
DELFT UNIVERSITY OF TECHNOLOGY

MASTERS THESIS

Reproducing state-of-the-art schema
matching algorithms

Author:
Andra-Denis IONESCU

Supervisor:
Assistant Prof.dr. C. Lofi

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Web Information Systems Group
Software Technology

February 3, 2020

http://www.tudelft.nl
http://www.wis.ewi.tudelft.nl/
https://www.tudelft.nl/en/eemcs/the-faculty/departments/software-technology/

iii

DELFT UNIVERSITY OF TECHNOLOGY

Abstract
Electrical Engineering, Mathematics and Computer Science

Software Technology

Master of Science

Reproducing state-of-the-art schema matching
algorithms

Author: Andra-Denis IONESCU

Student id: 4722485
Email: A.D.Ionescu@student.tudelft.nl

Schema matching has been a researched topic for over 20 years. Therefore, many
schema matching solutions have been proposed to treat various problems such as:
creating unified knowledge bases or mediation schema, data translation, data dis-
covery, data curation. Such a wide variety of schema matching algorithms requires
a benchmarking system that can evaluate to what extent one solution is appropri-
ate for a given problem. However, creating the benchmark requires open source
algorithms, which are not widely available in the data management community.
One solution to this problem is reproducing the algorithms, although there is a re-
producibility crisis which proves that the majority of existing research can not be
reproduced. These circumstances have determined the goal of this research: con-
ducting a reproducibility study on the state-of-the-art schema matching algorithms.
This study supports the schema matching development and emphasizes the issues
regarding the ability to reproduce the algorithms or the results. Moreover, we im-
plement the selected algorithms and benchmark them in an industry case study.

Thesis Committee:

Chair: Prof.dr.ir. G.J.P.M. Houben, TU Delft
University supervisor: Assistant Prof.dr. C. Lofi, TU Delft
Committee Member: Prof.dr. A. van Deursen, TU Delft
Committee Member: Assistant Prof.dr. A. Katsifodimos, TU Delft

HTTP://WWW.TUDELFT.NL
https://www.tudelft.nl/en/ewi/
https://www.tudelft.nl/en/eemcs/the-faculty/departments/software-technology/
A.D.Ionescu@student.tudelft.nl

v

Contents

1 Introduction 1

2 Literature review 3
2.1 What is schema matching? . 3
2.2 Paper selection . 4
2.3 Findings . 5

2.3.1 Multiple databases era . 6
2.3.2 General approach . 7
2.3.3 Big data era . 9

2.4 Conclusion . 10

3 Taxonomy 11
3.1 Schema-based approaches . 11

3.1.1 Element-level techniques . 12
3.1.2 Structure-level techniques . 13

3.2 Instance-based approaches . 14
3.2.1 Element-level approaches . 14
3.2.2 Similarity measures . 15

3.3 Combined approaches . 15
3.4 Discussion . 15

4 Reproducibility study 19
4.1 Introduction . 19
4.2 Paper selection . 21
4.3 Reproducibility analysis . 22
4.4 Implementation design decision . 24

4.4.1 Cupid . 25
Description . 25
Linguistic matching . 25
Structural matching . 26
Pipeline . 26
Conclusion . 27

4.4.2 Instance Clustering . 27
Description . 27
Phase one . 27
Phase two . 28
Conclusion . 28

4.4.3 SemProp . 28
Description . 28
Semantic matching . 29
Syntactic matching . 29
Structural summarizer . 29
Conclusion . 30

vi

4.5 Conclusion . 30

5 Evaluation 31
5.1 Cupid . 32
5.2 SemProp . 34
5.3 Instance Clustering . 37
5.4 Industry case study . 38
5.5 Conclusion . 40

6 Conclusion 41
6.1 Future work . 42

Bibliography 43

vii

List of Figures

2.1 The figure illustrates two tables Users and Computers that represent
the input for a schema matching algorithm. The output produced by
the algorithm is produced in the left part as a list of pairs. 3

2.2 The figure illustrates the distribution of papers according to the pub-
lishing year. 6

4.1 The structural summarizer algorithm as presented in Fernandez et al.,
2018b. The highlighted part represents the new function that is not
described anywhere in the paper. 30

5.1 The precision, recall and F1-score for different configurations of the
parameters. 34

5.2 The precision, recall and F1-score for different configurations of the
parameters. 35

5.3 Sensitivity of StructS as provided in the original paper. Source: Fer-
nandez et al., 2018b . 36

5.4 Sensitivity of StructS as provided by our experiments. 36
5.5 The figure illustrates the output of our experiments (A and C) and the

output reported in Zhang et al., 2011 (B). 38
5.6 The precision, recall and F1-score for different configurations of the

parameters of the Cupid algorithm in the industry setting. 39

ix

List of Tables

2.1 The table indicates the conferences used to filter the search results
from Google Scholar, the number of search results for each confer-
ence, the number of papers that have more than 100 citations and the
number of selected papers after the manual inspection. The last row
in the table shows the total number of papers for each column. 5

2.2 The table indicates the problems identified in the literature, catego-
rized based on the group of problems, and shows the number of pa-
pers addressing them. 10

3.1 The table presents the main type of algorithms discussed in the liter-
ature review and the correspondence with the frameworks 16

3.2 The table summarizes the findings in the taxonomy and the char-
acteristics of each research described in the literature survey. The
blue checkmarks (4) represent the schema level data, the yellow check-
marks (4) represent the instance level data, while the green check-
marks (4) represent both types. The black checkmarks (4) are in-
dependent of the data type. 17

3.3 The table describes the types of user intervention identified in the lit-
erature review and classify the frameworks according to the corre-
spondence between them . 18

4.1 The table indicates the main categories assessed in the reproducibility
study and the variables for computing the degree of reproducibility
for each paper. Based on these variables, we present the correspon-
dence between them and each paper and compute the reproducibility
degree for each category. 23

4.2 The table summaries the differences in implementation between the
original study and our interpretation . 27

5.1 The table summarizes the thresholds that we tuned, it shows the value
ranges used, the values for the best configuration and the values re-
ported in the original paper. 33

5.2 The table presents the similarities and differences between the output
of Cupid in the original paper and the output of Cupid in our alterna-
tive version . 34

