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Abstract
Machine learning (ML) models are used increasingly in high-stakes areas such as health and finance
because of their strong performance. However, having good performance in metrics such as accuracy
or the f1 score alone is not all that is important as trust is also essential in these areas. TalkToModel is a
system that addresses this challenge, using a large language model (LLM), by letting the users interact
with their models through natural language. However, this system only allows a user to ask black-box
questions. Another way to achieve trust is through models that are constructed with interpretability in
mind that a human can understand. Genetic programming (GP) models are such models that have the
potential to be interpreted. This thesis investigates if GP models can be made even more interpretable
using TalkToModel. To do this an enhanced version of TalkToModel called TalkToGP is created with
three main contributions: 1) Integration of GP Models into TalkToModel, 2) the ability to ask GP model-
specific questions and 3) the ability to do a comparative analysis between multiple GP models. This
system is built using the feedback from GP users who gave insights on their experience with GP as
well as their wishes for this system. In the end, the system is evaluated by GP users in an experiment.
The experiments showed that the enhanced version of TalkToModel shows a strong indication that it
increases the interpretability of GP models. This means the system could be a useful tool for anyone
working with GP models.
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1
Introduction

Machine learning (ML) models are advancing at an unprecedented pace, achieving remarkable perfor-
mance improvements across a wide array of applications. With this increasing performance, people
want to use these models more in tasks previously done only by humans. In areas such as medicine,
the criminal justice system, and financial markets, ML models are becoming more prominent (Lipton,
2018). For instance, in medicine, ML models can assist in diagnosing diseases, predicting patient
outcomes, and personalizing treatment plans. In the criminal justice system, they can help predict
recidivism, aid in sentencing decisions, and improve the efficiency of legal processes. Similarly, in
financial markets, ML models can used for fraud detection, algorithmic trading, and risk management.

However, high performance in classic metrics such as accuracy or the F1 score alone is often
insufficient for the widespread adoption of ML models in these sensitive and high-stakes areas. Trust is
essential in many real-world settings to even consider using an ML model. For example, in healthcare,
a model that predicts the likelihood of diabetes, the model must not only be accurate but its predictions
must also be trusted by the patients as well as the healthcare providers. Many of the best-performing
models today do not suffice this, however.

Building trust in ML models involves ensuring their decision-making processes are transparent and
understandable. Unfortunately, many of the most powerful ML models today operate as ”black boxes”.
Often composed of complex neural networks with billions of parameters, these models can make it
nearly impossible for humans to understand how specific decisions are made. Thus, these ML models
are called black boxes because we can not see what happens inside the systems. This uncertainty
poses significant challenges, especially when the consequences of the model’s decisions can deeply
impact human lives.

1.1. Interpretability
To address these challenges, the field of interpretable ML has grown to incorporate diverse techniques
andmethods for understanding thesemodels and datasets (Singh et al., 2024). Researchers are devel-
oping techniques and tools to make ML models more transparent and their decisions more explainable.
One part of this development has focused on post-hoc explanations. Post-hoc explainability methods
analyze and interpret the decision-making process of a trained ML model after it has made predictions,
providing insights into how the model arrived at its outputs (Retzlaff et al., 2024). Another part of this
development is inherently interpretable models. Such as generalized additive models, decision trees,
or Genetic Programming (GP) models. These models are different from black-box models because,
unlike black-box models, the inside of interpretable models has the potential to be understood. By
simply looking at these models and analyzing them, a human can possibly understand and interpret
these models.

Lipton, 2018 claims that the task of interpretation remains under-specified. It states that there is no
agreed-upon meaning for interpretability. Furthermore, it also states that for research to be meaningful
in its claims to offer interpretability, the research should fix a specific definition. In this thesis, the
definition of the paper ”Towards A Rigorous Science of Interpretable Machine Learning” is used. This
paper states the definition of interpretability in the context of ML systems is: the ability to explain or
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2 1. Introduction

to present in understandable terms to a human.
Enhancing interpretability can help us better understand the reasoning behind amodel’s predictions,

identify potential biases, and improve overall trust in the models. This shift towards interpretability is
essential for integrating ML models into critical domains.

1.2. TalkToModel
The challenging task of model interpretability in machine learning can be improved using Large Lan-
guage Models (LLMs) (Singh et al., 2024). These models provide a powerful means to bridge the
gap between complex machine learning operations and human understanding, making it easier to ex-
plore and comprehend the inner workings of ML systems. A system that utilizes LLMs for this task is
TalkToModel.

TalkToModel is a system that allows its users to learn how an ML model works by interacting with
it through natural language (Slack et al., 2023). Slack et al., 2023 describes that users can ”talk” to a
model via a user interface and ask questions about the model, such as: ”What are the most important
features in this prediction?” and ”What could be done to change the prediction?”. The system uses a
large language model (LLM) to convert the input of a user to an operation the system can understand
and execute. The system contains a predefined set of operations the system can execute. After the
input is converted, the system responds to the question with a template answer. As an example, a user
could ask the following to the system: “Applicant #358 wants to know why they were denied a loan.
Could you tell me why?”. The system then translates this to a form that it can execute: filter applicant
358 feature importance using an LLM. This is then executed and the system responds in this example
with: ”They were denied because their credit score is too low”.

In the paper, there is also an evaluation of the system performed, by doing a user study. In this
evaluation, the users were given a set of questions they had to answer using both TalkToModel and an
existing system. It was found that many people want to use this system over the existing system for
understanding a disease prediction model. Also, most of the ML professionals in this survey agreed that
TalkToModel was easier to use than one of the most popular open-source explainability dashboards
(Dijk et al., 2022). Lastly, the evaluation also showed that the participants answered the questions more
accurately when using TalkToModel. This evaluation shows that TalkToModel can be very effective for
increasing model explainability.

The system, however, only uses post-hoc explanations and treats the model like a black box. As
mentioned, post-hoc explanations interpret and analyze a model by only looking at the input and output.
This means that the inner workings of the system are not explored. This has the advantage that the
system is agnostic about the kind of model that is used since the system only looks at the input and
output. This, however, could be a shortcoming when the inner workings of a model can help us increase
the explainability of that model.

1.3. Genetic Programming
Symbolic regression (SR) is the task of fitting a mathematical expression to an input-output pair. The
mathematical expression consists of operators, like multiplication or subtraction, constants, and vari-
ables. Symbolic regression is often done with interpretability in mind, as the resulting expressions have
the potential to be interpretable.

Genetic programming (GP) is often used for SR. GP is a collection of evolutionary computation
techniques that allow computers to solve problems automatically (Poli et al., 2008). In GP we evolve a
population of computer programs. GP tries to stochastically improve the population of each generation
to get better programs. How good a program is, is measured by executing the program and measuring
how well it performs. The best programs of the population are selected, recombined with each other
and mutated to create new programs. This is done each generation until an acceptable solution is
found or another stopping criterion is met.

As mentioned, GP can be used for SR. Here, the SR expressions are the programs GP tries to
evolve. These expressions are often expressed as trees. A tree consists of internal nodes and leaves.
The internal nodes can be operators, while the leaves are constants or input features. Trees can be in-
tuitive to interpret and analyze; however, when they get too big, they can be too difficult to comprehend.
This is why when evolving expressions with GP, often not only the accuracy gets optimized.

Whenwe havemore than one goal we are optimizing for when runningGPwe call this Multi-objective
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GP (MO-GP). In MO-GP the objectives often are chosen to be the prediction accuracy and the model
complexity. The prediction accuracy can be expressed by an error measure such as the mean squared
error or the 𝑅2 score. The model complexity can be expressed by for example the tree length or by an
expression complexity measure (Kommenda et al., 2015). In MO-GP we obtain a whole front of models
instead of a single model. Each of these models is not dominated by another solution, meaning that
each of them is not worse in both accuracy and complexity compared to another model. This causes
a new issue because now we do not only need to understand a single model but multiple, possibly a
lot of models. Apart from just understanding, usually, a single model has to be picked from the front to
be used. This means that there is also a decision to be made and questions to be asked like: why is
this particular model better than all the other models?

Even though GP models can be inherently more interpretable than other models, such as large,
complicated neural networks, depending on the size of the solution, GP models can also become large
and difficult to understand. If you pair this together with the fact that it is common to have a front of
10 or more models, one can imagine that this can quickly become a very difficult task for a human to
interpret GP models.

1.4. TalkToGP
Since GP models are just models they could in principle be used by TalkToModel and be used to get
post-hoc explanations from. This however doesn’t make full use of the inherent intreprability of GP
models since TalkToModel doesn’t look at the model’s inner workings.

This is why this thesis wants to combine TalkToModel with GP. There are, however, three problems
with this. The first is that TalkToModel does not support all types of models, it only supports classification
models whereas the GP models wanted are regression models. The second problem, as mentioned
before, is that TalkToModel does not examine the inner workings of a model by default. A third problem
is that TalkToModel only accepts a single model with its dataset at the time.

It would be very inefficient to load a single model each time to analyze, especially if you have a big
set of models you have to pick one from. A preferred approach would be to load multiple models at
once to examine them individually and to make it easier to compare the different models.

This thesis proposes TalkToGP, an extension of TalkToModel that allows a user to talk to multiple
GP models at once. Apart from asking just black-box questions the system will also allow a user to ask
questions about the inner workings of the GP models.

