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Abstract 
Metabolic engineering is an important field in biotechnology, aimed at optimizing cellular processes to 

produce desired compounds. In this thesis, we focus on predicting the metabolome from the proteome, 

as understanding this relationship is crucial for understanding cellular metabolism. We investigate the 

usage of additional biological information like protein-protein interactions and cellular stoichiometry to 

improve the predictive performance of metabolome prediction models. We also employ explanation 

algorithms to gain key insights into the regulatory processes of a yeast cell. 

We demonstrate the effectiveness of our approach by predicting the metabolic fold-change of multiple 

yeast kinase knockouts. Our results show that incorporating additional biological information does not 

significantly improve the accuracy of the metabolome prediction models. Furthermore, we identified 

enzymes that are relevant for all metabolites used in this study, which indicates the existence of a global 

set of regulatory enzymes.  

Overall, our study shows that through careful manipulation of the limit amount of data decent 

performance can be expected when predicting the metabolome. We apply a broad spectrum of machine 

learning algorithms to identify optimal model architecture. The methods and insights presented in this 

thesis could be used for creating a general pipeline for predicting a broad spectrum of metabolites from 

the proteome.  
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Introduction 
Beer brewery has started 13700-11700 BCE years ago with the help of wild yeasts fermenting a mixture 

of wheat and water (Liu et al., 2018). Later specific strains would be isolated that specialized in 

fermentation (Samuel, 1996) and bread making (Feldmann, 2012). Fermentation is a metabolic pathway 

that extract energy from carbohydrates in the absence of oxygen (Neijssel & Tempest, 1986). This 

process is available to yeasts and other microorganisms, which makes fermentation one of the oldest 

metabolic processes. Reactants, products, and intermediates of reactions are known as metabolites. The 

reactions and metabolites form a complex metabolic network of interdepend reactions of which 

segments can be labeled as pathways. Thus far 905 enzymes, 1577 reactions and 1226 have been 

identified in the yest metabolic network (King et al., 2016). The concentration of enzymes in a cell, along 

with the catalytic properties of the enzyme, often determines the rate of a metabolic reaction. 

Therefore, to control the rate at which a metabolite is consumed or produced a cell might increase or 

decrease the concentration of a particular enzyme (Robinson, 2015). The metabolism of natural 

occurring microorganism is not suited for the large-scale production of molecules of interests. By altering 

the metabolic network of these microorganisms, metabolic engineers can create efficient microbial cell 

factories that produce a molecule of interest in an economical and sustainable way (Lee et al., 2012). An 

application of a microbial cell factory would be the production of plastic from non-food carbon sources 

instead of relying on non-renewable substrates like oil or gas (Chae et al., 2017). The effectiveness of a 

microbial cell factory can be measured based on the titer (product concentration), yield (gram of product 

per gram of substrate), and productivity (gram of product per cell per unit time) for the target molecule 

(Oyetunde et al., 2019). A multitude of strategies exists that can help a metabolic engineer to improve 

the effectiveness of a cell’s metabolism (Figure 1). For the optimization of metabolic flux, the expression 

levels of promoters, enzymes and regulatory elements can be controlled via altering the DNA of a target 

strain. 

Figure 1: Overview of the variety of metabolic engineering strategies that can be applied to improve titer, yield and productivity 
(G. B. Kim et al., 2020). Gene annotation and host strain selection: to pick a target strain detailed information is required about 
the strain’s characteristics (H. U. Kim et al., 2016). Recovery, purification and scale up: finding an effective strategy to extract the 
target metabolites from the reactor without destroying the processes within (Herzer et al., 2015). Fermentation: the 
hyperparameters like the optimal growth temperature (OGT) or optimal nutrient composition have a large impact on the 
production of target metabolites (Masampally et al., 2019; Zheng et al., 2017). Metabolic pathway reconstruction: retro 
synthesis can be applied to create a novel pathway to creates complex molecules from simpler precursors (Segler et al., 2018). 
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From this new artificial pathway metabolic engineers aim to find corresponding enzymes to introduce the pathway in microbial 
factories (Hadadi et al., 2019). Tolerance enhancement: improves the cells resistance to metabolic and environmental stress 
(Swinnen et al., 2017). Metabolic flux optimization: Selected expression levels of promoters, enzymes and regulatory elements 
can be controlled via creating configurations of the expression levels (Choi et al., 2019; Groher et al., 2019a; Jervis et al., 2019).  

There have been plenty of successful applications of metabolic flux optimization. An example is the 

production optimization of n-butanol in yeast cells. n-butanol is bio sustainable replacement of gasoline 

due to its comparable energy density (Shi et al., 2016). For the efficient creation of n-butanol metabolic 

engineers overexpressed (increased the concentration of) keto-acid decarboxylases and alcohol 

dehydrogenase in S. cerevisiae (Shi et al., 2016). The overexpression of these enzymes, together with 

other edits lead to a 7-fold increase in the production of n-butanol compared to the original strain. The 

improved production of n-butanol required changes in natural occurring strains of the target organism. A 

prominent technology to make these changes is CRISPR/Cas9, which allows for precise edits in the DNA 

of the target strain (Patmanathan et al., 2018).  

The number of possible changes a metabolic engineer can make in cellular metabolism is enormous. 

Metabolic pathways are interconnected networks and modifying one part of the pathway might have 

unexpected effects on other parts of the metabolic network (Nielsen & Keasling, 2016). Via the 

regulation and feedback mechanisms found in cellular metabolism, upregulation of one enzyme might 

trigger downregulating response of another pathway which further complicates engineering efforts 

(Nielsen, 2014).  Acquiring large amounts of high-quality data has become easier through cheaper, more 

sophisticated, and accessible machinery. Information is acquired over different layers in a cell, these 

studies are often referred to as -omics studies.  Genome scale models (GSM) are a popular mechanistic 

modelling approach to simulate the metabolism of a cell, often coverings thousands of metabolic 

reactions. This class of computational models offers a qualitative mapping of cellular metabolism, can 

help discover metabolic functions and guide metabolic engineers towards desired phenotypes (Monk et 

al., 2017). A GSM is created via combining information derived from multiple -omics studies, other 

biological information, and human knowledge (Chakdar et al., 2021). This approach ensures that GSMs 

are an accurate depiction of the cellular metabolism of a target organism, however creating high-quality 

GSMs is a costly process (Mendoza et al., 2019; Thiele & Palsson, 2010). An alternative approach to 

mechanistic modelling is data-driven modelling, where machine learning algorithms learn directly from 

experimental datasets (Zhang et al., 2020). This removes the need of having a priori information about a 

target organism. In one study the proteomics information of s. cerevisiae was used to directly predict the 

metabolite concentration of the cell after performing kinase knockouts (Zelezniak et al., 2018). The data-

driven modelling approach can also more easily cover a lesser studied organism, as less expensive data is 

required to use this modelling approach.  

Data-driven modelling relies on the quality and quantity of the experimental information available. 

Predicting the cellular phenotype is not trivial. Proteomic data, which is closely interacting with the 

metabolome, is scarcely available.  Genomics data is readily and widely available, but the interaction 

with the metabolome is more indirect (Töpfer et al., 2015). We hypothesize that biological information 

that is closer to the metabolome has more predictive power than information that is further away, as 

cellular processes play a large in determining a cells phenotype (Burga & Lehner, 2012). Adding more 

biological information either via vertical integration (more -omics layers) or horizontal integration (more 

biological information from different sources) could mitigate this issue (Töpfer et al., 2015).  Proteomics 

data could be enriched by horizontally integrating protein-protein interaction (PPIs) information. PPIs 

play a relevant role among different cellular functions, understanding the interactions improves the 
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understanding of cellular function (Shatnawi, 2015).  The PPI information could be used as filter for 

proteomics data by creating samples that only consists of known interacting proteins, allowing machine 

learning models to directly learn a relationship between interacting proteins and metabolite 

concentrations. GSMs can be used in a data-driven fashion, as this model can be leveraged to select and 

rank reactions or genes that most likely affect the production of a metabolite or via directly 

incorporating their stoichiometry in a machine learning algorithm (Zhang et al., 2020). 

With the increased volume of information available and increasing reliance on data-driven modelling 

more complex machine learning algorithms are developed or used in the field of bioinformatics. 

