Speex : handles the compression of the human voice to low bit rate32 Bbit
/ s I channel)

Vorbis : Manages moderate compression of audio generic ( 16-2%6 &hi
channel)

— Lossless

FLAC : Manages audio generic preserving all the information efdtiginal
signal

e Text Codecs
Write : codec for the management of the text in subtitied movies
e Video Codec

Tarkin : experimental codec that uses wavelet transforms 3D. Dpuednt is cur-
rently suspended, as the focal point of development is otiyré& heora

Theora : video compression codec based on VP3 of On2

Of these, only FLAC is also commonly used without the ogg aimetr. Out of this list of
codecs we decided to use Vorbis for the audio stream and teeralfor the video stream.
Both codecs are free and open-source, developed directtyebXiph.org foundatioR. We
chose the Theora codec because it scales from postage st&tipresolution, and is con-
sidered particularly competitive at low bitrates. It is retsame class as MPEG-4/DiVX,
and like the Vorbis audio codec it has lots of room for improeat as encoder technol-
ogy develops. The Vorbis codec has been designed to corypterdace all proprietary,
patented audio formats [32]. Vorbis is an open source algarifor lossy compressing
digital audio-type, direct antagonist of other standawshsas MP3, VQF, AAC. With the
same quality, allows greater compression than the MP3 fiprthanks to advanced psy-
choacoustic research. Among the qualities that are conyraitributed to Vorbis, refer-
ring especially to the inevitable comparison with the dedatandard MP3, we consider a
greater extension and a cleaner sound at high frequentiegg46 kHz), native support for
multi-channel and a general better preservation of thaaipaiof the sound of the original
signal . One of the only defects, compared to other codeedMiR3, is the heaviness of the
algorithm while decoding.

3.2.2 VLC media player

VLC media player [46] is a highly portable multimedia playeapable of supporting var-
ious audio and video formats (MPEG-1, MPEG-2, MPEG-4, Dimf3, ogg, ...), as well
as DVDs, Video CDs and various streaming protocols. Videllié a free open source

Sreferencehttp://xiph.org



Design 3.2 Solution for quality switching

main
program control

interface video_output audio_output
Manage theeads |and user pictures displaying
1
interface w| video_output audio_output
managemert and Joop ~| picmures rendering audio frames mixer
and displaying = and player
1 i "
imtf msg - -
— vout plug—in aout plug—in
fmessages output Qutput driver output driver
"
playlist
playlist management - e N
video decoder audio_decoder
A
video_decoder audio_decoder
ES decoder ES decoder
Lh 44

decoders creation

, AN
ianlt \

- - store reference
& input plug—in | programs
" el i -
file/network socker init, read and dermi strearn managermneant —» manage
* = — = createfinitializes
»| input_ext—intf mpeg_system clock destroy
steeam navigation demultiplexer time managerment ——= fead

Figure 3.2: The VLC architecture

project released under the GNU General Public License ardfthre can be modified and
distributed within the Tribler software without any patenbblems. The core of VLC media
player, LibVLC, is built in a modular way, allowing an easy dification and integration of

every feature of the program.

The core gives a framework to do the media processing, frquatiffiles, network
streams) to output (audio and/or video, on a screen or se@am the network), going
through various muxers, demuxers, decoders and filters thesinterfaces are plugins for
LibVLC. Itis up to the developer to choose which module w#l loaded. VLC is heavily
multi-threaded and, as we can see from figure 3.2, taken fag} [s a layered system
where layers are created in a hierarchical way.

The problem concerning the media player is the audio andwvi@eoder threads recre-
ation for every stripe encountered while reading an Oggneltastream. In figure 3.2 the

thread responsible of the decoders creation is highlightBae programs responsible of

23



3.2 Solution for quality switching Design

the stream management are created and managed by the cleosexed The demuxer
is responsible of killing a thread when and "end of stream”esrd of page” occurs. The
time needed by the audio and video decoders to decode thkyfiest of a stream and send
them to the audio and video outputs is what actually cause2dk 60mslatency between
stripes. We will address a solution to this issue in the negtign.

3.2.3 Alternatives for solving flickering problems

As we sad in the previous section the ogg demuxer is resgderfsibthe decoders creation.
First we will give an overview of what was the initial designallow a flicker free playback,
and then we will present our proposed solution.

3.2.3.1 Multiple decoders approach

The initial idea was to create multiple instances of the sdewoder working in parallel
and serving the same audio and video outputs. Figure 3.3iespthe concept in an easy
way. The two decoder instances will alternately handlenmog Stripes serving the same
outputs at the right time. In figure 3.4 the maodifications twauld have been done to
achive this goal are shown. The demuxers modules would loalve modified to initialize
two instances of the same decoder for every stream. Thowmaes will have the same
reference of video and audio outputs.

Stripe i Stripe i+2

While the first decoder \The first decoder instance
instance is working on — will have enough time to
stripe i, the second == Stripe i+1 finish decoding Stripe i
instance will start de- and start with Stripe i+2
coding Stripe i+1 while the second is busy.

/tlme

Figure 3.3: Codec header pre-reading

This solution would have brought multiple advantages likeodec independent ar-
chitecture. On the other hand the many disadvantages thige deom this solution are
discouraging such an approach:

- It would be a big modification to the behaviour of the apgima, moving away from
the original architecture.

- All the used demuxers would have to be modified wisely.

- It would bring extra computational requirements for eveigeo opened by VLC
media player.

Therefore our final solution to gain a flicker free playbachl wnly concern the ogg
demuxer as we will see in the next section.

24



Design

3.2 Solution for quality switching

main
program control

video_output audio_olitput
pictures displaying
video_output audiu_uutl:;ut
pictures rendering audio frames mixer |}
and displaying and player -
vout plug—in aout plug—in
Ourpur driver output deiver
video_decoder
video_decoder audio_decoder audio_decoder |
{ video_decoder
|
\m . | video_decoder { audio_decoder audio_decoder
3 - | ES decoder ES decoder ES decoder
i i 5
playlist i
playlist managemer
input
input input plug-in programs TAPELEIRER
file/network socker init, read and demmux sTrearn management —= manage
* ——= createfinitializes
input_ext—intf mpeg_system clock destray
stream havigation dermmultiplexer time management —w feed
Control flow for Stripe i
main
program contro]
video_output audio_olitput
pietres displaying
video_output audio_output
pictures rendering audio frames mixer
and displaying and player 4J.~

vout plug—in
QOurput driver

video_decoder
video_decoder

| video_decoder

aout plug—in
output driver

audio decoder

audio_decoder |

audio_decoder — | audio_decoder
ES decoder ES decoder

A i

L Esidecader | video_decoder
ES decoder
playlist —
playlist manageme:
input
input rograms

file/nerwork socker

input plug—in p
H im[:, read and dermux r::

clock

mpeg_system
time management

demnuliplexer

SIPEAI INanagemelt

input_ext—intf
stream Davigation

MULT LELELELLT
mnanage
create/initializes
destroy

—w= feed

Control flow for Stripe i+1

Figure 3.4: VLC control flow for a multiple decoders soluti@hapter 3.2.3.1

25



3.2 Solution for quality switching Design

26

3.2.3.2 The ogg demuxer approach

As we already explained in section 3.2.1 one of the main reawat brought us to choose
the Ogg container as our encoding target is his chainedragdunctionality. When con-
concatenatin§ Ogg streams, most of the players handle a chained streaniragestream
providing by default a flicker free playback. This was not¢hse for the VLC media player
where the chained streams where handled like a sequendéeoéni files. The only differ-
ence from the demuxer side was that once a new header is foeddtdecoder threads are
terminated and new threads for the new audio and video streaencreated. As explained
in the previous section this brings the undesired playb&mgkifor few milliseconds.

To prevent the video from stalling, the Ogg demuxer has beedifiad to avoid the
thread recreation while decoding a chained-stream of time spuality. As we can see from
figure 3.2 the demuxer is responsible of creating, and therg¢&rminating, the audio and
video decoders. Our modification to the ogg module concémdemuxingorocess where
a page is read and, if no stream is found, a signal is sent tetits@m manager to terminate
the decoders. Where on one side this functionality coulddeéuliconsidering chained ogg
streams encoded with different codecs, on the other side th¢he need of a controller to
check whether to spend time re-initializing the decodersobr Our modification makes the
input module responsible for terminating the demuxer atridpiet time, and therefore the
decoders, once thend of fileis reached.

Let us now consider our situation in a more detailed way. Guad buffers, holding the
three different qualities, will be seen from VLC as threentein its playlist. The buffers
will be filled up at run-time while downloading the video, @nthere is the need of a quality
switch will we start filling the buffer referenced by the nébam in the playlist. After few
seconds the player will reach the end of the file for the ctriterm and switch to the next
item in the playlist, the next quality. This is the only timéen re-initializing the input
also terminates the decoders and initializes them agaim thé right values of the new
quality. The proposed solution ensures that a "hang” in tbdeoswill occur only with a
playlist item or quality change, when there is the real nemddécoders re-initialization.
The stripe headers will still be processed by the ogg demimerthey will not be sent to
the decoders for elaboration. The codec headers, intethbgtthe demuxer asrongdata
will be handled as garbage and skipped by the audio and vidipos.

