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Finite Sample Properties of ARMA Order Selection

Piet M. T. Broersen and Stijn de Waele

Abstract—The cost of order selection is defined as the loss in
model quality due to selection. It is the difference between the
quality of the best of all available candidate models that have
been estimated from a finite sample of N observations and the
quality of the model that is actually selected. The order selection
criterion itself has an influence on the cost because of the penalty
factor for each additionally selected parameter. Also, the number
of competitive candidate models for the selection is important.
The number of candidates is, of itself, small for the nested and
hierarchical autoregressive/moving average (ARMA) models.
However, intentionally reducing the number of selection candi-
dates can be beneficial in combined ARMA(p, g) models, where
two separate model orders are involved: the AR order p and the
MA order g. The selection cost can be diminished by creating
a nested sequence of ARMA(r,r — 1) models. Moreover, not
evaluating every combination (p, q) of the orders considerably
reduces the required computation time. The disadvantage may be
that the true ARMA(p, g) model is no longer among the nested
candidate models. However, in finite samples, this disadvantage
is largely compensated for by the reduction in the cost of order
selection by considering fewer candidates. Thus, the quality of the
selected model remains acceptable with only hierarchically nested
ARMA(r,r — 1) models as candidates.

Index Terms—ARMA process, hierarchical model, order selec-
tion, penalty factor, spectral analysis, time series model.

1. INTRODUCTION

HE ESTIMATION of a time series model is a parametric

method for the spectral and correlation analysis of the sta-
tionary stochastic processes [1]. The nonparametric modified
periodogram is a satisfactory solution for periodic and deter-
ministic signals, but periodograms are less appropriate for sto-
chastic observations [2]. The three model types that can be used
for time series analysis are autoregressive (AR), moving average
(MA), and combined autoregressive/moving average (ARMA)
models. Stationary stochastic observations can always be char-
acterized by either AR or by MA models [1]. However, the
true theoretical order may be infinite. In practice, most models
are estimated from a finite sample of N observations and they
can be described adequately by AR(p), MA(q), or combined
ARMA(p, q) processes with finite orders for p and/or q. An im-
portant problem for the application to practical problems is the
choice of the best model order and the best model type for a
given set of N measured observations. It is unusual that the true
time series model order and type for new stochastic data can
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be derived from physical modeling principles. However, pow-
erful statistical order selection criteria are available. They are
generally based on the statistical significance of the decrease
of the residual variance for a growing number of estimated pa-
rameters. A successful automatic time series analysis program
that includes estimation algorithms and order selection criteria
is available [3]. It uses the data as input and computes automati-
cally, without requiring interaction of the experimenter, the time
series model with precisely the details that are statistically sig-
nificant for the data at hand, leaving out all details that are not
significant.

The performance of order selection criteria in ARMA selec-
tion differs from the usually investigated selection of the AR
order [4]. However, so far the theoretical treatment has been
only asymptotical for ARMA, while finite sample considera-
tions have produced better selection criteria in AR estimation
[5]. Therefore, the cost of selection strategies or criteria in finite
sample ARMA estimation has to be analyzed. In time series lit-
erature, most attention has been devoted to order selection for
AR models. Here, the usual purpose of order selection is an AR
model that can accurately predict future observations. Accurate
prediction in the time domain leads to the same selection de-
mands as an accurate spectral model in the frequency domain.
Akaike’s information criterion AIC [6] was based on a powerful
mathematical framework, combining the likelihood description
from estimation theory and the Kullback—Leibler distance from
statistical theory. It became clear that AIC tends to select orders
that are too high, even asymptotically. An exact result has been
derived for the probability of selecting AR orders that are too
high and the cost of overfit as a function of the overfit order [7].
Moreover, the selected AIC order in finite samples turned out to
be highly dependent on the highest candidate order that was con-
sidered. Solutions suggested to overcome selection problems
were consistent criteria [8], higher penalty functions [9], finite
sample considerations [5], and some asymptotical corrections
to AIC.

