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Abstract

Training Convolutional Neural Network (CNN) models

is difficult when there is a lack of labeled training data and

no unlabeled data is available. A popular method for this is

domain adaptation where the weights of a pre-trained CNN

model are transferred to the problem setup. The model is

pre-trained on the same task but in a different domain that

has plenty of labeled data samples available. In a CNN

model, we can rearrange the weights of a convolutional

layer by permuting them along the input channel dimension.

This work shows that certain weights that are learned in

the pre-trained model work well in the problem setup when

the weights are rearranged in this manner. Computing the

set of all possible rearrangements of the weights is compu-

tationally intractable. This work proposes two algorithms

to find a good rearrangement of the weights in reasonable

computation time. The solutions from the algorithms per-

form equally well or better than fine-tuning in the domain

adaptation between SVHN and MNIST data.

1. Introduction

Convolutional Neural Networks (CNN) has shown
promising performance to solve real-world challenges [8]
[11] [14]. Training CNN models becomes difficult when
there is a lack of labeled data and there is no unlabeled data
available [35]. To fill the gap of knowledge in the model,
knowledge of solving a similar task is transferred to the cur-
rent task . This is known as transfer learning. To train CNN
models with small training data, transfer learning is one of
the most used methods [25] [28] [31]. In transfer learning,
when the task from where the knowledge is transferred and
the task where the knowledge is transferred is the same, but
there is a difference in the distribution of data between the

two domains, it is known as domain adaptation [17]. For ex-
ample, we have two problem settings of image classification
tasks for identifying handwritten lowercase alphabets. In
one domain the alphabets are written with colors on a white
background and in the other domain, the alphabets are writ-
ten with white color on black background. The task in both
of the settings is to classify the lowercase alphabets and the
classes are a, b, c, . . . z. But there are differences between
the distribution of data between the two domains. Here, the
knowledge of solving the task in one domain can be used
for solving the same task in the other domain. It is an ex-
ample of domain adaptation. The domain from where the
knowledge is transferred is known as the source domain and
the domain where the knowledge is transferred is known as
the target domain. Domain adaptation is performed when
there is either a lack of training data or there is no training
data available in the target domain whereas there is plenty
of data available in the source domain. When there are a
few data samples available in the target domain, it is known
as supervised domain adaptation [35]. When there is no
training data available in the target domain, it is known as
unsupervised domain adaptation [35].

In a CNN model, there are filters or weights that gen-
erate the representations at the output channels of a CNN
layer. The representations are generated through convo-
lution between the inputs received at the input channels
and the weights. We can rearrange the weights of a CNN
layer by permuting them along the input channels. In our
research, the hypothesis is when a CNN model is trained
on the source domain, certain weights that are learned in
the source domain work well on the target domain when
the weights are rearranged. The set P that contains all
of the possible solutions through the rearrangements of the
weights is computationally intractable. It makes the prob-
lem a discrete optimization problem where the global op-
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timal solution is not known. Since P is a computationally
intractable, a practical way of solving it is the approxima-
tion of a local optimal solution. Determining whether this
local optimal solution is the global optimum solution is not
tractable. The ‘improvement algorithm’ is a class of al-
gorithms that starts with an initial solution and then leads
to an improved solution through iterations [2] [9]. For the
problems where the path that leads to an optimal solution is
irrelevant, iterative improvement algorithms often provide
the most practical approach [29]. This work approaches the
problem by applying an iterative improvement algorithm
called ‘local search’ that can find an optimal solution using
reasonable computation time. Local search has been a suc-
cessful optimization algorithm for these problems despite
its simplicity [1] [3] [26]. It can find an optimal solution in
reasonable computation time [5] [12]. This work proposes a
new method ‘weight swapping’ using two implementations
of the local search algorithm. A popular method for su-
pervised domain adaptation is fine-tuning [6] [30]. In fine-
tuning, the weights transferred from the source domain are
re-trained on the target domain training data. Weight swap-
ping can find a rearrangement of the weights that performs
equally well or better than fine-tuning.