1.5. Research Questions
In this research, the aim is to help users to better understand GP models. This can be achieved by
enabling TalkToModel to work with multiple GP models. To be more specific the desire is that TalkTo-
Model can answer the original black box questions as well as answer questions about the specifics of
the loaded GP models. In order to achieve this the following research question is asked:

Can Genetic Programming models be made more interpretable using TalkToModel?
To help answer this main research question the following sub-questions are asked:

1. What are the current challenges in interpreting GP models?

2. How can GP models be integrated into the TalkToModel system?

3. What kind of questions about GP should be added in the TalkToModel system?

4. How can multiple GP models be utilized simultaneously in the TalkToModel system?

5. How does TalkToModel facilitate the interpretability of GP models?

1.6. Contributions
In this thesis, the aim is to make contributions to the field of interpretable ML, particularly focusing on
GP models by utilizing TalkToModel. Our contributions are multifaceted, addressing both the ease of
use and the theoretical understanding of GP models:
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1. Integration of GP Models with TalkToModel: The first contribution lies in making GP models
usable in the TalkToModel system. IntegratingGPmodels into TalkToModel helps lower the barrier
to entry for using and understanding GPmodels. Now users can ask general black-box questions
to these models instead of having to implement these methods themselves.

2. Questions into the Specifics of GP Models: The second contribution aims to give the system
the ability to ask GP-specific questions. This can potentially do away with some of the difficulties
with analyzing GPmodels. It allows users to easily ask questions and understand the components
of each model without having to spend too much effort.

3. Support comparative analysis: Finally, TalkToModel is enhanced by enabling it to use multiple
concurrent GPmodels trained on the same dataset, at once. This gives users the ability to perform
comparative analysis between different GP models by comparing different aspects of the models.
By doing this, the user can make comparisons, see what the strengths and weaknesses of each
of the different models are, and ultimately make an informed decision on what model they would
prefer to select for a certain task.

Through these three key contributions, this thesis tries to advance the accessibility, understanding,
and comparative analysis of GPmodels by using the TalkToModel system. By bridging the gap between
theory and application, the aim is to empower other researchers and ML practitioners alike in using the
full potential of GP models for a wide range of ML tasks.

1.7. Outline
The rest of this thesis is structured as follows. In chapter 2 all relevant work to this thesis is discussed.
Next, in chapter 3 it is explained how TalkToGP is created, the user study to get feedback on the system
and the experiment that is used to evaluate the system are explained. Furthermore, in chapter 4 the
results of the experiment are presented. Then in chapter 5 the results will be analyzed and discussed
also some limitations and future work will be discussed. Lastly, in chapter 6 an overview of the research
will be handled.



2
Previous works

In this section, two works that also use LLMs for better explainability of GP models will be discussed.
Furthermore, the original TalkToModel paper will be discussed since this will be the starting point of the
enhanced application.

2.1. Explaining Genetic Programming Trees using Large Language
Models

In this paper, LLMs are used to improve the interpretability of GP (Maddigan et al., 2024). As men-
tioned in chapter 1, GP can be applied in many different tasks, and where our paper is focused on
symbolic regression, this paper focuses on GP for non-linear dimensionality reduction (NLDR). NLDR
is a technique used to reduce the dimensionality (reducing the number of features) of a problem, mak-
ing a problem easier to analyze and understand. GP-NLDR is used for explainable NLDR where the
reduced dimensions (embedding) can be directly understood in the context of the original features. In
this technique, each dimension in the embedding is represented by a single GP tree.

This paper describes their approach to achieve better explainability of GP models. This is done
by a web-based dashboard called GP4NLDR. This dashboard consists of multiple parts working to-
gether. The first part allows users to perform GP-NLDR in the application and the outputs of this are
visible in the dashboard followed by tree expressions and visualizations for each new dimension. After
this, an LLM (GPT-3.5 or GPT-4) gets initialized with some prompts and then finally gets prompted
to ”Provide an exciting summary of the results”. After this the user is free to ask questions to the
system, the LLM gets the question as input and outputs a response as output. Because GPT-3.5 is
only trained until September 2021 some important research on GP is unknown to the system, for this
reason Retrieval Augmented Generation (RAG) is used. RAG addresses this limitation by building a
vector store/database of vector embeddings from relevant documents. This allows the system to inject
relevant information if necessary.

There is a lot of similarity between this paper and this thesis. Both are concerned with increasing
the interpretability of GP using LLMs. Both implement this by creating a chatbot interface with which
the user can interact, and ask questions to improve their understanding of GP.

There are, however, also some key differences, the first being the GP task the papers focus on.
While this paper focuses on NLDR, the thesis focuses on SR. Another difference is that this paper
only uses an LLM (and RAG) to answer questions after having initialized the LLM with some initial
prompts. Whereas TalkToModel uses an LLM to translate the user’s question into a grammar which is
then executed by the execution engine.

A weakness compared to our system is that the way the LLM is used makes it susceptible to hallu-
cinations. LLMs are prone to suffer from hallucinations where the generated content is either in conflict
with existing sources or cannot be verified by the available knowledge resources (Li et al., 2023). Hal-
lucinations make using LLMs in real-world applications risky. This is something this thesis wants to
avoid, especially in high-stakes environments such as in healthcare. In TalkToModel hallucinations are
not possible because of the way the LLM is used. Another weakness is that because this application
uses the OpenAI API it is prone to privacy issues. Since everything you ask is being sent to OpenAI

5



6 2. Previous works

this is unwanted for sensitive data such as patient records. Our system avoids this by having the LLM
run locally.

A strength compared to our system is, that in this case more of the full potential of LLMs is used. In
our system, the LLM is used to translate user input into grammar. Which executes an operation, this
means that all of the answers our system can output have to be manually coded. While in this paper
the LLM has the freedom to answer any question. This can result in a better user experience since the
users are not limited to a defined set of questions. Another strength of this system is that it can perform
NLDR in the dashboard itself. In our application, it is not possible to run a GP algorithm but instead,
you have to load in the GP models yourself. Even though loading in your own models gives you more
freedom and does not limit you to running any predefined algorithm. This does have the disadvantage
that users are forced to generate their GP models themselves, which can make the system harder to
use.

2.2. Conversational explanations of Machine Learning models us-
ing chatbots

In this section, a thesis will be discussed that proposes a chatbot for explaining decisions of a predictive
model (Kuźba, n.d.). The thesis wants to find out what human operators would like to ask a model.
In order to ask this question they developed the XAI-bot which offers a conversational interface to
explanations. In the thesis, they trained a random forest model on the titanic dataset included in the
DALEX package (Biecek, 2018) and described in (Biecek and Burzykowski, 2021). The system is
model-agnostic and can be used with other models than a random forest model.

There are a lot of similarities between the XAI-bot and the TalkToModel system. Both use chatbots
for a user to interact with in order to ask questions about a black box model and the corresponding
dataset. Also, the way the answering of a question is done has a lot in common. Just like TalkToModel,
the XAI-bot answers questions by first parsing user input and extracting the intention of this by trans-
forming it into a form that the system can execute, this form will then be executed and then returned in
the form of templates. Furthermore, they both use explainers to help users to answer questions. Ex-
plainers here are methods used to interpret and explain the decisions or outputs of the models. These
explainers help users understand why a model made a particular prediction or decision by providing
insights into the factors and features that influenced the model’s output. The explainers that are used
differ between the two systems. TalkToModel uses SHAP and LIME for example, whereas XAI-bot
uses CeterisParibus and iBreakDown, but in both systems they are interchangeable and the system is
not dependent on them. Even though the implementation differs between the two systems, the overall
structure and idea behind the system are similar.

The big difference between this thesis and the TalkToModel paper is the focus of the paper. The
main goal of the thesis is to find out what a human operator would like to ask the ML model. While the
TalkToModel paper focuses more on what system could increase the explainability of models for users.

A weakness compared to TalkToModel is that this system has much fewer options for questions. As
mentioned, the paper focuses more on the interactivity between a human and the system and as such
has more functions for conversation such as praising the user among others. However, the system has
only a fraction of the operations of TalkToModel which are visible in table 2.1. Another big weakness
compared to TalkToModel is that in this system it is much harder to train for a new dataset. As will be
explained in section 2.3.1 it is trivial to train a new dataset for the system. Only having to upload the
data and run a training script that takes care of everything. In the XAI-bot there is no such system in
place. This means that it can be time-consuming to train this for a new dataset which limits its usability.

Because the paper focuses more on the interactivity between the user and the system, this paper
has some strengths over the TalkToModel paper. The first is that it uses a dialogue storage that stores all
human-chatbot interactions. This storage can be used by the system for training. This way the system
becomes better iteratively by training on questions by users the system might not have supported
earlier. Another strength is in the presentation of the answers. Both systems use templates to answer
however XAI-bot also has some alternatives for the templates to keep conversations fresh. On top of
this XAI-bot also allows for more interactivity by including graphics and letting users respond using a
button. While the enhanced TTM system described in chapter 3 also contains graphics, the original
TTM does not. A screenshot of such an interactive response of the XAI-bot can be seen in figure 2.1.

Overall, the ease with which the datasets and models can be changed makes TalkToModel the
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Figure 2.1: Screenshot of the XAI-bot showing extra interactivity with buttons.
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preferred system for us, since our system should be able to support multiple models and datasets.
Furthermore, the extra features such as the interactivity and the image responses can also be added
to the TalkToModel system without too much effort. While the features that TalkToModel has that the
XAI-bot lacks, are more difficult to implement.

2.3. Talk-To-Model
TalkToModel is the most important part of this thesis. It is the foundation of our system and it is therefore
important to discuss this paper in detail. This section will first explain the system and after that, the
operations of the system will be explained.

2.3.1. The system
This sub-section first gives an overview of the system. Then, the interface will be discussed, the dia-
logue engine will be next, and lastly, the execution engine will be handled.