A special property of AR and MA models is that the order se-
lection is hierarchical. The nested AR(p — 1) model is the only
AR model with one parameter less than AR(p). Likewise, the
only competitor of one order higher is the AR(p + 1) model.
The nesting problem is an important reason why order selec-
tion in ARMA(p, q) processes is different from AR: two orders
are involved. This means that every ARMA(p, q) process has a
number of possibly competitive ARMA(p + k,q — k) models
with the same number of parameters, but those are biased for
k # 0. Likewise, there are many models with one parameter
more or less. This influences the order selection problem and
no exact theoretical analysis has been given for models which
are not nested. One obvious reason is that the bias and the vari-
ance of all ARMA(p + k,q — k) models depend on the true
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characteristics of the process. A variance analysis is only rep-
resentative for unbiased models with both p’ > p and, at the
same time ¢’ > ¢; otherwise, the bias should be included in
an evaluation of the statistical performance. However, not all
biased candidates can be excluded in a realistic finite sample
analysis of ARMA selection. The bias of leaving out a param-
eter may be smaller than the standard deviation of that parameter
if it is estimated. Some special order selection methods coming
from pattern recognition have been described [4], that do not
require nesting. They rely on the difference between biased and
unbiased models, which indeed will become clear for an infinite
number of observations of an ARMA(p, q) process. Asymptoti-
cally, the bias cost of estimation becomes unlimited in compar-
ison with the variance cost. However, the pattern methods do
not take into account that the finite sample transition between
well fitting models and inadequate models is gradual.

An order selection criterion has been applied to ARMA
models in an automatic spectral analysis computer program [2],
[3]. To reduce the computing time, the selection has been re-
stricted to nested ARMA(r, r — 1) models. By considering only
ARMA models with MA orders equal to the AR order minus
one, ARMA order selection has artificially been made nested
and hierarchical. A special property of this ARMA(r,r — 1)
selection is that only candidate models with fwo parameters,
more or less, are allowed as the closest competitors. This paper
compares the cost in terms of prediction accuracy between the
selection from unstructured and from hierarchical candidates.
Limitation of the number of candidate models gives the pos-
sibility that the true ARMA(p, ¢) model is not a candidate. If
q < p, the smallest unbiased candidate is the ARMA(p,p — 1)
model with p— 1 — ¢ more parameters than the true process with
zero as true value. Estimation of those additional parameters
gives an extra contribution to the minimal possible estimation
accuracy. Nonetheless, the cost of selection may be reduced
because fewer candidates are available for selection in a nested
sequence of candidates.

The penalty in the order selection criterion for ARMA models
in the automatic order selection program [3] has been based
on asymptotical arguments that are valid for AR processes. No
special considerations have been given to ARMA models. In
this paper, attention is given to the question of the best penalty
factor for additional ARMA parameters. The candidates are the
penalty 2 of Akaike’s AIC and the penalty 3 that follows from
a compromise between bias and variance errors in selected AR
models [9].

II. ARMA MODELS
An ARMA(p, q) process is defined as [1]
Tnt+a1Tp—1+-"" ApTn—p = En +bigp 1+ + qun—q (D

where ¢,, represents a series of independent, identically dis-
tributed, zero mean white noise observations. The process is AR
for ¢ = 0 and MA for p = 0. The ARMA process can also be
written with polynomials of AR and of MA parameters as

A(2)x, = B(2)en, 2w, = Ty 2)

with A(z) = 1+a1z 1+ +ayz Pand B(z) = L+b1z 1 +
-+ ++bgz~ 1. Models have estimated polynomials of arbitrary or-

ders, not necessarily equal to p and q. Models are stationary if
the estimated roots of A(z) are inside the unit circle and invert-
ible if the zeros, the roots of B(z) are inside the unit circle. Only
models, which are stationary and invertible, are considered as
candidates for order selection [2].

