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summary

When travelling between stations, the observant passenger may have noticed that no two
train runs are the same, caused by your departure or arrival at stations at different times
or the varying length of time for getting from A to B. The most obvious causality from these
differences are delays or restrictive track signalling. However, even when the conditions
appear to be very similar and no obvious restricted track signalling is present, these differ-
ences between the train runs persist.

The Dutch Train Operator Company (TOC) and Infrastructure Manager (IM), being NS and
ProRail respectively, have generally observed there to be a spread in the running times be-
tween all stations. While investigations and research have been done regarding the accel-
eration or maximum velocity of the heavy rail commuter vehicles, of which some tested
the stochastic nature of their general operational behaviour, the deceleration behaviour

of these vehicles were at most described in a more general sense while either reconstruct-
ing the entire speed profiles of rail vehicles in available scientific papers (Be§inovi¢ et al.,
2013a,b,c; Medeossi et al., 2011) or investigated as a byproduct of other researches re-
garding technology and safety. Current timetabling tools or simulation software account
for a single defined deceleration behaviour based on static conditions and only consider the
braking rate as a constant coefficient, describing a sort of (near) binary state of on/off in
brake application, of which some allow for variation of the simulated or estimated braking
rate, rather than allowing for a dynamic or non-uniform development of the braking rate
and different deceleration behaviour to be applied to account for different driver mental-
ity and behaviour. This, however, assumes nominal vehicle characteristics and operating
conditions (i.e. conditions relevant for train runs, based on stated track / vehicle design
specifications and vehicle characteristics) and a uniform behaviour from all train drivers.
Considering the human aspect and widely differing external conditions (e.g. weather, time-
liness of train runs), how valid would this assumption be when reviewing the realised de-
celeration behaviour? This has further raised the question to what extent the impact is of
this stochastic behaviour on infrastructure occupation, especially around stations.

This research has the objective to empirically determine the perceived stochastic nature of
the deceleration regimes and to determine the impact it has on infrastructure occupation
within the network corridor, which was approached by posing the research question:

How does the stochastic behaviour, observed in the deceleration approach of a planned sta-
tion stop, impact the infrastructure occupation in the network corridor between stations?

Answering this research question is achieved by the development of a data-driven recon-
struction model to estimate the speed profiles of realised train runs that elaborates on the
deceleration regimes in a more dynamic and generalised (i.e. able to be applied to any rail
network corridor) manner to provide a more detailed description of the realised deceleration
behaviour. This research introduces a conceptual framework for the reconstruction of the
deceleration behaviour of heavy rail vehicles. The general structure and concept approach
are inspired by BeS§inovi¢ et al. (2013a,b,c) and Medeossi et al. (2011).

The proposed framework differentiates from its inspiration by it’s interest and focus on the
deceleration behaviour within the proposed reconstruction model, aptly named Decelera-
tion Reconstruction (DR) model, instead of reconstructing complete velocity profiles. This
is done through the implementation of sub-regimes (i.e. smaller driving regimes describing
one of four driving states of a heavy rail vehicle) and deceleration regime profiles defined
by a combination of said sub-regimes. These sub-regimes are subject to the rail sector de-
fined differential equation, describing Newton’s second law of motion, with the vehicle re-
sistance expressed by the Davis equation (Davis, 1926). This equation is further expanded
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in this research to accommodate the testing of non-uniform braking behaviour by writing
the braking rate as a function of either velocity or time, inspired by Maurya and Bokare
(2012). The framework incorporates a statistical analysis because, besides the realised
train trajectories and corresponding parameters, the statistical distributions of these pa-
rameters and related performance indicators (PI) are considered the end products for this
research.

Furthermore, this research introduces the concept of ‘Data Fusion’ for all the realised
location tracking data to be used in the DR model. The datasets used from the different
sources (i.e. the single source of train describer data and 1 to 2 sources of GPS data) are
formatted, corrected and derivable data is created to unify, expand and fill in the gaps for
the provided data sources. After the aligning the different location tracking data sources,
they are fused in which the strengths of all the different sources are inherited while their
individual weaknesses are compensated. Once fused, the dataset of individual train runs
are filtered to discard the undesired, hindered or invalid train runs before feeding the DR
model with the fused location tracking data of the selected realised train runs.

The DR model has several layers of nested for loops in its programming, testing each pre-
defined deceleration regime profile and braking variant for each station approach in the
corridor of a single realised train run. Each combination of deceleration regime profile and
braking variant has their own specific f-vector (i.e. a list or sequence of variable parame-
ters describing the vehicle’s behaviour within the DR model) for the optimisation algorithm,
whose structure is developed automatically in the dataset and coefficient preparations pre-
ceding the actual optimisation of the minimisation problem. The minimisation problem is
defined as minimising the sum of absolute errors of the surface areas under the speed pro-
file between each pair of data points , with the surface area under the realised speed profile
defined by the average velocity multiplied by the distance between the two data points and
the area under the estimated speed profile defined by a double integral over distance of the
velocity differential equation describing the estimated behaviour for a specific sub-regime.
The optimisation algorithm used on this non-linear minimisation problem, is a Genetic Al-
gorithm (GA) method. For this research, a customised GA is developed, which is dubbed
“Elitism with Randomised Population Migration and Diminishing Mutation”. This is an al-
gorithm which retains a small pool of best fitting solution vectors for both the next gener-
ation and for developing the ’offspring’ vectors through cross-over and mutation with a di-
minishing mutation range, while refreshing and maintaining the general population size
through the migration of a group of completely randomised vectors.

To validate the analysis methodology, a case study was developed over the corridor ’s
Hertogenbosch - Utrecht (Ht-Ut) for the (inter-)regional commuter line series 6900 during
the year 2017 for the rolling stock type Sprinter Light Train (SLT). Both location tracking
sources (i.e. enriched GPS (MTPS) and train describer data(TROTS)), infrastructure data,
signalling data and the network timetable for this train series was provided by Dutch IM
ProRail and Dutch TOC NS. The nominal vehicle characteristics, used as references in the
performance indicators (e.g. running times, deceleration loss times, braking rates, track
section occupation duration) and as guides and bounds in the optimisation algorithm, were
provided by TU Delft and Ricardo Rail Nederland.

The results of the analyses done in this research, have empirically shown the existence of
the stochastic deceleration behaviour through the stochasticity of the performance indi-
cators and has shown the existence of a strong and linear correlation between the already
known spread in realised running times and that of deceleration loss times (Figure 1). The
results have also shown the impact that this stochasticity has on infrastructure occupa-
tion, which in this research is simplified and described by track section occupation dura-
tion. It has shown performance impacts, relative to the minimum running profile, of up to
1.5 to 2 times the occupation duration and inversely dropping the infrastructure occupa-
tion to anywhere from two thirds to half of the potential track section capacity (Figure 2a).

The DR model has provided more detail to the estimated deceleration behaviour and has
shown that finding the most prominent realised deceleration regime behaviour is possible
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with this analysis methodology and the currently available data sources. For example, it
has shown the realised data for station Geldermalsen best fits the deceleration regime pro-
files with two braking regimes with constant braking coefficient. It has also shown that de-
scribing the braking rate as a non-uniform function is a very plausible alternative to the
simplified approach of defining the braking rate as a constant coefficient and merits fur-
ther investigation, as many of the best fitting profiles returned with a non-uniform brak-
ing variant. Observing the estimated braking rates of the best fitted profiles and variants
for the tested train runs, the distributions show that there is a significant gap between the
expected braking rate of 0.8 m/s? and the estimated braking rates.In the majority of the
estimated deceleration regimes, a more conservative behaviour is observed relative to the
expected deceleration behaviour.In case of station Geldermalsen in Figure 2b, this means a
mean of estimated braking rates ranging from approx. 0.45 to 0.65 m/s?.
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Figure 1: Scatter plot correlation realised running times versus deceleration loss times - station Geldermalsen (Gdm)
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Figure 2: Example of the results from empirical analysis and DR model:

(a) Histogram of the realised occupation durations for track section GDM$129T (see full size Figure K.1a)

(b) Histogram plots of the estimated braking rates for station Geldermalsen (Gdm) (see full size Figure H.1)
These results can be used to improve scheduling tools and microscopic models, by using
improved estimations of braking rates and deceleration regimes, and by providing a more
refined and dynamic approach of the deceleration regime within these systems. The 'Data
Fusion’ process has shown great potential in reinforcing the strengths and compensating
for the weaknesses inherent to the used data sources, and providing robustness in data
availability while providing a more refined location tracking within track sections, which
merits further development of this concept. Further investigation is required to fully under-
stand the causality behind the deceleration behaviour in more specific detail, such as the
effects of station platform design or open-track signalling placement, in order to account
for it within scheduling tools or to provide an environment to train operators to adhere to
the expected deceleration regime. Further research is required to provide a more definitive
answer to the implemented braking regime and its non-uniformity the use of more refined
data, different data sources and further improvements to the DR model.






Term

ATB-EG

ATB-Vv
ATO

Assistive Force

BDA

Big Data

Coasting

Cruising

Cycle Time

DAS

Deceleration
Regime

Driving Regime

Epoch Time

GPS

IC

IM

Glossary

Description

Automatische Trein Beveiliging - Eerste Generatie, The Dutch
national ATP applied to the main heavy rail network.

Automatische Trein Beveiliging - Verbeterde Versie,
Automatic Train Operation

Opposite to Resistive Forces, Applies its force in the intended
travel direction.

Big Data Analysis

Data characterised by the 6 V’s, namely Volume, Variety,
Velocity, Veracity, Value and Variability.

A driving regime in which both the tractive effort and the
brakes of the rail vehicle are turned off, decelerating purely on
the resistance efforts.

A driving regime in which the tractive effort is adjusted to
match the resistance efforts, allowing the vehicle to run at a
constant velocity.

Duration or period over which the scheduling pattern of a
cyclic/periodic timetable is developed.

Driver Advisory System

A regime using sub-regimes, describing the smaller regimes in
which coasting, cruising and braking are applied within the
same intention of deceleration.

A control operation applied to the vehicle with regards to train
movement.

A method of counting time in Unix and later other computer
systems, expressed as an 32-bit integer, counting the seconds
since Epoch, which corresponds with the date 01-01-1970 at
00:00:00. A float or decimal can be used to express time more
precisely in terms of microseconds.

Global Positioning System, Usually referring to the general
implementation of Satelite-based Location Tracking.

InterCity, Trains that provide a more national level rail
connection

Infrastructure Manager



Jerk

NS
Nominal
ProRail
RMSE

RSSLI

SGMm

SLT

Sprinter

Sub-regime

TNV

TOC

Timetable Day

Train Describer
Data

Train Event
Recorder Data

UZ1

Rate of change of acceleration / deceleration. Second order
derivative of velocity. Usually described as m/s3, but in case of
velocity dependency, such as Equation (2.9) — d,, as 1/s.

Nederlandse Spoorwegen, The Dutch National TOC
Expected or designed value within expected margin of error
The Dutch National IM

Root Mean Squared Error

Rolling Stock, Speed Limit and Infrastructure, refers to the
infrastructure model used in this research.

Stadsgewestelijk Materieel gemoderniseerd, the retrofitted and
modernised version of the older rolling stock type used on the
Dutch rail network.

Sprinter Light Train, A commuter heavy rail vehicle or
Sprinter type train.

Trains that provide a more (inter-)regional level rail
connection

Smaller driving regimes within the 2 of the 4 general driving
regimes characterised by an active attempt to alter the
current velocity (i.e. Acceleration and Braking), with a
nuanced difference between neighbouring sub-regimes of the
same type(e.g. two braking sub-regimes with different braking
coefficients).

TreinNummerVolgsysteem, Train Number Following system,
the predecessor to the TROTS system

Train Operating Company

The day of a timetable in the Dutch railway sector run from
2am to 2am the next day (02:00 - 02:00), unlike the regular
day beginning and end at 12am (00:00 - 00:00).

The data gathered from infrastructure sensors, recording
track section occupation and release times, train description
steps, signalling states (stop/go), switch states (left/right).

The data of events recorded from within the rolling stock,
measuring train positions, velocities, traction and braking
applications.

Universeel Zuinig rijden Idee, translates to Universal Efficient
driving Idea and is an energy efficiency plan, describing a
driving regime in which the driver is expected to apply
maximum acceleration, minimal braking and applies coasting
for as long as the time allowances would allow.
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Ntroduction

When travelling between stations, the observant passenger may have noticed that no two
train runs are the same, caused by your departure or arrival at stations at different times
or the varying length of time for getting from A to B. The most obvious causality from these
differences are delays or restrictive track signalling. However, even when the conditions
appear to be very similar and no obvious restricted track signalling is present, these differ-
ences between the train runs persist.

This research investigates the stochastic deceleration behaviour of commuter heavy rail ve-
hicles, in what stochastic form (i.e. distribution shape and parameters) this is perceived
and what the impact of it on infrastructure occupation. Even the assumptions, such as the
braking regime consists of a single and constant braking rate and deceleration approach to
a station consists of a single braking regime and sometimes preceded by a coasting regime,
are challenged in this research and are to be tested for their validity. This research devel-
ops a reconstruction model based on realised traffic data to obtain and analyse the realised
deceleration behaviour in a data driven approach.

1.1. Situation Definition

The Dutch Train Operator Company (TOC) and Infrastructure Manager (IM), being NS and
ProRail respectively, have generally observed there to be a spread in the running times be-
tween all stations. While investigations and research have been done regarding the accel-
eration or maximum velocity of the heavy rail commuter vehicles, of which some tested
the stochastic nature of their general operational behaviour, the deceleration behaviour

of these vehicles were at most described in a more general sense while either reconstruct-
ing the entire speed profiles of rail vehicles in available scientific papers (BeSinovic et al.,
2013a,b,c; Medeossi et al., 2011) or investigated as a byproduct of other researches re-
garding technology and safety. Current timetabling tools or simulation software account
for a single defined deceleration behaviour based on static conditions and only consider the
braking rate as a constant coefficient, describing a sort of (near) binary state of on/off in
brake application, of which some allow for variation of the simulated or estimated braking
rate, rather than allowing for a dynamic or non-uniform development of the braking rate
and different deceleration behaviour to be applied to account for different driver mental-
ity and behaviour. This, however, assumes nominal vehicle characteristics and operating
conditions (i.e. conditions relevant for train runs, based on stated track / vehicle design
specifications and vehicle characteristics) and a uniform behaviour from all train drivers.
Considering the human aspect and widely differing external conditions (e.g. weather, time-
liness of train runs), how valid would this assumption be when reviewing the realised de-
celeration behaviour? This has further raised the question to what extent the impact is of
this stochastic behaviour on infrastructure occupation, especially around stations.

1



2 1. Introduction

1.2. Objective

The primary objective of this research is to empirically determine the impact of the per-
ceived stochastic nature of the deceleration driving regimes, as presented in the work of
BeSinovic et al. (2013a,b,c), Medeossi et al. (2011) and Tielman (2015), has on the infras-
tructure occupation.

To evaluate the realised deceleration be-

haviour, a model has to be developed to
run the analysis. This model has its focus 120
on the deceleration regimes, with a more 100

detailed analysis approach to determine
the existence of different sub-regimes. Sub-
regimes, in this research, are defined as
smaller regimes within the general driv- 40
ing regimes, with a nuanced difference
between neighbouring sub-regimes of the
same type(e.g. two braking sub-regimes
with different braking coefficients).
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These objectives are set to investigate the existence and causality of the stochastic
behaviour in the deceleration driving regime of a commuter heavy rail vehicle, the impact
these influential factors have on the stochasticity and the impact this stochastic behaviour
has on the network through means of infrastructure occupation.

As a result, a better understanding is expected to be reached on the deceleration behaviour
of heavy rail vehicles and their drivers. This will provide some initial findings to help im-
prove the relation between timetabling and the stochastic nature of the vehicle’s deceler-
ation behaviour, and to introduce the development and implementation of a different ap-
proach in describing the vehicle’s deceleration behaviour when calculating running times
for timetable development.

1.3. Research Questions

To aid the focus of the research, the approach of the research will be to answer a main
question that will cover the extent of this research, with several supporting smaller ques-
tions that are more specific on the different aspects of the main question and will lead to a
more detailed and in-depth answer.

Main Research Question

To understand the role of a driver’s deceleration behaviour in current climate of concerns
for the Infrastructure Manager(IM) and Train Operating Company (TOC), the impact of the
stochasticity on the infrastructure occupation will be investigated. This leads to the follow-
ing research questions:

How does the stochastic behaviour, observed in the deceleration approach of a planned sta-
tion stop, impact the infrastructure occupation in the network corridor between stations?



1.4. Research Approach

Research Sub Questions

The research sub questions in support of answering the main question are as follows:

1.

2.

What vehicle parameters are required to fully describe the behaviour in a deceleration
approach of a planned stop?

How would the collection and processing of the required data for the behaviour analysis
be defined?

. How would the data-driven reconstruction model be defined to allow for the fusion of

different database sources and to analyse the realised data to reconstruct the decelera-
tion behaviour of vehicles in detail?

. What are the distribution types and stochastic values of the realised deceleration be-

haviour of commuter heavy rail vehicles?

. Could any sub-regimes be determined in the realised deceleration behaviour?
. How do the parameter distributions of the realised deceleration behaviour compare to

the nominal parameters of the expected deceleration behaviour?

. What are the causalities for the stochastic variations found in a vehicle’s deceleration

behaviour?

1.4. Research Approach

In order to achieve the objective of this research and to provide a platform to answer the
stated research questions, an approach is made and summarised by:

— Present a data-driven, reconstruction model that will reconstruct the realised velocity

profiles and estimate the realised deceleration regimes in more detail through means
of implementing sub-regimes.

— Present a means of combining and processing both vehicle-based and infrastructure-

based location tracking datasets.

— Empirically and visually provide evidence regarding the stochasticity of the decelera-

tion driving regime in commuter heavy rail vehicles.

— Empirically and visually provide evidence regarding the causality and its impact

and sensitivity, affecting the stochastic distributions of the realised deceleration
behaviour.

The research approach and analysis methodology is elaborated on in Chapter 4.
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1.5. Scope & Case Study

The scope for this research is limited by the selection and boundaries set below in order to
keep the complexity of this research manageable and keep the focus of the research on its
objectives.

Driving Regimes and Operational Scenario

The focus of this research is on the deceleration behaviour of commuter heavy rail vehicles.
There are several scenarios in which any rail vehicle would decelerate. This could range
from decreasing velocity due to (dynamic) speed limits, delay propagation from a preceding
train or having to come to a complete stop for either a red rail signal or entering a planned
stop at a station platform.

In this research, the choice was made to focus on the planned stops at a station platform
from conflict-free train runs. This was chosen to eliminate driver behaviours constrained
by traffic conflicts and to observe the driving behaviour under normal operational condi-
tions. This would include the delayed train runs that are not constrained in their decelera-
tion approaches.

The deceleration of a vehicle has many variables that are suspected to influence the actual
physics of decelerating a long and heavy vehicle to a stop. What makes this operation more
complex in comparison to the other driving regimes, is that it has its target location as a
fixed point, with a relative small margin of difference, at the end of the motion instead of
having the target/goal of the motion be a floating point, like with acceleration regimes. In
addition, the deceleration target point is out of sight until the last few seconds in the sta-
tion approach, leaving very little room for adjusting in an over-assertive station approach.

However, why examine the entire deceleration approach and not just the braking regime?
The braking regime and braking coefficient, in considering driving behaviour, loses context
if only a part of the deceleration behaviour is taken into account. One station approach
might have very short braking times and high braking coefficients, but could still take a
long time to complete its approach into a station, leading to higher block reservation
times and possibly lose a lot of potential infrastructure occupation. While another
approach might not be as assertive in their braking and taking longer in their braking
times, but have a shorter overall approach time and most likely be more efficient for the
infrastructure occupation near the switches near the station platforms. Therefore, to
maintain the context with these station approaches, the entire deceleration behaviour
leading to the planned station stop are considered.

Rolling Stock

For this research, the scope will focus on the commuter heavy rail vehicles (e.g. SLT,
SGMm) as those are expected to yield the more significant impact from this research due to
a higher density in station stops (i.e. more planned station stops per corridor compared to
intercity or shorter distance between station stops). These higher stop rates will provide
more stops over a relatively short corridor in which we can guarantee the same driver
operating the rail vehicle. This would allow the testing for correlations while assuming
similar driver mentality. This will help eliminate contamination in determining correlation
between other aspects, such as different station/platform designs.

Another consequence of the higher stopping rates is that the commuter trains have a lower
average operational velocity and longer station-station running times as well as a more pro-
nounced (i.e. compounded) effect of the possible stochastic nature on the vehicle opera-
tional behaviour, causing the infrastructure occupation to be impacted relatively more se-
vere than intercity trains.

The decision to narrow the choice of the rolling stock down to a single vehicle type, is to
eliminate different vehicle characteristics caused by the design of the vehicle and to focus
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the correlations and statistical results on driver behaviour and external influences (e.g.
weather, vehicle or track conditions, vehicle delay state).

For the analysis the nominal vehicle characteristics will be used to define the default vehi-
cle resistance values and coefficients. There are, however, not considered fixed values due
to the intra-vehicle-type mechanical stochasticity (i.e. differences between vehicles from the
same vehicle type).

Infrastructure

To create a clear distinction between external influential factors (e.g. weather, vehicle or
track conditions, vehicle delay state) and personal driver characteristics, this research has
chosen to focus its investigation a single corridor between two major cities with plenty of
stations and different platform designs. With this the assumption can be made, with a high
degree of certainty, that there were no driver changes along the corridor and have plenty

of station stops to understand the correlation between different stations and differentiate

it from the correlation of driver deceleration behaviour. This corridor will also have a high
intensity of rail vehicles. This is to test the stochasticity against a lean supplemented train
schedule and what the impact is on infrastructure occupation.

Time Period

The selection of the time period is considered a balance between computational time and
for the statistical analysis to provide statistical significant results on the deceleration be-
haviour and any correlations drawn in this research. The decision is made to run the main
analysis of a time window of an entire timetable year.

Realised Data

Due to the heritage of the proposed analysis model, the realised data is used from both
vehicle (i.e. Vehicle GPS: Location-Time, Velocity) and infrastructure (i.e. Train Describer
Data: track section occupation and release times, section signalling) for the analysis. The
analysis method for this research and the required data will be discussed in Chapter 4 of
this research.

Case Study

To further specify on the different aspects mentioned above in defining the scope for this
research, the following can be summarised on the previous scope aspects to define the case
study for this research:

Driving Regimes and Operational Scenario:

The deceleration regimes Coasting and Braking were examined to provide the complete
context of the deceleration behaviour for the planned station stop. Only the conflict-free
train runs are used for the analysis.

Rolling Stock - SLT:

The vehicle type chosen for the case study was the Sprinter Light Train or SLT for the as-
sumed more modern on-board control and logging system. For the default vehicle param-
eters, the nominal values of the vehicle characteristics (e.g. resistance coefficients) for an
SLT-10 were used.
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Infrastructure - Ut - Ht”:

A few different corridors were examined, such as "The Hague - Rotterdam” and
"Amsterdam - Utrecht”. In the end, the decision was made to use the A2 South
Corridor” /”Utrecht(Ut) - ’s Hertogenbosch(Ht)”.

Time Period - timetable year 2017:

The timetable year of 2017 was selected, as it was the most recent available data source to
eliminate any contamination of recently implemented operational or structural changes.
This was also the year in which trials with high frequency train traffic was tested on the
chosen corridor. (NS, 2016; ProRail, 2016, 2018; SpoorPro, 2018) The SLT Sprinter trains
were not part of the current roll-out of the high frequency train schedule, but it is assumed
that, due to the interaction on mixed traffic corridor, the commuter rail vehicles have been
affecting and were affected by the high frequency timetable. These test days make for an
interesting insight in the effects of implementation of High Frequency timetabling on the
driver’s deceleration behaviour and the effects of stochastic behaviour on the effectivity and
sensitivity of High Frequency timetabling.

Train Run Series - Series 6900:

When the considerations of rolling stock and infrastructure were being made, the idea of
using a specific train run series arose to provide a more consistent dataset. Train run se-
ries 6900 of the timetable year 2017 seemed to align with the chosen rolling stock(i.e. the
entire train run series was run with SLT vehicles) and the demanded aspects on the case
study infrastructure, helping solidify the infrastructure choice.
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The summarised reviews of different literature sources are grouped by their intent or influ-
ence in this research.

2.1. Literature Reconstruction Model & Operational Behaviour

This section holds the summary of the different mainstream approaches in reconstruct-
ing the realised velocity profiles and therefore train operator and vehicle behaviour. This is
then followed with the literature used to support the analysis methodology of this research.

2.1.1. Basics of modelling train movements

Before discussing the works, research and papers related to the reconstruction model, a
short description of the two main mathematical approaches used in calculating a vehicle’s
velocity is given, along with a couple relevant pros and cons.

Kinematics

One of the main mathematical approaches is through the use of kinematics. The related
equations are are all based on four variables(i.e. velocity(split into initial and end), time,
distance, acceleration) and require the use of three to calculate a fourth. Albrecht et al.
(2006, 2010a,b) used this method to describe the vehicle motion, with parameters cali-
brated by track occupation data, which was collected through the use of train describer
systems (Daamen et al., 2009; Goverde and Meng, 2011; Kecman and Goverde, 2012a,b).
The general kinematic equations used, are:

s = y;t + 0.5at?
Uf =7 + at
vZ = v? + 2as (2.1)
=V

s =0.5(v; +vp)t

In which s is distance, t is time, a is acceleration or deceleration when negative and v; and
vy describe the vehicle’s velocity in its respectively initial and final state.
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Dynamics

The other main mathematical approach is through the use of dynamics, in particular the
use of Newton’s dynamic motion equations, expressed as Equation (2.2). The equation is
a (partial) differential equation with coefficients and variables reflecting the different forces
acting upon and reacting to an entity in the form of deformation or motion, with the train
being modelled as a mass point. This assumption is widely accepted and used in previous
research and practice. (Hansen and Pachl, 2008) This dynamics equation can be formally
expressed as Equation (2.3).

p =p(t) =mv(t)

dp
F=2r (2.2)
P dv
= mE
dv
i) —r(@) = ) = mos (2.3)

With p defined as the vehicle’s momentum, F as the resultant force of the vehicle, v as ve-
hicle velocity, t as time, m as vehicle mass(with rotational mass factor implicitly accounted
for), f;(v) as velocity dependant tractive force, r(v) velocity dependent resistive force and
fs(v) being the surplus force exerted on or by the rail vehicle. The resistive force r(v) can
be further broken down into the rail vehicle resistive forces r,(v), which is usually based
on the Davis Equation (Davis, 1926), and the resistive forces related to the track geome-
try, gradient (ry) and curvature (r;) (Trani, 2018). Each of these functions can be further
described by the following equations:

ft(v) = min(cy + c1v; ¢, /v)  (Assumed)

1,(v) =15 + v + vl

r. = 0.01 (2.4)
¢ rad,

_g-grad
"9 = 1000

With v describing the rail vehicle velocity, g describing gravitational acceleration (9.81
m/s?), k being a dimensionless variable describing the impact of the curvature radius (rad,,
expressed in m) on the curvature resistive force (r.) and grad (expressed as proportion)
describing the longitudinal gradient of the track section. Lastly, ¢y, ¢; and ¢, describe

the rail vehicle’s tractive coefficients and r,, , and r, describe the rail vehicle’s resistive
coefficients according to the applied Davis Equation. Furthermore, the tractive and
resistive force equations have already been adjusted to be mass-specific for the purpose of
this research, either explicitly through mass variables or implicitly through the equation
coefficients, and are therefore expressed as their related acceleration.