5.3 The table summarizes the thresholds that we tuned, it shows the value
ranges used, the values for the best configuration and the values re-
ported in the original paper. 37

1

Chapter 1

Introduction

We live in the digital era where content is produced every day [Dong and Srivastava,
2013] due to the rapid expansion of technologies and the high accessibility of data
in multiple domains such as social media, marketing, online shops, banking, enter-
prise and even government [Clifton et al., 2004]. Nowadays, producing information
is a natural process and similarly, consuming it. Moreover, a significant amount of
disciplines require data in order to generate insights, statistics, and reports. The real
challenge begins when the necessary information to deliver such work is located in
different sources, as missing data can severely impact the final outcome. Having
data in multiple sources constitutes a problem, because one does not know which
attributes represent the same concept in order to extract the proper data. Moreover,
even if all the sources have been connected, data integration is a very laborious pro-
cess requiring great knowledge about data.

For many years, integrating data has been done manually by experts in the field
[Rahm and Bernstein, 2001]. However, this task has become increasingly difficult,
because the volume of data has been rapidly growing [Palopoli, Sacca, and Ursino,
1998]. The solution for integrating multiple sources has been researched for many
years and the core task is named schema matching. Schema matching has been
proposed as a solution for more than two decades. As such, we can notice the emer-
gence of developing systems and methodologies that aim for an automated solution
where the user’s input is as minimal as possible.

Two decades of development of schema matching systems have led to a wide va-
riety of approaches, some treating specific domains and scenarios [Cortez et al., 2015,
Mitra, Wiederhold, and Jannink, 1999, Doan, Domingos, and Levy, 2000], while
some are considered generic and can be applied in any domain and any type of
data [Castano and De Antonellis, 2001, Palopoli, Sacca, and Ursino, 1998].

Given the diversity of domains tackled by schema matching systems, choosing
the proper algorithm for a specific scenario has become a challenging task. There-
fore, to facilitate the task of choosing the appropriate algorithm we propose creating
a benchmark that can indicate which algorithm performs the best under certain cir-
cumstances. However, creating such benchmark requires open source algorithms
that can be evaluated and compared under different conditions. Currently, the data
management community lacks open source schema matching algorithms. As such,
creating a benchmark requires reproducing the algorithms.

The literature indicates that the evaluation of schema matching solutions is either
performed by comparing the reported results in the papers [Bernstein, Madhavan,
and Rahm, 2011], or by running the binaries corresponding to the algorithms that
are provided upon request [Madhavan, Bernstein, and Rahm, 2001]. However, the
majority of research does not mention the provenance of the algorithms. Thus, no
study reports attempts to reproduce the work of other authors before comparing the
results.

2 Chapter 1. Introduction

Investigating this deficiency, we have discovered that the issue of reproducibil-
ity has become a concern in various scientific domains. In 2016, a survey on 1576
researchers reported that 70% of them failed to reproduce other scientist’s research,
while 50% failed to reproduce their own study [Baker, 2016]. Moreover, the research
is facing a reproducibility crisis in many domains [Baker, 2016]. The health sciences
address the issue of reproducibility as a lack of source code, environment variables,
code packaging procedures, and data [Peng, 2011]. To solve the issue, ACM SIG-
MOD Reproducibility1 has been trying to develop the culture of sharing the nec-
essary materials and it incentives the authors by awarding the most reproducible
papers.

Under these circumstances, we formulate the goal of this thesis: analyzing the
current state of schema matching research classified according to the problems tack-
led and proposed solutions. Furthermore, we assess the degree to which the algo-
rithms are reproducible. More precisely, our contributions are the following:

1. developing an extensive literature study on schema matching with the focus
on the problems and the methodology employed to solve them;

2. creating a comprehensive taxonomy of schema matching techniques based on
the data elements used and the proposed matching algorithms;

3. conducting a reproducibility study of the most representative schema match-
ing papers;

4. evaluating the algorithms proposed in the representative papers on synthetic
datasets

5. benchmarking the algorithms in an industry use case.

Developing an extensive literature study helps us understand what schema match-
ing is, what problems it solves and how. The literature survey includes two decades
of schema matching development and it shows the problem spectrum classified into
three large categories that are influenced by the time and popularity of the database
solutions in that period.

Consequently, the literature survey constitutes the basis for constructing the tax-
onomy, which details all the solutions proposed in the literature survey. The va-
riety of solutions is classified according to the data attributes: either schema level,
instance-level or both. Moreover, the taxonomy presents how the user influences
the algorithms and what are the major categories of algorithms employed by each
schema matching solution. Furthermore, the taxonomy helps us identify the high-
level schema matching categories for which we select one representative paper. The
papers will undergo a reproducibility study that will determine the state of schema
matching literature and the degree of implementation.

Finally, concluding the reproducibility study, the selected papers will be evalu-
ated on synthetic data and real-life data. The results will determine how well the
papers can be reproduced and how well they perform in real-life scenarios, where
data integration represents a daily struggle.

The next chapters address each of the contributions: in Chapter 2 we present
the literature survey, in Chapter 3 we construct and detail the taxonomy, in Chap-
ter 4 we discuss the concept of reproducibility, perform an analysis over the papers
and present the implementation design decision. In Chapter 5 we evaluate the algo-
rithms and present the results. Finally, we conclude the research and propose future
improvements in Chapter 6.

1http://db-reproducibility.seas.harvard.edu

http://db-reproducibility.seas.harvard.edu

3

Chapter 2

Literature review

2.1 What is schema matching?

Schema represents the definition of a relational database. It is a representation of the infor-
mation from an application or user view. A schema contains information about the tables,
columns, data types and constraints. [Batini, Lenzerini, and Navathe, 1986].

Schema matching represents the process of identifying correspondences between the ele-
ments of one or multiple schemas [Madhavan et al., 2005].