1.1. Contribution

The main contributions of this work are:

1. We show that when a CNN model is trained on the
source domain, certain weights that are learned in the
source domain work well on the target domain when
the weights are rearranged.

2. We propose two implementations of the local search
algorithm for finding a rearrangement of the weights
that perform equally well or better than fine-tuning.

3. Weight swapping can find a good solution using rea-
sonable computation time.

2. Related work

For the problems with a lack of training data, fine-tuning
has been a popular method [6] [7] [15] [30] [37]. [7] and
[37] have used fine-tuning using transfer learning. [6] and
[30] have used fine-tuning for domain adaptation. [15] pro-
poses a two-step progressive domain adaptation technique
by fine-tuning. [4] and [34] use features from the fully con-
nected layers of the trained model and use separate classi-
fiers for the final task. All of these works mentioned use
fine-tuning but this work makes use of the already present
weights and looks for a rearrangement of the weights in-
stead of fine-tuning them.

Designing a neural network for a specific task requires
good expertise in the field. But recent research in neural

architecture search (NAS) has made progress on automat-
ing the task of neural network design. Recent NAS re-
search [16] uses no back-propagation for training a neural
network. [20] searches for optimal structures through learn-
ing a surrogate model for guiding the search. [23] and [27]
use evolutionary algorithms for searching optimal architec-
ture and use stochastic gradient descent for parameter elim-
ination in NAS. [39] uses reinforcement learning for neural
architecture search. [10] treats the weights as variables ran-
domly sampled from a fixed distribution and apply topolog-
ical search operators to search for an architecture that can
perform without any explicit weight training. In contrast,
weight swapping uses the already present weights that are
transferred from the source domain and instead of updating
the weights using gradient descent or searching for optimal
architecture, it uses discrete optimization methods to search
for an optimal rearrangement of the learned weights.

[22] uses discrete optimization for estimating dense op-
tical flow in computer vision. [9] demonstrates an example
of binary image restoration using discrete optimization. As
far as we know, this is the first work exploring discrete op-
timization for domain adaptation in computer vision.

3. Method

In a supervised domain adaptation setting, we have
plenty of data samples available in the source domain and
few data samples available in the target domain for training.
The CNN model is first trained on the source domain and
then the weights of the trained model are transferred to the
target domain. The transferred weights are then adapted to
the target through domain adaptation.

In a CNN model with m layers and first layer being the
layer closest to the input layer, each layer generates repre-
sentations or features of the input images at the output chan-
nels of that layer. The representations are generated through
convolution between the weights, also known as filters, and
the input images received at the input channel of that layer.
The representations generated at that layer is the input to
the next layer of the model. For example, if layer (x � 1)
has Nx output channels then the number of input channels
in xth layer is Nx. In layer x of a CNN model with Nx in-
put channels, we can rearrange the weights of that layer by
permuting them along the input channels. The number of
all the possible rearrangement of the weights across the Nx

input channels is Nx!. For the CNN model with m layers,
the first layer being the layer closest to the input, the num-
ber of all possible rearrangements of the weights across the
m layers is

mY

i=1

Ni! = N1!⇥N2!⇥ . . . Nm!. (1)

This is computationally intractable. One possible solution
can be trying all the possible rearrangements for each layer
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separately. Using this heuristic, the number of possible re-
arrangements is N1!+N2!+ . . . Nm!. This is still computa-
tionally intractable. Our approach is aimed at finding better
solutions at a layer and gradually moving to other layers.
After all the m layers are looked over for better solutions,
the process is repeated over the m layers in similar manner
a number of times. The total number of times the process
is repeated is the number of iterations. To look for bet-
ter solutions at each layer in reasonable computation time,
‘local search’ is applied at every layer.

3.1. Local Search

‘Local Search’ is an optimization algorithm that is based
on a concept of neighborhood. [3] defines the neighborhood
as “a set of solutions that are in some sense close to [the
current solution] p, for example, because they can be easily
computed from p or because they share a significant amount
of structure with p”. The theory behind the local search is
an iterative improvement: it starts with an initial solution,
then it looks for solutions at its defined neighborhood. If
a better solution is found in the neighborhood, the current
solution is replaced with the better solution and the search
continues [3].

