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Abstract

We prove Freidlin–Wentzell type large deviation principles for various rescaled models in populations
dynamics that have immigration and possibly harvesting: birth–death processes, Galton–Watson trees,
epidemic SI models, and prey–predator models.

The proofs are carried out using a general analytic approach based on the well-posedness of a class
of associated Hamilton–Jacobi equations. The notable feature for these Hamilton–Jacobi equations is
that the Hamiltonian can be discontinuous at the boundary. We prove a well-posedness result for a large
class of Hamilton–Jacobi equations corresponding to one-dimensional models, and give partial results
for the multi-dimensional setting.
c⃝ 2020 Elsevier B.V. All rights reserved.

MSC: 49L25; 60F10; 60J80; 92D25
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1. Introduction

The evolution of the population size of one or more interacting species can be modelled
using Markov jump processes. The jumps correspond to the result of interactions between
and amongst individuals of the population: predation, reproduction or correspond to global
phenomena such as immigration, emigration, harvesting, or mutation (see e.g. [1,22]).

A much studied question is the dynamics of the population in the large population scaling
limit. Typical results include laws of large numbers to a solution of a first-order differential
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equation or weak convergence of the process to a solution of a stochastic differential equation
as in [3,6,22] and [13, Chapter 11].

Additional work is required for the estimation of the exit time from a domain: time spent
before extinction, time for the propagation of a disease among a population, time for a mutation
to establish itself in a population. This motivates the study of path-space large deviations of
Freidlin–Wentzell type [15]. In short, given a sequence of stochastic processes Xn(t), one aims
to establish

P[{Xn(t)}t≥0 ≈ {γ (t)}t≥0] ≈ e−nI (γ ),

where

(γ ) =

{
I0(γ (0)) +

∫
∞

0 L(γ (s), γ̇ (s))ds if γ ∈ AC,

∞ otherwise.

Here AC is an appropriate space of absolutely continuous trajectories and where the Lagrangian
L is some non-negative function.

A notable feature of the large deviations for models in population dynamics, as well as in the
analysis of queuing systems, is that the systems have boundaries (arising e.g. from the condition
that a population size is non-negative) and that the jump rates vanish at the boundary. Large
deviations for such systems have been considered by [4,20,23] in the context of population
dynamics and in [26] in the context of queuing systems. Indeed, it is the boundary where the
rates vanish, that leads to issues in adapting the methods of [15].

To obtain results, systems are assumed to start in the interior, and the large deviation
principle is proven by approximating trajectories that hit the boundary by trajectories that
remain in the interior. In addition, the rate function evaluated in the approximating trajectories
need to approximate the rate function evaluated in the limiting trajectory. This approach has
two major drawbacks:

(a) the pre-limit processes are not allowed to start on the boundary,
(b) the approach does not allow for discontinuous rates at the boundary.

These problems were also identified by [12] in the context of queuing systems in which the
rates are discontinuous for natural reasons: if there are customers in the queue, a server is
active whereas it is inactive if the queue is empty. This leads to the analysis of a system that
has homogeneous rates in the interior of the space, but with discontinuity at the boundary.
To treat the large deviations of such systems the authors instead turn to characterizing the
large deviations via solutions to a Hamilton–Jacobi equation and prove well-posedness for the
Hamilton–Jacobi equation. See also [11] for a model with discontinuities in the interior instead
of at the boundary.

In this paper, we study the large deviations for population dynamics, including the possibility
of starting at the boundary as well as discontinuous behaviour at the boundary. This leads to
a set of models in which we have inhomogeneous rates in the interior that might vanish at the
boundary or have discontinuities at the boundary.

Discontinuities appear naturally e.g. in the context of population dynamics in the presence
of harvesting or predation. A (short-sighted) external entity takes out individuals from the
population of the system at a fixed rate, e.g. predators hunting prey possibly until extinction,
or the influence of the fishing industry on the population of fish in a lake or sea. Clearly, no
population can be taken out of the system when there is no population left.
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Our aim is to prove the large deviation principle for jump processes that can treat
discontinuities as well as vanishing rates. Our main result complements the established results
mentioned above by covering the middle ground. As an added benefit, our approach partially
extends [20,23] by allowing for non-Lipschitz rates. In particular, this means we can consider
models that do not have a deterministic limit (See e.g. [16, Example 2.5.3].) We do mention
that we cannot allow for an as general state–space as in the recent paper [20]. Neither have
we pushed our results for multi-dimensional models into the domain of [12] that were treated
with non-quadratic test functions. We further discuss the possibilities and restrictions of our
approach in Section 3.4.

Even though this is not the focus of our paper, the results can be used to study the exit
time from a domain. In the context of biological processes starting at the boundary, this allows
e.g. to study the time that a new species needs to establish itself in a hostile new environment.

We follow [12] in studying large deviations via the theory of viscosity solutions to
Hamilton–Jacobi equations. However, we rather follow the more recent framework introduced
by [14], who essentially reduce proving the large deviation principle to a well-posedness
question to a class of Hamilton–Jacobi equations. This method has been used recently in various
papers, see e.g. [5,10,19] and references therein, in which various steps in this method have
been explained in detail.

The main technical step in this paper is, therefore, the establishment of well-posedness for
the associated Hamilton–Jacobi equations. To be able to treat discontinuities at the boundary
in our specific context, we also introduce a framework to account for which types of behaviour
are exhibited by the process close to the boundary. Indeed, our Lagrangian needs to take
into account the various types of possible behaviour as in [12]. Finally, we argue that there
are settings in which the large deviation principle as well as the well-posedness of the
Hamilton–Jacobi equation fails to hold.

The rest of the paper is organized as follows. We start in Section 2 with general preliminar-
ies. In addition, we introduce a framework to describe the exact structure of our space and its
boundaries. We then introduce collections of Hamiltonians that take into account the various
types of behaviour exhibited by the processes close to the boundary. Next, in Section 3 we
proceed by applying our main abstract results to a collection of examples to illustrate the range
of applications. We treat various one-dimensional models including birth–death processes,
processes with births only like the process that models the size of a Galton–Watson tree and
of some simple epidemic models. We then discuss the failure of well-posedness for a class of
birth–death processes. We conclude the section with a treatment of a class of multi-dimensional
processes in which there is immigration and harvesting for each species.

We proceed with the comparison principle for Hamilton–Jacobi equations on spaces with
boundaries in Section 4 and to apply these results to the theory of large deviations in Section 5.
We conclude our paper with Section 6 in which we apply the results of Sections 4 and 5 to
the examples of Section 3.

2. Preliminaries

Before starting with our main results, we state some preliminaries needed for the formulation
of our main results. In Section 2.1, we give some general mathematical preliminaries including
the main definitions of large deviations theory. We proceed in Section 2.2 by introducing the
class of spaces on which our results will be applicable, in addition we introduce a suitable
framework to effectively study the behaviour of our Hamiltonians on the boundaries of our
spaces. Finally, in Section 2.3 we introduce a class of Hamiltonians and Lagrangians which
are suited to for our spaces with boundary.
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2.1. General preliminaries

Let E be a d-dimensional convex polyhedron with non-empty interior. A full definition
follows on page 5 below. We denote by P(E) the space of Borel probability measures on E
and we denote by DE (R+) the space of paths γ : R+

→ E that are right continuous and
have left limits. We endow DE (R+) with the Skorokhod topology, cf. [13, Section 3.5]. An
important property is that under this topology DE (R+) is Polish if E is Polish.

We denote by Cb(E),Cl(E) and Cu(E) the spaces of continuous functions that are bounded,
bounded from below and bounded from above respectively. We write Cc(E) for the functions
with compact support in E relative to the topology of E . Finally, we denote Ck

c (E) for functions
in Cc(E) that are k times continuously differentiable.

Let R = [−∞,∞] be the two-point compactification of R. We denote by M(E,R) the
space of measurable functions from E into R. The spaces Mb(E,R), Ml(E,R) and Mu(E,R)
are the subspaces of M(E,R) with functions that are bounded, bounded from above and below
from respectively.

We say that a set F ⊆ Cb(E) separates points in E if for all x, y ∈ E , x ̸= y there is
f ∈ F with f (x) ̸= f (y).

For a function f : E → R, we denote by f ∗ and f∗ the upper semi-continuous and lower
semi-continuous regularization respectively.

For a set G ⊆ E , we write chG for the closed convex hull of G in E .

Definition 2.1. Let {Xn}n≥1 be a sequence of random variables on a Polish space X.
Furthermore, consider a function I : X → [0,∞] and a sequence {rn}n≥1 of positive numbers
such that rn → ∞. We say that

• I is a good rate-function if the set {x | I (x) ≤ c} is compact for every c ≥ 0.
• the sequence {Xn}n≥1 is exponentially tight at speed rn if, for every a ≥ 0, there exists a

compact set Ka ⊆ X such that lim supn r−1
n log P[Xn /∈ Ka] ≤ −a.

• the sequence {Xn}n≥1 satisfies the large deviation principle with speed rn and good
rate-function I , denoted by

P[Xn ≈ a] ≍ e−rn I (a),

if, for every closed set A ⊆ X, we have

lim sup
n→∞

r−1
n logP[Xn ∈ A] ≤ − inf

x∈A
I (x),

and, for every open set U ⊆ X,

lim inf
n→∞

r−1
n logP[Xn ∈ U ] ≥ − inf

x∈U
I (x).

We denote AC(E) for the set of absolutely continuous curves in E . For the sake of
completeness, we recall the definition of absolute continuity.

Definition 2.2. A curve γ : [0, T ] → E is absolutely continuous in E if there exists a function
g ∈ L1([0, T ],Rd ) such that for t ∈ [0, T ] we have γ (t) = γ (0) +

∫ t
0 g(s)ds. We write g = γ̇ .

A curve γ : R+
→ E is absolutely continuous in E if the restriction to [0, T ] is absolutely

continuous for every T ≥ 0.

Finally, we write N = {0, 1, . . . } for the set of natural numbers including 0.
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2.2. Boundary structure of our state–spaces

For x, v ∈ Rd , we write

Bx,v :=
{

x + w
⏐⏐w ∈ Rd , ⟨w, v⟩ ≥ 0

}
, B◦

x,v :=
{

x + w
⏐⏐w ∈ Rd , ⟨w, v⟩ > 0

}
,

for the closed and open half-spaces based at x in the direction v.

Definition 2.3 (d Dimensional Convex Polyhedron). We will say that E is a d dimensional
convex Polyhedron if there are x1, . . . , xk, y1, . . . , yl ∈ Rd v1, . . . , vk, w1, . . . , wl ∈ Rd ,
vi ̸= v j , vi ̸= w j , wi ̸= w j such that

E :=

(
k⋂

i=1

Bxi ,vi

)
∩

⎛⎝ l⋂
j=1

B◦

y j ,w j

⎞⎠ . (2.1)

Without loss of generality, we assume that the interior of E is non-empty. (Otherwise we
perform a coordinate transform and work in a lower-dimensional space).

Definition 2.4 (Tangent Spaces to a d Dimensional Convex Polyhedron). Let E be a d
dimensional convex Polyhedron.

(a) Let J = J(E) be the set of subsets J ⊆ {1, . . . , k} such that

E J := E ∩

⋂
i∈J

(
Bxi ,vi \ B◦

xi ,vi

)
̸= ∅.

E J is a |J | dimensional face of E .
(b) For J ∈ J such that J ̸= ∅ write ΓJ :=

⋂
i∈J B0,vi , Γ∅ := Rd .

(c) For each x ∈ E we define the set Tx E :=
⋂

J∈J: x∈E J
ΓJ .

(d) We denote by J ∗(x) the set of largest cardinality J such that x ∈ E J . Note that
Tx E = ΓJ∗(x).

(e) We write T E =
{

(x, v) ∈ E × Rd
⏐⏐ v ∈ Tx E

}
. We equip T E with the subspace

topology inherited from E × Rd .

For each point x ∈ E , the space Tx E is the set of ‘tangent vectors’ at x : if v ∈ Tx E then
we have for small λ > 0 that x + λv ∈ E .

We give four examples to clarify the definition.

Example 2.5 (Half Line). Let E = [0,∞). Then for (x1, v1) = (0, 1), we have E = B0,1. It
follows that J = {∅, {1}}, E∅ = E , Γ∅ = R, E{1} = {0}, E{1} = {0} and Γ{1} = [0,∞). The
tangent spaces are given by T0 E = Γ{1} = [0,∞) and Tx E = Γ∅ = R.

Example 2.6 (Half Open Half Closed Interval). Consider E = [0, 1). Then for (x1, v1) =

(0, 1), (y1, w1) = (1,−1), we have E = B0,1 ∩ B◦

1,−1. The set J equals J = {∅, {1}} and
E∅ = E , Γ∅ = R and E{1} = {0}. The tangent spaces are given by T0 E = Γ{1} = [0,∞) and
Tx E = R for x ∈ (0, 1).

Example 2.7 (Quarter Space). Consider E = [0,∞)2. Then for (x1, v1) = ((0, 0), (1, 0)),
(x2, v2) = ((0, 0), (0, 1)), we have E = Bx1,v1 ∩Bx2,v2 . The set J equals J = {∅, {1}, {2}, {1, 2}}.
Furthermore:

E∅ = E, Γ∅ = R2,
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E{1} = {(x, y) | x = 0, y ≥ 0 } , Γ{1} = {(v1, v2) | v1 ≥ 0 } ,

E{2} = {(x, y) | x ≥ 0, y = 0 } , Γ{2} = {(v1, v2) | v2 ≥ 0 } ,

E{1,2} = {(x, y) | x = 0, y = 0 } , Γ{1,2} = {(v1, v2) | v1, v2 ≥ 0 } .