Schema matching consists of a collection of match operations that consume different
types of data and outputs the correspondences between elements. The match opera-
tion can be a simple similarity measure or it can be expressed by complex algorithms
that involve machine learning, deep learning, graph operations or a combination of
them. The data consumed by the algorithms are accessible in multiple formats, such
as XML, DTD, and relational data, either as schema information, data instances or
both. The scope of the thesis consists of having one or more match operations that
consume only relational data and its elements, such as column and table names, data
types, data instances. Finally, the output of a schema matching algorithm is a list of
pairs containing the correspondences between elements. To illustrate this, Figure 2.1
depicts a minimal example of the input and output of a schema matching algorithm.

Considering the above definition, this chapter presents a literature review of the
schema matching techniques, classified according to the problem they solve. The
goal of the literature review is to assess the current state of schema matching re-
search: the problems solved, the solution proposed and how the data is used.

Users

Computer name
Physical address
Address

Computers

Hostname
MAC address
IP address

Schema
matching

(Users/Computer name, Computers/Hostname)

(Users/Physical address, Computers/MAC address)

FIGURE 2.1: The figure illustrates two tables Users and Computers that
represent the input for a schema matching algorithm. The output
produced by the algorithm is produced in the left part as a list of

pairs.

4 Chapter 2. Literature review

2.2 Paper selection

The starting point of the literature review is the survey of Rahm and Bernstein, 2001,
which presents six early research papers on schema matching. We further used the
survey to find other state-of-the-art papers by inspecting the works that cited the
survey. Therefore, we used Google Scholar1, which produced initially 4306 results.
We filtered the results by searching for the words schema matching contained in the
title, keywords or the body of the papers, which reduced the initial number of re-
sults to 3870. We further proceeded with the filtering and chose only the papers
from the most reputable conferences such as: the International Conference on Very
Large Data Bases (VLDB), Association for Computing Machinery’s Special Interest
Group on Management of Data (ACM SIGMOD), International Conference on Data
Engineering (ICDE), International Conference on Extending Database Technology
(EDBT), Conference on Innovative Data Systems Research (CIDR), Association for
Computing Machinery’s Special Interest Group on Knowledge Discovery and Data
Mining (ACM SIGKDD), Association for Computing Machinery’s Transactions on
Database Systems (ACM TODS) and Transactions on Knowledge and Data Engi-
neering (TKDE).

Table 2.1 contains the number of search results for each conference and the num-
ber of selected papers. The paper selection followed a set of criteria devised as fol-
lows:

• number of citations
As the study from Rahm and Thor, 2005 indicates, SIGMOD registered the
highest average number of citations for a period of four years. The average
approached 100 citations and as a result of the fact that we investigate the
research from early ages, we considered appropriate to eliminate all the papers
that have less than 100 citations, except for the papers published one year ago.

• domain membership
The papers that met the above criterion were manually inspected, as they had
to relate to the scope of the thesis. Many papers were describing the general
field of data integration, with a few mentions to the schema matching or they
were describing other domains where schema matching can be applied. How-
ever, the scope of the literature review is to investigate the state-of-the-art for
schema matching and how the algorithms and methodologies described uti-
lizing the data, therefore we discarded all the unrelated research.

• ability to consume the same type of dataset
The scope of the thesis as mentioned in the first section (Section 2.1) consists
of having match operations that consume only relational data. Therefore, each
algorithm has to consume the same type of dataset. Thus, ontology mapping
represents one of the discarded topics, although schema matching can be em-
ployed to solve the issue. Similarly, many studies were focused on web query
matching using web tables or other data mined from the deep web, which does
not constitute the scope of the thesis.

Finally, the total number of state-of-the-art studies on schema matching that con-
forms to the aforementioned criteria has been reduced to 20.

1https://scholar.google.com/

https://scholar.google.com/

2.3. Findings 5

TABLE 2.1: The table indicates the conferences used to filter the search
results from Google Scholar, the number of search results for each
conference, the number of papers that have more than 100 citations
and the number of selected papers after the manual inspection. The
last row in the table shows the total number of papers for each col-

umn.

Conference Search results > 100 citations Selected papers

ACM SIGMOD 67 26 5
VLDB 92 24 4
ICDE 12 4 4
CIDR 7 5 1

SIGKDD 4 1 0
EDBT 20 0 0

ACM TODS 7 1 0
TKDE 23 4 0

Number of papers mentioned in the survey 6

Total 232 65 20

2.3 Findings

As the starting point of the literature review is the survey from 2001 used in the
paper selection (Section 2.2), the schema matching journey starts from the early be-
ginning, even before the year 2000 (Figure 2.2). Examining the literature from 1994
until 2018, we observed that the problems solved by schema matching can be cate-
gorized into three groups as follows:

• Multiple databases era - The period of multiple databases starts in 1994 and
ends in 2001 in our literature review. In this time frame, schema matching is
employed to solve problems that concern multiple databases such as federated
databases, creating unified knowledge bases [Heimbigner and McLeod, 1985]
and introducing the data integration problem together with data translation
[Halevy, 2001].

• General approach - The period between 2001 and 2013 introduces the general
approach of schema matching. The researchers are not concerned with one
type of problem anymore and they believe they should focus on the general
view and develop performing algorithms independently of the problem.

• Big data era - From 2013, big data started to gain more and more popularity2.
Thus, schema matching development adapted and it tries to solve the prob-
lems concerning data discovery and data curation.

Following this classification, the next sections present the findings of the selected
literature in chronological order.

2https://gumroad.com/l/LaUj

https://gumroad.com/l/LaUj

6 Chapter 2. Literature review

1995 2000 2005 2010 2015
Year

0.0

0.5

1.0

1.5

2.0

2.5

3.0

of

 p
ap

er
s

The number of schema matching papers per year

FIGURE 2.2: The figure illustrates the distribution of papers according
to the publishing year.

2.3.1 Multiple databases era

In 1994, the SemInt framework [Li and Clifton, 1994] was proposed to solve the prob-
lem of developing federated databases[Sheth and Larson, 1990]. The approach used
the meta-data information and data instances from the schema level and instance
level and aspired to solve the problem in a semi-automated manner. The match op-
eration consists of examining the structure information to classify it according to the
data types and constraints and discovering patterns in data instances by applying
string-based algorithms and computing statistics (average, variance, coefficient of
variation) on numerical data. The algorithm uses machine learning to understand
the patterns in attributes, while the output is transferred to a neural network in or-
der to determine the mappings. Furthermore, the framework reuses the results as
an external knowledge representation for future mappings. Although the process-
ing is automated, the system is semi-automated because it allows user intervention
to provide thresholds and confirm the results.