Overview
As mentioned, TalkToModel is a chatbot that allows users to ask questions about their model and
dataset. Using TalkToModel users can have discussions about why predictions occur, how the predic-
tions would change if the data changes, and how to flip predictions, among many other conversation
topics (Slack et al., 2023).

In figure 2.2 an overview of the system can be seen. In the system, there is a dataset together with a
model loaded in. The user can ask a question to the system through natural language in step 1. In step
2 the user input gets parsed by the system into a form the system can understand and execute. Lastly,
in step 3 the operation which the system got in the previous step gets executed and gets returned to
the user in a readable format.

Interface
The system interface can be seen in figure 2.3. The interface is like having a chat with someone. This
helps to make the conversations feel more natural. Apart from just chatting, the interface also allows
you to pin answers from the system. This will save these messages on the right so you can easily
select answers you find important. Furthermore, there is a feature to help users generate a question
if they do not know a question to type themselves, this feature can be seen in figure 2.4. As can be
seen, the feature allows you to select a category and this will then generate a random question of that
type in the input field.

TTM is divided into two parts, the first is the dialogue engine that understands user inputs, maps
them to operations and generates text responses based on operations. The second part is the execu-
tion engine which handles the operations.

Dialogue engine
The dialogue engine is performed in four steps.

1) the TalkToModel system constructs a grammar for the given dataset and model, this determines
what parses there will be. This grammar is made in LARK (Shinan, 2017) which is a parsing toolkit
for Python. The grammar specifies everything that the system can execute. Here is an example of
how the ”define” operation is specified in the grammar. This operation allows a user to get a feature
explained.

define: defineword allfeaturenames
defineword: ” define”

This means that the following is an accepted parse given that BMI is a feature of the dataset:

” define bmi”

TalkToModel changes the grammar based on what dataset is used. This means that you can use
datasets and models interchangeably with other datasets and models without modifying the grammar.
For example, if another dataset and model are used that does not contain the feature BMI but other
features. The system automatically changes the grammar such that define bmi is no longer accepted
but it would accept other parses that contain the features present in the new dataset.
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Figure 2.2: Overview of the TalkToModel system
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Figure 2.3: An screenshot of the Talk to Model system

Figure 2.4: A screenshot of ”Help me generate a question” section
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2) TalkToModel will generate user utterance, parse pairs based on wild cards. These pairs look like
this:

User: What are the predictions for instances with
{num_features} less than {num_values}?
Parsed: filter {num_features} less than {num_values} and predict [E]

User: Could you show me the predictions on all the data?
Parsed: predict [E]

The line after ”User:” is the user utterance and the line after ”Parsed:” is the parse. The parse is what
the utterance looks like in the grammar. Here the text between are wildcards. These can be filled
in by the system. For the num_features wild card, the system can fill in any numerical feature. For
num_values the system can fill in any possible numerical value. Then system generates more pairs by
filling in these wildcards and adds these on top of the pairs that do not have wildcards.

3) TalkToModel finetunes an LLM using the generated utterances and parse pairs. This then allows
a user utterance to be translated into the TalkToModel grammar by the LLM. More information about
the different LLMs is given in section 2.3.3.

4) The system responds conversationally to questions asked by the user by executing the parses
(which are in the grammar). This is actually in the form of simple templates. The LLM does not write
the answer as in other chatbots such as ChatGPT or the system described in section 2.1. Instead, the
system executes code, what to execute is specified by the parse. This then does some operations, for
example, predicting a data point. The output of this prediction is then formatted into a readable format
and returned to the user.

Execution engine
At the core, TalkToModel provides explanations of models using feature importance explanations. This
means that TalkToModel treats its models as black-box and doesn’t use any of the inner workings of
the model for its answers. It is stated, however, that this can easily be extended using inner model
workings. The system uses post-hoc explanations and uses multiple feature importance techniques:
LIME and SHAP (Ribeiro et al., 2016; Lundberg and Lee, 2017) and uses a faithfulness metric to select
the best of these explanations.

Apart from feature importance explanations, the system can also answer different questions. For
example, questions regarding counterfactuals, such as: ”What would happen to the prediction if I were
to change this variable to x?” or questions about the system’s function, such as ”Explain what model is
used.” It is easy to expand this system to answer more questions, which makes it very flexible to add
new models.

2.3.2. TalkToModel Operations
TalkToModel comes with a predefined set of questions. In table 2.1 you can find an overview of all the
questions included in the system. The questions are divided into 5 different categories: Data, Explain-
ability, ML error analysis, Conversation and Description. All of these categories will be discussed to
show what they do and how they contribute to interpretability.

Data
The first category of data contains different ways to analyze and select and manipulate the data points
the system is loaded in with. The filter category is one of the most important operations in the system
and allows you to do an operation on a subset of the data. Here you can specify what subset you want
by selecting features and values. Together with the ”and” and ”or” operations this allows you to make
interesting operations for example: ”What are the predictions on patients older than 30?” Which will
filter the dataset to only include data points with age higher than 30 and then do the prediction on this
set. Apart from this, there are ways to analyze the dataset by showing statistics or showing the items
in the conversation.

Explainability
The second category can give the users explanations. All these operations can help the user un-
derstand or find justification for the models’ predictions. These operations can help increase the in-
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operation, arguments, and description

filter(dataset, feature, value, comparison): filters dataset by using value and
comparison operator

change(dataset, feature, value, variation): Changes dataset by increasing, de-
creasing, or setting feature by value

show(list): Shows items in list in the conversation

D
at
a statistic(dataset, metric, feature): Computes summary statistic for feature

count(list): Length of list

and(op1, op2): Logical “and” of two operations

or(op1, op2): Logical “or” of two operations

explain(dataset, method, class=predicted): Feature importances on dataset

cfe(dataset, number, class=opposite): Gets number counterfactual explana-
tions

topk(dataset, k): Top k most important features

Ex
pl
ai
na
bi
lit
y

important(dataset, feature): Importance ranking of feature

interaction(dataset): Interaction effects between features

mistakes(dataset): Patterns in the model’s errors on dataset

predict(dataset): Model predictions on dataset

likelihood(dataset): Prediction probabilities on dataset

incorrect(dataset): Incorrect predictions

M
L

score(dataset, metric): Scores the model with metric

prev_filter(conversation): Gets last filters

prev_operation(conversation): Gets last non-filtering operations

followup(conversation): Respond to system followupsC
on
v

function(): Overview of the system’s capabilities

data(dataset): Summary of dataset

model(): Description of model

D
es
cr
ip
tio
n

define(term): Defines term

Table 2.1: Overview of all operations supported out of the box in TalkToModel. In the table are 5 different categories of operations.
The operation, arguments and description are all indicated by their own colour.
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trepetability. These explanations can take on several forms such as showing the most important fea-
tures for the predictions or showing patterns in the model’s errors.

ML error analysis
The third category is ML error analysis. This category shows what a model predicts as well as how
good those predictions are. Furthermore, there is an option to see what the wrong predictions are.
These operations allow users to see how well the model does in terms of performance and enable
them to see which data points get predicted correctly and incorrectly.

Conversation
The conversational category helps the system to make an actual conversation. The prev_filter and
prev_operation call back to a previously specified filter or operation. This allows a user to call back
to something without actually specifying it. For example, if the user previously asked: ”What are the
predictions on patients older than 30?”. The user can then ask ”What are then the most important
features for them?”. This will use prev_filter to see that patients older than 30 was previously filtered
and thus only looks for the most important features for these data points.

Description
The last category gives descriptions of what the system can do, its dataset including information about
the features and the model. These methods can give the user a good introduction to what exactly is
possible with the system as well as seeing what kind of data and model the system is working with.

2.3.3. LLMs
In the TTM paper, three different methods were used to translate the utterances into parses: Nearest
neighbor, three different GPT models (Wang and Komatsuzaki, 2022) and a T5 model in three different
sizes (Raffel et al., 2020). The T5 model acquired the best results in their paper but requires fine-tuning
and therefore takes a little longer to set up. Also, the three different sizes of T5 model do not differ a lot
in terms of performance. After testing these models ourselves, it was found that the T5 models perform
much better and that indeed the different sizes of the model do not affect the performance much. Thus
the T5 small model is the model used for the enhanced TalkToModel system.





3
Methods

This chapter first describes how TalkToModel was altered to handle (multiple) GP models. Next, to
further develop the system ideas were gauged for features and interest for the system by doing user
interviews. Finally, the methods chapter covers the setup of the evaluation experiment that was per-
formed to evaluate TalkToGP by letting participants use the system.

3.1. TalkToGP
The original TalkToModel system has to be altered to support GP models. This section covers all the
changes and additions to the original system. First, the switch from classification to regression models
will be explained, followed by the techniques used to add new questions. After that, the change to
support multiple models, the addition of new specific GP questions, and finally, the changes made to
the original set of questions will be explained.

3.1.1. GP models in TalkToModel
The first problem with the original TalkToModel system is that it only supports classification models,
and since this research wants the GP models to perform symbolic regression, the system needs to
be changed to support this. To help support regression models, a fork of the original TalkToModel
repository is used, called TalkToModel-TrustAI, which introduces the possibility of using regression
models (Krkv, 2023). This repository includes changes allowing users to use regression models instead
of classification models. Even though not all functionalities are implemented, such as predicting data,
it provides a good starting point.