Thus, the tangent spaces are given by

T(0,0) E = J{1,2} = [0,∞)2,

T(x,0) E = J{1} = [0,∞) × R if x > 0,

T(0,y) E = J{2} = R × [0,∞) if y > 0,

T(x,y) E = J∅ = R2 if x, y > 0.

Example 2.8 (Quarter Space Without Corner). Consider E = [0,∞)2
\ {(0, 0)}. Then for

(x1, v1) = ((0, 0), (1, 0)), (x2, v2) = ((0, 0), (0, 1)), (y1, w1) = ((0, 0), (1, 1)), we have E =

Bx1,v1 ∩ Bx2,v2 ∩ B◦
y1,w1

. The set J equals J = {∅, {1}, {2}}. Furthermore:

E∅ = E, Γ∅ = R2,

E{1} = {(x, y) | x = 0, y < 0 } , Γ{1} = {(v1, v2) | v1 ≥ 0 } ,

E{2} = {(x, y) | x > 0, y = 0 } , Γ{2} = {(v1, v2) | v2 ≥ 0 } .

In this case, the tangent spaces are the same as in previous example, except for that the point
(0, 0) is not included in the space E .

2.3. A generating collection of Hamiltonians and an associated Lagrangian

Our goal is to prove a large deviation principle for the dynamics of stochastic systems,
and write the rate function in Lagrangian form. The Lagrangian will as usual be given as the
Legendre transform of a Hamiltonian. Due to the discontinuous nature of the dynamics at the
boundary, this Hamiltonian will be constructed as the maximum over Hamiltonians that take
into account all possible behaviours of the dynamics close to the boundary. We end this section
with a simple example illustrating the construction.

Definition 2.9. Let E be a d dimensional convex Polyhedron. Suppose for each J ∈ J, there
is a map HJ : E J × Rd

→ R such that

(a) for each x ∈ E J the map p ↦→ HJ (x, p) is convex;
(b) the map HJ is continuously differentiable in (x, p);
(c) the gradient ∂pHJ (x, p) ∈ ΓJ ;

We say that H := {HJ }J∈J(E) is a generating set of Hamiltonians. For a generating set of
Hamiltonians, denote

H†(x, p) := max
J∈J: x∈E J

HJ (x, p), H‡(x, p) := min
J∈J: x∈E J

HJ (x, p).

We additionally write H† ⊆ C2
c (E)×Cb(E) and H‡ ⊆ C2

c (E)×Cb(E) for the operators defined
by H† f (x) := H†(x,∇ f (x)) and H‡ f (x) := H‡(x,∇ f (x)).

Definition 2.10. Let H = {HJ }J∈J(E) be a generating set of Hamiltonians.
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(a) For each J ∈ J(E), define LJ : Rd
× Rd

→ [0,∞] and L : E × Rd
→ [0,∞] by

LJ (x, v) = sup
p∈Rd

{pv − HJ (x, p)} , L(x, v) = sup
p∈Rd

{
pv − H†(x, p)

}
.

(b) Denote by L̂ : E × Rd
→ [0,∞] the map

L̂(x, v) := inf

⎧⎨⎩ ∑
J :x∈E J

λJLJ (x, vJ )

⏐⏐⏐⏐⏐⏐
∑

J :x∈E J

λJvJ = v,
∑

J :x∈E J

λJ = 1, λJ ≥ 0

⎫⎬⎭ .
We start with a collection of preliminary properties of L, L̂ and their Legendre duals.

Lemma 2.11. Let {HJ }J∈J(E) be a generating set of Hamiltonians.

(a) For each x ∈ E the map v ↦→ L̂(x, v) is the convex hull of the Lagrangians v ↦→

LJ (x, v), i.e. the largest convex function that lies below all LJ ’s;
(b) For each x ∈ E, the map v ↦→ L(x, v) is the lower semi-continuous regularization of

v ↦→ L̂(x, v).

Proof (a). follows from [25, Theorem 5.6]. (b) follows from [25, Theorem 16.5]. □

The lemma shows that our Lagrangian turns out to be similar to the one in [12] in the sense
that it can be obtained as the lower semi-continuous hull of the Lagrangians that are obtained
for the different types of boundary behaviour. Note that we do not re-define this convex hull to
equal ∞ when the speed points outward. This issue will be taken care of by only considering
trajectories that stay inside the state–space, i.e. in AC(E).

We end this section by working out the Hamiltonians and Lagrangians for a simple example
arising from the large deviations of a rescaled a birth–death process on N with homogeneous
jump rates 1 for k ↦→ k + 1 and 1 for k ↦→ k − 1 (if k > 0).

Example 2.12. Let E = [0,∞), so that E = B0,1. See Example 2.5 for further notation. As
J = {∅, {1}} our generating set of Hamiltonians has two elements:

H∅(x, p) =
[
ep

− 1
]
+
[
e−p

− 1
]
,

H{1}(x, p) =
[
ep

− 1
]
.

H∅ captures the behaviour of the process in the interior and consists of two terms corresponding
to jumps up and down. H{1} captures the behaviour at the boundary point {0} and therefore
only consists of jumps going up. Note that indeed ∂pH{1}(0, p) ⊆ [0,∞).

We obtain H†(x, p) = H‡(x, p) = H∅(x, p) for x > 0 and

H†(0, p) =

{
[ep

− 1] +
[
e−p

− 1
]

if p ≤ 0,
[ep

− 1] if p ≥ 0,

H‡(0, p) =

{
[ep

− 1] if p ≤ 0,
[ep

− 1] +
[
e−p

− 1
]

if p ≥ 0.

Performing Legendre transformation, we obtain

L∅(x, v) = v log

(
v +

√
v2 + 4
2

)
−

√
v2 + 4 + 2,



5460 R.C. Kraaij and L. Mahé / Stochastic Processes and their Applications 130 (2020) 5453–5491

L{1}(0, v) = v log v − v + 1.

We thus find L(x, v) = L∅(x, v) for x > 0 and

L(0, v) =

⎧⎪⎨⎪⎩
L∅(0, v) if v ≤ 0,
0 if v ∈ [0, 1],
L{1}(0, v) if v ≤ 1.

Clearly, the part L(0, v) for v < 0 will not play a role in the final large deviation principle as
we will exclude trajectories that leave [0,∞).

3. Large deviations for a collection of examples

Before diving into the general results in Sections 4 and 5, we give a variety of contexts in
which these general results can be applied. The examples are not meant to give an exhaustive
list, but rather illustrate that the general results are applicable in a variety of contexts.

We begin with a collection of examples for the one-dimensional setting in Section 3.1 and
proceed with large deviations for interacting species in Section 3.3.

3.1. One dimensional examples

We start with three examples in which there do not occur discontinuities in the Hamiltonian
at the boundary, i.e. H† = H‡:

(1) Large deviations for birth and death processes with immigration;
(2) Large deviations for birth processes with jumps of arbitrary size.
(3) Large deviations for simple epidemic models.

We state these results to illustrate the extent of applicability of our method. We will discuss in
each of these three cases why the result complements the literature [14,20,23].

We proceed with birth and death processes with immigration and harvesting. Harvesting
introduces a discontinuity at the boundary: harvesting is not possible if there are no individuals.

As a final example, we discuss birth and death processes without any form of immigration
or harvesting at the boundary. In this setting our results do not apply, and we argue why indeed
a result of the type given in all other examples is not expected to hold.

Finally, we mention that the one-dimensional results for the dynamic Curie–Weiss model
in [16] fall within the framework introduced in this paper and that the results can also be applied
to the Wright–Fisher and Moran models with positive mutation rate or for one-dimensional
models in the analysis of queuing systems.

3.1.1. Birth and death processes with immigration
For n ∈ N, let Xn be a Markov process on N with jump rate λn(q) corresponding to the

birth of an individual, µn(q) for the death of one individual and ρn(q) for the arrival of one
individual through immigration if the population has size q ∈ N. The definition of λn and µn

implies λn(0) = µn(0) = 0.
Thus, the process has generator :

An f (q) = (λn(q) + ρn(q)) ( f (q + 1) − f (q))+ µn(q) ( f (q − 1) − f (q))
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To make sure that the martingale problem, see Corollary 8.3.2 in [13], is well-posed, we impose
for each n that

sup
q∈N

λn(q) + ρn(q) + µn(q)
1 + q

< ∞.

Theorem 3.1. Let E = [0,∞). Suppose that there are positive and continuous function λ,µ,
and ρ, such that for every compact set K ⊆ E:

lim
n→∞

sup
x∈K ,xn∈N

⏐⏐⏐⏐1n λn(nx) − λ(x)
⏐⏐⏐⏐+ ⏐⏐⏐⏐1nµn(nx) − µ(x)

⏐⏐⏐⏐+ ⏐⏐⏐⏐1n ρn(nx) − ρ(x)
⏐⏐⏐⏐ = 0. (3.1)

Moreover suppose that :

(a) λ(0) = µ(0) = 0, ρ(0) > 0 and λ and µ are strictly positive on (0,∞);
(b) the birth rate λ and the immigration rate ρ satisfy λ(x) + ρ(x) = O(x log(x)) at ∞;
(c) ∃ δ > 0 such that µ is increasing on [0, δ].

Let Xn be solutions to the martingale problem or An . Suppose that 1
n Xn(0) satisfies a large

deviation principle on R+ with speed n and with good rate function I0. Then the process
t ↦→

1
n Xn(t) satisfies a large deviation principle on DR+ (R+) with speed n and with good rate

function I :

I (γ ) =

{
I0(γ (0)) +

∫
∞

0 L(γ (s), γ̇ (s))ds bif γ ∈ AC(R+),
∞ otherwise.

The Lagrangian L is the Legendre transform of

H(x, p) = (λ(x) + ρ(x))
[
ep

− 1
]
+ µ(x)

[
e−p

− 1
]
. (3.2)

Remark 3.2. The result is a variant (without the diffusion part) of Theorem 10.22 of [14] for
Lévy processes on Rd adapted to the context of [0,∞). The result is a complement to [20,23]
due to the non-compactness of the state–space and possibly non-Lipschitz rates.

3.1.2. Growing populations
As in Section 3.1.1, we consider an evolving population Xn . In this setting however, we

assume that the population can only grow and starts with non-zero size.
Each individual gives k offspring at a rate that depends on the population size: the rate at

which individuals give k offspring depends on n: vk,n(q). The generator of this process, if it
exists, is given by

An f (q) =

∞∑
k=1

qvk,n(q) [ f (q + k) − f (q)] .

As the rates of this jump process are potentially unbounded, we impose for each n the
conditions

sup
q

∞∑
k=1

qvk,n(q) < ∞, sup
q

∞∑
k=1

kvk,n(q) < ∞. (3.3)

These two bounds and Corollary 8.3.2 in [13] imply that the martingale problem for An has a
unique solution.
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Theorem 3.3. Let E = (0,∞). Suppose (3.3) is satisfied. Suppose in addition that there are
continuous functions vk on E such that for each compact set K ⊆ E, we have

lim
n→∞

sup
x∈K ,xn∈N

⏐⏐vk,n(nx) − vk(x)
⏐⏐ = 0. (3.4)

In addition, the functions vk satisfy

(a)
∑

∞

k=1 vk(x) > 0 for all x ∈ (0,∞);
(b) the function x ↦→

∑
∞

k=1 kvk(x) is bounded;
(c) there is some α > 0 such that

sup
x

∞∑
k=1

xvk(x)
k2

(1 + x)2 eαk/(1+x) < ∞.

Let Xn be solutions to the martingale problem for An . Suppose that 1
n Xn(0) satisfies the

large deviation principle on E with speed n and with good rate function I0. Then the processes
t ↦→

1
n Xn(t) satisfy the large deviation principle on DE (R+) with good rate function

I (γ ) =

{
I0(γ (0)) +

∫
∞

0 L(γ (s), γ̇ (s))ds if γ ∈ AC(0,∞),
∞ otherwise,

where L(x, v) = supp pv − H(x, p) and where H : E × R → R is defined as

H(x, p) =

∞∑
k=1

xvk(x)
[
ekp

− 1
]
. (3.5)

Remark 3.4. As above the result is a variant (without the diffusion part) of Theorem 10.22
of [14] for Lévy processes on Rd adapted to the context of (0,∞). Note that due to the possibly
infinite number of jump types, non-compact state–space and uni-directionality of the model the
results of [20,23] do not apply.

Remark 3.5. The growth condition in (c) arises when controlling the growth of the large
deviations of the process. It is satisfied in any case in which ν has finite support uniformly in
x .

In the case that ν has unbounded support, a similar expression without the exponent would
appear when controlling the range of the process without looking at the large deviations. This
is achieved by shifting the linear part into a drift term, and then controlling the second order
Taylor expansion. This is reminiscent of the situation for the characteristics of a Lévy process.
On the large deviations scale, we have to control the exponential function, which leads to the
exponential factor.

Example 3.6 (Yule Process). The Yule process [2] is defined by taking rates independent
of n and v1(q) = 1 and vk(q) = 0 for all k > 1. The Hamiltonian has the simple form
H(x, p) = x [ep

− 1]. Conditions (a) and (b) of Theorem 3.3 are trivially satisfies, whereas
for (c) every α > 0 works.