Order selection criteria are based on the rate of the decrease
of the residual variance as a function of the number of parame-
ters in the estimation from N observations. This residual vari-
ance is known in estimation. To evaluate the accuracy of esti-
mated and selected models, they should be compared to the true
process. The model error ME is such a measure for the quality
of estimated models [10]. This measure can be used in simula-
tions where an omniscient experimenter knows the true process
parameters that generated the N observations from which the
candidate models for selection are estimated. The ME is a scaled
transformation of the expectation of the squared error of predic-

tion PE
ME:N<@—1). 3)

2
oz

The prediction error is an obvious and usual measure for the ac-
curacy in time series analysis, but it is unknown if models are
estimated in practice. The PE measures the fit of models with
previously estimated parameters on fresh new observations from
the same stochastic process. The asymptotical expectation of the
ME for an ARMA(p', ¢') model is independent of the variance
o2 of the excitation signal and also independent of N for un-
biased models. On the contrary, the expectation of a bias con-
tribution of an underfitted model is directly proportional to NV
in the ME. Only the values of the true and of the estimated pa-
rameters are required to compute the ME [10]. The Cramér—Rao
lower bound for the spectral accuracy of unbiased models, with
at least all truly nonzero process parameters included, equals the
number of estimated parameters when expressed in the measure
ME. The ME denotes the model quality in this paper.

III. UNCONDITIONAL EXPECTATIONS

For AR processes, two different ways to analyze the influ-
ence of the order of the estimated model can be used. The first
way gives the unconditional expectation of characteristics or ac-
curacy measures as a function of the model order. No order se-
lection is considered. Possible characteristics are: the residual
variance, the prediction error, the model error ME of (3), and
the numerical outcome of an order selection criterion. The gen-
eralized information criterion (GIC) with penalty factor « is de-
fined by [9]

GIC(p, @) = log{RES(p)} + a% 4

where RES(p) denotes the residual variance of a model with
p estimated parameters. GIC(p, 2) is better known as the AIC
criterion [6]. The criterion GIC(p, 3) is a compromise between
bias and variance costs in AR estimation [9]. If the process is
truly AR(p), it has been shown that, for orders p and greater,
the behavior of all those unconditional characteristics is inde-
pendent of the true parameters of the AR(p) process [11]. This
is the reason why many important results can be derived from
a white noise analysis. Those simple white noise results for the
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characteristics apply to all AR(p) processes for the true order p
and higher.

The theoretical derivation of most AR order selection criteria
is based on unconditional properties. By excluding the possi-
bility of underfit, the analysis of white noise can be applied to
the theory of order selection with as candidates only AR models
of order p and higher. As an example, the asymptotical uncondi-
tional expectation of the ME for models of a true AR(p) process
is

EME(K)] =k, k=p )
where ME(k) is the ME for an AR(k) model. For k < p, the
expectation of the ME has also a bias contribution that is pro-
portional to N. The asymptotical result in (5) also applies to
unbiased MA or ARMA models with k estimated parameters.
Each parameter above the true order adds 1 extra to the expec-
tation of ME. These unconditional derivations, however, do not
take into account the fact that an overfit order will be selected
if the estimate of the highest order parameter in a specific real-
ization is greater than its unconditional expectation. According
to the unconditional expectations, E[AIC(k)] will have the min-
imum for £ = p. Using unconditional theory, the penalty factor
2 of AIC would be the best choice.

IV. CONDITIONAL EXPECTATIONS

Conditional expectations describe the expectation after selec-
tion. They apply to selected models only and they take the ac-
tual estimates of the parameters into account. This shows that
the conditional E[AIC(k)|(k is selected)] is generally smaller
than the unconditional E[AIC(k)]. That is certainly true for un-
biased models, with & > p. The reason is that an order that
is too high is only selected if the estimated parameter of that
high order seems to be significant because its estimated value is
greater than the true value. Likewise, the conditional expecta-
tion of the residual variance of a selected model is smaller than
its unconditional expectation. At the same time, the conditional
expectations of the model error ME and of the prediction error
of selected models are greater than their unconditional a priori
expectations. Selected models seem to fit better than according
to the a priori unconditional expectation, but in reality the fit to
future data is worse. Using conditional theory, the choice 2 for
the penalty factor in AIC has been reconsidered [9].