3.2. Neighborhood

A cheap way of generating a neighbor of the present so-
lution is by swapping two elements of the present solution.
So, in the algorithms, the neighborhood of the current state
s is defined as the set S, each element of which is gener-
ated by swapping weights of two input channels out of the
Nx input channels in layer x of the model. An example
of the generated neighborhood by swapping two channels
is shown in table 1. This work proposes implementing two
varieties of the local search algorithm

1. Best legal neighbor

2. First legal neighbor.

Current state [a b c d]
No. Two channels to be swapped Neighbor
1 [a b] [b a c d]
2 [a c] [c b a d]
3 [a d] [d b c a]
4 [b c] [a c b d]
5 [b d] [a d c b]
6 [c d] [a b d c]

Table 1. Generated neighbors of [a b c d]

3.3. Starting Point

Local search works on the concept of neighborhood [2].
Weight swapping generates neighbor at each layer. There

can be two starting points of looking for neighbors. One is
starting at the first layer and gradually moving forward to
the last layer (referred as ‘first to last’). The other one is
starting at the last layer and gradually moving back to the
first layer (referred as ‘last to first’). In a neural network,
the later layers are functions of the previous layers. This
leads to a hypothesis that weight swapping using first to last
leads to a better solution than weight swapping using last to
first.

3.4. Best legal neighbor

This algorithm is based on the concept of ‘best improve-
ment’ [3]. In ‘best improvement’, the algorithm looks at all
the neighbors based on the defined neighborhood and moves
the current state to the neighbor that generates the best and
improved solution. The terminologies used in the algorithm
description are described in table 2. Algorithm ‘Best legal
neighbor’ is described in Algorithm 1.

Terminology Description
acc Accuracy when the model trained on

source domain is validated on the target
domain data before domain adaptation

iterations A list of all integers between 1 and
the number of iterations (including
both) in ascending order

layers A list of all integers between 1 and
m (including both) either in
ascending or descending order

Table 2. Description of terminologies in algorithms

Algorithm 1: Best legal neighbor:

for iterate in iterations do

for l in layers do

From the input channels of layer number l ,
generate neighbor set S ;

for c in S do

Measure the accuracy of the neighbor
solution c on target domain data ;

Remove c from S;
end

Select the neighbor c⇤ that produces best
accuracy acc max on target domain data ;

if acc max > acc then

Move the current state to c⇤ ;
acc = acc max ;

end

end

end
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3.5. First legal neighbor

This algorithm is based on the concept of ‘first improve-
ment’ [3]. In ‘first improvement’, the algorithm looks at
a single neighbor chosen randomly from the neighborhood
and moves the current state to that neighbor if the neigh-
bor is an improved solution. First legal neighbor is a more
greedy approach than best legal neighbor. The terminolo-
gies used in the algorithm description are described in table
2. Algorithm ‘First legal neighbor’ is described in Algo-
rithm 2.

Algorithm 2: First legal neighbor

for iterate 6 iterations do

for l in layers do

From the input channels of layer number l ,

generate neighbor set S;

Shuffle the elements of S randomly ;

for c in S do

Measure the accuracy val acc of the

neighbor solution c on target domain

data ;

Remove c from S;

if val acc > acc then

Move the current state to c ;

acc = val acc;
end

end

end

end

3.6. Computational Complexity

The number of all possible rearrangements across the in-
put channels of all the layers is

mY

i=1

Ni! = N1!⇥N2!⇥ . . . Nm!. (2)

In weight swapping, the required number of computations
is

(number of iterations⇥
mX

i=1

(Ni ⇥ (Ni � 1))/2).

(3)
Weight swapping is computationally reasonable.

