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I. Miletović∗, D. M. Pool†, O. Stroosma‡, Q. P. Chu§, M. M. Van Paassen¶

The six degrees-of-freedom Stewart platform, or hexapod, is in widespread use in the flight simula-

tion industry for the generation of motion cues that are representative of those experienced in actual

flight. For closed-loop control of such motion platforms, but also to be able to objectively assess

the quality of the generated simulator motion, accurate measurement of the kinematic state of the

motion platform is required. In current practice, the inference of such knowledge relies mainly on

the isolated use of actuator length measurements and on, in certain cases, on-platform inertial sen-

sors. The purpose of the current work is to extend a previously proposed and conceptually superior

method, based on a tightly-coupled fusion of measurements provided by these sensors using the Iter-

ated Extended Kalman Filter (IEKF). Results from computer simulations indicate that the IEKF has

difficulty in converging to the true system state of a six degrees-of-freedom Stewart platform. This

is because of the considerable increase in nonlinearity of the platform kinematics. Future research

should therefore focus on the application of more advanced filters. In addition, further extension of

the sensor fusion scheme using other types of sensors is investigated.

I. Introduction

Modern vehicle simulators used for the purposes of training and research typically rely on various robotic mech-

anisms to provide a sense of motion similar to that experienced in the real vehicle [1, 2, 3, 4]. The most commonly

applied motion platform in flight simulation is the Stewart platform [5], also known as a hexapod system, which

consists of a platform supported by six linear actuators moving in a synergistic fashion to provide motion in six

degrees-of-freedom (DOF). An example of such a platform is the SIMONA Research Simulator (SRS) at TU Delft,

shown in Figure 1. In order to be able to accurately control the motion of the platform (e.g., [6]) and in order to obtain

reliable knowledge on the quality of the generated motion cues (e.g., [7, 8]), measuring the kinematic state of the

motion platform is of great importance.
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Figure 1. Impression of a Stewart platform used as the motion providing mechanism of the SRS at TU Delft [1].
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Given the parallel actuators of the Stewart platform, obtaining an accurate estimate of its kinematic state is a well-

known challenge [9]. For serial manipulator type mechanisms (e.g., [2]), the position and attitude of the platform can

be obtained from the position and attitude of the individual actuators in a straightforward fashion. This relationship is

denoted in robotics as the forward kinematics. In contrast, the computation of actuators’ position and attitude from the

position and attitude of the motion platform is known as the inverse kinematics. Whereas the latter is easily computed

for parallel mechanisms like the Stewart platform, the former, which is more often of interest in practice, is not.

Currently, to compute the forward kinematics of the Stewart platform, measurements of actuator length together

with iterative methods such as Newton-Raphson or Gauss-Newton are typically relied upon [10, 6]. These gradient-

based methods are applied to arrive at a sufficiently accurate numerical estimate of the position and attitude of the

motion platform, given an initial estimate of the position and attitude of the platform. The convergence of such meth-

ods not only depends on the initial estimate provided, but also on the geometry of the Stewart platform itself. In

addition, although they rely on physical measurements providing the lengths of the six actuators, they lack robustness

to measurement inaccuracies. Finally, these methods only provide information on motion platform position and at-

titude, while often knowledge of the full kinematic state, including velocity and acceleration, is desired. In order to

obtain a more complete estimate of the kinematic state of the motion platform without relying on numerical differen-

tiation, actuator length measurements can be complemented with inertial sensors, providing angular rate and specific

force [7]. These sensors, however, are known to suffer from significant measurement noise and typically provide

biased measurements.

To overcome these issues inherent to the use of multiple isolated sensors with inherent measurement inaccuracies,

the use of sensor fusion schemes that rely on the Kalman Filter (KF) [11] are in widespread use in aviation (e.g.,

[12, 13, 14]). An attempt to apply a similar method for reconstruction of the kinematic state of the Stewart platform

has been proposed by Pool et al. in [15]. This work investigated the application of the Extended Kalman Filter (EKF)

and Iterated Extended Kalman Filter (IEKF) [16] for the reconstruction of the longitudinal motion states of the Stewart

platform. Here, it was found that because of the highly nonlinear nature of the Stewart platform kinematics, the IEKF

was required to ensure filter convergence and attain the highly precise state estimates allowed for by the KF approach.