The cost of selection can be defined as the quality difference
expressed in ME between the model of the selected order and
the best of all estimated candidate models. That will mostly be
the model of the true order, if all true parameters are statisti-
cally significant, that is, tacitly assumed in theoretical deriva-
tions. The definition of costs deals with selected models. There-
fore, the conditional expectations apply and the actual selection
costs depend on the data at hand. With conditional theory for the
use of AIC in AR order selection, the expectation of the costs
of selection shows an asymptotical increase of 2.56 in ME [7].
This is the combined sum of the probabilities of having k orders
overfit multiplied with the expected cost if that order is selected.
Taking penalty factor 3 has reduced this increase to 0.85 [9], at
the cost of a small possible bias contribution. Higher penalties
would still give lower values for the cost of overfit, but they

give a greater probability of underfit with too much bias. Sim-
ulations have shown that penalty 3 is a better compromise than
2 or 4 for the penalty factor [5]. It is essential for the theoret-
ical results that the candidate models are hierarchical. There-
fore, all overfitted AR or MA models are unbiased, at least if
unbiased parameter estimation algorithms are used. Moreover,
there is only one candidate model with a single overfit param-
eter as well as only one candidate for any arbitrary number of
overfit parameters. Only underfitted models have bias, but those
models are excluded in this theoretical analysis of the costs by
assuming that the parameter of order p of the AR(p) model is
statistically very significant, such that it is never missed in order
selection. So far, no conditional theory includes the possibility
of underfit and the theoretical results are hardly realistic for fi-
nite sample AR order selection. The mathematical preference
for consistent selection criteria [8] is a purely theoretical and
asymptotical concept, for ever-increasing sample sizes. That is
not applicable to actual time series analysis where an order has
to be selected for a given finite number [V of observations.

The transition region between biased and unbiased AR
models will be discussed. Special consideration is given to
parameter values that are on the edge of statistical significance.
Suppose that an AR(p) process has an AR(p — 1) model that
is significant beyond any doubt for the given sample size V.
The residual variance RES(p) of the AR(p) model can be
derived from the previous residual variance RES(p — 1) with
the estimated parameter a,, as [12]

RES(p) =RES(p— 1) {1 -a’}. (6)

It is easily verified that GIC(p, «) of (4) is smaller than GIC(p—
1, ) and that order p is selected above order p— 1 if df, > a/N.
The asymptotic theoretical expression for the standard deviation
of the last parameter estimated from N AR(p) observations is
given by

1—a?
var[a,] = % (7
For small values of a,, this can be approximated by 1/N. For
a normally distributed estimate a,,, the unilateral probability to
be further from the expectation a,, than 1.96 times the standard
deviation equals 2.5%. In other words, if the true last parameter
a, equals about 3/,/N, there is still a nonvanishing probability
that the actual estimate a,, is twice the standard deviation under
that true value and the estimated dlz, will become =~ 1/N. This
gives a residual reduction that is too small to be selected with
the usual values 2 or 3 for « in GIC(p, ). On the other hand, if
the true parameter a,, equals zero, there is almost 5% probability
that the absolute value of a, exceeds 2/,/N, which will lead to
selection with the criterion GIC(p, «) of (4) if the penalty factor
« is less than 4. Final true parameters must be greater than four
or five times their standard deviation 1/,/N to make practically
sure that in no single simulation run an estimate that is too small
is found that is not selected. A final true AR(p) parameter value
ap = 0.01 would require more than 200 000 observations to be
almost never missed in the practice of order selection, or in a
proper conditional theory. However, the unconditional limit for
the statistical significance of the final AR parameter is 1/\/N
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and 10.000 observations are sufficient to let a,, = 0.01 be sig-
nificant in the unconditional theory.

The reasoning for the last parameter a, can be extended
to processes where both a, and a,_; have true values near
va/y/N. In those critical cases, a large estimate for the last
parameter G, can compensate for a smaller estimate for a,_1.
This situation becomes much more complicated than the study
of Shibata [7] with only the probability of overfit. Such a
study may be feasible for AR processes, but the bias results
depend on the particular AR(p) process, especially on the true
values of the last parameters. For a true ARMA(p, q) process
the situation becomes still much more complicated because
there are many candidate ARMA(p + ¢,¢ — ¢) models with
the same number of parameters or with one parameter more
or less. It can be expected that estimated parameters for those
different models are strongly correlated if they are estimated
from the same data. The conditional expectations are required
for theoretical results about the costs of selection and it is not
attractive to make such a study, even if it would be possible.