4. Experiments

4.1. RGB MNIST experiment

4.1.1 Data and Architecture

The RGB MNIST experiment uses the MNIST handwritten
digits data [18]. The MNIST handwritten digits data con-
tains 60000 train images and 10000 test images that repre-
sent handwritten 0 to 9 digits (10 classes). Each sample of
MNIST contains exactly one digit. The image samples are
of size 28⇥28. For the experiment, the greyscale images are
converted to RGB (3⇥ 28⇥ 28) images where exactly one
channel out of the three are copied from MNIST and the
rest of the channels are zeros. The experiment uses three
datasets:

1. Source domain training data: red colored MNIST im-
ages as shown in figure 1.

2. Source domain test data: red colored MNIST images
as shown in figure 1.

3. Target domain test data: green colored MNIST images
as shown in figure 2.

Figure 1. Samples from red MNIST data

Figure 2. Samples from green MNIST data

A fully convolutional network (FCN) is defined as the
broad architecture class which outputs a grid [36]. FCN
was popularized by [21]. FCN models are usually followed
by a global average pooling layer that outputs the average
of all the values of the grid and a softmax layer [13] [19].
The architecture used in this experiment is a FCN inspired
from [13] and it is shown in figure 3.

4.1.2 Experiment

The model is first trained on the source domain training data
and then tested on the source domain test data and the target
domain test data. The input channels at the first layer of
the model are the red (R), green (G), and blue (B) channels
of the input image. We generate all the possible solutions
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through permuting over the three input channels [R G B]
of layer 1. All the possible solutions are shown in table 3.
The five generated neighbors of the current model are then
tested on the green test data.

solution name solution
current state [R G B]
solution 1 [B G R]
solution 2 [G R B]
solution 3 [R B G]
solution 4 [G B R]
solution 5 [B R G]

Table 3. all possible solutions of [R G B]

4.1.3 Result

Figure 6. Result of RGB MNIST experiemnt

Figure 6 reports the results of the RGB MNIST experiment.
It is evident from the result that solution 2 [G R B] and
solution 5 [B R G] are the optimal solutions among the five
generated solutions. What is noticeable here is in both of
the optimal solutions, the G input channel is replaced by
R. Since, the values at B and G channels of the train images
were zeros, the weights in the input channels did not get any
gradients and as a result, they did not get updated. When the
weights of channel G is swapped with that of R, it produces
good accuracy because the R channel weights got updated
during training. Among the two solutions 2 and 5, solution
2 [G R B] is reachable from the current solution [R G B]
with a single swap. The result of this experiment shows

that an optimal solution can be reached with swaps if the
weights already exist in the model.

4.2. Toy Data Experiment

4.2.1 Data and Architecture

Figure 7. Samples from R7 data

Figure 8. Samples from GL data

The toy data experiment is carried out to judge how weight
swapping performs when there are two variations between
the target and the source domain. The toy data experi-
ment makes use of the MNIST handwritten digits data [18].
For the experiment, two domains are generated from the
MNIST data termed as ‘R7’ and ‘GL’. For better clarity of
data, the MNIST data are resized to 56⇥ 56 binary images.
From this base set up, the R7 domain is generated by con-
verting the 56 ⇥ 56 binary images to RGB images of size
3 ⇥ 56 ⇥ 56 where the digits are red in color and are writ-
ten with small ‘7’ shapes. Sample images of R7 domain
are shown in figure 7. Similarly, the ‘GL’ domain, shown
in figure 8, is generated where the digits are green in color
and the digits are written with small ‘L’ shapes. R7 and GL
domains have their training data (60000 samples) and test
data (10000 samples). The test data of both the domains are
further split into two parts: target domain data (first 1000
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Figure 3. Architecture for RGB MNIST experiment

Figure 4. Result of toy data experiment R7 ! GL. All the experiments are carried out on five different random seeds. The reported results
are the mean (shown as bar plots) and standard deviation (shown as error bars) of the test accuracies achieved from the model over the five
random seeds.

samples) and test data (the rest of the 9000 samples). We
have two experimental setups of data now:

1. R7 ! GL: Source domain is R7 training data, target
domain is GL target domain data and test data is GL
test data.

2. GL ! R7: Source domain is GL training data, target
domain is R7 target domain data and test data is R7
test data.

The toy experiment is carried out on an FCN architecture
which is shown in figure 9. The architecture is inspired from
[33] and [32].