Algorithms that predict the up and down regulation of a set of enzymes for the optimal metabolite 

concentration, make it difficult to find the individual contribution of a particular enzyme (Yamamoto et 

al., 2023). Explainable AI could be applied to open the black box machine learning models to find the 

individual contribution of a particular enzyme, which helps understand the relationship between 

enzymes and metabolites (Belle & Papantonis, 2021). An explanation in the machine learning context 

aims to convey insights in how an algorithm makes a prediction. The aim of generating explanations is to 

increase trust in AI based systems. There exist many criteria to measure the goodness of an explanation, 

which makes it difficult to create sufficient explainable model, as most criteria have trade-offs between 

them (Interpretable Machine Learning, n.d.). The fidelity, the truthfulness of the explanation to the 

black-box model, and accuracy, the error between the explanation and prediction target, are the most 

interesting metrics for this study. For the generation of explanations two model-agnostic algorithms are 

commonly used: LIME and SHAP. LIME uses a local weighted linear model to find the most important 

features for an instance. The SHAP algorithm uses game theory to calculate the contribution of each 

feature to a prediction.  

Now that we introduced the different components of this research, we can formulate the research 

question: “How can we accurately predict the metabolite concentration after intervention using 

explainable AI?” 
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Research objective 
The aim of this research is to further investigate the relationship between the proteome and the 

metabolome using machine learning algorithms. With the help of explanation algorithms, we aim to 

project the relationship between the proteome and metabolome on a genome scale metabolic model.  

This research objective is split into three questions.  

1. What is an effective model architecture for predicting the precursor metabolites concentrations 

from the proteome? 

2. What is the effect of including prior biological information on model performance of precursor 

metabolite concentration prediction? 

3. How can explanation algorithms extract useful information from a trained machine learning 

model and project it on a genome scale metabolic model? 

Answering these questions, we apply a variety of machine learning and data analysis techniques to look 

at this research from a computer science perspective. To answer the first question, we use a dataset of 

the proteome and metabolome data extracted from (Zelezniak et al., 2018) and apply a variety of 

machine learning techniques. For the second question, data from StringDB and the yeast stoichiometry 

are integrated to give additional biological context to the model. Finally for the third question we apply a 

variety of explanation algorithms to the machine learning models and rank them based on their usability. 
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Background 
Metabolism is a set of chemical reactions that include the conversion of food energy into cellular energy, 

the conversion of food into building blocks for proteins, lipids, nucleic acids, and carbohydrates and the 

elimination of metabolic waste. These reactions are organized in metabolic pathways, where a chemical 

is transformed through several steps which are catalyzed by enzymes. A high-level abstract overview of 

these different components is organized are shown in (Figure 2).  

 

Figure 2: Simplification of the components of metabolism, both figures are adapted from (Judge & Dodd, 2020). The interplay 
between the different categories of metabolites and how they are transformed via anabolic and catabolic reactions are shown 
(Panel A). Right figure: the glycolysis pathway, which is available in a variety of organisms, is shown. The input to the glycolysis 
pathway is glucose which is transformed into pyruvate using a variety of reactions (Panel B). During the process a net gain of 2 
ATP and 2 NADH is achieved, therefore this pathway can be classified as a catabolic pathway.  

A cell can conceptually be divided into different layers (-omes) like genome, proteome, transcriptome, 

epigenome, or metabolome (Figure 3). With the rise of high throughput techniques, like array 

technologies, and high-throughput mass spectrometry the volume and quality of data increased. The 

development of algorithms for the movement, management, and integration of high-dimensional data 

made these datasets more available to researchers (Krassowski et al., 2020). The data from different 

omics studies can be combined to form a multi-omics study.  

 

Figure 3: Different layers of multi-omics datasets (Angione, 2019). Omics studies help to better understand cellular mechanisms, 
however a singular one give a very limited view of a mechanism, therefore integrating multiple omics can help us understand the 

A B 
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mechanism more clearly. Environmental perturbations influence the complex interactions and feedback loops over several omic-
layers. Epigenomics consists of epigenetic marker changes which do not involve DNA sequences, gene activity and expression. 
Genomics considers DNA which contains the genetic code of the cell. Transcriptomics describes the RNA encoded in the genome. 
Proteomics is the study of the proteins produced because of gene expression and posttranslational modifications. Finally, 
metabolomics stores the set of metabolites and metabolic reactions taking place in a cell.  

Protein-protein interactions 
Proteins play an important role in cellular metabolism. Proteins interact with each other, for example, 

the follicle-stimulating hormone travels from the brain to the ovary where it causes an egg release. 

These signals are received by receptor proteins that bind to a signalling molecule and initiate a 

physiological response. The STRING is a database that stores these interactions and can be used to 

model a protein-protein interaction (PPI) network database (STRING: Functional Protein Association 

Networks, n.d.).  

The evidence for relationships between proteins is based on seven evidence channels. These channels 

can be grouped into three evidence topics: computational association, functional genomics, and 

consolidated knowledge. The final score of the interaction is normalized to be between zero and one, 

where a score closer to one indicates that STRING is more confident that this interaction is significant.  

Although the STRING database contains a lot of information its content is still quite limited and must be 

combined with other PPI databases (not discussed here) to cover for example all interactions found in 

the CYC2008 catalogue (Nakajima et al., 2018). Finally, the STRING database is only able to show a 

limited disjoint network. This might influence for example clustering analysis as not all relevant protein 

interactions have been found.  

Mechanistic modelling  

Constraint-based modelling 
Mathematical models have often been applied to analyze fluxes in a metabolic network. We will now 

discuss flux balance analysis (FBA).  FBA aims to find a configuration of fluxes that optimize an objective 

function, like maximizing the growth rate. The stoichiometric coefficient of each reaction is stored in a 

tabulated form as a first step in the algorithm. This matrix has the shape 𝑛, the number of reactions, and 

𝑚, the number of metabolites. For a metabolic network, 𝑛 is larger than 𝑚 creating 𝑛 − 𝑚 degrees of 

freedom. This definition of the stoichiometric matrix allows for both reversible and irreversible reactions. 

Next upper and lower bounds are formulated based on literature or other sources. Furthermore, 

experimentally validated fluxes can be incorporated, as additional constraints to limit the degree of 

freedom in the system.  Constraints reduce the available search space of the possible enzymatic 

concentrations (Figure 4). 
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Figure 4: Constraint formulation allows the FBA algorithms to efficiently search the solution space for a configuration of fluxes 
that optimize an objective function. Often an upper and lower limit is given for each flux and the steady-state condition is used as 
a global constraint (Libourel & Shachar-Hill, 2008).  

Determining the correct optimization function is important as the proposed distribution of fluxes is 

directly related to the optimization function. The target metabolite can be coupled with the growth 

objective function since growth is a realistic objective of a cell (Edwards et al., 1995). However not 

exactly knowing the optimization function is a major limitation of flux-balance analysis and can be 

defined as the knowledge-gap.  

Kinetic based modelling  
The flux is the rate at which metabolic products are created minus the rate at which they are consumed. 

Three factors determine the flux of a reaction: the activity level of the enzymes involved with a reaction, 

the properties of the enzyme and the concentration of reactants and products (Nielsen, 2003). We have 

seen that the enzyme concentration is regulated by gene expression, translation and post-translational 

protein modifications (Figure 3). The catalytic property of an enzyme is often fixed when determining the 

flux of a reaction. The concentration of reactants and products is determined by the rate of other 

reactions forming a dynamic system. Measuring fluxes directly is hard (Emwas et al., 2022). The gold-

standard for measuring metabolic fluxes is via 13C isotope analysis. Enzymatic reactions rearrange carbon 

atoms in a specific pattern; therefore, a labelled substrate can be used to find the contribution of specific 

pathways to intracellular fluxes (Antoniewicz, 2018).  Since these measurements are often not available 

the steady-state assumption was created (Reimers & Reimers, 2016). In this assumption, we assume that 

the intracellular flux equals the extracellular flux, which hold under most environments. Based on the 

simulation of the Michealis-Menten equation, enzyme concentration can be altered which allows a 

metabolic engineer to observe the effect of changing that enzyme (Antolin & Cascante, 2021). Finding 

the values for the constants in the Michealis-Menten equation requires the measurement of the rate of 

products forming in vivo organisms.   