Four years later, in 1998, TranScm [Milo and Zohar, 1998] is developed to solve
the problem of data translation by producing a data representation that can be easily
integrated with the conventional translation languages. The system consumes data
from the schema level and uses graphs to represent it. The match operation uses the
graphs to find matches by applying different rules that manipulate the data using
string-based approaches or constraints. The system is semi-automated and it in-
volves the user as a mediator in the cases where a component has multiple matches
and the system can not decide between them and to provide rules.

Another semi-automated framework developed in 1998 wants to solve the prob-
lem of constructing a global dictionary to support the integration of federated data
systems. Dike [Palopoli, Sacca, and Ursino, 1998] uses information from the schema
level and performs a clustering operation on the data before other computations are
employed. The match operation consists of transforming the schemas from each
cluster into a high-level abstraction until a sufficiently abstract model results. The

2.3. Findings 7

match is supported by the user who provides match candidates as examples in the
initial phases of the algorithm. Moreover, the user is also involved in the validation
and verification phase required after the semantic operations such as synonymy, in-
clusion or homonymy. Finally, the system represents a semi-automatic manner due
to user intervention.

In 1999, another semi-automated framework is developed to tackle the problem
of creating a unified knowledge base from multiple independent heterogeneous
sources. SKAT [Mitra, Wiederhold, and Jannink, 1999] uses ontologies and schema
information to find matches and processes the elements using a language-based and
string-based approach. The framework relies heavily on the input from an expert
even from early phases and its functionality is similar to an active learning system.
Thus, the expert provides examples of matches and mismatches between elements
of ontologies and accepts or rejects the new system generated matches. Finally, the
system updates itself and the cycle is reloaded.

In 2000, the LSD [Doan, Domingos, and Levy, 2000] framework was proposed
to support the problem of data integration. It consumes data from schema level
represented as a tree and data instances. The schema level data is used as high-level
training examples manually provided by the user, while the data instances are used
to train several machine learning classifiers. Once the classifiers are trained, they are
used to output confidence scores on each new source schema. Next, a meta learner
is used to combine all the confidence scores and returns a prediction list for each
schema element. Finally, a prediction combiner assigns the correct label based on
heuristics.

In 2001, the ARTEMIS [Castano and De Antonellis, 2001] system is proposed
as a solution for constructing global views [Castano and De Antonellis, 1999], a
problem also tackled in 1998 with the Dike framework [Palopoli, Sacca, and Ursino,
1998]. Another similarity between the two frameworks is the type of data used,
as both use schema-level elements. Moreover, both approaches use clustering in
their implementation, but with different outcomes. Unlike Dike, which uses clus-
tering before other computations, ARTEMIS uses hierarchical clustering after a pre-
processing phase based on the string and language-based approaches. Similar to the
other semi-automated frameworks, ARTEMIS needs user intervention for identical
reasons such as setting thresholds and validating results.

Another framework developed in 2001, addresses the problem of data integra-
tion and translation. The data integration component of the Clio project [Miller et al.,
2001, Popa et al., 2002] uses schema information to perform attribute classification.
Moreover, the framework uses external knowledge such as dictionaries and thesauri
and the user intervention as a verification step for the generated matches. The rest
of the framework is concerned with the operations necessary for data translation.

2.3.2 General approach

Generic schema matching algorithms are introduced in 2001, starting with the Cupid
framework [Madhavan, Bernstein, and Rahm, 2001] that offers a general approach
to a variety of problems that involve schema matching. It uses the structure informa-
tion from schema-level as well as the elements and it consumes the data in the form
of a tree structure after applying multiple language and string-based operations. Fi-
nally, the outcome results after applying structural matching on the tree, which is
highly dependent on constraints. The framework relies heavily on the existence of
a thesaurus for the linguistic matching and the human input does not differ from

8 Chapter 2. Literature review

the rest of the frameworks, as the user has to specify different parameters or initial
mappings.

Another example of generic algorithms is COMA [Do and Rahm, 2002], devel-
oped in 2002. Similar to Cupid, COMA uses schema level elements represented inter-
nally as a direct acyclic graph. The match is performed using either simple (string,
linguistic, constraint or semantic-based), hybrid (string, constraints or graph-based)
or reuse-oriented (using existing matches) algorithms. The user is heavily involved
in the process by selecting matchers or matching strategies, as well as providing
feedback on the resulted matches. Moreover, the framework represents a suitable
environment for testing different algorithms and evaluating their individual or com-
bined performances.

The third generic schema matching algorithm is also developed in 2002, under
the name of Similarity flooding [Melnik, Garcia-Molina, and Rahm, 2002] and, sim-
ilar to the other generic frameworks, it uses schema level information represented
as a graph. Unlike Cupid that applies linguistic operations on the graph structure,
Similarity flooding applies string-based operations. The unique characteristic of the
framework is represented by the matching algorithm that spreads the similarity from
the two corresponding nodes to the adjacent nodes. Applied over multiple itera-
tions, the similarity is propagated into the graph. Finally, using filtering heuristics,
a subset of the mappings is extracted and inspected by a human expert and the “ac-
curacy” of the algorithm is measured by counting the number of user interventions.

In 2003, a new approach for schema matching is proposed, named data interpreta-
tion [Kang and Naughton, 2003]. Although the algorithm uses instance-based data, it
explores the uninterpreted element and structure matching techniques. The motiva-
tion behind the methodology is the existence of hidden dependencies between data
that helps to match the columns with opaque names. The algorithm first performs a
pair-wise comparison between all the attributes and constructs a dependency graph,
which is processed using graph matching algorithms.

Although ontology mapping does not constitute the research topic of the study,
S-Match [Giunchiglia, Shvaiko, and Yatskevich, 2004] computes semantic matches
exclusively between trees, thus it transforms the schemas in hierarchies or ontolo-
gies. The underlying algorithm uses only schema level information that suffers
linguistic-based transformations. The match is accomplished by computing the re-
lations between labels based on string approaches using external thesauri and com-
puting the relations between nodes using propositional satisfiability [Serafini et al.,
2003]. One remarkable feature of the framework is the lack of any user interaction
in any phase of the algorithm, unlike the rest of the frameworks that have been dis-
cussed so far.

