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Abstract. Spurious energy dissipation in numerical wave simulations due to numerical
diffusion is a widely-known problem that can have several causes. The numerical diffusion
can be due to the discretisation method used for the governing equations applied inside
the flow domain, but can also be due to the numerical implementation of the moving
free surface and the boundary conditions applied at the free surface. A technique to
model an arbitrary 3D free surface efficiently is the volume-of-fluid (VOF) method. In
this paper, the attention is focused on the effect of various VOF methods on spurious
wave energy dissipation. For this purpose, we will compare several VOF methods in
simulations of propagating waves where strong nonlinear behavior is dominant in the flow.
The VOF methods in question are based on two methodologies: Simple Line Interface
Calculation (SLIC) and Piecewise Linear Interface Calculation (PLIC). Additionally, a
grid convergency study will be performed to better understand the numerical behavior of
the methods. In the end, comparisons and discussions will be provided to address how
numerical wave energy dissipation can be reduced by implementing more accurate VOF
methods.
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1 INTRODUCTION

Volume-of-fluid (VOF) methods have been successfully used in computational fluid
dynamics (CFD) simulation of interfacial and free surface flows for several decades. Typi-
cally, the VOF approach presents a model based on a scalar indicator function to transport
the fluid according to the underlying velocity field on a fixed computational mesh. This
function is characterized by the volume fraction f occupying one of the fluids within each
cell. If a cell is completely filled with one fluid, the volume fraction takes the value of 1,
and 0 if only the second fluid is present. The values between these two limits indicate the
presence of the interface or free surface.

To advect the volume fraction field in time, the following transport equation is solved,

∂f

∂t
+ u · ∇f = 0, (1)

where u denotes the fluid velocity. Assuming a solenoidal velocity field (incompressible
flow) modeled by ∇ · u = 0, Eq. (1) can alternatively take the form:

∂f

∂t
+∇ · (uf) = 0. (2)

In the VOF context, the discrete volume fraction field is not smoothly distributed at
the interface. On the contrary, it displays sharp discontinuous changes between 0 and
1. To preserve the steep profile of the interface, the explicit location of the interface is
locally reconstructed and corresponding volume fluxes are computed to update the the
volume fraction field to the next discrete time level using Eq. (2). Thus, the interface
reconstruction is the first stage of a VOF method. Using the values of the volume fraction
in a compact cell stencil, the orientation and location of the interface in a grid cell can
be calculated in a piecewise constant, piecewise linear or piecewise parabolic fashion.
Among the three classes, the piecewise linear reconstruction is nowadays the most popular
approach, and the methods which fall into this category are usually referred to as Piecewise
Linear Interface Calculation (PLIC) methods. For a review of interface reconstruction
methods, see, e.g., [1, 2].

Once the interface is reconstructed, the volume fraction field is conservatively advected
in time via Eq. (2). This equation can be solved using either an unsplit advection or a
direction split advection scheme. Although both strategies have been successfully applied
in simulation of interfacial flows, direction split advection schemes are more common
in standard VOF methods due to ease of implementation: treating individual velocity
components to compute 1D fluxes for a sequence of updates in each spatial direction,
as opposed to treating velocity components acting in all directions to compute multidi-
mensional fluxes using inherently difficult geometric tasks. For an analysis on these two
advection strategies, see, e.g., [2–4]. Regardless of the strategy for advection, conserva-
tion of mass must be satisfied and the resulting volume fraction values must be bounded,
0 ≤ f ≤ 1, during the transport process of the volume fraction field.

2



601

Bulent Duz, Mart J.A. Borsboom, Peter R. Wellens, Arthur E.P. Veldman and Rene H.M. Huijsmans

In this paper, the main objective is to compare the performance of several interface re-
construction/advection combinations in simulations of propagating waves. In these tests,
we will use two direction split advection schemes of Leonard et.al. [5] which, to the best
knowledge of the authors, have not been used in the context of interfacial or free surface
flows. The schemes are Multidimensional Advective-Conservative Hybrid Operator (MA-
CHO) and Conservative Operator Splitting for Multidimensions with Inherent Constancy
(COSMIC). Besides these two advection schemes, the Eulerian Implicit-Langrangian Ex-
plicit (EI-LE) scheme explained in [6] has been considered for comparison. We will also
compare these methods with the current VOF implementation in the CFD simulation
tool ComFLOW, see [7, 8] for an overview of the features of this flow solver. It employs
the VOF technique introduced by Hirt and Nichols [9] and a local height function (LHF)
to overcome the bottlenecks which originate from this VOF technique such as violation
of mass conservation and spurious flotsam and jetsam. For a detailed description of the
LHF, see [10].