V. HIERARCHICAL VERSUS ALL POSSIBILITIES

A special property of AR and MA models is that the order
selection is hierarchical. The nested AR(p — 1) model is the
only AR model with one parameter less than AR(p). Likewise,
the only competitor of one order higher is the AR(p + 1)
model, no matter what the highest candidate order would be.
Arbitrary ARMA(p, q) processes have a number of models
ARMA(p + k, q — k) with the same number of parameters and
many others with one parameter less or with one parameter
more. The unconditional expectation of the quality ME of
the estimated ARMA(p, ¢) model will be ME = p + ¢ if the
estimation is unbiased. The unconditional expectation of ME
for all other ARMA(p + k, ¢ — k) models gives ME = p + ¢ as
contribution of the estimation variance and an additional bias
term that depends on the true process characteristics. Some of
them may be close competitors for the ARMA(p, ¢) model in
order selection. Not all models with p + ¢ or more parameters
are unbiased, only ARMA(p’, ¢') models with both p’ > p and
at the same time ¢’ > ¢ are unbiased. Moreover, the bias of
some underfit models may become small if a close pole-zero
pair is omitted. Hence, an analysis of the statistical cost of
selection based only on variance contributions like for AR
processes [9] is not possible and the AR theory of selection
costs cannot be applied to arbitrary ARMA(p, ¢) models.

The number of ARMA(p’, ¢’) candidate models with p’ <
L and ¢ < Lis L2 If all ARMA(p’, ¢') models would be
available for order selection, the true order model has many
close competitors and it may be expected that the performance
of order selection criteria deteriorates. It would more be re-
lated to subset selection with arbitrary subsets than to selec-
tion in a hierarchically nested class of candidate models, where
each higher order model contains all parameters of lower order
models. Nested selection has L candidate models if L is the
highest order considered, whereas there are 2~ possible subset
models. In the subset selection, each possible subset model is a
next candidate for selection and each estimated parameter that

individually seems statistically significant is included, even if
many previous model orders were not significant. Theoretically,
the selected subset size will increase with the number of can-
didate models whereas the selected hierarchical model order is
independent of L. The costs of subset selection have been inves-
tigated: the selection between al possible subsets selects many
more parameters, but leads to a poor model in time series [13].
The explanation is simple. If many closely competing candi-
dates with similar unconditional accuracy are available for se-
lection, generally one of those candidates is an estimated model
that seems to fit much better than the others and that one will
be selected. The performance of L? ARMA(p’, ¢') candidate
models will be somewhere between L hierarchical models and
2L subset models.

As computation of ARMA models may be time consuming, a
program for the automatic analysis of time series [3], [14] con-
siders only hierarchical ARMA(r,r — 1) models. This partic-
ular choice is also inspired by the fact that models of those or-
ders are good discrete time approximations for many continuous
time processes [1, p. 382]. Instead of L2 ARMA(p/, ¢') models,
with p’ < L and ¢ < L, only L ARMA(r,r — 1) models
have to be computed. Those models are ordered hierarchically.
If the true process would be ARMA(p, q), the smallest unbiased
ARMA(r,r — 1) model contains |¢ + 1 — p| parameters with
expectation zero. Having fewer candidates and hardly any close
competitors, the cost of order selection will become small be-
cause it becomes easier to select the best among the estimated
models. However, it is no longer certain that the very best model
which can possibly be estimated from the data is among the can-
didates. The closest unbiased ARMA (7 +1, 7 — 1+14) model has
two more parameters. The closest biased model has two param-
eters less. Asymptotically, the probability of one order overfit
is for ARMA(r,r — 1) models given by the probability that
the chi-squared distribution with two degrees of freedom ex-
ceeds 2a, where « is the penalty factor. This is smaller than the
probability that the chi-squared distribution with one degree of
freedom exceeds « ; that applies to AR or to MA models where
only one parameter more is considered. The price to be paid is
that the true ARMA(p, ¢) model may not always be among the
candidates for selection and some additional parameters with
expectation zero have to be included in the selected model.