Example 3.7 (Poisson β Number of Children). Consider the case in which each individual has
an offspring that has Poisson size with parameter β. In this case the Hamiltonian has the form

H(x, p) =

∞∑
k=1

x
βk

k!
e−β

[
ekp

− 1
]
.
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Condition (a) of Theorem 3.3 is trivially satisfied, whereas (b) is satisfied as we are considering
a Poisson random variable.

For Condition (c), choose α =
1
2β. Note that

∞∑
k=1

x
βk

k!
e−β k2

(1 + x)2 e
1
2 β/(1+x)

≤

∞∑
k=1

k2βk

k!
e−

1
2 β < ∞.

Thus also for this case the large deviation principle holds.

3.1.3. Spread of a disease: a model with susceptible and infected individuals
We consider a simple SI model (with Susceptible and Infected individuals) for the spread of

a disease in a population [1]. The population has constant size n, and is divided in two groups:
Xn susceptible, and Yn infected, individuals. Because the total size of the population is fixed,
we write Yn = n − Xn , so that the whole system can be described in terms of Xn .

The susceptible individuals contract the disease upon contact with an infected individual at
rate β

n , β > 0, which leads to a generator:

Gn f (q) =
β

n
q(n − q) ( f (q + 1) − f (q)) , q ∈ {0, . . . , n}.

In general, we can replace the rate β

n q(n−q) by a rate cn(q) that satisfies cn ≥ 0 and cn(0) = 0:

An f (q) = cn(q) ( f (q + 1) − f (q)) , q ∈ {0, . . . , n}.

Theorem 3.8. Let E = (0, 1]. Suppose that there is a non-negative continuous function
c ∈ C(0, 1] such that for every compact set K ⊆ E:

lim
n→∞

sup
x∈K ,xn∈N

⏐⏐⏐⏐1n cn(nx) − c(x)
⏐⏐⏐⏐ = 0.

Moreover suppose that :

1. c(x) > 0 for x ∈ (0, 1) and c(1) = 0,
2. c is decreasing in a neighbourhood of 1.

Let Xn be solutions to the martingale problem for An . Suppose that 1
n Xn(0) satisfies the large

deviation principle on E with speed n and with good rate function I0. Then the processes 1
n Xn

satisfy the large deviation principle on DE (R+) with good rate function

I (γ ) =

{
I0(γ (0)) +

∫
∞

0 L(γ (s), γ̇ (s))ds if γ ∈ AC(0, 1],
∞ otherwise,

where L(x, v) = supp pv − H(x, p) and where H : E × R → R is defined as

H(x, p) = c(x)
[
ep

− 1
]

Remark 3.9. c does not need to be bounded in a neighbourhood of 0.

Remark 3.10. As above, this result complements [20] in the sense that the state–space
is non-compact, the model uni-directional and the rates are possibly non-Lipschitz and
non-bounded.
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3.1.4. Birth and death processes with immigration and harvesting
We adjust the example in Section 3.1.1 by adding harvesting.
Again, for n ∈ N, let Xn be a Markov process on N with birth-rate λn(q), death-rate µn(q)

for immigration-rate ρn(q). In addition, a breeder kills a single individual at a rate βn(q) that
depends possibly on the population size q. To make sure that the boundary 0 can be accessed
as well as exited sufficiently fast, we assume that there exists a ε > 0 such that

inf
n

inf
q∈{0,...,⌊εn⌋}

ρn(q) ≥ ε, inf
n

inf
q∈{1,...,⌊εn⌋}

βn(q) ≥ ε.

As before, the generator reads

An f (q) =

⎧⎪⎨⎪⎩
(λn(q) + ρn(q))( f (q + 1) − f (q)) + (µn(q)

+βn(q))( f (q − 1) − f (q)) if q ∈ N \ {0},

nρn(0)( f (1) − f (0)) if q = 0.

As before, we also impose for each n that

sup
q∈N

λn(q) + ρn(q) + µn(q) + βn(q)
1 + q

< ∞.

to ensure well-posedness of the martingale problems, cf. Corollary 8.3.2 in [13].

Theorem 3.11. Let E = [0,∞). Suppose that there are positive and continuous function
λ,µ, ρ, and β, such that for every compact set K ⊆ E :

lim
n→∞

sup
x∈K :nx∈N

{⏐⏐⏐⏐1n λn(nx) − λ(x)
⏐⏐⏐⏐+ ⏐⏐⏐⏐1nµn(nx) − µ(x)

⏐⏐⏐⏐
+

⏐⏐⏐⏐1n ρn(nx) − ρ(x)
⏐⏐⏐⏐+ ⏐⏐⏐⏐1nβn(nx) − β(x)

⏐⏐⏐⏐} = 0. (3.6)

Moreover suppose that :

(a) λ(0) = µ(0) = 0, ρ(0), β(0) > 0 and λ and µ are strictly positive on E◦;
(b) the birth rate λ and the immigration rate ρ satisfy λ(x) + ρ(x) = O(x log(x)) at ∞.

Suppose that ( 1
n Xn(0)) satisfies a large deviation principle with speed n and with good rate

function I0. Then the process t ↦→
1
n Xn(t) satisfies a large deviation principle on DE (R+) with

speed n and good rate function I :

I (γ ) =

{
I0(γ (0)) +

∫
∞

0 L(γ (s), γ̇ (s))ds if γ ∈ AC(R+),
∞ otherwise.

The Lagrangian is given in Definition 2.10 constructed from generating set of Hamiltonians
{H∂−, H∅}, (∂− = 0) :

H∅(x, p) = (λ(x) + ρ(x))
[
ep

− 1
]
+ (µ(x) + β(x))

[
e−p

− 1
]
, (3.7)

H∂− (p) = ρ(0)
[
ep

− 1
]
. (3.8)

Remark 3.12. In this example, we work in the context of a Hamiltonian depending on the
location x ∈ E . In this context E = [0,∞) = B0,1. Thus J(E) = {1} as the left boundary
point 0 is included in E = [0,∞). For intuitive understanding, we write ∂− for the set {1} as
it corresponds as the set E{1} equals the left boundary point {0}.
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To fulfil Definition 2.9, we need to specify continuously differentiable H∅ : E × R → R
and H{1} = H∂− : {0} × R → R such that ∂pH∅(x, p) ⊆ R and ∂pH∂− (0, p) ⊆ [0,∞).

This is indeed satisfied as can be read of from (3.7) and (3.8).

3.2. A discussion on the failure of the large deviation principle for pure birth and death
processes

We end our discussion of one-dimensional processes by showing that a large deviation
principle of the type considered above is not to be expected for birth and death processes
without immigration or harvesting, or more generally without a mechanism by which the
boundary and the interior show similar behaviour. Our example is of similar nature to that
of Example E in [26].

Consider the process Xn(t) with generator

An f (q) = aq ( f (q + 1) − f (q))+ bq ( f (q − 1) − f (q))

where a > 0, b ≥ 0. Note that a = 1, b = 0 corresponds to the Yule process of Example 3.6.
We argue first that the large deviation principle like the ones in the other examples cannot

hold for the Yule process on [0,∞), unlike on (0,∞) as in Section 3.1.2. If this result would
be true then our theory would indicate that the Hamiltonian H corresponding to the principle
has the form

H(x, p) = x
[
ep

− 1
]
,

so that the path-space Lagrangian becomes

L(x, v) = v log
v

x
− v + x .

The trajectory t ↦→ t2 can be seen to have finite cost. This indicates that the large deviations
cost to go from 0 to 1 in time 1 is finite. However, if Xn(0) = 0 for all n, the large deviations
cost to be in 1 at time 1 is infinity.

In the general setting, with

H(x, p) = ax
[
ep

− 1
]
+ bx

[
e−p

− 1
]
,

a > 0, b ≥ 0, one can show that the large deviations contribution of having no jumps of size
−1 is finite. As the cost to go from 0 to 1 in finite time, just using positive jumps is finite as
for the Yule process, we find that also in this case a contradiction if Xn(0) = 0 for all n.

This show that care is needed when formulating a large deviation principle for the rescaled
population size of a pure birth–death process when allowing 0 as a starting point. Even though
we have not talked about the technical ingredients for our proofs, we want to indicate that this
implies that Condition 4.8 and the corresponding Theorem 4.11 for one-dimensional processes
leaves out the pure birth-death processes for good reason.

3.3. Large deviations for interacting species with immigration and harvesting

We proceed our discussion with a general multi-dimensional model. In this setting, we only
offer one set of results that we think covers a range of interesting models. More models can
be treated on a model by model basis by using the methods of Sections 4 and 5.

For each n, we consider k different interacting species that evolve in time. We denote their
population sizes at time t by (X1(t), . . . , X k(t)).
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We will denote possible transitions of the Markov process by vectors Γ = (Γ1, . . . ,Γl) ∈ Zk

indicating how many individuals of each type get born of die. We write δi ∈ Zk for the vector
with a one in location i and zero elsewhere. We consider three kinds of transitions, denoted by
sets Tint , Timm, Thar corresponding to interaction between or within species, immigration and
harvesting.

Condition 3.13. We assume that the cardinality of Tint is finite. In addition, we assume

interaction For each Γ ∈ Tint , we have a rate rΓ ,n(q) at which the transition from q to q +Γ
occurs. Clearly, if there are no individuals of species i , then the rate of a transition in
which individuals of species i die is 0. In other words, if there is an i with Γi < 0 and
qi = 0, then rΓ ,n(q) = 0.

immigration Timm = {δi | i ∈ {1, . . . , k} }. The corresponding transition rate ai,n(q) is assumed
to be strictly positive.

harvesting Thar = {−δi | i ∈ {1, . . . , k} }. The corresponding transition rate bi,n(q) is assumed
to be strictly positive.

The rates lead to a generator An that reads

An f (q) =

∑
Γ∈Tint

rΓ ,n(q) [ f (q + Γ ) − f (q)] +

∑
i

ai,n(q) [ f (q + δi ) − f (q)]

+

∑
i

1{qi ̸=0}bi,n(q) [ f (q − δi ) − f (q)] . (3.9)

For well-posedness of the martingale problems, we impose for each n that

sup
q∈Nk

∑
Γ∈Tint

rΓ ,n(q) +
∑

i ai,n(q) +
∑

i bi,n(q)

1 +
∑

i qi
< ∞. (3.10)

Well posedness is established by Theorem 8.3.1 in [13] by taking γ (q) = η(q) = 1 +
∑

i qi .
We will consider the large deviations on the space E := [0,∞)k after rescaling the process

by n−1. For a momentum p ∈ Rd , denote by Γ · p the vector obtained by component-wise
multiplication (Γ1 p1, . . . ,Γk pk). Note that δi · p = piδi .

Theorem 3.14. Let E := [0,∞)k and let Condition 3.13 be satisfied. Suppose that there are
positive and continuous function rΓ , ai , bi with Γ ∈ Tint and i ∈ {1, . . . , k} so that for each
compact set K ⊆ E:

lim
n→∞

sup
x∈K

⎧⎨⎩ ∑
Γ∈Tint

⏐⏐⏐⏐1n rΓ ,n(nx) − rΓ (x)
⏐⏐⏐⏐+∑

i

⏐⏐⏐⏐1n ai,n(nx) − ai (x)
⏐⏐⏐⏐

+

∑
i

⏐⏐⏐⏐1n bi,n(nx) − bi (x)
⏐⏐⏐⏐
⎫⎬⎭ = 0. (3.11)

Moreover suppose that ai , bi , i ∈ {1, . . . , k}, are strictly positive and rγ , Γ ∈ Tint , is
non-negative.

Finally assume that for any Γ ∈ Tint with
∑

i Γi > 0 we have rΓ (x) = O(s(x) log(s(x)))
with s(x) =

∑
xi at infinity. In addition, assume ai (x) + bi (x) = O(s(x) log s(x)) at infinity.
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Let (X1
n, . . . , X k

n) be a solution to the martingale problem for An as in (3.9). Suppose that
( 1

n X1
n(0), . . . , 1

n X k
n(0)) satisfies a large deviation principle with speed n and with good rate

function I0.
Then the process t ↦→

( 1
n X1

n(t), . . . , X k
n(t)

)
satisfies a large deviation principle on DE (R+)

with speed n and good rate function I :

I (γ ) =

{
I0(γ (0)) +

∫
∞

0 L(γ (s), γ̇ (s))ds if γ ∈ AC(R+,R+),
∞ otherwise.

The Lagrangian is given in Definition 2.10 constructed from generating set of Hamiltonians H
defined below. Write

H0(x, p) =

∑
Γ∈Tint

rΓ (x)
[
eΓ ·p

− 1
]

and define H as

H∅(x, p) = H0(x, p) +

d∑
i=1

ai (x)(epi − 1) + bi (x)(e−pi − 1),

and for J ∈ J(E) and x ∈ E J

HJ (x, p) = H0(x, p) +

∑
i∈J

ai (x)(epi − 1) +

∑
i /∈J

ai (x)(epi − 1) + bi (x)(e−pi − 1).

Remark 3.15. As before, we specify the boundaries. As E = [0,∞)k
=

⋂k
i=1 B0,ei ,

where ei is the unit-vector in the i th direction, the set J(E) equals the set of all subsets of
{1, . . . , k}. For J ⊆ {1, . . . , k} we have E J =

{
x ∈ [0,∞)k

| xi = 0 if i ∈ J
}

and ΓJ :={
p ∈ Rk

| pi ≥ 0 if i ∈ J
}
.