4.2.2 Baseline

The most commonly used method for domain adaptation is
fine-tuning [6] [30]. The performance of the weight swap-
ping method is compared with fine-tuning. The models
trained on the source domain are fine-tuned on the target

domain. The best practice for fine-tuning is to use a lower
learning rate (usually 10 times lower) than the learning rate
used for training [38]. The trained model is fine-tuned us-
ing the same learning rate and a 10 times lesser learning rate
and the better fine-tuned (producing better fine-tuning accu-
racy) model is tested on the test data. The accuracy achieved
using fine-tuning on the test data is set as the baseline.

4.2.3 Experiment

After the model is trained on the source domain, we per-
form weight swapping for domain adaptation. For domain
adaptation, three different data sizes are chosen for target
domain data. They are 50 (5 samples per class), 100 (10
samples per class), and 150 (15 samples per class). The
motivation behind choosing the data size was using a small
number of samples per class and equal distribution of sam-
ples across the 10 classes. The data samples for the tar-
get domain data are randomly sampled from the 1000 data
samples of the target domain data. After domain adapta-
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Figure 5. Result of toy data experiment GL ! R7. All the experiments are carried out on five different random seeds. The reported results
are the mean (shown as bar plots) and standard deviation (shown as error bars) of the test accuracies achieved from the model over the five
random seeds.

Figure 9. Architecture for toy data experiment

tion is performed on the model using weight swapping, it is
tested on the test data. This is done for both of the experi-
mental setups R7 ! GL, and GL ! R7. For both of the
experimental setups, the experiments are carried out once
using first to last and the other time using last to first. The
number of iterations used in this experiment is 10.

4.2.4 Result

Figure 4 reports the result of the toy data experiment R7
! GL using first to last and last to first. Figure 5 reports
the result of the toy data experiment GL ! R7 using first
to last and last to first. The outcomes of both of the ex-
perimental setups are similar. In both of the experiments,
best legal neighbor and first legal neighbor can improve the
representations over the target domain when they use first
to last and last to first. But the accuracy produced by the
algorithms using last to first is quite lower than using first
to last. Another noticeable result is the accuracy from the
algorithms using last to first has a higher standard deviation

than the same using first to last. This shows that the algo-
rithms find a better solution more consistently and are less
effected by change over initialization when they use first to
last. These insights from the results validate our hypothesis
that weight swapping using first to last finds a better solu-
tion than weight swapping using last to first.

Comparing the results from figure 4 and figure 5, it is
seen that weight swapping using first to last slightly outper-
forms the baseline. The accuracy of weight swapping us-
ing first to last has lower standard deviations than the base-
line. It shows that weight swapping using first to last finds
a better solution more consistently and is less affected by
the change over different initialization. This result validates
our hypothesis that certain weights that are learned in the
source domain work well on the target domain when the
weights are rearranged. It also shows that weight swapping
can overcome two variations (the color and the ‘7’ and ‘L’
shapes) between the source domain and the target domain
and can find a solution that slightly outperforms the base-
line with lower standard deviation.
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Figure 10. Architecture for real data experiment

4.3. Real Data Experiment

4.3.1 Data and Architecture

After the successful validation of the hypotheses on a do-
main adaptation setup between two toy domains, the real
data experiment is carried out to judge how weight swap-
ping performs on a more realistic domain adaptation setup
than the toy data. For the real data experiment, Street View
House Number (SVHN) data and MNIST handwritten dig-
its data are used [18] [24]. SVHN data contains 73257 train
images and 26032 test images of size 3 ⇥ 32 ⇥ 32 for an
image classification setting. They represent house numbers
of houses from street view and contain digits 0 to 9 (10
classes). Each image may contain more than one digit but
the digit at the center/focus is the ground truth label. SVHN
data samples are shown in figure 11. For matching the di-
mensions of the MNIST data with SVHN data, the MNIST
images have been resized to 32⇥32 using zero padding and
further converted to RGB images of size 3⇥ 32⇥ 32 where
R, G, B channel values have been copied from the greyscale
MNIST images. Data samples of MNIST is shown in figure
12. We have four data sets: MNIST training data (60000
samples), MNIST test data (10000 samples), SVHN train-
ing data (73257 samples), and SVHN test data (26032 sam-
ples). The test data are further split into two parts: target
domain data (first 1000 samples) and test data (the rest of
the 25032 samples of SVHN test data and the rest of the
9000 samples of MNIST test data). We have two experi-
mental setups of data:

1. SVHN ! MNIST: Source domain is SVHN training
data, target domain is MNIST target domain data and
test data is MNIST test data.

