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Chemicals from Renewable Biomass: a Renaissance in Carbohydrate Chemistry 

Roger A. Sheldon 

Abstract 

The conversion of sugars, derived from waste polysaccharide biomass, to commodity chemicals by 

fermentation or catalytic hydrogenation, oxidation or dehydration or combinations thereof are 

reviewed.  
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Introduction 

     The origins of the petrochemical industry date back to the 1920s when simple organic chemicals, such 

as ethanol and isopropanol were first prepared on an industrial scale from byproducts (ethylene and 

propylene) of oil refining. Its heyday was in the 1960s and it is currently undergoing a transition to more 

sustainable, carbon neutral manufacture from renewable biomass. This could involve the use of first 

generation biomass, such as corn starch in the short term [1], but in the long term conversion of waste 

polysaccharides, available from agricultural residues, is envisaged [2]. Both scenarios involve a switch 

from hydrocarbons to carbohydrates as basic chemicals. Many commodity chemicals are ‘oxygenates’, 

produced by oxidation or hydration of hydrocarbons. In contrast, production from carbohydrates by, for 

example, catalytic oxidation [3] or reduction[4] is more redox efficient and can be performed in aqueous 

media. Hence, the recent emergence of biorefineries is leading to a renaissance in carbohydrate 

chemistry.  

     Major sources of waste biomass are agricultural residues comprising mainly lignocellulose and pectin 

(see Figure 1 for structures). On an industrial scale the polysaccharides are converted by enzymatic 

© 2018 Manuscript version made available under CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/
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hydrolysis to their constituent hexoses and pentoses [2].  In order to be sustainable subsequent 

processing must be based on green catalytic reactions [5] and, for commercial impact, the products 

should be large volume commodity chemicals such as industrial monomers. 

Figure 1. Structures of the building blocks of polysaccharides 

Fermentation processes      

     Advances in metabolic pathway engineering [6,7], have enabled the cost-effective fermentation 

of biomass derived sugars to an increasing number of commodity chemicals [8,9]. The challenges 

involved in achieving commercial viability – molar yield, titre (g/L) and volumetric productivity 

(g/L/h) – and other considerations, such as byproduct profile and strain robustness, have been 

reviewed [10]. Since feedstock costs represent a large fraction of total costs (as do hydrocarbon 

feedstocks in petrochemical refineries), the molar yield should be at least 80%. The product titre 

determines the downstream processing costs and 50g/L, well above the tolerance limit of many 

microbes, is considered a minimum. Volumetric productivities dictate reactor size and, hence, 

capital investment and < 2.0 g/L/h is considered insufficient.         

      Bioethanol, with a global production of 92 million tonnes in 2014 [11], is the largest volume chemical 

produced by fermentation and substantial amounts of bioethylene are currently produced by 

dehydration of bioethanol. Consequently, one scenario for chemicals manufacture is based on 

bioethylene [12]. Commercialization of microbial production of other lower alcohols - bio-1-butanol 

[13] and bio-isobutanol [14] as biofuels and commodity chemicals is imminent (Figure 2). Alternatively, 

energy intensive separation of water miscible lower alcohols can be circumvented by producing olefins, 

e.g. isobutene [15], directly. Similarly, isoprene [16,17] and the terpene, β-farnesene, with applications 

ranging from cosmetics to jet fuel, can be produced directly by fermentation [18]. Microbial synthesis 
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of toluene was recently reported [19], potentially enabling fermentative production of aromatic 

hydrocarbons. 

Figure 2. Production of commodity chemicals by fermentation. 

     The commercially important diols: 1,3-propanediol (1,3-PDO), 2,3-butanediol (2,3-BDO) and 1,4-

butanediol (1,4-BDO) can be produced efficiently by fermentation (Figure2) [20]. Indeed, the 

development by DuPont [21] of cost-effective production of 1,3-PDO, the key raw material for 

polytrimethylene terephthalate, in recombinant E.coli , was a watershed in modern biotechnology [22].  

      The next level of sophistication is to construct entirely new pathways as exemplified by the 

Genomatica process for the industrial monomer 1,4-butanediol (titre >120 g/L and STY 3 g/L/h) by 

fermentation of an engineered E.coli strain [23]. CO2 emissions and energy usage are 83% and 67% 

lower, respectively, compared to the petrochemical process. It necessitated the identification, 

construction and optimization of an entirely new biosynthetic pathway heterologously expressed in 

E.coli cells with increased tolerance to BDO at more than 100 g/L [24].  

     A variety of carboxylic acids are produced efficiently by fermentation (Figure 2). Lactic acid 

fermentation, for example, is more cost-effective than the chemical process [25] and global production 

has significantly increased recently in response to the rapidly increasing demand for biodegradable poly-

lactate (PLA) as a green and sustainable alternative to petroleum-derived plastics. Other 

examples,traditionally produced by fermentation, are citric and gluconic acids [26], more recently joined 

by itaconic acid [27], the raw material for a variety of renewable polyesters [28] and potentially a 

precursor of biomethacrylic acid via decarboxylation [29]. Similarly, succinic acid [30] has potentially 

large volume polymer applications and its microbial production has been implemented by several 

companies. Further examples of important industrial monomers are acrylic and adipic acids. 3-
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hydroxypropionic acid (3-HPA) can be produced by fermentation [31] and dehydrated to acrylic acid and 

several companies are actively pursuing microbial routes to adipic acid [32].  