Learning algorithms 
Data-driven models use learning algorithms to learn a predictive model for a certain target variable. We 

introduce the basic concept behind the learning algorithm used for predicting the metabolome and show 

some relevant biological examples where the algorithm was successful in its prediction task.  

Algorithm Description Biological usage 

Elastic net The elastic net algorithm combines 
LASSO and ridge regression in a 

The elastic net algorithm can be used to 
predict the 𝑘𝑐𝑎𝑡 parameter of genome-
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parameterized fashion (Zou & Hastie, 
2005). It is a linear model which can 
use the ordinary least squares 
algorithm to estimate the weight 
(𝛽) for each variable (𝑋). The 
calculated weights are penalized using 
the penalty function from ridge 
regression and LASSO. The contribution 
of each penalty function is determined 
using the 𝜆 parameter 

scale metabolic models (Heckmann et al., 
n.d.). Using a diverse set of features 
extracted from the different datasets the 
elastic net was used to predict the 𝑘𝑐𝑎𝑡 of 
in vitro enzymes. 

Random forest Random forest uses a bagging strategy 
to combine multiple de-correlated 
trees and averages them together to 
improve predictive performance. The 
idea of bagging is to average many 
noisy, approximately unbiased models. 
Trees are ideal candidates for bagging 
as they can capture complex 
interactions in a dataset with sufficient 
depth and are relatively unbiased.  
 

A random forest was applied to find the 
combination between sequence and 
biophysical parameters that maximize the 
dynamic range (DR) of a riboswitch 
(Groher et al., 2019b). Riboswitches are 
RNA sensors that regulate gene 
expression by interacting with the 
environment (Kavita & Breaker, 2023). 
Maximizing the DR is a complex task often 
executed in a trial-and-error fashion by 
genetic engineers, therefore having an 
algorithm that can predict the optimal 
riboswitch is vital (Groher et al., 2019b) 

Support vector 
machine 

Support vector machine aims to 
identify a hyperplane that optimally fits 
the dataset. It aims to maximize the 
distance between the hyperplane and a 
set of samples. A tube is created 
around the hyperplane, points that fall 
inside the area of the tube are 
considered well-predicted, while 
outside are considered poorly 
predicted. A kernel can be used to 
transform the linear-based algorithm 
into a non-linear-based algorithm. 

Enzymes that stay active at high 
temperatures are relevant to the 
biochemical industry. To test the 
temperature resistance of an enzyme the 
optimal growth temperature (OGT) is 
often used as a measure of enzyme 
stability. However, the OGT needs to be 
experimentally validated and requires a 
temperature-controlled lab setting, which 
makes it infeasible to have the OGT 
measured for a large variety of species. 
The random forest algorithm can be used 
to predict the OGT of a specie based on 
the  
 

Neural network A neural network consists of three sets 
of neurons: input neurons, hidden 
neurons, and output neurons. The 
input of each neuron (𝑥𝑖) is multiplied 
by a weight (𝑤𝑖𝑗) and summed up, then 

a bias is added (𝑏𝑖) and finally passed 
through an activation function (𝑎𝑐𝑡). 
The architecture of the neural network 
is determined by the size of the input 
layer, the size and depth of the hidden 

Metabolic engineers created a new strain 
for S. cerevisiae that showed a 2.42-fold 
titer improvement in the production of 
violacein (Zhou et al., 2018). A neural 
network was used to suggest the 
expression levels for heterologous 
enzymes within the new strain, using the 
neural only (2%-5%) of the search spaces 
suggested by YeastFab had to be 
evaluated.  
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layers, the number of outputs, the 
activation function and connectivity 
between neurons. 

 

Graph neural 
networks 

Graph neural networks (GNNs) are a 
special form of neural network that 
works directly on graph-based input 
data. The tasks that can be solved by 
GNNs can be categorized into node-
level prediction, edge-level prediction, 
and graph-level prediction. A GNN 
consists of multiple multi-layer-
perceptron (MLPs), message-passing 
layers (MPLs) and pooling operations. A 
GNN aims to find a node/edge/graph 
level embedding that minimizes a loss 
function.  

The metabolic state has often been linked 
with diseases like cancer. It is well 
understood that cancer rewires cellular 
metabolism to support rapid proliferation. 
A novel graph neural network 
architecture was used to predict the flux 
of each metabolite using scRNA data. A 
neural network was used to simulate the 
Michaelis-Menten equation for each 
metabolite, via message passing on the 
stoichiometric matrix the fluxes of all 
reactions were aggregated (Alghamdi et 
al., n.d.).  

Explanations 
We discussed the different machine learning algorithms that are to be used within this work. Here we 

will introduce the different explanation algorithms that can be used agnostically on the learning 

algorithms. Model agnostic explanation techniques are especially interesting as their flexibility allows for 

each integration with existing machine learning pipelines.  

Table 1: Overview of metrics for the surrogate model used for evaluating generated explanations (Interpretable Machine 
Learning, n.d.). The black-box model refers to the model that needs to be explained by a surrogate model. A black box might 
have some internal explanation components but those are not to be used by the surrogate explanation model.  

Metric Description 

Accuracy When generating an explanation, we want the explanation to be as accurate 
to the real-world data as possible. Accuracy in this case means, can a 
surrogate model predict the testing dataset. The accuracy is measured 
relative to the black box model that needs to be explained.  

Fidelity Fidelity measures how well the surrogate model represents the black-box 
model. High fidelity is important because when the surrogate model does 
not represent the black box model, the explanation is useless. Fidelity can 
be measured on a global, local and instance level and depends on the 
explanation algorithm that is being used. 

Consistency Consistency refers to whether the explanation stays the same between 
different machine learning algorithms. 

Stability For similar instances given a fixed black box model does the explanation 
change relative to the change in prediction. A stable explanation can 
especially be useful in the context of metabolic engineering as we do not 
expect large variations in metabolite concentration with small fold-changes. 

Comprehensibility How well does the metabolic engineer understand the generated 
explanation. It is related to the size of the explanation and how well the 
target audience can understand the behaviour of the model. 

Certainty Does the explanation reflect the certainty of the model? 
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Degree of importance Does the explanation reflect the importance of the feature? Can the 
metabolic engineer extract the most important enzymes from the 
explanation 

Novelty Is the prediction well supported by the training instances for which the 
model had high accuracy? 

Representativeness What is the scope of the explanation, does it encompass the entire model or 
a single instance? 

Based on the given criteria available, the criteria that are most interesting for metabolic engineers are 

accuracy, fidelity, and degree of importance (Table 1). The accuracy measure is important as it measures 

the quality of the surrogate model. A low fidelity would indicate that the surrogate does not reflect the 

black box model that the metabolic engineer is working on when creating a new enzyme configuration. 

The degree of importance is important as there exist many different target enzymes and the explanation 

should limit to only the most important enzymes that led to a metabolite configuration.   

Two important algorithms for model-agnostically generating explanations are the LIME and SHAP 

algorithms. Both algorithms can be used from generating instance-level explanations of a dataset. 

However, how the explanations are generated fundamentally differs between the algorithms.  

 For the explanation of an instance in a regression task, the LIME algorithm perturbates the 

instance and applies a weighting based on the distance to the original instance (Ribeiro et al., 2016). 

Then a linear model is fit on the perturbated dataset, from which the contribution of each feature can be 

estimated. The process requires only a single sample, which makes this algorithm effective on large 

datasets (Ribeiro et al., 2016).  The LIME algorithm only achieves local fidelity as it only samples in the 

neighbourhood of the target instance. Due to the usage of a weighted linear model, normally 

implemented as LASSO regression, the number of features used in the explanation can be precisely 

determined. The SHAP algorithm uses an approximation algorithm to estimate the true Shapley values of 

a feature, as directly calculating the Shapley values would be an expensive operation. A Shapley value 

can be used to determine the contribution of a particular feature and is based on cooperative game 

theory (Lundberg et al., n.d.). For the efficient estimation of the Shapley, a subset of the possible 

coalition vectors is sampled from the coalition space. A priority is given to coalitions that give the most 

information of a feature. Based on the newly created samples a weighting function is applied that applies 

a higher weight to samples with the informative coalition. Finally, a weighted linear model is fitted on 

the dataset, where the coefficient of the linear model is the estimated Shapley values (Lundberg et al., 

n.d.). A unifying characteristic between the LIME and SHAP algorithms is both algorithms present the 

explanation as a linear model.  
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Results 
In this section we will present the result of the analysis conducted on the proteome and metabolome 

dataset. This section is divided into three sections: first we will show the predictive performance on the 

baseline dataset using the four machine learning architectures. Next, we evaluate the performance on 

the datasets where additional biological information was included. Finally we present the result of 

explanation algorithms using the optimal setup from the previous two sections.  