To conclude this section, we describe a prey–predator system and a SI model. To apply the
main result of this section, we assume in both cases that there is immigration and harvesting.
Because interactions between different species bring rates that are more than linear in the
coordinates (e.g two individuals of different species meeting will induce a quadratic rate in
the coordinates), the martingale problem might not be well-posed (see (3.10)). Therefore we
introduce a “carrying capacity” κ that describe the maximal population of a given species
the environment can sustain [24]. Once that population has grown to this carrying capacity,
competition for resources will prevent reproduction. If that population grows above κ through
immigration, the other species will still interact as if there was only κ individuals, the
environment being saturated.

Example 3.16 (Prey and Predator System). We consider two populations of individuals whose
sizes are given by the vector

(
X1

n(t), X2
n(t)

)
. The individuals of the second species hunt that

of the first species. On top of some harvesting and immigration rates, the different interaction
rates given the current population sizes

(
X1

n(t), X2
n(t)

)
= (q1, q2) are given by:

Birth of a prey: The prey population grows with reproduction but is limited by competition.
Γ1 = (1, 0) with rate r1,n(q) = q1(nκ − q1) if q1 ≤ nκ and r1,n(q) = 0 otherwise.

Death of a prey: A prey dies upon meeting a predator at rate α. Γ1 = (−1, 0) with rate
r2,n(q) =

α
n q1q2 if q1 ≤ nκ and r2,n(q) = ακq2 otherwise.
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Birth of a predator: The predator population grows when a predator kills and eats prey at
rate β. Γ3 = (0, 1) with rate r3,n(q) =

β

n q1q2 if q1 ≤ nκ and r3,n(q) = βκq2 otherwise.
The cut-off corresponds to the maximum carrying capacity of the population of prey. That
is: the population of prey is large enough so that the amount of food for the population
of predators is essentially unlimited, implying that their reproduction rate only depends
on their own population size.

Death of a predator: The predators live for an exponential time with mean µ. That is: Γ4 =

(0,−1) and r4,n(q) = µq2.

The model satisfies the conditions of Theorem 3.14 with H0 :

H0(x, p) = x1 (κ − (x1 ∧ κ))
(
ep1 − 1

)
+ α(x1 ∧ κ)x2

(
e−p1 − 1

)
+β(x1 ∧ κ)x2

(
ep2 − 1

)
+ µy

(
e−p2 − 1

)
.

Example 3.17 (SI Model with Recovery and Population Dynamics). Consider a population
where individuals are divided into three groups: the susceptible, the infected, and the recovered
immune individuals. We model the sizes of these three groups by the process (X1

n, X2
n, X3

n).
Denote S(x) = x1 + x2 + x3. Consider the following interaction transitions for the process
given

(
X1

n(t), X2
n(t), X3

n(t)
)

= (q1, q2, q3):

Infection: A susceptible individual has a chance to fall sick upon meeting an infected
individual . The transition vector reads Γ1 = (−1, 1, 0) and the transition rate is r1,n(q) =
β

n (q1 ∧ κ)q2.

Recovery: An infected individual recovers from the disease and gains immunity. Γ2 =

(0,−1, 1) and the transition rate is r2,n(q) = αq2.

Birth of an individual: Suppose that individual are born susceptible, Γ3 = (1, 0, 0) and
r3,n(q) =

S(q)
n (nκ − S(q)) if s(q) ≤ nκ and r3,n(q) = 0 otherwise.

Death of an individual: for k ∈ {1, 2, 3}, we have transitions Γ4,k = −δk with r4,k,n(q) =

µkqk .

The conditions for Theorem 3.14 hold with H0 :

H0(x, p) = β(x1 ∧ κ)x2
(
ep2−p1 − 1

)
+ αx2

(
ep3−p2 − 1

)
+ S(x)(κ − (S(x) ∧ κ))

(
ep1 − 1

)
+

3∑
k=1

µk xk
(
e−pk − 1

)
.

3.4. Discussion on extendability of the methods

In the beginning of Section 3 we stated that our results serve as an illustration of the scope
of the general framework in the paper. We discuss shortly the extent of applicability of our
methods.

For the one dimensional setting, one can consider models that combine features of the
examples of Section 4.3. A quick scan of the proofs of these results shows that the three main
conditions that need to be verified (notation and definitions will be introduced below) are:

• There needs to be a good containment function Υ for H (See Definition 4.2). A
containment function is a type of Lyapunov function that implies that the process remains
in compact sets on finite time intervals with large probability.
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• We need to verify Conditions 4.7 and 4.8 for H. These conditions can simply be read of
from the generating set of Hamiltonians.

It should be noted that Condition 4.7 is not satisfied for the generating set of Hamiltonians
that arises from the scaling limit of diffusions with reflecting boundary, see e.g. Sections 9.3
and 10.5 in [14]. A relaxation of this condition that covers both this case, as well as reflected
diffusions, would be of interest.

For the multi-dimensional setting, we have only considered the case E = [0,∞)d in
Theorem 3.14 which in turn is immediately derived from Theorem 4.16.

Theorem 4.16 can be extended in a straightforward way by adapting Step 2 of its proof.
The extension is restricted, however, to the context where the transitions that are discontinuous
at the boundary are perpendicular to the boundary.

The only work known to the authors that includes a comparison principle for Hamiltonians
with discontinuous rates for non-perpendicular jumps is [12]. In this setting, the rates,
however, are spatially homogeneous. A comparison principle for a Hamiltonian that features a
combination of inhomogeneous rates and discontinuity for non-perpendicular jumps would be
of interest as well. What is necessary for such a substantial extension is unclear to the authors.

4. A general framework for Hamilton–Jacobi equations with a boundary

In the approach to large deviations by [14] and [12], also applied more recently in
e.g. [5,10,19], the distributional information of the process at finite n related to the large
deviations is encoded in the solutions fn of a class of Hamilton–Jacobi equation f −λHn f = h,
λ > 0, h ∈ Cb(En). Given that the Hamiltonians Hn have a natural limiting upper bound H†
and lower bound H‡, semi-relaxed limits f and f of fn , see (5.1), give a sub-solution and
super-solution to

f − λH† f = h, f − λH‡ f = h

respectively. To show that the sub- and super-solution coincide and give a proper ‘solution’
to this combination of equations, we need the comparison principle. This we carry out in the
sections below.

Throughout the section, we assume that E is a convex polyhedron with non-empty interior.

4.1. Viscosity solutions to Hamilton–Jacobi equations

Definition 4.1 (Viscosity Solutions). Let H† ⊆ Cl(E)×Mu(E,R) and H‡ ⊆ Cu(E)×Ml(E,R)
and let λ > 0 and h ∈ Cb(E). Consider the Hamilton–Jacobi equations

f − λH† f = h, (4.1)

f − λH‡ f = h. (4.2)

We say that u is a (viscosity) subsolution of Eq. (4.1) if u is bounded, upper semi-continuous
and if, for every f ∈ D(H†) there exists a sequence xn ∈ R such that

lim
n↑∞

u(xn) − f (xn) = sup
x

u(x) − f (x),

lim
n↑∞

u(xn) − λH† f (xn) − h(xn) ≤ 0.
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We say that v is a (viscosity) supersolution of Eq. (4.2) if v is bounded, lower semi-continuous
and if, for every f ∈ D(H‡) there exists a sequence xn ∈ R such that

lim
n↑∞

v(xn) − f (xn) = inf
x
v(x) − f (x),

lim
n↑∞

v(xn) − λH‡ f (xn) − h(xn) ≥ 0.

We say that u is a (viscosity) solution of Eqs. (4.1) and (4.2) if it is both a subsolution to (4.1)
and a supersolution to (4.2).

We say that (4.1) and (4.2) satisfy the comparison principle if for every subsolution u to
(4.1) and supersolution v to (4.2), we have u ≤ v.

We will study the Hamilton–Jacobi equations for the operators H†, H‡ that have been
constructed from a generating set of Hamiltonians {HJ }J∈J(E) as in Definition 2.9.

4.2. A general method to verify the comparison principle

In this section, we give the main technical results used in the text above that can be used to
verify comparison principles. These methods are fairly standard, do not use any structure of our
particular setting in a crucial way, and follow those in [5,7,14,16]. The proofs of Proposition 4.5
and Lemma 4.6 do require minor adjustments of these methods and have therefore been given
in Appendix A. The results are based on a good containment function and a good penalization
function.

Good containment functions play the role of a Lyapunov function and allow our analysis to
be restricted to compact regions in E . The penalization functions are used in a distance like
way.

Definition 4.2. Let {HJ }J∈J(E) be a generating set of Hamiltonians. We say that Υ : E → R
is a good containment function (for H = {HJ }J∈J(E)) if

(Υa) Υ ≥ 0 and there exists a point x0 such that Υ (x0) = 0,
(Υb) Υ is twice continuously differentiable,
(Υc) Υ has compact sub-level sets: for every c ≥ 0, the set {x ∈ E |Υ (x) ≤ c} is compact,
(Υd) we have maxJ∈J(E) supz∈E J

HJ (z,∇Υ (z)) < ∞.

Definition 4.3. We say that Ψ : E2
→ R+ is a good penalization functions if

(Ψa) Ψ (x, y) = 0 if and only if x = y;
(Ψb) Ψ is twice continuously differentiable in both coordinates;
(Ψc) (∇Ψ (·, y))(x) = −(∇Ψ (x, ·))(y).

The first result can be found as Proposition 3.7 of [7] or Lemma 9.2 in [14].

Lemma 4.4. Let u be bounded and upper semi-continuous, let v be bounded and lower
semi-continuous, let Ψ : E2

→ R+ be a good penalization function and let Υ : E → R+ have
compact sub-level sets. Fix ε > 0. For every α > 0 there exist points xα,ε, yα,ε ∈ E, such that

u(xα,ε)
1 − ε

−
v(yα,ε)
1 + ε

− αΨ (xα,ε, yα,ε) −
ε

1 − ε
Υ (xα,ε) −

ε

1 + ε
Υ (yα,ε)

= sup
x,y∈E

{
u(x)
1 − ε

−
v(y)
1 + ε

− αΨ (x, y) −
ε

1 − ε
Υ (x) −

ε

1 + ε
Υ (y)

}
.
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Let {xα,ε, yα,ε}α,ε be such a collection of points. For every ε > 0 we have

(a) The set {xα,ε, yα,ε |α > 0} is relatively compact in E.
(b) All limit points of {(xα,ε, yα,ε)}α>0 are of the form (z, z) and for these limit points we

have u(z) − v(z) = supx∈E {u(x) − v(x)}.
(c) We have

lim
α→∞

αΨ (xα,ε, yα,ε) = 0.

The following result gives us the explicit condition that can be used to verify the comparison
principle.

Proposition 4.5. Let {HJ }J∈J(E) be a generating set of Hamiltonians. Let Υ be a good
containment function for {HJ }J∈J(E) and let Ψ be a good penalization function. Fix λ > 0,
h ∈ Cb(E) and consider u a subsolution to f − λH† f = h and v a supersolution to
f − λH‡ f = h.

For every α, ε > 0 let xα,ε, yα,ε ∈ E be such that

u(xα,ε)
1 − ε

−
v(yα,ε)
1 + ε

− Ψα(xα,ε, yα,ε) −
ε

1 − ε
Υ (xα,ε) −

ε

1 + ε
Υ (yα,ε)

= sup
x,y∈E

{
u(x)
1 − ε

−
v(y)
1 + ε

− Ψα(x, y) −
ε

1 − ε
Υ (x) −

ε

1 + ε
Υ (y)

}
. (4.3)

Suppose that

lim inf
ε→0

lim inf
α→∞

H†
(
xα,ε,∇Ψα(·, yα,ε)(xα,ε)

)
−H‡

(
yα,ε,∇Ψα(·, yα,ε)(xα,ε)

)
≤ 0, (4.4)

then u ≤ v. In other words: the comparison principle holds for subsolutions to fλH† f = h
and supersolutions to f − λH‡ f = h.

We will establish (4.4) in Sections 4.3 and 4.4 for a collection of Hamiltonians that appear
in our applications.

The next lemma aids the verification of (4.4) by giving control on the sequences (xα,ε, yα,ε).
The result is an adaptation of Lemma 9.3 in [14]. For a slightly less involved variant, see
Lemma 5 in [16].

Lemma 4.6. Let {HJ }J∈J(E) be a generating set of Hamiltonians. Let h ∈ Cb(E) and λ > 0
and let v be a supersolution to f − λ‡H = h. Let Ψ be a good penalization function and Υ
be a good containment function for {HJ }J∈J(E). Moreover, for every α, ε > 0 let xα,ε, yα,ε ∈ E
be as in (4.3). Then we have that

sup
ε,α

H‡
(
yα,ε, α(∇Ψ (·, yα,ε))(xα,ε)

)
< ∞. (4.5)

4.3. The comparison principle for one dimensional systems

We proceed by applying the general result for the verification of the comparison principle
in the one-dimensional setting. For the verification, we need additional assumptions on
the generating Hamiltonians. We start by interpreting Definitions 2.3, 2.4 and 2.9 in this
one-dimensional setting.
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Consider E ⊆ R be an interval and let ∂−, ∂+ be the boundaries of E in the set R∪{−∞,∞}.
We will consider the setting that E is open, half open or closed. Clearly, E is of the form as
in Definitions 2.3 and 2.4. We will use −,+ as indices instead of 1, . . . , k for the sets that
generate E .