It has been shown that it is not realistic to exclude biased
models like ARMA (p+1i, ¢—1) in a theoretical analysis of order
selection properties if all ARMA models with arbitrary orders
are selection candidates. Hence, a theoretical comparison of the
selection costs of the hierarchical approach with L candidates
and the selection with two free model orders and L? candidates
is not feasible. Therefore, the performance of ARMA order se-
lection algorithms is studied in simulations.

VI. SIMULATIONS

The simulations evaluate the quality of models that are se-
lected from different sets of candidate models estimated from
the same N observations. They also give an indication about a
good choice for the penalty function. Only ARMA models are
considered with an MA order lower than the AR order because
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the true process also has this property. The selection among hi-
erarchical ARMA(r, r — 1) candidates, » = 0, ..., 100 is com-
pared with the selection with as candidates all ARMA(r, < )
models with the MA order lower than the AR order. Asymp-
totically, the probability of m orders overfit for selection with
penalty « in ARMA(r,  — 1) models is given by the probability
that the chi-squared distribution with 2/ degrees of freedom
exceeds 2ma. Therefore, it almost never occurs in truly finite
ARMA (r, r—1) processes that the selected order is five or more
higher than the true order for a greater than 2. Choosing a high
order as maximum order for selection gives confidence that the
best model will be among the candidates for measured data of
an unknown type, but it takes more computing time. If some a
priori information about the orders is available from previous
similar experiments, it might be useful to limit the maximum
orders of the selection candidates.

Simulations have been made with ARMA(7,2) processes with
AR parameters given by the reflection coefficients

17 _ﬁa <_ﬂ)27 (_ﬁ>37 (_ﬂ)47 <_ﬂ)57 (_ﬁ>67 (_ﬂ)7
and with MA parameters given by reflection coefficients

1, 8, °.

The MA parameters are computed with the Levinson—Durbin
recursion that also relates AR parameters with reflection coef-
ficients [12]. This choice for the generating reflection coeffi-
cients gives an ARMA process with all poles and all zeros at the
same radius |/3|. It gives the convenient possibility to generate
different levels of significance for the parameters of the true
process and to create examples where biased underfit models
are the best as well as processes where only unbiased models are
attractive candidates for selection. The ARMA(7,2) process is
chosen such that all competitive ARMA models are in the class
ARMA(r, < r)if 3 is large enough. In this way, the conclusions
can be extrapolated to the full class of all ARMA(<L 7, < r)
models. White noise is indicated as 8 = 0, # = 0.4 is an
example where only 3 AR parameters are statistically signifi-
cant for N = 1000. The MA(3) model is the best unconditional
MA model and the ARMA(2,1) model is the best unconditional
model in the ARMA((r, r—1) class of candidates. For 5 = —0.6,
the best order would be AR(6) if only AR(p) models are candi-
dates for selection, MA(4) for MA candidates and ARMA(3,2)
for ARMA(r, r — 1) candidates. The bias of the AR(6) model is
0.17, expressed in ME for N = 1000, the bias of MA(4) is 0.11
and the bias of ARMA(3,2) is 0.41. Hence, adding 1 for every
estimated parameter finds the minimum unconditional ME ex-
pectation of those three models, yielding 6.17 for AR, 4.11 for
MA, and 5.41 for ARMA. Finally, 8 = 0.8 is an example where
the best AR order equals 15, MA(15) is the best MA candidate
and ARMA(7,6) the best ARMA(r, r — 1) candidate. All selec-
tions have been made with the values 2 and 3 for the penalty
factor « in the order selection criterion GIC(p, ) of (4). The
variation of J gives the opportunity to study the performance of
the penalty factor in the most difficult selection examples where
underfitted biased models are expected to be the best candidates
among estimated models.