Support vector regressor as optimal model architecture for the baseline dataset 
The baseline dataset was constructed to measure the predictive power of proteomics data. A variety of 

machine learning algorithms have been used to predict the relationship between the proteome and 

metabolome. We have evaluated the predictive power of the elastic net, Random Forest, Support Vector 

Regressor and multilayer perceptron, algorithm. For each machine learning algorithm, there is a trade-

off between predictive power and the number of required samples for training. Since the baseline 

dataset has a relatively low number of samples (97), we expect that the less complex models have a 

better performance. We evaluate the baseline performance under the four different scenarios, the all 

metabolite, single metabolite and leave-one-metabolite-out and blind data preparation. First, a grid 

search of the free parameters of each model architecture was performed to find the optimal 

hyperparameters for the architecture (Methods 24). The set of parameters was evaluated using a 10-fold 

cross-validation strategy with the mean-squared error as a scoring function. The machine learning 

models are retrained 100 times using the optimal hyperparameters to account for the stochastic nature 

of the random forest and multi-layer perceptron, using different train-test splits. The mdAPE error is 

used as it is independent of the mean of the target variable, which makes it ideal to make a quantitative 

comparison between different groups. 

We found that there is a significant difference between the different data strategies (one-way ANOVA 

𝑃 < .001). Further analysis showed that models trained under the leave-one-metabolite-out scenario 

performed significantly (𝑃 <  .001 ) better than the models trained in other scenarios (Figure 5, Panel A). 

To investigate the optimal architecture for the baseline dataset, we need to filter the results based on 

the leave-one-metabolite-out scenario. We found a significant (one-way ANOVA 𝑃 < .001) difference in 

predictive performance between the different machine learning algorithms. The distribution of errors for 

each learning algorithm is compared with a t-test and we found that the SVR algorithm performed 

significantly better than the other algorithms (Figure 5, Panel B). It must, however, be noted that for the 

3pg;2pg metabolite the Random Forest has a better performance and for the dhap metabolite the MLP 

algorithm has the same error. 

The result indicates that there is a non-linear relationship between the fold-change in enzyme 

abundance and the fold-change in precursor metabolite concentration. We found that the Support 

Vector Regressor was the optimal model architecture for predicting this relationship. Since each dot 

effectively represents a separate train-test split, which is the same when running the leave-one-

metabolite-out scenario. We can see that there is large variability in the model performance for both the 

Random Forest and MLP model architecture. This can only be attributed to the inherited randomness of 

those models as all other factors are fixed between the experiments.  
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Figure 5: Result analysis of the baseline model. A boxplot of the model performance under different learning scenarios is shown 
for the baseline model (Panel A). Data presented in the leave-one-metabolite-out scenario reach optimal performance given the 
baseline dataset. In panel B we see the effect of the model architecture on the baseline dataset, given that the leave-one-
metabolite-out scenario is used. Immediately we find that the SVR model architecture is the optimal architecture for this dataset. 
In panel C the model architecture per metabolite is shown in a bar plot using the leave-one-metabolite-out scenario. Again, we 
observe that the SVR is the optimal model architecture for predicting each metabolite.  

Prior biological information does not improve model performance 
Protein interactions play a large role in cellular metabolism (Pandey et al., 2017). We, therefore, 

hypothesized that creating a dataset that reflects those interactions could be beneficial in the effort of 

predicting precursor metabolic fold-change given a kinase knockout. We were interested in finding if 

adding this information would lead to better-performing models compared to the baseline dataset. We 

expect that adding PPI interactions could positively affect the model performance as through the 

construction of the dataset the number of instances is increased, the number of features is decreased, 

and data is enriched (Methods 26). To make a fair comparison between the baseline dataset and the PPI 

dataset the same model architecture was used for predicting the fold-change in the metabolome. 

Further, the same test instances were used for the final evaluation of the model.  

In our analysis of the dataset incorporating PPI information, we found that the SVR architecture has the 

best performance. We evaluated the different scenarios and found that the leave one metabolite out 

approach led to significantly (𝑃 <  .01) higher average performance as measured by the mdAPE (Figure 

6, Panel A). The support vector regressor has a significantly (𝑃 <  .001) better performance than the 

other algorithms on average over all the metabolites (Figure 6, Panel B).  It must be noted that for the 

3pg;2pg metabolite the MLP has a slightly better performance than the SVR, however on all other 

metabolites the SVR is the best model architecture (Figure 6, Panel C).  
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Figure 6: Performance overview of the machine learning algorithms trained on the PPI dataset. The leave-one-metabolite-out 
scenario has the best overall performance when compared to the other strategies (Panel A). We found that the SVR architecture 
has a better performance than the other trained algorithms on the PPI-transformed dataset (Panel B). This claim is further 
reinforced when we observe the architecture performance per metabolite, we find that the random forest architecture has the 
performance on all metabolites.  

For the next experiment, we added stoichiometry to the dataset. Like adding PPI interactions, we 

expected that adding stoichiometry as additional information allows the model to extract information 

from direct relationships between enzymes and metabolites. This direct modelling approach could direct 

the data-driven models to a more biologically sound model. We aimed to identify if combining 

stoichiometry with the proteomics and metabolomics information would lead to a more biologically 

informative model. This might ultimately lead to a more accurate model in predicting the metabolomic 

fold-change given a perturbation in the proteome. First, the standard machine learning algorithms were 

evaluated using the four scenarios then due to the construction of the dataset we evaluated a graph 

neural network. For the graph neural network, we tested two architectures together with the four 

scenarios. As baseline model architecture Graph attention (GAT) layers are chosen, as these 

architectures perform better than other graph message passing layers (Veličkovi´veličkovi´c et al., n.d.). 

GATs make use of a learnable attention mechanism to extract useful information from the surrounding 

nodes.  

Similar to the baseline and PPI datasets we find that data presented using the leave-one-metabolite-out 

scenario leads to a significant (𝑃 <  .001) better result (Figure 7, Panel A). Using the leave-one-

metabolite-out scenario as a filter we find that the SVR model architecture has significantly better 

performance (Figure 7, Panel B). Interestingly we see that the graph neural networks have the worst 

performance overall architecture. Finally, we compared the model performance per metabolite, and we 

observe that the F6P metabolite was best predicted by the model and a similar error was measured for 

the metabolites (Figure 7, Panel C). 
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Figure 7: Performance overview of the model performance using stoichiometry as additional biological information. Information 
presented using the leave-one-metabolite-out scenario had a significantly higher performance (Panel A). We found that the SVR 
has the best average performance when compared to the other strategies (Panel B). Finally, when we zoom into the model 
performance per metabolite we find that the SVR model architecture still has the best average performance for all metabolites 
except for 3pg;2pg (Panel C).  

Adding additional biological information following the procedures described for the PPI and both 

stoichiometry datasets did not result in the increased performance that was anticipated (Figure 8). Using 

the mdAPE as a model performance metric we found that the baseline dataset has the best-performing 

model when comparing the optimal model architectures from each dataset. The relative performance 

between the metabolites stayed similar between the different datasets. We still observe that the PEP 

metabolites were the hardest to predict in all datasets and the 3pg;2pg and F6P metabolites were more 

trivial to predict.  

 
Figure 8: Global overview of the model performance using the mdAPE metric to rank the effect of adding biological information. 
Immediately we can observe that adding additional biological information does improve the model performance given the 
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evaluation metric. We observe that the error measured over the three datasets stays the same for each metabolite. To fairly 
compare the different datasets we pick the leave-one-metabolite-out scenario and SVR model architecture for each dataset.  