The aim of the current work is to extend the IEKF-based sensor fusion scheme proposed in [15] to all six DOF of

the Stewart platform kinematics, which amounts to an even stronger increase in the nonlinearity of the state reconstruc-

tion problem. To this end, computer simulations developed using the Python programming language in conjunction

with the numerical libraries Numpy, Scipy and Matplotlib [17, 18] are used to implement and subsequently assess the

performance of the proposed sensor fusion scheme on the basis of rate of convergence and computational load.

The structure of the paper is as follows. First, a brief background on the theory behind the application of the

IEKF-based sensor fusion scheme to the Stewart platform and the extension thereof to the full six DOF is given. Then,

the method used to evaluate the IEKF is elaborated upon and, finally, the results of the evaluation are presented.

II. Sensor fusion

The method proposed by Pool et al. in [15] relies on the fusion of measurements from inertial sensors, that is, an

Inertial Measurement Unit (IMU) mounted on the Stewart platform, with measurements of the length of each actuator

using an extension of the well-known Kalman Filter (KF) to nonlinear systems [11, 16]. A general schematic of the

KF is shown in Figure 2.
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Figure 2. Representation of the Kalman Filter [11].

For a general system, given an initial estimate

of its state, denoted by x̂0, and its covariance, de-

noted by P0, the state as well as the covariance are

propagated ahead in time using an internal linear

model of the stochastic process in conjuction with

inputs uk. At the next time instant, when a mea-

surement yk becomes available, the prior estimate

of the state, x̂
(−)
k , as well as its covariance, P

(−)
k ,

are corrected to obtain the posterior state and its

covariance, x̂
(+)
k and P

(+)
k , respectively. This cor-

rection relies on the so-called Kalman gain, Kk,

which is selected in the KF in such a way as to

minimize the variance of the posterior state esti-

mate:

Kk ∼ min
x̂

(+)
k

[

trace
(

P
(+)
k

)]

(1)
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For the fusion of on-platform inertial sensors with measurements of actuator length in case of the Stewart platform,

the inertial sensor measurements are contained in the input vector uk and are therefore used to propagate the state

estimate and its covariance in time. Measurements from the inertial sensors are assumed to be polluted by zero-mean

and Gaussian white noise, w, with covariance Qk and a constant yet unknown bias, λ. The measurement vector yk

contains the six measured actuator lengths, which are assumed to be polluted by zero-mean and Gaussian white noise,

v, with covariance Rk. This tightly-coupled scheme is adopted because it allows all available sensor measurements

to be used in their most ”raw” form, that is, without application of any form of pre-processing. Any form of pre-

processing would result in measurements that are polluted by coloured and correlated noise. As it can be shown that

the KF is optimal only in case the measurement noises are zero-mean, white and Gaussian [16, 19], a tightly-coupled

sensor fusion scheme is highly advantageous.

A. Stewart platform kinematics

The sensor fusion scheme also relies on an internal mathematical model of the stochastic process. This internal

model consists of two parts, a prediction equation that is used to propagate the state estimate ahead in time and an

observation equation that is used in the subsequent correction step of the filter. The following nonlinear, time-invariant

and stochastic process model can therefore be formulated:

ẋ(t) = f(x(t),u(t)) +G(x(t))w(t)

y(t) = h(x(t)) + v(t)
(2)

In case of the Stewart platform, the state vector is chosen to include the position, velocity and attitude of the Upper

Gimbal Point (UGP) of the motion platform. The UGP is the centroid of the moving platform of the hexapod system,

shown as the origin of reference frame Ea in Figure 1. For reasons of algebraic and numerical convenience, attitude is

expressed in terms of the Euler-Rodrigues quaternion formulation [20, 21]. The state vector is furthermore augmented

with six inertial sensor biases that are estimated together with the platform states. This approach is common, for

example, in the field of aeronautical flight path reconstruction [14] and was also adopted with success in [15]. This

brings the total amount of states to sixteen:

x =
[

x y z u v w e0 ex ey ez λx λy λz λp λq λr

]T
(3)

Given this definition of the state vector, the majority of the prediction equation in Equation (2) follows from basic

kinematics and can be obtained in the same fashion as outlined in, e.g., [14]. The quaternion rates can be expressed as

follows [20]:
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In the numerical integration of these rates, normalization of the quaternions needs to be enforced, such that:

e20 + e2x + e2y + e2z = 1 (5)