Kinematic vs Dynamics

Using the kinematic equations assumes a constant acceleration or deceleration during the
driving (sub-)regime or considered track section. The equations are also trajectory depen-
dent and can therefore calibration not be used for a different train run even if the rolling
stock is considered identical in vehicle characteristics. Furthermore, kinematic equations
only implicitly account for the different forces, making it harder to distinguish between
the different aspects of the vehicle’s motion(e.g. driving behaviour, infrastructure/vehicle
design characteristics, weather/track/vehicle conditions). The vehicle traction and resis-
tance forces, as seen in Equation (2.4) are also, for the most part, velocity dependent and
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will therefore change with differences in velocity, making it inherently variable.

Dynamics Equation allows differentiation of acceleration / resistance coefficients. The dy-
namics equation and its coefficients are trajectory independent by accounting for veloc-

ity differences and making the coefficients generalised for both vehicle and infrastructure
characteristics. Therefore previous calibration of the coefficients can be used on different
train runs with similar vehicle and infrastructure characteristics. Due to these differences,
the proposed reconstruction model described in this research, just like the research elabo-
rated on below, uses the dynamics equation Equation (2.2) adjusted to describe the vehicle
velocity in distance instead of time, as seen later in Equation (2.6).

2.1.2. Using stochastic blocking times to improve timetable planning. —
(Medeossi et al., 2011)

Medeossi et al. (2011) developed a method of generating and evaluation of blocking timeta-
bles with the running times based on stochastic behaviour of heavy rail vehicles, as other
research (Albrecht et al., 2006; Goverde, 2005) had done. This method was calibrated with
realised train runs in the corridor Trieste - Udine in Northern Italy.

Due to the inaccessibility /unavailability of high quality track describer data or archived
digital train recorder data from the Italian IM and TOC, Medeossi et al. (2011) used the
GPS location tracking of the vehicles and then linked and adjusted them onto the under-
lying infrastructure of the corridor. He was able to achieve usuable results and developed
his stochastic approach to blocking schedules.

Medeossi et al. (2011) used the kinematic motion equations, in which he opted for the use
of performance coefficients and fixed, nominal vehicle characteristics. Medeossi et al.
(2011) had to therefore define ’driving regime’-specific functions, instead of applying a
generalised function for velocity profile description.

The minimisation problem defined for the optimisation of the model’s estimation, applied a
mean squared error calculation on the velocity component of the different GPS points with
the model’s estimated velocity, as seen in Equation (2.5). The optimisation method used to
solve the minisation problem was applying an simulated annealing algorithm.

N
Minimise " (055 () = Veare (D)
i=1
Subject to: v, = f(pa, - Ppr» R, F,m, BWP)

(2.5)

The equation used to calculate the velocity, was ’a conventional motion equation’ and vari-
able performance parameters and pre-determined (or 'deterministic’) parameters related

to vehicle, infrastructure and timetable. (i.e. resistance R, tractive effort F, mass m and
braked weight percentage (BWP))

The differences with the later research of BeSinovic et al. (2013b), was the use of a kine-
matic motion function with fixed, nominal vehicle characteristics and a general perfor-
mance factor, compared to a generalised differential equation describing the velocity dif-
ference over distance with bounded variable vehicle characteristics. This meant 4 different
"driving regime’-specific functions. This, along with the general performance coefficients,
made it an inflexible system, as it limited the degrees of freedom in the regime by fixing the
individual vehicle characteristics.

This research, however, has provided insight in the existence of stochastic driving
behaviour and has shown it to be possible to calculate an estimation of the realised driving
behaviour from GPS location tracking data.
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2.1.3. Simulation Based Optimisation Model — (BeSinovi¢ et al., 2013a,b,c)

BeSinovic et al. (2013b) introduced the framework of using a simulation based model with
realised train describer data(in this case track occupation and release times linked to vehi-
cle ID) to accurately describe the vehicle coefficients for timetable implementation. In BeS§i-
novi¢ et al. (2013a) the model was further refined through a sensitivity analysis, conclud-
ing with BesSinovi¢ et al. (2013c) validating the simulations with realised vehicle GPS data.
These papers produced ‘Chapter 7 - Calibration of Train Speed Profiles’ of the PhD research
by BesSinovi¢ (2017) and had the purpose of creating a reliable method of determining run-
ning times and velocity profiles for accurate estimation and timetable development in dense
railway networks. The proposed simulation model was based on the Newtonian Dynamics
equations of motion. In particular, the dynamics equation used in the model was written
as a differential equation of velocity over distance, as described in Equation (2.6).

ﬂ_ft(v)_rv(v)_b_rg_rc
ds v

(2.6)

In which b is the braking coefficient, v the vehicle velocity, gradient resistance 7, curvature
resistance 7, and the tractive effort (f;(v)) and vehicle resistance (r,(v)) described by the fol-
lowing equations:

ft (v) = min(cy + c1v; ¢z /V)

2.7
,(V) =1 + 1Y + rv? (2.7)

In BeSinovi¢ et al. (2013b), the sensitivity analysis of the parameters showed that ¢; and ry
have a negligible variance and could therefore be assumed fixed values. They set c; to zero,
due to the insignificant relevance, and r; to the default value of the rolling stock character-
istics, provided by the TOC.

The optimisation problem as proposed by BeSinovi¢ et al. (2013b) was the minimisation of
the sum of absolute differences between observed and simulated running times between
track sections and can be seen in Equation (2.8). It was minimised with an heuristic solv-
ing algorithm, namely a Genetic Algorithm.

Minimise thiobserved _ tiSLmulatedl
iEN

d—v—ft(v)_rv(v)—b—rg—rc

Subject to: 75 >
dt 1
ds v

ci € [c}?, ciP], fori= 0,2 (2.8)

1, € [riP,r#P],fori = 0,2

bstop € [bé?op'bgt%p]

Ocruising(S) € [eélr’uising (), egrbuising ()]
Bcoasting(S) € [eégasting (s), egfasting(s)]
v(0) =19 =0,v(N) =Vepqg =0
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2.1.4. An Agent-based Approach to Simulating Train Driver Behaviour —
(Tielman, 2015)

Tielman (2015) developed a methodology and optimisation algorithm in order to improve
on the validity of the microscopic simulation model FRISO, used by ProRail, through the
use of agent based train operators. These agents that he developed and trained through
machine learning, concluded with an improved result in FRISO simulating train operator
behaviour, when comparing the agent based model and the FRISO base model to realised
traffic data.

However it was not perfect as some comparisons resulted in still showing a noticable, but
improved, deviation in results between realised and calculated behaviour. Much like the
functions used by Medeossi et al. (2011), Tielman was limited by the linear’ equations used
in ProRail’s FRISO and was therefore limited to constant vehicle parameters per driving
regime (e.g. the use of single and constant braking and acceleration coefficients within the
same driving regime). This was dealt with by modelling the ’final approach to a planned
stop or a red signal’ into two different braking regimes and if necessary filled in a coasting
/ cruising regime. (Tielman, 2015, p.49)

When developing his agents, he investigated the Driving time Until Emergency braking
curve (DUE). This was so that the simulated trains would not start their braking regime

too early. The gamma distribution was drawn as a reference for his random draw of initial
DUE used, as the initial DUE was deemed stochastic and independent from the initial vehi-
cle velocity.

There were other correlations drawn (e.g. between the initial velocity and initial distance
between start and stop of a deceleration approach to a stop) that would further provide
conclusions, that would imply that stochasticity could be found even in the on-set times
and duration of different driving regimes with different scenarios and signalling.

2.1.5. Study of Deceleration Behaviour of Different Vehicle Types — (Maurya
and Bokare, 2012)

Due to the limited research material publicly available on the deceleration behaviour of rail
vehicles, an exploration into different transportation or traffic research fields was deemed
necessary. The research fields covering road vehicles hold significantly more research on
deceleration behaviour, with the paper of Maurya and Bokare (2012) particularly interest-
ing and relevant for this research.

This research focused on determining the different deceleration behaviour for distinctly dif-
ferent vehicle types(i.e. Trucks, cars, motorised two and three-wheeler). It differentiated
itself from the majority of past research by examining the deceleration behaviour in a free-
flow, heterogeneous highway by asking all road users (i.e. cars, trucks and other motorised
vehicles) to drive at their maximum (desired) velocity to a complete stop in the shortest
amount of time instead of restricting themselves to only cars and trucks in a homogeneous
traffic state, and. The deceleration of all road users was recorded using GPS trackers.

It was determined that the different vehicle types held significantly different deceleration
behaviour. Vehicles with a higher initial velocity had a longer deceleration time and dis-
tance, while experiencing higher maximum and mean deceleration rates during there de-
celeration approach. All vehicle types during their deceleration approach, had a decelera-
tion rate that initially increased, attained maximum deceleration and then decreased their
deceleration rate again, once the vehicle velocity dropped below a critical velocity.

For all, except the cars, a dual regime model was developed to describe the deceleration
rate of the observed deceleration behaviour, with the regime above the critical velocity
(Regime I, Equation (2.9) — d,) being described by an inverse exponential function and the
regime below the critical velocity (Regime II, Equation (2.9) — d,) being described as a linear
function. The deceleration rate of the observed cars was described as a velocity dependent,
second order polynomial (Equation (2.9) — d.). For validation, the research used them to
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interpolate and fit the functions based on the observed deceleration-velocity data and
applied a 'Paired T-test’ to defend their null hypothesis as described in Equation (2.9) —
. This null hypothesis was tested for a 95% confidence interval(a = 0.05) and it was
determined that the null hypothesis could not be rejected.

d, =k, -e ke
d,=a+fpv

de. = —k3v? + kv + ks
L=Ho—Hm =0

(2.9)

kq ...ks = model parameters
a = minimum deceleration (m/s?)
B = Jerk, velocity dependant (1/s)
v = vehicle velocity (m/s)
U, = mean deceleration calculated from observed (m/s?)
U = mean deceleration obtained from model (m/s?)

It is not quite sure how strong the parallels are between the respective research fields of
road and rail vehicles. However, it is interesting to see that, even in research about the
driving behaviour of road users, deceleration rates are observed to be non-uniform. Any
assumptions of behavioural parallels will have to be thoroughly tested. For instance, the
defence or assumption that the deceleration rates are velocity dependent, felt short and
superficial. This will also mean an uncertainty in regards to the ’critical velocity’ that was
observed in the deceleration rate of the road users and if this would translate to the decel-
eration behaviour of heavy rail vehicle operators.

2.2. Literature Data Processing & Statistical Analysis

Considering the data driven approach of this research, some key research literature had to
be reviewed, with regards to Data Mining and Data Processing. These papers had a signifi-
cant impact on the current method of mining and pre-processing of the data by the Dutch
IM and TOC. The purpose of this section had a less direct influence on this research, com-
pared to the previous papers. This will, however, function more as background information
and appreciation for the technological advancements made, allowing research like this MSc
Thesis research to be feasible.

Ghofrani et al. (2018) reviewed the implementation of Big Data and the importance of
this development within the different branches of the railway sector. It reviewed and
summarised the different research papers, using Big Data for their analysis or creating
mining/processing methods/tools for their Big Data Analysis (BDA). The review was
further elaborated by categorising them by Railway Transportation Systems(RTS) area
(i.e. Safety, Operations, Maintenance), level, model type (i.e. Descriptive, Prescriptive,
Predictive) and other big data techniques.

In the RTS area of Operations, Intelligent Rail Transportation Systems (IRTS) has delivered
several innovative technologies to IMs and TOCs in an effort to help them make optimised
and efficient decisions. The application of BDA in IRTS has improved timetabling, simula-
tion models and prediction models by allowing faster and more data processing. This has
provided more means to evaluate, validate or train the analysis tools and make better deci-
sions faster by providing more and relevant information.

Current and modern automatic signalling systems are based on the track-clear detection.
This includes the train describer systems that keep track of train movements through their
train description (e.g. train identification number). This forms the core of the automatic
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route setting and centralised traffic management. However, it wasn’t until the start of the
21st century that the logs were archived for railway operations analysis. Before that mo-
ment, these logs were only stored for a few days as support for investigations of possible
accidents. Considered one of the forerunners in processing train describer data for anal-
ysis, Goverde, Daamen and Hansen, with their work presented in Daamen et al. (2009);
Goverde (2005); Goverde et al. (2008), developed a mining tool on the older TreinNummer-
Volgsysteem(TNV) for the Dutch IM, presented as the tool named TNV-Conflict. A newer
analysis methodology was developed and it was the spiritual off-spring of the previous min-
ing tool. Now developed to mine and process the data from the Dutch IM’s newer train de-
scriber system, TROTS (Kecman and Goverde, 2012a,b). This is the technology that would
allow for the BDA in the Railway Operations to exist in the Dutch Railway industry and
this, or a derivative, is what runs behind the scenes when any Data Acquisition Request
is made.

Collecting, processing and transforming these data sources, which are very well described
by Ghofrani et al. (2018), shown in Table 2.1, in combination with timetabling data for de-
scriptive analysis of train delays and timetable improvements, are considered the first ap-
plications of BDA in railway operations. Through the concept of process mining, with do-
main knowledge, researchers were able to process train describer records, retrieve train po-
sitions at the level of track section occupation. (Daamen et al., 2009; Kecman and Goverde,
2012a) Also route conflicts could be determined from these logs, from which secondary de-
lays due to unscheduled braking could be derived. (Daamen et al., 2009; Goverde et al.,
2008)

Big Data Sources \ Typical contents

Train Describer Data Track occupation and release times, train description steps,

signal states(stop/go), switch states (left/right)

Traffic control delay data \ Delays at stations or other timetable points

GPS data | Train positions

Train event recorder data \ Train positions and velocities, traction, brake applications
Traffic control incident ‘ Begin and end of disruptions, failing elements
registration data

Timetable data \ Arrival and departure times, train routes, stops

Ticket sales data \ Tickets available

Automatic Fare Collection
data (smart card data)

Passenger check-in and check-out times

Website data Timetables, recommended travels and prices, train delays,
disruption location and times, online ticket sales

Table 2.1: Data Sources described by Ghofrani et al. (2018) — Table 3

The train describer data enabled data-driven predictive models, using historical and real-
time data, with methods such as robust regression, regression trees and random forests
(Kecman and Goverde, 2015a), and event graph models for online track conflict analysis
and train delay predictions (Hansen et al., 2010; Kecman and Goverde, 2015a). Another
application of train position data has been to estimate train characteristics using graphical
tools on train event recorder data (De Fabris et al., 2008), Simulated Annealing on vehicle
GPS data (Medeossi et al., 2011), and a Genetic Algorithm on track occupation data (BeSi-
novic et al., 2013b).

De Fabris et al. (2008) used the train event recorder data to derive realised train character-
istics. This data-set consists of not only the vehicle’s location, but also its velocity, trac-
tion and braking applications. The issue with this type of data is the decentralised and
temporary storage, making it difficult to use for analysis on a larger scale. Another popu-
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lar means of vehicle-based vehicle tracking data, is using the vehicle’s GPS tracking data
forthe same purpose. (Medeossi et al., 2011) This would provide with less information and
a lower tracking accuracy, but is deemed more accessible for researchers, due to policy and
centralised availability.

2.3. Current Practice Running time calculations & Nominal Values

The other side of the coin in trying to understand realised vehicle and operator behaviour,
is to understand what the assumed/expected /nominal vehicle and operator behaviour is
and how these variables are derived or founded. The current practice by the Dutch TOC
and IM in regard to braking regimes, is primarily that the braking regimes apply a constant
braking coefficient. This assumes that braking is applied instantly by the operator and a
negligible amount of time is spent on the build up or release for the braking force applied
by the vehicle’s braking systems. This allows for a simpler solution and faster computation
at the cost of accurately describing real operator behaviour.

Another current practice applied by the TOC and IM in regard to designing the network
timetable, is to calculate the minimum running time between stations based on maximum
acceleration allowed (i.e. limited by either traction in the wheel-rail interface, available en-
gine power or passenger comfort), running at the traction’s speed limit and braking just
in time with constant and nominally defined deceleration rate (i.e. defined per vehicle type
based on vehicle tests, SLT vehicles allow for a nominal deceleration rate of 0.8 m/s? dur-
ing a normal braking regime) to reach the intended stop location. This running time is then
extended with time allowances initially defined by a fixed percentage of the minimum run-
ning time and later further extended with time allowances based on the mean delay time
between stations found in the recent historical data. The first measure of time allowances
is meant to add robustness to the network timetable and allow for energy efficiency when
running time surplus is expected under performance plans, such as Universeel Zuinig ri-
jden Idee (UZI). The second measure of time allowances is to adjust for either the initial
error in calculation of the minimum running time or the underestimation of the fixed per-
centage time allowance compared to realised train runs and is to further increase robust-
ness of the network and to decrease the percentage of delays.

This method of minimum running time calculations based on maximum acceleration and
nominal constant braking, and the time allowance calculations based on a fixed percent-
age of the minimum running time and the realised mean delay, does not (or partially) al-
low for the existence of stochasticity based on the variance in the human operator’s judge-
ment and/or behaviour. For the more assertive operational behaviour or more on-time
train runs with sufficiently surplus in time allowances, this is not an actual problem as the
time allowance surplus can be turned into a more energy efficient train run by applying a
coasting regime, in which a train draws minimal power by turning off the traction motors
and allowing the vehicle to roll for a significant distance.

The problem of this method of running time calculations arises with the ”top half” of the
stochastic distribution in regards to the delays found in the historical data of the realised
running times. This is because the root cause of the stochasticity is not addressed in either
a solution to the variance in operator’s driving behaviour or in the accounting for stochas-
tic behaviour in the running time and network timetable calculations.

2.4. State of the Art - Scientific Gap and Inspiration

The scientific gap found while reviewing scientific papers, was that the simulation and re-
construction models presented by BeSinovic¢ et al. (2013a,a,b); Medeossi et al. (2011); Tiel-
man (2015) mainly focused on a single source of 'Time-Location’ data (i.e. Train describer
data or vehicle GPS data) and therefore inherited the benefits and downsides of these data
sources. When it came to the modelling of the deceleration regime, their models were also
limited to a constant and uniform braking coefficient or resistance coefficients. Tielman
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(2015) tried to solve it by braking the deceleration regime into smaller regimes, but was
within these smaller regimes still limited to FRISO’s linear’ functions.

While reviewing other fields of study for papers on deceleration behaviour, Maurya and
Bokare (2012) provided an interesting view in describing the deceleration behaviour of
different road users and examined the non-uniformity on it. Testing the non-uniformity
of the deceleration regime in the railway system is something that has not been
attempted. However, the manner in which the non-uniformity was handled in Maurya
and Bokare (2012) was symptomatic by describing the realised braking behaviour in a
velocity-deceleration plot and fitting model parameters to that dimension. No real vehicle
characteristics or driver behaviour could be linked to these coefficients.

So the scientific gap, as seen per this research, is the combining or fusing of the different
data sources in order to enrich each other by providing a finer mesh-grid of Time-Location’
points while tagging more detailed information of the infrastructure and signalling states.
Also, no known attempt has been made to describe the deceleration rate of heavy rail ve-
hicle as a non-uniform motion. Furthermore, none of the above mentioned papers have
drawn correlation between the realised deceleration behaviour and external influences (i.e.
weather, light) or railway system conditions (i.e. timeliness vehicle, track conditions, ve-
hicle characteristics, line of sight, station platform-signal lay out) These papers, however
have given many of the inspirations applied or tested within this MSc thesis research.

BeSinovic¢ et al. (2013a,b,c) provided the inspiration for the proposed analysis methodology
and vehicle velocity profile reconstruction, and the incentive to investigate the stochasticity
of the vehicle’s deceleration approach to a planned (station) stop through the use of track
section ‘Time-Location’, infrastructure and track side signalling data.

Medeossi et al. (2011) provided support for the inspiration found for the analysis method-
ology and the research approach to use 'Time-Location’ data to reconstruct the vehicle ve-
locity profiles and analyse the stochasticity in the deceleration behaviour. This research
specifically added the inspiration to use the vehicle’s gps data to provide a richer Time-
Location’ dataset, as well as to investigate the stochastic variation of the realised blocking
times of track sections, especially near stations, to provide a means of quantifying the per-
formance impact of the infrastructure occupation.

Tielman (2015) provided not only more evidence and support of the existence of a stochas-
tic nature in the rail vehicle’s operational cycle (i.e. accelerate, cruise, coast, brake, re-
peat) through means of stochastic vehicle parameters (e.g. braking coefficient), but also a
stochastic variance in the on-set times of the different driving regimes. Furthermore it pro-
vided proof of the existence of different patterns in the deceleration approach to a planned
stop by defining smaller driving regimes within the deceleration approach, creating a fur-
ther differentiation in describing the rail vehicle’s deceleration approach. This provided
support for the creation of the driving sub-regimes and the evaluation of different decel-
eration approach profiles.

Maurya and Bokare (2012) provided the inspiration for the attempt to describe the rail ve-
hicle’s deceleration rate as a non-uniform variable within the (sub-) regimes, even after
defining distinct sub-regimes within a rail vehicle’s deceleration approach. Some of the
deceleration rate functions initially appeared to describe certain rail vehicle deceleration
approaches better than the widely used constant deceleration rate. However, since the de-
fence of the velocity dependency felt short (Maurya and Bokare, 2012, p.260), both velocity
dependent deceleration rate functions, as well as time dependent alternatives, were tested
for their fitness.






“erformance Indicators

This chapter will describe the performance indicators and what these indicators signify and
describe. Furthermore, this chapter will elaborate on the considerations made for using
them and the methods and tools required to provide results and scientific support for these
performance indicators. The performance indicators and their respective (mathematical)
formulation are summarised in Table 3.1 at the end of this chapter.

3.1. Background Indicators

To validate or quantify the performance of anything, parameters or indicators have to be

defined, to provide a form of measure. The focus of this research is on the stochastic na-
ture of the operator’s deceleration behaviour and the impact it has on the realised infras-
tructure occupation.

To say anything about the stochastic nature of the vehicle’s deceleration behaviour, the
behaviour is broken down into several performance indicators that describe the decelera-
tion behaviour. This could be vehicle related (e.g. Braking coefficients, Regime Duration,
Regime Profile) or time related (e.g. Running Times, Loss Times, DUESs) performance indi-
cators, based on realised data and provide the stochastic distribution of the indicators.

When it comes to the impact the stochasticity has on the network, several track-based
performance indicators are available. This could be a percentage or ratio of time a track
section is utilised, the more general infrastructure occupation at corridor level or

track throughput. However, since the nature of this behaviour is assumed stochastic,

the stochasticity of the performance has to be taken into account to provide a complete
picture. This would show the track potential, limits or sensitivity to the variation of vehicle
behaviour.

This will, however, mean that the performance indicators used in this research to quantify
the performance of the case study, are mostly either be vehicle or time related and most
likely have a stochastic nature. The performance indicators used in this research can be
grouped into Vehicle related, Time related and Track related.

17
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3.2. Vehicle related PI

To accurately describe the performance of the deceleration behaviour of the realised train
runs in relation to the scheduled and expected /nominal train runs, some of the vehicle re-
lated aspects have to be taken into account and can be used as a performance indicator.
The vehicle related indicators used in this research are the deceleration rate, sub-regime
composition (or deceleration regime profile), transition hardness between two sub-regimes
and the vehicle resistance coefficients. All these are defined, described and explained be-
low.

Braking Rate

Name: Braking Rate
Maths Formulation: Variable Notation, see Section 4.4.3 for mathematical
formulation of the braking rates.
Unit: m/s?
Description: A constant value or non-uniform variable described as a
function. The non-uniformity can be defined either as a
Dual-Step, Triple-Step or a second order polynomial.

The braking rate profile describes the braking rate within a braking (sub-)regime. The
questions to be asked here are: ”Is the braking rate uniform?” and "What profile can be
drawn from the realised data?”. The braking rate will be defined as the rate of change of
velocity in the temporal dimension and therefore defined as m/s?. Any rate of change of the
deceleration, known as Jerk, will be defined as rate of change in the temporal dimension
and therefore defined as m/s3. This will, however, not imply any assumption on the
dependency of a non-uniform braking rate.

The deceleration, or the coefficients of a non-uniform deceleration function, will be calcu-
lated from realised tracking data through the use of the reconstruction model, at an ac-
curacy of 2 decimals. The non-uniform deceleration function will form to a second order
polynomial and/or be described by a Dual Step or Triple Step approach(i.e. Braking Sub-
regime described by further breaking down into multiple sections within a single intended
motion.). This will tested by evaluating the goodness for fit for several pre-defined profile
concepts. The evaluation will be described as a value of Mean Absolute Error (MAE) and
Root Mean Squared Error (RMSE). In case of multiple runs or series, the distribution of
these values will be given, to demonstrate the likelihood of this profile being either vehicle-
type-specific, dependant on the operational conditions or train operator related.

Deceleration Regime Profile

Name: Deceleration Regime Profile
Maths Formulation: e.g. Br-Co-Br, Co-Br-Cr-Br (numerically translated 0-1-0 and
1-0-2-0 resp.)
Description: Sequence of sub-regimes in a deceleration regime, defined by
their respective abbreviation or a number of the sub-regimes (i.e.
cruising as Cr or 2, coasting as Co or 1, and braking as Br or 0).

The deceleration regime profile describes the pattern and duration of the different sub-
regimes used in the vehicle’s deceleration approach. This leads to the following questions
on the profile composition: "What sub-regimes are the deceleration regimes comprised of?”
and "What are the likely profiles that can be drawn from analysis?”.

This will be calculated with the reconstruction model by testing the goodness of fit of sev-
eral pre-defined regime profiles. This will be described as a value of R-squared or RMSE.

In case of multiple runs or series, the distribution of these values will be given, to demon-
strate the likelihood of this profile being station-specific, dependant on the operational con-
ditions or train operator related.



3.3. Time Related PI

19

Vehicle Resistance

Name:

Maths Formulation:
Unit:

Description:

Vehicle Resistance Coefficients

T, =Ty + v + nv?

N/kg, N/kg, (Ns)/(kgm), (Ns?)/(kgm?) — resp. unit for 1, 1, 11, 13
Mass-specific vehicle characteristic coefficients related to the
Davis Equation.

Just like BeSinovic¢ et al. (2013b) discussed the vehicle resistance coefficients in the devel-
opment of their reconstruction model, these variables will also be examined in the devel-
opment of this research’s reconstruction model. This will be partly to evaluate the recon-
struction model in producing reasonable coefficients and partly to assess the quality of the
nominal vehicle coefficients in comparison to the "real” coefficients.

3.3. Time Related PI

To relate the deceleration behaviour to vehicle and track performance, the use of time re-
lated performance indicators is generally used. In this research, the differences in realised
running times between stations and the deceleration loss times were used as they describe
the performance on the network the clearest.

Realised Running Times

Name:

Maths Formulation:
Unit:

Description:

Realised Running Time

tRealised

s

The difference between realised running times and scheduled
running times. Indicator for usage of time allowances by the
deceleration regime.

When considering the time related indicators while evaluating the performance of the re-

alised vehicle operations, the key performance indicator and most direct measure of perfor-
mance is the vehicle realised running time between stations. This is lead by the questions:
"What is the realised running time?” and "How do the realised running times compare to the
scheduled times?”.

By comparing the difference in realised running times to the calculated reference running
times, a performance impact can be assigned. To understand if this performance impact
was due to the usage of the time allowances or due to the train operator’s trust in the track
conditions, a comparison to the realised and scheduled departure times could be made to
create that distinction.

Deceleration Loss Times

Name: Deceleration loss time
Maths Formulation: tpeceieration = tmaximum_velocity
Unit: s
Description: Loss time expressed as the time lost due to deceleration

compared to the time required to traverse the same distance at
the track section’s speed limit.