Projecting explanations on yeast stoichiometry 
Based on the analysis of the model performances, we found that the features of the baseline dataset 

were the best at predicting the metabolite fold-change. Using the SVR as a model architecture and leave-

one-metabolite-out scenario we achieved the highest predictive performance. To exactly find the 

features that were learned from this dataset we applied the SHAP and LIME algorithms. Using both 

algorithms the top hundred most important features for each instance in the test set were determined. 

The surrogate models of SHAP and LIME were retrained ten times to ensure that important enzymes 

were consistently selected.  To find if important enzymes are generally preserved between the 

algorithms, we first evaluated the overlap between the top twenty features. We found that there is at 

most 60% overlap between the two algorithms, indicating that the selection of an explanation algorithm 

has an impact on the final presented feature set (Figure 9). We identified that the amount of overlap 

between the two algorithms is dependent on the data preparation strategy. Furthermore, there is also a 

difference in the overlap between the different metabolites, notably the enzymes marked for 

phosphoenolpyruvate (PEP) seem especially well preserved over the three data preparation strategies.   

 

Figure 9: Overlap of the first twenty features between the enzymes that the LIME and SHAP algorithms predict. We find that 
there is at most 60% overlap between the SHAP and LIME algorithms in the leave-one-metabolite-out scenario, interestingly in 
the single metabolite strategy the SHAP and LIME algorithms tend to have the most overlap while for the leave-one-metabolite-
out strategy, there is a moderated amount of overlap. 

Since there is no 100% overlap between the enzymes marked as important by the SHAP and LIME 

algorithms, we can determine the optimal algorithms using the accuracy and fidelity scores (Validating 

the models and explanations). We find that the SHAP algorithm has a higher fidelity, but lower accuracy 

compared to the LIME algorithm given the baseline dataset, leave-one-metabolite-out data preparation 

scenario and SVR model architecture (Figure 10, Panel A, Panel B). This pattern is preserved across the 

different metabolites in the dataset. Network analysis on the explanation generated using the SHAP 

algorithm indicates that for the prediction of a metabolite, a specific set of enzymes is found to be 

important, however, some enzymes are globally important to all metabolites like the PRE1 enzyme 

(Figure 11).   
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Figure 10: Metrics collected on the SHAP and LIME algorithm. For the baseline dataset, using the SVR model architecture and 
leave one metabolite out strategy the accuracy and fidelity of the explanation algorithm is calculated. We find that the LIME 
algorithm has an lower error when the algorithms predictions are compared to the groundtruth (accuracy, Panel A) and an 
higher error when the predictions are compared to the models’ predictions (fidelity, Panel B).  

 

Figure 11: Graph constructed based on the top twenty most important enzymes found using the SHAP explanation algorithm. 
There is a limited set of enzymes that are associated with two or more metabolites. The edge colour is associated with the 
average SHAP value found for this edge for the different knockouts in the dataset. A notable example of an enzyme that is 
associated with multiple metabolites is PRE1. It is associated with all six metabolites and is a subunit in the 20S proteasome.  

To allow metabolic engineers to use the explanations generated from the analysis pipeline, we created a 

strategy to project the contribution of enzymatic fold-changes on a reaction map. To evaluate the 

strategy, we investigated the effect of kinase knockout GCN2 on the pyruvate concentration. GCN2 is an 

enzyme associated with amino acid starvation (Wang et al., 2017). It reacts to uncharged tRNA 

accumulating in a cell and inhibits translation while activated, but simultaneously promotes translation 

of the set of mRNAs for amino acid biosynthesis and transport (Natarajan et al., 2001). We found that 

the GCN2 knockout led to a significantly higher fold-change in the first thirteen enzymes (Figure 12, 

Panel B). Notably, we found an enormous difference in concentration between the average fold-change 

after knockout for the SSE2 and HSP82 enzymes, both associated with heat shock responses (Hideyuki et 

al., 1993).   
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The concentration of pyruvate decreased with a fold-change of 1.44 (Figure 12, Panel C), using 

the support vector regressor retrained on the baseline dataset with a leave-one-metabolite-out scenario, 

we predicted a fold-change of 1.04. We then used the SHAP algorithm to find the 100 most important 

enzymes and projected them on the IMM904 yeast metabolic model.  

First, we aimed to explain the fold-change through metabolic enzymes which play only a small 

role in predicting the fold-change of pyruvate (Error! Reference source not found., Panel E). We find that 

only SEC61 was in the top twenty most changed enzymes when explaining the prediction using a SHAP 

waterfall plot (Figure 12, Panel D). Based on the SHAP explanation we identified that VTC4, is responsible 

for regulating the polyphosphate concentration in yeast (Tomashevsky et al., 2020), and PRE1, is 

responsible for protein degradation (Heinemeyer et al., 1991). 

 

 

Figure 12: Strip plot of all enzyme fold-changes measured under the GCN2 knockout. We observe a large, centred split around a 
.5 up/down regulation (Panel A). In the top twenty most changing enzymes given the GCN2 knockout compared to the average 
fold-change of that enzyme, we found that most of the first thirteen enzymes have a significantly higher change when compared 
to their average fc (Panel B). In the metabolic fold-change of all measured metabolites of the GCN2 knockout, we observed that 
all measured metabolites express a decrease in concentration (Panel C). Waterfall explains the prediction of the pyruvate fold-
change using the SVR, baseline dataset under the leave-one-metabolite-out scenario. The predicted fold-change was 1.042 while 
the measured fold-change was 1.44. The waterfall plot shows the buildup of the predicted fold-change, notably, we find that 
functional enzymes were the major contributors to the final prediction (Panel D). Graph analysis of the GCN2 knockout. Using the 
IMM904 yeast metabolic model, we could project the metabolic enzyme on the metabolic network of a yeast cell. We found that 
only a limited number of enzymes were able to be associated with the fold-changes in pyruvate. For visualization purposes, 
enzymes associated with reactions that consume or produce energy (ATP, ADP, AMP) are omitted (Panel E). 
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Discussion 

Effective model architecture for predicting the metabolome 
We aimed to investigate the optimal model architecture for the baseline dataset and hypothesized that 

probably the random forest algorithm would have the best performance. However, we found that the 

support vector regressor algorithm was the optimal algorithm for predicting the fold-change in the 

metabolome. This is in contrast with the expectation as in other related studies, tree-based algorithms 

are often found to be able to best predict the relationship between the proteome and metabolome 

(Zelezniak et al., 2018).   

 We hypothesized that the location in the glycolysis pathway has an impact on the model 

performance, as the signal measured for more downstream metabolites might be harder to measure. 

However, with closer inspection of the glycolysis pathway, we found that the position in the pathway 

was not related to the error of certain metabolites. Alternatively, we tried to explain the difference in 

predictive model performance per metabolite by investigating the distribution of training and testing 

samples, however since the leave-one-metabolite-out strategy was the optimal splitting strategy the 

difference in error could not be attributed to the train test split. Using this splitting strategy, the 

knockouts have been observed in the training dataset and the model is evaluated on the unobserved 

metabolites.  

 Next to answering the research questions we have introduced a novel way to extract more 

information from the limited number of instances available. Due to the different data pipelines adopted 

in this study, we found that the machine learning models trained were dependent on the way the 

instances were presented. This immediately also shows the largest shortcomings in this work, since there 

is only a limited number of samples available not the entire range of possible outcomes of all 

perturbations of the enzymes can be predicted. This is a limitation of using machine learning within 

metabolic engineering as machine learning algorithms are generally limited to the range of their training 

data. 

 Based on these findings, practitioners should consider increasing the number of samples such 

that more sophisticated machine learning algorithms can be applied that generalize better on more 

complex perturbations. The field of metabolic engineering can greatly benefit from machine learning as 

it would remove the need for making costly kinetic models, however, more diverse samples are needed 

to achieve the true potential of machine learning algorithms. Furthermore, the field can use a 

standardization of data transformation algorithms such that constraint-based, kinetic-based and 

machine-learning algorithms can be compared more fairly. 

Additional biological information to improve model performance 
The findings of this study suggest that adding additional biological information to the dataset does not 

improve the predictive performance of the learning algorithms. We measured the machine learning 

performance for predicting the metabolome when additional biological information was included. In 

total three separate experiments were conducted. PPI information was to reduce the feature space of 

the dataset. The stoichiometry of S. cerevisiae was used to construct the protein-protein bipartite graph 

on which proteomics and metabolomics could be projected. The two experiments were then compared 

to the baseline experiment, and we found that additional biological information did not significantly 

improve model performance.  