2. MNIST ! SVHN: Source domain is MNIST training
data, target domain is SVHN target domain data and
test data is SVHN test data.

For the real data experiment, an FCN architecture has been
used which is shown in figure 10. It is adapted from [13].

Figure 11. Samples from SVHN data

Figure 12. Samples from MNIST data

4.3.2 Baseline

To judge the performance of weight swapping, we use the
same baseline setting of toy data experiment (described in
section 4.2.2) using the real data experiment’s source and
target domain.

4.3.3 Experiment

Similar to the toy data experiment, the model is first trained
on the source domain data and then we perform weight
swapping for domain adaptation to the target domain data.
In the real data experiment SVHN ! MNIST, the chosen
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data sizes for the target domain are 30 (3 samples per class),
50 (5 samples per class), 100 (10 samples per class), 150
(15 samples per class). In the real data experiment MNIST
! SVHN, the chosen data sizes for the target domain are
50 (5 samples per class), 100 (10 samples per class), 150
(15 samples per class), 200 (20 samples per class), 250 (25
samples per class). The data samples for the target domain
are randomly sampled from the target domain data. It is ev-
ident from the results of the toy data experiment that weight
swapping finds a better solution when it uses first to last in-
stead of last to first. That is why in the real data experiment,
the experiments are carried out using first to last only. The
number of iterations used in this experiment is 10.

4.3.4 Result

Figure 13. Result of real data experiment SVHN ! MNIST. All
the experiments are carried out on five different random seeds. The
reported results are the mean (shown as bar plots) and standard de-
viation (shown as error bars) of the test accuracies achieved from
the model over the five random seeds.

Figure 13 reports the test accuracy values achieved before
domain adaptation, the baseline, after domain adaptation
with best legal neighbor and after domain adaptation with
first legal neighbor for experiment SVHN ! MNIST. Fig-
ure 14 reports the same but for the experiment MNIST !
SVHN. Results from both of the experiments show that
weight swapping can improve the representations over the
target domain. The found solutions perform equally well
or slightly better when compared to the baseline. But as
the size of the target domain data increases, the perfor-
mance of weight swapping is slightly lower than the base-
line. The standard deviation of the accuracies of the base-

line is slightly higher than that of weight swapping. It shows
that weight swapping is less affected than the baseline by
the change over random seeds for initialization. This ex-
periment shows that the hypothesis that certain weights that
are learned in the source domain work well on the target
domain when the weights are rearranged is valid for more
realistic data than toy data.

Figure 14. Result of real data experiment MNIST ! SVHN. All
the experiments are carried out on five different random seeds. The
reported results are the mean (shown as bar plots) and standard de-
viation (shown as error bars) of the test accuracies achieved from
the model over the five random seeds.

5. Discussion

In this work, we investigate an alternative approach for
supervised domain adaptation. It is often the case that
weights of some layers are transferred to a new architecture
for domain adaptation and the rest of the layers are initial-
ized randomly. The whole network is then fine-tuned on
the target domain data. Since the weights are not updated
in weight swapping, it is difficult to use weight swapping
where the source domain and the target domain use differ-
ent architecture.