The Dutch rail sector has a time related performance indicator, known as a loss time. This
is described as the time ’lost’ due to an regime implementation, compared to the time re-
quired for a vehicle to traverse the same distance at the track section’s static maximum

speed limit.
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In this research, the specific loss time of interest are the loss times over the deceleration
regime. Considering that the deceleration behaviour is stochastic in nature, the distance
that the loss times are measured over is variable. However, the measure of performance is
in the difference between the two running times (of the driving regime and the constant op-
erational velocity) and shorter distances by other deceleration regimes will have no to neg-
ligible loss times over the distances not measured compared to larger distances. Therefore,
this will still allow for a good comparison and performance measuring tool. To understand
the performance differences between realised runs and the scheduled behaviour, deceler-
ation loss times of both the minimum running times and the running times with time al-
lowances will be calculated per station and used to compare the performance between real-
isation and scheduling.

3.4. Track Related PI

In relation to what the impact of the stochastic deceleration behaviour has on the infras-
tructure, a performance indicator related to the infrastructure is required. To evaluate the
performance impact of the realised deceleration regimes by rail vehicles on the infrastruc-
ture, the infrastructure occupation will be described at track section level.

Considering the available data will cover only a portion of the complete corridor usage, the
realised infrastructure occupation and the scheduled infrastructure occupation will consist
only of the current selection of rolling stock. To understand the performance impact, the
realised infrastructure occupation and scheduled infrastructure occupation will be com-
pared to each other.

Track Section Occupation Duration

Name: Track Section Occupation Duration
Maths Formulation: tgeiease — toccupation
Unit: s
Description: The duration of a vehicle traversing a track section, measured
from the first axle entering the track section (toccupation) Until the
last axle exiting the track section (tgeieqse)-

When measuring the infrastructure performance at a microscopic (i.e. track section) level,
it allows for the localisation of infrastructure capacity bottlenecks and sensitivity analysis
on the track sections. This is accompanied by the following questions during the investiga-
tion: "What are the infrastructure occupation rates at the track section levels?”, ”Which track
sections form the capacity bottleneck for the corridor?” and "How severe is the impact of the
realised stochastic deceleration behaviour at these critical track sections?”.

In this research, the infrastructure occupation was simplified to the track section’s occupa-
tion duration, due to several unknown factors such as the out-of-scope train runs that use
the track section, the other unknown time variables in the scheduling blocking time (e.g.
switch/release time, sight/reaction time, setup time). Only the times of track section oc-
cupancy and release are empirically measured by the train describer data, as discussed in
Section 4.3 with regards to this research’s used data pre-processing.
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3.5. Stochastic Distribution & Nominal Value Comparison

The expectation of the current scheduling tools and models, with regards to the heavy rail
vehicles, is for the train runs to run invariable and consistent. The realisation is that this
is not the case considering the human operator and external influences. However, on the
Dutch rail network, the IM and TOC plan for time allowances with the train runs to in-
crease the flexibility and robustness of the network to compensate for this variability. This
is still mostly deterministic and either assigned ad hoc to train runs or in advance by a
standard measure of time allowances (e.g. this is 5% of the minimum running times on the
Dutch rail network before rounding to the whole minute). This is all considering the nomi-
nal values of all aspects of the railway system coefficients, parameters and characteristics.

Furthermore, there is also a maximum period of time a track section is allowed to be re-
served and occupied within a cycle time (i.e. duration/period over which the scheduling
pattern of a cyclic/periodic timetable is developed). All these allowances and margins allow
for minor fluctuations, but what are the consequences of using that aspect of the railway
system and how often does this happen? So this raises the question: "How do the realised
train runs compare to the scheduled expectations?”.

Due to the stochastic nature of the realised train runs, all nominal values and estimated
time allowances will be used to test for the performance of these realised train runs in ref-
erence of the scheduled and nominal/expected behaviour by the IM and TOC. The distribu-
tion of the realised performances will be fitted to theoretical distributions in order to inves-
tigate if the probability distributions are consistent and could be used to make predictions
of future performances.

Indicator | Indicator Name Math Formulation Indicator Unit
Relation
Braking Rate b = const. or m/s?
non — unif.
Vehicle | Deceleration Regime Co-Br-Cr-Br or seq. of regime
numerical 7-0-2-0 abbrev. or
numerical
Vehicle Resistance T, =1y + 1V + rv? N/kg, N/kg,
(Ns)/(kgm),
(Ns*)/(kgm?)
Time | Realised Running Time | tgeqiisea |'s
Deceleration Loss Time | tpeceteration — s
tMaximum_Velocity
Track | Infrastructure tretease — toccupation s
Occupation

Table 3.1: Summary Table Indicators
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When analysing the realised deceleration behaviour of train operators, large datasets are
required to accurately describe the different deceleration behaviours found in the realised
data between the different types of operators and even larger datasets are required to anal-
yse the stochastic nature of the realised deceleration behaviour. This analysis methodol-
ogy is known as a data driven approach, as it uses and combines multiple data sources of
which the datasets can be classed as Big Data as the data used is over a large number of
days (i.e. 365 days) and train runs (i.e. approx. 70 runs per day), collecting a large num-
ber of datapoints per train run (i.e. 1 datapoint per 10 seconds and 1 datapoint per track
section in the corridor per train run) with each data point holding several pieces of infor-
mation(e.g. train ID, rolling stock ID, location, velocity, time, track section ID, signalling).
As a means to assist with the analysis of the data driven approach, a conceptual frame-
work (i.e. a support system or structure around a research’s analysis methodology or re-
search concepts) and reconstruction model is proposed to analyse the stochastic nature

of the realised deceleration behaviour and test the impact of the stochasticity on the in-
frastructure occupation in comparison to the deterministic expected driving behaviour and
scheduled infrastructure occupation.

This chapter discusses the proposed conceptual framework, the required data sources in
this research, the data processing required prior to the reconstruction model and further
elaborates on the details of the reconstruction model, such as the mathematical theory,
structure, implementation, purpose and scope of the framework and reconstruction model,
as well as the desired output products of the analysis methodology.

4.1. Conceptual Framework

This research introduces a conceptual framework for the reconstruction of the deceleration
behaviour of heavy rail vehicles. The general structure and concept approach are inspired
by Besinovi¢ et al. (2013a,b,c) and Medeossi et al. (2011), in the sense of using location
tracking data from GPS and infrastructure and their analysis application to reconstruct
the realised driving behaviour.

The proposed framework differentiates from its inspiration by it’s interest and focus on
the deceleration behaviour within the proposed reconstruction model, aptly named
Deceleration Reconstruction (DR) model, instead of reconstructing complete velocity
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profiles. It instead elaborates in more detail what occurs in the deceleration regime (i.e. the
operational action taken in order to decrease the vehicle velocity to the desired velocity.),
which is explained in detail in Section 4.4. The proposed framework is further expanded

to incorporate the statistical analysis. This is because it is not just the realised train
trajectories and corresponding parameters, but also the statistical distributions of

these parameters and related performance indicators (PI) that are the considered end
products for this research. This framework is visualised in Figure 4.1 and has several
stages it passes through, namely the Pre-processing of the data used by the DR model,

the Deceleration Reconstruction Analysis with the DR model and concludes with
Post-processing of the modelling results.
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Figure 4.1: Process Structure for the conceptual framework used in this research, describing the data flow and process
logic behind the analysis.

Pre-processing

It starts with the intake of the datasets from their respective sources and pre-processes the
data to their desired formats and extracts the desired data per datapoint of their respec-
tive sources. Since this framework analyses a single specific corridor and a specific rolling
stock type, while comparing multiple train runs over a large window in time, it therefore

is sensible to map and model the infrastructure and Rolling Stock once in a single set-up
process, namely the "Rolling Stock Speed Limit & Infrastructure (RSSLI) model”. The static
models are generated with infrastructure data and used to develop the corridor’s infras-
tructure model. The nominal rolling stock parameters are stored similar to the infrastruc-
ture in the RSSLI model. This is further explained in Section 4.3.1.
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Some specific rolling stock related data (e.g. rolling stock composition) are used along side
the network timetable in the data pre-processing, in order to extract the desired GPS
datapoints from the raw gps data and to further enrich it with more detailed information.
This type of processing is useful in case the TOC or IM cannot provide a processed version
of vehicle location tracking data. In case of available processed vehicle location tracking
data, the "Pre-processing Location Tracking Data and CNT” process is used to validate the
data points with the corridor network timetable (CNT). This is to catch and filter out the
data points that are inaccurately linked to a train run or was separated from the rest of the
train run due to changing traffic days. This process consists of data formatting and data
filtering, found in Section 4.3.1 and Section 4.3.2.

A further part of the data pre-processing is the (re-)calculation/validation of the distances
provided in the location tracking data sources. This is done to correct or adjust for errors
or gaps in the data, shortly after reformatting the raw data sources. The distance calcula-
tion were done to each location tracking data sources separately before continuing on with
the data fusion process to minimise the magnitude of error and to provide the data align-
ment the right means to align the different data sources with. This is further explained in
Section 4.3.3.

The last pre-processing step "Data Fusion Location Tracking Data” is where the fusion of
the different location tracking data occurs. To allow for the fusing of the different sources
and sometimes even different groups with these sources (i.e. combined rolling stock com-
positions such as "SLT-4 SLT-6” or "SLT-6 SLT-6" are two rolling stock physically coupled
and have two GPS sensors active during the train run), all sources will need to be aligned
to each other (see Section 4.3.4). During the data fusion, the different data sources are
combined and rearranged by their distance along the train path. From each data source,
the data of interest is migrated over with each datapoint. Since the location and velocity of
the vehicle are of particular interest for this research, extra care is given in the calculation
and preservation of the location tracking data’s vehicle velocity data. Each data sources is
given their own data entry point in the fused location tracking dataset and the mean veloc-
ity is used, calculated at each data point in the fused dataset. This process is elaborated
on in Section 4.3.5.

Deceleration Reconstruction Analysis

From the generated fused and corridor aligned location tracking dataset files, a train run is
selected to load a train run specific, fused and corridor aligned location tracking dataset to
computer memory for analysis. Along with RSSLI model dataset, it is used for analysis in
the Deceleration Reconstruction (DR) model(see Section 4.4). The DR model uses the loca-
tion tracking data to estimate the realised deceleration regimes applied during the station
approaches over the corridor. It challenges the assumption of a singular driver action or
regime by introducing sub-regimes (i.e. smaller regimes within a larger regime of a single
operational intent). It further challenges the assumption that, when applying the brakes, a
uniform (i.e. constant) braking rate is generated that effectively resembled a binary on/off
mechanics, compared to a more natural build up and release of the braking application.
These challenged assumptions are tested by evaluating realised location tracking data for
different deceleration regime profiles (see Section 4.4.5 and different braking variants (see
Section 4.4.3).

With infrastructure data from the RSSLI model, the DR model extracts realised
deceleration sub-regime profile (i.e. a sequence of sub-regimes as described in

Section 4.4.4, lengths and duration of each sub-regime) and the detail coefficients, such
as realised resistance coefficients, the braking rates (i.e. both as uniform variable as
non-uniform function and coefficients as described in Section 4.4.3), and the performance
indicators described in Chapter 3 to be used in the statistical analysis. The reconstruction
model is elaborated on in Section 4.4.
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Post-processing

After all the location tracking data has been processed and the desired information and pa-
rameters are obtained, this data gets stored in train run specific data files to be accessed
for statistical and comparative analysis. Their graphical representation are stored along
with it to provide a visual aid and means of inspecting the quality of the specific train run
and the analysis done on the train runs.

Using the specific train run data files, the last process is to run the statistical analysis to
obtain the desired stochastic distribution details and generate the graphical output of the
specific deceleration regime parameters and the research defined performance indicators
(Chapter 3). To understand the performance impact and differences of the realised train
runs, the expected performance of the scheduled train runs with their nominal parameters
(i.e. braking rate, resistance forces) and the TOC’s/IM’s current practice of running time
calculations, are calculated. (see Section 4.5).

These nominal performance parameters are used in the statistical analysis for compari-
son to the realised train runs, to showcase the differences in driver behaviour during the
deceleration regime, the related performance impact of these differences and the causal-
ity/sensitivity of the influential factor (e.g. seasonality, on-timeness of the rail vehicles).

4.2. Data

For this research’s data-driven analysis, six different datasets are used. Infrastructure
Data and Rolling Stock Data are used to build a base model of the train path’s infrastruc-
ture and static restrictions and the nominal characteristics of the rolling stock to accu-
rately describe the vehicle’s location during the reconstruction of the realised deceleration
regimes. Rolling Stock data, Train Describer data, Vehicle-sided Location Tracking data
and the Corridor Network Timetable are used to process and align the vehicle-sided with
the infrastructure-sided vehicle location tracking data and enrich it with the signalling.
The Corridor Network Timetable and the Nominal Regime Characteristics are used to de-
scribe the scheduled train runs and expected implemented deceleration regimes. The de-
tails of the used datasets are elaborated on in their subsections below and summarised in
Table B.1, found in the Appendix.

4.2.1. Infrastructure Data

The infrastructural data required for the analysis and the reconstruction model, is to map
the corridor to accurately describe the vehicle’s location and behaviour and to understand
the infrastructural influence on the implementation of the driving behaviour. This requires
the track section ID, lengths, GPS Location, type of section(i.e. switch/’open track’/level
crossing), relation to neighbouring section, static speed limits, curvature and gradients.
This information for the infrastructural data is gathered from Dutch IM’s rail infrastructure
specialised GIS system InfraAtlas and processed in InfraMonitor.

Using the track section IDs, the relation between the infrastructure and the location track-
ing data from train describer data is made possible, while the infrastructure GPS location
helps to align the vehicle location tracking data to the infrastructure. The length of track
section are used to calculate the average vehicle velocity from the track section occupation
time in the train describer dataset. The static speed limits, the type of track section and

it’s relation to the neighbouring sections help identify the track section’s restrictions and
the possible reasons for them. The track section’s curvature and gradient are related to the
effects of the infrastructure acting on the realised driving behaviour through the resistive
forces 1, and 7, of which the latter could be considered an assistive force (i.e. external force
working in the same direction as the intended action) when accounting for track sections
with a negative gradient (i.e. going downhill). For the signalling data, data required for this
research describes their GPS location, type of signal(i.e. Controlled or Automated) and their
relation to the track sections (or in case near stations, relation to stopping platforms) in or-
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der to understand the control points in the infrastructure in relation to the realised driving
behaviour. Out of both (i.e. Infrastructure and Signalling) data sources, the relevant infor-
mation for this research is extracted and formatted according to this research’s format.

4.2.2. Rolling Stock Data

The rolling stock data required for the reconstruction model, are the nominal vehicle char-
acteristics, such as vehicle mass (including normal loading and rotating mass factor), vehi-
cle resistance coefficients related to the Davis Equation (Trani, 2018) and nominal braking
coefficients. This information is obtained from TU Delft and Ricardo Rail Netherlands and
its values are derived from the performance testing Ricardo Rail Netherlands did in the cer-
tification process of the SLT rolling stock type. This data is required in order to provide the
reconstruction model a starting vector to optimise from and provides the statistical analy-
sis the values required to calculate the expected performance from nominal and scheduled
parameters in order to compare the differences to the realised deceleration behaviour.

4.2.3. Train Describer Data

Train describer data is infrastructure-sided train tracking data, based on train numbers
and messages received from the signalling and interlocking systems. The Dutch IM’s train
describer system, TROTS, logs the trains at the level of track sections. The TROTS data
log holds relevant data (i.e. track section occupation time, track section release times,
train IDs, track section ID, track section lengths, average vehicle velocity through the
track section) which provide a means of train location tracking from the infrastructure
sensors, along with the relevant signalling aspects to provide the system requested driving
behaviour through dynamic speed limit management.

The required data from the TROTS logs for the reconstruction model, are track section ID,
train run/rolling stock ID, track section occupation time, track section release time, cur-
rent section signalling aspects, following section signalling aspects, track section lengths
and average vehicle velocity in the track section. The signalling aspects of the current and
following sections are used to understand the nature of the dynamic restrictions and the
expected regime implementation. These TROTS data logs are obtained from the data analy-
sis department of the Dutch IM ProRail, called Prestatie Analyse Bureau (PAB).

4.2.4. Vehicle-sided Location Tracking Data

Vehicle-sided location tracking data provides a different means of vehicle tracking and has
the benefit of providing the actual vehicle location instead of an estimate between two
known points as with the train describer data. This would provide a more accurate or
finer tracking of the vehicles inside a track section. Tracking a vehicle standalone (i.e.
without any external system for tracking/registering) is usually done through on-board
GPS sensor tracking. Data gathered from these GPS sensors consists of the rolling stock
ID, a time-stamp expressed in Unix/Epoch time(i.e. number of seconds since 01-01-1970
00:00), GPS longitude and latitude, and sometimes even the momentary vehicle velocity
measured by the GPS sensor. The polling rate of these sensors is currently 0.1 Hz (i.e. 1
data point per 10 seconds).

The IM and TOC have a processed/enriched version of these GPS datasets, called MTPS,
linking the GPS data to the realised train run, taken from the network timetable, aligning
it to the travelled track section and corresponding signalling information. Using the en-
riched GPS datasets, would save an extra pre-processing step in the analysis. However,

the conceptual framework of the data analysis does account for this pre-processing process
in case of absence of the enriched dataset or failing of the desired data quality. The test pi-
lot before the analysis of this research’s case study, using the raw GPS data, has shown
that the quality and accuracy of the GPS will bear little to no impact on the accuracy of
the analysis results.This was confirmed by the data specialist at ProRail who mentioned
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that the Kalman filter was only applied sparingly in the extreme cases of noisy datapoints,
which was not necessary in the provided datasets of this research’s case study.

The required data from the vehicle-sided location tracking data for the analysis, are the
train ID, rolling stock ID, timestamp of the datapoint, GPS Latitude, GPS Longitude. The
GPS Vehicle momentary velocity is mainly used for extra validation of the accuracy of the
analysis and the selection of the estimated deceleration sub-regime composition. Consider-
ing the reconstruction method of the DR model and the quality of GPS data, the track sec-
tion ID and the GPS coordinate adjustments are not required as input data, as they can be
acquire from the train describer data or offer minor accuracy improvements respectively.
The enriched vehicle-sided location tracking data, MTPS, will only provide benefit in reduc-
ing the effort and processing time of this research’s analysis.

4.2.5. Corridor Network Timetable

The network timetable for the case study’s corridor, is required for the analysis to provide
the scheduled and expected train run times for the performance comparison to the realised
train runs. The network timetable also provides the times of the realised train runs at
these timetabling points, called "Dienstregelpunten” in the Dutch railway sector. Of these
actualised times, the on-timeness of the realised train run can be derived to analyse the
behavioural differences in applying the deceleration regime between the on-time and the
delayed train runs. The network timetable is further used in linking the raw rolling stock
GPS data to the corresponding realised train run data by comparing the rolling stock

IDs and Epoch times. For the enriched vehicle-sided tracking data (MTPS), the network
timetable is used to check and filter the data used in the actual realised train run and
remove any activity registered outside of the realised train run.

For every timetable entry, the relevant data stored and required for the analysis, are the
timetable day (i.e. timetable days in the Dutch railway sector run from 2am to 2am the
next day, instead of 12am to 12am of a regular day), train number, the origin timetable
point, the origin’s action type, the origin’s planned execution time, the origin’s realised exe-
cution time, the destination timetable point, the destination’s action type, the destination’s
planned execution time, the destination’s realised execution time, the rolling stock ID, the
rolling stock type and the rolling stock position. The network timetable is obtained from
the Dutch TOC NS and the Dutch IM ProRail.

4.2.6. Nominal Regime Characteristics

To describe the expected deceleration regime during the scheduled running times, the
nominal regime characteristics need to be defined to reconstruct the expected velocity
profile between the stations in the corridor and to derive the expected system performance
from this. For this research to describe the expected velocity profiles, the parameters for
the expected acceleration, braking, time allowances, applied driving regime plans and
performance plans (e.g. Universeel Zuinig rijden Idee (UZI)) are required. The theory and
details of driving performance plans are elaborated on in the thesis work of Scheepmaker
(2013). The strategies "Time-Optimal” and "UZI” are used from his research in order to
compare the current Dutch TOC and IM practices and expected behaviour to the realised
behaviour and its performance with regards to the proposed performance indicators. The
"Time-Optimal” driving strategy holds the driving behaviour of a train run that minimises
the running time through maximum acceleration to maximum velocity, maintaining the
maximum velocity until braking at the exact time with a nominal braking rate to come to a
stop at the desired location. The "UZI” performance strategy holds a driving behaviour for a
train run that uses coasting in order to consume the remaining time allowances of a
scheduled running time, given a running time of the minimum running time with a time
allowance of roughly S percent of the minimum running time, which in turn reduces the
mechanical energy usage.
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4.3. Pre-processing

The forms of data pre-processing considered in this research are the formatting and filter-
ing of the different data types, the creation of derivable data points (e.g. cumulative dis-
tance, Unix/Epoch timestamp from date-time text) prior to the analysis and more impor-
tantly the alignment of the location tracking data (i.e. vehicle GPS data and train describer
data) to each other and the infrastructure train path over the corridor. Through this align-
ment, the fusion of the different location tracking datasets is made possible, along with the
applied signalling aspects.

4.3.1. Data Formatting

All of the gathered data needs to be formatted in a way that would clean up the relevant
data while removing the redundant or irrelevant data points, fixing minor errors in deriv-
able data and filling in the minor gaps in datasets. This is to keep the data handling in the
analysis as efficient as possible, while allowing the data association of the input data to be
readable, clear and uniform. All raw datasets required as input data have some form of
formatting done to them. Most of it is done in storage in a different file format, formatting
date-time structures, renaming of columns headers or adjusting decimal points of numeric
values. However, the most extensive formatting would be the development of the RSSLI-
model, because of the differences in track section naming, and sometimes even grouping
of track sections, between the infrastructure data from InfraAtlas and the train describer
data from TROTS or any other traffic control related programs. This is done with the use
of a translation table provided by ProRail and it is done to allow a more one-to-one access
of the relevant infrastructure data in the analysis and reconstruction model in particular.
The same is done to the rolling stock data to gather the relevant rolling stock data into a
single dataset for easier access by the model. The RSSLI-model process is still considered
data formatting, as it is renaming, rearranging and regrouping of the raw data, rather than
being truly transformative.

4.3.2. Data Filtering

Along with formatting the datasets, the raw data has to be filtered. The data filtering is fo-
cused on cleaning up the location tracking data. This involves checking if every datapoint,
for a given train run provided in the tracking data, actually belonged to the scheduled train
run and not falsely related to data points gathered during a maintenance session of the
same time table day or due network rescheduling for example.

To validate if the train runs and their station stops are useful for the research, two filtering
approaches are used. With the signalling information provided in the train describer data,
these realised train runs are further filtered on any dynamic speed restrictions (e.g. 'Yel-
low&’, ’Yellow’ or 'Red’ signalling). This is to eliminate the hindered train runs and provide
the unhindered runs to evaluate the deceleration regime by drivers restrained by nothing
but the static infrastructure restrictions in their station approach. The second filtering ap-
proach is the ”V-Box” method, in which train runs between stations is invalidated when
the vehicle velocity within a specific section of train path drops below a set value. This is to
eliminate train runs that hold erroneous velocity/tracking data or to eliminate train runs
that limited their velocity for other reasons that were not caught by filtering on a given dy-
namic signalling.

Using these filtering approaches before the reconstruction model might filter out realised
train run’s station stops with valid and unrestrained deceleration regimes. However, it is
assumed that correct filtering on signalling aspects (i.e. using the right combination of sig-
nalling aspects for filtering) or correct box filtering (i.e. removal of erroneous data points by
selecting the right "V-box”) before the reconstruction model will provide very few losses of
such train runs and the gains made in computation time with the DR model not having to
process train runs that are discarded, outweigh said losses in train runs.
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4.3.3. Creation Derivable Data

To reduce the complexity of the reconstruction model and the analysis computation,

some derivable data is calculated prior to the DR model. The derivable data generated
from the input datasets are, in the case of the train describer data, the Unix or Epoch
timestamp and the cumulative distance travelled on the realised train path. The Epoch
timestamp is generated to make the comparison of time values of tracking data easier,
since it represents time as an integer or decimal number instead of as a string in an agreed
upon format. The cumulative distance is to allow for easier mapping and aligning the
location tracking with the other sources. It also allows for easier plotting of the data to
create a means to see the realised deceleration behaviour. The zero-point(start) of the train
path in the infrastructure data is adjusted to a chosen fixed GPS point and used as a
common anchor point to align the start of the infrastructure side data with the start of the
vehicle-sided location tracking data.

In the case of the vehicle location tracking data, being either GPS as used in the pilot of
the analysis methodology or MTPS as used in the case study (Section 4.2.4), the derivable
data that is generated, are the distance, cumulative distance and, if not present, the Epoch
timestamp. As stated in Section 4.2.4 in case of raw GPS data, it will first have to be for-
matted, filtered and aligned with the network timetable. To derive the relative distance and
cumulative distance of the estimated train path from the GPS coordinates, the individual
data points have their relative distance to their neighbouring coordinates calculated by the
Vincenty’s Inverse Formula. This is an iterative method that assumes the more realistic
shape of the Earth as an oblate spheroid, as seen in Vincenty (2018). This provides an ac-
curacy of less than 1 mm, compared to the 0.5% of the Haversine Formula, with negligible
performance loss and is therefore used over other GPS distance calculation methods.

The first GPS coordinate in the series of datapoints in the location tracking of a realised
train run, has its relative distance, and with that also its cumulative distance, calculated
from the earlier mentioned chosen fixed GPS point that is used as a common anchor point
for alignment later. The cumulative distance for all the following datapoints is a simple ad-
dition of its relative distance to the previous datapoint and that previous datapoints’ cu-
mulative distance. For dealing with the fact that the actual train path is not always a di-
rect straight line between points, the assumption is made that the error between the two
points(e.g. due to track curvature) is minimal due to the relatively short distances between
the location tracking points.

4.3.4. Data Alignment

Before being able to fuse the different sources of location tracking data, each will have to
be aligned to allow for a correct and smooth fusion. This is generally done when gener-
ating the derivable data as expressed in the subsection before. However, one final align-
ment needs to be made, which is the off-set of the GPS sensor to the leading axle of the
(combined) rolling stock. This is handled firstly by comparing the epoch times of the ve-
hicle location tracking data with the epoch time found in the train describer data for an
exact match and the off-set is derived of the difference in distance along the train path. If
no epoch time stamp is matched, the epoch time of the first track section is selected which
falls between the smallest possible interval of epoch time in the vehicle location track data.
The off-set is derived of the difference between the distance from the train describer data
and a linear approximation of distance from the vehicle location tracking data at the same
epoch time of the train describer data. The fact is known, that a linear interpolation be-
tween two GPS points at a ten second interval would lead to an error in determining the
off-set. However, the reasoning and assumption is that the differences are minimal due

to expected low velocity when exiting the station and moving into the first track section.
The assumption is that the error would fall under an order of magnitude comparable to the
GPS sensor’s accuracy. An option to minimise the error of this interpolation, is to register
the GPS sensor data at a higher polling rate of 1 Hz, decreasing the differences in time, dis-
tance and velocity.



4.3. Pre-processing 31

4.3.5. Data Fusion

An integral part of this research is the fusion of the both infrastructure-sided (i.e. train de-
scriber data) and vehicle-sided (i.e. Vehicle GPS/MTPS) location tracking data. This allows
for the enrichment of the GPS data with infrastructure-sided information such as current
signalling, while creating a finer meshgrid of location tracking compared to solely using
train describer data, and allowing better tracking of the vehicle within the track sections.
After the (re)creation of the derivable datapoints and data alignment, both location track-
ing datasets share a common GPS anchor point, which is used as the common zero-point
of all realised train paths. While fusing the tracking data, the data is aligned on both the
epoch timestamp and cumulative distance along the train path. The datapoints get a key
added to them, describing their source dataset (i.e. GPS/TROTS/etc.) and their cumulative
distance(i.e. distance along the train path) remains in relation to their neighbouring data-
points from the same sources and the calculated alignment off-set. Their relative distance
is recalculated between datapoints of all the different sources. This is to allow for both the
fusion benefits while maintaining the ability to distinguish between the different tracking
sources.