2 INTERFACE RECONSTRUCTION

In a PLIC-VOF method, the interface in each cell is approximated by a line (or a plane
in three dimensions). Within each cell, the approximated interface can be defined by the
equation:

m · x = α, (3)

where m is the local surface normal, x is the position vector of a point on the interface
and α is a constant. Essentially, the interface reconstruction involves two procedures: the
determination of m and α. For a given discrete volume fraction field, m in each cell is
usually calculated using the data from the surrounding cells. However, since the discrete
volume fraction field is not smoothly distributed at the interface, computation of m with
high accuracy can be complicated and expensive. Since the CFD tool ComFLOW is
specifically designed to simulate extreme wave loading on structures in three dimensions,
the required reconstruction method must be considerably cheap and easily applicable in
3D while retaining a reasonable accuracy for estimation of the linear interface, although
the present study is mainly focused on 2D problems. Among many techniques that are
available in the literature, we will show results for three methods: Youngs’ algorithm [11],
the least-square gradient (LSG) technique by Rider and Kothe [3] and the Mixed-Youngs-
Centered (MYC) implementation of Aulisa et al. [12].

Once the normal vector is known, the planar interface within the cell is located so that
local volume conservation is satisfied. In other words, the resulting plane should pass
through the cell in such a way that the truncated volume lying below the plane is equal
to the exact material volume in that cell. As Eq. (3) suggests, the location of the planar
interface results from the computation of α. With the available knowledge of the normal
vector m and the volume fraction f within the cell, we can calculate α either iteratively or
analytically. Here, we use the analytical relations derived by Scardovelli and Zaleski [13].
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3 INTERFACE ADVECTION

After we determine the orientation and location of the planar interface, the volume
fraction field is advected in time via Eq. (2). Among many direction split methods, we
will consider the MACHO and COSMIC schemes which can be given in 2D as,

the MACHO scheme:

f ∗ = fn −∆t
∂ufn

∂x
+∆tfn∂u

∂x
,

fn+1 = fn −∆t

(
∂ufn

∂x
+

∂wf ∗

∂z

)
,

(4)

and the COSMIC scheme:

fX = fn −∆t
∂ufn

∂x
+∆tfn∂u

∂x
,

fZ = fn −∆t
∂wfn

∂z
+∆tfn∂w

∂z
,

fn+1 = fn −∆t

[
∂

∂x

(
u
fn + fZ

2

)
+

∂

∂z

(
w
fn + fX

2

)]
.

(5)

An advantage of the MACHO and COSMIC schemes is that both methods can be
readily extended to 3D while the EI-LE scheme does not naturally extend to 3D. A clear
advantage of the COSMIC scheme is its inherent symmetric feature [5]. However, the
COSMIC scheme requires one additional interface reconstruction in 2D at each time step.
In 3D, this scheme becomes even more expensive which makes it necessary to implement
a computationally cheap interface reconstruction algorithm.

4 NUMERICAL RESULTS

The order of accuracy of the reconstruction methods used in this work has been ex-
tensively studied by various researchers, see, e.g., [2–4, 6, 12, 14]. Therefore, we focus our
attention on the following advection tests.

4.1 3D deformation field

In this test problem, a sphere of radius 0.15 and center (0.35, 0.35, 0.35) is immersed
in a 3D reversible deformation field inside a unit sized cube. The flow is formed by the
velocity field:

u = 2sin2 (πx) sin (2πy) sin (2πz) cos (πt/T ) ,

v = − sin (2πx) sin2 (πy) sin (2πz) cos (πt/T ) ,

w = − sin (2πx) sin (2πy) sin2 (πz) cos (πt/T ) ,

(6)

where T = 3 is used. Due to this velocity field, the sphere undergoes severe deformation
until it reaches maximum stretching at t = 1.5, then returns to its initial shape and
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(a) H&N + LHF (b) LSG + COSMIC

Figure 1: 3D reversible deformation field test on a 1283 grid at CFL = 0.5. Snapshots are taken at
maximum deformation (t = 1.5), and after the flow returns back (t = 3).

position at t = 3 by means of the Leveque cosine term [15]. As we employ staggered grid
arrangement where the velocity components are defined at cell faces, the velocity field (6)
is applied in a discretely divergence-free manner.