Besides the development of a framework where the user intervention is not re-
quired, the year 2004 also introduces the first framework that solves complex matches
such as {address - street, city} and not only 1:1 correspondences ({surname - lastname}).
iMap [Dhamankar et al., 2004] uses both schema level and instance level information.
The match is performed as a search operation in the entire space of the match candi-
dates and is based not only on the data type (text, numeric) but also on the semantics
of the data. To restrict the number of searches or prune the match candidates, the
framework exploits external information to enrich explainability. Additional to the
external information, the framework offers the possibility of adding different search
algorithms and match candidates initially provided by the user. Finally, the resulted
mappings are the outcome of machine learning and statistical algorithms and they
are manually inspected by the user in the process of validation and verification.

2.3. Findings 9

Moreover, in 2005, a framework [Madhavan et al., 2005] that can solve a vari-
ety of schema matching problems can only leverage the schema information from
only one particular domain at a time. The framework is based on an improved ver-
sion of LSD [Doan, Domingos, and Halevy, 2001] and it inherits the majority of the
matching operations. However, there are several differences between the two, such
as: using different approaches to generate training data, as it constructs a corpus of
schemas and mappings used to infer the matches between two other new schemas.
Moreover, it uses improved algorithms to train the data, using the corpus to derive
statistics that would be used as constraints and an updated algorithm to generate
the matches based on heuristics.

In the same year, another approach to schema matching is developed. DUMAS
[Bilke and Naumann, 2005] relies entirely on the data instances to find matches us-
ing duplicate detection algorithms. Moreover, it is the first paper that classifies the
matching strategies using the terminology horizontal and vertical matching. The strat-
egy of the underlying algorithm uses the vertical match as it inspects the rows and
uses the values to find duplicates, by exploiting a collection of fuzzy matchers, such
as string-based similarity measures, combined using the composite strategy. To im-
prove performance, the data might suffer language-based transformations, such as
removing the stopwords and applying stemming. The algorithm does not require
human intervention and the mappings can be extracted as a subset of any K values
from the generated set.

In 2011, a purely instance-based framework [Zhang et al., 2011] for schema match-
ing is developed. The framework does not require external information such as on-
tologies or thesauri and its implementation relies on data distributions, computed
using the similarity metric introduced in Zhang et al., 2010, named Earth Mover’s
Distance. It uses the metric as an underlying methodology for clustering the columns,
it transforms the clusters into complete graphs and it applies an integer program to
solve the graph and output the correlated attributes. As the majority of the frame-
works, it requires the user input for setting certain thresholds.

2.3.3 Big data era

In 2013, as part of a data curation framework, the matching component of Data
Tamer [Stonebraker et al., 2013] uses information from web sites that is transformed
into class entities using different means of extraction. Besides this type of data, it also
uses external ontologies and thesauri to augment the initial data. The match is per-
formed on schema level and instance level data and it applies different algorithms
and consolidates the results using a composite matcher. The algorithms include se-
mantic and syntactic procedures such as string-based, language-based and statisti-
cal operations. The user has a similar function as he previously had in the other
frameworks presented and he needs to provide thresholds, matching examples and
validate the matches generated by the system.

In 2015, the schema matching matter shifts the focus from data representation
and similarity functions to the usage of external information. Therefore, Barcelos
[Cortez et al., 2015] solved the data discovery problem by proposing a method of
assisting the matching algorithms with information from within the organisation
instead of external knowledge bases (ontologies, thesauri). The framework exam-
ines and mines the repositories containing spreadsheets from within the organiza-
tion because they include information carefully generated using different meaning-
ful queries on the data. Therefore, the columns from the spreadsheets are mapping

10 Chapter 2. Literature review

candidates for the columns of the databases. The match is realized using a heuristic
based on Jaccard containment [Chaudhuri, Ganti, and Kaushik, 2006].

Using different external knowledge has been a preferred method to infer the se-
mantics, thus SemProp [Fernandez et al., 2018b] part of the Aurum[Fernandez et al.,
2018a] framework, that solved the problem of data discovery in enterprises, intro-
duces coherent groups, a new structure to semantically represent a group of words.
The framework uses both schema level and instance level data and follows the ap-
proach involving both syntactic and semantic matching by employing string and
language-based operations on data. The match is constructed as a pipeline of oper-
ations that involve external ontologies and thesauri used to find semantic matches
using the coherent groups. Additionally, it uses syntactic operations such as Jac-
card similarity. Finally, the user represents an important component involved in the
process to provide values for different thresholds.

TABLE 2.2: The table indicates the problems identified in the liter-
ature, categorized based on the group of problems, and shows the

number of papers addressing them.

Category Problem Type
of papers
addressing
the problem

General approach - 6

Multiple databases

Data integration 4
Data translation 2

Developing federated databases 2
Developing global dictionaries 2

Developing a unified knowledge base 1

Big data era
Data discovery 2
Data curation 1

2.4 Conclusion

To conclude, this chapter presents the evolution of the schema matching problems,
the data types used by the algorithms and the type of match. Moreover, it shows
that schema matching has been proposed as a solution to one specific problem from
1994 and gradually evolved to being a generic approach for a wide range of prob-
lems since 2001. Therefore, the problems solved by the schema matching algorithms
are not specific anymore and the newest algorithms can be employed for any of the
following matters: data integration, data warehousing, data discovery, data manage-
ment systems, federated databases, web-based architectures, web services, message
translation, and peer-data management. A summary of the problems identified and
the number of occurrences can be observed in Table 2.2. Finally, as the summary
[Bernstein, Madhavan, and Rahm, 2011] of schema matching evolution from 2011
indicates, the schema matching research did develop over time and the matter has
been analyzed in isolation, as a mature topic, without attaching it to the problem
spectrum or its application field.