The same modification has been applied to many differeniores®f VLC media player
without encoring in any restyling of the ogg module. The i@ns that have been tested
(with the modified module) go from the 0.8.6a, the oldestivarsised by Tribler in Febru-
ary 20087, until the latest development version 0.9.3 that is plamete used in future
versions of the Tribler project. For all the tested versiriae ogg module’s behaviour and
implementation did not change, except for few minor codécbnments, therefore the same

6to arrange into chained list
"The beginning of my project
8VLC media player versions: 0.8.6a, 0.8.6b, 0.8.6d, 0.866f, 0.8.6g, 0.8.6i, 0.9.0, 0.9.1, 0.9.3



Design 3.3 BitTorrent enhancement

patch® has been applied successfully.

3.3 BitTorrent enhancement

In this section we will analyse the design decisions and lgparithm that allows a multi bit-
rate implementation. First we will see some details of hoverggic torrent is handled by
BitTorrent(ref), after we will explain our crucial algdhniin that integrates with BitTorrent.

3.3.1 Downloading a torrent

One of the main reasons that brought the torrent protocot ta Wwidely used is its capacity
of downloading big files in a fast way. This is given by the fdwt the torrent protocol
does not allow people to swap complete items, such as muasikstror entire TV series,
but it breaks each piece of information into tiny fragmeiots)ed chunks At the time of
the torrent creation it is possible to determine a particcihank size'®. Every downloaded
chuck will be controlled and verified by the Tribler core omtmevnloaded.

The chunk boundaries are independent from the stripe boesda\s we saw earlier a
stripe has a variable size. The stripe size will affect meerg with a low speed connection,
who are able to watch only the low quality stream.

@ File boundaries
Chunck size
—

Example of a one file torrent

Chunck size
—

Example of a multiple file torrent

Figure 3.5: Chunk and file boundaries comparison

Considering that chunk boundaries do not coincide witlpsttioundaries, we need to
have stripe ordered in the right way into the torrent to o@éthe download efficiency. In
figure 3.6 we see how the download efficiency is related to teraf the stripe in a torrent
file. If the stripes are not ordered, we will end up downlogdimneeded chunks. While
this is not a problem considering high quality stripes, thia big issue with the low quality
stripes. Experiments at chapter 5.1.3 have shown that wbenldading the low quality
stream, the size of the chunks is an important factor. Dapgrah the size of the chunks
and on the size of the stripes, it is often found that one cloamkhold multiple stripes with
a small amount of information (the credits of a movie is amegpie).

9A patch is a small piece of software designed to update or fiklpms with a computer program or its
supporting data.
10The size of a chunk can only be a power of 2, normaiBt®

27



3.3 BitTorrent enhancement Design

T 1 — 1 T 1
m39.ogg|| m4.ogg m400.0ogg || m401.0gg

Figure 3.6: Normal order of enumerated files in a torrent

| | | | 1 | 1
m3.ogg || m4.ogg m5.ogg mb6.ogg

Figure 3.7: Final order needed for download efficiency

Therefore the order of the stripe in the torrent, see figufgi8an important requirement
for the design of the application. This issue has been sdlvedh easy way. Rather than
taking care of how the files are referenced by the torrenteaaoding algorithm 4.1.1 will
start naming stripes from a value that depends on the daratithe original video file.

Initial value for Stripe naming= Number of stripes- X,

where "X” could be any value but for simplicity in our encodialgorithm it is rounded up
to the closest power of 10 value.

3.3.2 Priority assignment

Every chunk can be downloaded with a different priority. réats are normally downloaded
with a rarest first priority. This is implemented to offer agual availability of the chunks
over the Internet.

For every chuck four different priority values can be assijn

Low priority — L

Medium priority — M

High priority — H

Never download— redline

This implementation will not download the torrent in an amteway but will try to
download the entire torrent as soon as possible. A diffedematnload implementation is
already provided by th&ive-to-get[34] algorithm.

28



Design 3.3 BitTorrent enhancement

round-trip
timetoq
N\
HIGH MID
PRIO PRIO LOW PRIO
\_//\_/
Video m (playback Video
start position) end

Figure 3.8: Give-to-get priority sets assignment

Figure 3.8 shows how the priorities are assigned dependirijeoplaying position into
the stream. Pieces that have an early deadline are takertHestfore a high priority is
assigned to them. Piece that are going to be played in thesfutill have a lower priority
depending on the distance with the playback position. Bxfmephe highest priority set,
where chunks are downloaded in order, for the medium andétsvtbe Piece PickErwill
download with a rarest first policy.

3.3.3 Dynamic priority assignment policy

Our algorithm will act more or less like the Give-to-get aigfan. The main difference
is that we will have to switch between three buffers/streamd therefore we will have to
take in consideration the priority assignments when switcbuffer for changing the qual-
ity. Our algorithm will not directly manage the chunk priags, like the Video on demand
does, but it will set the priorities on the file. This is an it way of managing chunks
priorities. Thefile selector*? will than be responsible of setting the right priority to tight
chunk.

Below is a clear explanation on how the priorities for théedignt qualities are set.

e Low qualities will be downloaded in a similar way to the gitceget algorithm. The
medium and the high quality will not be downloaded, figure 3.9

e For medium qualities a safe fall-back scenario has to bentéki® consideration.
While downloading the medium quality also the low qualitylywie downloaded to
provide this functionality, figure 3.10.

e The high quality download is a similar scenario to the medmunality. Therefore
only the medium quality will not be downloaded, figure 3.11

o Adifferent priority schema is applied when the algorithrawases that there is enough

bandwidth to increase quality. This means that we have éndagnloaded buffer to

11The piece picker is responsible of downloading the chuniestofrent
12The file selector allows to set a particular priority, fig 2,or every file in a torrent

29



3.3 BitTorrent enhancement Design

30

won [ ] [ ] [ AT [ |
weaom [ T T e
Low ‘ | ‘ | | H ‘ M | L| q et eiah)
sripes Stripes
Figure 3.9: Low quality priority assignment
SR N I N e I N
meaim [P <[ ] MY
S O R I B
siripes Stripes
Figure 3.10: Medium quality priority assignment
AT [ Y R I )
L T I I e

St S B R ] B B

Stripes

Figure 3.11: High quality priority assignment

safely start downloading the higher quality, figure 3.12.r&mformation on when
this happens and how the algorithm decides to apply thisnsahg explained in the
further section 3.3.4.

Once the end of the stream is reached and we stopped plagngdio file, all the
file priorities will be set to "normal” or medium priority. Ehcurrent implementation
will then download them with a rares first policy, figure 3.13.

The only other set of priorities will be set before startihg playback. At this time the
algorithm as no idea of the available bandwidth. Therefquaréicular optimistic set
of priorities is applied, figure 3.14, taking in considevatithe possibility of increas-
ing the quality as soon as possible. For high speed connectve want to increase
the quality every stripe, reaching the highest qualitXieseconds. WherX is given



Design

3.3 BitTorrent enhancement

by:

won | | | A [ [ ]
Medim | L—T | | ] ] | Y
S ] R e e
X
\ downloaded stripes —————| .
Nplayback position Stripes

Figure 3.12: Quality improvement priority assignment

won [ M MM M M M M
0 Playback position
. M M =
Medium ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ | end of the stream
oo TR T T
stripes {
Stripes

Figure 3.13: Final priority assignment

won | | Y [
veawm = | M ] ] | A [ |
Low ‘ H ‘ M ‘ L’ L’ L‘ L ‘ L‘ L ‘
dowloaded stripes = playback position = 0 Stripes

Figure 3.14: Initial priority assignment

X(seconds to start playing the higher quality xduration of a stripgnumber of qualities- 1

For an easy understanding from now on we will talk about filerfiy and not anymore

about chunk priorities.

3.3.4 The Multi Bit-Rate Algorithm

In this section our Multi Bit-rate algorithm will be presedt This will only define the de-
sign decisions for the algorithm. In chap®twe will analyse the algorithm more in depth.
We will now analyse the different "status” of the algorithrivery status will determine
a priority change as we saw in the previous chapter. With theent video on demand

implementation there is only one major status.

31



3.3 BitTorrent enhancement Design

32

When a piece is downloaded send it to the
player's buffer and assign the new priorities

Normal

Download pieces in
order:

Assign priorities based
on the current download
position

Figure 3.15: State diagram for the current VoD implemeaiati

During the normal status the stream pieces are sequerdayloaded. Once a chuck
has been downloaded it will be sent to the player and newipe®mwill be assigned.

3.3.4.1 State analysis

The MBR algorithm has different status that will determiniéctv sets of priorities will be
assigned to the files.
We will now consider only the case ofstable environmento bandwidth loose and no
peer dropping of the system, in other words we do not considsfe fall-back scenario.
The algorithm does not send the stripe as soon as it is dodedhebut it waits until the
player’s buffer is too small and we have to take a decisiopmilse the playback will stall.
The only time a stripe is sent to the player’s buffer, withbating a short deadline, is when
we actually increase the quality by switching buffer. To berenprecise, the stripe sent to
the player will not be added to the current buffer but wiltimize a new buffer, that will
then be added to the player’s playlist.