The novelty of the sensor fusion scheme proposed in [15], and extended in the current work to all six DOF, lies

in the observation equation. Because the measurement vector yk comprises the six actuator length measurements, the

nonlinear function h is expressed as:

h(x) =
[

l1(x) l2(x) l3(x) l4(x) l5(x) l6(x)
]T

(6)

where the length of each individual actuator can be derived geometrically as:

li(x) = ‖c+ Tba(Φ)aa
i − bbi‖ ∀ i ∈ [1, . . . , 6] (7)

Here, c and Φ are the position and attitude vectors of the motion platform, whereas a
(a)
i and b

(b)
i are the coordinates

of the joints of actuator i expressed with respect to reference frame Ea and Eb, respectively (see Figure 1). Tba is the

transformation matrix from reference frame Ea to Eb, which is also a function of the attitude of the motion platform.

This equation defines the inverse kinematics of the Stewart platform and is a severely nonlinear function that depends

not only on the position and attitude of the motion platform, but evidently also on the platform geometry. Since the

KF relies on a linear stochastic process model and because both the functions f and h are nonlinear, an extension of

the KF to nonlinear systems must be applied.
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B. Iterated Extended Kalman Filter

A commonly applied nonlinear extension of the KF is the Extended Kalman Filter (EKF) [16]. In the EKF, the

nonlinear stochastic process model given by Equation (2) is linearized around a nominal state. This nominal state,

in the prediction phase of the filter, is the posterior state estimate x̂
(+)
k and in the correction phase, is the prior state

estimate x̂
(−)
k . As such, the first two terms of the Taylor series expansions of the nonlinear functions f and h,

respectively, become:

f(x,u) ≈ f
(

x̂
(+)
k ,uk

)

+ Fk

(

x− x̂
(+)
k

)

h(x) ≈ h
(

x̂
(−)
k

)

+Hk

(

x− x̂
(−)
k

) (8)

where:

Fk =
∂f(x,u)

∂x

∣

∣

∣

∣

x=x̂
(+)
k

and Hk =
∂h(x)

∂x

∣

∣

∣

∣

x=x̂
(−)
k

(9)

These Jacobian matrices are then discretized and applied in the prediction and correction of the estimated state covari-

ance as well as for the computation of the Kalman gain according to the criterium specified in Equation (1).

In [15], it was found that a single application of the correction step illustrated in Figure 2 was insufficient to

attain satisfactory convergence of the EKF due to the strongly nonlinear 3-DOF longitudinal kinematics of the Stewart

platform in the observation equation. For this reason, the application of the Iterated Extended Kalman Filter (IEKF)

was proposed. In the IEKF, the correction step is applied repeatedly at every time instant tk, each time re-linearizing

the nonlinear function h around a temporary iterator, η̂
i
, defined by [16]:

η̂
i+1

= x̂
(−)
k +Kk

(

yk − h(η̂
i
, tk)−Hk

(

x̂
(−)
k − η̂

i

))

(10)

This iterative correction scheme is also illustrated in Figure 3, from which it can be seen that the state and its covariance

improve gradually as multiple iterative corrections are applied. The iterations at each timestep continue until an

acceptable improvement threshold, ǫη = ‖η̂
i+1

−η̂
i
‖min, is reached or until a maximum number of allowed iterations,

Nmax, is exceeded. Selection of these two parameters is therefore necessary in the application of the IEKF.

For the full 6-DOF kinematics of the Stewart platform, the nonlinearities in the observation equation are even

more severe. This is also follows from Equation (7), where it becomes clear that the transformation matrix Tba is more

nonlinear when all rotational DOF are included and that these nonlinearities are amplified further upon application of

the absolute value. Because of this, the work in the current paper is limited in scope to the evaluation of the IEKF.
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Figure 3. Illustration of the Iterated Extended Kalman Filter.
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III. Method

To evaluate the IEKF for reconstruction of the kinematic state of a Stewart platform, a similar approach as the one

adopted in [15] is used. Namely, a generic kinematic model of a Stewart platform is defined first and implemented in

conjunction with the IEKF. This kinematic model is then used, together with realistic measurement noise levels and

biases, to generate artificial sensor data corresponding to a representative motion profile. Subsequently, the adopted

initial conditions and other IEKF configuration parameters that are of interest are discussed and, finally, the criteria

against which the performance of the IEKF is assessed will be defined.