With the fusion and alignment, each data point of each datasource is enriched with the re-
lated datapoints of different sources, based on association and comparison. For instance,
GPS datapoints get enriched with the track section their occupying along with the current
and following dynamic signalling, while train describer data gets enriched with the esti-
mated vehicle velocity through interpolation of two GPS datapoints and their GPS velocity
data. As expressed in Section 4.3.4 when determining the off-set of the GPS sensor relative
to the rolling stock’s ’head’, the margin of error should be low enough to allow this without
creating problems in the analysis. This was assumed at low velocities at the beginning of
the train run to minimise the margin of error for the GPS-sensor off-set. The velocity inter-
polation at higher velocities and bigger velocity differences would lead to higher errors, but
for the use of velocity interpolation in the reconstruction model the error is assumed com-
parable to the measurements taken directly from the GPS sensors. When examining the
example speed profile for a realised train run in Figure 4.2, the results of the data align-
ment appear to align nicely and the effects of the data fusion on the speed profile can be
seen.
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Figure 4.2: Example plot of realised location tracking data speed profile, for both the fused location tracking data as for
the individual sources of location tracking. These sources in this example are the train describer data pro-
vided by the Dutch TROTS system and two GPS data sources from a single sensor on each individual rolling
stock within the presented rolling stock combination.

For the deceleration reconstruction analysis, the process of data fusion allows for the ve-
locity data from each respective source to continue to exist as separate entries in the fused
dataset, which then fills in the gaps at the other data points from other sources through
backfill and linear interpolation. This is then complemented with the mean velocity of all
these velocity entries in the fused dataset. This mean velocity helps even out the extreme
shifts in velocity due to minor tracking errors from GPS, rounding errors in the train de-
scriber data or calculation rounding errors from the linear interpolation described above.
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4.4. Deceleration Reconstruction Model

This research proposes two different methods in deceleration reconstruction and are re-
ferred to as Point-to-Point Differential Backtracking and Velocity Difference Backtrack-

ing. The first method was developed to estimate the driving regime between two of loca-
tion tracking datapoints and based on the retrieved differential parameters determine if the
vehicle was in its deceleration regime for the station stop and its likely driving regime(e.g.
coasting or braking). The second method was developed to streamline the analysis process
by comparing the velocities between the datapoints to determine the start and end of the
deceleration regime and used pre-defined deceleration regime profiles to determine the pro-
file of the realised deceleration regime.

Both methods use the same set of mathematical equations to reconstruct the vehicle
movement and characteristics. They rely on the dynamics equations of Newton’s Law

of Motion. The dynamics equations, as used in this research, are further explained in
Section 4.4.1. Before reconstructing the deceleration regime, the defining characteristics
for the four main driving regimes are determined relating to the dynamics equations, which
are described in Section 4.4.2. Both DR model methods are explained in Section 4.4.4.
In both model methods, the optimisation problem is defined as a minimisation of the
difference in surface area underneath the speed-profile between the averaged velocities
from the realised location tracking data and the estimated vehicle velocity from the

DR model. To solve this optimisation problem, a genetic algorithm is used. Both the
optimisation problem and the solving algorithm are further explained in Section 4.4.6.

4.4.1. Dynamics equations for the Deceleration Reconstruction Model

The analysis of the train movement relies on the dynamics equations of Newton’s Law

of Motion. These are formally described as general Equation (2.2) and rail-specific
Equation (2.3). Since this research focuses on the deceleration behaviour of a commuter
heavy rail vehicle, the dynamics equation used in this research is rewritten to focus on the
resistance and braking equations.

The resistance equations due to vehicle and infrastructure are still part of the differential
equations. The vehicle related resistance equation is based on the Davis equation. Also
the gradient and curvature resistance functions are considered in the differential equation,
even though the gradients and curvatures (especially the latter) in the Netherlands cause
minimal restrictions, due to either low gradients or large curvature radii, and therefore
have a minimal expected impact(visually represented in Figure 4.3). All these equations
are considered mass-specific. This is to determine the resistance forces in terms of an ac-
celeration. This is done implicitly in the case of the vehicle related resistance force r, in the
coefficients 7, r; and r,. For the gradient resistance force 7y, it is done explicitly through
the removal of the mass variable m in the equation. For the provided curvature resistance
force r,, it was already set as a mass-specific equation, of which their units are set to N/kg
or rewritten as an acceleration m/s?.

r (W) =10+ *v) + (1, *v?)

9.81 * gradong

9= 71000 (4.1)
0.01xk
.= ———
Rad,

Of which 1y, i, and r, (units resp. N/kg,(N * s)/(m = kg) and (N * s?)/(m? = kg)) are vehicle
resistance coefficients linked to the Davis Equation (Trani, 2018), v expressing the vehi-
cle velocity in m/s, grad,,ng4 the track gradient (in %o) in longitudinal or driving direction,
Rad. the curvature radius in m and k a dimensionless coefficient, usually bound between
500 and 1200, describing the influence of the curvature on the resistance forces the vehi-
cle is subjected to. With these specific equations, Equation (2.6), used in BeSinovi¢ et al.
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(2013a,b,c¢), is rewritten as Equation (4.2), with b being the variable for braking rate. In
case of non-uniformity the differential equation is expanded to define the braking rate as
a time or velocity dependent function. Details of the braking rate description are elaborated

in Section 4.4.3.
dv _

—-1,(W)—1y—7.—b

e

4.4.2. Driving Regime Characteristics

To correctly identify the realised driving
(sub-) regime, the identifying character-
istics of those driving regimes need to be
determined that can (in combination) un-
ambiguously describe the driving regime
being applied. Without access to systems
such as on-board train event recorder data,
a few agreements and checks are needed
to be set on the identifying characteristics
to determine these (sub-)regimes. All four
of the main driving regimes are mentioned,
even though this research is only focuses
on the related to the deceleration regime
of a heavy rail vehicle. This is in order to
make a clear identification of the analysed
realised data and to provide the complete
overview on driving regime characteristics.

Acceleration

Since the acceleration regime is considered
out of scope for this research, the trac-
tion force was removed from the velocity-
distance differential, as seen in Equa-

tion (4.2). However, while identifying the
different sub-regimes from realised data,
the reconstruction model has a possibil-
ity of running into these acceleration driv-
ing regimes. To identify these regimes, the
braking rate b is permitted to hold negative
value to compensate for the lack of traction
components in the dynamics differential
and is used to indicate such regime. There-
fore, when initially identifying driving sub-

Mass-specific Force (N/kg) or (m/s2)

Velocity (km/h)

(4.2)

v
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Figure 4.3: Velocity dependent mass-specific forces
based on nominal coefficients. Shown is the
effect of individual forces and different com-
bination on the surplus force exerted by the
vehicle, either expressed as N/kg or m/s2.
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Figure 4.4: Acceleration Regime highlighted, shown with
nominal acceleration and resistance coeffi-
cients. Defined by v; < v,

regimes or for when the GPS velocity data quality is not reliable, the identifying character-
istics used are b < 0 and dv/ds > 0. In case of reliable quality velocity data from the GPS
sensors, the driving (sub-)regimes are determined through essentially comparing v; > v;4.
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Figure 4.5: Cruising Regime highlighted, defined by the
condition vstart = vond

Even though the cruising regime is not part
of the deceleration regime when it’s preced-
ing the deceleration regime, it is however
part of the deceleration regime when the
cruising sub-regime has two neighbouring
sub-regimes being either coasting or brak-
ing. The definition of cruising is such that
the vehicle’s velocity is constant and there-
fore have dv/ds = 0. To unambiguously
describe the cruising regime, a further dis-
tinction needs to be made between a vehi-
cle cruising and a vehicle being stationary,
which technically has a rate of change in

velocity of zero. Therefore, to be considered a cruising regime, it will have to hold to the
condition that the vehicle velocity is considered non-zero (v > 0). Since realised data will
most likely not provide an exact match to the condition dv/ds = 0, a margin of error will
have to be applied to compensate any inaccuracies in GPS velocity measurements.
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Figure 4.6: Coasting Regime highlighted, Nominal resis-
tance coefficients shown for different starting
velocities. Defined by v; > v;,; and b = 0

The coasting regime is considered part of
the deceleration regime applied by the train
operator and is a regime in which the trac-
tion engines are turned off and no brak-
ing is applied. This leads to the identifying
characteristic condition b = 0 for the coast-
ing regime. However, this on it’s own is not
unambiguous enough, because this con-
dition is present in the cruising regimes
and at vehicle standstill. To make it un-
ambiguous, a second regime characteristic
condition is required, being dv/ds < 0. This
would cover the eliminations of the cruising
regime (dv/ds = 0 and b < 0) and vehicle

standstill (dv/ds = 0 and b = 0). Due to the exactness of the equality conditions and the
inaccuracy of measuring the realised data, a consideration needs to be made to give those
equality conditions a margin of error. Due to the sensitivity of these conditions obtained
from the velocity-distance differential at extremely low velocities and the margin of error

applied, there is a possibility that the model would falsely identify a low velocity(e.g. walk-
ing pace) coasting regime as a vehicle standstill. Therefore a third condition is added to the
defining regime characteristics, being v > 0, which is less sensitive than the other two con-
ditions and eliminates the false identification of vehicle standstills.
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Braking

The braking regime is the last regime to be
considered part of the deceleration regime.
It’s primary characteristic condition is that
the braking rate should be larger than zero
(b > 0) or b > margin of error in case of
realised train runs to make sure its not
due to a more resistive vehicle coefficient,
creating a false identification for a brak-
ing regime instead of a coasting regime.

To seal the unambiguous identification of
the braking regime, the longitudinal gra-
dient of the infrastructure has to be taken
into account and this is done through the
characteristic condition dv/ds < 0. This
is to cover for the false identification of a
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Figure 4.7: Braking Regime highlighted, Nominal resis-
tance and braking coefficients shown for dif-
ferent starting velocities. Defined by v; > v;,4
andb >0

braking regime when the brakes could actually be applied on a steep gradient to maintain
a certain velocity and should therefore be classified as a cruising regime.

The identification of the deceleration related regimes of coasting and braking described
above are for when the quality of the vehicle velocity obtained through the GPS sensor is
not considered reliable enough. In the case of the reliability being present, as is in this re-
search, the deceleration related regimes can be identified through essentially comparing

v; > v;41. This condition will not make the distinction between coasting or braking. How-
ever, for identifying the deceleration regime distance this distinction is not necessary, as it
is followed by a fitting of a defined sub-regime composition profile.

4.4.3. Braking Rate Variants

Due to the review of Maurya and Bokare (2012) and the initial testing of the realised train
run data, a concept was developed that would challenge the idea that the train operators
always apply a singular and constant braking rate in their deceleration regime into a
planned stop at a station. The manner in which the braking rate is applied, is defined in
this research as either uniform defined as a constant coefficient or as a non-uniform
defined variable, either described by a Dual/Triple Step method or as a second order
polynomial function (either time or velocity dependent). Table 4.1 shows the different
methods of describing the braking rate tested in this research, with Figure 4.8 providing
the visual comparison of the different braking variants.
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Table 4.1: Deceleration Regime - Braking Rate Variants

Braking Rate . : Mathematical , .
Name Uniformity Type Type Mathematical Formulation
Constant | Uniform Copstant const.
Variable
. Piece-wise bappiy(t) 0<t<ty
Dual Ste - . bstop =1 PPV
P| Non-Uniform | ¢ 1 tion S0P TN ease () t S E <t
bstop =
. . Piece-wise bappiy(t) 0=t <ty
Triple St - .
riple Step | Non-Uniform Function Deonstant t <t <t
brelease(t) t2 St< t3
Time Second Order
Dependent | Non-Uniform Polynomial b(t) = kg +ky *t+ ky x t?
Polynomial Function
Velocity Second Order
Dependent | Non-Uniform Polynomial b(v) = ko + ky xv + ky * v?
Polynomial Function

In the Dual Step and the Triple Step, the bgpy;y is the braking rate when applying the
brakes to the desired braking rate and the b,.q5e in the case of releasing the braking.
The bgppry and byejeqse are either defined by an (inverted) second order polynomial or
linear function. The b.ypstan: in Triple Step implies that for a length of time the desired
braking rate is applied at a constant rate. In Maurya and Bokare (2012), the second
order polynomial was defined as velocity dependent. However, to test the validity of this
dependency, a time dependent second order polynomial is added as a likely non-uniform
description of the train operator’s behaviour when applying the brakes.

Each of the described braking variant takes different variables to express their respective
braking rates and as such use a -vector (i.e. a list or sequence of variable parameters de-
scribing the vehicle’s behaviour within the DR model) for the optimisation method, tailored
for that specific variant. These braking variants also used a tailored differential equation,
as expressed in Equation (4.3), in which the vehicle’s mass was accounted for separately to
allow the vehicle coefficients not to become too small, which in turn decreases the impact
of floating point errors. The second order polynomial braking functions are rewritten from
the standard form of b = ky + k, *x + k, * x? to the vertex form b = k, * (x — k;)? + k;, with vari-
ables k, and kj, further defining them in a relation of k;, and Ax, namely k, = (—4 * k;,)/(Ax?)
and kj, = 0.5 x At or k, = v,pq + 0.5 * Av, with x being either the dimension time (t) or velocity
(v) that the braking variant depends on.

This is done to provide a consistent behaviour of the polynomial braking variants applied to
a braking regime and to produce verifiable markers defining the braking regime in space-
time and velocity, while eliminating an extra element in the f-vector for the optimisation
algorithm to account for. For the piece-wise functions '‘Dual-Step’ and "Triple-Step’, a linear
function is used to define the brake application and release, defined as b = [y +1[; *t with the
coefficients [, and [, expressed in terms of time difference At, switching moment t,,,;¢cn and
maximum braking rate kj, for the same consistent behaviour and verifiability as the second
order polynomials.
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Other alterations made, are firstly to calculate the differentials for the time-dependent
braking regimes in the time dimension, instead of the distance dimension, in order to
simplify the differential equation with two dependent variables to a single dependency
differential equation. This is done by removing the division by velocity and spanning the
braking regime over a timespan instead of a distance, as seen in Equation (4.3). To reunite
these braking regimes with the rest of the deceleration regime, the distance points are
derived from the velocity curve and a chosen time step over which the braking regime is
sampled at. Secondly, the resistance functions for the gradient r; and curvature . were
removed. The effects assumed to be negligible due to the low gradients and the large radius
curvatures over the chosen case study corridor.
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Figure 4.8: Example plot of all proposed braking variants sampled to resemble constant braking coefficient deceleration
in the distance domain and the effects when comparing the variants in the time domain side by side.

When comparing the different braking variants in Figure 4.8, looking at the typical speed
profile domain, Distance, the presented examples appear very similar in shape. However,
when the domain is shifted to that of Time, the presented examples show their clear and
distinct differences in their deceleration with a significant difference in their time required
to come to a stop. Note that all variants reach close to the same maximum deceleration
rate, but how the difference in brake application has an impact on the speed profiles in
both distance and time.
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Constant Braking Coefficient

The only uniform braking variant and the variant that is used in the development of run-
ning times and speed profiles for use in current network timetable designs and simula-
tions. This approach perceives the braking application in a very binary on/off manner.
Note that the deceleration curve is constant in the time domain and is only curved due to
the velocity dependent vehicle resistance, looking at the highlighted red line in Figure D.2.

Second order polynomial (velocity dependent)

The first group of non-uniform braking variants to be examined is the second order
polynomial braking variants, similar to Maurya and Bokare (2012). In that paper they
made a case for the braking behaviour to be considered velocity dependent, in which
drivers seemed to increase their braking rate in continuously smaller steps, until they
reached a critical velocity after which they slowly started to release their brakes and
decreased their braking rates in increasingly larger steps. Note that in this research, this
braking variant (see Figure D.3) is considered symmetrical in approach with the critical
velocity being halfway the intended velocity delta during the braking application.

Second order polynomial (time dependent)

The second polynomial variant added to this research to test for alternative dependencies.
As distance at higher velocities is harder to judge accurately, in this research the alterna-
tive second order polynomial is considered time dependent as it is as easily observed as the
speedometer.

The equation describing this braking variant is identical to that of the velocity dependent
second order polynomial, except for using the variable time and delta time to adhere to. In
Figure D.4, note the similarities between both second order polynomials with the exception
of the (lack of) 'flare’ at the start and end of the braking regime, the wider vertex nose at
the maximum deceleration rate and the slight skewness of the velocity dependent variant.

Dual-Step & Triple-Step Braking

This group of braking variants is developed based on the two stage behaviour Maurya and
Bokare (2012) observed in the braking behaviour of truck drivers. As both trucks and rail
vehicles are big vehicles with a large mass, it was deemed a reasonable assumption to
expect comparable behaviour between trucks drivers and rail vehicle operators. This
research shows preference for testing the time dependent Dual-Step variants as it

is assumed that the time component is easier to observe for the driver and would

adjust according to time rather than vehicle velocity. The selection for either one

of the dependency types was mainly to minimise the testing of near identical braking
applications.

This research tests the following combinations of brake application and release: "Linear -
Linear”(see Figure D.5 and Figure D.6). The combinations are limited to linear braking ap-
plication and release, but could be expanded with an second order polynomial brake appli-
cation and an inverted second order polynomial brake release. The theory behind the op-
tion of the polynomial combinations, is that the closer a train operator gets to the desired
braking rate, the more he tries to fine-tune towards his goal, using increasingly smaller ad-
justments.

To allow for partial (non-)uniform braking behaviour, the Triple-Step approach is intro-
duced. This approach is identical to the Dual-Step approach with the difference of a third
step between the brake application and brake release. In this research, this step is consid-
ered to be the use of a constant braking coefficient with the theory that the operator might
maintain his desired braking rate for a while over longer braking regime or larger desired
velocity delta’s.
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4.4.4. Determining Deceleration Regime

Two methods were used for the analysis to determine the deceleration regime of the re-
alised train runs. Both reconstruct the deceleration regime by backtracking from vehicle
standstill, assuming this was an intended station stop, until the conditions are met from
which the deceleration regimes are considered to have started on. The reason for back-
tracking over the realised data, compared to following the train over its realised train run,
are due to the integration problem and differential equation. When solving the integration
problem presented with Equation (4.2) , only the vehicle velocity v,,4 at the end of the de-
celeration regime to a complete stop can be used as a boundary condition, as it is the only
velocity that can empirically and accurately be determined.

With the boundary condition v,,; = 0 and the differential equation having solely negative
coefficients, the logical solution approach is to backtrack from the last point in the decel-
eration regime and calculate and optimise the rest according to this fixed boundary con-
dition. Shown in Figure 4.9 are the process structures related to the two reconstruction
methods that are used in this research and elaborated on further down in this section. Fig-
ure 4.9a visualises the more complex, iterative and computational heavy approach of Point-
to-Point Differential Backtracking and grouping of the identified driving regimes between
the tracking datapoints. This method is useful for directly identifying and grouping without
prior knowledge of possible deceleration regimes. The more streamlined approach, visu-
alised in Figure 4.9b, has fewer iterative steps as it does not need to build its own decel-
eration regime profile, due to prior knowledge and pre-defining of the deceleration regime
profiles. This method was developed to reduce the heavy computation time experienced in
the pilot analysis, which used the first backtracking method.
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Figure 4.9: Deceleration Reconstruction Models displaying both reconstruction methods tested.
(a): Point-to-Point Differential Backtracking, comparing differential parameters to determine driving sub-
regime and grouping points reevaluating differential parameters. For larger diagram see Figure C.2
(b): Velocity Difference Backtracking, comparing difference velocity and deceleration regime profiles. For
larger view see Figure C.3



40 4. Conceptual Framework & Deceleration Reconstruction Model

Sub-Regimes
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- — the two reconstruction methods, the term
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regimes belong to the same singular intent as they are smaller driving regimes that
of decelerating to a stop. otherwise would have been considered a

single, larger regimes(i.e. two braking regimes with different braking coefficients instead of
combined into a singular regime with a single and averaged braking coefficient).

However, with the introduction of the non-uniformity of the braking coefficient, these cases
get covered under the 'Dual-Step’, Triple-Step’ or polynomial defined braking functions,
with the exception of an illogical application of the braking coefficient in an oscillating
fashion (i.e. hard-soft-hard-soft application of the brakes). Due to the introduction of
non-uniform braking and deceleration regime profiles, the definition of the sub-regime is
altered to describe all of the smaller driving regimes applied within a singular operational
intent (e.g. all the regimes applied within the same intent to decelerate to a complete

stop at a station), which can be seen in Figure 4.10. This last definition is used in the
reconstruction method ”"Velocity Difference Backtracking”.

Method 1 - Point-to-Point Differential Backtracking

Without prior knowledge of the deceleration regime composition profiles, the identification
of the estimated driving regime between the datapoints and the grouping of similar neigh-
bouring regimes are used to determine the realised deceleration regime and would simulta-
neously allow for the identification of the different driving regimes within the deceleration
regime and, if present, the distinction between similar driving regimes with different coef-
ficients. For that purpose, the dynamics differential equation (Equation (4.2)), its integra-
tion and the minimisation problem (Equation (4.6)) are used to determine the deceleration
regime and vehicle characteristics. From that, the driving regime is identified and a deci-
sion made upon the outcome on if the deceleration regime found in its entirety. The pro-
cess steps in determining each sub-regime within the entire deceleration regime is for this
method as follows:

. Backtracking from vehicle standstill.

. Point-to-Point sub-regime identification through obtaining regime characteristics from
the dynamics equation.

3. Chaining and group testing sub-regimes for consolidation.

N

The implementation of this method for this research, as shown in detail in Figure 4.9a, is
to take the available data of a specific train run and start the backtracking in the given
datapoints to search for a point near the stations at which the vehicle velocity is near zero,
allowing for some fluctuations of the GPS sensor tracking error. From that point, it will
then backtrack point by point, while calculating the differential equation,through integra-
tion and minimisation optimisation, with a uniform braking coefficient, as described in
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Equation (4.2), and determine the corresponding coefficients. From these coefficients, the
realised driving regimes are estimated, based on the characteristic conditions described in
Section 4.4.2.

This cycle continues until the reconstruction model estimates the driving regime to be
acceleration, at which it breaks of the cycle and returns the current built-up chain of
differential coefficients as the deceleration regime. It continues its search locating a point
at which the vehicle is deemed to be at a standstill and continues this cycle until it runs
out of datapoints to process within this trainrun. After estimating the driving regimes
corresponding to the datapoints, the reconstruction method attempts to group similar
driving regimes by grouping the datapoints of neighbouring sub-regimes and recalculating
the differential coefficients, allowing non-uniform braking variants as described in

Section 4.4.3 , and evaluates the grouped values to their individual coefficients for
consistency and identification of neighbouring driving regimes with distinctly different
differential coefficients. After finalising the grouping of the datapoints, the reconstructed
deceleration regimes for that specific train run are stored in a database for later use in the
statistical analysis. This larger iterative cycle continues until it runs out of train runs to
process from the given datasets.

This method has the benefit of not relying on the velocity data gathered by the vehicle GPS
or infrastructure sensors, or uses any prior knowledge on deceleration regimes over a given
corridor. However, this method proved to be too heavy in computation time for its purpose,
due to the large number of iterations and cycles. By applying this method on a sampleset
of location tracking data, insights are gained about the possible deceleration regimes being
applied. Possible deceleration regime profiles can be pre-defined from this knowledge to
apply a more streamlined method of reconstructing the realised deceleration regime from
location tracking data, leading into the second method: "Velocity Difference Backtracking”.

Method 2 - Velocity Difference Backtracking

With computational efficiency in mind, reevaluating the deceleration regime analysis with
the gained knowledge on the realised deceleration regime profiles lead to the development
of a reconstruction method comparing the vehicle velocity per data point. The momentary
vehicle velocity would be preferred, when available and deemed reliable. However, testing
has shown that the use of the average vehicle velocity, calculated from the difference in
distance and time, worked as a great alternative.

While backtracking from standstill, this method essentially compares v; = v;,q, to deter-
mine the location tracking datapoint defining the start of the deceleration regime. This
start point would either be defined as a cruise or coast sub-regime to allow for the recon-
struction model to identify the cruising sub-regimes between two braking sub-regimes in
the realised deceleration regime. Similar to the first reconstruction method, this compar-
ative backtracking stops when it estimates the regime between the datapoints to be accel-
eration. However, as a difference to the first method, the second method only returns the
datapoints estimated to be the starting point and end point of the deceleration regime.

The analysis then continues to analyse the determined distance to find the best fit of the
pre-defined deceleration regime profiles, using gained knowledge from the first method, to
the realised datapoints in terms of sub-regime composition and braking rate variants. This
reconstruction method’s process cycle can summarised in three steps:

1. Backtracking from vehicle standstill.
2. Point-to-Point sub-regime identification through v; > v;,; comparison.
3. Deceleration regime fitting sub-regime composition and deceleration rate variants.

The implementation of this second method during this research, as shown in detail in Fig-
ure 4.9b, is to take the available data of a specific train run and apply the same backtrack-
ing as described in the first method. The difference between the methods lies in the com-
parative conditions that determine the starting point of a deceleration regime. Instead of
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calculating the differential coefficients between every datapoint, in this method it is simpli-
fied to a singular comparison between datapoints of the condition v; = v;,;. This loses the
benefit of knowing where and how long each sub-regime lasted and loses the identification
of the driving regime estimated. This alteration, however, allows for the removal of a sig-
nificant number of iterations. Due to the loss of the duration, location and identification of
the estimated sub-regimes, knowledge is required to pre-define profiles of the deceleration
regime sub-regime composition.

With the deceleration profiles pre-defined and the datapoints determined that estimate the
starting point and end point of the deceleration regime, all the pre-defined profiles are eval-
uated in the deceleration reconstruction model, returning all the coefficients required to
describe the profiles (Section 4.4.5) and their goodness of fit (i.e. a value describing how
well the fitted function aligns with the evaluated datapoints). All the profile coefficients
and their goodness of fit are stored along with all the other deceleration regimes evaluated
within that specific train run, for manual validation and for statistical and comparative
analyses at a later stage.

For this research, the sub-regime composition profiles are pre-defined manually,
determined from the analysis pilot using the first reconstruction method and assessing the
graphical outputs. The deceleration rate variants are introduced after the development of
the first reconstruction method and the literature review of Maurya and Bokare (2012).

4.4.5. Deceleration sub-regime composition

The handling of multiple deceleration regimes in a single train run or corridor, is covered in
two different ways depending on the used DR analysis method. When using the "Point-to-
Point Differential Backtracking” method, the model determines the realised driving regimes
at a Point-to-Point sub-regime level at first. To handle multiple cycles of driving regimes,
used in a realised train run, it forms a list or chain of driving regimes with independent co-
efficients.

When this analysis method is used for the DR model, these lists are then scanned to de-
termine possible groupings of neighbouring similar sub-regimes and then recalculated as
a single driving regime to validate it as a whole. This method focuses on the vehicle and
regime characteristics of the coasting and braking regimes. The separate analysis of both
regimes leads in some cases to where both regimes are identified, due to the single data
point gap smoothing applied in the grouping phase of the analysis for sub-regime chains
and the single data point ’edge’ smoothing for singular registered sub-regimes. This is due
to the sensitivity of differential coefficients and the slight fluctuation of the realised vehicle
velocity measured by the GPS sensor.

The "Velocity Difference Backtracking” method uses the insights gathered from the analy-
sis pilot to determine the more likely used deceleration regime profiles to use them as pre-
defined sub-regime composition profiles to fit to the realised train run data. The sequences
within these profiles are given by the abbreviations of the driving regimes coasting (Co),
cruising (Cr) and braking (Br). In general, the profiles observed within the analysis pilot
are listed in Table 4.2 and grouped in braking regime families, named after the number of
braking regime found in these deceleration regime profiles (e.g. 2-Br’ grouping decelera-
tion regime profiles with two braking regimes). Profiles prefixed with UZI, describe profiles
with a leading coasting regime instead of the implicitly defined cruising regime. The ’Sin-
gle’ or ‘Double’ refers to the number of coasting/cruising regimes between braking regimes,
observed as a ’stepped’ deceleration in the speed profiles.
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Table 4.2: Sub-regime composition profiles of different deceleration regimes.