We expected that integrating data from different datasets would improve the model 

performance as multi-omics studies often tend to have a higher model accuracy when compared to their 
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single omics counterparts (Yao et al., 2015). Ultimately the PPIs were only used for reducing the feature 

space and did not necessarily add new information to the model, therefore a comparable result using 

the baseline dataset could be achieved if the model was able to use filter irrelevant features. For the 

experiments conducted with stoichiometry as additional information we can conclude that there are too 

few samples to effectively use the GNNs as a model architecture. Therefore the SVR was selected as the 

optimal model architecture. 

 An interesting observation is that for the baseline, PPI and stoichiometry experiments we found 

that the leave-one-metabolite-out splitting strategy was the optimal splitting strategy. This suggests that 

the machine learning models can generalize the relationship between fold-changes in the proteome and 

fold-changes in the metabolome. Furthermore, we found that the SVR had a significantly better 

performance than the other learning algorithms.  

 We believe that adding additional biological information might have an impact when integrated 

with another strategy. In this study, we used biological information mostly to filter the existing dataset. 

However, in another setup, a model per class of biological information might be trained which can 

summarize the information found in that class. The summarization of each class might then be 

aggregated to make the final prediction for a perturbation.  

 

Extracting information using explanation algorithms 
During the experiments on explainability, we found that the SHAP algorithm has a better fidelity with 

slightly lower accuracy. This result led to the conclusion that the SHAP algorithm was the optimal 

explanation algorithm, for explaining the predictions resulting from the optimal models trained using the 

leave-one-metabolite-out splitting strategy on the baseline dataset. However, it must be noted that in 

the evaluation we found no significant difference between the algorithms meaning that SHAP was 

selected based on its slightly better performance on the fidelity metric. Using the LIME algorithm, a 

different explanation could be generated for each instance in the testing dataset.  

 We found that enzymes directly involved with the target metabolite were not the major 

contributors to finding prediction results. Rather we found that enzymes that were further away from a 

particular metabolite had a higher contribution to a particular concentration. This might be attributed to 

the regulatory interactions of the cell. For predicting the metabolic fold-change using the proteome they 

found that the dataset including enzyme two or three hops away from the target metabolite had the 

highest predictive power (Zelezniak et al., 2018). The results demonstrate that there is a small set of 

preserved enzymes that are important for multiple metabolites. These enzymes are related to some key 

regulatory functions like proteasome which is responsible for regulating the concentration of proteins 

(Tanaka, 2009).  

GCN2 is preserved enzyme over a variety of species, it has been associated with the sensing of 

amino acid deprivation. When there are too few amino acids GCN2 would be activated and modulate 

amino acid metabolism, while reducing the production of proteins. In yeast any deficiency in amino acids 

triggers the activation of GCN2, it can therefore be argued that knocking GCN2 out is detrimental to 

cellular proliferation. As amino acids play a vital role in the survival of the cell, not being able to control 

the concentration of amino acids would be a large handicap for the cell. We found that the GCN2 

knockout led to a decreased concentration in all measured metabolites, and a spike in the concentration 

of certain enzymes  
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We theorize due to the GCN2 knockout, the cell will consume all metabolites to produce 

enzymes as the regulatory process that limits this process has been knocked out. We predicted a fold-

change of 1.04 for pyruvate, while the measured fold-change was 1.44. We found that the prediction 

could only limitedly be explained via metabolic enzymes. This might be attributed to not having included 

any metabolites directly associated with the amino acid metabolic pathway. We could however explain a 

large part of the prediction via the non-metabolic enzymes VTC4 and PRE1. VTC4 is responsible for the 

synthesis of polyP, which plays an important role in the cell cycle as a phosphate reservoir (Bru et al., 

2016) and PRE1 is responsible for protein degradation. These two enzymes are two logical candidates for 

the algorithm to extract from the dataset and mark them as important. 

It might be interesting to experimentally validate the interactions between the amino acid 

sensing enzyme (GCN2), a decreased concentration of the VTC4 enzyme and the slightly increased 

concentration of PRE1. We believe that understanding the interaction between these three enzymes 

might push the knowledge of the working of GCN2. 
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Conclusion 
In this work, we addressed three major topics. First, we investigated what the optimal architecture for 

the baseline dataset would be then we explored the effect of adding prior biological information to the 

dataset and how that affected model performance, finally we investigated the effectiveness of 

generating an explanation for the machine learning models.   

Based on the analysis of the model performance on the baseline dataset, it can be concluded that the 

support vector regressor was the optimal model architecture. This was attributed to the relatively low 

number of samples found within the dataset. In comparative analysis between the different datasets 

where prior biological information was added, we found that adding prior biological information does 

not improve model performance. This can be attributed to the fact that there is a limited number of data 

points available when adding stoichiometry. The PPI information did not seem to have additional 

predictive power for predicting the metabolome. Finally, we were able to thoroughly analyse the 

explanations by analyzing the enzymes that were marked as important. We found that a few preserved 

enzymes were important for a variety of metabolites.  

In this work, we have investigated the usage of machine learning for generating an automatic 

prediction of the metabolite concentrations after enzyme perturbations. Explanations generated on 

these models can help guide metabolic engineers as they can directly see the effect of perturbations on 

the most important reactions within the model.  
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Methods 
A high-level overview of the data analysis pipeline used in this thesis is reported (Figure 13). We show 

the internal steps of the pipeline with a concrete example. 

 

Figure 13: High-level overview of the data pipeline for each dataset generated. A new pipeline aims to add additional biological 
information to the baseline dataset, such that we can evaluate the biological information separately. For the baseline dataset, 
the proteomics and metabolomics data are combined. In the PPI dataset, protein-protein interactions are used to filter the 
dataset. Stoichiometry information can be used to build protein-protein or protein-metabolite graphs on which graph neural 
networks can be trained.  Each pipeline has its respective section within this chapter; however, the protein stoichiometry and 
metabolite stoichiometry are grouped as they follow a similar pattern. 

Once a dataset is constructed via the data processing pipeline a splitting strategy is applied to form a 

training and testing dataset. Because of the strategy the dataset might be replicated transformed or 

filtered, which creates unique scenarios in which the learning algorithms can be evaluated (Table 2).  

Table 2: Overview of the splitting strategies used to generate the training and testing datasets from the resulting dataset for 
each data processing pipeline. Each strategy represents a unique learning task for the model. 

Scenario name Details 

All metabolites The dataset generated by the data pipeline is stratified according to 
the metabolite id. 30% of the dataset is used for generating the 
testing dataset. 

Single metabolite The dataset generated by the data pipeline is replicated for each 
metabolite in the dataset. Each replicated dataset is then filtered for 
one target metabolite. For each of the newly constructed datasets a 
train-test split with a testing percentage of 30% is performed. This 
will evaluate whether the model performance increases if the model 
was trained for an individual metabolite. 
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Leave one metabolite out The dataset generated by the data pipeline is replicated for each 
metabolite in the dataset. A train-test split is used to split one 
metabolite into the test set while the others are used from the 
algorithm to learn on. This process is repeated for each metabolite 
within the dataset. With this strategy, we aim to find whether 
metabolism can be generalized within one learning algorithm and if 
this is possible predictions can be easily done for new metabolites.  

Blindsided The datasets generated in this data pipeline are similar to the ones 
created in the leave-one-metabolite-out scenario. However, the 
algorithms are only trained on a subset of knockouts and evaluated 
on the left-out knockouts. 

First, the three data processing pipelines are explained step-by-step to give a deeper intuition into how 

each dataset is constructed. Then the validation of the models and explanations are further elaborated 

on, the final evaluation metric is introduced and how the final explanation is combined to form a singular 

explanation panel.  

Constructing the baseline dataset 
The baseline dataset is constructed from the proteomics and metabolomics datasets made available in a 

previous study where the predictive power of both datasets where researched (Zelezniak et al., 2018). 

The specification of the dataset is given in (Table 3). Proteomics is the large-scale study of the 

proteomes, which is the set of proteins produced in an organism. The proteome differs per cell and 

changes over time and can be used to evaluate the rates of protein production, which is related to 

reaction flux (What Is Proteomics? | Proteomics, n.d.). Metabolomics is the large-scale study of the 

metabolome and measures the concentration of metabolites within an organism (What Is 

Metabolomics? | Metabolomics, n.d.). 