In figure 3.16 "S” represents the reference to the curreigesthat can be increased
sequentially, i+1, or by quality, g+%. "X” & "Y” are values of the algorithm that can be

BBexample: i++ m1230gg — ml240ggq++= m1230gg— h1230gg



Design 3.3 BitTorrent enhancement

playbuffer < X and S(i+1) € D where D={...5(i); downloaded stripes}

m safebuffer > Y
/—\
Normal Quality
improvement

S(g+1) €D

S(i) = S(g+1)
Increase

the
quality

Figure 3.16: State diagram for the MBR implementation inedl&t environment

modified to change its behaviour. "D” is the set of already dimaded stripes.
As we see in figure 3.16 we switch between two status.

¢ In the normal state the algorithm will download stripes sequentially,saen as a
stripe is requested, because the player’s buffer is to sthallalgorithm will send it.

e The algorithm will switch to th&uality improvemenstate once there is enough safe
buffer 14, The algorithm will than switch back to thidormal state if the player’s
buffer is too small or it will update the current stripe to tredative stripe of the
higher quality buffer, if a higher quality stripe has beemvdtbaded.

Figure 3.17 shows the algorithm behaviour in a dynamic enwirent. For simplicity
the graph does not show the previous discussed scenatiopiagstheQuality improvement
state previously explained. For a complete picture of théustdiagram please refere to
figure 3.18.

In this environment a new state appears.

e The algorithm will switch to theafe fall-backstate once the player’s buffer is too low
and the current referenced stripe is still not downloadedhis case we have to take
a decision as soon as possible to serve the player with a mige.sThe algorithm

14The safe buffer is defined as the amount of downloaded stifia¢still have not been sent to the player

33



3.3 BitTorrent enhancement Design

34

playbuffer < X and S(i+1) € D where D={...S(i); downloaded stripes}

safe

fallback Normal

S(q=low) €D

S(i) = S(g=low)

descrease
to the
lowest
quality

Figure 3.17: State diagram for the MBR implementation infa &llback scenario

checks if the stripe of lower quality relative to the currene has been downloaded.
If it has been downloaded, than the algorithm will send ithte player’s buffer and
update the current stripe with an instance of it.

3.3.4.2 Signal analysis

Figure 3.18 shows how the two scenarios are interrelatethidrdiagram we explain when
the algorithm tells the player to switch to a new buffer, gyamprovement or low quality
fall-back transaction but we assume the player is already reproducing video. Weaw
analyse when the algorithm will tell the player to start, g@aor stop the playback.

Start The algorithm will tell the player to start the playback oribe player’s buffer has
been filled with a certain amount of video. For our experiraemé decided to start
the playback once the first 6 seconds of video have been dadedb

Pause We will pause the video once it is not possible to switch fromage fall-backto
anormal status. In other words once the a safe fall-back is not plessithen the
relative stripe of lowest quality is not available. Whersthiappens we reinitialize
the playback position and we have to wait until the playeuffdy is filled with the
amount of data specified for tisgart condition.



Design 3.3 BitTorrent enhancement

playbuffer < X and S(i+1) € D where D={...S(i); downloaded stripes}

playbuffer < X and S(i+1) £ D safebuffer > Y

safe :
Quality
fallback improvement

playbuffer < X

S(g=low) € D
S(i) = S(g=low)

S(i) = S(gq+1)

S(q+1)€D

descrease Increase
to the
lowest th?
quality quality

Figure 3.18: Final state diagram for the MBR implementation

Stop The playback will be stopped only when we reach the end oftiteaus. When this
happens all the remaining stripes will be downloaded witloaral priority, with a
rarest first policy.

In this final section we saw the state diagramm for our MBR @npéntation. We
will use the final state diagram of figure 3.18, modifying itfigure 4.3, to explain the
algorithm’s implementation, section 4.2.2.

35






Chapter 4

Implementation

In this chapter we are going to present at a high level theemphtation of our novel MBR
design. The chapter is divided into two sections. The firstige will talk about the "side
effects” of the proposed solution. Section 4.1.1 will explaow the encoding algorithm
works and what is the quality difference between qualitipes. Section 4.1.2 will briefly
explain how VLC’s ogg demuxer module has been modified to gdiicker free playback.
Section 4.2 will describe in a deeper way the behaviour oinowel algorithm proposed in
chapter 3.3.4.

4.1 Encoding and Playing

As side effect of our design decisions we had to define a newdimg methodology, sub-
section 4.1.1, and a new flicker free playback solution, sbsexction 4.1.2.

4.1.1 Encoding methodology

As previously discussed in section 3.1.1.1 we have somereams about the stripksizes.
Those constrains will put some limitations on the encodiracedure. Figure 4.1 gives a
graphical overview on how the encoding algorithm createsva torrent aimed to provide
the three quality streams encoded into stripes.

The original video file is parsed by the encoder algorithnr.eévery three seconds three
different quality Stripes are created: high, medium and Ide considered multiple tools
to encode in a more efficient way the video file. After a shoresgtigation we decided to
use "FFmpeg” as major encoding program.

FFmpeg [17] is a complete software suite to record, conveditpday audio and video
files. It is based on libavcodec library for encoding audii¢e streams. FFmpeg is de-
veloped on Linux, but can be compiled and run on any majoraijpey systems including
Microsoft Windows, therefore quite useful considering phetform independent approach
of Tribler. FFmpeg is also used by the current Video on Denfandtionality to detect the

1A three second independently encoded video file

37



4.1 Encoding and Playing Implementation

38

Encoder algorithm

Original downloaded file

MBR .torrent file

LT TTTTTUTTTTTTIT] o avetes sreem
LTI TTTTTIY] retem o st
LT TTTTTUTTTTTTIT] ove s seroem

Figure 4.1: Encoding methodology

bit-rate of a video stream if it is not specified in the torrergétadat&. The theora library
used by the standard ffmpeg installation is still a little”buggy” and it is still not possible
to fully appreciate the power of the theora codec. A bettgri@mentation is offered by the
program "FFmpeg2theora” [15] that allows to encode a videzasn using the theora codec
specifying a quality level for the frame encoding. The reasior not using FFmpeg2theora
to encode our Stripes is that the resulting ogg files can nabheatenated into a chained-
stream. We need the chained-stream functionality offegethé ogg container format for
a fluent audio/video playback, section 3.2.1. Therefore vlleuse ffmpeg to encode our
Stripes, considering to modify the encoding parameterge time theora library, included in
ffmpeg, is able to manage frame quality settings.

We are not trying to get an average bit-rate for the qualitgeshs. We noticed that
specifying the audio or video bit-rates did not have a conerge on the final Stripe size,
considering the theora and vorbis codecs. All our concegueso the Stripe size, sec-
tion 3.1.1.1. On the other hand parameters such as the framersd frame rate for the
theora codec, brought us to the searched proportionalitydes Stripe qualities. Regard-
ing the audio stream we noticed that encoding with Vorbis sédampling rate and the quality
adjustment had a bigger influence on the final size ratherrtiwdifying the bit-rate’.

Table 4.1 shows the parameters used to encode the quadimstrused during our ex-

2The .torrent metadata holds information about the locaifdrackers, file sizes and file hashed for detect-
ing corrupted files. For the current Video on Demand funetiiby an additional field, for storing the bit-rate
value of the video file, has been added to the metadata. THisardhl field is not needed for the multi bit-rate
architecture, the algorithm does not relay on the bit-raguming that mostly the minimum available down-
loading bit-rate is higher or equal to the low quality strelaitrrate.

Sprobably because of the short duration of each Stripe



Implementation 4.1 Encoding and Playing

audio sampling | audio quality
encoding parametersframe rate | frame size rate [0-10]
High quality Stripe 24 1024x576 48000 10
Medium quality Stripe 18 768x432 24000 8
~ 3/4 x high quality
Low quality Stripe 12 512x288 24000 5
~ 1/2 x high quality

Table 4.1: Encoding parameters used during the experiments

periments of chapter 5. Those have shown to be valid valoes the final user experience.
Even the percieved quality when watching the smallestistiegacomparable to the quality
experienced watching YouTube videos. Those values has di@men depending on the
target Stripe sizes of table 3.2 motivated in section 31.1.

The encoding parameters proportionality between qualityp&s clarifies the propor-
tionality of the final stripe sizes. Considering only the eddstream and the proportion
between a low quality Stripe and a high quality one, we seeWwewhalved the frame rate
and the frame size. Therefore the final video stream sizebwill

low g. video stream= :—2L(high g. frame ratgx :—ZL(high g. frame sizg

: 1 . . .
= low q. video stream size Z(hlgh g. video stream size

The final low quality Stripe size will be 13-15% smaller thiae tquarter of the high
guality encoded Stripe, given to the different encodinchefaudio stream.

4.1.2 Flicker free playback solution

In this section we are going to discuss in a superficial wayrtbdifications applied to gain
a flicker-free playback. It is not of scientific interest t&da close look at the actual modi-
fication that has been applied to the VLC’s Ogg demuxer module

The major modification has been applied to temuxfunction of the module. This
function is responsible of reading and demuxing data padlesieived from the input mod-
ule. This function runs in an infinite loop until an error oremd of streanoccures. Once
anend of streanoccurs, in our case at the end of every Stripe, a signal toinetethe
decoders is sent to the appropriate module. Our modificatbmsists of keeping track of
the id, or reference, of the audio and video streams. Oncesachrthe end of a Stripe, if
the id of the demubxer is still the sarfi@nd the the audio and video stream of the next Stripe

4In case of a chained-stream, the Ogg demuxer will not be texi@dl but just re-initialized, holding the
same id or reference

39



4.2 Multiple Bit-Rate algorithm Implementation

40

are encoded in the same way as the current one, we skip thexdengdinitialization. This

is done by sending the header packet to the decoders. Thal@®sawill detect the codec
header and handle it ggrbageinformation, skipping to the next data package that would
be the first data package of the following Stripe.