Name | Sequence | Family | Optimisation Vector

Singular Braking | Br | B = [10,71,72, S0, AV, bg]

UZI Deceleration | Co-Br \ ) | B = [70, 71,72, So, S1, Avg, bg]
Single Coasting Step | Br-Co-Br | | B = [10,71,72, S0, S1, S2, AV, Avy, by, by ]
UZI Single Coasting | Co-Br-Co- B = [1, 11,72, Sg, -, S3, Avy, Avy, by, b1 ]
Step | Br o-Br
Single Cruising Step | Br-Cr-Br | | B = [10,71,72, S0, S1, S2, AV, Avy, by, by ]
UZI Single Cruising | Co-Br-Cr-Br B = 19,711,712, S0, -, S3, Avg, Avy, by, b4]
Step
Double Coasting Step | Br-Co-Br- B = [19,71,72, 50,51, » Sas
Co-Br Avy, Avy, Avy, by, by, by ]
UZI Double Coasting | Co-Br-Co- B = 19,711, 72,50,S1, -, S5,
Step | Br-Co-Br 3.Br Avy, Avy, Avy, by, by, b, ]
Double Cruising Step | Br-Cr-Br- B =15, 711,72,50,S1) » S4,
Cr-Br Avgy, Avy, Avy, by, by, by ]
UZI Double Cruising | Co-Br-Cr- B = [1,11,72, 50,51, ---, S5,
Step | Br-Cr-Br Avgy, Avy, Avy, by, by, by ]
No profiles with neighbouring braking sub-regimes (i.e. ...-Br-Br-...) are identified as

likely sub-regime composition profile. This is due to the simultaneous evaluation of the
(non-)uniformity of the realised braking rate applied in the deceleration regime, which
implements Dual-Step and Triple-Step braking variants. The f-vector for the optimisation
method, expressed in Table 4.2, represent the vectors used for the braking variant
‘Constant Coefficient’. For the non-uniform braking variants, b; is replaced with k;, and for
the time-dependent braking variants the vectors are expanded with variable At;. In case of
the piece-wise braking variants, the f-vector is expanded with the variable defining the
switching moment tgy¢cp, -

4.4.6. Optimisation Problem & Algorithm

The optimisation problem in the reconstruction model of the realised deceleration regime,
is an error minimisation problem. While Besinovi¢ et al. (2013a,b,c) and Medeossi et al.
(2011) used a minimisation of the error in time or velocity respectively, this research has
the benefit of enjoying strengths of both data sources (i.e. Vehicle GPS Data and Train De-
scriber Data) and therefore can use both the vehicle velocity as distance-time data to min-
imise the error of the reconstruction calculation. For the deceleration reconstruction, the
sum of the integral X is used, defined as a surface area underneath the velocity curve, de-
scribing the speed profile, over distance.

Snt+1 S+l (g
Xy :J f —dsds (4.4)
n s Js ds

n

_ Sn+1 " Sn
n’avg -

* (Sn+1 - Sn) (45)
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Equation (4.4) is used to calculate the surface area under the speed profile of the recon-
structed deceleration regime. For the realised data, it was simplified to the average velocity
between the two data points, calculated over the difference in distance, leading to Equa-
tion (4.5). The time component t is expressed with an accuracy of whole seconds, The opti-
misation problem is defined as follows:

Minimise Zn’ [ X — Xn’avgl
. dv .

Subject to: e see Equation (4.3)
Vena(0) =0
Vstare(M + 1) = Vepg(n)
S; € [SIP,S¥P] fori=0..5
by € [b'?,b¥*P], fork =0...2
Sy € [V, 5v¥P] fork =0...2

Ty € [P, 14P], form = 0,2

zk dvk < vspeedlimit

Z' Si =< Sdeceleration
i

(4.6)

Note that there is a distinction between the optimisation variable 'Distance Sub-regime’ be-
ing uppercase S and regular description for distance being lowercase s. The variables b, r
and 6v describe the braking rates, resistance coefficients and the velocity differences re-
spectively and the indexes i, k and m relate respectively to the index of the sub-regime and
braking regime in the tested deceleration regime and to which coefficient of the Davis equa-
tion (Equation (4.1)) is referred to. Lastly, index n refers to the index of data points used

in the optimisation process, with N being the count of data points and index n’ referring to
the space between data points n and n + 1. The one-side bounded optimisation leaves the
other end open to errors in the momentary vehicle velocities measured by the GPS sensors.
With the reliability assessment of the GPS velocity data, the realised momentary vehicle ve-
locities are used to validate the deceleration regime reconstruction. This validation is done
with a Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE), as seen in Equa-
tion (4.7).

MAE ZZLO (lvsimn - Urealnl)
N

" 4.7)
RMSE :\/ ano (vsim]\rz; - Urealyzl)

The minimisation problem is solved using a Genetic Algorithm (GA), which is a solving al-
gorithm that inherits its properties from the evolutionary theory in nature and ”"Survival of
the Fittest”. (Goldberg, 1989; Holland, 1992; Mitchell, 1996) There are different variations
in evolutionary algorithms. The one used in this research starts with a population of dif-
ferent solution vectors, of which some are entered based on nominal values or boundary
constraints and the rest randomly drawn from a uniform distribution between the vector
variables’ boundaries. Their "fitness” is tested by calculating the answer to the equations
in the minimisation problem and a selection is made to form a pool of solutions (i.e. par-
ents) used to produce new solutions by mixing the vector variables and mutate the vari-
ables slightly (i.e. breed offspring through genetic crossover and mutation). The new pop-
ulation pool of solutions consist firstly of the parents and their offspring, which is then re-
supplied with new randomised solutions to maintain the original population pool size of
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solutions(i.e. new blood or immigration). This process is continued over several generation
until either the fittest solution is good enough or until a specified number of generations is
reached and the fittest solution is taken from the last generation population pool of solu-
tions. The algorithm’s parameters and settings are discussed in Chapter 5.

4.5. Post-Processing

The post-processing of the results after analysing the realised train runs with the deceler-
ation reconstruction model, involve statistical and comparative analysis of the data inline
with the performance indicators used in this research. This is done by calculating the per-
formance indicators, as described in Chapter 3, per individual run and furthermore deter-
mines the distribution per given parameter of the given performance indicator. From that,
the statistical distribution type and coefficients are estimated and compared to the nominal
performance indicator values.

The comparative analysis takes the realised train runs and applies some differentiating
characteristics (e.g. seasonality, delay/timeliness) that are suspected influences on the ap-
plied deceleration regime. Of these divisions, the statistical distributions are determined
through the statistical analysis process and any significant correlations are drawn from
this. This again will have the nominal performance indicators or behaviour characteristics
present as reference.

Finally, the analysis results of both the reconstruction model and statistical model will be
stored for reference and further use in refining the comparative analysis. Also a graphi-
cal representation of both the realised train runs, fitted deceleration regime profiles for
the spatial data and the statistical distributions and their statistical coefficients of the re-
sulting performance indicators and coefficients will be generated. This to provide a clear
overview of the results and makes it easier to draw any conclusions.

4.6. Chapter Summary

This chapter describes the analysis methodology and the development approach of a data-
driven reconstruction model to estimate the speed profiles of realised train runs that elabo-
rates on the deceleration regimes in a more dynamic and generalised (i.e. able to be applied
to any rail network corridor) manner to provide a more detailed description of the realised
deceleration behaviour. This research introduces a conceptual framework for the recon-
struction of the deceleration behaviour of heavy rail vehicles. The general structure and
concept approach are inspired by Besinovi¢ et al. (2013a,b,c) and Medeossi et al. (2011).

The proposed framework differentiates from its inspiration by its interest and focus on the
deceleration behaviour within the proposed reconstruction model, aptly named Decelera-
tion Reconstruction (DR) model, instead of reconstructing complete velocity profiles. This
is done through the implementation of sub-regimes (i.e. smaller driving regimes describing
one of four driving states of a heavy rail vehicle) and deceleration regime profiles defined by
a combination of said sub-regimes (see Section 4.4.4).

These sub-regimes are subject to the rail sector defined differential equation, describing
Newton’s second law of motion, with the vehicle resistance expressed by the Davis equa-
tion (Davis, 1926). This equation is further expanded in this research to accommodate the
testing of non-uniform braking behaviour by writing the braking rate as a function of ei-
ther velocity or time, inspired by Maurya and Bokare (2012) and described in Section 4.4.3.
The framework incorporates a statistical and comparative analysis because, besides the re-
alised train trajectories and corresponding parameters, the statistical distributions of these
parameters and related performance indicators (PI) and their interrelations are considered
the end products for this research. This is described and elaborated in Section 4.5.
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Furthermore, this research introduces the concept of 'Data Fusion’ (Section 4.3.5) for all
the realised location tracking data to be used in the DR model (Sections 4.2.3 and 4.2.4).
The datasets used from the different sources (i.e. the single source of train describer data
and 1 to 2 sources of GPS data) are formatted, corrected and derivable data is created to
unify, expand and fill in the gaps for the provided data sources (Sections 4.3.1 to 4.3.3).
After the aligning the different location tracking data sources (Section 4.3.4), they are fused
in which the strengths of all the different sources are inherited while their individual weak-
nesses are compensated. Once fused, the dataset of individual train runs are filtered to
discard the undesired, hindered or invalid train runs before feeding the DR model with the
fused location tracking data of the selected realised train runs.

The DR model, as elaborated on in Section 4.4, has several layers of nested for loops in its
programming, testing each pre-defined deceleration regime profile and braking variant for
each station approach in the corridor of a single realised train run. Each combination of
deceleration regime profile and braking variant has their own specific f-vector (i.e. a list or
sequence of variable parameters describing the vehicle’s behaviour within the DR model)
for the optimisation algorithm, whose structure is developed automatically in the dataset
and coefficient preparations preceding the optimisation of the minimisation problem.

The minimisation problem is defined as minimising the sum of absolute errors of the sur-
face areas under the speed profile between each pair of data points , with the surface area
under the realised speed profile defined by the average velocity multiplied by the distance
between the two data points and the area under the estimated speed profile defined by a
double integral over distance of the velocity differential equation describing the estimated
behaviour for a specific sub-regime (Section 4.4.6).

The optimisation algorithm used on this non-linear minimisation problem, is a Genetic Al-
gorithm (GA) method. For this research, a customised GA is developed, which is dubbed
”Elitism with Randomised Population Migration and Diminishing Mutation”. This is an al-
gorithm which retains a small pool of best fitting solution vectors for both the next gener-
ation and for developing the ’offspring’ vectors through cross-over and mutation with a di-
minishing mutation range, while refreshing and maintaining the general population size
through the migration of a group of completely randomised vectors.



Model & Statistical Analysis

This chapter will discuss the findings regarding the model’s performance and development,

the results from the empirical, statistical and comparative analysis on the fused datasets of
location tracking data from aprox. 13 300 realised train runs and track section infrastruc-

ture occupation of the track sections over the entire corridor, and the results from applying
the DR model on 280 realised train runs pertaining to a case study set out in Section 1.5.

The scope of the case study is further reduced to focus on 3 of the 8 stations in the cor-
ridor "Ht - Ut” and for two characteristic weeks instead of the entire year of 2017. This is
done for performance reasons as discussed in Section 5.1.2. The stations examined are
Geldermalsen (Gdm, a large station with a speed restricted switching area), Houten (Htn,

a small station with a short distanced, open-track station approach) and Zaltbommel (Zbm,
a small station with a long distanced, open-track station approach). For the analysis with
the DR model, the train runs of both the last week of March and the first week of Septem-
ber are tested. For the time-related tests (i.e. running times, deceleration loss times and
track section occupation duration), the selection of train runs is kept to the entire year as
these tests were not as CPU-intense.

The analyses applied on the DR model, are a performance analysis to test the model’s anal-
ysis speed and result accuracy, a statistical analysis on the performance indicators de-
scribed in Chapter 3 resulting from the DR model or corridor’s network timetable, and a
comparative analysis is applied to investigate the relations between the different perfor-
mance indicators.

5.1. Model Analysis

When implementing the DR model and optimisation method on the chosen case study,
some interesting results and consequences were found with regards to the model imple-
mentation, data processing and modelling performance, and the effects this had on the
case study scope, statistical and comparative analysis. Below will discuss the details of the
application of the model and the concessions made based on the modelling performance.

5.1.1. Model Setup

Preceding the details of the developed DR model, a quick introduction of the used software
and hardware is given to provide context to the discussion about the model’s development.
After which the setup of the model and data processing is discussed in detail.

The programming language used to build and implement the DR model, process the
(test/pilot) data and run a statistical and comparative analysis over the model results, was
Python 3.6 (v3.6.5) with a standard suite analysis libraries, provided by Anaconda3. The

47
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libraries used, were NumPy (v1.15), Numba (v0.39.0), SciPy (v1.1.0), Pandas (v0.23.4) and
Matplotlib (v2.2.3).

The hardware used to test the performance on the pilot data, at the university was a sys-
tem with an Intel e5-1620v2 with 8Gb RAM DDR3 and Operating System (OS) Windows 7,
at home an AMD 2200G with 8Gb 2400MHz DDR4 RAM and OS Windows 10, and lastly at
NS a system with an Intel Xeon e5-1650v4 with 16Gb 2400MHz DDR4 RAM and OS Win-
dows 8.1 installed. The data usage of the case study presented in this research was com-
pletely run locally on the system provided by NS.

Code Structure

The process structure of the framework, DR model with Velocity Difference Backtracking,
the minimisation problem and the Genetic Algorithm as described in Chapter 4, were used
in the development of the Python programming code used in this research. The different
processes of the conceptual framework had their own individual python file with all the
related main functions and supporting local settings and functions, which was imported,
ran and controlled from the main python file. This main file held all the input parame-
ters, common variables and file path structures, along with a ’switchboard’ of Boolean vari-
ables, using the "True’ or False’ statement to turn parts of the main control file on or off.
This control file allowed for the analysis to be broken up into smaller running sessions.
The ’communication’ between the different processes happened through the partially pro-
cessed/analysed data stored after process was used on the data. This allowed for a ’staged’
analysis and writing process, by not having to restart the analysis entirely at the beginning
each time an alteration, adjustment or unit test was done on a code segment. By breaking
the coding into their distinct processes and roles, it helped with maintaining clearer view
of the process structure at a higher abstraction level, while making the processes and their
internal functions easier to navigate.

Data Pre-processing

The data pre-processing for the case study is done as described in Section 4.3 with the
exception of the omission of the data filtering based on signalling profiles, deciding to rely
completely on the V-box filtering. This was due to the complexity of how the signalling
filter would be implemented and minimal benefit due to the filtering redundancy. For

the Even running side of the corridor, this meant the following list of parameters (resp.
Distance Start (m), Distance End (m), Velocity Threshold (km/h)): [5000,12000,80],
[16500,20000,90], [20000,21000,60], [21000,21800,30], [26000,29000,80],
[29000,29600,50], [33000,37000,90], [39600,40200,50], [42000,44400,50],
[45600,46500,50], [47400,47600,30].

For the data alignment, both the vehicle MTPS data and the infrastructure TROTS and In-
fraAtlas data were given a common GPS anchor point to align to. These points were chosen
near the back end of the station platform of the first station in the corridor run. For the
stations ’s Hertogenbosch (Ht), Utrecht Centraal (Ut) and Geldermalsen (Gdm), the follow-
ing GPS points were used respectively: [51.6874554, 5.2923015], [52.0899235,5.1084159],
[51.8807017,5.2723727,22300]. The MTPS data was aligned by calculating the distance of
the first GPS point available per each of the rolling stock combination. The infrastructure
was slightly less direct, as there were no GPS coordinates available of the track sections.
Given the InfraAtlas infrastructure data, every infrastructure part has a known relative po-
sition to the first infrastructure entry of the trainpath. Among those infrastructure parts,
are the train signals of which a list of GPS coordinates was available. Therefore the dis-
tance of the first signal was calculated to the GPS anchor point and from there every other
part of the infrastructure data was aligned. The alignment of the GPS sensor to the head of
the train and to the infrastructure was done as described in Section 4.3.4.
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Results Pre-processing Realised Data

When observing the results of the data fusion, it shows that the intended result of combin-
ing multiple location tracking sources is achieved. Some refinements are left to be made
in vehicle location estimation and data source alignment, but this will largely come from
using a more consistent and more frequently sampled vehicle-sided location tracking data
and the knowledge of the relative position of the GPS sensor within the vehicle. Other re-
finements can be made around the station when the vehicle is nearing a complete stop.
The relatively small errors in the GPS tracking start to have a larger effect at such low ve-
locities seen close to a vehicle’s stopping moment. Another issues with the inherent er-
rors from GPS tracking are that a vehicle is never perfectly still in the GPS data, making

it difficult to determine the exact stopping location for the DR model to use the data or for
the calculations of the performance indicators. These effects mentioned can be seen in the
speed profile plots over the corridor as large steps in both time and the velocity that is av-
eraged over a longer distance between two known points. The other effect is that in the
speed profile, the vehicle velocity never reaches zero, but only ever so often gets very close
to it when the data point density of the vehicle-sided location tracking data is high and
consistent enough. The effects of using the vehicle’s GPS to pinpoint the deceleration be-
haviour inside the station can be seen in the distance-time plot, in which a vertical ’bounc-
ing’ is observed near the station stops. As the speed profile of the realised data was more
important to this research, the data points were aligned and sorted first on distance fol-
lowed by time index, rather than vice versa. Both manners of sorting, however, would have
shown a similar ’bouncing’ in the coordinates of the data points. This margin of error in
the GPS data points and ’bouncing’ of the data could be resolved by implementing a more
finer data mesh-grid, infrastructure-sided tracking method within the station.
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Figure 5.1: Unfiltered Fused Realised Data - Even Running Side for the entire month of September 2017
(# train runs: 1046, stations marked in legend)

After the fusion, a filtering of the train runs was required as can be seen in Figure 5.1 with
some visibly disrupted station approaches between 18 000 and 22 000 m and around 29
000 m. The 'V-Box’ filtering was implemented as a simpler approach for filtering out

the train runs who had a hindered station approach, as well as to filter out the invalid
train runs of which the data failed to align at the designated stations, either station ’s
Hertogenbosch (Ht) or Geldermalsen (Gdm) for the shorter runs at night, or register
correctly (e.g. interrupted train runs with partial records). The results of the V-box’
filtering (Section 4.3.2) applied, can be seen in Figure 5.2 at the aforementioned distance
markers, which has cleaned up the dataset while still maintaining a large enough count of
train runs for any statistical significance.
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The plots for Train Serie 6900 Even Running Side
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Figure 5.2: Filtered Fused Realised Data - Even Running Side for the entire month of September 2017
(# train runs: 645, stations marked in legend)

Deceleration Reconstruction Model

As for the coding of the DR model and the minimisation problem: for each of the braking
variants, a different function was written to house the calculation of the deceleration
curves and the sum of absolute errors. This was because the braking regime would take
different variables to express the braking rates and as such used a f-vector tailored for
that specific variant. These braking variants also used a tailored differential equation, as
expressed in Equation (4.3).

This was done to provide a consistent behaviour of the braking regime and verifiable
markers to the braking regime in space-time and velocity, while eliminating an extra
element in the f-vector for the optimisation algorithm to account for. For the piece-wise
functions, a linear function was used to define the brake application and release, as seen
in Section 4.4.3, for the same consistent behaviour and verifiability as the second order
polynomials.

Optimisation Algorithm

The optimisation algorithm used to solve the minimisation problem of the DR model, as de-
fined in Section 4.4.6. The population pool size of vectors was set to 32 vectors. The par-
ent/mating pool size was set to 8 vectors, while the offspring pool size was set to 16 vec-
tors. Due to more offspring than parents, 1 parent would have 2 mates to provide both off
springs (i.e. Parent 1 would breed with Parent 2 and 3, Parent 2 would breed with Parent

3 and 4, etc.). This was done to eliminate identical crossovers and to provide more diverse
crossovers rather than an opposite cross-over combination compared to the first offspring.
To further randomise the crossover process, a random number was drawn from a uniform
distribution between O and 1 per vector variable for each offspring and a 50% chance was
given to each parent to pass on their value of said vector variable. A similar randomness
was present in the mutation phase of the pool of offspring vectors to determine if a vector
variable should or should not mutate. To help converge the fittest selection, a mutation
range restriction is added that will linearly narrow to a specified lower bound as the gen-
eration count progresses towards the limit of the number of generations allowed, defined as
(1 - (restriction factor * (generation count / total number of generations))).

After the crossover and mutation, both the parent vectors and the offspring vectors were
pooled together and resupplied with randomised vectors to keep a population size of 32
vectors. The solution evolution was given two stopping criteria, which was a limit on the
number of population generations (40 generations) and a stop when the fittest vector was
good enough (sum of absolute error less than 10% of the deceleration distance). This was
keep a check on the optimisation time and reduces the time spent on unnecessary genera-
tions if a suitable vector is found early on.
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This GA variant is dubbed ’Elitism with Randomised Population Migration and Diminishing
Mutation’ Genetic Algorithm. In the table below is an overview given of the details of the
settings used in the optimisation algorithm and the boundaries given for the vector vari-
ables and mutations used in solving the minimisation problem.

Table 5.1: Overview Algorithm Details and Minimisation Problem Bounds

Name | Value Name | Bounds [Lower, Upper] mg\tﬁgsnuig:gds
Populastiigg 32 1 (N) | [2154.15, 2632.85] [-10.0, 10.0]
Parent Z?Z%' 8 r (Ns/m) | [77.04, 77.04] [0.0, 0.0]
F?of;slpsriizg 16 r, (Ns?/m?) | [12.8304, 15.6816] [-1.0, 1.0]
Genegijonfl 40 S; (m) | [100, inf] [-100.0, 100.0]
ReSt;iggt?; 0.75 Av; (m/s) | [2.5, inf] [-20.0, 20.0]
ThMrl;tSa;gg 0.75 At; (s) | [5.0, 200.0] [-20.0, 20.0]
Thztsf;%slg 0.1 tswicen (5) | [1.0, 200.0] [-10.0,10.0]

| | by, kb; (m/s?) | [0.05, 2.0] [-1.0, 1.0]

Nominal Coefficient Values

To use as a reference vector in the DR model and as a reference for the performance indi-
cators, the minimum running time profile and the UZI-profile based on the recovery time’-
supplemented and rounded running time, were used and these were based on the nomi-
nal values of the slowest train combination used on this service line (Series 6900). How-
ever, when comparing the different configurations of SLT rolling stock, it was observed that
the performance of the variants were close to identical. Therefore the more common con-
figuration, the SLT-10, was selected and its nominal values were used. These values were
provided by TU Delft, but generated by Lloyd’s Register or now known as Ricardo Rail. For
the traction components, the cO was provided as 297000 N. The other traction components
cl and c2 were not provided but c1 was set to zero as this was tested by BeSinovic et al.
(2013a,b,c) and c2 was derived from the traction curves and tables provided with the nom-
inal dataset and observing the critical velocity at 10 m/s and therefore deriving the c2 com-
ponent as 10 * 297000 Nm/s. The nominal vehicle resistance coefficients r0, rl, r2 were
provided as resp. 2393.5 N, 77.04 Ns/m and 14.256 Ns?/m?. The nominal braking rate was
provided as 0.8 m/s?. The rolling stock configuration’s mass and length were provided to
be 343400 kg and 169.9 m. The mass used for the rolling stock configuration included a
normal loading (i.e. assumed equally distributed) and a rolling mass factor (i.e. compensat-
ing for kinetic energy lost in rotational forces).

The recovery-time supplement used was set to 5 % of the minimum running time between
stations and rounded to the nearest minute. Extra time supplements were added to the
stations of 18 seconds, with the exception of station Gdm and Ut getting 60 seconds sup-
plemented to their scheduled running time, as they are considered large stations with a
priority on punctuality. Further variables given a value for a reference vector in the DR
model, are the sub-regime lengths S;, Desired Velocity Reduction Av, Braking Regime Du-
ration At, Piece-wise Function Switch Moment tg,,;¢cn and non-uniform maximum braking
rate k;,, respectively 200.0 m, 10.0 m/s, 40.0 s, 20.0 s and 0.8 m/s?.
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5.1.2. Model Performance

When developing the model and analysis code in Python, some performance testing was
required as the full range of stations, deceleration regime profiles and braking variants
took a long time to complete the analysis of a single train run over the case study corri-
dor. The same test run was used for the performance testing and code profiling, imple-
menting the cProfile library, native to Python. The analysis of the test run took approxi-
mately 7500, 1700, 1600 seconds to complete the single run with the full range of stations,
deceleration regime profiles and braking variants. The first result was deemed indicative

to the state of the system rather than the coding, but the latter two results seemed con-
sistent even after rerunning the performance test per system. The 1600-1700 seconds or
26.667-28.333 minutes per train run leads to an unfeasible analysis duration if all the
train runs for the entire year of 2017 are considered. Granted, the DR Analysis code is a
single-processed(one work unit/thread or sequential) programming code, but this was due
to the application of multiprocessing at a higher level in which the different train runs over
the case study corridor were analysed in parallel of each other.

Selection Train Stations

Even when leveraging the multiprocessing library in Python, a decision had to be made

to narrow the selection of train runs, stations, deceleration profiles and braking variants

to test for this part of the research for the sake of time management. The selection of the
train runs was decided upon through the availability of the data, quality of the data, the
number of train runs and seasonality conditions. The selection of train runs settled on

all the train runs in the Even (’s Hertogenbosch to Utrecht Centraal) direction for the last
week of March (24-03-2017 til 30-03-2017) and the second week of September (06-09-2017
til 10-09-2017). This was done to allow for seasonality and different weather conditions to
be considered, with the warm and dry weather conditions in the selected week of March
and the wet weather conditions in September, while keeping a large enough dataset to hold
a statistical significance.

In regards to the selection of stations, deceleration regime profiles and brake variants, the
selection was made to further reduce the analysis time per train run. The stations selected
were the long distanced open-track station Zaltbommel (Zbm), the large station with a
speed-restricted switch area Geldermalsen (Gdm) and the short distanced open-track
station Houten (Htn) in order to test the deceleration behaviour in different situations. The
selection of deceleration regime profiles was done for each station individually and by
observing the realised data for the several months, a selection of likely profiles was made.
The deceleration regime profiles selected are, for Zbm the single braking regime profiles
('Br’ and ’Co-Br’), for Gdm the dual and triple braking regime profiles (from 'Br-Co-Br’ til
’Co-Br-Cr-Br-Cr-Br’) and for Htn the single and dual braking regime profiles (from 'Br’ til
‘Co-Br-Cr-Br’) in the DR analysis. For the brake variants, originally the dual and triple step
piece-wise functions would have had sub-versions tested with different braking application
and release, other than a linear increase or decrease of the braking coefficient. However,
due to the minor differences compared to a linear application and release, the decision
was made to reduce both dual step and triple step brake variants to just one of their
sub-versions. This reduced the total number of brake variants from 11 to 5 variants,
keeping the constant coefficient, second order polynomial velocity-dependent and
time-dependent.