The next step is to load GP models into the system. The original TalkToModel system only accepts
Sklearn models (Pedregosa et al., 2011). Since GP models can simply be expressed by mathematical
expressions, these expressions were embedded in a Sklearn base class. AGPModel class that extends
the Sklearn base estimator is created and this class has a string of a mathematical expression as a
parameter. Using SymPY (Meurer et al., 2017) this expression is parsed and lambdified such that it
can be used for numeric evaluation. Lamdifying is the process of transforming expressions into lambda
functions which can be used to calculate numerical values quickly. The only other requirement for the
class was that a predict method was defined. This method is to predict the value of data points. It takes
one or more data instances as input and outputs the corresponding numbers the model predicts. This
is done using the lambidified expression.

3.1.2. Extending the Question Set
The system can now be extended beyond just black-box questions. Since the GPModel class now has
access to the expression, the system can be extended to ask questions about the internal structure
and functioning of the model. First, a set of simple questions was made. This included questions like
”How many nodes does the model have?” or ”What operators does the model have?”

As mentioned in Chapter 2, TalkToModel uses an LLM to parse user utterances into a grammar the
system understands. This grammar uses words that are linked to an operation. In order to add new
questions to the system four steps have to be performed:

15
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1. Adding new prompts

2. Extending the grammar

3. Writing execution code

4. Training the LLM

In the rest of this section, it will be explained how those four steps are performed to add new ques-
tions to the system.

Adding prompts
First, new user utterance-parse pairs have to be created. These are stored in a file in the form of:

User: Select models containing the * operator and show their features.
Parsed: select selectop * and featuresget [E]

User: plot the approximation front
Parsed: approximationplot [E]

Each pair consists of a user and a parsed part. In step 4 the LLM uses the pairs as examples during
finetuning to see how to translate certain user input into the grammar. This way the LLM can learn how
to parse different questions. Because a pretrained LLM is used, which is trained on general natural
language tasks, the LLM has a general language understanding. This means that the users do not
have to type the questions as specified by the pairs exactly, because the LLM can understand that their
question has a lot of similarity with an existing user-utterance-parse pair. When the LLM is fine-tuned,
the user can type a question and TalkToModel can translate it to grammar.

The first pair in the example above is for filtering models with a multiplication operator and showing
the features present in those models. Here the * means the multiplication operator. If the user uses
a different operator, for example -, the system would understand that it now has to filter on the minus
operator.

The TalkToModel paper states that the more pairs are added, the better the performance of ques-
tions will be. To help generate more pairs ChatGPT (OpenAI, 2022) is used. First, one to three pairs
without the help of ChatGPT are created. After ChatGPT is given the pairs it is explained to ChatGPT
what the goal and use of the pairs is. ChatGPT is then asked to generate 10-20 more pairs depending
on the question. Some questions are more complex and thus require more prompts to be generated.
In figure 3.1 you can see an example prompt used in ChatGPT to generate more user utterance-parse
pairs.

Extending the grammar
plotsubtree: ” subtreeplot”
deletenode: ” nodedelete” adhocnumvalues

The next step is to extend the existing grammar. This is done by adding new operations in the grammar.
An example of two operations is shown above. They consist of three parts:

1. The first part is the operation name which in these cases are plotsubtree. and deletenode.

2. Next are the action words. These action words are mapped to a specific operation the system
can execute. In the examples above they are ” subtreeplot” and ” nodedelete”.

3. Aside from this, the more complex questions also have other parameters that have to be specified
in the grammar. The ”deletenode” operation for example is specified as: ” nodedelete” adhocnum-
values. Where nodelete is the action word and adhocnumvalues is a parameter for this operation
and is allowed to be any integer. This way the nodenumber that has to be deleted can be found.
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Figure 3.1: A screenshot asking ChatGPT to generate more user utterance-parse pairs

Writing the execution code
Furthermore, to add a question, some new execution code has to be written. This is done by first
mapping the action word to the operation. In this operation, any other information that is of interest
is parsed (for example, on which operator to filter). Then, using all parsed information, the code is
executed, which usually involves getting some information from the GPModel class such as its number
of nodes or getting all subtrees of the expression. These results are then formatted into a string or
image which is then displayed by the system. Because of this way of answering questions, the system
is unable to hallucinate answers. This means it is possible to validate that the system’s answers are
correct.

Training the LLM
Lastly, for the system to be able to answer new questions, the T5 model has to be fine-tuned. As
mentioned in Chapter 2, the T5 model is a pretrained model that comes in three sizes: small, base and
large. While experimenting with the different sizes, the conclusion was drawn that the small size has
acceptable performance. This model is chosen because of its much quicker training time.
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3.1.3. Multiple Models
Another issue is that the original TalkToModel system only supports a single model, however, in order
to compare different GP models, multiple models should be loaded at once.

This thesis is not made with a specific GP algorithm in mind. However, MO-GP is a very good fit
to evaluate the system, since this gives a front of GP models instead of just one. Specifically, Multi-
Objective Multi-Modal GOMEA (MM-MO-GOMEA) is used (Sijben et al., 2022). With multi-objective
GP the individuals do not only get optimized for accuracy but also for complexity. The complexity of
individuals can be measured in several ways but in this thesis, it was opted to go with the number of
nodes. This means the lower the number of nodes the lower the complexity will be.

The system wants to be able to compare multiple models as in MM-MO-GOMEA not only one
model but a front of models is returned. This way a user can ask questions about multiple models
simultaneously and compare them. To enable this the system was changed to instead of loading a
single model to load and save multiple models. This caused the system to be changed in multiple ways
to adapt to these changes. This is discussed in more detail in section 3.1.5

3.1.4. New Questions
Now that there is an option to add new questions and to load in multiple GP models, new GP-related
questions can be made as well as questions specific to multiple models. Table 3.1 contains an overview
of all the new questions that were added to the system. These questions are separated into four different
categories:

• GP info

• Graphic

• Tree modification

• Select

Each of the categories will be briefly explained in terms of what kind of questions they contain and
why they are added to the system.

GP Info
This category of questions contains questions that give information about theGPmodels that are loaded
into the system. Most of them have only the set of models as their parameter. All these questions look
at the current set of models and answer their particular questions. All questions give some information
that is useful when analyzing a model, such as how many nodes are present in each model. The
function of these questions is to give the user a quick and intuitive way to inspect the models to get to
know them better. This allows a user to ask: ”Can you show me the node sizes of the models” which
would return the respective sizes of the models.

The big advantage of these questions is that users can get an answer to these questions in seconds.
If someone had to analyze a model themselves, even if it is something simple like counting the number
of nodes, it takes a while to figure out the answer to these questions especially if you have a front of
models. Also doing it by hand is more error-prone while this system can give a guarantee that the
answer is correct. This makes it a much easier and more reliable process than if you had to analyze
these models by hand.

Graphic
This category contains questions that return a graphic as an answer. There are four questions in
this category: plot_tree, plot_approximation_front, show_effect and set_feature. Both plot_tree and
plot_approximation_front operations have only the models as a parameter, nothing else has to be
specified. For the show_effect operation also a feature and node have to be specified. The advantage
of the plots is that they can make information much easier to understand through visualization. Even
though there are only 4 questions here now, this could be easily expanded upon in the future. Figure
3.2 shows what the plot_tree operation looks like and figure 3.3 show the show_effect operation.
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operation, arguments, and description

num_ops(models): Gives for every model the number of operators present in
the model

get_ops(models): Gives for every model the each operator present in the
model

num_nodes(models): Gives for every model the number of nodes present in
the model

G
P
In
fo num_features(models): Gives for every model the number of features present

in the model

get_features(models): Gives for everymodel each feature present in themodel

most_common_features(models): Gives a list of the most common features
across each model

get_expressions(models): Lists all the expressions for each model

common_trees(models): Lists the most common sub-trees across each model
together with the number of occurrences

outliers(models, percentile=99): Returns for each selected model the worst
predictions from a specified percentile. If no percentile is specified it defaults
to 99.

most_important_subtrees(model): Shows a ranking of the most important sub-
trees in the model

bad_trees(model): Shows a ranking of nodes based on how little they affect
the score when they would be removed from the model

plot_tree(models): Plots the expression tree for each model

plot_approximation_front(models): Plots the approximation front containing
the accuracy and complexity for each model

show_effect(model, feature, node): Plots a graph showing the effect of a fea-
ture on a particular node in the tree. Sets all other features to their average
unless there are set to a value using set_feature

set_feature(model, feature, value): Sets a feature to a particular value. These
values are used when using show_effect.

G
ra
ph
ic

mod_node(model, nodenumber, math_expression): Changes the node which
corresponds with the nodenumber of a specified model to the mathematical
expression given

delete_node(model, nodenumber): Deletes the node which corresponds to the
nodenumbers of a specified model

Tr
ee

m
od

simplify(models): Simplifies all the expressions of the selected models such
that the new expressions correspond to the old ones

revert(model): Reverts all the changes made to a model and returns it to its
original state

select(models, operation, value, comparison): Filters the set models by filter-
ing on a specific operation which is then checked by a particular value and
comparison.

Operations include: accuracy, complexity, number of constants, number of
features, id, number of nodes, operation, number of operators, all models,
feature present

Se
le
ct

Table 3.1: Overview of all operations added to support GP models. The table is divided into four categories of questions: 1) GP
Info, 2) Graphic, 3) Tree Modification and 4) Select questions. Each line consists of the operation name, the parameters each
operation takes and the description of that operation. Each operation is coloured blue, each parameter red and the description
is coloured black.
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Figure 3.2: A screenshot of the tree graphic. The format for each node here is value_nodenumber. The nodes are ordered by
preorder traversal. This means the tree is traversed recursively by first visiting the root, then the left node and then the right
node.
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Figure 3.3: A screenshot of the show_effect operation. This operation returns a graph that shows the effect of a feature on the
outcome of the node specified. On the x-axis is the value of the feature; this starts at the minimum value of the feature and goes
until the maximum of the feature. On the y-axis is the resulting value of the specified node.