In particular, if ∂− ∈ E , then E− := {∂−} and Γ{−} = [0,∞) and if ∂+ ∈ E , then E+ := {∂+}

and Γ{+} = (−∞, 0].
In this setting, a collection of generating Hamiltonians takes a particularly simple form, there

is a base Hamiltonian H∅, as well as an Hamiltonian for each boundary point z ∈ E ∩ ∂E .
I.e. we have a generating set of Hamiltonians {H∅} ∪ {Hz}z∈{−,+}. Finally, condition (c) of
Definition 2.9 translates into

∂− ∈ E ∩ ∂E H⇒ ∂pH−(∂−, p) ≥ 0,

∂+ ∈ E ∩ ∂E H⇒ ∂pH+(∂+, p) ≤ 0.

To prove the comparison principle, we will use the following conditions on the Hamiltonian.

Condition 4.7. Let {H∅} ∪ {Hz}z∈{−,+} be a generating set of Hamiltonians.

Behaviour in the interior For each direction d ∈ {−,+} and all compact K ⊆ E◦ we have
either (1) or (2)

(1)

lim
p→d∞

inf
x∈K

H∅(x, p) = ∞;

(2) there is a continuous function hd
: K → R such that

lim
p→d∞

sup
x∈K

⏐⏐H∅(x, p) − hd (x)
⏐⏐ = 0.

Relating the boundary to the interior For each boundary ∂s ∈ E ∩ ∂E it holds

−sp ≥ 0 H⇒ Hs(∂s, p) ≥ H∅(∂s, p);

−sp ≤ 0 H⇒ Hs(∂s, p) ≤ H∅(∂s, p).

The main step when verifying the comparison principle for points at the boundary is
bounding the Hamiltonians H† and H‡ by H∅. This step allows us to proceed as if we were in
the interior. We thus pose additional conditions for the behaviour of H∅ close to the boundary.
We distinguish between a weak and a strong condition. The weak condition is sufficient for
the verification of the comparison principle, whereas the strong condition plays an important
role when we take sums of Hamiltonians, see Lemma 4.13.

Condition 4.8 (Conditions for the Boundary). Let {H∅} ∪ {Hz}z∈{−,+} be a generating set
of Hamiltonians. For each boundary s ∈ {−,+} such that ∂s ∈ R ∩ E and each direction
d ∈ {−,+} either the weak or the strong condition holds:

Strong condition There is a closed interval of positive length K ⊆ E and ∂s ∈ K such that

lim
p→d∞

inf
x∈K

H∅(x, p) = ∞.

Weak condition We have either (1) or (2):
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(1) There is a closed interval of positive length K ⊆ E and ∂s ∈ K and a continuous
function hd

s on K such that

lim
p→d∞

sup
x∈K

⏐⏐H∅(x, p) − hd
s (x)

⏐⏐ = 0.

(2) For xα, yα → ∂s and pα = α(xα − yα) → d∞, we have

lim inf
α→∞

H∅(xα, pα) − H∅(yα, pα) ≤ 0.

Remark 4.9. Note that weak condition (1) implies weak condition (2), but is often easier to
check. For the Hamiltonian H(x, p) = x

[
e−p

− 1
]

on the space [0,∞) and s = −, d = −,
condition (2) holds as

H∅(xα, α(xα − yα)) − H∅(yα, α(xα − yα)) = [xα − yα]
[
e−α(xα−yα )

− 1
]

≤ 0

due to the anti-symmetry of the occurrence of the difference xα − yα . The strong condition,
nor the weak condition (1) holds.

Remark 4.10. Consider the Hamiltonian corresponding to the Yule process: H(x, p) =

x [ep
− 1] on the space [0,∞). It follows that Condition 4.8 fails for d = +, corresponding

with our discussion in Section 3.2

Theorem 4.11. Let H := {H∅} ∪ {Hz}z∈{−,+} be a generating set of Hamiltonians. Suppose
that H has a good containment function Υ and satisfies Conditions 4.7 and 4.8. Let h ∈ Cb(E)
and λ > 0.

Then the comparison principle holds for subsolutions to f −λH† f = h and supersolutions
to f − λH‡ f = h.

Proof of Theorem 4.11. We verify the conditions for Proposition 4.5 using the penalization
function Ψ (x, y) =

1
2 (x − y)2.

Thus, for α, ε > 0 let xα,ε, yα,ε ∈ E be such that
u(xα,ε)
1 − ε

−
v(yα,ε)
1 + ε

− Ψα(xα,ε, yα,ε) −
ε

1 − ε
Υ (xα,ε) −

ε

1 + ε
Υ (yα,ε)

= sup
x,y∈E

{
u(x)
1 − ε

−
v(y)
1 + ε

− Ψα(x, y) −
ε

1 − ε
Υ (x) −

ε

1 + ε
Υ (y)

}
.

We fix ε > 0 and prove that

lim inf
α→∞

H†
(
xα,ε, α∇Ψ (·, yα,ε)(xα,ε)

)
− H‡

(
yα,ε, α∇Ψ (·, yα,ε)(xα,ε)

)
≤ 0. (4.6)

This implies that (4.4) is satisfied and the comparison principle holds.
From this point onward, we drop ε > 0 from our notation. In addition, we write pα :=

α∇Ψ (·, yα)(xα) = α(xα − yα) to shorten formula’s below. By Lemma 4.4, the sequences
{xα, yα}α>0 are contained in some compact set and all limit points are of the form (z, z). Thus,
without loss of generality, we can assume that (xα, yα) → (z, z). The proof proceeds depending
on whether z is in the interior or is a boundary point.

Step 1: Suppose that z ∈ E◦. Then there is some compact set K ⊆ E◦ with z ∈ K .
Without loss of generality, we can assume that (xα, yα) contains a subsequence such that

pα ≥ 0. We will denote the subsequence also by α. We argue using Condition 4.7 holds for
d = + (In the case we have a subsequence with pα ≤ 0, we would argue with d = −).
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Suppose that Condition 4.7 (1) holds. Then it follows by Lemma 4.6 that supα |pα| < ∞.
In this case, we can extract a converging subsequence with index α̂, which implies, using the
continuity of H∅ that

lim
α̂→∞

H† (xα̂, pα̂)− H† (yα̂, pα̂) = lim
α̂→∞

H∅ (xα̂, pα̂)− H∅ (yα̂, pα̂) = 0

implying (4.6).
Suppose that Condition 4.7 (2) holds. If as above, the sequence pα contains a bounded

subsequence, then (4.6) holds. If, however, pα → ∞, then

lim
α̂→∞

H† (xα̂, pα̂)− H† (yα̂, pα̂) = lim
α̂→∞

H∅ (xα̂, pα̂)− H∅ (yα̂, pα̂) = h+(z) − h+(z) = 0

implying (4.6).

Step 2: Suppose that z = ∂−. The case of z = ∂+ is similar. We show that we can argue
using the operator H∅ instead of H† and H‡. By Condition 4.7, we find that pα ≥ 0 implies
H−(∂−, pα) ≥ H∅(∂−, pα), so that H‡(yα, pα) = H∅(yα, pα). In addition, if pα = 0,
then H†(xα, pα) = H∅(xα, pα), whereas if pα > 0, then xα > yα ≥ ∂−, so that also
H†(xα, pα) = H∅(xα, pα). Similar arguments treat the case pα ≤ 0. We conclude that for
all α > 0 we have

H†(xα, pα) = H∅(xα, pα), H‡(yα, pα) = H∅(yα, pα).

This implies we can argue by using H∅ instead of H†,H‡, which is analogous as to the proof
in step 1. □

To conclude this section on the comparison principle for one-dimensional systems, we show
that satisfying Conditions 4.7 and 4.8 is stable under the formation of finite sums. This makes
checking the conditions easy: if it holds for easily identifiable building blocks of a Hamiltonian,
then it holds for the sum of these Hamiltonians.

Definition 4.12. Let Hi := {HJ,i }J∈J(E), i ∈ {1, . . . , k} be generating sets of Hamiltonians.
We define H :=

∑k
i=1 Hi to be the set of Hamiltonians {HJ }J∈J(E), where HJ =

∑k
i=1 HJ,k .

Note that H is also a generating set of Hamiltonians.

Lemma 4.13. Let Hi := {H∅,i } ∪ {Hz,i }z∈{−,+}, i ∈ {1, . . . , k} be a generating sets of
Hamiltonians that satisfy Condition 4.7. Suppose that for each s ∈ {−,+} with ∂s ∈ E ∩ ∂E
we have (a) or (b):

(a) H∅,1, . . . ,H∅,k satisfy Condition 4.8.
(b) There is i ∈ {1, . . . , k} such that H∅,i satisfies strong Condition 4.8.

Then H := H1 + · · · + Hk satisfies Conditions 4.7 and 4.8.

Proof. All claims are immediate. □

4.4. The comparison principle for a class of multi-dimensional systems

We proceed with giving easily verifiable conditions for a class of Hamiltonians on E :=

[0,∞)d that corresponds to the large deviations of d interacting species. Regarding the
boundary structure that we introduced in Section 2.2, we write Ei = {x ∈ E, xi = 0} for all i .
For J ⊆ {1, . . . , d}, we write E J :=

⋂
i∈J Ei .
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The dynamics that we will consider consists of two parts. The first part arises from
interaction between individuals. This leads to a base Hamiltonian H0 that vanishes on the
boundary. We will consider a second part that consists of immigration of individuals, and a
second part that consists of harvesting. This final part introduces a discontinuity of the dynamics
at the boundary.

Condition 4.14. We have a continuous map H0(x, p) such that p ↦→ H0(x, p) is convex
for each x ∈ E . In addition, we have for each i ∈ {1, . . . , d} positive continuous functions
ai , bi : E → R.

H0 and ai , bi satisfy either (a) or (b):

(a) (i) For each compact K ⊆ E there is a MK ≥ 0 such that

H0(x, p) ≥ −|p|MK .

(ii) For each i ∈ {1, . . . , d} the functions ai , bi are strictly positive continuous.
(b) (i) For each compact set K ⊆ E◦ there is some MK ≥ 0 such that

lim
|p|→∞

inf
x∈K

H(x, p)
|p|

≥ MK .

(ii) The functions ai , bi are strictly positive on a neighbourhood of ∂E .

The difference in conditions (a) and (b) is as follows: (b) requires at least linear growth of
H0 but puts no conditions on ai , bi on the interior of E , whereas (a) relaxes the growth of H0
and puts conditions on ai , bi on the interior instead.

Remark 4.15. Note that a map H0 that is continuously differentiable immediately satisfies
the lower bound in (a).(i) as H0(x, p) ≥ |p||∂pH0(x, 0)|.

We then consider the generating set of Hamiltonians H defined as

H∅(x, p) = H0(x, p) +

d∑
k=1

ak(x)(epk − 1) + bk(x)(e−pk − 1)

and for J ∈ J(E) and x ∈ E J

HJ (x, p) = H0(x, p) +

∑
k∈J

ak(x)(epk − 1) +

∑
l /∈J

al(x)(epl − 1) + bl(x)(e−pl − 1).

Theorem 4.16. Let Condition 4.14 be satisfied for H and suppose there is a good containment
function Υ for H. Then the comparison principle holds for subsolutions to f −λH† f = h and
supersolutions to f − λH‡ f = h.

Proof. Before starting, note that Condition 4.14 implies that for any compact set K ⊆ E ,
∀ 1 ≤ j ≤ d ,

lim
|p|→∞

inf
x∈K

H∅(x, p) = ∞. (4.7)

To establish the comparison principle, we use Proposition 4.5 with penalization function
Υ (x, y) =

1
2 |x − y|

2. Thus, for α, ε > 0 let xα,ε, yα,ε ∈ E be such that

u(xα,ε)
1 − ε

−
v(yα,ε)
1 + ε

− Ψα(xα,ε, yα,ε) −
ε

1 − ε
Υ (xα,ε) −

ε

1 + ε
Υ (yα,ε)
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= sup
x,y∈E

{
u(x)
1 − ε

−
v(y)
1 + ε

− Ψα(x, y) −
ε

1 − ε
Υ (x) −

ε

1 + ε
Υ (y)

}
.

We fix ε > 0 and prove that

lim inf
α→∞

H†
(
xα,ε, α∇Ψ (·, yα,ε)(xα,ε)

)
− H‡

(
yα,ε, α∇Ψ (·, yα,ε)(xα,ε)

)
≤ 0. (4.8)

Henceforth, we drop the ε from the notation. By Lemma 4.4 the sequences (xα, yα) are
contained in some compact set with limit points of the form (z, z). Up to a subsequence we
can suppose {xα, yα} → (z, z). Write

pα = (pα,1, pα,2...., pα,d ) := α∇Ψ (·, yα)(xα).

The rest of the proof depends on whether z belongs to the boundary or not.

Step 1: Suppose that z ∈ E◦. Then let K ⊆ E◦ a compact set with z ∈ K . Lemma 4.6 combined
with (4.7) ensures that ∀ 1 ≤ j ≤ d, |pα, j | < ∞. Thus going to a subsequence such that pα
converges, continuity of H∅ implies that (4.8) holds.

Step 2: Suppose that z ∈ ∂E . Note that as pα, j = α(xα, j − yα, j ) for each j :{
1 ≤ j ≤ d

⏐⏐ xα, j = 0
}

⊆
{
1 ≤ j ≤ d

⏐⏐ pα, j ≤ 0
}
.

Next, let J ∈ J(E) such that xα ∈ E J . We find that pα, j ≤ 0 and, hence,

H∅(xα, pα) − HJ (xα, pα) =

∑
j∈J

b j (xα)
(
e−pα, j − 1

)
≥ 0.