This architecture has some limitations considering thaaheays theDemuxfunction
can detect correctly the typology of Streams and the quelignge between Stripes. It was
not into the scope of this document to provide a detail ingatibn about codec and con-
tainer formats, but moreover to prove that a variable h#-kdeo on Demand is possible
to realize using the existing BitTorrent protocol.

As last consideration regarding the quality Stream switdfhen switching between
qualities, in our case items of VLC'’s playlist, all the thdsananaged by the playlist will
be re-initialized, figure 3.2. During this operation the agers re-creation is the most time-
consuming step. This can not be avoided considering thay parameters, such as the
frame size, differ between qualities, ending up creatingpders and outputs in a different
way®.

4.2 Multiple Bit-Rate algorithm

In this section we are going to discuss the enhancementshévat been applied to the
BitTorrent download policy. Subsection 4.2.1 will give aighnlevel view on the modifi-
cations applied to the Tribler Core. Subsection 4.2.2 wilega first introduction to the
novel download policy. We will analyse how the sets of ptied presented in section 3.3.3
will be applied based on the "current state”, defined by a ganables managed by the
algorithm.

4.2.1 Tribler Enhancement

We are going to briefly describe the crucial changes applidide core of Tribler. The mod-
ularity of Tribler’s Core allowed to apply the needed modifions in a transparent way for
the current VoD implementations. Figure 4.2 describes th@rntlasses used to manage
a VoD streams. As the Tribler's GUI also the Swarmplayer i@dernal interface used to
interact with Tribler's Core. The API of Tribler allow to mage every kind of supported
download with few lines of code.

The Swarmplayer is actually nothing more than an interfae¢ dets the right parame-
ters in theDownload Configlass and initializes also ti@ownloadclass in the proper way.
The Swarmplayer will locate the video fifethe bit-rate if specified and other useful infor-
mations from the torrent metadata file. This informatioretbgr with the specific callback

5Eg. the video output has to be re-initialized for every neawfe size, for every processed quality stream
61f more than a video file is detected in the .torrent file, theaBwplayer will ask the user to select a specific
one.



Implementation 4.2 Multiple Bit-Rate algorithm

Torrent metadata | ———— Swarmp|ayer , VLC
Tribler Core "' / \

Download Download config
Ll I""I
1 UserCallback |
E Handler E
TN
I Multiple Download Single Download
v v Y

BitTorrent download

MBR Controller

Piece Picker

v

MovieOnDemand
RRE T, Transport

Torrent Share X

Figure 4.2: Partial architecture for the Video on Demandhigéecture in Tribler's Core

functions will be saved in the download configuration. Oree download configuration
parameters have been set propertly, the Swarmplayer \itilline aDownloadobject that
indirectly initializes aSingle Downloadbject. Currently every kind of download, Video on
Demand, live streaming or normal BitTorrent download, iadied by Tribler’s Core as a
Single Downloadbject. TheSingle Downloadogether with thddownload Configuration

41



4.2 Multiple Bit-Rate algorithm Implementation

42

will be responsible of initializing with the right configuran and callbacks thBitTorrent
downloadthat will start the actual download process. It is not intembf this thesis to pro-
vide a clear understanding of the classes involved in thentimwing process of a torrent
file. Therefore in this chapter we will only focalize our atien on the major enhance-
ments provided by the VoD and MBR implementation. For the \oiplementation the
BTdownloadwill initialize a particularPiece Pickerthat will download the torrent pieces
following the order of the Give2Get algorithm described @ttion 3.3.2. The other class
that is shown in figure 4.2 is the MovieOnDemand Transpotttllacommunicate with the
Swarmplayer through the callback functions specified indivenload configuration and a
specific set of events. The events used by the VoD implementate:

start once enough pieces to watch the video stream without intgor have been down-
loaded .

pause if we are running out of buffer and the downloading bit-ragenot the same as pre-
viously predicted.

resume follows the pause signal if the same conditions as for the st@nt occur.

The callback function located in the Swarmplayer will hantiiie video stream sending
the right signal to the video player, VLC, depending on thegievent.

The classes highlighted with red have been introduced #&ntvel MBR implementa-
tion. We introduced majorly two classes that will managettieent download in a different
way than the current implementation. We decided to mergégpiementation with the ex-
isting Swarmplayer following the same design decisionuncase the Swarmplayer will
detect if the provided .torrent file is a Multi bit-rate eneddile ” and will initialize differ-
ently theDownloadandDownload configobjects.

We are not interested in the bit-rate of a specific video fileiblkeeping track of the
piece range of every Stripe. A different set of informatioifl we taken by the Swarm-
player from the torrent metadata and used to initialize kyidee download configuration.
A different callback function is used to handle events, antew set of events has been
introduced. We addedraext event that will add the next quality stream to player’s gktyl
Once the player reaches the end of the item it's playing it avitomatically switch to the
next item in the playlist, the next quality stream. The clesponsible of managing events,
downloading properly the Stripes and manage the qualigasts is theIBR Controllet
Already introduced in section 2.2.2, tMBR Controllerwill manage the execution of our
novel MBR algorithm.

The MBR algorithm is performed and re-scheduled every hsdfcand by the controller.
Two time per second our algorithm analyses the downloadessycthe video playback

"This is done by parsing the multibitrate.info file and pemiotg a general check for some characteristics
of the video files, or Stripes



Implementation 4.2 Multiple Bit-Rate algorithm

status and reacts by sending events to the Swarmplayeyirgplifferent priority sets and
managing properly the quality streams.

4.2.2 Download policy

Before analysing directly the algorithm we found to be eaasiggive an introduction with
the help of graphical examples. The download policy is heshdly the MBR algorithm, a
greedy algorithm that sequentially analyses the stateeofithvnload. As explained in the
previous chapter the algorithm will be executed half a sdctimerefore also the status of
the download will be periodically updated. From the aldoritdesign of section 3.3.4 we
now propose a modified version of figure 3.18. In figure 4.3 waedda number for each
state transaction, making easier to relate during the ithgorexplanation.

playbuffer < X and S(i+1) € D where D={...S(i); downloaded stripes}

playbuffer < X and S(i+1) £ D safebuffer > Y

—

safe
fallback

Quality
improvement

playbuffer < X

S(g=low) € D
S(i) = S(q=low)

S(i) = S(gq+1)

S(q+1)€D

descrease Increase
to the

lowest the
quality quality

Figure 4.3: State diagram for the MBR algorithm

From figure 4.3 we can see how the algorithm’s decisions mdsgbend on the status
of the playbuffer, transaction$, 2 and5. The first crossroad of the algorithm actually
considers only the status of the playbuffer. The next tweeations will consider the two
different paths.

Subsection 4.2.2.1 will discuss the haste choice scendr@yemve need to take a decision
because the player’s buffer is too low. On the other hand ihese enough player buffer

we will have time to try to improve the quality of the streamhi§ scenario is discussed in
subsection 4.2.2.2

43



4.2 Multiple Bit-Rate algorithm Implementation

4.2.2.1 Small buffer: Haste choice scenario

This scenario occurs if while we are playing a stream we fiatyn run out of buffer,
figure 4.4, transaction$,2,5 of figure 4.3. The algorithm holds a minimum buffer size
value, "X” in figure 4.3, that in the following examples willkebof 3 seconds, the same
duration as a stripe.

—BUFFER H

current

T

play time download time

Figure 4.4: Haste choice scenario

I BUFFER I BUFFER —

- current ‘ ‘ -

1

play time  download time play time download time

(a) Before (b) After

current ‘ ‘

Figure 4.5: Add current Stripe to the player’s buffer

We have to consider that, differently from the current Volpiementation, we will not
send a video piece, in our case Stripe, as soon as it is dogedobut we will wait until
we haveto. This particular implementation allows to consider utite last moment the
possibility of switching to a higher quality stream.

¢ Ifthe current Stripe has been downloaded, figure 4.5a @aion 1 of figure 4.3), add
the current stripe to the player’s buffer and update the 'fdoad time”, figure 4.5b

— If we are in low quality and the next Stripe has not been doaaiéal, download
it as soon as possible. Figure 4.6a

— otherwise, if we are not in low quality or the next Stripe hissady been down-
loaded, assign normal priorities. Figure 4.6b

e Otherwise if a safe-fallback is providen, figure 4.7a. It meave do not have the
next Stripe for the same quality stream, therefore we wiltwto the lowest quality
stream, transactiorsand thard of figure 4.3.

and as for the previous case:

— If next Stripe of the lowest quality has not been download#miynload it as
soon as possible. See figure 4.6a

44



Implementation 4.2 Multiple Bit-Rate algorithm

}—— BUFFER——— }—— BUFFER———
| B Y B S e
1 T ! |
1y time download time ay time download time
(a) Low quality, haste choice (b) Switch to relaxed scenario
Figure 4.6: Crossroad of the haste choice scenario
play time
playltime download time .l ‘ ‘ ‘ ‘ ‘ ‘ _
I e T i B
I ] TR
H M L L - comnen -
BRI - B
(a) Before (b) After

Figure 4.7: Safe fallback scenario

— Otherwise assign normal priorities. As in figure 4.6b

e If we can not provide a safe fallback than we have to downlbadidwest quality
Stripes as soon as possible, figure 4.8

play time download time

. ‘ CURRENT ‘ ‘ ‘

Figure 4.8: No safe fallback

It is clear that if we would not be able to download the low dyebtripe before the
payer’s buffer finished, we would have to pause the videolyaely. After the initial
conditions for starting the playback are satisfied we cad sellesume” signal.