Figure 3.4: A screenshot of the tree modification operation. On the left a model is selected and shown as a tree. On the right
this model gets modified by changing node 2 to 3+3.
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Tree Modification
These questions allow the user to change models. When seeing the GP expressions as a tree it
becomes intuitive to change things. These operations allow users to do that.

The operation mod_node takes amodel, nodenumber and amath expression as input. Themodel is
themodel that will be changed, the nodenumber corresponds to a node in the tree. These nodenumbers
are visible when the tree is plotted, as can be seen in figure 3.2. Lastly, the subtree rooted at the
node specified will be changed to the mathematical expression specified, creating a new model that
overwrites the old tree.

The operation node_delete works similarly but doesn’t change the node but instead deletes the
whole subtree rooted at the specified node. These functions allow a user to interact with the nodes of
models and see what effects this has on the predictions and other explanations. This can potentially
increase the understanding of the user of the models.

These operations also allow us to have a human in the loop. If there is for example some prior
knowledge about a variable a user could apply this knowledge and modify the model to contain this
information. This way it is possible to combine the power of GP with the knowledge of a subject that
might already exist.

Select
The last category is select questions. These questions allow users to select a subset of models from
the original set. The operation takes a set of models, an operation, a value and a comparison operator.
There are several operations specified here, such as the accuracy, number of constants or the id of a
model.

If applicable, the comparison operator will compare with the value to find which models satisfy the
condition. The models are then added to the current subset and when concatenated with a different
question will only answer for this set of models. For example, a user can ask: ”For models with less
than 15 nodes predict all data instances”. The system would then select all models that fit the criteria
of having less than 15 nodes and would then execute the predict operation.

These ”select” operations can help a user explore the models, especially if there are a lot of models
or if the user is only interested in models with specific characteristics.

3.1.5. Fixing Original TalkToModel Questions
Apart from the newly added questions, the original black-box questions in the TalkToModel system
could also be very useful in the new system. Not all questions still worked while other questions still
worked but were not properly changed to support regressions or multiple models. In this section, an
overview is given of the most important changes that were conducted to adjust the system compared
to the original operation in table 2.1.

In table 3.2 you can see an overview of what happened to each of the original questions. There
is one of three possible situations for each question: Changed, Removed or stayed the same. The
changed questions have been altered in order to either support multiple models or to support regression
models instead of classification models. The removed questions also did not work as intended anymore
just as the changed questions. However, for some of these questions, it did not make sense to add
them again or it was decided against adding them because of the complexity. Lastly, the questions that
stayed the same, still worked as intended and did not have to be altered. Next, the justification as to
why these questions are either changed or removed is discussed.

It was decided to remove the cfe operation. Out of the box, the cfe operation only works with
classification models, this means our symbolic regression GPmodels are not supported. It was decided
that this was not the focus of this thesis, therefore the question was left out.

In the original TalkToModel system, the topk and important questions only support a single model.
These importances are calculated and then cached when loading a new model in the system. The
system had to be extended to allow for multiple models.

The mistakes question looks for patterns in the mistakes of the model. This question was made
to support classification models therefore it did not work for our models. This got replaced by a new
operation which is in table 3.1 called ”outliers”, this operation looks for the worst predictions, which
means it looks at where the model makes mistakes.

The predict operation still worked but it was set to output the results of each label. In the case of a
classification problem, this is a small set. However, in the regression version, each output was consid-



3.1. TalkToGP 23

Changed, Removed, Stayed the same

filter(dataset, feature, value, comparison): filters dataset by using value and
comparison operator

change(dataset, feature, value, variation): Changes dataset by increasing, de-
creasing, or setting feature by value

show(list): Shows items in list in the conversation

D
at
a statistic(dataset, metric, feature): Computes summary statistic for feature

count(list): Length of list

and(op1, op2): Logical “and” of two operations

or(op1, op2): Logical “or” of two operations

explain(dataset, method, class=predicted): Feature importances on dataset

cfe(dataset, number, class=opposite): Gets number counterfactual explana-
tions

topk(dataset, k): Top k most important features

Ex
pl
ai
na
bi
lit
y

important(dataset, feature): Importance ranking of feature

interaction(dataset): Interaction effects between features

mistakes(dataset): Patterns in the model’s errors on dataset

predict(models, dataset): Model predictions on dataset

likelihood(dataset): Prediction probabilities on dataset

incorrect(dataset): Incorrect predictions

M
L

score(models, dataset, metric): Scores the model with metric

prev_filter(conversation): Gets last filters

prev_operation(conversation): Gets last non-filtering operations

followup(conversation): Respond to system followupsC
on
v

function(): Overview of the system’s capabilities

data(dataset): Summary of dataset

model(): Description of model

D
es
cr
ip
tio
n

define(term): Defines term

Table 3.2: Overview of what happened to all operations supported out of the box in TalkToModel to be used in TalkToGP. Blue
means that the operation got changed. Red mean that the operation got removed. Black means that the stayed the same.
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Figure 3.5: A screenshot of changed predict operation
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ered a label, which meant there was the same amount of labels as data points. On top of that, there are
alsomultiplemodels that have to predict. This there aremeans amount_of_datapoints*amount_of_models
outputs. This, of course, is infeasible to output. Instead, it was changed to output a histogram of the
predictions, when predicting a single value the operation is kept the same and it just outputs the value
and not a histogram. In figure 3.5 you can see what the operation looks like. Even though you now
do not see exactly which data point is predicted to which value, this gives a good overview of what
predicting all data does without cluttering the whole system with hundreds, potentially thousands of
outputs.

The likelihood and incorrect operations are removed because they onlymake sense for classification
models.

The score operation only supported scores for classification models such as the accuracy and f1
score. This again did not work for our regression models, this was changed to support the mean
squared error and the 𝑅2 score.

Apart from this, some of the questions have had some formatting changes made to better fit our
new setting. New questions can easily be added to the system if deemed necessary. Overall the new
questions discussed in section 3.1.4 and the original questions discussed in this section provide a good
set of questions to gauge the system’s effectiveness.

3.1.6. Code availability TalkToGP
The enhanced TalkToModel system described in this section is available at

https://github.com/nealsweijen61/TalkToGP. Here you can install the system locally on your system.

3.2. Exploratory interview
Before finishing the application a preliminary experiment was conducted. This was done in the form
of an interview with people for whom the TalkToModel system is potentially useful. The goal of this
experiment was to understand what potential users would find important in our system as well as to
gauge their interest.

Some things the interviews want to find out are: what kind of features do the users find important,
find out whether they are interested and find out what they will use it for. To achieve this goal, an
interview with 10 questions was created which can be found in the appendix. The interview questions
consisted of 2 parts. The first part is general questions about trusting, difficulties and understanding
models. The second part consists of questions about the TalkToModel system.

In total the interviews were conducted with 5 different people, all of whom had a background and
some experience with GP. The interviews were conducted on Zoom and the audio was recorded there.
From the audio files, a transcript was generated by using Open AI Whisper (Radford et al., 2023).

After getting the data from the participants, this had to be evaluated. After this reflective thematic
analysis (Braun and Clarke, 2006) was performed since this was the most fitting for this case because
of its flexibility. This analysis was conducted using (Byrne, 2022), this work shows a worked example
of thematic analysis, which was followed during the analysis of this experiment.

3.3. Experiment
After the exploratory interview, the system was altered to take into account what the participants said
that they liked in TalkToModel as well as implemented relevant suggested features obtained from this
experiment.

To evaluate how this system performs, an experiment is conducted. In this experiment, users are
asked to do two tasks, one with the TalkToModel system and one without. During this experiment, the
participants are asked to analyze a set of models and afterward answer some questions about their
experience using the two systems.

3.3.1. Objectives
This experiment has several objectives. First and foremost, it’s important to determine whether the
system can indeed make GP models more interpretable. Additionally, it’s important to determine
whether the system is easy to use, how well it performs, and whether users enjoy using it. Since the
system was built with these goals in mind and it was built using the feedback of the participants from

https://github.com/nealsweijen61/TalkToGP
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the experiment discussed in section 3.2, the system is expected to achieve these objectives.

3.3.2. Experimental design
In this section, it will be explained how and why the experiment was designed.

As mentioned, the experiment contains two tasks for each user. Both tasks have the same goal,
only the way the user can work towards this goal is different. The goal is to select a single GP model
from a set of 12 GP models trained on the same dataset. The two tasks have a different set of models
trained on a different dataset. For both datasets, 12 models were trained using a MO-GP version of
GOMEA (Sijben et al., 2022) and came from one training session. The goal for the user is to select the
model they think is best for each of the two tasks. The participants are not bound by any restrictions
while working on the tasks as long as they are performing the task using the respective system.

Datapoints
In our experiment three categories of data points will be evaluated; metrics, answers to questions and
behavioral results. The metrics consist of which participant choose what model as well as the time
each participant spent on both tasks. The answers the participants give to the three questions will be
qualitatively analyzed. Lastly, the way users interact with the two systems will be analyzed.

Datasets
As mentioned, the experiment uses two different datasets. The California housing dataset (Pace and
Barry, 1997) and the bike sharing dataset (Fanaee-T and Gama, 2014).

The California housing dataset contains all kinds of information about blocks of houses such as the
longitude, the average income and the average number of houses among others. The independent
variable here is the median house price. The bike-sharing dataset contains the daily bike rentals for
the years 2011 and 2012. Aside from the amount of bike rentals each day has features for the weather
and seasonal information.