A. Simulation environment

The computer simulation environment that is used for evaluation of the proposed IEKF-based sensor fusion scheme

is developed using the Python programming language, in combination with the open-source numerical and scientific

libraries Numpy, Scipy and Matplotlib [17, 18].

The platform on which all simulations are developed comprises a 2.4 GHz Intel® Core2Duo™ processor with eight

gigabytes of random access memory. All presented results are furthermore generated with a representative sampling

rate of 100 Hz, using the forward Euler method for all numerical integration purposes.

B. Motion platform geometry

The geometry used for the evaluation is that of the SRS, shown in Figure 1. More details regarding the geometry of

the SRS are given in Figure 4 and Table 1. Note that lmin and lmax represent the minimum and maximum length of

each actuator. Given ra, rb, da and db it is possible to compute the angles θa, θb, ξa and ξb. These, in turn, can be used

to compute the coordinates of the actuator joints, ai and bi, appearing in Equation (7). The gravitional acceleration is

assumed to have a magnitude of 9.80665 m/s2 in the computer simulations.
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Figure 4. SRS geometry of static base and motion platform.

Table 1. Constants related to the geometry of the SRS.

Constant Value Unit

ra 1.60 m

rb 1.65 m

da 0.20 m

db 0.60 m

lmin 2.08 m

lmax 3.33 m

C. Motion profile

To be able to assess the performance of the IEKF-based sensor fusion scheme, a motion profile must be selected from

which to generate the necessary artificial sensor measurements. The motion profile used here is extracted from a

recent human-in-the-loop experiment performed on the SRS [22]. In this experiment, subjects were asked to execute a

combined roll and pitch tracking task in the presence of both visual and motion cues. This profile was selected because

it is representative of typical experiments performed on the SRS.

The trajectory of the motion profile, in terms of a selection of position and attitude time traces, is shown in Figure 5.

In addition, a selection of specific forces, angular rates and actuator lengths corresponding to this motion profile are

illustrated in Figure 6. In order to preserve space, only the most dominant motion components for the selected motion

profile are shown in the current paper.

D. Sensor properties

An important step in the evaluation of the proposed sensor fusion scheme is the introduction of artificial inaccuracies

in the simulated inertial sensor and actuator length measurements. The assumed inaccuracies are measurement noise

in both sets of measurements and an additional constant bias in the inertial sensor measurements. The noise levels and

biases are chosen such that they correspond to the order of magnitude of the noise levels and biases one might find in

actual sensory equipment [15].
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Figure 5. Selected states in trajectory of selected human-in-the-loop experiment performed on the SRS [22].
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Figure 6. Selection of specific forces (left), rotational rates (left) and actuator lengths (rights) corresponding to selected motion profile [22].

Table 2. Noise standard deviations and bias values superimposed on simulated sensor measurements.

Inertial sensors Actuator lengths

σfx 5 ·10
−3 m/s2 λfx 1 ·10

−1 m/s2 σl1 1 ·10
−5 m

σfy 5 ·10
−3 m/s2 λfy -1 ·10

−1 m/s2 σl2 1 ·10
−5 m

σfz 5 ·10
−3 m/s2 λfz -1 ·10

−1 m/s2 σl3 1 ·10
−5 m

σp 5 ·10
−4 rad/s λp -5 ·10

−3 rad/s σl4 1 ·10
−5 m

σq 5 ·10
−4 rad/s λq 5 ·10

−3 rad/s σl5 1 ·10
−5 m

σr 5 ·10
−4 rad/s λr 5 ·10

−3 rad/s σl6 1 ·10
−5 m
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The introduced measurement noises are numerically sampled from the standard normal distribution and then scaled

such to obtain the standard deviations as listed in Table 2. In case of the inertial sensors, the constant biases also listed

in Table 2 are added to the generated measurement noise sequences. A representative selection of the resulting noise

sequences and superimposed biases is shown in Figure 7.
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Figure 7. Illustration of measurement inaccuracies inherent in simulated inertial sensors (left) and actuator length measurements (right).

E. IEKF parameter settings and initial conditions

The performance of the IEKF may be controlled with a number of parameters. These are the initial state x̂0, the initial

state covariance P0, the measurement noise covariance matrices Qk and Rk as well as the IEKF-specific parameters,

i.e., the improvement threshold ǫη and maximum number of allowed iterations Nmax.