Table 3: The dimensions and features of the proteomics and metabolomics dataset. The proteomics dataset has 98 samples 
and 728 features. The metabolomics dataset consists of the same 98 knockouts and 50 metabolites. 

Characteristic Dimensionality 

Phenotype-enzyme combinations 71148 

Enzymes 728 

Knockouts 97 

Metabolites 50 

Precursor metabolites 11 

Precursor metabolites full sample 6 

 

The proteome and metabolome datasets are measured for all kinase knockouts, this simplifies the 

merging operation between the two datasets. The datasets are merged according to the kinase knockout 

(Figure 14). Next to the kinase knockouts the enzyme and metabolite concentrations were also 

measured for a yeast wildtype (WT) strain. This WT is the baseline measurement for all kinase knockouts 

and can be used to find differentially expressed enzymes within the dataset. Learning algorithms require 

target variables to be generally within the same range of each other, else the model will have a hard 

time predicting the different concentrations for each sample. A log-fold transformation is applied to 

bring the proteomics abundance and metabolite concentration column-wise within the same range 

(Equation 1). After the data transformation, the eleven precursor metabolites available in the 

metabolomics datasets are selected as the target for the downstream learning algorithms.   
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𝑠𝑎𝑚𝑝𝑙𝑒𝑖 = log2 𝑠𝑎𝑚𝑝𝑙𝑒𝑤𝑡 − log2 𝑠𝑎𝑚𝑝𝑙𝑒𝑖  

Equation 1: The log-fold transformation applied for each sample within the dataset. A sample refers to a row spanning the 
proteomics and metabolomics dataset. 

 

Figure 14: Combining proteomics and metabolomics information. First, metabolite precursors were filtered from all metabolite 
concentrations followed by a log-fold transformation. Similarly, proteomics was also log-transformed.   

The dataset can now split according to the strategy used for training the learning algorithms. For the 

baseline dataset RandomForest, ElasticNet, SVM and multi-layer perceptron are selected as learning 

algorithms as these models have been proven to be successful for tabular datasets. Due to the limited 

number of samples available deep learning techniques are likely to be underperforming. The 

hyperparameters for the learning algorithms are specified in (Table 4). 

Table 4: Hyperparameters of the training algorithms selected for the baseline dataset. A grid-searching strategy is used to 
enumerate all possible combinations within a model architecture. This is a feasible approach due to the limited number of 
samples, a small number of hyperparameters and relatively fast learning algorithms. For each learning algorithm the feature 
scaling is used as a hyperparameter (MinMaxScaler, StandardScaler) additionally. In total 174 hyperparameter configurations 
are evaluated using a 10-fold cross-validation strategy.  

Hyperparameter space for the baseline dataset 

Model architecture Parameter Values 

SVR Kernel RBF, Sigmoid 

SVR Gamma Auto, scale 

SVR Epsilon 0.1, 0.01, 0.001, 0.0001 

SVR C 10, 100, 1000 

Random Forest Number of estimators 10, 25, 50, 75, 100 

Random Forest Criterion Squared error, Friedman mse 

Random Forest Max depth 5, 10, 20 

Elastic Net L1 ratio 0.01, 0.25, 0.5, 0.75. 1 

Elastic Net Tol 0.01 
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MLP Layer sizes (128, 32, 32), (64, 32) 

MLP Batch size 2, 4, 8, 16 

Once the optimal combination of hyperparameters is found for the baseline dataset, a new model is 

trained according to this set of parameters. This retraining process is repeated to evaluate the stability of 

the model. The optimal model, the model that minimizes the mean absolute error on the dataset, is 

stored for further analysis.  

Combining protein-protein-interactions with proteomics 
The protein-protein-interaction information is extracted from the STRING database (Szklarczyk et al., 

2015), which is a rich database containing experimentally validated interactions and predicted 

interactions. For each enzyme in the proteomics dataset, its interaction network is downloaded via the 

STRING API. As species, S. cerevisiae is selected to filter interactions that were not predicted or measured 

for the dataset. A string containing the interacting information is returned, which is saved for further 

processing. 

The protein-protein interactions gathered from the STRING database need to be transformed to fit the 

proteomics datasets. A graph of interacting proteins for each enzyme in the proteomics dataset is 

constructed. Graphs with less than thirty interactions are removed to make sure that enough non-zero 

feature values are available for downstream algorithms. The proteomics dataset is then replicated for 

each of the available enzymes left over in the filtered list. Enzymes that are no longer represented within 

one of the graphs in the list of graphs are also removed to remove noise in the final dataset. For each 

sample in the constructed knockout-enzyme matrix, the fold-change of the interacting enzymes is 

stored, which creates the final populated data frame. 

The balance between the number of informative features and samples is an important property of a 

dataset, as it impacts the model’s predictive power. Adding the PPI information reduced the number of 

available features while increasing the number of artificial samples. This should improve machine 

learning performance as the models have an increased number of samples (Azhar & Thomas, 2019). 

However, due to the increased number of zero values in the dataset, the quality of the data has 

decreased. The dataset is then split according to the training strategy used for training the algorithm 

(Figure 15). 

The hyperparameters used for training the algorithms are shown in (Table 4). This set of 

hyperparameters consists of the most influential parameters for their respective algorithms. A standard 

grid search is applied to find the optimal combination of hyperparameters for each model. The models 

are trained the minimize the mean squared error (MSE) metric on the training dataset. 

Once the model has been trained for each combination of hyperparameters the optimal model 

architecture and parameters are chosen via the mean absolute error (MAE) on the testing dataset. For 

each metabolite individually, when the model was trained using the single metabolite or leave-one-

metabolite-out strategy else the globally best model is selected using the MAE. Using the optimal set of 

hyperparameters the model is retrained to evaluate the hyperparameter stability and the final prediction 

for each sample is generated. The best-performing model according to the testing dataset is stored for 

the generation of explanations.  
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Figure 15: Example of the PPI data transformation pipeline. The metabolomics and proteomics datasets are transformed with the 
same procedures given in the baseline data pipeline, the resulting example from the knockout matching is therefore used. This 
dataset is then combined with the adjacency matrix extracted from the PPI database forming the PPI dataset. 

Adding stoichiometric biological information 
The stoichiometry of the yeast metabolism is extracted from the iMM904 genome-scale metabolic 

model (Zomorrodi & Maranas, 2010). The stoichiometry is encoded in a matrix where an integer number 

indicates the consumption or production of a metabolite in a reaction. For each reaction, a list of 

associated enzymes was constructed when the model was produced. All metabolites within the dataset 

also have been annotated with the compartment to which the metabolite belongs. The stoichiometric 

matrix can be viewed as a large tripartite graph where one set of nodes represents metabolites, another 

set of node’s reactions and the final set of nodes enzymes associated with the reaction. Edges are 

created between the metabolite and reaction nodes if the metabolite is present in the reaction and 

edges between the reaction and enzymes are created when the enzyme catalyzes the reaction (Figure 

16).  

Like the other tiers the proteomics and metabolomics are first scaled based on the log-fold 

transformation, nan-values are to be removed and finally the metabolomics dataset is filtered based on 

the list of precursors. Since we want to embed the stoichiometric information into the proteomics and 

metabolomics datasets, the stoichiometric information needs to be transformed to fit the target dataset. 

The stoichiometric information consists of the relationship between enzymes, reactions and metabolites 

and is often structured as a metabolite-reaction matrix and reaction-enzyme matrix.  

The metabolites from the stoichiometric matrix contain a compartment component, since the 

used dataset does not contain such a component, it is removed. We assume that the fold-change of the 

enzymes and metabolites is independent of the compartment. The enzymes that are not available in the 

proteomics dataset are removed from the stoichiometric matrix to further clean the matrix. 
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Constructing tabular data 
To stay in line with the other tiers we have to create a tabular dataset based on the stoichiometry 

information of the yeast cell. We have decided to use the enzymes that are in the stoichiometric matrix 

as a filter for the proteomics dataset. Using the stoichiometric enzymes removes all signalling enzymes 

as those are not in the matrix. The algorithms are then trained using the hyperparameters described in 

Table 2. 