Error Quality

Besides calculation speed being a modelling performance measure, the accuracy of the so-
lutions and number of generations required to do so is an important aspect. As mentioned
previously, the GA optimisation has two stopping criteria, one being the fitness threshold
and the other being the number of generations in an optimisation attempt. The fitness
threshold was set to 0.1 or 10% of deceleration distance, as this would result in a solu-
tion fitness with an normalised sum of absolute errors (norm. SAE) of 0.1 m/s or lower. A
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lower normalised SAE was deemed unnecessary for this research to be able to identify the
realised deceleration behaviour and would start to fall in the realm of the GPS’s margin of
error. A ratio was used instead an absolute threshold as each deceleration run at differ-
ent stations would yield significantly different SAE’s and therefore an absolute threshold
would yield different levels of accuracy for each deceleration reconstruction. The noisiness
and data point density of the realised location tracking data and the randomness of the GA
optimisation meant that this threshold often was not the stopping criteria of the GA opti-
misation. The main stopping criteria was the number of permitted generations, which was
set to 40 generations. This stopping criteria was fine tuned from performance testing with
the pilot data test run, striking the balance between calculation speed and solution fitness.
The fitness convergence for this GA optimisation and minimisation problem meant that 40
generations were required to consistently get a solution fitness with a norm. SAE of under
1.0 m/s. Anything less than 40 would lead the solution fitness to be more dependent on
the GA’s randomness and a relatively minor gain in calculation speed. To further improve
on the solution fitness consistently found after 40 generations, the number of permitted
generations would have to increase significantly, causing the calculation time to increase
to a duration unsuitable for this research. After 40 generations of a population pool of 32
vectors, up to 968 vectors are tested. If more parallel processing power would be avail-
able, further code optimisations are made or the data usage intent would shift to a smaller
dataset, the number of permitted generations could be increased accordingly to provide the
GA optimisation a higher chance at finding the true optimal solution or at least reach a so-
lution much closer to the optimal.

In terms of the quality with regards to the best fitting curves on the realised data, plots are
made to visualise the distribution of normalised Sum of Absolute Error (Norm. SAE) for the
best fitting deceleration curves in Figure 5.3 and to visualise the differences between the
best fitting curves with two other best fitting alternatives for 5 of the 280 fitted train runs
in Figure 5.4 (others in Figures E.2 to E.6). Observing the distribution of norm. SAE for
the best fitting deceleration regimes at each station(Figure 5.3), several things become clear
about the chosen number of optimisation generations. For all the stations tested, the mean
values are below desired norm. SAE threshold of 1.0 m/s. However, when observing the
distributions, a portion of the best fitting curves is still above the 1.0 m/s threshold. This
shows that the 40 generation limit used might not have been enough, even though the ma-
jority has managed to find a optimisation solution under this threshold.

Distribution Normalised SAE for best fitted curve over realised data per station
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Figure 5.3: Histogram Normalised Sum of Absolute Error
Best fitting deceleration regime curve on the realised running data, given per station.

This could be due to the noisiness or big step in the realised data, leading to a larger er-
ror value as the optimum solution. However, considering the number of possible -vector
combination with the given vector variable bounds and the maximum number of possible
tested vectors, it is safe to assume that a part of these error values being too big is due to
the randomness of the GA optimisation. More finer stepped, less noisy realised data would
help alleviate some of the error value, but future research will need to either improve the
optimisation algorithm or extend the number of allowed generations to more than the 40
generations allowed in this research. Considering that the majority of the results are below
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the error threshold and investigating the fitting of the deceleration regimes of a handful of
train runs (see Figure 5.4b)

Deceleration Curve Fitness

Investigating the fitness of the selected deceleration regime curves relative to the two clos-
est fitting alternatives, both the (norm.) SAE and the speed profiles are highlighted to ob-
serve their fitness to the realised data and each other at each of the selected stations (Gdm,
Htn, Zbm). While the SAE seen in Figure 5.4a seem to contain a large error and wildly dif-
fer between stations, this is due to the long deceleration distance which also varies from
station to station.

Therefore to make the results comparable between stations and make the errors more
relatable, the SAE is normalised over the complete deceleration distance. With the
normalised SAE, it is apparent that the fitness of the deceleration regime curves is
assumed to be quite accurate, which is reinforced when observing the speed profiles of
these deceleration regimes fitted over the realised data, in Figure 5.4b.

Top 3 best fitting combination deceleration regime and braking variant of investigated run
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Figure 5.4: Comparison Top 3 Best Fitting Deceleration Regimes for selected train run
(a): Comparison Sum of Absolute Error (SAE) and Normalised SAE
(b): Corresponding Speed profile for top 3 fitting deceleration regimes

Elaborating on the relative fitness between the different deceleration regimes, it becomes
apparent that the braking variants have a very minor impact in altering the speed profile
curves with the current level of point density and quality of the data sampled. The biggest
impact to be found in fitting the data is the estimated deceleration regime. This is assumed
when observing the fitness value and shape of the speed profile, as for example in the run
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presented in Figure 5.4 or Figure E.3. However, even the selected deceleration regime will
show some peculiarities in the optimisation, as seen in Figure 5.4, in which the fitted curve
0 at station Gdm is estimated to be a '‘Br-Co-Br Constant Coefficient’, but shows an unex-
pected short braking regime just at the start of the deceleration regime. This second brak-
ing regime was expected, but at the other end of the deceleration regime describing the
braking behaviour from 40 to O km/h.

Peculiarities like these unexpected locations of sub-regime transitions, are most likely the
result of the randomness getting close to a local minimum early on in the optimisation gen-
erations. Allowing more optimisation generations or expanding the randomised Tmmigra-
tion’ pool-size, could have allowed for the randomness to get a more reasonable solution
that could have provided a better fit. Another approach would be to restrict the band of the
sub-regimes to search in an expected range. Restricting where the sub-regimes are allowed
to exist would increase the chance of a more sensible optimisation solution. However, it
would also restrict the possibilities of different deceleration behaviours to be analysed in
the realised deceleration approach into the same station and therefore limit the generalisa-
tion of the DR model. This will need to be further investigated in future research or tailored
to a station specifically through fine-tuning and observation of the realised data.

5.2. Results & Statistical Analysis

The results, from the DR model output and the other analyses from this research, with re-
gards to the performance indicators (i.e. realised running times, deceleration loss times,
track section occupation duration, vehicle braking rate, as described in Chapter 3) are dis-
cussed in this section and provide interesting insights to aid in answering the research
questions. In this section the results are discussed per aspect of this research, along with
an evaluation of their stochastic nature.

5.2.1. Deceleration Regime Composition & Braking Variants

While visualising the results of the DR model, some interesting observations and
conclusions can be made from investigating the overview plots of the best fitting
deceleration regime curves at the three selected stations (i.e. Gdm, Htn, Zbm). In the
overview plots, three bar plots are presented that hold the count of best fitting deceleration
regime curves per braking variants, per deceleration regime profiles and the unique
combination of both braking variants and deceleration regime profiles.

Station Geldermalsen (Gdm)

Observing in the realised location tracking data over the entire year (Figure 5.2), all of
the realised deceleration approaches towards the large, speed restricted station of
Geldermalsen (Gdm) fit within either the 2-Br’ or *3-Br’ deceleration profile family (see
Table 4.2), for which the DR model’s deceleration profile selection has accounted for.
When observing the distribution of the best fitting deceleration regime in Figure 5.5, it is
a near even split between 2-Br’ and ’3-Br’ families, with a relatively even distribution
between individual deceleration regimes, leading to believe that the different versions of
"2-Br’ or ’3-Br’ profiles (e.g. '‘Br-Cr-Br’ versus ‘Br-Co-Br’ or 'Br-Cr-Br’ vs ‘Co-Br-Cr-Br’) are
too nuanced to distinguish themselves during the fitting. It is a different matter when
observing the distribution between the best fitting braking variants, as here the ‘Constant
Coefficient’ variant has been used approx. 130 times with a tied second place for
‘Dual-Step Lin-Lin’ and 'Polynomial Velocity’ with each half of that count.
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Overview of selected deceleration regimes and braking variants for station Gdm
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Figure 5.5: Overview Best Fitting Deceleration Regimes and Braking Variants - Gdm

The final braking regime into station Gdm is at approximately 35-40 km/h, which could
lead to a too short of a braking regime distance to observe a good distinct braking
behaviour. However, the first braking regime in the case of the "2-Br’ deceleration regime
profiles is present over a larger velocity delta, which should allow the distinct braking
behaviour to manifest more clearly. This could be the reason why just over a half of all the
counts at station Gdm went to both polynomial and the dual-step variants. However, when
observing the unique combination of deceleration profile and braking variant in Figure 5.5,
4 of the top 5 most counted fitted regime profiles are held by the combinations with a
‘Constant Coefficient’ variant and a version of the 2-Br’ deceleration regime profiles.

The other combination in the top S is the 'Dual-Step Lin-Lin’ braking variant and ’3-Br’
deceleration regime profile combination and only comes in at number 4.

The conclusion can be made that for station Gdm, the majority of the deceleration profiles
adhere to the two braking regimes using a constant braking rate. The braking behaviour,
however, would require more in-depth research with finer data, as the velocity delta along
with the current mesh grid of the realised are suspected to be the reason for the inability to
fully express the nuances at those distances and data point densities.

Station Houten (Htn)

With regards to the short-distanced, open-track, small station Houten (Htn), at most two
braking regimes could be observed from the realised train runs and therefore the DR model
tested for both the ’1-Br’ and 2-Br’ deceleration regime families (see Table 4.2). However,
this could have been misidentified, due to the influence of the train describer data making
big jumps of average velocity in the speed profiles (i.e. large velocity difference over a rel-
ative short distance between relatively large track sections) of the fused location tracking
data of the realised train runs, as seen in Figure 5.2. The fitting of the "2-Br’ deceleration
regime profiles and the relatively low lower bound of the sub-regime distance (i.e. 100 m)
could have led the results of the DR modelling to skew in favour of the "2-Br’ deceleration
regime family.

However, when checking the overview plot of station Htn in Figure 5.6, the single braking
regime without preceding coast regime still has a distinct lead over the 2-Br profiles. Ob-
serving the distribution of count over the different braking variants, the ‘Dual-Step Lin-
Lin’ takes the lead with approx. 120 counts and the ’Constant Coefficient’ variant a sec-
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ond place with nearly 80 counts. The selection of analysed deceleration profiles should not
have influenced the fitting of the braking variants, or if at all it would be in favour of the
‘Constant Coefficient’ as the shorter braking regimes would have a hard time distinguish-
ing the nuances of the braking behaviour.

Overview of selected deceleration regimes and braking variants for station Htn
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Figure 5.6: Overview Best Fitting Deceleration Regimes and Braking Variants - Htn

With the combination of deceleration profile and braking variants, the 2-Br paint a clear
picture with the majority of counts for that particular deceleration profile going to the
‘Constant Coefficient’ and the 'Dual-Step Lin-Lin’ braking variants. With the single braking
regime profiles, the braking variants are more distributed in the case of ’Co-Br’ and in

case of Br’ the two leading braking variants by far are the 'Dual-Step Lin-Lin’ and the
Triple-Step Lin-Lin’. Even though the maximum velocity in the train run to Htn reaches
100 km/h, it was enough to allow for more distinction in the nuances of the braking
behaviour. The conclusion that can be drawn for station Htn is that linear braking
application and release becomes more distinct as the braking regimes span over a larger
velocity delta (Example fitted speed profile in Figure 5.4b).

Station Zaltbommel (Zbm)

Observing the fused location tracking data of the realised train runs for the long-distanced,
open-track, small station Zaltbommel (Zbm) in Figure 5.2, only the deceleration regimes
'‘Br’ and ’Co-Br’ could be identified, both of which belong to the single braking regime
family ’1-Br’ (see Table 4.2). Observing the overview of the fitted deceleration behaviour,
two third of the deceleration profile counts are for deceleration profile with coasting. This
seems logical, as Zbm is an open-track station with no speed restricted areas and is the
first station stop in this corridor run. This means it is the least likely station on which its
given running time supplement are used for delay recovery. As the train run to Zbm is
long-distanced and open-tracked, the large velocity delta in the braking regimes allow for
the nuances of the braking variants to distinguish in the DR model. The most popular
braking variant for station Zbm, with over 110 counts, is the "Polynomial Velocity’ variant.
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QOverview of selected deceleration regimes and braking variants for station Zbm
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Figure 5.7: Overview Best Fitting Deceleration Regimes and Braking Variants - Zbm

The most popular combination is the 'Polynomial Velocity - Co-Br’ combination, with a sec-
ond place for the ’Constant Coefficient - Co-Br’ combination, with respectively 90 and 50
counts to their name. The conclusion to be drawn from station Zbm is that when braking
from 130 km/h, there are two popular driving behaviours, that being on to hold onto the
convention of a constant braking rate and another in which the driver applies the braking
rate in a smoother fashion.

5.2.2. Vehicle Coefficients

Analysing the vehicle resistance coefficients for validation, a couple of observations can be
made of the validity and sensitivity of the estimated coefficients.

Distribution Estimated Variable Vehicle Resistance Coefficients
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Figure 5.8: Histogram Vehicle Resistance Coefficients - Station Gdm
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Distribution Estimated Variable Vehicle Resistance Coefficients
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Figure 5.9: Histogram Vehicle Resistance Coefficients - Station Htn
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Figure 5.10: Histogram Vehicle Resistance Coefficients - Station Zbm

While the resistance coefficients at station Gdm and Htn (Figure 5.8 and Figure 5.9 respec-
tively) show two distinct popular values near the lower bounds and the nominal value for
1y, Station Zbm (Figure 5.10) shows a more distributed range with a less profound popular
value near the nominal value. This shows that the given nominal value of 1, is quite accu-
rate and that the DR model hits the lower bounds to compensate for other parts of the de-
celeration curve not quite fitting correctly to the realised data. The distributions in all of
the stations for r, show that this coefficient is sensitive variable, which makes sense con-
sidering the coefficient’s size in relation to r, and the quadratic nature of this coefficient.
Note that the resistance coefficients calculated were not maintained over the entire length
of the corridor and were recalculated while analysing the individual deceleration regimes at
each station. Partly out of practicality of the coded analysis methodology, but also partly
due to these coefficients being affected by conditions such as axle load, wind resistance
and rail type which can differ even between stations. As the vehicle resistance coefficients
are not the main focus of this research, it was left at this. These results will need a more
elaborate investigation in following studies.



60 5. Model & Statistical Analysis

5.2.3. Braking Rate

Analysing the results of the DR model with regard to braking rates, a distinction had to be
made between the mean braking rate and the peak braking rate, as this research covers
non-uniform braking variants. As in BeSinovic et al. (2013a), a further distinction is made
between braking rate to a stop and a braking rate to a lower velocity, when multiple brak-
ing regimes were present in the fitted deceleration profile. Observing these braking rates in
Figure 5.11, the distributions of the estimated braking rates appear to adhere to a distinct
Exponentially Modified Gaussian (EMG) distribution with a shape coefficient larger than 1
is present in all of the stations braking rate histograms (Station Gdm in Figure 5.11 and
Stations Htn and Zbm in Figure H.2 and Figure H.3 respectively). The exception to that
statement is the maximum braking rate to a lower velocity at station Htn in Figure H.2.
This reinforces the assessment earlier about the "2-Br’ profiles to misidentified.

Histogram Distributions Braking Coefficient (Average and Peak) for station Gdm
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Figure 5.11: Distributions Mean and Peak Braking Rate for stop and lower velocity - Gdm. Vertical red line is the value of
the nominal braking rate at 0.8 m/s?.

These results shown in Figure 5.11 reinforce the research assumption of stochastic brak-
ing rates, as the distributions in braking rates would have been significantly more narrow
for the distribution to be considered the result of a measurement error. The differences in
the distributions between the distinction of averaged and maximum braking rates show
that manner in which the nominal braking rate is defined can matter, especially when ad-
dressing non-uniform braking behaviour. The distribution of the maximum braking rate
fitted by the DR model has a less pronounced peak near 0.2 m/s? with an overall higher
estimated braking rate of 0.645 m/s? compared to 0.509 m/s? as seen by the shift in the
line of the mean estimated braking rate. While the distributions of the maximum brak-
ing rates seem to diffused more towards the higher values, the distributions maintain very
similar distribution shapes compared to their averaged braking rate counterpart with mi-
nor changes to the shape, location and scale coefficients.

As seen in Figure 5.11, the DR model estimated several braking rates up to 2 m/s?, which
is extremely high for an operational braking rate as seen by the nominal braking rate at 0.8
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m/s?. The DR model allowed the braking rate up to 2 m/s? in order not to hinder or influ-
ence the optimisation of the deceleration regime estimation. However, this is even high for
an emergency braking rate and a more likely result of compensating for the larger velocity
differences caused by the train describer data as seen in Figure 5.4b.

Comparing to the red line of the nominal braking rate of 0.8 m/s?, Figure 5.11 shows
clearly that the majority of the realised braking rates are significantly lower in regards to
the mean braking rates estimated. This becomes apparent when observing the mean
braking rate being lower in every distinction made in Figure 5.11. This difference does
become less significant when observing the maximum braking rate estimated for station
approach. Testing non-uniform braking rates with the DR model, allowed for another
perspective in braking rate distributions and gives a possible explanation to why the
calculated braking rates appear to be significantly lower than the nominal and expected
braking rate. Even though this alleviates the severity of this disparity between the realised
and expected braking behaviour, it still doesn’t quite solve it and resulting distributions are
still assumed stochastic braking behaviour of which the majority is still significantly
conservative compared to the nominal braking rate.

5.2.4. Running Times

To answer the research question of the existence of stochastic deceleration behaviour in

a station stop, the stochastic distribution of the realised running times has to be verified.
This is again done for the three selected station Gdm, Htn and Zbm. To obtain these re-
sults, the network timetable was used instead of the DR model, as the model’s focus lies
on the deceleration part of the station-to-station train run. Of the results from the process-
ing of the network timetable, both a histogram and boxplot are presented. From the his-
tograms, the type/shape of the distribution can be estimated. The boxplots were made to
make a better distinction between the different months to test seasonality, discussed in
Section 5.3.4, and the total distribution of available train runs. Any correlation regard-

ing the deceleration behaviour and realised running times, is drawn with the help of the
comparative scatter plots, further discussed in Section 5.3.4. The boxplots also give a clear
indication as to the outliers in the dataset of results. The boxplots have the advantage of
showing the distribution of the sample set without being squashed by a larger data set, as
compared to their respective histograms. From the histograms of the three stations (Gdm
in Figure 5.12, Htn in Figure 5.13, Zbm in Figure 5.14), the distributions of the running
times compare very similarly to a normal distribution, however the slight skewness of the
bell shape would indicate a ’‘Gamma’ distribution with shape coefficient k > 1 being the
more likely fit.
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Figure 5.12: (a): Distribution Running Times - Even Running Side Gdm
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Observing the histogram for Gdm in Figure 5.12a, nearly all train runs have a running
time between the minimum running time and the scheduled running time, with the ma-
jority having a full minute to spare. On the contrary, the majority is slower than the UZI
guide-book would suggest. This can be seen more clearly in the boxplot in Figure 5.12b,
where the main body or box, representing the group between the lower and upper quar-
tiles of the dataset, just above the green line of the UZI-profile running time. Meanwhile
the whisker and cap (i.e. the vertical and horizontal line on the outer ends of the boxplot),
representing the most extreme, non outlier data point, just under 40 s of the scheduled
running time.

This behaviour is slightly different for station Htn in Figure 5.13, as the difference between
UZI-profile running time and scheduled running time is smaller and still the distribution
is shifted closer to the scheduled running time, seen in Figure 5.13a. In Figure 5.13b, the
main body of the boxplot is pressed again the scheduled running time, with the caps and
whiskers approximately over the scheduled running time. A clear cause for the relative
difference in scheduled running time, is the method of calculating the scheduled running
time. At station Gdm, the minimum running time was rounded up and further supple-
mented with 60 seconds, while Htn was rounded to the nearest 60 seconds and supple-
mented with only 18 seconds. Both rounding methods had the same effect of rounding up
for these stations. However, the margin added to the running times for Gdm and Htn as a
rounding and recovery supplements, was with approximately 107 and 29 s respectively.
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Figure 5.13: (a): Distribution Running Times - Even Running Side Htn
(b): Boxplot Running Times - Even Running Side Htn

In the development of the network timetable, the minimum running times are rounded a
whole minute. However, depending on the station size, the methods of rounding are differ-
ent. For the larger stations, the minimum running time is rounded up to the whole minute.
However, for the smaller stations, these minimum running times are rounded to the near-
est whole minute. On top of this different rounding method, there is a difference in the re-
covery time supplements given between large and small stations. Large stations are gen-
erally used for the delay recovery within the corridor, getting several minutes added, while
the smaller stations will get a recovery time supplement of 18 s with a station dwell time of
42 s, due the departure times being rounded to the whole minute. This is due to the punc-
tuality priority given to the larger stations with a leaner running profile to the smaller sta-
tions, in order to provide a significant recovery time buffer to adequately address any de-
lays at large, important nodes within network.

The effects of the different rounding methods are more clearly seen in the comparison
between minimum and scheduled running times for station Zbm. In here the minimum
running time of 427.2 s was rounded down and supplemented with 18 s to provide a
scheduled running time of 438 s. This leads to the peculiarity of the UZI-profile taking
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significantly longer than the scheduled running time, as it underestimates the operational
behaviour required to run the distance between stations within the scheduled running
time. Furthermore, this skews the on-timeness of the train runs with the majority being
20-60 seconds late. This is masked with the 42 seconds dwell time at station Zbm, but this
rounding down of the running times forces all trains to either or both run lean in their
running times and dwell times or having to play catch-up from Zbm to Gdm. However,
despite this leanness in the running times, the driving behaviour seems more relaxed, just
from observing the distribution of the realised running times, compared to that of Gdm or
Htn with a difference in upper and lower quartiles of 30-40 s at Zbm compared to the
approximately 20 and 10 s for Gdm and Htn respectively.
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Figure 5.14: (a): Distribution Running Times - Even Running Side Zbm
(b): Boxplot Running Times - Even Running Side Zbm

The conclusions to be drawn from these stations running time distributions, is that all of
the empirical distributions are likely to adhere to theoretical distributions such as a
Gamma or Exponentially Modified Gaussian (EMG) distribution with shape coefficient
greater than 1 and will try to adhere a running time between the running time defined by
the UZI method and the scheduled running time if given the sufficient time supplements.
The difference found with distributions of lean time supplemented runs, is the skew of the
distribution leaning closer to the scheduled running time while still showing a similar
spread in running times.
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5.2.5. Deceleration Loss Times

While analysing the deceleration loss times of the realised train runs, it became apparent
that calculations were needed from multiple distance points to describe and specify the ef-
fects of the deceleration behaviour on the loss times. The decision fell on three points in
the deceleration distance to portrait the realised deceleration behaviour. These points were
chosen to describe the full deceleration distance loss times, the loss times at the distance
marker where the majority of the train runs were observed starting their final deceleration
into the station, and lastly the shortest distance marker close to the head of the station
platform at roughly 400-600 m before the estimated stopping point of the vehicles.

The three distance markers chosen for each of the stations of the corridor and these mark-
ers are selected to be the beginning or head of the relevant track section, as to eliminate
the significant differences between the measured vehicle-sided location tracking data. The
station stopping point is estimated as the realised stopping point could not be accurately
measured from the infrastructure or could not be reliably measured by the vehicle-sided
tracking data. As the rolling stock composition and the driver’s ability to stop near the des-
ignated sign on the platform are considered consistent enough, it is assumed that any mis-
calculation leading from the wrongly identified stopping point would not significantly af-
fect the relative position of the data to its other data points and would only shift along its
axis in the relevant loss time plots as a single group without affecting distribution shapes
or correlative results. The track sections used as distance markers for the stations Gelder-
malsen (Gdm), Houten (Htn) and Zaltbommel (Zbm), are presented in Table 5.2.

Table 5.2: Track Section ID’s related to the distance markers used at their respective stations in describing loss times.
Distance expressed in meters to assumed stopping point at station platform.

Station | Track Section ID Head Track Section ID Track Section ID Full
Name | Platform (m) Maijority Braking (m) Deceleration (m)
Gdm | GDM$139T (821) | MTNA$692AT (5259) | MTNA$692AT (5259)
Htn \ HTN$1844CT (486) \ HTN$1865T (657) \ HTN$1864AT (1288)
Zbm | OZBM$201BT (584) | OZBM$225BT (1994) | HDL$251AT (7269)
Cl \ LEK$656T (1110) \ LEK$656T (1110) \ GDM$666AT (4410)

A fourth station Culemborg (Cl) is also represented in the table, as this station shows some
interesting results in the comparative plot of realised running times and loss times, dis-
cussed in Section 5.3.3. For completeness, the track section IDs used as distance mark-
ers for station Culemborg are mentioned along with the investigated three stations, even
though these distance markers are only used for the results in the comparative analysis in
the aforementioned section.

Observing the histogram plots for the stations Gdm, Htn and Zbm (respectively

Figure 5.15, Figure 5.16 and Figure 5.17), an Exponentially Modified Gaussian distribution
with a shape coefficient greater than 1 is present, similar to that seen earlier in the
running time distributions. All three stations, to some degree, have realised train runs
that had a lower deceleration loss time compared to the calculated minimum running

time based on the nominal vehicle coefficients. This could partly be addressed by drivers
applying a more assertive deceleration behaviour and applying a braking rate that is higher
than the nominal value of 0.8 m/s?, which is considered the expected, normal operational
braking behaviour. Even with an higher than nominal braking rate, it would only address a
portion of the presented loss times. As mentioned earlier, the stopping point of the realised
runs had to be pre-defined for a consistent and reliable reference. Therefore, it is most
likely the case of the loss times being underestimated for a most of the train runs at these
stations. However, the distribution shape is assumed to be valid for all of the distances

at all of the stations, as their relative performance to other realised runs is assumed
consistent.
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Figure 5.15: (a): Distribution Deceleration Loss Times - Even Running Side Gdm
(b): Boxplot Deceleration Loss Times - Even Running Side Gdm

When drawing the comparison between the different distances over which the loss times
are calculated, it is unsurprising to see that the closer the vehicles get to their stopping
point, the smaller the standard deviation appears to be. Interestingly though, it appears

to be the case that the standard deviation also appears to decrease relative to the mean de-
celeration loss times. This would signify a more consistent performance closer to the end of
the deceleration regime than at the point at which the majority of the train runs start their
final part of their deceleration regime. Even though the loss times become more consistent
nearing the station stopping point, a visibly apparent standard deviation remains. For the
stations Gdm and Htn(Figure 5.15b and Figure 5.16b resp.), the whiskers (i.e. the most ex-
treme non-outlier) reach a loss time of 1.5 to 2 times that of the loss times calculated for
the minimum and UZI-profiled train run references. This would understandably lead to a
considerable disparity in performance between the expected deceleration behaviour and the
realised deceleration behaviour.

For station Gdm in Figure 5.15a, roughly 90% of the realised loss times are longer than the
minimum running profile, while estimated from the histograms approximately 55-60% of
the realised loss times were longer than the UZI-profiled loss time for the full deceleration
distance. Observing the boxplots in Figure 5.15b, it becomes clear that the main body of
the box is consistently describing a longer loss time than the UZI-profiled loss time for each
of the distances calculated. This means in actuality that 75% of the realised deceleration
regimes have a loss time longer than expected with the UZI-profile, with 50% up to 10-15 s
slower.
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Bins Loss Times side Even - station Htn
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Figure 5.16: (a): Distribution Deceleration Loss Times - Even Running Side Htn
(b): Boxplot Deceleration Loss Times - Even Running Side Htn
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In station Htn, the standard deviation is smaller in comparison to station Gdm and also
shows the same behavioural consistency increasing the closer the realised runs got to their
station stopping point. However, due to the leaner running time supplements (the previ-
ously mentioned 29 s over Gdm'’s 107 s), a more assertive UZI-profile is derived that allows
for less differentiation in the expected driving behaviour. This skews the deceleration loss
times at station Htn to be longer relative to the UZI-profile expected loss time.

However, when observing the calculated running times for the UZI-profile and the
estimated scheduled time for stations Gdm and Htn (Figure 5.12, Figure 5.13), the majority
of the realised running times falls between these two calculated times. Therefore, a fair
assumption could be made for both stations that the large majority of the deceleration
behaviour, and with that the deceleration loss times, will fall between the expected loss
times of the UZI-profile and the remainder of the scheduled running time. Even though
this means that the effects on arrival punctuality are limited, it also means that more

time is lost on the deceleration regime than expected and that more time is spent
occupying possibly critical track sections on a station approach, negatively impacting the
infrastructure occupation.