As this holds for all J with xα ∈ E J , we find H†(xα, pα) = maxJ∈J(E):xα∈E J HJ (xα, pα) =

H∅(xα, pα). Similarly, one establishes H‡(yα, pα) = H∅(yα, pα).
Thus (4.8) follows as in step 1. □

5. Application to large deviations

In the extensive monograph, [14], Feng and Kurtz introduced a general method to prove
large deviations with speed rn for a sequence of Markov processes {Xn}n≥1, having generators
{An}n≥1, via the well-posedness of associated Hamilton–Jacobi equations. See [17,18] for a
recent new proof of this result. The Feng–Kurtz strategy is based on three observations.

(1) By an extended variant of the projective limit theorem, the large deviation principle for
processes follows from exponential tightness combined with large deviation principles
for the finite dimensional distributions.

(2) The large deviation principle for finite dimensional distributions is established by a
variant of Bryc’s theorem, using the Markov property of the processes. It suffices to
assume large deviations for time 0 and that the semigroup of conditional log-Laplace
transforms

Vn(t) f (x) =
1
rn

logE
[
ern f (Xn (t))

|Xn(0) = x
]

converge to a limiting semigroup V (t).
(3) Using control theory, the limiting semigroup can be rewritten as a variational semigroup,

which allows to rewrite the rate-function in Lagrangian form.
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The convergence of semigroups for (2) uses non-linear semigroup theory. We discuss the
connection of the convergence of semigroups to the comparison principles that we studied in
Section 4.

For each n, we distinguish three objects of importance:

• The semigroup {Vn(t)}t≥0;
• The formal generator Hn =

d
dt |t=0Vn(t) f of the semigroup {Vn(t)}t≥0 is given by Hn f =

r−1
n e−n f Anen f ;

• The resolvents {R(λ)}λ>0, formally given by R(λ) = (1 − λHn)−1.

The main step in the Trotter–Kato–Kurtz proof of the convergence of semigroups is that
the convergence of resolvents implies the convergence of semigroups. This result is usually
extended with the fact that the convergence of generators, and a limiting generator that is
sufficiently big, implies the convergence of resolvents.

In our setting, it is not clear how to directly construct a limiting generator as the coefficients
of the generator can be discontinuous at the boundary. As a consequence, it is also not clear
how to establish the convergence of resolvents directly.

The theory of viscosity solutions provides us with an alternative. [14] introduce two
operators H† ⊆ ex − subLIMn Hn , H‡ ⊆ ex − superLIMn Hn that serve as a limiting ‘upper’
and ‘lower’ bound for the operators Hn , see Definition 5.3. These upper and lower bounds can
be used to obtain upper and lower bounds for the limiting resolvent: let hn converge boundedly
and uniformly on compacts to a function h, then one can show that the functions f , f given
by

f (x) := sup
{

lim sup
n→∞

Rn(λ)hn(xn)
⏐⏐⏐⏐ xn → x

}
,

f (x) := inf
{

lim inf
n→∞

Rn(λ)hn(xn)
⏐⏐⏐ xn → x

}
,

(5.1)

are a viscosity subsolution to f − λH† f = h and a viscosity supersolution to f − λH‡ f = h
respectively. Thus, if the comparison principle is satisfied, there is a unique limiting function
f = f , which we will denote by R(λ)h. By the Crandall–Liggett theorem, [8], these resolvents
generate a semigroup

V (t) f = lim
n→∞

R
(

t
n
, H

)n

f,

and by the Trotter–Kurtz approximation theorem we have Vn(t) → V (t).
To conclude this discussion: the comparison principle is sufficient to establish (2), which,

combined with a standard verification of exponential tightness (1), is sufficient to establish
path-space large deviations of a sequence of Markov processes.

Before discussing this results in Section 5.2, we introduce control theory in Section 5.1, so
that (3) leads us to a Lagrangian form of the rate function. Using control theory, we follow [14]
in introducing a variational semigroup {V(t)}t≥0, as well as a variational resolvent {R(λ)}λ>0.
It can be shown, cf. [14, Theorem 8.27] that the variational resolvent also yields subsolutions
to f − λH† f = h and supersolutions to f − λH‡ f = h. Thus, the comparison principle
establishes that the variational resolvent must equal the resolvent R(λ). This in turn establishes
the equality of semigroups, which leads to a Lagrangian form of the rate function.
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5.1. Control theory

Let E be a d dimensional convex Polyhedron, let H = {HJ }J∈J(E) be a generating set of
Hamiltonians and let LJ : E J × Rd

→ [0,∞] and L : E × Rd
→ [0,∞] the corresponding

Lagrangians as defined in Definition 2.10. Using L we introduce a variational semigroup and
resolvent:

V(t) f (x) := sup
γ∈AC,
γ (0)=x

{
f (γ (t)) −

∫ t

0
L(γ (s), γ̇ (s))d

}
,

R(λ) f (x) := lim sup
t→∞

sup
γ∈AC
γ (0)=x

{∫ t

0
λ−1e−λ−1t

(
f (γ (t)) −

∫ s

0
L(γ (r ), γ̇ (r ))dr

)
ds
}
.

In the next two propositions, we establish the conditions that are needed for the application
of the control theory component of [14, Theorem 8.27]. The first result can be used to establish
the path-space compactness of the set of trajectories that start in a compact set and have
uniformly bounded Lagrangian cost. The compactness of this set can be used to establish
various properties of V and R. The second result is crucial in establishing that the lower
semi-continuous regularization of R(λ)h is a viscosity supersolution to the Hamilton–Jacobi
equation f − λH‡ f = h.

These properties are proven in [14], where the results of the propositions below are taken as
an input for the theory. The outcomes of these are used to establish the variational expression
of the rate-function in Theorem 5.8.

Proposition 5.1. Let {HJ }J∈J(E) be a generating set of Hamiltonians. Suppose there is a good
containment function Υ for {HJ }J∈J(E). Then we have

(a) L : E × Rd
→ [0,∞] is lower semi-continuous and for each compact set K ⊆ E and

c ∈ R the set{
(x, v) ∈ K × Rd

|L(x, v) ≤ c
}

is compact in E × Rd

(b) For each compact K ⊆ E, T > 0 and 0 ≤ M < ∞, there exists a compact set
K ′

= K ′(K , T,M) ⊆ E such that γ ∈ AC and γ (0) ∈ K and∫ T

0
L(γ (s), γ̇ (s)) ds ≤ M

implies γ (t) ∈ K ′ for all 0 ≤ t ≤ T .
(c) For each f ∈ C2

b (E) and compact K ⊆ E, there exists a right-continuous non-
decreasing function ψ f,K : R+

→ R+ such that limr→∞ r−1ψ f,K (r ) = 0 and

|⟨∇ f (x), v⟩| ≤ ψ f,K (L(x, v)), ∀(x, v) ∈ E × Rd , x ∈ K .

Proof. (a) L : E × Rd
→ [0,∞] is lower semi-continuous as it is the Legendre transform of

H†. The compactness of the level sets follows as in the proof of Lemma 2 in [16].
(b) The proof is a standard Lyapunov function proof. We follow [5]. Let γ be absolutely

continuous with Lagrangian cost bounded by M and γ (0) ∈ K . Let t ≤ T , then

Υ (γ (t)) = Υ (γ (0)) +

∫ t

0
⟨∇Υ (γ (s)), γ̇ (s)⟩ds
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≤ Υ (γ (0)) +

∫ t

0
L(γ (s), γ̇ (s)) + H(γ (s),∇Υ (γ (s)))ds

≤ sup
y∈K

Υ (y) + M +

∫ T

0
sup

z
sup

J :z∈E J

HJ (z,∇Υ (z))ds

=: C < ∞.

Thus, we can take K ′
= {z ∈ E |Υ (z) ≤ C}.

(c) follows as in the proof of Lemma 10.21 in [14]. Note that as the H ′

J s are continuous,
we have

HK (c) = sup
|p|≤c

sup
x∈K

H†(x, p) ≤ sup
|p|≤c

sup
x∈K

max
J : x∈E J

HJ (x, p) < ∞,

which is an essential ingredient for the proof in [14]. □

Proposition 5.2. Let {HJ }J∈J(E) be a generating set of Hamiltonians. Suppose there is a good
containment function Υ for {HJ }J∈J(E).

Then there exists for each x ∈ E and f ∈ C2
c (E) a γ ∈ AC with γ (0) = x such that for all

t1 < t2:∫ t2

t1

H‡ f (γ (s))ds ≤

∫ t2

t1

⟨d f (γ (s)), γ̇ (s)⟩ − L(γ (s), γ̇ (s)) ds.

The proof of the proposition uses the theory of differential inclusions. In Appendix D, we
give the relevant basic definitions and a result that establishes the existence of a solution to
‘well behaved’ differential inclusions.

Proof. Pick f ∈ C2
c (E) and x ∈ E .

Step 1: Suppose we have a solution γ f to the differential inclusion

γ̇ f (s) ∈ F f (x) := ch
⋃

J :x∈E J

∂pHJ (γ f (s),∇ f (γ f (s))), γ f (0) = x . (5.2)

We show that∫ t2

t1

H‡ f (γ f (s))ds ≤

∫ t2

t1

⟨∇ f (γ f (s)), γ̇ f (s)⟩ − L(γ f (s), γ̇ f (s)) ds. (5.3)

It suffices to show that for almost every s, we have ∇ f (γ f (s))γ̇ f (s) − L(γ f (s), γ̇ f (s)) ≥

H‡ f (γ f (s)). In particular, it suffices to do this for all times s at which ˙γ f (s) ∈ F f (γ f (s)).
Thus, suppose v ∈ F f (y). Then there are λJ and vJ = ∂pHJ (y,∇ f (y)) such that

v =
∑
λJvJ . As L(y, v) ≤ L̂(y, v) ≤

∑
λJLJ (x, vJ ):

⟨∇ f (y), v⟩ − L(y, v) ≥

∑
λJ (⟨∇ f (y), vJ ⟩ − LJ (y, vJ ))

≥

∑
λJHJ (y,∇ f (y))

≥ H‡(y,∇ f (y)),

establishing (5.3).
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Step 2: We construct a solution to the differential inclusion (5.2), for which we use Lemma D.4.
Note that the Lemma assumes growth bounds on the size of F f , that are not necessarily
satisfied.

Step 2a: Therefore, we start with a priori control on the range of a solution. Let, as in step 1,
γ f be a solution to (5.2). (5.3) implies∫ T

0
L(γ f (s), γ̇ f (s))ds ≤

∫ T

0
⟨∇ f (γ f (s)), γ̇ f (s)⟩ − H‡ f (γ f (s)) ds.

Note that as f has compact support in E , the map x ↦→ H‡(x,∇ f (x)) is bounded from below
as all HJ are continuous, and F f is bounded on compact sets, there is some M ≥ 0 such that∫ T

0
L(γ f (s), γ̇ f (s))ds ≤ M.

We conclude by Proposition 5.1(b) that the trajectory γ f remains in some compact set K ′
⊆ E .

Step 2b: By step 2a, it suffices to construct a solution to γ̇ ∈ F̂ f (γ ), where F̂ f equals F f on
K ′, and is equal to 0 outside a neighbourhood of K ′. For example, we can smoothly multiply
F f by a cut-off function.

Thus, we construct a solution using Lemma D.4. We will verify the conditions for F f . Note
that the modification above can be made such to preserve the conditions for this lemma.

We check the conditions (a)–(d). (a) is clear by definition. For (b), fix x ∈ E and a
neighbourhood U of F(x). We write J ∗

:= J ∗(x). As for each J the set E J is closed in
E by Definition 2.4, we can choose a neighbourhood V of x that is contained in the E interior
of E J∗ . This implies that for y ∈ V0 the set F f (y) is the convex hull of ∂pHJ (y,∇ f (y)) with
J ⊆ J ∗. Because ∂pHJ is continuous for each such J by Definition 2.9(b), we can find a
smaller neighbourhood V ⊆ V0 with x ∈ V so that F f (y) ⊆ U for all y ∈ V, establishing that
F f is upper semi-continuous.

For (c), first note that TE (x) = Tx E . Let J ∗
:= J ∗(x). By Definition 2.9(c), we have

∂pHJ∗ (x,∇ f (x)) ⊆ Tx E implying that F f (x) ∩ Tx E ̸= ∅.
Finally, (d) follows from Definition 2.9(d).
Thus, by Lemma D.4 there is a solution γ f to the differential inclusion (5.2). □

5.2. Synthesis: a general large deviation principle

To connect the Hamilton–Jacobi equation to the large deviation principle, we introduce some
additional concepts. For E ⊆ Rd and En ⊆ E for all n, we write E = limn→∞ En if for every
x ∈ E there exists xn ∈ En such that xn → x .

For fn ∈ Cb(En) and f ∈ Cb(E), we write LIM fn = f if supn || fn|| < ∞ and if for each
compact K ⊆ E , we have

lim
n→∞

sup
x∈K∩En

| fn(x) − f (x)| = 0.

Definition 5.3 (Condition 7.11 in [14]). Suppose that for each n we have an operator
Hn ⊆ Cb(En) × Cb(En). Let (vn)n≥0 be a sequence of real numbers such that vn ↑ ∞.