4.2.2.2 Enough buffer: Relaxed choice scenario

In this case scenario the minimum amount of payer buffertisfged, for our examples the
player’s buffer size will be longer than 3 seconds. In thexetl choice scenario we count
on other values to take our decisions. We will mostly rely loa $0 called "safebuffer”,

representing the amount of downloaded buffer in the futimeother words the safebuffer

45



4.2 Multiple Bit-Rate algorithm Implementation

46

will be the Stripes that we already downloaded and that wédcadd to the player’s buffer.
For simplicity, in the following examples, the value of trefebuffer will be of 3 seconds,
the duration of a stripe, the "Y” value in figure 4.3.

The first crossroad of the algorithm at this point will by trgito improve the quality stream
depending on the available safebuffer.

e Check if we can improve the quality stream, only if we are natently playing the
highest quality one(transactidhof figure 4.3). Figure 4.9 gives an example of the
satisfaction of this condition.

- urent

l |

play time download time

|- SAFEBUFFER|

Figure 4.9: Relaxed choice scenario

— If we already downloaded the higher quality Stripe, fig@fe This is a con-
dition that will be satisfied once the algorithm has goneugtothe next step.
For a computational reason we need to provide this checkddfe algorithm
performs the next step, but logically we will have a highealdgy Stripe only if
the algorithm performed the following step in one of its poes iterations.

- I I

1

play time download time

CURRENT

|-PREBUFFER]

Figure 4.10: Relaxed choice scenario

If we have the higher quality Stripe, send it to the playetiffdr and update the
algorithm status.

— Try to set the priorities for the next quality stream in animiEtic way depend-
ing on the giverrisk factor. This is one of the crucial steps of the algorithm. To
check the condition for a quality improvement we need to Ferveugh down-
loaded buffer for the current quality stream. In our impl@ta¢ion it means we
need enough saved safebuffer, and to check it we introducedcalled "risk
factor”. The risk factor is a value that multiplied by the esdfuffer duration
determines the condition for trying the quality switch.



Implementation 4.2 Multiple Bit-Rate algorithm

. ‘ ‘ — ‘ ‘ ‘ ‘

!

play time download time

|-SAFEBUFFER x RISK FACTOR

Figure 4.11: Optimistic quality improvement

As we see from figure 4.11 we will set the priorities for the Hag quality
Stripes. This means that we will start downloading the higheality stream,
hoping that one of the future iterations will end up in theviwas step, improv-
ing the quality stream. This is defined as transac@ar figure 4.3.

— If we did not start the playback just fill the player’s buffer

e Otherwise if we completed the download of the current Stepd we did not start
the playback, just fill the player’s buffer

¢ If none of the previous conditions has been satisfied, coativithout doing anything.

4.2.3 Algorithm analysis

In this section we are going to discuss the pseudo-code aiawel MBR algorithm. After
the design analysis of section 3.3.4 and the theoreticdysinaf the previous sections we
can now easily understand the algorithm’s code.

From line 1 to 10 are the variables used by the algorithm t@ kesek of the status of
the download and to take decisions.

The first set, from line 2 to 6, represents values that detersnthe algorithm’s be-
haviour. We will see in the experiments chapter, chaptep®, ¢thanging the value of those
parameters has a big impact on the algorithm’s behavioucandctness. The lower is the
bufferTime the earlier we will have to take a decision of witch Stripsénd to the player's
buffer, haste choice scenario, subsection 4.2.2.1. prieeityDepth and forceLowDepth
variables are only used as parameters for calling the seitirs function. Those variables
will determine how in depth the algorithm will assign pries. For example during our
experiments we decided to assign priorities to the next fipedt Of course the function
will take into consideration the architecture design. Ef@rme it will assign priorities to
the medium and low quality stream when downloading the nredjuality, to high and
low quality stream when downloading the high quality, antyyda the low quality after a
fallback or for low bit-rate connections. THierceLowDepthvariable is used when, during
the downloading of the low quality stream, the next low gqyaBtripe is not available. In
our experiments we found useful to assign priorities onthéonext 2 or 3 following Stripes.

a7



4.2 Multiple Bit-Rate algorithm Implementation

48

Another important variable that determines the stabilftthe algorithm is theiskFac-
tor. For low values the algorithm will often try to improve quglistream (lines 49-51)
while for high values a longesafeBuffelis needed. The second set of variables (from line 7
to 10) represents the variables used by the algorithm to tkaek of the current status. The
currentvariable is a reference to tiiellowing Stripe. As we already explained, we will not
send thecurrentor following Stripe as soon as it is downloaded, considering the posggibil
of changing theurrentreference for an higher quality Stripe until we are not ragrout of
buffer (transactiors of figure 4.3). In the proposed pseudo-code we consider tbsilptity
of changing thecurrent reference to the next Stripe in the same quality streanrent-1
(eg. lines 22 and 33), or to the next Stripe in a different igpatream, modifying the value
of currentquality (lines 26, 37 and 45).

Line 11-12 represents the first check for the end of the stréfane reached the end of
the stream we will start downloading all the remaining Ssippo increase the pieces avail-
ability (figure 3.13). After this initial check we have the joacrossroad of the algorithm:
from line 13 to 39 the haste choice scenario, while from lifet@ 68 the relaxed choice
scenario.

The three bullets of subsection 4.2.2.1 correspond to tiee tonditions at lines 15, 24
and 35. All the time a Stripe is sent to the player’s buffer, lge 16, we will update the
reference to theurrent Stripe, eg. line 22, and increase th@wvnloadTimedy the duration
of a Stripe, in our case three seconds, eg. line 23. A newifimctalled safeFallback,
appears on line 24. This function will only check if the relatStripe of the lowest quality
stream has been downloaded or not. The result of this chdckenthe necessary condition
to switch to the lowest quality stream in case there is notighdandwidth to stay on the
current quality.

During the relaxed choice scenario, from line 40 to line 6& &lgorithm will try to
increase the quality stream. Because the algorithm wileneownload an unnecessary
quality stream, except for the low quality one, for the stvitee need to perform two steps.
The fist step consist of assigning priorities to the highedigustream. This happens if the
condition of line 49 is satisfied, in other words is the amafrdlready downloaded Stripes
of the current quality, calledafeBuffer is larger that thepreBu f ferx riskFactor. After
assigning priorities to the higher quality stream the atbor will start downloading it, and
if during one of the following iterations the higher qualiyripe, relative to theurrentone,
has been successfully downloaded, line 44, the algorithiirswitch to the higher quality
stream.



Implementation

4.2 Multiple Bit-Rate algorithm

N

MBR Algorithm

/[Parameters used to change the algorithm’s behaviour

priorityDepth //how in depth we assign priorities

forceLowDepth  //how in depth we assign priorities for "force low”
bufferTime  //minimum duration of the player’s buffer

preBuf fer /Iminimum duration of the already downloaded Stripes
riskFactor /ldetermines the condition for a quality change

//Parameters used by the algorithm to keep track of the dadihg status
current /Ithe current processed Stripe

8: playTime IlIplayback position

10:

11:
12:

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:

downloadTime  //the duration of the already downloaded Stripes: the piayeiffer
safeBuffer /lduration of the already downloaded Stripes of the curgesatity

if end of streanthen
setPriorities()

else if (playTime> 0)&& (downloadTime- playTime< buf ferTimé then

/lwe need to take a decision, buffer too small
if currentis completehen
downloadBuffer.ada(urrent)
if (currentquality == low)&& (current+ 1lis not completgthen
setPrioritiesforceLowDe pth
else
setPrioritiespriorityDe pth)
end if
current < current+1
downloadTime— download Time- length(Stripe)
else ifsafeFallback(jhen
/lcheck the presence of the low quality piece
currentquality < low
downloadBuffer.ada(urrent)
if current+ 1 is not complete¢hen
setPrioritiesforceLowDe pth
else
setPrioritiespriorityDe pth)
end if
current < current+1
downloadTime— download Time- length(Stripe)
else
/lwe need to download the low quality Stripe as soon a passibl
currentquality < low
setPrioritiesforceLowDe pth
end if

49



4.2 Multiple Bit-Rate algorithm Implementation

50

40: else

41:  //Normal iteration, we have enough player’s buffer

42:  [/check for improving quality

43:  if (currentquality # high)&& (safeBuf fer> preBuf fer then
44: if currentquality(next) is completéhen

45: currentquality < current.quality(next)

46: downloadBuffer.adaurrent)

47: current < current+1

48: downloadTime— download Time- length(Stripe)

49: else if (safeBuf fer> preBuf ferx riskFacton&& (playTimg > O then
50: [ltry to set priorities on an optimistic way

51: setPriorities(increase quality)

52: else if playTime== 0 then

53: /ffill the player’s buffer

54: downloadBuffer.add¢urrent)

55: setPrioritiespriorityDe pth)

56: current < current+1

57: downloadTime— download Time- length(Stripe)

58: end if

59: else if(currentis completg&& (playTime== 0) then

60: /ffill the player’s buffer

61: downloadBuffer.add( current)

62: setPrioritiespriorityDe pth)

63: current«+ current+1

64: downloadTime— downloadTime- length(Stripe)

65: else

66: wait to complete the current piece or to switch to a diffepunlity
67: endif

68: end if



Chapter 5

Experiments

In this chapter we present the experiments performed withhouel algorithm. We will
demonstrate how changing the algorithm’s parameters, asithe risk factor or the size of
the buffers, will change the algorithm’s behaviour advgimtg certain scenarios.