These two datasets were chosen because they are easy to understand. Since the participants
have to do 2 tasks and time is limited, it is useful if the users do not have to spend too much time
understanding the dataset. Also because it is desired to simulate a real-life situation where the users
know their problem but do not know their models yet. Making the datasets easy to understand achieves
this.

It was decided to go for two datasets for two reasons. The first reason is that this way the user does
not get used to one dataset. If the user had the same dataset for both tasks, the second task could be
easier to do since the user already has more knowledge. This could influence our results. Secondly
this way different users can use the same systems with different datasets. This way the answers of the
users are less dependent on the datasets.

Jupyter Notebook Task
One of the tasks is executed in a Jupyter notebook (Kluyver et al., 2016). A Jupyter Notebook is
an interactive web-based environment that allows you to write and execute Python code in real-time,
alongside narrative text, equations, and visualizations. Here, the user joins a Google collab where a
Jupyter Notebook is loaded in together with one of the two datasets. The Jupyter Notebook has three
code blocks for analyzing the 12 GP models. The three codeblocks will be explained as well as their
justification for being there. In figure 3.6 you can see one of the code blocks, this one is the accuracy
code block.

The first is for making predictions, here a user can select any number of data points, select a model
and make the model predict the data points. This prints out the true values of those data points together
with the predictions of the model for the data points. This code block is there for the purpose of allowing
the user to actually use the models. Since their function is to predict values it seems only natural to
allow them to use them for this.

The second block prints out the expressions of all 12 models. This block is present to let the users
analyze the expressions and see for example how complex they are since it was noted that when
people analyze GP models they often look at the expressions. It was opted to not print out any more
information such as the number of nodes or how many operators are in each expression to simulate a
very basic analysis. This ensures that the user has to do most of the work themselves without relying
on too many tools.
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Figure 3.6: A screenshot of the accuracy code block
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The last block outputs the test scores for all the models. By default, the score takes into consider-
ation all the data points but the user is allowed to select a subset of the data points. Aside from this,
the user can also select between either the mean squared error (MSE) or the R2 score. This block is
also present because of the exploratory experiment where users indicated that performance was one
of the most important metrics they look at when analyzing a model.

It was decided to do one task with the Jupyter Notebook as there was no real other alternative for
TalkToModel. During the interviews discussed in section 3.2 it was found that most people analyze their
models by simply looking at them if they would analyze at all. To capture that idea the Notebook was
used. It was deliberately kept very simple but allowed the experiment to have a controlled experiment
where the environment for each participant was the same.

Talk To Model Task
The other task is to be performed in TalkToModel. Here the user gets all the functionality of the GP-
adjusted TalkToModel as described in section 3.1.

3.3.3. Procedure
The two tasks are performed with two different datasets one for each task. The dataset that is used
for the tasks as well as the order of the tasks is evenly distributed such that a fair comparison can be
made between the two.

Before the tasks start, the overall structure of the interview is explained and a short introduction to
TalkToModel is given.

Before the Jupyter Notebook task is performed a short introduction for the notebook will be given.
Here it is explained how they can get it up and running. As well as what the function of each block is. It
is also explained that the user is free to use anything or nothing at all when using this task, the blocks
are not mandatory to use.

Before the TalkToModel task is performed an introduction for the system is given. Here the the user
is shown how to use the system. This is done by showing some example prompts and making a small
conversation. Apart from this ”the suggest me a question” buttons as seen in figure 2.4 are also shown
and it is explained that this is a good point to start if you do not know what to ask.

During both tasks, the time is recorded which is stopped when the user decides on what model
to choose. After they have decided on the model, they get asked a couple of questions about their
decision.

Finally, after finishing both tasks, the interviewees are asked a last set of questions. These ques-
tions are to compare the two systems and see what the user prefers using and whether they think
TalkToModel increases the interpretability of GP models.
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Results

In this section, the results of the experiments in section 3.3 are presented and discussed. The results
are divided into three parts: first, the numerical results will be analyzed, next the qualitative data will
be analyzed and finally the observed behaviour of the users will be presented.

4.1. Results Evaluation Experiment
4.1.1. Model chosen
First, the models that the users have chosen are analyzed. In table 4.2 the model that each participant
choose for both tasks is presented. Moreover, in table 4.1 the order of the tasks of the participants
as well as which data set was used in which task can be seen. In this section, the models that were
chosen and the reasons of the participants for choosing each model are discussed.

Before analyzing these results any further, one important data point has to be discussed. In table
4.2 you can see that one of the participants could not decide upon a model at all. The participant spent
a lot of time deciding but eventually drew the conclusion that no model was good enough.

When looking at table 4.2 you can see that out of the 12 models, a lot of the same models were
chosen: people often preferred the same models. This is most prevalent in the Bike Daily dataset
where of the 12 models during the 6 experiments only 2 different models were chosen. Even though
in the California Housing dataset this happened less, still only 4 different models in total were chosen.
The system used seems to have little impact on the consistency here and is more impacted by the
dataset.

Participants 1, 2 and 3 all chose the same model with Jupyter Notebook and between the three of
them, 2 different models with TalkToModel. Participants 4, 5 and 6 choose 2 different models when
using the notebook and 1 when using TalkToModel. Even though the system used might not have an
impact on the consistency, when looking at the data it can be observed that the people who used a
particular system for a dataset tended to choose the same model as each other. For both systems, the
choice of the model seemed consistent but the type of system did not seem to increase the consistency.
Thus, the type of system used might have an impact on which model is chosen. This could however
also be explained by what people find important in a model since the two groups differed in how they
analyzed the models.

There was a difference observed in how the selection was done by participants based on the system
they used. As will be explained in the next section participants 4,5 and 6 all spend little time on the
notebook task, quickly making their decision. When these participants did the TalkToModel task, they
spent more time analyzing all the different models. This could be because they found it easier to
analyze and they felt there were more options to analyze. This is also in line with what the participants
said themselves, which will be discussed in section 4.2; they said that TalkToModel makes the analysis
easier and better because there were more options.

4.1.2. Time spent
In tables 4.3, 4.4, and 4.5, the times it took to complete each task are shown together with the average
and standard deviation. As mentioned in section 4.1.1, one participant decided not to choose any
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Participant First Task Second Task
Participant 1 Notebook Bikes TalkToModel

House
Participant 2 TalkToModel

House
Notebook Bikes

Participant 3 TalkToModel
House

Notebook bikes

Participant 4 Notebook House TalkToModel Bike
Participant 5 TalkToModel Bike Notebook house
Participant 6 Notebook House TalkToModel Bike

Table 4.1: Table to see which tasks the participants did and in which order

Participant Bike model chosen House model cho-
sen

Participant 1 2 7
Participant 2 2 12
Participant 3 x 7
Participant 4 9 9
Participant 5 9 4
Participant 6 9 4

Table 4.2: Table that shows the model that each participant chose for each of the two tasks

model when using the Jupyter Notebook, and the task was stopped without them choosing any model.
This means that the time noted can be considered meaningless since the task was not completed. The
time noted is a big outlier because of this reason the decision was made to also the analysis without
the value. This leads to a more meaningful analysis.

System
Table 4.3 shows that, on average, more time is spent on the TalkToModel task. What is also interesting
to note is that the system used is the only variable that caused all the participants to spend more time
(when not considering the participant’s 3 notebook task). One reason for this is that the participants
all needed a little time to get used to the TalkToModel system as this was their first time using it.
Whereas the Notebook is very straightforward in its capabilities and the participants were only given
three code blocks to execute. Another reason for this difference is that it was observed that especially
for participants 4,5 and 6, the effort spent analyzing increased when using the TalkToModel system.

Dataset
In table 4.4 it can be seen in the altered average time that average times are very similar. Here it can
be seen that the participants who had their dataset on the TalkToModel system spent more time on that
dataset. It could be argued from this data that the dataset had little to do with their time spent.

Order
Also here in table 4.5 there is not a significant difference in the times spent between the first and second
tasks meaning that the order of tasks did not have a big influence on their time spent.

Bike rental Dataset
1. ”(58.520*59.715)”

2. ”((57.795+((x1+x7)*58.646))*40.257)”

3. ”((((38.145*26.640)-(x2*-56.715))* ((x1+x7)+sin(x6)))/ (sin(cos(cos(x10)))+1e-6) )”

4. ”((50.720*57.785)/ (sin(cos(x1))+1e-6) )”

5. ”((57.795*(x0+53.218))/ (cos(x1)+1e-6) )”
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Participant Time spent on Talk-
ToModel

Time spent on
Jupyter notebook

Participant 1 16:50 12:58
Participant 2 16:00 10:22
Participant 3 19:11 26:56
Participant 4 17:30 4:28
Participant 5 5:00 2:22
Participant 6 13:41 4:50
Average time 14:42 10:19
Standard deviation 4.642 8.279
Average time with-
out 3 notebook

14:42 6:48

Standard deviation 4.642 3.994

Table 4.3: Table that shows the time each participant took to complete each of the two tasks. The two columns are separated
by task, in the first column is the time it took for the TalkToModel task, and the second column is for the Jupyter Notebook task.

Participant Time spend on Bike Time spend on
House

Participant 1 12:58 16:50
Participant 2 10:22 16:00
Participant 3 26:56 19:11
Participant 4 17:30 4:28
Participant 5 5:00 2:22
Participant 6 13:41 4:50
Average time 14:24 10:36
Standard deviation 6.754 6.834
Average time 11:54 10:36
Standard deviation 4.171 6.834

Table 4.4: Table that shows the time each participant took to complete each of the two tasks now ordered on the dataset. The
two columns are separated by dataset; here, the first column is for the bikes dataset, and the second is for the housing dataset.