Fig. 1 shows the results on a 128 × 128 × 128 grid using the H&N + LHF method
versus the LSG + COSMIC combination at time t = 1.5 and t = 3. The LSG + COSMIC
scheme clearly outperforms the H&N + LHF method. However, as the sphere reaches
the maximum thinning, holes appear in the deformed fluid body in both results. The
recovered shape in the end is roughly a sphere with some minor coalescence when the
LSG + COSMIC method is used.

Table 1: Errors defined by (7) for the 3D deformation field at CFL = 0.5. The order of accuracy of a
method is given between the errors. The result on the third column is taken from [4] for comparison.

Tab. 1 shows the the geometrical error E in L1 which is defined as

E =
∑
i,j,k

���fi,j,k − f̃i,j,k

���∆xi∆yj∆zk (7)
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where f̃i,j,k and fi,j,k are the volume fraction fields at time t = 0 and t = 3, respectively.
In terms of the magnitude of the errors, COSMIC shows a superior performance over the
direction-split scheme used in [4] for the same Youngs reconstruction method. Using the
LSG method with COSMIC improves the results further.

4.2 Application example: Propagating Rienecker-Fenton waves

The final example is propagating Rienecker-Fenton waves [16] in shallow water. Here,
we particularly focus our attention on investigating the effect of various interface-reconstruction
/advection combinations on energy dissipation in wave simulations.

4.2.1 Mathematical modeling of the flow solver

If we consider water as a homogeneous, incompressible, viscous fluid, we can describe
fluid motion in a three-dimensional domain Ω by the continuity equation and the Navier-
Stokes equations in a conservative form as,∮

Γ

u · n dΓ = 0, (8)

∮

Ω

∂u

∂t
dΩ+

∮

Γ

uuT · ndΓ =

−1

ρ

∮

Γ

(pn− µ∇u · n)dΓ+
∮

Ω

FdΩ . (9)

In Eqns. (8) and (9), Ω denotes a volume with boundary Γ and normal vector n, u =
(u, v, w)T is the flow velocity, ρ is the fluid density, p is the pressure, µ is the dynamic
viscosity, ∇ is the gradient operator and F = (Fx, Fy, Fz)

T represents external body forces
acting on the fluid such as gravity. Detailed explanation of how the individual terms in
these equations are treated is beyond the scope of this paper. For this purpose, see,
e.g., [17, 18].

4.2.2 Propagating Rienecker-Fenton waves

Four Rienecker-Fenton waves with the same period but different heights are generated,
see Tab. 2. Steepness of the waves ranges from 3% to 10.3% which indicates strong
nonlinear behavior in the flow. All the three waves are started from rest, and within the
first three periods, wave heights are gradually increased until full heights are reached.
The length of the domain in the direction of propagation is defined in such a way that
the waves do not reach the end of the domain during the simulations. This procedure
guarantees that there is no reflection in the computational domain, and hence the solution
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Table 2: Characteristics of the Rienecker-Fenton waves.

is not perturbed. The duration of the simulations should allow us to have a comprehensive
picture regarding wave damping. Therefore, a stable wave system for a large number of
wave periods is required. In this analysis, we performed simulations for 200 seconds to
have a stable wave system for at least 17 consecutive wave lengths, and correspondingly
the domain length is computed as 2000 meters considering the fastest propagating wave
component. The water depth in all simulations is 9.5 meters. Two uniform grid resolutions
are considered for the grid convergence study: 1.0m and 0.5m in both directions.

Fig. 2 shows the surface elevations as a function of the horizontal position at time
t = 200s for the three Rienecker-Fenton waves on the coarse grid, and Fig. 3 on the
fine grid. These results are obtained from several PLIC algorithms with the COSMIC
advection scheme. Also, the analytical results from the Rienecker-Fenton theory and the
Hirt-Nichols’ VOF with local height function (H&N + LHF) are plotted in the figures.