11

Chapter 3

Taxonomy

The chapter presents a detailed classification of the schema matching techniques
identified in the literature review. The taxonomy is constructed by following the
type of data used by the algorithms and the match operation employed. To reiter-
ate, the scope of the thesis consists of one or more match operations that consume
only relational data. Nonetheless, relational data can have various formats, that can
impact the difficulty of schema matching. The easiest case is represented when the
schema structures are the same in terms of attribute names or described concept, but
the real challenge occurs when the schemas have similar, but non-identical data, dif-
ferent structures or different notations for the same concept [Madhavan, Bernstein,
and Rahm, 2001].

The starting point for constructing the taxonomy is the survey from Rahm and
Bernstein, 2001, which outlines and explains the main categories in schema match-
ing methodology. Then the taxonomy is enriched with the findings of Shvaiko and
Euzenat, 2005 which extend the schema-based approaches in particular.

Regardless of the approach, the classification starts with the match operation,
which Rahm and Bernstein, 2001 categorized into two big areas: individual ap-
proaches and combined approaches. The individual approaches use a single match
criterion to compute the mappings, while the combined ones use multiple match
criteria. The most broad category is the one concerning the individual approaches
and the following classification results:

Cat. 1 Instance vs schema based

Cat. 2 Element vs structure matching

Cat. 3 Language vs constraint

Cat. 4 Matching cardinality

Cat. 5 Auxiliary information

The first category (Cat. 1), instance vs schema based, is the one that divides the
methodologies into another two big portions, thus being able to further sub-classify
the strategies into granular categories.

3.1 Schema-based approaches

Schema-based approaches only use the schema information to find similarities be-
tween candidates. It contains details about the data types, names, descriptions, rela-
tionships and constraints [Rahm and Bernstein, 2001]. Furthermore, schema-based

12 Chapter 3. Taxonomy

matching is sub-classified by considering the granularity of match [Rahm and Bern-
stein, 2001, Shvaiko and Euzenat, 2005] into element level or structure level (Cat.
2).

The element level matching computes mappings between individual elements
from schema structure, without analysing the relationships between them. On the
other hand, the structure level matching analyses how the elements interact and
how they are connected inside the schema [Shvaiko and Euzenat, 2005]. Ideally,
two schema structures should have total matching, but commonly, only a part of the
elements are truly matching [Rahm and Bernstein, 2001].

Before describing the next layer (Cat. 3), Shvaiko and Euzenat, 2005 introduce the
input interpretation layer. This layer emphasizes the distinction between the internal
and external techniques. The internal techniques are further classified into semantic
and syntactic techniques. The semantic approach refers to semantics to interpret the
input data, while the syntactic approach analyses the structure of the input data us-
ing different algorithms to infer meaningful statistics. The external techniques are
the Cat. 5, auxiliary information, which refer to additional resources that help inter-
pret the input data, such as user input, thesauri, dictionaries, and ontologies. Next,
we will extend Cat. 3 based on the input interpretation layer, taking into considera-
tion the internal and external categories and element vs. structure approaches.

3.1.1 Element-level techniques

As previously mentioned, element level techniques analyze the elements from the
schema, such as column names, and they are either syntactic or external. The syn-
tactic layer specifies the techniques which manipulate the data as a sequence of char-
acters. The techniques identified in the literature review are the following:

1. String-based
The approach is used to match string literals or descriptions of schema enti-
ties as a sequence of characters. The most used string manipulation methods
are: prefix (mostly used to identify acronyms and their correspondents), suffix
(check whether one string ends in the another one, e.g phone and telephone),
n-grams (computes the number of common sub-strings between two strings)
and edit distance. The edit distance represents the number of insertions, dele-
tions or substitutions required to transform one string into another one, nor-
malized by the length of the longest string.

2. Language-based
The language-based approach considers the string literals as actual words in a
given language. Therefore, the approach makes use of the Natural Language
Processing (NLP) techniques, such as tokenization (the words are split into en-
tities by a certain tokenizer that recognizes punctuation, cases, digits, blank
spaces), lemmatization (the words are morphological analyzed and transformed
into a basic form) and elimination (the connection words such as prepositions,
conjunctions, articles or most frequently used words are discarded).

3. Constraint-based
The constraint-based techniques are concerned with the internal constraints
of the entities, such as data types (comparing the entities with respect to their
data type) and multiplicity comparison (checks whether or not the entity can be
collected into structures that have cardinality constraints e.g. the set of five
cars is closer to the set of five automobiles than the set of seven watercraft).

3.1. Schema-based approaches 13

The external techniques use the auxiliary information to enhance the power of
match by interpreting the input as a human can. Following we will shortly describe
the methods, while a more concise version can be found in Shvaiko and Euzenat,
2005:

1. Linguistic resources
From the linguistic resources, the ones that are used to match words based
on their linguistic relations (synonyms and hyponyms) are: common knowledge
thesauri (used to find the meaning of words in the schema by sense of hierarchy,
e.g. WordNet) and domain specific thesauri (used to find the meaning of words
that are specific to a certain domain which does not belong to the common
knowledge).

2. Alignment reuse
The alignment reuse refers to the possibility of reusing previously matched
schema structures. The motivation resides on the fact that many schema struc-
tures are similar, especially if they are derived from the same domain. The ap-
proach suggests that the structure should be decomposed into smaller chunks
that will be tested for match against the previously matched structures.

3. Upper level formal ontologies
The ontologies are external sources, logical-based systems that provide formal
specification on top of existing thesauri. Such systems are: Suggested Upper
Merged Ontology (SUMO) and Descriptive Ontology for Linguistic and Cog-
nitive Engineering (DOLCE).

3.1.2 Structure-level techniques

The structure-level techniques compute the match between entities by analyzing
how the entities are interacting together [Rahm and Bernstein, 2001]. Here, the
relationship between entities prevails over the individual elements. For this level,
besides syntactic and external techniques, the semantics are also present [Shvaiko
and Euzenat, 2005].

The syntactic approaches are based on or derived from graph techniques. There-
fore, the schema is transformed into a graph structure where the mappings are com-
puted using either node levels, relation levels or the entire tree [Shvaiko and Eu-
zenat, 2005]. The approaches identified in the literature are graph matching and tree
matching.