The extended sub-limit, denoted by ex − subLIMn Hn , is defined by the collection ( f, g) ∈

Cl(E) × Mu(E,R) for which there exists ( fn, gn) ∈ Hn such that

LIM fn ∧ c = f ∧ c, ∀ c ∈ R, (5.4)
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sup
n

1
vn

log ||gn|| < ∞, sup
n

sup
x∈En

gn(x) < ∞, (5.5)

and that, for every compact set K ⊆ E and every sequence zn ∈ K ∩ En satisfying limn zn = z
and limn fn(zn) = f (z) < ∞, we have

lim sup
n↑∞

gn(zn) ≤ g∗(z). (5.6)

The extended super-limit, denoted by ex − superLIMn Hn , is defined by the collection ( f, g) ∈

Cu(E) × Ml(E,R) for which there exist ( fn, gn) ∈ Hn such that

LIM fn ∨ c = f ∨ c, ∀ c ∈ R, (5.7)

sup
n

1
vn

log ||gn|| < ∞, inf
n

inf
x∈En

gn(x) > −∞, (5.8)

and that, for every compact set K ⊆ E and every sequence zn ∈ K ∩ En satisfying limn zn = z
and limn fn(zn) = f (z) > −∞, we have

lim inf
n↑∞

gn(zn) ≥ g∗(z). (5.9)

The extended limit, denoted by ex − LIMn Hn is defined as ex − subLIMn Hn ∩ ex −

superLIMn Hn .

Remark 5.4. Suppose that H ⊆ Cb(E) × Cb(E) such that for all ( f, g) ∈ H there are
( fn, gn) ∈ Hn with f = LIM fn and g = LIM gn , then H ⊆ ex − LIMn Hn .

All our large deviations statements will be based on the following assumption.

Assumption 5.5. Let En ⊆ E be Polish subsets satisfying E = limn→∞ En .
Assume that for each n ≥ 1, we have An ⊆ Cb(En) × Cb(En) and existence and uniqueness

holds for the DEn (R+) martingale problem for (An, µ) for each initial distribution µ ∈ P(En).
Letting Pn

y ∈ P(DEn (R+)) be the solution to (An, δy), the mapping y ↦→ Pn
y is measurable for

the weak topology on P(DEn (R+)). Let Xn be the solution to the martingale problem for An
and set

Hn f =
1
rn

e−rn f Anern f ern f
∈ D(An),

for some sequence of speeds {rn}n≥1, with limn→∞ rn = ∞. Let {HJ }J∈J(E) be a generating
set of Hamiltonians as in Definition 2.9 and suppose that H† ⊆ ex − subLIMn Hn and
H‡ ⊆ ex − superLIMn Hn . Note: by definition C2

c (E) ⊆ D(H†) ∩ D(H‡).

Definition 5.6. Let rn > 0 be a sequence of real numbers such that rn → ∞. We say that
a sequence of processes {Xn}n≥1 satisfies the exponential compact containment condition at
speed {rn}n≥1 if for every T > 0 and a ≥ 0, there exists a compact set Ka,T ⊆ E such that

lim sup
n→∞

1
rn

logP
[
Xn(t) /∈ Ka,T for some t ≤ T

]
≤ −a.

The following result follows along the lines of Proposition A.15 in [5], whose proof is based
on Lemma 4.22 in [14].

Proposition 5.7. Consider the setting of Assumption 5.5. Suppose that {Xn(0)}n≥1 is
exponentially tight with speed {rn}n≥1.
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Suppose that Υ is a good containment function for {HJ }J∈J(E). Then the processes {Xn}n≥1

satisfy the exponential compact containment condition at speed {rn}n≥1

Theorem 5.8. Consider the setting of Assumption 5.5. Suppose that Xn(0) satisfies a large
deviation principle with speed {rn}n≥1 and good rate function I0.

(a) Suppose that Υ is a good containment function for {HJ }J∈J(E). Then the processes
{Xn}n≥1 are exponentially tight with speed rn in DE (R+).

(b) In addition to the assumption in (a), suppose that for each λ > 0 and h ∈ Cb(E) the
comparison principle is satisfied for subsolutions to f − λH† f = h and supersolutions
to f − λH‡ f = h. Then the large deviation principle is satisfied with speed rn for the
processes Xn with good rate function I

I (γ ) =

{
I0(γ (0)) +

∫
∞

0 L(γ (s), γ̇ (s)) ds if γ ∈ AC(E),
∞ otherwise.

Proof of Theorem 5.8. (a) follows from Proposition 5.7 and Corollary 4.19 in [14]. For the
verification of condition(c) for the latter result, we use F = C2

c (E), whereas (d) is satisfied as
C2

c (E) ⊆ D(H†) by Assumption 5.5.
(b) follows from Theorem 8.27 and Corollary 8.28 in [14]. For the application of this result,

we use H† = H†, H‡ = H‡ and A f (x, v) = ⟨∇ f (x), v⟩. The conditions for the control theory
part in [14] have been verified in Propositions 5.1 and 5.2. Note that the rate function in [14]
still involves an infimum over control measures. As our Lagrangian is convex in the speed
variable, Jensen’s inequality gives the final form. □

6. Proofs for the examples

We proceed by giving proofs for the results given in Section 3. These proofs rely on
Theorem 5.8, which means that for each set of examples we have to provide a containment
function and verify the comparison principle for the corresponding set of Hamilton–Jacobi
equations.

6.1. One dimensional examples

For our one-dimensional examples, the construction of a containment function will be case
dependent. This will also hold for the verification of the comparison principle, although all
these verifications will be carried out using Theorem 4.11.

6.1.1. Birth and death process with immigration, proof of Theorem 3.1

Remark 6.1. Using the framework of Section 4, we have E = B0,1, J = {∂−,∅} and
E∅ = E = [0,∞), E∂− = {∂−} with ∂− = 0. For x > 0, Tx E = R and T∂− E = R+.

Lemma 6.2. Consider the setting of Theorem 3.1. Then there is a good containment function
Υ for H.
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Proof. Let Υ : R+
→ R+ be twice continuously differentiable with Υ (x) = log(log(x)) for

x ≥ ee and Υ is zero somewhere in [0, ee). Plugging Υ ′ into H for x > ee :

H(x,Υ ′(x)) ≤ (λ(x) + ρ(x))
(

e
1

x log(x) − 1
)

=
λ(x) + ρ(x)

x log(x)

(
∞∑

k=1

1
k!

1
(x log(x))k−1

)
< ∞. □

Proof of Theorem 3.1. We apply Theorem 5.8. We start with the verification of Assump-
tion 5.5. The space rescaled operators An are given by

An f (x)(x) = (λn(nx) + ρn(nx))
[

f
(

x +
1
n

)
− f (x)

]
+ µn(nx)

[
f
(

x −
1
n

)
− f (x)

]
.

As a consequence the operators Hn =
1
n e−n f Anen f have the form

Hn f (x) =
1
n (λn(xn) +ρn(xn))

[
en
(

f
(

x+
1
n

)
− f (x)

)
− 1

]
+

1
nµn(xn)

[
en
(

f
(

x−
1
n

)
− f (x)

)
− 1

]
.

Taylor’s theorem yields H ⊆ ex − L I Mn Hn with H given by H f (x) = H(x, f ′(x)) as in (3.2)
and domain D(H ) = C2

c (R+). In particular, we have H† = H‡ = H .
The condition in (a) of Theorem 5.8 follows by Lemma 6.2. Thus, we are left to verify the

condition for (b): the comparison principle. For this, we use Theorem 4.11, for which we need
to verify Conditions 4.7 and 4.8.

We start with the first one. Let K ⊆ E◦ be a compact set in the interior. Because both
(ep

− 1) and (e−p
− 1) are bounded from below, we have limp→±∞ infx∈K H(x, p) = ∞. This

yields Condition 4.7.
We proceed with Condition 4.8. Let K ⊆ E a compact set with ∂− = 0 ∈ K . Because

ρ(0) > 0, we have limp→+∞ infx∈K H(x, p) = ∞. For d = −, we consider the weak condition
(2). Let us pick xα and yα in E both converging to 0 such that pα = α(xα− yα) → −∞. Then :

H(xα, pα) − H(yα, pα) ≤ (µ(xα) − µ(yα))(e−pα − 1) ≤ 0.

Hence Condition 4.8 is satisfied and the comparison principle holds for the Hamilton–Jacobi
equations for H . We conclude that the large deviation principle holds with Lagrangian rate
function. □

6.1.2. Growing populations, proof of Theorem 3.3
We first give a compact containment function.

Lemma 6.3. Consider the setting of Theorem 3.3. Then there is a good containment function
Υ for H.

Proof. We construct a containment function for the Hamiltonian by piecing together two parts
that control the behaviour at 0 and at infinity respectively.

Control at 0: Pick Υ0(x) = − log x . For x ≤ 1, we have

H(x,Υ ′

0(x)) =

∞∑
k=1

xvk(x)
[
e−kx−1

− 1
]

≤ 0.
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Control at ∞: To control the behaviour at infinity, we consider Proposition B.1. For this we
rewrite the Hamiltonian as

H(x, p) =

∞∑
k=1

xvk(x)
[
ekp

− 1
]

= p
∞∑

k=1

kvk(x)x +

∞∑
k=1

xvk(x)
[
ekp

− kp − 1
]

so that b(x) =
∑

∞

k=1 kvk(x)x and ν(x, ·) =
∑

∞

k=1 vk(x)xδ{k}. Thus, the bounds on b and ν in
Proposition B.1 follow from Assumptions (b) and (c) on the functions vk .

We obtain that there is a function Υ∞ such that supx H (x,Υ ′
∞

(x)) < ∞.
Combining the bounds: Let Υ : (0,∞) → R+ be a twice continuously differentiable

function that is equal to Υ0 on the interval (0, 1
2 ) and equal to Υ∞ on (1,∞) and is equal to

0 somewhere in ( 1
2 , 1).

As Υ is twice continuously differentiable, H is continuous and

sup
x∈(0, 1

2 )∪(1,∞)

H(x,Υ ′(x)) < ∞

we find supx H(x,Υ ′(x)) < ∞. □

Proof of Theorem 3.3. We verify the conditions for Theorem 5.8. We start by checking
Assumption 5.5. First of all, the generator of the process Xn(t) is given by

An f (x) = n
∞∑

k=1

xvk (nx)
[

f
(

x +
k
n

)
− f (x)

]
.

Thus,

Hn f (x) =
1
n

e−n f (x) (Anen f ) (x) =

∞∑
k=1

xvk (nx)
[

en
(

f
(

x+
k
n

)
− f (x)

)
− 1

]
.

and we obtain by (3.4) that H ⊆ LIM Hn , where H is the operator D(H ) = C2
c (E),

H f (x) = H(x, f ′(x)). We thus consider the setting that H† = H‡ = H .
The condition in (a) of Theorem 5.8 follows from Lemma 6.3. We thus proceed with the

verification of the condition in (b).
As before, we use Theorem 4.11. In this setting there is no boundary, thus, it suffices

to verify Condition 4.7 for the interior. Fix a compact set K ⊆ (0,∞). First consider
d = +. Then assumption (a) on the functions vk , we find limp→∞ infx∈K H(x, p) = ∞,
i.e. (1) of Condition 4.7 is satisfied. For d = −, (2) of Condition 4.7 is satisfied with
h−(x) = −

∑
∞

k=1 xvk(x).
Thus, the comparison principle holds by Theorem 4.11 and the large deviation principle

follows as a result. □

6.1.3. SI Model, proof of Theorem 3.8

Lemma 6.4. Consider the setting of Theorem 3.8. Then there is a good containment function
Υ for H.

Proof. The only non-compactness issue arising for the SI model comes from the open boundary
at 0. Therefore the construction that was used in the proof Lemma 6.3 to control the behaviour
at 0 can be used here as well. □
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Proof of Theorem 3.8. The proof is similar to that of Theorem 3.3. The difference comes
from the new boundary at x = 1. We verify Condition 4.8 for the right boundary for the
Hamiltonian H(x, p) = c(x) [ep

− 1]. For d = +, i.e. momenta away from the boundary, we
have for K = [ 1

2 , 1] that

lim
p→−∞

sup
x∈K

|H(x, p) + c(x)| = 0.

For d = −, i.e. momenta towards the boundary, note that if xα, yα → 1 and pα := α(xα−yα) →

∞, then xα > yα for large α. This implies that

H(xα, pα) − H(yα, pα) = [c(xα) − c(yα)]
[
epα − 1

]
≤ 0

as c is decreasing in a neighbourhood of 0. □

6.1.4. Harvesting, proof of Theorem 3.11

Lemma 6.5. Consider the setting of Theorem 3.11. Then there is a good containment function
Υ for H.

Proof. The containment function introduced in the proof of Lemma 6.2 works also in this
setting. □

Proof of Theorem 3.11. We verify the conditions for Theorem 5.8. We start with Assump-
tion 5.5. The tilted operator Hn for the process t ↦→

1
n Xn(t) is given by:

Hn f (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
n (λn(x) + ρn(x))

[
e f (x+

1
n )− f (x)

− 1
]

+
1
n (µn(x) + βn(x))

[
e f (x−

1
n )− f (x)

− 1
]

if x > 0,
1
nµn(x)

[
e f (0+

1
n )− f (0)

− 1
]

if x = 0.