The results on the coarse grid (∆x = ∆z = 1m) in Fig. 2 demonstrate that the behavior
of the Hirt-Nichols’ VOF + LHF is considerably dissipative: WAVE3 lost nearly 59% of
the initial wave height after 17 consecutive wave lengths. For WAVE7, this amount is
78%, and for WAVE10 it is 83%. Additionally, this method causes a clear phase shift with
respect to the analytical solution. The results indicate that larger phase shifts occur as
the steepness of the waves increases. When the PLIC algorithms + COSMIC advection
combinations are used, results improve substantially as less dissipation and phase shift are
observed. For WAVE3, all the three reconstruction algorithms perform almost the same,
somewhat in favor of LSG and MYC. For WAVE7, we observe differences especially as
the waves propagate in the computational domain. The Youngs reconstruction algorithm
yields the largest wave damping while the LSG and MYC methods perform similarly:
70% of the initial wave height remains with the Youngs method after 17 wave lengths
whereas 75% remains with the LSG and MYC methods. In terms of phase shift, there is
only a slight difference between the reconstruction methods. In the results for WAVE10,
we see that nearly 57% of the initial wave height dissipated when the Youngs method is
used. From the LSG and MYC methods, this amount is 51%. After 4 wave lengths from
the inflow boundary, we observe three distinct wave signals from the three reconstruction
methods.
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(a) Results for WAVE10 (steepness: 10.3%)

(b) Results for WAVE7 (steepness: 7.6%)

(c) Results for WAVE3 (steepness: 3.0%)

Figure 2: Wave elevations as a function of horizontal location for the waves in Tab. 2. The LSG, MYC and
Youngs methods are combined with the COSMIC advection scheme. Grid resolution is ∆x = ∆z = 1m.
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(a) Results for WAVE10 (steepness: 10.3%)

(b) Results for WAVE7 (steepness: 7.6%)

(c) Results for WAVE3 (steepness: 3.0%)

Figure 3: Wave elevations as a function of horizontal location for the waves in Tab. 2. The LSG, MYC and
Youngs methods are combined with the COSMIC advection scheme. Grid resolution is ∆x = ∆z = 0.5m.
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(a) Grid resolution is ∆x = ∆z = 1m

(b) Grid resolution is ∆x = ∆z = 0.5m

Figure 4: Wave elevations as a function of horizontal location for WAVE10. The COSMIC, EI-LE and
MACHO advection schemes are combined with the Youngs reconstruction method.

When the grid resolution is increased (∆x = ∆z = 0.5m), significant improvements
in the results are noticed, see Fig. 3. When Hirt-Nichols’ VOF + LHF is used, WAVE3
lost nearly 26% of its initial wave height after 17 wave lengths, WAVE7 lost 44%, and
WAVE10 lost 58%. Similar to the behavior on the coarse grid, H&N + LHF produces
substantial errors in terms of phase shift as the steepness increases. With PLIC methods
+ COSMIC combinations, we observe significant improvements in the results concerning
both wave damping and phase shift. For WAVE3, the wave signals obtained with three
reconstruction methods are almost the same: 90% of the initial wave height remains
with very small phase shift. For WAVE7, 80% of the initial wave height remains with the
Youngs method whereas 88% remains with the LSG and MYC methods. Regarding phase
shift, the LSG and Youngs method have slight advantage over the MYC method. For
WAVE10 we observe clear differences between the three reconstruction methods. When
Youngs method is used, only 71% of the initial wave height remains. This amount is 81%
with the LSG and MYC methods. The result for WAVE10 also indicate that three wave
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signals from the three PLIC methods show different behaviors in terms of phase shift:
the MYC method produces the largest phase shift while the Youngs and LSG method
produce small phase shifts.

Fig. 4 illustrates the results to compare the performance of the advection schemes. The
combinations of the LSG and MYC methods with the MACHO, EI-LE and COSMIC
advection schemes resulted in almost the same profiles for the three waves at two grid
resolutions. In fact, we observed different wave profiles only when we use the Youngs
method with the three advection schemes for the simulation of WAVE10. In case of the
WAVE3 and WAVE7, once again we did not notice any differences between the advection
methods. Fig. 4 shows that the behavior of the advection methods is almost the same in
terms of wave damping, and is only slightly different in terms of phase shift. The difference
between the MACHO and EI-LE schemes can be hardly seen at both resolutions while
COSMIC produces slightly different wave signals.

5 CONCLUSIONS

We studied the effect of VOF algorithms on spurious energy dissipation in propagating
wave simulations. By implementing more accurate interface reconstruction/advection
combinations, spurious energy dissipation as well as phase shift are reduced substantially.
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