The values used for graphs are taken from a log file updateg #geation of the algorithm.
This gives an approximation of around half a second, as ti@igim is re-scheduled two
times per second.

From our experiments we run the network on a local machinetiing up a tracker that
already hold the downloaded torrent. The Swarmplayer witinect to the tracker through
the localhost connection and start downloading our torfiémt We used a functionality
offered by the Tribler Core to set the bandwidth limits, siatimg different scenarious.

Figure 5.1 shows how the results are going to be presentetheélaxis we have a time
line where the numbers represents the seconds of the @atayback.

—playback quality — download rate - - bandwidth limit

2000
1800

1600
1400
1200
1000

800

Bit-rate (Kb/s)

600
400
200

117 85 1573 23.09 31.19 38.66 46.28 53.59 60.75 67.94 74.57 82.94 90.19 98.57 106.45114.37
-3 465 11.89 19.56 27.16 35.21 42.7 50.27 56.92 64.1 71.19 79.07 86.33 94.07 101.95110.42118.32

Time (Seconds)

Figure 5.1: High quality, stable environment

51



5.1 Stable environment experiments Experiments

52

The progress of the blue curve represents the player’s ati&ytime. The low, medium
and high quality streams are respectively located at 24@KI800 kbit/s and 1.6 MBit/s.
This is only a theoretical approximation, based on the sti®eaverage bit-rate, to facil-
itate reading the graphs. As we know from the design chaptipes are encoded with a
variable bit-rate and the download process only dependseosttipe size, not on its bit-rate.

The set of date used to draw the graphs is initialized witHitlseiteration of the algo-
rithm. We can therefore see the start-up time, from theailimtation of the download until
the start of the playback, as the time until the red curvdsstaihe normastart-up time is
around the 3-5 seconds, for high speed connections (see figZirand figure 5.6), until a
maximum of 10 seconds for connections slower than 280 K{i#s figure 5.7).

The red curve represents the downloading rate over timdewiné dashed burgundy
curve represents the downloading rate limit used for ouegrgents. As the reader might
notice, some times the downloading rate exceeds the raite lithis is caused by the fact
that the download rate is calculated over the amount of datanldaded on the rage of half
second.

Section 5.1 will show the results of running the Swarmplagea stable environment,
no peers disconnecting from the system and a constant dadintp bit-rate. Section 5.2
will show the results in a variable bandwidth. We tested trstesn by changing at run-time
the available bandwidth, observing the reactions of therdtyn to a sudden bandwidth
drop or bandwidth increase.

5.1 Stable environment experiments

In this section we will show the results of executing the MBBoathm in stable envi-
ronments. For high bit-rates we limited the bandwidth tob0-1.9 Mbit/s, for medium
bit-rates we limited it to 950 Kbit/s while for low bit-ratés 280 Kbit/s*

5.1.1 High bit-rates

With high bit-rates the algorithms behaves in the corregt. weigure 5.1 shows how the
quality increases as soon as enosgfebuffehas been downloaded. As we previously saw
in section 3.3.4 and section 4.2 the condition that detegmanquality improvement is given
by the prebuffermultiplied to therisk factor. For all our examples we used a prebuffer of
three seconds and we see the reaction of modifying the riglrférom the different time
of quality switch between figure 5.1, figure 5.2 and figure 5.3.

For the experiment of figure 5.1 we used the value 2 for thefaistor, while for figures
5.2 and 5.3 we increased the risk factor to values higher3teard observed the behaviour.

Iwe where actually able to reduce the bandwidth limitatio226 Kbit/s by reducing the torrent chunk
size, see subsection 5.1.3.



Experiments 5.1 Stable environment experiments

— playback quality —download rate - - bandwidth limit

2500

% 1500
K]
<
[}
© 1000
1
Z
500
0
0.53 5.95 12.28 17.75 23.36 28.91 34.42 39.97 45.97 51 55.86 61.29 66.86 71.79 77.23 83.21 88.3 94.34
-2 321 9.05 15.04 20.57 26.11 31.67 37.15 42.67 48.24 53.66 58.59 63.49 69.07 74.52 80.49 86.04 91.64 97.58
Time (Seconds)
Figure 5.2: Stable environment; risk factor = 3
— playback quality —download rate - - bandwidth limit
2500
2000
% 1500
IS
3
Q
‘@‘ 1000
|
=
500
0

1.07 7.56 14.11 20.77 27.5 33.66 40.37 47.06 53.8 59.83 65.35 71.99 78.12 84.73 91.44
-3 4.31 10.86 17.46 24.15 30.29 36.96 43.68 50.42 56.63 62.54 68.68 74.75 81.42 88.16 94.87

Time (seconds)

Figure 5.3: Stable environment; risk factor = 3.5

By increasing the risk factor we increase the time needeektcirthe highest quality stream.

Thus with a low risk factor and abundant bandwidth our atgamiquickly shifts to the

highest quality stream. We will see in the next sectionsttitisk factor is not only related
to the quality switch time.

53



5.1 Stable environment experiments Experiments

54

5.1.2 Medium bit-rates

Figure 5.4 shows the algorithm’s behaviour with a bandwidttit of 940 Kbit/s. With
medium bit-rates we need to take in consideration diffeespect. We noticed that this
scenario is the most unstable. When downloading one of teenirediate quality streams
at a certain point the algorithm will try increase the qualit

— playback quality — download rate - - bandwidth limit

1200

1000

800

600

400

Bit-rate (Kb/s)

200

-1 3.35 8.41 13.0818.5923.4928.36 33.29 38.7243.6348.4753.96 58.9 63.9 69.5175.0379.91
-3 0.57 6.16 10.1815.5421.0125.97 30.8736.26 41.2646.06 51.56 56.4361.41 66.3872.55 77.4982.35

Time (Seconds)

Figure 5.4: Medium quality, stable scenario

In figure 5.5 and figure 5.6 is clearly visible how the algaritswitches to the lowest
stream 110 seconds of video playback. This behaviour isechloig a quality improvement
attempt, the spare bandwidth limits imposed buring the exm@mts and the larger size of
the following Stripes of the medium quality.

If the available bandwidth is just enough to download theentrstream, the result of try-
ing to increase the quality could differ from what aspecteg.concentrating the available
bandwidth on the higher quality stream we could loose ingrartime do download the cur-
rent one. Once the quality increase attempt fails, if thie¥dghg Stripes of the intermediate
quality are holding a big set of data, like those elected famtion scenes, than the available
bandwidth could not be enough to avoid a quality fallback.

The difference between the two figures is given by a diffeessignment of the risk
factor. Figure 5.5 shows a more stable reaction cased byhehiglue for the risk factor.
The first fallback of figure 5.6 explains an earlier attemptaf@uality switch.

We now see how it this scenario an higher value for the riskofais prefered. This
contrasts with the lower value prefered in a high bandwid#nario.



Experiments 5.1 Stable environment experiments

Bit-rate (Kb/s)

Bit-rate (Kb/s)

— playback quality —download rate - - bandwidth limit

1200

1000

800

600

400

200

3.88 21.83 39.93 57.88 75.92 94 112.2 130.13 148.4 167.01185.22202.79220.83 238.19 255.96 273.94
-5 13.11 30.63 48.88 66.97 85.07 103.22121.13139.29157.78176.42193.95211.93 229.6 247.02265.05282.82

Time (Seconds)

Figure 5.5: Stable scenario, risk factor = 3

— playback quality ——download rate - - bandwidth limit

1200

1000

800 1

600

400

200

582 2561 46.19 66.39 87.55 108 128.61 149.13 169.62 189.36209.74 229.11 249.51269.42
-5 15.21 36.47 56.52 76.98 97.42 118.06 138.55 159.11 180.15 199.59 219.04 239.51 259.23279.07

Time (Seconds)

Figure 5.6: Stable scenario, risk factor = 2

55



5.2 Agility Experiments Experiments

56

— playback quality —download rate - - bandwidth limit

350

300

250

200

150

Bit-rate (Kb/s)

100

50

-9 -4 0.75 8.02 13.67 19.08 24.34 30.86 37.38 42.25 48.72 54.85 60.2 66.17 72.7
-11 -7 -2 4.37 10.86 17.29 21.68 27.12 34.04 39.33 45.85 51.83 57.31 63.18 69.19 75.62

Time (Seconds)

Figure 5.7: Low bandwidth limit

5.1.3 Low bit-rate

Figure 5.7 is an example of the algorithm’s behaviour in albb@mdwidth scenario. The al-
gorithm offers a good stability, given by the fact that diéfitly than in a medium bandwidth
scenario trying to increase the quality stream is not damgerAs we saw in section 3.3.3,
to provide the safe fall-back we will always download the lgumality stream together with
an higher one. Therefore the same priority set will be apptiethe low quality stream even
when trying to improve quality.