Taking point-wise limits, this yields two limiting Hamiltonians: H∅ and H∂− given by (3.7)
and (3.8) respectively. The operators H† and H‡ defined in Definition 2.9 with domain C2

c (R+)
are then

H†(x, p) =

{
H∅(x, p) if x > 0
ρ(0) [ep

− 1] + (β(0)
[
e−p

− 1
]
∨ 0) if x = 0

(6.1)

H‡(x, p) =

{
H∅(x, p) if x > 0
ρ(0) [ep

− 1] + (β(0)
[
e−p

− 1
]
∧ 0) if x = 0

(6.2)

Next, we check that point-wise convergence can be strengthened to H† ⊆ ex − subLIMn Hn .
Pick f ∈ C2

c (R+) and write fn := f and gn := Hn fn . By our choice of fn, gn (5.4) and (5.5)
are immediate. We show that for zn → z that lim supn gn(zn) ≤ H† f (z).

Clearly, if z ̸= 0 then gn(zn) → H∅ f (z) = H† f (z). If z = 0, then the values gn(zn)
depend on whether zn = 0 or not. In either case, a limiting upper bound is given by the
maximum of the individual limits: H∅ f (0) ∨ H∂− f (0) = H† f (0). We conclude that indeed
lim supn gn(zn) ≤ H† f (z).

As f was arbitrary, we conclude H† ⊆ ex − subLIMn Hn . Similarly one proves H‡ ⊆

ex − superLIMn Hn
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All other steps of the proof follow that of Theorem 3.1. The verification of the comparison
principle changes slightly, for this we again use Theorem 4.11 and verify Conditions 4.7 and
4.8.

For the first condition of 4.7 as well as 4.8, note that as λ,µ > 0 on the interior of E , ρ
and α are continuous and satisfy ρ(0), α(0) > 0, we have for each compact set K ⊆ E that

lim
|p|→∞

inf
x∈K

H∅(x, p) = ∞.

For the second condition of 4.7, note that the boundary at 0 is a left boundary, i.e. s = −.
By (3.7) and (3.8), we have

H∅(0, p) − H∂− (0, p) = β(0)
[
e−p

− 1
]
.

As β(0) > 0, the claim follows. We conclude that indeed Conditions 4.7 and 4.8 are
satisfied. □

6.2. Proof of Theorem 3.14

Before proving the result, we establish that there is a good containment function.

Lemma 6.6. Consider the setting of Theorem 3.14. Then there is a good containment function
for H.

Proof. Let s(x) =
∑

xi and let Υ be twice continuously differentiable and equal to log log s(x)
for x with s(x) ≥ ee. The result then follows like Lemma 6.2. □

Proof of Theorem 3.14. The result follows as in the proof of Theorem 3.11, using the con-
tainment function of Lemma 6.6 and the comparison principle obtained in Theorem 4.16. □
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Appendix A. Proof of Proposition 4.5 and Lemma 4.6

The proof of Proposition 4.5 is a variant of Proposition A.9 in [5], itself inspired a
combination of Lemma 9.3 in [14] and Lemma 2.3 in [10]. We reprove this result here as
the boundary conditions introduce some additional issues involving the containment function
that can be taken care of using the following lemma.
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Lemma A.1. Let a1, . . . , ak and δ1, . . . , δk be constants in R. Then we have

min
i

{ai + δi } ≤ min
i

ai + max
i
δi

Proof. Let j, l be such that a j + δ j = mini {ai + δi } and al = mini ai . Then, we have
mini {ai + δi } = a j + δ j ≤ al + maxi δi = mini ai + maxi δi . □

Proof of Proposition 4.5. Following the proof of Lemma A.8 in [5], we can extend the
operators H†, H‡ to contain functions of the type

x ↦→ (1 − ε)αΨ (x, y) + εΥ (x) + c, y ↦→ −(1 + ε)αΨ (x, y) − εΥ (x) + c,

with c ∈ R and α, ε > 0, respectively. Let xα,ε, yα,ε ∈ E such that (4.3) is satisfied. Then, for
all α we obtain that

sup
x

u(x) − v(x)

= lim
ε→0

sup
x

u(x)
1 − ε

−
v(x)
1 + ε

≤ lim inf
ε→0

sup
x,y

u(x)
1 − ε

−
v(y)
1 + ε

− αΨ (x, y) −
ε

1 − ε
Υ (x) −

ε

1 + ε
Υ (y)

= lim inf
ε→0

u(xα,ε)
1 − ε

−
v(yα,ε)
1 + ε

− αΨ (xα,ε, yα,ε) −
ε

1 − ε
Υ (xα,ε) −

ε

1 + ε
Υ (yα,ε)

≤ lim inf
ε→0

u(xα,ε)
1 − ε

−
v(yα,ε)
1 + ε

, (A.1)

as Υ and Ψ are non-negative functions. Since u is a sub-solution to f − λH† f = h and v is
a super-solution to f − λH‡ f = h, we find by our particular choice of xα,ε and yα,ε that

u(xα,ε) − λH†
(
xα,ε, (1 − ε)α∇Ψ (·, yα,ε)(xα,ε) + ε∇Υ (xα,ε)

)
≤ h(xα,ε), (A.2)

v(yα,ε) − λH‡
(
yα,ε,−(1 + ε)α∇Ψ (xα,ε, ·)(yα,ε) − ε∇Υ (yα,ε)

)
≥ h(yα,ε). (A.3)

For all z ∈ E , the map p ↦→ H†(z, p), being the maximum of convex maps, is convex. Thus,
(A.2) implies that

u(xα,ε) ≤ h(xα,ε) + (1 − ε)λH†(xα,ε, α∇Ψ (·, yα,ε)(xα,ε)) + ελH†(xα,ε,Υ ′(xα,ε))
≤ h(xα,ε) + (1 − ε)λH†(xα,ε, α∇Ψ (·, yα,ε)(xα,ε)) + ελc,

(A.4)

where c := maxi supx Hi (x,Υ ′(x)) < ∞ by the uniform bound (Υd).
As far as the second inequality, first note that because Ψ is a good penalization function,

we have −(∇Ψ (xα,ε, ·))(yα,ε) = ∇Ψ (·, yα,ε)(xα,ε). Next, we need a more sophisticated bound
using the convexity of the maps {HJ }J∈J(E). First of all, for each J the convexity of HJ yields

HJ (yα,ε, α∇Ψ (·, yα,ε)(xα,ε))

≤
1

1 + ε
HJ (yα,ε, (1 + ε)α∇Ψ (·, yα,ε)(xα,ε) − ε∇Υ (yα,ε)) +

ε

1 + ε
HJ (yα,ε,∇Υ (yα,ε)).

This implies, using Lemma A.1, that

H‡(yα,ε, α∇Ψ (·, yα,ε)(xα,ε))

≤ min
J :yα,ε∈E J

{
1

1 + ε
HJ (yα,ε, (1 + ε)α∇Ψ (·, yα,ε)(xα,ε) − ε∇Υ (yα,ε))
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+
ε

1 + ε
HJ (yα,ε,∇Υ (yα,ε))

}
≤

ε

1 + ε
H‡(yα,ε, (1 + ε)α∇Ψ (·, yα,ε)(xα,ε) − ε∇Υ (yα,ε)) +

ε

1 + ε
c.

Thus, (A.3) gives

v(yα,ε) ≥ h(yα,ε) + λ(1 + ε)H‡(yα,ε, α∇Ψ (·, yα,ε)(xα,ε)) − ελc. (A.5)

By combining (A.1) with (A.4) and (A.5), we find

sup
x

u(x) − v(x)

≤ lim inf
ε→0

lim inf
α→∞

{
h(xα,ε)
1 − ε

−
h(yα,ε)
1 + ε

(A.6)

+ λ

(
ε

1 − ε
+

ε

1 + ε

)
c (A.7)

+λ
[
H†(xα,ε, α∇Ψ (·, yα,ε)(xα,ε)) − H‡(yα,ε, α∇Ψ (·, yα,ε)(xα,ε))

] }
. (A.8)

The term (A.8) vanishes by assumption, whereas (A.7) vanishes as ε ↓ 0. Now observe that,
for fixed ε and varying α, the sequence (xα,ε, yα,ε) takes its values in a compact set and hence
admits converging subsequences. All these subsequences converge to points of the form (z, z).
Therefore, as α → ∞, we find

lim inf
ε→0

lim inf
α→∞

h(xα,ε)
1 − ε

−
h(yα,ε)
1 + ε

≤ lim inf
ε→0

||h||
2ε

1 − ε2 = 0,

giving that also the term in (A.6) converges to zero.
We conclude that the comparison principle holds for f − λH f = h. □

Proof of Lemma 4.6. Using that v is a super-solution to f − λH‡ f = h, we find that it is a
super solution to the equation f − λĤ‡ f = h, where Ĥ‡ is super-extension, as above, of H†
that includes functions of the type y ↦→ −(1 + ε)αΨ (x, y) − εΥ (y) in its domain, cf. Lemma
A.8 of [5]. It follows that for the points (xα,ε, yα,ε), we have

H‡(yα,ε, (1 + ε)α∇Ψ (·, yα,ε)(xα,ε) − ε∇Υ (yα,ε)) ≤
v(yα,ε) − h(yα,ε)

λ
≤

||v − h||

λ
.

Similar to the use of the convexity of the functions HJ in the proof of Proposition 4.5, we find

H‡(yα,ε, α∇Ψ (·, yα,ε)(xα,ε))

≤
1

1 + ε
H‡(yα,ε, (1 + ε)α∇Ψ (·, yα,ε)(xα,ε) − ε∇Υ (yα,ε))

+
ε

1 + ε
max

J
HJ (yα,ε,∇Υ (yα,ε))

which implies

sup
α

H‡
(
yα,ε, α(∇Ψ (·, yα,ε))(xα,ε)

)
≤

1
1 + ε

(
||v − h||

λ
+ ε sup

z,J
HJ (z,∇Υ (z))

)
< ∞. □

Appendix B. A general method to constructing containment functions for the boundary
at infinity

The following result has been proven in Example 4.23 in [14].
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Proposition B.1. Let G ⊆ R be some subset and let H : G × R → R defined by

H(x, p) =
1
2

a(x)p2
+ b(x)p +

∫ [
ekp

− kp − 1
]
ν(x, dk).

Suppose there exists α > 0 such that

sup
x

∫ ⏐⏐⏐⏐ z
1 + |x |

⏐⏐⏐⏐2 eα|z|/(1+|x |)ν(x, dz) < ∞ (B.1)

and some C > 0 such that

xb(x) ≤ C(1 + |x |
2), |a(x)| ≤ C(1 + |x |

2).

Then there is some δ > 0 such that if Υ (x) := δ log(1 + x2), then

sup
x∈G

H(x,Υ ′(x)) < ∞.

Appendix C. Convex analysis

Definition C.1. Let φ : Rd
→ (−∞,∞] be a convex function. We write

∂φ(p) :=
{
v ∈ Rd

⏐⏐φ(p′) ≥ φ(p) + ⟨p′
− p, v⟩

}
,

for the (set-valued) sub-differential of φ at p.

Lemma C.2 (Theorem 23.4 in [25]). If φ(p) = ∞ then ∂φ(p) = ∅.

Proposition C.3 (Corollary 23.5.1 in [25]). Let φ be a lower semi-continuous function, and
φ∗ its Legendre transform. Then v ∈ ∂φ(p) if and only if p ∈ ∂φ∗(v).

Appendix D. Differential inclusions

We follow [9,21]. Let D ⊆ Rd be a non-empty set. A multi-valued mapping F : D →

2R
d

\ {∅} is a map that assigns to every x ∈ D a set F(x) ⊆ Rd , F(x) ̸= ∅.

Definition D.1. Let I ⊆ R be an interval with 0 ∈ I , D ⊆ Rd , x ∈ D and F : D → 2Rd
\ ∅

a multi-valued mapping. A function γ such that

(a) γ : I → D is absolutely continuous,
(b) γ (0) = x ,
(c) γ̇ (t) ∈ F(γ (t)) for almost every t ∈ I

is called a solution of the differential inclusion γ̇ ∈ F(γ ) a.e., γ (0) = x .

If we assume sufficient regularity on the multi-valued mapping F , we can ensure the
existence of a solution to differential inclusions that remain inside D.

Definition D.2. Let D ⊆ Rd be a non-empty set and let F : D → 2R
d
\ {∅} be a multi-valued

mapping.

(i) We say that F is closed, compact or convex valued if each set F(x), x ∈ D is closed,
compact or convex, respectively.
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(ii) We say that F is upper semi-continuous at x ∈ D if for each neighbourhood U of F(x),
there is a neighbourhood V of x in D such that F(V) ⊆ U. We say that F is upper
semi-continuous if it is upper semi-continuous at every point.

Definition D.3. Let D ⊆ Rd be a closed non-empty set. The tangent cone to D at x is

TD(x) :=

{
z ∈ Rd

⏐⏐⏐⏐ lim inf
λ↓0

d(y + λz, D)
λ

= 0
}
.

The set TD(x) is sometimes called the Bouligand cotingent cone.

Lemma D.4 (Theorem 2.2.1 in [21], Lemma 5.1 in [9]). Let D ⊆ Rd be closed and let
F : D → 2Rd

\ {∅} satisfy

(a) F has closed convex values and is upper semi-continuous;
(b) F is upper semi-continuous;
(c) for every x, we have F(x) ∩ TD(x) ̸= ∅;
(d) F has bounded growth: there is some c > 0 such that ||F(x)|| = sup {|z| | z ∈ F(x) } ≤

c(1 + |x |) for all x ∈ D.

Then the differential inclusion γ̇ ∈ F(γ ) has a solution on R+ for every starting point x ∈ D.
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