1. Graph matching
Graph matching represents a computation expensive approach. Thus, in schema
matching, graph matching is treated as an optimization problem (e.g mini-
mizing distance) for which graph methods are employed. In a Direct Acyclic
Graph (DAG), the match is computed considering certain graph elements such
as children, leaves and relations. Therefore, the similarity between inner nodes is
often computed by examining the similarity between the children nodes, leaf
nodes or the relations between them.

2. Tree matching
A few techniques transform the schemas into trees instead of graphs, to em-
phasize the fact that each node has one and only parent and to use unique
traversal methods. The match is computed by comparing the leaves, which
also helps to compare the sub-trees.

14 Chapter 3. Taxonomy

The structure-level presents the same sub-categories as the element-level. Thus,
besides the syntactic approaches, external approaches are also accounted for. Al-
though they are mentioned in the literature [Shvaiko and Euzenat, 2005], the papers
described in our literature review do not mention the existence of any external ap-
proaches at the structure level and they will not be further detailed.

Furthermore, the structure-level presents one more sub-category: the semantic
layer. The semantic layer is represented by the model-based algorithms such as de-
scribed in Shvaiko and Euzenat, 2005. The survey presents two structure-level se-
mantic approaches: propositional satisfiability and description logics, but only the
former was identified in the literature review.

1. Propositional satisfiability (SAT)
SAT decomposes a graph into node problems and each possible pair of match-
ing nodes is transformed given the formula: Axiom→ rel(context1, context2).
"The formula is valid iff the negation is unsatisfiable".

3.2 Instance-based approaches

The instance-based approaches can enrich the schema structures by providing extra
information about the described data. Such data might augment the entities, by
examining the instances and computing statistics or performing the match operation
on the instances [Rahm and Bernstein, 2001]. If the schema structure is missing,
the instances can help reconstruct it, either manually or automatically [Rahm and
Bernstein, 2001].

Most of the techniques presented in Section 3.1 are also applicable in the case
of instances [Rahm and Bernstein, 2001] such as both element-level techniques: the
syntactic and external approaches. The structure-level approaches are not suitable
for a high volume of data, because they are used to infer structures that can provide
a meaningful characterization of the data. However, data instances do not have any
structure, thus the algorithms developed to extract information from the data are
essential for finding mappings without any structure.

3.2.1 Element-level approaches

In the case of schema-based techniques, the column names and their constraints are
considered elements. On the other hand, in instance-based approaches, every data
instance is considered an element. Therefore, the same syntactic techniques can be
employed, such as the string-based and language-based that are used to extract con-
cepts depended on the frequency of words and constraints that are used to constrain
the data in certain intervals, ranges or other metrics such as average, maximum or
minimum [Rahm and Bernstein, 2001].

Although the volume of data is significantly bigger than the schema-level data,
certain approaches need external information to further augment the data. Repeat-
edly, the same schema-based external approaches are suitable for instance based.
Therefore, the linguistic resources are used to find synonyms and hypernyms, while
the upper-level formal ontologies are used to derive the concepts. However, the align-
ment reuse is not suitable for data instances because of the high variation of data.

3.3. Combined approaches 15

3.2.2 Similarity measures

Another approach that uses the instance-level data is represented by the similarity
measures. The similarity measures usually use the data distributions, union or in-
tersection to infer statistics about the data. They do not manipulate it as the string
or language methods do and they do not represent external approaches either, be-
cause they only use the available data without any additional information. Such
approaches are:

1. Earth Mover Distance (EMD) [Zhang et al., 2010] - computes the similarity be-
tween data distribution of different columns. The default approach is primar-
ily used for numeric data. However, a few extensions have been elaborated to
consume non-numeric data (such as a string) based on histograms.

2. Jaccard similarity or Jaccard coefficient [Chaudhuri, Ganti, and Kaushik, 2006]
- the method is based on a formula that uses the number of common words
and the total number of words. The number of common words is represented
by the set intersection, while the total is computed using the set union.

3.3 Combined approaches

Both schema-based and instance-based methods represent individual matching tech-
niques, successful by themselves but even more powerful when combined. There-
fore, a few papers have included in their methodology different combinations of
individual matching algorithms to improve the performance. Combining the match
operations can be done in one of the two following ways:

1. hybrid matcher - combines different algorithms using multiple match crite-
ria or external resources, such as a string-based match algorithm combined
with data type compatibility tables. The advantage of using a hybrid matcher
consists of improved performance because it reduces the number of transfers
between schemas and improved effectiveness. After all, the poor matches can
be filtered out.

2. composite matcher - combines the results generated by multiple individual or
hybrid approaches. It is more flexible than the hybrid matcher because it can
construct new matchers by reusing the results in any order.

3.4 Discussion

The detailed taxonomy presents a general classification of the schema matching tech-
niques identified in the literature review (Chapter 2). The findings are summarized
in Table 3.2 and it presents the methods discussed in the previous sections and the
characteristics of each framework. The list of frameworks is chronologically ordered,
which in combination with the color codes, allows us to identify the period where
a certain type of data was predominant. As the table indicates, in 1994, SemInt
experimented with both schema level and instance-level data. However, the fol-
lowing eight years of schema matching development were concerned only with the
schema level data. From 2003, the algorithms oscillated between both types and
easily adopted the combination of two.

Besides the categories highlighted in Table 3.2, each methodology presents ad-
ditional features that do not belong to the taxonomy. These features are concerned

16 Chapter 3. Taxonomy

with the number of user interventions and the means to apply them or the type of
algorithms.

In terms of user intervention, a few papers mention that the algorithms do not
require any user input or they do not indicate anything about such an aspect. How-
ever, the majority (73%) of the literature review describes semi-automatic frame-
works thus, the intervention type and the total amount can be observed in Table 3.3.
According to the literature, the user can add thresholds, initial mappings, match al-
gorithms or rules, he can be a mediator and finally, he can validate and verify the
output. Among the research that mentions how the user interacts with the system,
the most encountered actions are: validating the final results, providing the thresh-
olds and initial mappings.