5.2. Results & Statistical Analysis 67

Bins Loss Times side Even - station Zbm
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Figure 5.17: (a): Distribution Deceleration Loss Times - Even Running Side Zbm
(b): Boxplot Deceleration Loss Times - Even Running Side Zbm

With station Zbm, however, the underestimated operational behaviour preceding to the ar-
rival at this station leads to an exceedingly high deceleration loss time over the entire de-
celeration regime. This is most likely due to the underestimation of the resulting coast-
ing time/distance or an overestimation of the given time supplements within the sched-
uled running time. As Figure 5.17 shows, the realised loss times are mostly distributed
just above the calculated loss time related to a minimum running time profile. However,
as the similar shaped distributions between running times and loss times show some cor-
relation (further discussed in Section 5.3.3), it is assumed that a similar correlation can
be made for the expected deceleration loss time based on the scheduled running time. As
such and unlike with stations Gdm and Htn, the deceleration loss times from the realised
runs will be longer than the expected, scheduled deceleration loss times. This would indi-
cate a trade-off between punctuality and a more conservative deceleration behaviour in the
approach to station Zbm, rather than between energy efficiency and punctuality.

In regards to the loss time distribution of station Zbm, the aforementioned peculiarity of a
lower realised deceleration loss time relative to the calculated loss time from a minimum
running profile, is clearest seen here. This could partly be due to the more assertive brak-
ing rates applied due to the lean supplemented running times. However that would contra-
dict the more conservative braking rates estimated from the DR model seen in Figure H.3
and the significant coasting distances seen in Figure 5.1. Therefore the most likely reason
for the lower deceleration loss times would be the incorrectly estimated stopping point at
the station platform.

The conclusion to be drawn from the distribution of realised deceleration loss times, is that
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the deceleration loss times are not (strongly) correlated to the available time a driver might
have left in their scheduled running times as the case of a lean supplemented running pro-
file (seen approaching station Zbm) seems to show a trade-off between service punctuality
and chosen deceleration behaviour.

5.2.6. Track Occupation

While calculating the track occupation duration for each track section of the given infras-
tructure data, the focused track sections as presented in this research, were the track sec-
tions just before the station platforms at critical points where the difference in track oc-
cupation duration could influence infrastructure occupation with their deceleration be-
haviour. This means the track sections in which a track switch is present for train over-
taking or utilising other platforms with a shared track switch. This meant for station Gdm,
Htn and Zbm the highlighting of the track sections GDM$129T (Figure 5.18), HTN$1844CT
(Figure 5.19) and OZBM$201BT (Figure 5.20) respectively.
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Figure 5.18: (a): Distribution Track Section Occupation Duration - Even Running Side Gdm - Section GDM$129T
(b): Boxplot Track Section Occupation Duration - Even Running Side Gdm - Section GDM$129T

The first finding, while observing the three track sections, is the distribution shape and
relative deviation significantly similar to the realised running times and realised deceler-
ation loss times. This would reinforce the assumption of there being a strong correlation
between the deceleration behaviour and the realised running times between stations. due
to the strong similarities with the realised running times, deceleration loss times and the
correlations made regarding seasonality, the assumption is made that this will be true for
the correlations made regarding the deceleration behaviour and track section performance.
The comparative analysis of the impact, that the deceleration behaviour has on track sec-
tion occupation duration, will thereby be indirectly discussed in Section 5.3.4 through the
comparative analysis of the realised running times and deceleration loss times.

At station Gdm (Figure 5.18), the majority of the track occupation duration falls between
20 and 40 s while the calculated track occupation was roughly 13 s. A part of the differ-
ence could be addressed with a disparity between the actual switching time of this track
section and the assumed negligible switching time. However this would only off-set the
calculated reference point. More likely, the disparity between the realised track occupa-
tion duration and the calculated one, would be a lower velocity through this track section
due a more conservative station approach. This would likely be due to the numerous track
switches near the station. Another possibility could be the fact that the platform of station
Gdm is divided into an ’A’ and a 'B’ side, which would essentially reduce designated stop-
ping platform (approx. 200m compared to Htn approx. 250 m). Lastly, the differences to
their respective references could be due to the proximity of the platform’s stopping point to
the track section’s signal. Both these platform differences could effectively reduce the mar-
gin of allowed error around the stopping point for Gdm, compared to stations like Htn and
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Cl. To confirm this assessment, further investigation to the relation between deceleration
approach and the differences between station platform is required.
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Figure 5.19: (a): Distribution Track Section Occupation Duration - Even Running Side Htn - Section HTN$1844CT
(b): Boxplot Track Section Occupation Duration - Even Running Side Htn - Section HTN$1844CT

Observing the results for station Htn and Zbm, a significant portion of the realised distri-
butions registers a shorter track occupation duration than the calculated track occupation
for the minimum running time profile. The skew of the distribution could be due to having
fewer track switches to navigate and open-track design, allowing for higher entry veloci-
ties and more assertive braking behaviour. However, the estimated braking rates for these
station, derived from the DR model, are significantly more conservative than the nomi-

nal braking rate value for it to explain the results in Figure 5.19 or Figure 5.20. The more
likely reason for the realised results would be a different configuration of rolling stock com-
bination, more specifically the rolling stock’s total length. In case of a single rolling stock
configuration, such as an SLT-4 or SLT-6, compared to the assumed common rolling stock
configuration SLT-10 (i.e. SLT-4 + SLT-6), this could (nearly) half the train length. Assum-
ing similar velocities through the track sections, it would have a similar effect on the track
occupation duration. This could explain the relative difference to the reference track occu-
pation duration. However, this would still not explain the bottom outliers of approx. 10-11
s occupation duration. With the shortest configuration SLT possible (SLT-4) at 70 m and
the length of HTN$1844CT being 240 m, it would still translate to an average velocity of 90-
120 km/h, which is high for this track section and for the distance to the station’s stopping
point, as the realised train runs plotted in Figure 5.2 show an average velocity of 60-80
km/h. This peculiarity would require further investigation.
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Figure 5.20: (a): Distribution Track Section Occupation Duration - Even Running Side Zbm - Section 0ZBM$201BT
(b): Boxplot Track Section Occupation Duration - Even Running Side Zbm - Section OZBM$201BT
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5.3. Comparative Analysis

For the comparative analysis, comparisons were drawn between aspects of realised data
(i.e. departure delay, running time and deceleration loss time) and hypotheses on
seasonality and deceleration behaviour were tested. These are discussed below and
visualised through scatter plots, which in case of seasonality and deceleration behaviour
(Section 5.3.4) makes use of colours to distinguish different groups.

5.3.1. Departure Delay vs Running Times

The comparison between the departure delay and the realised running times was made by
calculating the realised running times from the realised departure and arrival times be-
tween stations and by calculating the delay (in s) from the difference in expected and re-
alised departure times. Both the expected and the realised station (i.e. departure and ar-
rival) times were extracted from the network timetable. The departure delay and the re-
alised running times are presented in Figures 5.21 to 5.23, showing the departure delay
with the corresponding realised running time in a scatter plot.

Comparative Scatter plot of Side Even - Station Gdm
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Figure 5.21: Scatter Plot Comparative Analysis Departure Delay vs Realised Running Times - Gdm

When observing the scatter plots for the three stations, no simple or straightforward cor-
relation can initially be drawn. The centre of mass for the scattered data points, which ap-
pear to cover the majority of the data points, seems to be located on the delayed side of the
train run realisation within the first 60-120 s. Each of the three station differ slightly in de-
lay around which the points are massed. This could be explained with the dwell times on
the previous stations and their ability to absorb any delays. For instance in Figure 5.23,
the mass seems to be located between O and 60 s of departure delay, while Figure 5.21
shows a wider range of departure delays the realised train runs mass around. This partic-
ular difference can easily be explained due to the scheduled running times between Ht and
Zbm causing the UZI-method to underestimate the required performance for this run. This
in turn causes a significant distribution of realised running times between station Zbm and
Gdm. However, this would only cover a 140 s of the departure delay at station Gdm, when
observing the range of the majority of the running time distribution to station Zbm (Fig-
ure 5.26). The departure delay for the train run between station Zbm and Gdm appears to
be a compounded delay, combining the previous departure delay with the previous run-
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ning time distribution with only partial delay recovery within the realised running time.
This could be the consequence of a lean scheduled running time, but would require further
investigation.

There does not seem to be any direct interaction between the departure delay and the re-
alised running times. The possible correlation to be observed, would be the formation of an
upper and a lower bounds, which narrow towards a specific running time with an increas-
ing departure delay. The upper bound would appear to follow a exponential curve with a
form of ¢ * x~1, while the lower bound follows a linear or near linear curve with a very shal-
low sloping. While the shapes of these boundaries are open for interpretation, the consis-
tency of the realised running times and thereby the consistency of the driver’s behaviour
seems to improve with the increasing departure delay. Interestingly, the consistency of the
driving behaviour does not seem to approach or converge to the minimum running times,
but to a running time that is more conservative. For station Gdm in Figure 5.21, these
bounds seem to approach the running time of 333 s, which roughly coincides with the ex-
pected running time calculated based on the UZI-method.

Comparative Scatter plot of Side Even - Station Htn
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Figure 5.22: Scatter Plot Comparative Analysis Departure Delay vs Realised Running Times - Htn

For station Htn in Figure 5.22 the differences in running times are smaller, making it
harder to estimate a possible convergence point in the realised running time. However, it
seems the upper and lower bounds converge to a running time of 120-135 s This assumes
that the operational behaviour towards station Htn has been fairly consistent and shows
little dependency on the departure delay with a low convergence rate. The situation at
station Zbm shows a significant spread in running times, but again a slow convergence
rate, estimated to go towards a running time between 440 and 500 s. The big spread in
running times show a wide variety in operational behaviour, becoming (slightly) more
consistent with the increasing departure delay compared to the 100-120 s spread seen in
the train runs with less than a minute departure delay.
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Comparative Scatter plot of Side Even - Station Zbm
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Figure 5.23: Scatter Plot Comparative Analysis Departure Delay vs Realised Running Times - Zbm

5.3.2. Departure Delay vs Deceleration Loss Times

Similar to the comparison scatter plots for the realised running times, the deceleration loss
times are compared to the departure delays. Since its a comparison with the deceleration
loss times, the three distance points are used as described in Table 5.2. Interestingly, a
similar shaped group of data points are plotted for each station at each of selected dis-
tances.

Observing the results for station Gdm in Figure 5.24, a similar curved upper bound could
be imagined, as seen in Figure 5.21. Except in this case, the curve would be more pro-
nounced at the full deceleration distance compared to one found closer to the station stop.
However when comparing the absolute size of the spread in both deceleration loss times
and realised running times, the sizes are very similar and therefore the sharpness of the
upper bound curve is just warped due to the scaling on the vertical axis.

Comparative Scatter plot of Side Even - Station Gdm
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Figure 5.24: Scatter Plot Comparative Analysis Departure Delay vs Deceleration Loss Times - Gdm

As seen in Figure 5.25 and Figure 5.26, the same observation of absolute values of the
spread can be made. Station Zbm shows the similarly large distribution spread as seen in
the realised running time (Figure 5.29) with loss times ranging from approx. 20 s up to 100
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s for the majority of the spread and with outlier loss times as high as 140 s. The closer the
loss times calculations are taken in relation to the station stop, the consistent the spread
in the calculations become with the majority of the deceleration loss times at the head of
the station platform being between 10 and 30 s. There is one exception outlier at approx.
110 s, but this is most likely a hindered train occupying the track section that has survived
the data filtering process preceding this analysis.

Comparative Scatter plot of Side Even - Station Htn
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Figure 5.25: Scatter Plot Comparative Analysis Departure Delay vs Deceleration Loss Times - Htn

For all three stations, a similar convergence of the loss times can be seen compared to the
realised running times at their respective stations. All of the loss time scatter plot conver-
gence points appear to be larger than calculated reference, leading to the further reinforce-
ment of a more conservative deceleration behaviour consistently at every point in the de-
celeration regime. The exception to these convergence points, is at station Zbm, which is
most likely another consequence of the aforementioned station stop alignment problem.
These deceleration loss time results and their convergence points lead to the assumption
that even under a time constraint the selected deceleration regime by the train operator is
still more conservative than the behaviour expected and used in the current models and
scheduling tools using nominal operational values.

Comparative Scatter plot of Side Even - Station Zbm
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Figure 5.26: Scatter Plot Comparative Analysis Departure Delay vs Deceleration Loss Times - Zbm

These results have shown that there is a convergence in deceleration loss times and with
that assumed convergence of the deceleration behaviour, which is still seen to be
performing less optimal than the scheduling tools and models were expecting. This finding
needs further analysis and could lead to either an investigation analysing the underlying
causality for the more conservative behaviour to address it, or lead to an alteration of the
scheduling tools and models to account for a more conservative deceleration behaviour.
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5.3.3. Running Times vs Deceleration Loss Times

As the scatter plots of the preceding comparative analyses (i.e. the realised running times
and deceleration loss times against the departure delays) have shown strong similarities in
the presented data, it led to the assumption of the existence of a strong correlation between
the realised running times and the respective deceleration loss times. This led to this com-
parative analysis directly comparing the running times to the deceleration loss times, in
order to understand the correlation between them. The following scatter plots show some
interesting and visually strong correlations between the two datasets.

Comparative Scatter plot of Side Even - Station Gdm
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Figure 5.27: Scatter Plot Comparative Analysis Realised Running Times vs Deceleration Loss Times - Gdm

Within these presented scatter plots, two lines are plotted to be used as reference. The
dark red line represents the upper bound at a 1-to-1 correlation between running times
and loss times in relation to the calculated minimum running time (i.e. 1 s loss time for
every 1 s running time with the origin at the calculated loss time and running time of the
minimum running time profile). The orange (lighter) line represents the expectation, being
the linear relation between the calculated minimum running time profile and the calcu-
lated UZI-profile (i.e. a straight line on which the calculated running time and loss time are
found on for both the reference profiles). The dark green line seen in the scatter plots rep-
resents the linear regression fit over the data points presented.

In Figure 5.27, a very clear correlation can be seen in the plots for the full deceleration
distance, with a near 1 to 1 correlation, which is reinforced by the slope coefficient being
0.890 for the fitted linear regression. However getting closer to the station stopping point,
this direct correlation starts to diffuse by forming a significant spread that diverges with
the increase in running time. With both the upper bound and expectation capturing the
dataset, the slope coefficient is estimated at 0.360 for the fitted linear regression. The as-
sumption is that the deceleration loss times at these distance markers only partially ac-
count for the differences in running times. The more spread grouping of the scatter plots
nearer to the station stop would indicate a significant difference in deceleration behaviour
during the final stages of the deceleration regime, leading to the measurable differences
seen in deceleration loss times. This divergence is implied by the r-squared values decreas-
ing from 0.917 to 0.486 for their respective linear regression fits.
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Comparative Scatter plot of Side Even - Station Htn
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Figure 5.28: Scatter Plot Comparative Analysis Realised Running Times vs Deceleration Loss Times - Htn

In Figure 5.28 a gradual but clear progression is visible between the different distances.
This would indicate that the cause for the difference in running times for this station can
be found spread equally over the entire deceleration regime. The linear regression confirms
the gradual change with a slope coefficient of 0.781, 0.419 and 0.298 respectively from left
to right. The spread of the scatter plots, however, appears to remain relatively consistent
between the three distances with the only difference between the three distances being the
skew of the scatter, which appears to inline with the linear relation found between the up-
per bound and expected linear relation. A slight divergence of the spread is implied when
observing the r-squared values gradually decreasing from 0.903 to 0.670 and 0.567 for
their respective linear regression fits.

For station Zbm in Figure 5.29, the correlation between realised running times and decel-
eration loss times at the full deceleration distance is not as strongly defined as with sta-
tions Gdm or Htn. Between the three distances, a similar gradual transition as seen at sta-
tion Htn can be found at station Zbm, with the slope coefficients of 0.417, 0.198 and 0.056
for the fitted linear regression. The scatter plots, however, show a more condensed point
cloud when getting closer to the station stop which would indicate a more consistent decel-
eration performance and deceleration behaviour. This change in diffusion would indicate
that a significant portion of the deceleration differences can be found in the earlier stages
of the deceleration regime.
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Comparative Scatter plot of Side Even - Station Zbm

Loss Times in relation to Loss Times in relation to Loss Times in relation to
Realised Running Times - Full Deceleration Realised Running Times - Majority Braking Realised Running Times - Head of Station Platform
140 7 140 ] 140
=120 E - =120
o ) o
W 8 b3
T 100 b o 100
£ E £
e 80 = £ 80
8 @ @
5 80 5 3 s0
H - =
£ 40 2 2
F w =
] 41 a L
= 20 = =204
e = i e~
QJO 450 480 510 540 570 600 630 660 680 720 4 0450 480 510 540 570 600 630 660 690 720 EZU 450 450 510 540 570 600 630 660 690 720
Realised Running Times {sec) Realised Running Times (sec) Realised Running Times (sec)
Upper Bound: 1-to-1 Correlation Losstimes. Upper Bound: 1-to-1 Correlation Losstimes ____ Upper Bound: 1-to-1 Correlation Losstimes
in relation to Minimum Running Profile in relation to Minimum Running Prafile in relation to Minimum Running Profile
Expectation: Linear Relation Loss Times Expectation: Linear Relation Loss Times Expectation: Linear Relation Loss Times
Minimum Profile and UZ| Prafile 7 Minimum Prefile and UZI Frofile T Minimurm Profile and UZ1 Profile
Linear Regressian Fit Realised Data - Linear Regression Fit Realised Data - Linear Regression Fit Realised Data -
—— Slope = 0,417, Intercept = -161,237, —— Slope = 0,198, Intercept = -65,856, —— Slope = 0,056, Intercept = -8.857,
R-5quared = 0.485, Standard Error = 0.008 R-5quared = 0.305, Standard Error = 0.006 R-5quared = 0.097, Standard Error = 0.003
Realised Data - Realised Data - Realised Data
Minimum Running Profile Loss Time Minimum Running Profile Loss Time Minimum Running Profile Lass Time
* @®1427.191,20.619) * @(427.191,20.6189) * @ (427.191,20.225)
UZI Running Profile Loss Time UZI Running Profile Loss Time UZI Running Profile Loss Time
* @ 1(539.836,121.666) * @ 1(539.836,55.907) *  @(539.836,24.930}

Figure 5.29: Scatter Plot Comparative Analysis Realised Running Times vs Deceleration Loss Times - Zbm

The station stopping point estimation, as previously mentioned, has led to an underesti-
mated deceleration loss time (seen in Figure 5.27 and Figure 5.29). However, corrections to
the stopping point would lead to the scatter plots only to shift up vertically, while remain-
ing their relative position to each of the other realised datapoints. Any correlations drawn
in regards to seasonality and deceleration regimes, are discussed in Section 5.3.4.
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Figure 5.30: Scatter Plot Comparative Analysis Realised Running Times vs Deceleration Loss Times - Cl

During this particular comparative analysis, the relations were plotted for all the stations
in the corridor direction 'Ht - Ut’. An interesting station worth discussing is the decelera-
tion approach to station Culemborg (Cl), which was taken out of scope due to the DR model
performance. While at a full deceleration distance the deceleration behaviour seems dif-
fused with a linear regression estimating a slope coefficient of 0.205 and a r-squared value
of 0.260, the deceleration behaviour near the station platform becomes consistent. Fur-
thermore, the skew of the point cloud becomes interestingly flat, with a slope coefficient of
0.008 for the linear regression. This would indicate that for this particular case, no depen-
dency can be found between the realised running times and the deceleration loss times.
This would indicate that for station Cl the causality for the distribution of the realised run-
ning times can be found at the start of the deceleration regime.
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5.3.4. Causality: Seasonality & Deceleration Behaviour

To find any causality to the results found and discussed in the previous sections, the sea-
sonality was tested as the weather and seasonal conditions are assumed to have the big-
ger impact on a driver’s driving behaviour and operational performance. This test of sea-
sonality is done by highlighting two distinctly different months, March and September.

To verify the findings, the monthly highlights were shifted to a month earlier, presenting
the frosty February and the auspiciously summery August. Comparing both the boxplots
and histograms, no significant difference was observed in both the loss times as the run-
ning times. Therefore it was assumed that the seasonality comparison between the months
March and September, of which a week was used in the DR model, would be the better
choice for the seasonality testing.

To be able to draw correlations between driver’s estimated deceleration regime and the re-
sulting performance, the same relation between departure delays, realised running times
and deceleration loss times are plotted. However for the following plots, only the selection
of realised train runs, of which the deceleration regimes are estimated with the DR model,
is presented. Two other highlights are made in these scatter plots, distinguishing between
the five tested braking variants and the different estimated deceleration regimes. All the
highlighted scatter plots (i.e. seasonality, braking variants, deceleration regimes) are the
same or similar to the plots of the previous sections describing the different relations, with
the exception of the added colouring to identify the different groups and the train run se-
lection in regards to the braking variant and deceleration regime highlight.
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Figure 5.31: Scatter Plot Comparative Analysis Departure Delay vs Realised Running Times - Seasonality Highlight -
Zbm

Observing the seasonality for station Zbm in Figure 5.31, no distinct groupings can be
found between the different months highlighted, which reinforces the findings regarding
the similarity in the histograms and boxplots, shown in Figure 5.14. This lack of grouping
is not limited to station Zbm, as it can also be seen in the scatter plots for station Gdm
(Figure L.4) and station Htn (Figure L.8).
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Comparative Scatter plot of Side Even - Station Zbm
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Figure 5.32: Scatter Plot Comparative Analysis Departure Delay vs Realised Running Times - Brake Variant Highlight -
Zbm

The scatterplots for highlighting the braking variants (Figure 5.32) and the deceleration
regimes (Figure 5.33) differ on the selected group of datapoints to match the train runs
used in the DR model analysis. No clear groupings are seen in either of the highlighted
scatter plots, relating either to the running time or departure delay. This leads to the con-
clusion that there is no correlation between the different braking variants or deceleration
regimes and the realised running times. This conclusion can be extended on stations Gdm
and Htn, as they show similar results in Figures L.5, L.6, L.9 and L.10.

Comparative Scatter plot of Side Even - Station Zbm

720
700
680
660

200 400 600 800
Departure Delay Previous Station (sec)
—— Minimum Running Profile - Running Time @ 427.191
—— UZI Running Profile - Running Time @ 539.836
Scheduled - Running Time @ 438.000
Realised Data - Co-Br
Realised Data - Br

Figure 5.33: Scatter Plot Comparative Analysis Departure Delay vs Realised Running Times - Deceleration Regime
Highlight- Zbm



5.3. Comparative Analysis

79

Comparative Scatter plot of Side Even - Station Zbm
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Figure 5.34: Scatter Plot Comparative Analysis Departure Delay vs Deceleration Loss Times - Seasonality Highlight -

Zbm

Expanding the same highlighting to the scatter plot relations departure delay versus de-
celeration loss times and running times versus deceleration loss times can be seen in Fig-
ures 5.34 and 5.35 for seasonality (for all three highlights and all three stations, see Fig-
ure L.18 till Figure L.42), which show a similar lack of correlation to the tested differentia-
tion by the highlights. This further reinforces the conclusion of no correlations to be drawn
in the tested relations for the tested highlights.
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5.4. Conclusion Analysis Results & DR Model Validation

The DR model is heavy on resources which results in a long computation time. This could
have also provided more logical and accurate results with some boundary tweaks, finer
data quality or denser data point density. The current results however, are promising from
an accuracy standpoint, but also from a model generalisation standpoint by dynamically
defining the deceleration regimes and sub-regime lengths.

Analysis regarding non-uniform braking behaviour is promising as the DR model identi-
fies a significant number of best fitting profiles to non-uniform variants, making them a
very plausible alternative to the constant braking rate. However, this would require more
consistent, more frequent and higher quality data, would require a more detailed research
into the topic of non-uniformity and might require different data sources. More frequent
time/distance sampling along with higher consistency for the current data sources would
improve the solutions and would provide a better insight to the applied deceleration regime
and brake variant.

The empirical distributions have shown clear stochastic behaviour with regards to realised
running times, deceleration loss times and track section occupation duration. All are es-
timated to adhere to the Exponentially Modified Gaussian (EMG) distribution family with

a shape coefficient of at least greater than 1. This provides empirical evidence to the exis-
tence of stochastic deceleration behaviour and the resulting impact on infrastructure occu-
pation.

Comparative analysis has shown performance convergence in running time and loss time
with increasing departure delay. It has visualised and quantified the correlation between
the running times and the loss times, which show a strong linear correlation. Lastly, it has
shown no direct correlation in performance between estimated driver behaviour or season-
ality, with regards to running times, loss times and track occupation.



Conclusion & Recommendations

After applying the knowledge gained from the literature review in Chapter 2, testing the
analysis methodology described in Chapter 4 and generating the results seen in Chapter 5,
according to the performance indicators described in Chapter 3, this research is concluded
with answers to the research questions, an assessment regarding the limitations of the re-
search and a list of recommendations regarding usage of research and further research.
The conclusion is structured around answering the research questions along with provid-
ing some short summarised general findings and closes with a verification on the achieve-
ment of the research objectives. The conclusion is followed by addressing the assumptions
and weaknesses of this research. In closing, recommendations are presented to what could
improve this research and could be investigated in future researches.

6.1. Conclusions

The research questions were developed to guide the focus of the research. To guide the
conclusion of this research, answers will be provided to these questions. Leading in to the
answers for each of the questions, a short summary of the methods and findings regarding
the question are presented.

6.1.1. Research Main Question

To answer the main question, the stochastic behaviour between stations in terms of
realised running times had to be verified. These results were obtained from the network
timetable with both scheduled and realised times for station departures and arrivals. The
verification of the stochasticity in realised running times bridged into the validation of the
stochastic nature within deceleration performance indicators, known as deceleration loss
times. The deceleration loss times were calculated from the track occupation times and
realised arrival times at the stations, obtained from the train describer system TROTS and
the network timetable respectively.

To estimate the applied deceleration behaviour from realised location tracking data, a de-
celeration reconstruction model (described in Section 4.4) was developed to extract the es-
timated behavioural coefficients best suited to the data and to test assumption that even
the braking application would differ between drivers, as described in Section 4.4.3. With
these coefficients extracted, details of the deceleration behaviour could be tested for their
stochastic nature.
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How does the stochastic behaviour, observed in the deceleration approach of a planned
station stop, impact the infrastructure occupation in the network corridor between stations?

This research has empirically shown that there is indeed measurably significant stochas-
tic behaviour, ranging from the realised running times and deceleration loss times to the
estimated braking rates and the applied deceleration regimes to the impact the realised be-
haviour has had on track section occupation duration. It has shown to have a strong and
linear correlation between the known spread of realised running times and the deceleration
loss times, which in turn relates to the realised track section occupation duration.