Constructing a graph neural network 
Since the stoichiometric information is encoded in a graph the data can also be used to train a graph 

neural network. Here we will discuss how the data is prepared for training the graph neural network. 

To each reaction within the matrix, the set of associated enzymes is assigned as a proxy. This creates an 

enzyme-metabolite matrix, which can be represented as a bipartite graph. The protein-metabolite 

bipartite graph is replicated for each knockout and to each node, the fold-change is assigned given the 

specific knockout. Then we can create the graph-level prediction task has the benefit of the algorithm 

not necessarily having to be retrained if a new target metabolite is introduced as the structure of the 

graph does not change.  The node-level prediction task can be transformed into a graph-level prediction 

task via the projection of the protein nodes. Two nodes that share a common metabolite are connected 

via edge creating a densely connected graph. The fold-change of the metabolites is stored as a vector 

with the newly created graph.  

The dataset created from the stoichiometric matrix has only a single feature for the downstream 

algorithm to learn on, together with the limited number of samples this could lead to deteriorated 

results for the algorithm.  To tackle the first problem embeddings generated based on the node2vec 

algorithm are concatenated to each node in both datasets. A small embedding size of 32 has been 

selected as the optimal size of the embeddings, as the graphs in both datasets are small yet complex. 

The node2vec embeddings can be exploited by the downstream algorithm, as the representation of the 

graph has already been encoded. This approach has been used before for node level prediction task and 

graph level prediction tasks. For the node level prediction task on the Arvix benchmark dataset 

algorithms using the node2vec embeddings performed better than the algorithms without and for the 

graph level prediction task a similar result was observed when predicting the label of a protein from the 

PPI dataset (Arsov & Mirceva, 2019; Dalmia & Gupta, n.d.).   

 

A last transformation needs to be applied before the data can be used by the downstream analyzation 

algorithm. For the metabolite-protein dataset we remove all non-precursor metabolites from the graph, 

together with all the unconnected enzymes creating the precursor-protein dataset. For the protein 

dataset we remove all protein nodes associated with non-precursor metabolites, creating the filtered-

protein dataset. After this transformation two different dataset exists that can be used for training the 

analyzation algorithm.  

 

To make a fair comparison between the different biological tiers considered in this study, the three 

different splitting strategies are also applied on this dataset. However, since the data is now encoded as 

a graph the original algorithm of the splitting the data by strategy cannot be applied, therefore a tier 

specific algorithm had to be created.  
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Figure 16: Graphical depiction of data pipeline for adding stoichiometry information. The three datasets are first individually 
processed then combined to form the 97 annotated graphs. After the task has been selected the node embedding is added to 
each respective node based on the graph topology for that task. Then for selected training strategy the datasets are generated 
based on the final graph instances. This prevents having to rerun the entire transformation pipeline.  

 



30 
 

For all datasets generated according to the strategy, a hyperparameter search (Table 5) is performed 

making use of Raytune async hyperband optimization. This optimization approach allows for the early 

termination of models according to the reported loss function, which leads to an increased number of 

hyperparameter configurations that can be tested. The most promising model is trained for three 

hundred epochs if it is not terminated via early stopping. The model results, together with the model 

configuration are stored and ranked according to the performance metrics. The configuration of the 

optimal model is then used to generate 16 new models to evaluate the stability of the configuration, the 

best from retraining is then reported as the optimal model.  

 
Table 5: Hyperparameters for the GNN that is trained based on the stoichiometry-derived datasets. The hyperparameters are 
used for training the graph attention layers, which are used for graph-level optimization.  
 

Parameter Value 

Batch size 2, 4, 8 

Learning rate 0.1, 0.05, 0.01, 0.001 

SGD momentum 0.5, 0.8, 0.9 

Scheduler gamma 0.995, 1 

Embedding size 8, 16, 32, 64, 128 

Attention heads 1, 2, 3, 4 

Layers 1, 3, 5, 7 

 

Validating the models and explanations 
Correctly validating the performance of the model is important to create a ranking for the learning 

algorithms. To validate the models two approaches were used a scale-based validation and a scale-free 

validation. The scale-based validation uses the mean of the target variable (metabolic fold-change) to 

create a metric, while the scale-free validation is independent of the target variable. The scale-based 

validation is used during the hyperparameter search for each model as there is no direct comparison 

between the different metabolites that are in the dataset. To rank each hyperparameter configuration 

the mean squared error (MSE) is used, as this metric has proven to be a good balance between 

penalizing bad predictions and overestimating the model’s badness (Botchkarev, 2018). When comparing 

models over different datasets or different architectures the scale-free median-absolute percentage 

error (mdAPE) is used (Equation 2). This metric is it is insensitive to outliers and relatively easy to 

interpret, furthermore the mdAPE can be compared between the different metabolites allowing one to 

make a ranking on how well a model predicted a certain group of metabolites.  

 

𝑚𝑑𝐴𝑃𝐸 = 𝑚𝑒𝑑𝑖𝑎𝑛 (
|𝑦𝑡𝑟𝑢𝑒 − 𝑦𝑝𝑟𝑒𝑑|

𝑦𝑡𝑟𝑢𝑒
) ∗ 100% 

Equation 2: Using the mdAPE we can compare different populations that have different means as the mdAPE is independent of 
the mean of the target variable. 

To give a fairer indication of the performance of the machine learning algorithm, a total of one hundred 

random train test splits are made for each tier-scenario combination. With this excessive amount of 

repeats, we can give a true indication of the average performance of a model architecture. We used a 

randomized train-test split where within one iteration the seed is fixed, which allows the comparison of 

the algorithms within one iteration. As the knockouts between the different tier-scenario combinations 

are fixed.   
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To generate explanations for the baseline dataset SHAP and LIME are applied to the final model, and for 

each instance within the testing dataset, an explanation is generated. The stability of the explanations is 

evaluated by measuring the consistency between the explanation’s strategies. For both the SHAP and 

LIME algorithm the most interesting non-zero interacting proteins are generated. An explanation 

algorithm is used to evaluate the stability of explanations by generating a ranking for each feature in the 

dataset and comparing the list between the different samples. 

The surrogate models created by the explanation strategies had to be evaluated based on their 

truthfulness with the original model. A common practice to evaluate the truthfulness of a model is to use 

the fidelity score of the surrogate model. The fidelity score can be applied to each explanation algorithm, 

which allows the ranking of the explanation algorithm based on its truthfulness. Next to truthfulness the 

explanations also need to be accurate, the prediction of all explanations can be calculated by summing 

the relative contribution of each feature. This prediction is then compared to the ground truth indicating 

the accuracy of the explanation algorithm. Finally, the explanations were used for generating a 

visualization that helps a metabolic engineer. This was not a trivial task and it was decided that 

visualizing the interplay between the metabolites, reactions and enzymes was the most optimal way of 

visualizing the explanation.  
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Appendix A 

 

Figure 17: Toy example of how the strategy can be used to transform the baseline dataset. For this example, three enzymes and 
three metabolites are used to show all possible combinations. In total seven different splits are constructed. 
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Figure 18: Boxplot showing the metabolite values after using the log-fold transformation. The fold change is centered between 
the -1.5 and 1.5 for each of the 12 precursor metabolites. Which makes model training relatively stable when using the All-
metabolite strategy. 

 

Figure 19:  Distribution of metabolic-fold change between the training and testing dataset given the different splitting strategies. 
We observe that the testing dataset is within the range of the training dataset which allows us to the metrics used for evaluating 
the learning algorithms correctly. 
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To further explore why there is a large difference between F6P and PEP, we ran additional analysis per 

knockout to find, which configurations that model find hard to generalize on. We observe that the fold-

change of F6P metabolite has a smaller domain than the fold-change of PEP in the testing dataset given 

the single metabolite strategy.  

 

Figure 20: In-depth comparison between F6P and PEP. The metabolite fold-change, prediction targets for the models, are shown 
in Panel A. F6P has a smaller fold-change range within the test dataset than PEP which could indicate that the train-test split was 
not correctly balanced. The absolute percentage error is used for the boxplot in panel B. We reinforce the idea that the error of 
f6p is lower than the error of PEP. The frequency of APE is shown in panel C and D, we see that the error decreases gradually for 
the f6p metabolite while for the PEP metabolite the frequency of errors stay relatively the same. 