Catalytic oxidation of carbohydrates 

       Glucaric acid is a potentially interesting monomer for biodegradable polyamides. The market is 

currently underdeveloped owing to its limited availability and high price but a Johnson Matthey-

Rennovia joint venture is developing the heterogeneous catalytic aerobic oxidation of glucose to glucaric  

acid and subsequent hydrogenolysis to bioadipic acid (Figure 3)[33].  

Figure 3. Conversion of glucose to glucaric and adipic acids 

Catalytic hydrogenation of carbohydrates 

     Catalytic hydrogenation of C6  and C5  sugars derived from lignocellulose affords the corresponding 

hexitols (Figure 4) [34] but ethylene glycol (EG) and propylene glycol (1,2-PG), with global productions of 

23 and 2 mio tons per annum, respectively, are more commercially attractive targets. Conversion of 

glucose to EG and 1,2-PG involves carbon-carbon bond scission via retro-aldol condensations (RACs) 

catalyzed by, inter alia, tungsten-based catalysts (Figure 4). Yields of up to 72-76 % EG, together with 

small amounts of 1,2-PG, are obtained by hydrogenation of glucose over a Ni-W carbide-on charcoal 

catalyst [35]. In contrast, Cu-W or Pd-W based catalysts afford 1,2-PG in yields up to 61%, via initial 

isomerization to fructose followed by RAC to two C3 units.  

Figure 4. Catalytic hydrogenation of C6 and C5 sugars 

Acid-catalyzed dehydration of carbohydrates to furan derivatives. 

     Acid catalyzed dehydration of C5 and C6 sugars produces furfural and 5-hydroxymethylfurfural (HMF), 

respectively.  Furfural is already an important commodity chemical and HMF has potential [36,37] but its 

cost-effective industrial production is challenging. It involves initial isomerization to D-fructose and 
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subsequent acid catalyzed dehydration (Figure 5). Consecutive, acid catalyzed rehydration affords a 1:1 

mixture of levulinic acid (LA) and formic acid and polymerization reactions lead to the formation of 

insoluble polymers (humins) [38]. Use of a water / γ-valerolactone (GVL) biphasic system to continually 

remove the sensitive HMF from the aqueous phase afforded a maximum yield of HMF from glucose of 

62% together with 18% LA [39]. Conducting the reaction in an alcohol affords more stable HMF ethers 

but it is not clear that this gives higher yields [40].
 

Figure 5. Acid catalyzed dehydration of glucose to HMF . 

2,5-Furan dicarboxylic acid and polyethylene furandicarboxylate (PEF) 

     The potentially most important product from renewable biomass is undoubtedly  polyethylene 

furandicarboxylate (PEF), a substitute for fossil-based polyethylene terephthalate (PET). PEF is being 

commercialized by Synvina, a joint venture of Avantium and BASF [41], and Corbion [42] while Dupont is 

developing the polymer derived from FDCA and 1,3-PDO [42]. A cradle-to-grave comparison [43] of 

corn-based PEF with fossil-based PET showed that non-renewable energy use would be reduced by 40 -

50% and greenhouse gas (GHG) emissions by 45-55%. Further reduction of the latter would result from a 

switch to waste lignocellulose as feedstock. Furthermore, PEF has superior mechanical, thermal and gas 

barrier properties to PET [44]. The key raw material, furan-2,5-dicarboxylic acid (FDCA), is produced by 

selective aerobic oxidation [45] of HMF using noble metal catalysts [46,47,48,49], free enzymes [50,51] 

or whole cell biocatalysts [52]
 
 in aqueous media (Figure 6).  

Figure 6. Routes to  FDCA  by catalytic aerobic oxidation  

      The weakest link in the chain is HMF production and the search for alternative methods continues.  

One possibility is via acid catalyzed dehydration of aldaric acids [53], produced by gold catalyzed aerobic 

oxidation of uronic acids (Figure 6) [54], e.g. D-galacturonic acid derived from the pectin in sugar beet 

pulp [55]. Alternatively, isomerization to the corresponding 5-keto aldonic acid followed by acid 
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catalyzed cyclodehydration in methanol affords the methyl ester of 5-formyl-2-furoic acid that is 

oxidized  to FDCA dimethyl ester in an overall (unoptimized) yield of 45% [56].  

Conclusion 

      The use of renewable polysaccharide feedstocks for biofuels and commodity chemicals has 

stimulated a revival in carbohydrate chemistry employing green and sustainable chemocatalytic and 

biocatalytic processes. The flagship example is the synthesis of the new bioplastic, PEF, via FDCA as the 

platform chemical. We expect that this and other examples will lead to a further proliferation of 

biobased manufacture of commodity chemicals in the future. 
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