Participant Time spent on First
task

Time spent on sec-
ond Task

Participant 1 12:58 16:50
Participant 2 16:00 10:22
Participant 3 19:11 26:56
Participant 4 4:28 17:30
Participant 5 5:00 2:22
Participant 6 4:50 13:41
Average time 10:24 14:36
Standard deviation 5.924 7.46
Average time 10:24 12:09
Standard deviation 5.924 5.156

Table 4.5: Table that shows the time each participant took to complete each of the two tasks now ordered on task order. Here
the two columns are separated by the order in which they did the tasks; now, the first column is for the first task, and the second
is for the second task.

6. ”((57.795*((x1+x7)*58.462))/ (cos(cos(x1))+1e-6) )”

7. ”((((-48.589*27.965)/(sin(-53.204)+1e6)) *sin((x1+x7)))*cos((x1/ (x0+1e-6) )))”

8. ”((((-48.589*27.965)/ (sin(-53.204)+1e-6)) *sin((x1+x7)))*cos((x1/ ((x0*x0)+1e-6) )))”

9. ”((((-48.589*27.965)/ (sin(-53.204)+1e-6)) *sin(x8))/ (cos(x1)+1e-6) )”

10. ”((((-48.589*26.640)/ (sin(-53.204)+1e-6)) *sin(x8))/ (sin(cos(x1))+1e-6) )”
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11. ”((((-48.589*27.965)/ (sin(-53.204)+1e-6)) *sin((x1+x7)))*cos(((x1-x8)/ ((0.306-x0)+1e-6) )))”

12. ”((57.795*56.798)/ (cos(x1)+1e-6) )”

Housing Dataset
1. ”(128038.565–65500.791)”

2. ”(90747.418*sqrt(x7))”

3. ”(87694.852-(x7*-33431.155))”

4. ”((((x4*x2)+(x7*55966.764))+16510.250)*sin(cos(sin(x0))))”

5. ”(((x3+(x7*55966.764))+((88382.076/ (x7+1e-6) )+x4))*sin(cos(sin(x0))))”

6. ”((((x4*x2)+(x7*55966.764))+((60840.333/ (x7+1e-6) )+x4))*sin(cos(sin(x0))))”

7. ”((38714.865-6404.511)+(x7*41230.930))”

8. ”((((x4*x2)+(x7*55966.764))+((59111.773/ (x7+1e-6) )+(x2*x2)))*sin(cos(sin(x0))))”

9. ”((x0–62467.385)-(x7*-33431.155))”

10. (((x6/ (x5+1e-6) )*139366.254)-56759.704)+(((42076.555*x7)+x5)-(x2*(119829.645/(x0+1e-6))))

11. (((x6/ (x5+1e-6) )*139366.254)-60222.572)+(((42076.555*x7)(x6*x2))-(x2*(88422.150/(x0+1e-6))))

12. ”(((x3+(x7*55966.764))+24423.635)*sin(cos(sin(x0))))”

4.2. Results questions
This section presents the results of the questions the participants were asked after doing both tasks.
These questions are all comparisons between the two systems. The three questions asked were:

1. Which system did you find easier to use and why?

2. Did one of the two systems make the models more interpretable?

3. Which of these 2 systems would you use and why?

For each of these questions, representative quotes are provided to illustrate common themes in the
responses.

4.2.1. Easy of use
The first question the participants were asked was: Which system did you find easier to use and why?
Most people agreed that TalkToModel was the easier system to use. One participant said:

”It is more intuitive, easier and faster. Otherwise, I would have to do it manually”

This opinion was more or less shared by all participants. One participant who was used to coding this
analysis themselves did say that for now the notebook was easier. But in time the TalkToModel would
probably be easier since they would not have to do everything themselves.

4.2.2. Interpretability
The second question was: Did one of the two systems make the models more interpretable? Everyone
agreed that TMM made the models easier to interpret than the notebook.

One participant said:

”TalkToModel is easier to interpret because of the nice way of asking questions.”

Another person said:

”Talk To Model was easier to interpret because of the help of things such as the visualizations.”
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4.2.3. Most likely to use
The last question was: Which of these two systems would you use yourself, and why?

Most participants agreed that TalkToModel is the system they would use over the Jupyter Note-
book, with some added remarks. Some would use it without a doubt, while others still required more
information. As the participants did not use the system very long, there are still some unknowns to
them.

One participant said:

”I would use TalkToModel but I would have to try for a while and get better at it.”

For one participant it was also dependent on what kind of information they needed and what the
system could provide. Since in the Notebook, you could in theory get every bit of information the
TalkToModel system can also provide. Even though implementing this yourself in the Notebook can be
tedious.

4.3. Results behaviour
Lastly, the behaviour of the participants will be analyzed. In this section, the patterns and other inter-
esting things that were observed are discussed.

4.3.1. Jupyter Notebook
The use of the Jupyter Notebook was very different among participants. As mentioned in section 4.1.1
participants 4, 5 and 6 did not do a lot of analyzing within the notebook as they were done quickly with
the task. They only looked at the accuracy of the models as well as quickly looking at the structure of
the models. They made their choice without using much other than that. Participants 1,2 and 3 spent
more time trying to understand the structure of the models and tried to choose one that made sense
to them. This means that they used the provided code blocks as well as altered some code and made
new code blocks to help them out in analyzing the models.

4.3.2. Talk To Model
When observing the people using TalkToModel also some interesting patterns can be found.

Not asking the right questions
When starting the system for the first time, the participants were all shown some difficulties with using
the system. This was mainly because of the type of questions they asked. As mentioned in section
2.3.1 the system uses a large language model to translate to a grammar which defines everything that
the system can execute. This causes two problems for people asking questions. The first is that people
expect the system to be able to answer every question. This leads to questions giving a lot of ”sorry I
do not understand” responses back, since there is only a defined set of questions.

The second problem is when people do ask something that the system is able to do but the system
does not translate the question into the right grammar for this question but instead another one. Or
answers with another ”sorry I do not understand” response. These two problems hindered people from
using all the functions from the start.

It could be seen however that when participants used the ”suggest me a question button” as in figure
2.4 they had a much better start. These buttons do a good job of showing a lot of the functionality of
the system as well as showing how to write these questions. It could be observed that people using
these buttons at the start had a much smoother experience.

Using a limited set of questions
Another interesting pattern to note was that most participants only used a subset of the functionalities
and a lot were not used at all. The operations to list the models, plot a Pareto front, show the 𝑅2 score
and simplify the models were used a lot. While operations such as plotting the tree of models or asking
the GP info questions were rarely used. This shows that the participants might need more time to fully
grasp what the system can do. When given more time using the system the participants might have
been able to use the system better.
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Natural conversation
It was also observed that the users interacted very naturally with the TalkToModel system. All users
could quickly come up with different questions and it was intuitive for them to use. This is probably
because people are very much used to using chatbots like ChatGPT and it is a natural environment for
them. This natural way of conversing could also cause some problems for the system answering the
questions as was also mentioned earlier in this section.
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Discussion

This section discusses the results and whether the research question posed in section 1.5 is answered.
Afterward, the main contributions will be discussed. Lastly, some of the limitations of the research will
be handled as well as some possible future research directions.

5.1. Interpretation of results
In this section, the results will be discussed and evaluated as a whole. It will explain what the results
mean and how they answer the research question: Can Genetic Programming models be made
more interpretable using TalkToModel?. As mentioned in chapter 1, in this thesis interpretable is
defined as: the ability to explain or to present in understandable terms to a human. This exper-
iment aims to determine whether TalkToGP enhances the ability to explain or present GP models in
understandable terms to a human, compared to using a Jupyter Notebook.

The first evidence that shows that the enhanced version of TalkToModel increases interpretability is
found in the time spent on the tasks. When looking at the times spent in tables 4.3, 4.4 and 4.5 it can
be observed that using TalkToModel has a significant impact on the time spend for the users. It can be
seen that, especially, the participants who spend little time on the Jupyter Notebook task spend much
more time when performing the task using TalkToModel. Even though part of this extra time spent can
be explained by the fact that the users needed a little time to get used to the system compared to the
Notebook. It was also observed that these participants went more in-depth with their analysis when
using TalkToModel. Whereas in the Notebook these users mostly only looked at the accuracy and the
size of the models, these same users looked at more details of the models in TalkToModel. In these
cases, TalKToModel stimulated the users to do more analysis and in turn, the participants got more
knowledge on the models. This shows that TalkToModel increased the ability to explain the models
compared to the Notebook for these users.

Secondly, most participants agreed that TalkToModel was easier to use. The participants who still
doubted which of the systems was easier had confidence that TalkToModel would be easier to use if
they got more experience with it. This is also something that was observed during the experiment.
Where the participants who wanted to analyze something by altering an existing or creating their own
codeblock in the notebook, spent quite some time on easy tasks and also often encountered multiple
bugs before reaching a correct implementation. TalkToModel might also sometimes have trouble an-
swering questions but when the users got familiar with asking the right questions, they spent very little
time on similar tasks. This ease of use can lower the barrier to analyzing GP models. Especially for
people inexperienced with using such models, as you do not need to understand how to implement
such questions and can express yourself in natural language. This also shows increased interpretabil-
ity because the participants got their explanations more easily when using TalkToModel which points
to an increased ability to explain GP models.