Surprisingly performing the same experiments with torfées created differently, tor-
rent files with a smaller chunk size perform better in lowraite scenarios. This will prob-
ably be caused by the internal implementation of the filecseteof BitTorrent.

5.2 Agility Experiments

This chapter regards the algorithms behaviour in a varibltleate environment. This is
a quite frequent situation caused by the heterogeneousenaitthe Internet accesses, see
chapter 2.1. It can occur because a seeder, with a fast uptmakction, disconnects from
the system or because our available bandwidth is sharedebetdifferent applications or
downloads.

Whatever is the condition that causes the decreasing ofvtiilble bandwidth the al-
gorithm performed quite good buring our experiments, as avesee from figure 5.10 and
figure 5.11.



Experiments 5.2 Agility Experiments

— playback quality —download rate - - bandwidth limit

3500
3000
2500

2000

S FEy N
|

1500

Bit-rate (Kb/s)

i

6.67 23.29 43.02 66.35 82.53 106.58 129.58 148.82 171.73 186.65 202.73 218.06 233.83 250.04
-2 15.03 31.67 55.63 74.62 95.08 118.34 138.1 161.26 178.8 194.75 210.15 225.74 241.61

Time (Seconds)

1000

500

Figure 5.8: 3 spikes down, risk factor = 2

As we repeatedly saw, to provide a safe fallback and the ighgorwill always down-
load the lowest quality stream together with the medium ghlgjuality streams. Therefore
the algorithm will switch back to the lowest quality streathie available bandwidth de-
creases and then trying to increase it if there is enoughvaidital

In the experiments of figure 5.8 and figure 5.9 we simulatedeetipike down scenario.
We suddenly reduced three times the bandwidth limit, fro87 Mb/s to 400 Kb/s, for six
seconds. It is clearly visible how increasing the risk fa@nocreases the stability of the
algorithm as previously saw.

In the experiment of figure 5.10 we reduce the bandwidth [froin 1.87 Mb/s to 400
Kb/s to see how the algorithm reacts to a sudden bandwidth. didter few seconds we
increase the bandwidth limit first to 1 Mb/s and than back 8&Mb/s to observe the time
needed by the algorithm to resume the high quality stream.

In the experiments of figure 5.11 we reduced the bandwidtim ft887 Mb/s to 1 Mb/s ob-

serving the time needed by the algorithm to switch to the omadjuality stream. During

a second experiment, in the same scenario as the experifégtre 5.11, we increased
the risk factor increasing the stability of the algorithm.e\éan see from figure 5.12 how
increasing the risk factor from 2 to 3, increases the timeleddor a quality switch.

Running multiple experiments in the same scenario we nibtisat the algorithm per-

forms always differently. This is given by the dynamic nataf the environment. It depends
on the tracker status and downloading process that is uicpabtb.

57



5.2 Agility Experiments Experiments

— playback quality —download rate - - bandwidth limit
3500

3000
2500
2000 .

1500

Bit-rate (Kb/s)

1000

500

6.03 22.66 39.95 64.08 88.68 111.98 128.75 147.71 171.33 195.92 220.09 244.7 269.71 293.02
-3 14.19 30.88 51.87 75.83 101.25 120.15 136.96 159.61 183.62 207.84 232.36 257.06 281

Time (Seconds)

Figure 5.9: 3 spikes down, risk factor = 3

— playback quality —download rate - - bandwidth limit

3000
2500

2000

1500

1000

Bit-rate (Kb/s)

500 I

482 20.88 36.1 5815 783 100.78123.48 145.29 161.39 176.42 190.8 205.75220.45 235.83
13.06 28.46 48.65 67.79 89.96 111.47 134.26 154.65169.19 183.67 197.94 213.07 228.33 243.42

Time (Seconds)

-3

Figure 5.10: Variable quality, bandwidth fallback and masu

58



Experiments 5.2 Agility Experiments

— playback quality —download rate - - bandwidth limit
2000
1800 T — i — = -
1600
1400

1200
1000

800
600

Bit-rate (Kb/s)

400
200

582 22.66 39.88 56.52 75.16 95.16 114.44 132.23 149.73 166.89 184.14 224.92245.55265.74
-3 14.28 30.97 48.06 65.67 85.13 104.77 123.51 140.53 158.4 175.39 192.79 235.2 255.06 276.13

Time (Seconds)

Figure 5.11: Variable quality, bandwidth drop

=—play time — download rate - - bandwidth limit

300
250

200

150

100

Bit-rate (KB/s)

50

6.93 26.23 46.04 69.68 90.04 111.01 132.36 153.35 170.72 189.12 207.72 225.85 245.09
-1 16.7 3553 58.48 79.8 101.11 121.47 142.89 162.17 179.88 197.91 216.77 235.16 255.21

Time (seconds)

Figure 5.12: Variable quality, variable bandwidth

59






Chapter 6

Conclusions and Future Work

In this chapter we give a summary of the project’s contriimgi After the overview of
our conclusions in section 6.1, we will reflect on some charétics of our architecture in
section 6.2. Finally, some ideas for future research willliseussed in section 6.3.

6.1 Conclusions

Video-on-Demand has grown exponentially over the lasts/eeaster Internet accesses and
more powerfull technologies are the causes of this phenomeithe current techniques
that implement a VoD functionality all rely on a constanttgite encoding. This splits the
audience in two major categories: users that have enougiwidiihh to watch a video file
on streaming and users who have to wait a certain time to wh&chideo file continuously.
This situation gets worse if we consider delivering VoD odw@P networks. The problem is
the heterogeneous Internet accesses that complicatetarreahultimedia delivery.

Theoretically, for the survival of a P2P system, peers caladdnload only as much
as they upload and, considering that the current Internetsses are mostly ADSL, this
makes the introduction of a VoD functionality harder. In@rdo solve this problem, we
have designed and implemented a novel algorithm that, diépgon the available band-
width, switches between three different quality streams.algo introduced a novel encod-
ing methodology to create a torrent file holding one singleimencoded into three quality
streams of proportional size. Furthermore we modified tteriiral behaviour of the multi-
media player VLC to allow a flicker free playback, needed fbigh quality experience of
the user.

Our novel architecture allows every user to watch a videsastr continuously, taking
advantage of their bandwidth. This particular implemeateallows every user with at least
a 250 Kbit/s bandwidth connection to watch a video file onastrimg over a P2P network.
Our algorithm will increase the quality stream as soon asigh®andwidth is available, un-
til the highest quality stream, who's average bit-rate @uad 1.5 Mbit/s. Our architecture
has been implemented into the Tribler project, introdu@tsp new functionalities such as

61



6.2 Discussion/Reflection Conclusions and Future Work

62

an ordered download process and VLC's playlist management.

6.2 Discussion/Reflection

VoD solutions are a rather hot concept in our times. We pregbs first open-source
implementation of a variable bit-rate solution for VoD. Dy the design of the architecture
some ideas came up:

e Considering the current state of P2P networks, our ardhitecould be revolutionary
if it would be widely used in the network community. Currgndimost every peer
shares a large amount of video files to gain a high upload. riditopeer would like to
watch a movie, fist it has to be downloaded on the local maciikeopened with a
multimedia player. Our idea of a future evolution would bgstem where every peer
holds not more than 2-3 movies encoded with our methodotodyld a good upload
ratio. If the peer wants to watch a video file they can justtstatching it through
our novel architecture without having to wait for the dowadao be finished. This
scenario would aim at a more homogeneous distribution ofimedlia content over
peers of a file sharing network.

¢ \We belive that our implementation could achieve optimaliitssn a mixed environ-
ment. We have a mixed environment when a client-server tathre coexists with a
P2P network, figure 6.1. Considering that the majority ofdineent VoD systems are
client-server based, this implementation would dradticgalduce server's workload.

Server

==

P2P network //

P2P communication

»

»
Client-server communication

Figure 6.1: Mixed scenario, client-server arch. + P2P ngkwo



Conclusions and Future Work 6.3 Future work

e Our solution does not need a central server to coordinates peesyncronize trans-
missions. The architecture has been designed to work in gletisndecentralized
P2P environment.

e Unlike current VoD implementations our architecture doesrely on a constant bit-
rate encoding. Furthermore we do not think in terms of dig-taut only in terms of
available bandwidth. We assume a peer has at least enoudtwvidiém to watch the
lowest quality stream.

e It is not into the scope of this thesis to consider the piesadability for the pro-
posed MBR architecture. Anyway we think the algorithm perfe well as any peer
in the network has interest in downloading the lowest quatteam, to provide a
safe fall-back scenario. Therefore even if peers are dawdihg different qualities
they will allways share the low quality stream. This alloviditectional communica-
tion between peers, while normally the VoD architecturesjates only unidirectional
communications.