The experiments are designed to first test weight swap-
ping in a toy setup and later on a more realistic setup than
the toy setup. Results suggest that weight swapping can take
care of two variations in toy data and slightly beat the base-
line. On a more realistic data than toy data, weight swap-
ping performs equally well as the baseline. The research
can be further proceeded by studying how the performance
of weight swapping varies with the distance between the
source domain and the target domain.
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2.1. Neural Network
Neural network (NN) is a computing method that learns pattern from data. It has small interconnected work-
ing units of it known as perceptrons. A perceptron is composed of four elements:

• Input node

• Weights vector

• Activation function

• Output node

The input vector x = [
x1 x2 . . . xm

]
is received at the input node and an weighted sum of the input vector x

is calculated. The weighted sum is x>w where w = [
w1 w2 . . . wm

]
is the weight vector. To the input vector

x, an extra term 1 is added so that the weighted sum can be shifted easily using its corresponding weight w0.
This is called bias. The weighted sum calculated using x>w is passed through a function. This function f is
non-linear in nature. It is known as the ‘activation function’. The output from this function is generated at
the output node. This is how the input data flows from the input node to the output node of a perceptron.
Since the input is passed through only one set of weighted sum and activation function, it is known as single
layer perceptron. In practice, the perceptrons have multiple layers i.e. the input is passed through a number
of sets of weighted sums and activation functions before the output is generated. There are layers which
are present between the input and the output layers. These layers are called the hidden layers. For a single
layer perceptron that has input vector x = [

1 x1 x2 . . . xm
]

and the weight vector w = [
w0 w1 w2 . . . wm

]
, the

structure is shown in figure 2.1. For a NN that has two hidden layers, the diagram is shown in figure 2.2.

Figure 2.1: Structure of a perceptron with zero hidden layer or simply a single layer perceptron [1]

Figure 2.2: Structure of a neural network with two hidden layers [4]
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In real-world problems, the pattern from data can be linear or non-linear. A linear pattern can be approx-
imated using a non-linear function but a non-linear pattern cannot be approximated using a linear function.
If the activation is a linear function, then the whole set of layers in the NN can be compressed to a single
layer because the linear representation of another linear representation can be compressed to a single linear
representation. Because of this, activation functions are typically non-linear.

Figure 2.3: The Graph of the logistic sigmoid or the sigmoid activation function [1]

Figure 2.4: The Graph of the tanh activation function [1]

Some of the widely used activation functions are

• Sigmoid: The logistic-sigmoid function is commonly referred as the sigmoid function. It is defined as

f (x) = 1

1+e−x

for x being the input of the function. The sigmoid function is bounded, continuous, differentiable and
not a zero centered activation function. Calculation of the sigmoid function is not cheap because it is
exponential in nature. The graph of the sigmoid function is shown in figure 2.3.

• Tanh: The tanh activation function is defined as

f (x) = 1−e−x

1+e−x

for x being the input to the function. The Tanh function is bounded, continuous, differentiable and zero
centered activation function. Calculation of the tanh function is not cheap because it is exponential in
nature. The graph of the tanh function is shown in figure 2.4.

• ReLU: The rectifier linear unit activation function is usually referred as the ReLU. It is defined as

f (x) = max(0, x)
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Figure 2.5: Graph of ReLU activation function [1]

for x being the input to the function. It was introduced in [5]. The ReLU function is continuous, dif-
ferentiable (except at x = 0) and very cheap to calculate. The graph of the ReLU function is shown in
figure 2.5.

After the output is calculated at the output layer, it is then compared to the ground truth or the desired
output. A function that quantifies the difference between the calculated output and the ground truth is
known as the loss function. Some of the most used loss functions are negative log-likelihood, L2 loss, mean
squared loss, etc.

After the loss is calculated, the weights are updated such that the loss function value decreases. It is known
as optimization. The most used method in optimization is gradient descent. Gradient descent work on the
principle of moving on the opposite direction of the gradient of the loss function. The gradient is calculated
with respect to the weights. The gradient is calculated as

∂L

∂w
= ∂L

∂y
· ∂y

∂z
· ∂z

∂w
(2.1)

where L is the loss, z = x>w and y = f (z) where f is the activation function. Through the gradient calculation,
the weights are updated at the opposite direction of the gradient at a rate ofα known as the learning rate. The
weight update equation is defined as

w = w −α× ∂L

∂w
. (2.2)

During optimization, the gradients flow from the last layer to the input layer. The flow of data from the input
layer to the output layer is known as the forward pass. The flow of data from the output layer to the input layer
for weight update is known as backward pass or back-propagation. A forward pass and a backward pass of
all the data is known as an epoch. The iterative process of update of weights through forward and backward
propagation for decreasing the loss value is known as the training of a NN.