Tables I and II show the average ME of the true ARMA(7,2)
model and of five selected models:

TABLE 1
AVERAGE UNCONDITIONAL ME OF THE TRUE ARMA(7,2) MODEL AND
AVERAGE CONDITIONAL ME OF FIVE MODELS SELECTED WITH
PENALTY v = 2 FROM 5 DIFFERENT SETS OF CANDIDATES,
AS A FUNCTION OF THE RADIUS 3. N = 1000

B 0 04 06 08
ARMA(7.,2) 78 77 15 396
ARMAsel 28 66 75 211
AR 26 64 85 214
MA 22 62 63 207
ARMA(r-1) 1.0 45 87 178
ARMA(r,<r) 2.6 59 88 205

TABLE 11
AVERAGE CONDITIONAL ME OF FIVE MODELS SELECTED FROM THE SAME
SETS OF CANDIDATES AS IN TABLE I, BUT NOW WITH PENALTY «v = 3, AS
A FUNCTION OF THE RADIUS 3 OF THE POLES AND ZEROS. N = 1000

—-pB 0 04 -0.6 0.8

ARMAsel 09 54 67 207
AR 08 46 70 208
MA 08 48 56 200
ARMA(r-1) 04 39 87 188
ARMA(r<r) 08 43 77 168

1) estimated model of true ARMA(7,2) structure (only in
Table I);
2) ARMAsel selects model order and type, with as candi-
dates AR(p), MA(q) and ARMA(r,r — 1) models [2],
(31, [14];
3) ARselected from only AR(k) candidates with orders k =
0,...,500;
4) MA has only MA(k) as candidates with orders
kE=0,1,...,200;
5) ARMA(r,r—1) has AR(0) and ARMA(k, k — 1) models
as candidates with k = 1,2,...,100;
6) ARMA(r, < r)has AR(0) and all ARMA(r, k) models as
candidates withr = 1,2,...,100and k = 0,1,...,r—1.
The white noise data with 3 = 0 have always the zero model
without parameters as a candidate. Therefore, the best model
would have ME = 0 and is a candidate. Tables I and II give the
average ME of selected models, which is here equal to the cost
of selection. The costs of selection increase with the number
of competitive candidates, which is highest for ARMAsel and
smallest for ARMA(r,r — 1). Moreover, the costs of pure AR
or pure MA selection are close to the asymptotical theoretical
ME values 2.56 and 0.85 for the penalties &« = 2 and o = 3,
respectively [9]. The ME of ARMA(r,r — 1) is the smallest
because it has no candidates with 2 or 4 or any even number
of estimated parameters. ARMA(r, < 7) has more candidates
and, hence, the costs of selection are higher. A special property
of this white noise example is that all estimated and selected pa-
rameters are of unbiased models and underfit is impossible. The
difference between the first columns of Tables I and I is a clear
support for the use of the penalty factor 3 in ARMA selection.
The difference is less pronounced in the other columns, but it is
mostly in favor of the penalty factor 3.
For 8 = 0.4, a plot of the unconditional prediction error as an
indication for the model quality is given in Fig. 1. As expected
with the unconditional theory, the ARMA(2,1) model is the best
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Average Prediction Error for estimated ARMA models

MA order q

2 4 6 8 10 12 14
AR order p

Fig. 1. Average unconditional prediction error for ARMA(p.q) models
estimated from an ARMA(7,2) process with 3 = 0.4. A darker color indicates
a better fit. It is remarkable that slope of lines of equal model quality are 45°,
so the estimation variance is predominant, giving the same contribution to all
models with the same number of estimated parameters p 4+ ¢.

there, with the darkest color. The finite sample character of the
problem can be concluded from the fact that the underfitting bias
is much less important than the variance due to the number of
estimated parameters. Asymptotically, the quality of all biased
models will be poor because the bias contribution to the ME
is proportional to N and will grow without limits. Lines with
constant p + ¢ are under 45° and the gray intensity in Fig. 1 is
more or less the same along those lines. This means that the PE
and also the ME are constant there; the expectation for the ME
is equal to the number of estimated parameters p + ¢, with an
additional very small bias contribution for all models withp < 7
or ¢ < 2. The conditional numerical results in Tables I and II are
less clear because both the bias and the variance play arole in the
selection. Moreover, also the best candidate has to be estimated
and is subject to statistical variations, unlike in the white noise
example. However, the selected result of ARMA(r, 7 — 1) has
lower costs than of ARMA(r, < r) for both values of the penalty
factor. This shows that reducing the number of candidates for
selection may have advantages, even if the true process is no
longer among the candidates. Furthermore, a clear preference
for penalty 3 follows from the tbles for 5 = 0.4 and also for
8 = —0.6.