In the current work, the covariance matrices Qk and Rk are assumed to be time-invariant and diagonal, containing

the variances of the measurement noises (see Table 2) on the respective diagonals:

Qk = 1.1 · diag(σ2
fx
, σ2

fy
, σ2

fz
, σ2

p, σ
2
q , σ

2
r) and Rk = 1.1 · diag(σ2

l1
, σ2

l2
, σ2

l3
, σ2

l4
, σ2

l5
, σ2

l6
) (11)

The ten percent increase in the magnitude of these matrices is introduced to incorporate some robustness to minor

numerical inaccuracies like integration and round-off error.

ǫη and Nmax were assigned the values of 1 ·10−6 and 1000, respectively. These values are considered conservative

and are chosen such to promote increased accuracy and rapid convergence of the filter.

The initial state x̂0 and covariance P0 also influence the rate of convergence of the IEKF. An ititial value for the

estimated state that is close to the actual state of the system, in combination with a relatively small magnitude of the

initial state covariance, is likely to result in faster convergence. Enlarging the initial state covariance is more likely to

result in the exploration of a wider and possibly more nonlinear region of the system dynamics. This may considerably

impair rate of convergence. A robust filter should therefore exhibit a fast rate of convergence for a wide selection of

initial conditions.

In order to check for this dependency, two initial conditions will be used to evaluate the estimation performance of

the proposed sensor fusion scheme:

• Initial Condition 1 (IC1):

x̂0 =
[

0 0 −2 0 0 0 1 0 0 0 0 0 0 0 0 0
]T

P0 = diag
(

12, 12, 12, 12, 12, 12, 0.252, 0.252, 0.252, 0.252, 0.52, 0.52, 0.52, 0.052, 0.052, 0.052
)

(12)

This initial condition is representative of a situation where the true state of the system is unknown and therefore

specified mostly as zero with a relatively large uncertainty. The exception is the initial estimate for the vertical

position of the platform, which is forced to a negative value. This is because of the ambiguity inherent to the

Stewart platform, whereby any set of actuator length measurements may correspond to a situation in which the

motion platform is either above or below the static base.

• Initial Condition 2 (IC2):

x̂0 = x0

P0 = diag
(

(10−8)2, (10−8)2, . . . , (10−8)2, (10−8)2
) (13)
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This initial condition corresponds to a situation where the true initial state is known to a high accuracy. As

such, the initial state covariance is set to approximately zero. Note that, if the initial state covariance would be

increased, the value chosen for the initial state estimate is less likely to impact the results significantly. In such

cases, the filter will initially perform a type of random search. This could result in subsequent estimates that are

further away from the true state of the system and would therefore lead to similar results as those obtained for

the case of IC1.

F. Evaluation criteria

In order to evaluate the performance of the IEKF-based sensor fusion scheme, the two criteria that will be used are

rate of convergence and computational load. Rate of convergence can be evaluated on the basis of how fast the state

estimation error converges to zero. However, this quantity can only be obtained for the case of computer simulations,

where the true values of the states are known a priori.

In practice, where such information is usually unavailable, a particularly useful quantity that gives valuable insight

into the performance of the filter, is the so-called innovation sequence. The innovation at any time tk is defined as:

ǫk = yk − h
(

x̂
(−)
k

)

(14)

As such, the innovation represents the difference between the actual measurement and the output of the observation

equation defined in Equation (2) corresponding to the prior state estimate at time tk. For an optimal filter, it can be

shown that the innovation sequence converges to a zero-mean, white and Gaussian signal [19].

Because of these properties, the innovation sequences will be used as the main criteria for assessing the perfor-

mance of the proposed IEKF-based sensor fusion scheme. During all simulations, required computational time will

also be measured to obtain an idea of the impact of the algorithm on the available computational resources.

IV. Results

Figures 8, 9 and 10 show the obtained results for the two initial conditions introduced in Section III.E. These results

are a representative sample selected from five consecutive simulation runs performed for both IC1 and IC2. In each

run, independently generated noise sequences in accordance with the discussion of Section III.D were introduced.

From these results, it can be deduced that for both cases, the IEKF eventually converges to values close to the true

state of the system. The rate of convergence of the states as well as the innovation sequences to those characterizing

optimal filter performance is considerably faster for IC2 in comparison to IC1, however. This is an indication that the

IEKF has difficulty in coping with the substantial increase in the nonlinearity of the observation equation as compared

to the work presented in [15] for the 3-DOF longitudinal kinematics of the Stewart platform.