2.2. Convolutional Neural Nwtwork
[2] defines convolutional neural network (CNN) as a NN that uses convolution operation instead of matrix
multiplication. In computer vision problems, the convolution operation is done between an image/image
frame and a kernel. The kernel (also known as filters) is a k × k grid that works as feature/representation
generator from the image. An example convolution of a 2×2 kernel on a 4×3 matrix is shown in figure 6.

Convolution has three important properties that help in pattern learning especially for image and video
data. They are

• sparse interactions: In a traditional NN that works on the principle of matrix multiplication, the layers
have separate parameters for the interactions between input and output units. Thus, every input unit
interacts with every output unit. On the other hand, CNN has the filters or weights which are smaller
than the input image size. When an image is passed through that filter or weights, the filter extracts
only meaningful features or representations that help to learn the pattern. This leads to less memory
consumption and faster update of filters because they are small in size.
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Figure 6: Example of convolution [2]

• parameter sharing: In a NN without any convolution layer, every element of a weight vector corre-
sponds to exactly one element of an input vector. In CNN, the corresponding kernel of size k ×k be-
longs to the whole image and thus they traverse over the whole image during convolution operation
to generate its’ representations. Thus, the parameters or weights are shared which reduces memory
consumption and instead of having separate weights for every input pixel, the parameters are shared.

• equivariance: A function is said to have equivariance property if its’ output changes in the same way as
its’ input changes. If f is a mapping from one image space A1 to A0, so that it shifts pixels by n pixels
to left using A1(i , j ) = A0(i - n, j - n), then applying convolution on A1 and then performing the shift
will be equivalent to first shifting the pixels and then applying the convolution.

Demonstration of a convolution layer with 3 input channels (R, G , and B of image size 7×7×3), 2 output
channels, and 3×3 kernel size is shown in figure 7.

A CNN layer is usually followed by an activation function to introduce non-linearity and a pooling layer.
The pooling layer downsamples the generated representations to a smaller size which is easier to process
and takes out features/information that are necessary for designing the decision boundary. The pooling layer
outputs a statistical summary of a region of the input grid. The most common form of pooling is max-pooling
that outputs the maximum value of a certain grid size. It makes the output invariant to small changes over
input. An example of a (2x2) max-pooling is shown in figure 8.

For downsampling the representations, another method of pooling is average pooling. In average pooling,
the average value of a m ×m grid is replaced by a single value which is average of all the values in the m ×m
grid. Average pooling is less popular than maxpooling and more effected than maxpooling by small changes
over grid values. Another method used for downsampling is strided CNN introduced by [6]. In strided CNN,
the convolution operation uses a stride more than 1 instead of stride size 1.

CNN architectures usually consist of stacks of convolution layers followed by activation function and
pooling layer. At the very end of the stacks of the convolution layers, a fully connected (fc) layer or a global
average pooling is introduced which is followed by a softmax layer. This pattern of architecture was popu-
larized by [3]. An example structure of CNN architecture with convolution layers followed by fc layers and
softmax is shown in figure 9.
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Figure 7: Demonstration of a convolution on a 7 x 7 x3 image at a convolution layer with 3 input channels, 2 output channels, and 3 x 3
kernel size [4]

Figure 10: Example of 2×2 average pooling on a representation of size 4×4 [8]
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Figure 8: Example of maxpooling [4]

Figure 9: Example of CNN architecture [7]

The typical structure of CNN architecture, shown in figure 9, is not always followed strictly. A popular
version of the other architectures is a fully convolutional neural network (FCN) which does not contain any
fc layer. FCN usually contains stacks of convolutional layers, activation functions, and downsampling. At the
end of the architecture, there is a global average pooling followed by a softmax.
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