Distributions for each of the performance indicators adhere very similarly to a distinct dis-
tribution shape, that being either the shape of a Gamma-distribution or the shape of a Ex-
ponentially modified Gaussian (EMG)-distribution with their respective shape coefficients
of at least greater than 1, as seen in the example plot of Figure 6.1. The distributions were
in this research only fitted to the EMG-distribution family as they appeared to fit slightly
better at a more consistent rate than the Gamma-distribution family. The shape, scale
and location coefficients were strongly dependant of the sample size and binning range of
the datasets and are therefore left as a detail in their respective plots. All of the distribu-
tions, however, have at least a skewed Normal distributed appearance and will be between
a Gaussian/Normal-distribution and an Exponential-distribution, hence the selection and
fitting of the EMG-distribution.
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Figure 6.1: Distribution of track section occupation duration at track section GDM$129T

With regards to the impact of this stochastic deceleration behaviour on track section oc-
cupation, the occupation duration distributions as seen in Section 5.2.6 and in Figure 6.1
show both the histograms as well as the box plots of their realised distributions. Both dis-
tribution plotting types show that the majority of the realised train runs operated close to
the expected track section occupation duration, but also show that some of the occupa-
tion durations lasted nearly double that of the expected duration in the particular section.
In absolute terms the distribution spread differs at most 20 s, however in relation to the
expected, this translates effectively to doubling the occupation duration and halving the
potential infrastructure occupation. The exception of the track sections highlighted was
the track section GDM$129T (Figure 6.1) just before station Geldermalsen, as it performed
worse and clearly underestimated required occupation duration by about 50 to 100 %.
This could have been caused by the realised running speeds being lower through the sta-
tion switching area than the speed limit allows over this area of the track.
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6.1.2. Research Sub Questions

The research sub-questions were made to break down the main question into simpler more
specific questions, in support of answering the main question. Each of the sub-questions
are given slight summarised but more specific findings regarding the used methods and
results related to the sub-question before providing an answer.

What vehicle parameters are required to fully describe the behaviour in a deceleration
approach of a planned stop?

To fully describe the deceleration behaviour of a realised train run, one would need to as-
certain the applied deceleration regime and break the deceleration behaviour into sub-
regimes defining different operational states (i.e. coasting, cruising, braking). These sub-
regimes are subject to the differential equation, discussed in Section 4.4. As assumptions
were made with regards to the non-uniform braking behaviour, this differential equation
was expanded to become the equations specific to the braking variants, discussed in Sec-
tion 4.4.3.

These differential equations require the vehicle’s resistance coefficients, mass, velocity and
applied brake rate. The velocity and details of the applied braking rate are obtained from
realised location tracking data and estimated through the optimisation of the deceleration
reconstruction model over said realised location tracking data respectively. The vehicle’s
resistance coefficients and mass are obtained from the table of nominal values, which was
derived from the vehicle type’s performance tests. The vehicle resistance coefficients were
defined by the Davis Equation (example equation seen in Section 3.2) of which the con-
stant vehicle resistance 1, and quadratic resistance r, were given a margin of 10% to allow
for some compensation of external influences, while the linear resistance coefficient r; has
set to a constant as previous research (BeSinovi¢ et al., 2013a,b,c) stated this variable to be
stable enough to be considered as one.

This leads, for B-vectors (i.e. a list or sequence of variable parameters describing the vehi-
cle’s behaviour within the DR model) required for the optimisation model, to be formed ac-
cording to the tested deceleration regime and braking variant, which is shown for the brak-
ing variant ‘Constant Coefficient’ in Table 4.2 with the respective boundaries for the optimi-
sation given in Table 5.1. Therefore the parameters required to fully describe the deceler-
ation behaviour, besides the vehicle parameters 1y, 17, 15, braking rate, vehicle velocity and
mass, are the ones describing the deceleration regime and subsequently its sub-regimes.
The sub-regimes are described by braking variant, sub-regime length S;, sub-regime dura-
tion At; and velocity difference Av;.

How would the collection and processing of the required data for the behaviour analysis be
defined?

The analysis methodology, described in Chapter 4, provides the process structure used to
turn the required data into the desired information. This chapter also states the data re-

quired for the analysis. The data sources can be grouped as ’Location tracking Data’, 'In-
frastructure Data’ and ‘Nominal Vehicle Characteristics’.

The required location tracking data for this research consists firstly of the rolling stock’s
GPS tracking data which was pre-processed with the corresponding train numbers,
timetable points and signalling data (i.e. passage time and signal state) into the enriched
dataset, known by the Dutch IM ProRail and TOC NS as, MTPS data. Secondly the
infrastructure-sided vehicle tracking was done through the Dutch IM’s train describer data
system TROTS, which logs when a train ID is registered to occupy or release a track section
on the Dutch infrastructure network. These logs provide a less dense dataset with the
usually longer distances between datapoints, but have the advantage of the location and
time of a vehicle to be more accurately defined and are not dependant on a fickle wireless
connection. Lastly, the network timetable was procured from the Dutch TOC NS and it
provided both the scheduled and realised times for station departure, station arrival and
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drive-through timetabling points.

The required infrastructure data was obtained from the Dutch IM’s GIS system InfraAtlas,
which stores the location of every switch, signal, timetabling point and track section weld
in terms of distances to the starting point of each train path in the system. Along this
dataset, a table of GPS coordinates for each train signal in the network and a table for
translating the track section IDs from InfraAtlas to TROTS were provided. These two tables
were built by the data analysis department at the Dutch IM ProRail.

The nominal vehicle characteristics grouped the nominal parameters describing the vehicle
resistances, mass(i.e. both static and rotational mass) and operational characteristics (i.e.
traction force and braking rate). These were obtained from TU Delft and were derived from
independent testing done by Ricardo Rail. These values are used by scheduling tools as
expected performance to determine the feasibility of a newly developed network timetable.
For this research it was used to determine the expected performance and used as a refer-
ence to the realised train run data. It also functions as an extra starting point for the opti-
misation algorithm.

The development of the data fusion from different data sources, is done to improve on the
quality of the data sets supplied to the DR model, both in robustness and data point detail
level and to create a finer mesh-grid of data points. The pre-processing of the data is de-
scribed in Section 4.3. The pre-processing of the location tracking data covered processes,
such as data formatting, creation of derivable data, data alignment, data fusion and fil-
tering. As this data driven analysis uses several data sources, data had to be formatted
accordingly to conform to the chosen data structure as to aid simplify further processing
steps and the analysis (i.e. date-time structures, decimals, file structure). The creation of
derivable data was to correct or fill in missing data points, such as average velocity in the
train describer data, relative distances between the rolling stock’s GPS points and the aver-
age velocities between the GPS data points.

The data alignment is done firstly through the use of a common GPS coordinate anchor
point and later refined by adjusting for differences in distances in relation to the respective
time-stamps to compensate for sensor offset to the rolling stock combination’s first axle.
After the alignment, the different data sources are fused into a single larger unified,
DR-compatible formatted dataset, combining the strengths of both location tracking data
sources while compensating for their respective weaknesses, as discussed in Section 4.3.5.
Lastly the filtering of the train runs, was done using the approach of defining *velocity
boxes’ in the speed profile space. The filtering on most restrictive allowed signalling
combination on a station approach was foregone as it was too complex to implement, too
difficult to properly determine the signalling profile to filter on and least reliable of the two
filtering techniques.

How would the data-driven reconstruction model be defined to allow for the fusion of different
database sources and to analyse the realised data to reconstruct the deceleration behaviour
of vehicles in detail?

Considering the purpose and approach of the model to be data-driven, it will have to pro-
cess the location tracking data of realised train runs. This adds a layer of iteration to the
DR model, as it is calculated for each individual train run. The approach chosen within the
DR model, is to estimate each deceleration approach to a station stop for each decelera-
tion regime profile and each braking variant, with each analysis scope restriction adding a
layer of iteration. On top of all these layers, the optimisation algorithm tests unique com-
binations of B-vectors, testing with each evolutionary generation a group of potential so-
lutions for several generations. This causes the programming of the DR model to have a
highly nested for-loop, on top of a highly nested for-loop in the optimisation algorithm. The
deceleration reconstruction model’s process structure is elaborated on in Section 4.4.

The estimation of the realised train run’s deceleration regime parameters, described by the
B-vectors, is done by applying the optimisation algorithm to the minimisation problem de-
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scribed in Section 4.4.6 and finding the f§-vector best fitted to the realised data. As the re-
alised data is derived from multiple data sources, the DR model is preceded with a sub-
stantial pre-processing stage to process and prepare the realised data for data fusion and
the DR model. These processes are described in the previous research sub-question.

What are the distribution types and stochastic values of the realised deceleration behaviour
of commuter heavy rail vehicles?

Observing the results in Section 5.3 for all performance indicators with histogram plots,
they are all estimated to be fitted to either a Gamma-distribution or more likely to a Ex-
ponentially modified Gaussian-distribution (EMG) with their respective shape coefficient
greater than 1. The shape, scale and location coefficients were strongly dependant of the
sample size and binning range of the datasets and are therefore left as a detail in their re-
spective plots. All of the distributions, however, have at least the appearance of a skewed
Normal distribution and will range somewhere between a Gaussian/Normal-distribution
and an Exponential-distribution.

Could any sub-regimes be determined in the realised deceleration behaviour?

Due to the noisiness of the data, the deceleration regime profiles were obtained through
visually inspecting the realised data after the data alignment and fusion of both GPS and
train describer data sources. This method was chosen as it helped with computational time
by not having to apply the differential equation and optimisation algorithm to each of the
datapoint pairings to estimate the possible sub-regime. Furthermore it helped with reduc-
ing code development time trying to deal with the noisy data and correctness of the sub-
regime type estimation. The visually derived deceleration behaviour was clearly visible in
the speed profiles of the realised train runs and the different behaviour patterns were noted
as a combination or profile of sub-regimes (e.g. '‘Br’ or ‘Co-Br-Cr-Br’, see Table 4.2 for all

10 deceleration regime profiles selected in this research).

How do the parameter distributions of the realised deceleration behaviour compare to the
nominal parameters of the expected deceleration behaviour?

The vehicle parameters 1, and r, were allowed to vary slightly to consider slightly different
external conditions. The results of the DR model (see Section 5.2.2) show that constant co-
efficient ry is deemed a consistent variable, with the majority of the tested runs to return a
value near the nominal value or hitting the lower bounds. However, these results hitting
the lower bound are assumed to be caused by the optimisation algorithm having a hard
time trying to fit the tested deceleration profile and braking variant. The quadratic coeffi-
cient r, shows that it is a very sensitive variable, which is understandable considering the
quadratic or cubic relation to the vehicle’s velocity in the applied velocity differential equa-
tions. Other research would be required to investigate the relations of these parameters.

With regards to the braking rate distributions , it was defined in several perspectives to re-
lieve any sense of bias by checking both the average braking rate in a braking regime and
its maximum rate. This was further expanded by making a distinction between braking
rate between stopping and slowing down to a lower velocity, when two or more braking
regimes are estimated to be present. They all show a significant stochastic distribution

in a similar shape as to the realised running time or deceleration loss time distributions
and were fitted with the EMG-distribution. A lot of the estimated braking rates had a lower
value than the nominal braking rate would have the TOC and IM expect. Making the dis-
tinction between average braking rate and maximum braking rate, provided a different view
in which the realised and expected braking rates were closer to each other. However, even
these distributions had a mean braking rate at these stations that was lower than what the
operational expectations are for these vehicles.
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What are the causalities for the stochastic variations found in a vehicle’s deceleration
behaviour?

The causalities tested in this research were the estimated applied deceleration behaviour
and the effects of seasonality on operational performance. However, results discussed in
Section 5.3.4, show that no direct correlation could be found. This could be due to the
selection size of an entire month for the seasonality, allowing for undesirable season and
weather conditions to obfuscate the results. However, the KNMI (Royal Netherlands Mete-
orological Institute) weather report for the months March and September show that these
months were fairly consistent and for the significant majority had the right season and
weather conditions.

With the regards to the estimated deceleration behaviour and partially the seasonality,

the location tracking data might not have been consistent, refined or available enough to
clearly define the deceleration behaviour. This will have to be further investigated when us-
ing different datasets that are either more extensive or from a different source.

6.2. Assessment Limitations Research

This research, while addressing the scientific gap, has its limitations in what or how
it could address the scientific gap. Some limitations were addressed with founded
assumptions, others with a simplification of the analysis methodology or data processing.

With regards the performance indicators, the indicator used in the estimation of infrastruc-
ture occupation, a simplification was made by defining the infrastructure occupation based
on track occupation duration (i.e. duration between the occupation and the release of the
track section), in order to validate the track section’s performance as it is assumed to be
scalable to the complete track section blocking times.

Other assumptions made within this research, were on the types of braking applications
and the existence of the non-uniform braking rates within the braking regimes. The
selected mathematical description of the non-uniform braking rates, that were tested
within this research, were mostly derived from the scientific paper describing the braking
behaviour in road vehicles on the freeway in unrestricted conditions (Maurya and Bokare,
2012). The second order polynomial time dependent braking rate and the "Triple Step’
braking variant were inspired by their variant cousins.

The reason for assuming a non-uniform braking rate application, was due to some visual
observations in the curvature of the realised speed profiles not conforming to the other-
wise constant and uniform application of the braking rate. However, the available realised
data still was not refined enough to distinguish the nuances of the braking behaviour and
to make any clear conclusion on the alternative braking application, especially with the
smaller/shorter braking regimes. This would require further, more in-depth research in
the application of the braking rate within the braking regimes of rail vehicles.

Some simplifications were made in this research with regards to the data pre-processing.
The filtering of the realised train runs was simplified with the use of a v-box filter, instead
of implementing a filter based on a signalling combination profile (i.e. a combination of sig-
nals settings in a chain of infrastructure signal) on the approach to a station stop. The fil-
tering of location tracking data through the use of a Kalman filter was suggested. However,
the used data was pre-processed by the IM incidental to no filtering applied as they stated
the accuracy of the raw GPS data was of high quality and that minimal filtering was ap-
plied to data points ’jumping’ for hundreds of meters, up to even two kilometres within sec-
onds due to the loss and reconnection of the GPS sensors and mismatching timestamps.
These same data points were filtered out within this research as they were sometimes left
in the dataset, but were considered part of the pre-processing done by the IM when elimi-
nating them from the analysis. The uncertainty of the GPS measurement only became vis-
ible in station stops, but only led to the estimated velocity of a vehicle never being consid-
ered O m/s. This was covered in the analysis by searching for the lowest estimated velocity
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within the station area and to consider the found datapoint as the end point of the decel-
eration regime. Further refinement of the location tracking data near station stops is sug-
gested in order to refine the estimation of the station stopping point of the realised train
runs. This may require different data sources or estimation methods.

The limitation in the usage of the current location tracking data sources in the DR model,
was the often big differences in average velocity between track sections, causing a
significant shift in the averaged velocity of the fused dataset. The DR model handled well
enough to smooth out the deceleration behaviour over both or multiple track sections, but
would lead inherently to a larger error in the optimisation and fitting of the deceleration
regime in the DR model. In the shorter deceleration regimes, such as at station Houten
(Htn), it could lead to a misidentification of deceleration regime profiles, assuming two or
more braking regimes to be present instead the actual single braking regime. A possible
improvement is to introduce weights to the velocities of different data sources and use a
weighted average velocity for the fused dataset of the realised train run. This was not
considered during this research, in order to treat both the train describer data and the GPS
data with equal importance.

With regards to the DR model and to its limitations, the DR model had to lock’ both ends
of the full deceleration distance, instead of freely searching for the deceleration regime’s
beginning and end in it’s station approach. This was in order to account for the noisiness
of the realised location tracking data without developing a complex, iterative search algo-
rithm to find the deceleration distance outer ends. The current state of the Python code
used for the DR model, has a high computation time (e.g. 1500 s on average for a single
thread/process to test 1 realised train run by computing 40 optimisation generations per
selection deceleration regime, braking variant and train station), despite the simplifica-
tions and limitations made to the model as described above. The DR model has also shown
small stability problems with regards to handling certain f-vectors that break the compu-
tation cycle. Further computational hurdles include the optimisation convergence rate and
the related solution accuracy. The problem with the convergence rate is due to the non-
linear relation between vector variables and the minimisation problem, but also with the
random nature of the Genetic algorithm in selecting unfeasible solutions/fS-vectors and in
the crossover and mutation of the offspring pool of vectors.

The Python coding of the DR model will need to be further refined and optimised to reduce
the computation time while improving the deceleration regime identification, increasing the
number of optimisation generations, improving optimisation convergence and increasing
the number of stations tested in the corridor of the realised train run. The coding/model
optimisation would make it viable to test larger sample sizes of train runs and to apply the
model in a more generalised use case with regards to rolling stock types and infrastructure
network.
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6.3. Recommendations

The findings and conclusions of this research have led to several recommendations for fu-
ture research and/or improvements to be made upon this research’s analysis method. The
recommendations following this research, with regards to continued research, are as fol-
lows:

— Investigation further refinement of data collection and processing for the data fusion

— Research to elaborate on specific braking behaviour (i.e. braking application and re-
lease) and possible non-uniformity.

— Investigate different data sources to be used for driver operational behaviour analysis.

— Further expansion on case studies in infrastructure and rolling stock to develop and
test model generalisation.

— Research to investigate impact of station platform designs and signalling proximity to
stopping points on final moments of the deceleration behaviour near the station.

— Research that elaborates on the causality of the applied deceleration behaviour.

— Research investigating the applied deceleration behaviour with regards to the relation
between the policy surrounding the stopping signals (i.e. consequences of stopping
past the red’ signal due to underestimated required deceleration distance) and the
deceleration guidance given in the approach of these signals.

In general, the future research recommendations can be categorised into two groups, one
focused on the development of the DR model and the data processing or acquisition in-
volved. The second group would be aimed at more accurately defining the realised deceler-
ation behaviour and the causality behind the decisions leading to the applied deceleration
behaviour.

The future research on the further development of the DR model, is expected to focus on
improving the model’s generalised implementation through testing different case studies,
refinement of the currently used data sources (i.e. train describer data and GPS data) or
implementation of different data sources within the data fusion of the DR model. These
different data sets can come from sources like the time synced on-board accelerometers,
speedometers or odometers, in-station tracking through detection loops within a track sec-
tion or radar-based vehicle tracking, or improvements to the infrastructure data with re-
gards to stopping points, specific to the rolling stock length, in relation to the rest of the
infrastructure.

Future research regarding the deceleration behaviour into stations and braking applica-
tion behaviour, is expected to be focused on defining a specific braking behaviour and elab-
orating on the possible non-uniformity of the braking application. This will have to coin-
cide with the refinement of the data sources, as a more frequently and more specific data
source would be required to improve on identifying the nuances in the braking application.

Another approach angle for research to further understanding the deceleration behaviour,
is to elaborate on the causality (e.g. seasonality, delay state) of the applied deceleration be-
haviour. In particular, research is suggested with regards to investigating the impact of
station platform design and signalling proximity to rolling stock length specific stopping
points, and to investigate the relation between the policy surrounding the stopping signals
and the deceleration guidance given in the approach of these signals and the impact it has
on the applied deceleration behaviour. These last two research topics would investigate

if there are any design or policy aspects that could influence the deceleration behaviour
and how changes to these aspects would impact and possibly improve the deceleration be-
haviour.
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With regards to direct implementation or consequences of this research, the following can
be recommended:

— Expansion or adjustment of the current timetabling tools with the estimation method
of the minimum running time expanded or account for a more realistic deceleration
behaviour observed from this research.

— Drive interest in further understanding the deceleration behaviour to account for
stochastic behaviour in the network or to develop methods to increase the consistency
of the applied deceleration behaviour.

— Investigate and adjust signalling locations in the station approach in order to provide
more guidance and achieve more consistency in deceleration behaviour on long dis-
tance, open-track station approaches.

This research has shown that the nominal values used to calculate the minimum running
time and the method of determining the scheduled running times would benefit from some
adjustments or expansion to cover the differences observed in the stochasticity with the
running times and the deceleration loss times. A clear example of this is the estimated
braking rates, showing a mean braking rate of 0.509 to 0.645 m/s? compared to the nomi-
nal counterpart of 0.8 m/s? that is used in timetabling tools and modelling programs. Em-
pirically proving the stochastic nature in both the running times and the deceleration loss
times, should provide encouragement to the development of alternative timetabling tools
and methods in order to close the gap between expected and realised behaviour and result-
ing performance.

A goal of this research is to drive the interest of further understanding the realised deceler-
ation behaviour and its stochastic nature, in order to account for the stochastic behaviour
or to develop means to improve the consistency of the applied deceleration behaviour. This
research has provided evidence to the existence of the stochastic nature of realised oper-
ations and provided an empirical link between the stochastic nature observed in realised
running times and the deceleration loss times, which is a direct result of the realised de-
celeration behaviour, and the resulting impact of this stochastic nature on the infrastruc-
ture’s track capacity through the track section occupation duration.

After investigating the differences in consistency of deceleration loss times between the sta-
tions Geldermalsen (Gdm), Houten (Htn), Zaltbommel (Zbm) and Culemborg (Cl) over the
three measuring distances, it has shown that the longer distanced, open-track stations
Zaltbommel and Culemborg have a large spread of loss times early on in the deceleration
regime. Due to the significant differences in the start of the deceleration regimes, an in-
vestigation is recommended with regards to the signalling locations in their station ap-
proaches. It is assumed that this difference in behaviour is due to less detailed signalling
over the entire deceleration distance as a consequence of larger track sections or block sec-
tions. Pending the results of the recommended investigation, a recommendation can be
presented with regards the spacing of the track signalling, as it could improve the consis-
tency of the deceleration behaviour.
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Appendix

A. Example Distribution Graphics Referred to in this Research
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Figure A.1: Example plot showing different PDF plots of Gamma distributions with different shape coefficients (k) and
different scale coefficients (®). Graph borrowed from wikipedia’s page on gamma distribution (https://en.
wikipedia.org/wiki/Gamma distribution)
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Figure A.2: Example plot showing different PDF plots of Exponentially Modified Gaussian (EMG) distributions with
different mean coefficients (i), standard deviations (o) and exponential rates (1). Graph borrowed
from wikipedia’s page on EMG distribution (https://en.wikipedia.org/wiki/Exponentially
modified Gaussian distribution). The function of SciPy and their shape coefficient relation (K =
1/(o 1)), location (loc = u) and scale (scale = o) were used as seen in https://docs.scipy.org/doc/
scipy/reference/generated/scipy.stats.exponnorm.html
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B. Summary Data Sources

Data Type | Data Usage | Source

Required parameters

Infrastructure | RSSLI ProRail - section ID, length, GPS Location, Type,
Model PAB - neighbours, static speed limit, curvature,
InfraAtlas gradient
Rolling Stock | RSSLI TU Delft / Davis Resistance coefficients r,, r; and
Model Ricardo 1y, braking, nominal vehicle mass
Train Describer | Location ProRail - section ID, train ID, occupation time,
Tracking PAB - release time, current signal, following
TROTS signal
Vehicle GPS | Location NS - Data & | train ID, GPS location, GPS velocity
Tracking Analytics
Network | Location NS - Data & | Timetable day, train run ID, origin &
Timetable | Tracking Analytics destination details (i.e. timetable point,
action type, planned execution time,
realised execution time) rolling stock
details(i.e. ID, type, position in couple)
Nominal | Nominal PI | NS - acceleration, braking, time allowance,
Regime Prestatie & | applied driving regime, performance
Characteristics Innovatie plans

Table B.1: Summary of the datasets used with their respective sources and required parameters.
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C. Process Structure
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Figure C.3: Deceleration Reconstruction (DR) Model - Velocity Difference Backtracking
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Figure D.1: All tested braking variants sampled to resemble constant braking coefficient deceleration in the distance

domain and the effects when comparing the variants in the time domain side by side.
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Figure D.2: Constant Braking Coefficient example shown in both velocity and acceleration in both distance and time

domain, highlighted in red with other examples in black for comparison/contrast.
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Figure D.4: Second order polynomial (time dependent) example shown in both velocity and acceleration in both distance

and time domain, highlighted in red with other examples in black for comparison/contrast.
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Figure D.5: Dual-Step "Linear-Linear” example shown in both velocity and acceleration in both distance and time do-
main, highlighted in red with other examples in black for comparison/contrast.
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E. DR Model Results - Model Accuracy
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Figure E.1: Histogram Normalised Sum of Absolute Error - Best fitting deceleration regime curve on the realised running

data, given per station.
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Figure E.5: Comparison Top 3 Best Fitting Deceleration Regimes for selected train run
(a): Comparison Sum of Absolute Error (SAE) and Normalised SAE
(b): Corresponding Speed profile for top 3 fitting deceleration regimes
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Top 3 best fitting combination deceleration regime and braking variant of investigated run
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Figure E.6: Comparison Top 3 Best Fitting Deceleration Regimes for selected train run
(a): Comparison Sum of Absolute Error (SAE) and Normalised SAE
(b): Corresponding Speed profile for top 3 fitting deceleration regimes
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F. DR Model Results - Overview Deceleration Regimes and
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Figure F.2: Overview Estimated Deceleration Regimes and Braking Variants - Htn
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Overview of selected deceleration regimes and braking variants for station Zbm
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G. DR Model Results - Vehicle Coefficients
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Figure G.1: Histogram Vehicle Resistance Coefficients - Station Gdm
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Figure G.2: Histogram Vehicle Resistance Coefficients - Station Htn
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H. DR Model Results - Braking Rates

Histogram Distributions Braking Coefficient (Average and Peak) for station Gdm
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Figure H.1: Distributions Mean and Peak Braking Rate for stop and lower velocity - Gdm. Vertical red line is the value of

the nominal braking rate at 0.8 m/s?.
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Histogram Distributions Braking Coefficient (Average and Peak) for station Htn
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the nominal braking rate at 0.8 m/s?.
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l. Analysis Results - Running Time Distribution

Bins Running Times side Even - station Gdm

Running Time Distribution at side Even - station Gdm
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Bins Running Times side Even - station Htn

Running Time Distribution at side Even - station Htn
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Bins Running Times side Even - station Zbm

Running Time Distribution at side Even - station Zbm
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J. Analysis Results - Distribution Loss Times
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Figure J.2: (a): Distribution Deceleration Loss Times - Even Running Side Htn
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Loss Time Distribution at
Full Deceleration Distance
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K. Analysis Results - Distribution Track Section Occupation
Duration

Histogram Track Section Occupation Duration
Side Even - Section GDM$129T
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Figure K.1: (a): Distribution Track Section Occupation Duration - Even Running Side Gdm - Section GDM$129T
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Histogram Track Section Occupation Duration
Side Even - Section HTN$1844CT
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Histogram Track Section Occupation Duration
Side Even - Section OZBM$201BT
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L. Analysis Results - Comparative Analysis

Comparative Scatter plot of Side Even - Station CI
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Comparative Scatter plot of Side Even - Station Cl
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Figure L.2: Scatter Plot Comparative Analysis Departure Delay vs Realised Running Times - Seasonality Highlight - CI
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Comparative Scatter plot of Side Even - Station Gdm
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Comparative Scatter plot of Side Even - Station Gdm
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Figure L.4: Scatter Plot Comparative Analysis Departure Delay vs Realised Running Times - Seasonality Highlight -
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Comparative Scatter plot of Side Even - Station Gdm
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Comparative Scatter plot of Side Even - Station Gdm
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Comparative Scatter plot of Side Even - Station Htn
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Comparative Scatter plot of Side Even - Station Htn
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Comparative Scatter plot of Side Even - Station Htn
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Comparative Scatter plot of Side Even - Station Htn
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Comparative Scatter plot of Side Even - Station Zbm
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Comparative Scatter plot of Side Even - Station Zbm
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Figure L.12: Scatter Plot Comparative Analysis Departure Delay vs Realised Running Times - Seasonality Highlight -
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Comparative Scatter plot of Side Even - Station Zbm
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Zbm



134

Appendix

Comparative Scatter plot of Side Even - Station Zbm
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Comparative Scatter plot of Side Even - Station Gdm
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Figure L.21: Scatter Plot Comparative Analysis Departure Delay vs Deceleration Loss Times - Htn
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Comparative Scatter plot of Side Even - Station Htn
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Comparative Scatter plot of Side Even - Station Zbm
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Comparative Scatter plot of Side Even - Station Zbm
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Figure L.28: Scatter Plot Comparative Analysis Departure Delay vs Deceleration Loss Times - Deceleration Regime
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Comparative Scatter plot of Side Even - Station Gdm
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Appendix

Comparative Scatter plot of Side Even - Station Htn
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Figure L.37: Scatter Plot Comparative Analysis Realised Running Times vs Deceleration Loss Times - Brake Variant
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