6.3 Future work

During our research we have concluded that the followingl$§ishould be further investi-
gated:

e The encoding methodology has to be investigated. Curréhdyused codecs are
under development and still in an early stage. This has puedimitation in the en-
coding procedure, forcing to encode the streams using igap@rameters. Once the
codec libraries will be completly merged with the encodipglaations, we should
be able to encode the streams without changing parametehsasuframe size or
frame rate. By only changing internal parameters of the dexsowe could avoid re-
initializing them, getting rid of the 40-60 ms latency needliring a quality switch.

e The algorithm has to be simulated in a real world scenarice®ling the algorithm'’s
behaviour when interacting with a real P2P network on therhet

e The necessity of a dynamic risk factor has to be investigatedpending on the
codec’s investigation results, if a flicker-free qualityi®li can not be implemented,
the necessity for an adaptive risk factor could be investijaOn the other hand a
static risk factor is prefered if we can gain an unnoticeafiality switch, having the
algorithm switching between qualities in a transparent feayhe final user.

As future work we take into consideration the direct intéigra of a chunk priority
assignment, without using BitTorrent’s fileselector toigigsndividual priorities. During
our experiments we noticed some incongruences with thef@ew®r when downloading at
low bit-rates, see section 5.1.3. Another utility that vedl soon implemented is a progress
bar for the swarmplayer to convey the video progress.






[1]

(2]

3]

[4]

5]

[6]

[7]

[8]

[9]

Bibliography

ABC: Another BitTorrent Clienthttp://sf.net/projects/pingpong-abc

N. Andrade, M. Mowbray, A. Lima, G. Wagner, and M. Ripeanafluences on co-
operation in bittorrent communitie; P2PECON '05: Proc. of the 2005 ACM SIG-
COMM workshop on Economics of peer-to-peer systems, 2009, Press.

P. Baccichet, T. Schierl, T. Wiegand, B. Girod: Low-delpeer-to-peer streaming
using scalable video codirigacket Video 2007, 12-13 Nov. 2007

B.Birney: Intelligent  Streaming. http://www.microsoft.com/windows/
windowsmedia/howto/articles/intstreaming.aspx May 2003

A. Bakker, P. Garbacki, J. Pouwelse: Cooperative DoadlExtension, Ver-
sion 1 https://www.tribler.org/attachment/wiki/Cooperative Download/
CooperativeDownload-20060227.pdf February 27, 2006

Al Bovik: Handbook of Image & Video Processing:lsevierr Academic Press, 2005

C. Y. Chan and Jack Y. B. Lee: On Transmission Scheduling Server-less Video-
on-Demand SystenSpringer-Verlag Berlin Heidelberg, 2003

B. Cohen: Bittorent protocolhttp://www.bittorrent.org/beps/bep_0003.
html

B. Cohen: Incentives build robustness in bittorrdntProc. of the 1st Workshop on
Economics of Peer-to-Peer Systems, 2003.

[10] CoolStreaming broadcast Thitp://www.coolstreaming.us/

[11] G.J.Conklin, G.S.Greenbaum, K.O.Lillevold, A.F.piman and Y.A.Reznikm: Video

Coding for Streaming Media Delivery on the Intern&EE Transactions on Circuits
and Systems for Video Technology, Vol.11, No. 3, Mar. 2001



BIBLIOGRAPHY

66

[12]

[13]

[14]

[15]

[16]
[17]
[18]
[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

Philippe de Cuetos, Keith W. Ross: Adaptive rate cdrfivo streaming stored fine-
grained scalable videACM Portal, NOSSDAV '02: Proceedings of the 12th inter-
national workshop on Network and operating systems sugpodigital audio and
video, May 2002

W. Dapeng, Y.T. Hou, Z. Wenwu, Z. Ya-Qin, J.M. Peha: 8inéng video over the
Internet: approaches and directiof@srcuits and Systems for Video Technology, IEEE
Transactions on Volume: 11 Issue: 3 Mar 2001

Emule file sharing applicatiorttp://sourceforge.net/projects/emule/

FFmpeg2theora: A simple converter to create Ogg Thiesa http://v2v.cc/ ~jl
ffmpeg2theora/

FFmpeg documentatiohttp://ffmpeg.mplayerhg.hu/ffmpeg-doc.html
FFmpeg: audio/video editing prograhitp://ffmpeg.mplayerhg.hu/
Gnutella protol documentatidritp://gnet-specs.gnufu.net/

Mei Guo, Yan Lu, , Feng Wu, D. Zhao, and Wen Gao: WynerZwithing Scheme
for Multiple Bit-Rate Video StreamintEEE Tansactions on Circuits and Systems for
Video Technology, Vol.11, No. 5, May 2008

D. Harrison, B. Cohen: BitTorremttp://www.bittorrent.org/index.html

T. Hossfeld, K. Leibnitz: A qualitative measuremenivay of popular Internet-based
IPTV systemsCommunications and Electronics, 2008. ICCE 2008. Secotatra-
tional Conference on 4-6 June 2008 Page(s):156 - 161

C.Huang, P.A.Chou, A.Klemets. Optimal Control Of Mplé Bit Rates For Streaming
Media PictureCoding Symposium, San Francisco, CA, Dec. 2004.

Kademlia specifications: http://xlattice.sourceforge.net/components/
protocol/kademlia/specs.html

Kazaa P2P file sharing applicatittip://www.kazaa.com

Seth Kenlon. Video codecs and the free world: Volume&080 Linux Journal, Vol-
ume 2008, Issue 166 (February 2008), Article No. 10

S. Kim, C. Kim, Y. Cho: An effective resource manageméot variable bit rate
video-on-demand serveEUROMICRO 97. 'New Frontiers of Information Technol-
ogy’. Short Contributions., Proceedings of the 23rd EummiConference; 1-4 Sept.
1997 Page(s):74 - 79

K. Leibnitz, T. Hofeld, N. Wakamiya, and M. Murata: Pderpeer vs. client/server:
Reliability and efficiency of a content distribution semin Proc. of ITC-20, (Ottawa,
Canada), June 2007.



BIBLIOGRAPHY

[28] Weiping Li: Overview of fine granularity scalability iMPEG-4 video standar@ir-
cuits and Systems for Video Technology, IEEE Transactiongotume: 11 Issue: 3
Mar 2001

[29] C. Loeser, P. Altenbernd, M. Ditze, W. Mueller: Disuidled video on demand services
on peer to peer basRroceedings of the First International Workshop on Reatdi
2002

[30] Chris Loeser, Franz Rammig: GRUSEL: A Self OptimiziBandwidth Aware Video
on Demand P2P ApplicatiolEEE Computer Society. May 2004

[31] J.L. Mitchel, W.B. Pennebaker, C.E. Fogg, G.J. LeGEIPEG video compression
standardChampman & Hall, 1996

[32] Jack Moffitt: Ogg VorbisOpen, Free AudioSet Your Medizé€. Linux Journal, Vol-
ume 2001 , Issue 8les, Art. No. 9, 2001

[33] J. J. D. Mol, J. A. Pouwelse, D. H. J. Epema, H. J. SipsefRé&ling, Fairness, and
Firewalls in P2P File-SharintEEE Computer Society, P2P '08: Proceedings of the
2008 Eighth International Conference on Peer-to-Peer Cating, Sept. 2008

[34] J.J.D. Mol, J.A. Pouwelse, M. Meulpolder, D.H.J. Epearal H.J. Sips: Give-to-
Get: Free-riding-resilient Video-on-Demand in P2P SystamP2P Systems, Proc.
of SPIE, Multimedia Computing and Networking Conferenc#& @), 2008

[35] MPEG systems overview, http://www.mpeg.org/MPEG/
mpeg-systems-resources-and-software/mpeg-systems-ov erview.html

[36] Multimedia Wikipedia.http://wiki.multimedia.cx

[37] S. Pfeiffer: RFC3533: The Ogg Encapsulation Formasher 0, RFC Editor United
States, 2003

[38] J. A. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yandpsup, D. H. J. Epema, M.
Reinders, M. R. van Steen, H. J. Sips: TRIBLER: a social-thgmer-to-peer system
John Wiley and Sons Ltd., Concurrency and Computation: tRed& Experience,
Volume 20 Issue 2, Feb. 2008

[39] PPlive internet T\http://www.pplive.com

[40] R. Rejaie, A. Ortega: PALS: peer-to-peer adaptive faglestreamindNOSSDAV '03:
Proceedings of the 13th international workshop on Networll aperating systems
support for digital audio and video, June 2003

[41] J. Rexford, D. Towsley: Smoothing variable-bit-rateleo in an internetworkNet-
working, IEEE/ACM Transactions on Volume 7, Issue 2, Ap®4 Page(s):202 -
215

67



BIBLIOGRAPHY

68

[42] S. Sen, D. Towsley, Z. Zhi-Li , J.K Dey: Optimal multi¢egmoothing of streaming
video over the Internefelected Areas in Communications, IEEE Journal on Volume:
20 Issue: 7 Sep 2002

[43] Y. Shen, Z. Liu, S.S. Panwar, K.W. Ross, Y. Wang: Stremiayered Encoded Video
Using Peerd/ultimedia and Expo, 2005. ICME 2005. IEEE Internationd03

[44] Xiaoyan Sun, Feng Wu, Shipeng Li, Wen Gao, Ya-Qin Zha8gamless switching
of scalable video bitstreams for efficient streamiiigitimedia, IEEE Transactions on
Volume: 6 Issue: 2 Page(s): 291- 303 April 2004

[45] uTorrent P2P clientttp://www.utorrent.com
[46] VideoLAN, VLC multimedia playerhttp://www.videolan.org/

[47] Vuze P2P programrhitp://www.vuze.com/