The first line in Table I for § = 0.8 with the true model
order shows a peculiar property of the ARMA algorithms that
have been used. In some simulation runs, they produce a poor
estimate for fixed orders while neighboring models with one
parameter more or less are estimated without a problem. The
poor estimates are never selected. Therefore, the average quality
of fixed true order ARMA models is often worse than the av-
erage of selected models. The results for 5 = 0.8 in Table II
show that it is possible to find examples where selection from

Average Prediction Error for estimated ARMA models
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20f ‘ 1

1 1 1 1 L

5 10 15 20 25
AR order p

Fig. 2. Average unconditional prediction error for ARMA(p,q) models
estimated from an ARMA(7,2) process with 3 = 0.8. A darker color represents
a better fit. At low orders, the asymptotical bias pattern is visible with poor
models for AR orders less than 7 and for MA orders less than 2. For higher
model orders, the bias disappears and the finite sample effect of the estimation
variance is still recognized in the slope of 45° for lines of equal prediction
error.

ARMA(r, < r) is slightly better, at least for penalty 3. This
could be expected because all parameters are significant now.
Hence, the best unconditional model is ARMA(7,2) in the class
ARMA(r, < r) and ARMA(7,6) in the class ARMA(r,r — 1).
Moreover, AR(9), ARMAC(8,1), and ARMA(6,3) are biased and
are not close competitors, which is favorable for selection of
the ARMA(7,2) model if it is among the candidates. The best
ARMA(r,r — 1) model for r equal to 7 has four extra MA
parameters that have to be estimated. Therefore, the expected
ME for the ARMA(7,6) model is four higher than the ME of
ARMA(7,2). Fig. 2 shows that models of order that is too low are
biased and poor, indicated by the light color. The quality of all
models with more than say 15 or 20 parameters depends largely
on the number of estimated parameters. The bias is important
if less than ten parameters are estimated in this ARMA(7,2) ex-
ample, but the influence disappears quickly. This is illustrated
by the fact that selection between only AR or only MA models
as candidates gives about the same ME in the tables. The best
unconditional AR model order was 15 with as expectation for
the ME 17.8 and MA(15) with ME 15.6. The ME of the selected
models is slightly higher than that unconditional minimum. In
Fig. 2, the gray color is more or less constant for lines with
45-degree slope with the same number of parameters p + ¢, if
that number is greater than 15. This is another indication that
it is not necessary to compute all ARMA(p, ¢) models, but that
the limitation to ARMA(r, r — 1) models provides enough good
candidates for the selection.

More simulations have been studied with different N, dif-
ferent values of 3 and higher true process orders. No results
have been found that contradict the conclusions.
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VII. CONCLUSION

The quality of selected models depends on two factors: the
quality of the available estimated candidate models and the ca-
pacity to select the very best or one of the best from those candi-
dates. The penalty factor has a strong influence on the selection
cost, which is the difference between the quality of the selected
model and the quality of the best candidate. Usually, penalty 3
is a good choice for the selection of an ARMA model for an ar-
bitrary number of observations.

It is easy to select a very good model from a small number
of good candidates; the selection costs are small. The selection
cost increases if many good candidates are available. The hier-
archical nesting imposed by ARMA(r, r — 1) candidate models
gives an enormous reduction in the number of candidates in
comparison with the estimation of all combinations of p for AR
and g for MA orders. This reduction gives the possibility that
the very best model is not estimated, if the true MA order is not
equal to the AR order minus one. The best hierarchical candidate
model may require that some extra parameters have to be esti-
mated, with true values zero. However, the additional variance
inaccuracy of those extra estimated parameters will generally
be compensated by the reduction of the selection costs caused
by the limitation of the number of good candidates. Generally,
limiting the selection to ARMA(r, r — 1) candidate models does
not lead to a lower quality of the model that is finally selected
in finite samples.
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