Another interesting results, for the case of IC1, is the seemingly large estimation error for the quaternions ex and

ey . This, however, was established to be a direct result of the symmetry inherent in the Euler-Rodrigues quaternion

formulation [21]. When the estimated quaternions are converted to their corresponding Euler angle representation, the

resulting signals follow a similar trend as those of the other states shown in Figure 9.

In the area of computational load, the required computation time required for each of the two initial conditions

was taken as the average value over the five consecutive simulation runs. This resulted in mean computational times

of approximately 38 and 30 seconds for IC1 and IC2, respectively, for the 90 second motion profile considered. This

difference in computational time between the two conditions is explained by the fact that for the case of IC1, the

number of iterative corrections applied as a result of the larger offset and uncertainty in the initial state estimate is also

larger. These values are considered acceptable, as the amount of time required to perform the IEKF computations for

one timestep are far less than one cycle in a real-time simulation running at a typical rate of 100 Hz [1].

V. Discussion

The results presented in Section IV accurately illustrate the difficulties inherent to the application of the proposed

IEKF-based sensor fusion scheme to reconstruct the highly nonlinear 6-DOF kinematics of the Stewart platform.

Even though initial conditions can be selected in such a way as to favourably impact the performance of the filter,

the fact that the IEKF is highly sensitive to these variations significantly impairs its practical application. In reality,

initial conditions are usually not known to an accurate degree and even if they are, occurences of events that in any

way disrupt the operation of the filter would require a full re-initialization of the complete system. Filters that are
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Figure 8. Selection of innovation sequences corresponding to IC1 (left) and IC2 (right).
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Figure 9. Selection of estimated states corresponding to IC1 (left) and IC2 (right).
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Figure 10. Selection of inertial sensor biases corresponding to IC1 (left) and IC2 (right).

robust to such events would only require an increase of the magnitude of the state covariance matrix to achieve rapid

re-convergence of the filter to the new system state.

Nonetheless, the advantages of the proposed sensor fusion scheme as compared to methods in which available

sensors are used in isolation remain valid. For one, more information about the kinematic state of the motion platform

can be obtained directly (i.e., without numerical differentation), given that velocity is directly estimated. In addition,

the inference of inertial sensor biases as part of the sensor fusion scheme facilitates correction of raw measurements,

such that unbiased measurements of specific force and rotational rate can be obtained as well. Finally, advances in

the development of novel sensory equipment, e.g., angular accelerometers, can be rapidly exploited to extend the state

vector and internal mathematical model of the filter to allow direct inference of additional kinematic states.

It is for these reasons that future work on this research topic is focused on the evaluation of more advanced filters,

e.g., the Unscented Kalman Filter (UKF) [23], as well as on the incorporation of angular accelerometers. The ability

of the UKF to achieve higher order estimation accuracy renders it a prime candidate for application to reconstruction

of the highly nonlinear kinematics of the Stewart platform. Furthermore, incorporation of angular accelerometers in

the sensor fusion scheme could allow for direct inference of angular rate as well as the ability to obtain unbiased

measurements of angular acceleration.

VI. Conclusion

Using the Iterated Extended Kalman Filter (IEKF), a nonlinear extension of the well-known Kalman Filter (KF),

the goal of the current work was to evaluate the tightly-coupled fusion of on-platform inertial sensors with actuator

length measurements for reconstruction of the kinematic state of a Stewart platform. Previous work in this area was

constrained to reconstruction of longitudinal motion states only. This approach has been extended in the current work

to the full six degrees-of-freedom of the motion platform.

Computer simulations were developed using the Python programming language to demonstrate the estimation

performance of the IEKF for the problem of interest. These simulations revealed a considerable sensitivity of the

algorithm to selected initial conditions. The highly nonlinear kinematics of the Stewart platform impaired convergence

of the IEKF for an initial condition different from the true initial system state. Such a sensitivity to the selection of

initial conditions is undesirable from a practical point of view and should therefore be avoided.

Future research will therefore mainly be devoted to the application of more advanced extensions of the KF to

nonlinear systems in order to ensure rapid convergence independent of the selected initial conditions. In addition, the

extension of the sensor fusion scheme using other sensors, such as angular accelerometers, will be investigated.
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