Furthermore, the participants noted that the models were easier to interpret using TalkToModel.
They said that the operations such as visualizations helped with this. This also shows that TalkToModel
increases the ability to explain and present GP models because it offers more tools that the participants
appreciate. Besides this, the participants also noted that the GP models were easier to interpret with
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TalkToModel because of the intuitive way of asking questions. This also aligns with our observations
since it was seen that the users interacted very naturally with the system. All users quickly came up with
questions and the conversations were very intuitive for them to use. This also shows that TalkToModel
is better at explaining GP models than the Notebook.

When comparing the two systems, it is evident that for these participants the enhanced version of
TalkToModel offers superior tools for model interpetability. The participants’ preference for using Talk-
ToModel, despite their differences in analyzing the models, indicates that the system provides a more
user-friendly and efficient means of analyzing GP models. These results show a strong indication that
the enhanced TalkToModel system improves the interpretability of GP models. By providing an intuitive
interface that supports a broad selection of questions, TalkToModel empowers users to understand and
utilize GP models more effectively. The system’s ability to facilitate model evaluation and comparison
makes it a valuable tool for users working with GP models. This strong indication addresses our main
research question, demonstrating that GP models have good potential to be made more interpretable
using TalkToModel. However to conclude this further research has to be done. Especially an experi-
ment with a higher number and more diverse users have to be done. This will be further discussed in
sections 5.3 and 5.4. What can be concluded from the results is that TalkToModel lays the groundwork
for a lot of potentially interesting research in the field of model interpretability.

5.2. Contributions
In this section, the main contributions are discussed as well as why we care about these contributions.
As mentioned in section 1.6 there are three main contributions:

1. Integration of GP Models with TalkToModel: The first contribution of this thesis allows GP
models to be used in TalkToModel. Previously this was not possible, as only classification models
could be used. NowGPmodels can also be used andmost of the original TalkToModel operations
can be used for TalkToModel as was shown in table 3.2. This has lowered the barrier of entry for
asking black-box questions to GP models.

2. Questions into the Specifics of GP Models: The second contribution gives the system the
ability to ask GP-specific questions. Now users cannot only ask black-box questions tomodels but
can also get answers to questions regarding the structure of GP models. These new operations
can be seen in table 3.1. This has allowed users to quickly analyze a GP model and understand
its components more easily by using operations such as visualizing the model as a tree.

3. Support comparative analysis: The last contribution of this thesis, enables the enhanced Talk-
ToModel to use multiple models simultaneously. Instead of asking questions to one model at a
time, the enhanced system instead allows a user to load in as many models as desired. This has
allowed users to ask questions to multiple models simultaneously and compare different aspects
of them this way. Most operations in table 3.1 can be used for multiple models. Enabling users
to more easily make decisions when faced with a set of models.

5.3. Limitations
The research done does have some limitations which will be discussed in this section.

The first limitation is the limited sample size. The experiment has been conducted with 6 different
GP practitioners. This means that our results are dependent on those 6 participants. This is partly
because the experiments are quite timely and also require some setting up and the writer of this thesis
had to be present during every interview. This means that conducting many more experiments was not
feasible. Still, the limited sample size gives us good qualitative insights and shows that TalkToGP has
a high potential to be further developed into a very useful tool.

In this experiment, the decision was made to only interview people who have experience with using
GP models. This does however give the experiment a sampling bias and makes it unclear how the
system would be used by people who do not have any experience with GP. This would be interesting
to find out in a future experiment.

As mentioned in chapter 4 TalkToModel had issues with answering some questions. Moreover,
during our experiment, it was the first time for all the users to try out the system. Some participants



5.4. Future work 37

had never even heard about TalkToModel. The results could be improved if participants had some
experience with the system to see how different their use would be.

Lastly, the results of the experiment were also used to further improve TalkToGP. From the results,
changes were made in some of the formatting of the questions to make certain answers more clear.
Also, new ideas for operations that came from observing the participants were added. This even further
improved version has not been evaluated, however.

5.4. Future work
In this section, possible directions for the systems as well as the research will be discussed.

The first recommendation would be to use a different LLM to do the translation from user parses
to grammar. The T5 model that is being used while good is outdated and there are a lot of excellent
other LLMs (Chung et al., 2024). It would be interesting to see if the performance of the system could
be improved by using a better LLM. This improved performance would make the users of the system
less restricted in the questions they are able to ask. LLMs such as llama 3 or GPT 4, would be better
at getting their meaning and translating their questions to the appropriate parse in the grammar.

The second recommendation would be to look into removing the grammar system altogether from
the system. As mentioned in chapter 2 the upside of having the grammar is that it does not allow hal-
lucinations to occur which is a big advantage. However, it also limits the questions that can be asked
as was observed in the experiment. Because of the rise of chatbots like ChatGPT people are used to
being able to ask anything to a chatbot and when this is not possible they might get frustrated. A hybrid
system, where the user can switch between grammar answers and answers without grammar, may be
a viable option. This could be done by for example adding a follow-up button when the grammar can
not answer a question. This button would specify clearly that the question is outside of its understand-
ing and would propose using the full LLM without grammar. This would result in the system always
answering the question. What would be important is that the button should specify that hallucinations
can appear in the resulting answer. Therefore this should preferably be used for questions where this
is not such a big issue. For example when explaining background information that the system does not
know about such as more information about the features.

Since there were only 6 participants in the experiment that did not have a lot of experience with
the application. It would be interesting to see how the experiment would change if there were more
participants who had some experience with the system. This could be done by giving all participants
tasks to complete with TalkToModel a month prior to to doing the experiment. We could handle more
participants by letting the participants do the experiment without someone present and looking at the
logs. This would be a very time-consuming process for us as well as the participants, though. This
would enable a more definitive answer to the research question.

The operations available in the system do a good job of allowing the user to analyze the GPmodels.
It would be interesting to see if even more useful operations could be found. The work in section 2.2
described how they looked at all the questions users asked to see how they used the system. These
questions could later be used to improve the system iteratively. Such a systemwould also be valuable in
TalkToModel. We could look at questions the system was not able to answer and then see what exactly
the user wanted to know. This way new questions can be added that users could not get answered
previously, thus iteratively improving the application

The last recommendation would be to allow the users to run GP inside of the application. Similar to
the system discussed in section 2.1. The system now only allows a user to provide GP models that are
trained elsewhere. It would be very useful, however, to allow the training of the models in the application
itself. This could improve the ease of use tremendously for users who have no experience with GP since
they would only have to provide the system with a dataset now. You could also implement different GP
algorithms and analyze how they differ in their results and see how the individual algorithms change
their models when altering their parameters. Something else that could be done with this is to let the
user guide the evolution process. The user could, for example, be provided with all the models after a
training generation. These models could be analyzed using the TalkToModel system and even altered
and then given back to the training population such that users can understand and maybe even help
in the training process. This way a user can guide the evolution of the models for each generation.





6
Conclusion

This thesis aimed to find out whether GP models could be made more interpretable using an enhanced
version of TalkToModel called TalkToGP. In chapter 3 it was shown that our research successfully ex-
tends the capabilities of TalkToModel to handle GP models. The system not only supports black-box
questions about the models but also allows users to ask about the internal workings of GP models.
These capabilities enhance the users’ tools to analyze GP models more in-depth. Additionally, the en-
hanced TalkToModel supports the evaluation and comparison of multiple GP models simultaneously,
addressing the challenge of selecting the most appropriate model from a set of models generated by
an MO-GP system. By doing user interviews, the system was altered to take into account relevant
features obtained from this experiment. Finally, the system was evaluated by real users.

The primary research question posed in this thesis is: Can Genetic Programming models be
made more interpretable using TalkToModel? The results of the study performed in this thesis
provide an answer to this question. The enhanced TalkToModel system shows a strong indication to
improve the interpretability of GP models, enabling users to better understand the behaviour of these
models. The system’s capabilities in supporting black-box questions and facilitating analysis of the
internals of GP models highlight its effectiveness in enhancing interpretability.

This thesis has three main contributions:

1. Integration of GP Models with TalkToModel

2. Questions into the Specifics of GP Models

3. Support comparative analysis

Even though this application shows success, some possible improvements can be made in the
future. For one, a newer, better LLM could be used to improve the application. Also, future work could
look into the possibility of changing the system to allow for more flexibility in answering user questions.
Furthermore, a new experiment could be performed on more users to give a more definitive answer on
whether the interpretability of GP models gets increased. Lastly, the system could be altered to allow
for running GP inside of TalkToModel. These improvements could help make TalkToModel an even
more complete system, making it better and easier to use.

In conclusion, this thesis has demonstrated that there is a strong indication that the interpretability
of GP models can be enhanced using an improved version of TalkToModel. The system’s ability to
provide insights into model behavior and structure, combined with its user-friendly interface, makes
it potentially a valuable tool for anyone working with GP models. The contributions of this work not
only answer the main research question but also lay the groundwork for future innovations in the field
of model interpretability. As we continue to develop and refine tools such as TalkToModel, we move
closer to making machine learning models more accessible and understandable to a broader audience,
advancing the field and its applications.
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A
Exploratory questions

A.0.1. General questions about models
1. Are you familiar with GP(genetic programming)

(a) Have you worked with GP models?
(b) What are some difficulties you encountered with GP?

2. Do you work with machine learning models in general?

3. How would you compare multiple models?

(a) When is an explanation of a model satisfying/sufficient to you?

4. What does trusting a model mean to you?

5. When do you ’trust’ a model?

6. Do you make an effort understanding a model?

(a) How do you go about understanding a model?

A.0.2. Questions about the system
7. What questions would you ask to the system

8. What features would think are usefull in the system

9. What do you think this system does for the interpretability of models

10. Would you consider using this system?

11. What would you use it for?

12. Anything else you would like to add that I have not asked a question about?
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