Aside from the user contribution, the research also mentions the type of algo-
rithms used to generate the mappings. These algorithms either use the output of
the matchers described in the taxonomy or are completely independent. Such meth-
ods are classified as machine learning algorithms, neural networks, diverse statistics
based algorithms or different types of clustering. The usage and distribution of the
methods among the literature reviewed in Chapter 1 is presented in Table 3.1. Inter-
estingly, the state-of-the-art algorithms do not exploit the neural networks, but they
are depending on the traditional methods such as diverse machine learning clas-
sifiers or statistics. The only mention of the neural networks occurs from research
developed in 1994. Moreover, the majority of the frameworks are focused on im-
plementing only one type of algorithm, except for SemInt and iMap that combine
machine learning algorithms with either neural networks or statistics.

In the next chapter, we will use the taxonomy to select the most varied in ap-
proach papers for conducting a reproducibility analysis. Firstly, we will define the
terms and describe the status of reproducibility in research and the database com-
munity. Following, we will detail the criteria used to select the papers, compute the
degree of reproducibility and finally, present the implementation design decision we
made to reproduce the studies.

TABLE 3.1: The table presents the main type of algorithms discussed
in the literature review and the correspondence with the frameworks

Paper Machine Learning Clustering Neural Networks Statistics

SemInt 4 4

Dike 4

LSD 4

ARTEMIS 4

Clio 4

iMap 4 4

Madhavan
et al., 2005

4

Zhang
et al., 2011

4

Data Tamer 4

Total 4 3 1 3

3.4. Discussion 17

TABLE 3.2: The table summarizes the findings in the taxonomy and
the characteristics of each research described in the literature sur-
vey. The blue checkmarks (4) represent the schema level data, the yel-
low checkmarks (4) represent the instance level data, while the green
checkmarks (4) represent both types. The black checkmarks (4) are

independent of the data type.

La
ng

ua
ge

ba
se

d
St

ri
ng

ba
se

d
C

on
st

ra
in

t b
as

ed
Li

ng
ui

st
ic

re
so

ur
ce

s
A

lig
nm

en
t r

eu
se

O
nt

ol
og

ie
s

Ea
rt

h
M

ov
er

s
D

is
ta

nc
e

Ja
cc

ar
d

si
m

ila
ri

ty
G

ra
ph

m
at

ch
in

g
Tr

ee
m

at
ch

in
g

Pr
op

os
iti

on
al

Sa
tis

fia
bi

lit
y

H
yb

ri
d

C
om

po
si

te

Syntactic External Similarity Syntactic Semantic
Combination

Element level Structure level

SemInt,
1994

4 4 4 4

TranScm,
1998

4 4 4 4

Dike, 1998 4 4

SKAT, 1999 4 4 4 4

LSD, 2000 4 4

ARTEMIS,
2001

4 4 4 4

Clio, 2001 4

Cupid,
2001

4 4 4 4 4 4

COMA,
2002

4 4 4 4 4 4

Similarity
Flooding,

2002
4 4 4

Data inter-
pretation,

2003
4

S-Match,
2004

4 4 4 4 4 4

iMap, 2004 4 4 4

Madhavan
et al., 2005

4 4

DUMAS,
2005

4 4 4

Zhang
et al., 2011

4 4 4

Data
Tamer, 2013

4 4 4 4 4 4

Barcelos,
2015

4 4

SemProp,
2018

4 4 4 4 4

18 Chapter 3. Taxonomy

TABLE 3.3: The table describes the types of user intervention identi-
fied in the literature review and classify the frameworks according to

the correspondence between them

Intervention type

Paper
Add
thresholds

Add
initial
mappings

Add
matchers

Validation Verification Mediator

SemInt 4 4

TranScm 4 4

Dike 4 4 4

SKAT 4 4

LSD 4

ARTEMIS 4 4

Clio 4

Cupid 4 4

COMA 4 4 4

Similarity
flooding

4 4

iMap 4 4 4 4

Zhang
et al.,
2011

4

Data
Tamer

4 4 4

SemProp 4

Total 6 6 3 8 5 1

19

Chapter 4

Reproducibility study

4.1 Introduction

“Reproducibility refers to the ability of a researcher to duplicate the results of a prior
study using the same materials as were used by the original investigator”[Goodman,
Fanelli, and Ioannidis, 2016]. As part of the thesis, one of the contributions is repre-
sented by a reproducibility study. This study aims to assess the reproducibility level
of the schema matching research and to investigate how well the state-of-the-art sys-
tems described in the literature survey perform, considering the criteria described
further in this chapter. Furthermore, the reproduced versions will undergo a bench-
mark, where possible, to assess the accuracy of the reproduced versions against the
golden standard and the reported results in the initial studies.

Another definition of reproducibility is given in the ACM Guidelines1 and they
imply that a different team with a different experimental setup should obtain the
same results. Besides reproducibility, another term is used interchangeably or to de-
note repeatability. The term replicability refers to “the ability of a researcher to dupli-
cate the results of a prior study if the same procedures are followed but new data is
collected” [Goodman, Fanelli, and Ioannidis, 2016]. Due to the variety in terminol-
ogy, a concise description is necessary to establish the differences between the words
and formulate the issues faced by the scientific community. Goodman, Fanelli, and
Ioannidis, 2016 presented the differences between reproducibility and repeatability
and the characteristics of each are classified under three categories: methods repro-
ducibility, results reproducibility and inferential reproducibility.

Methods reproducibility suggests that all the details and steps of the study are
available to develop the same procedure or system. The system should return the
same results using the information described in the initial study using the same data
if is publicly available or provided by the authors upon request [Collberg, Proebst-
ing, and Warren, 2015].

Results reproducibility is described as the repeatability term and it indicates that
the same results should be accomplished during an independent study that follows
very similar procedures to the original study.

Finally, one of the categories that is rarely mentioned is inferential reproducibility.
It represents the scientific research that draws the same conclusions from a replicated
study or from “a reanalysis of the original study” [Goodman, Fanelli, and Ioannidis,
2016]. It represents a different category from the methods and result reproducibility
because a similar conclusion can be drawn from using different data, receiving dif-
ferent results or from an entirely different implementation methodology. However,
inferential reproducibility is the most disputable category because of the differences
in opinions between scientists, due to their own understandings and expertise.

1https://www.acm.org/publications/policies/artifact-review-badging

https://www.acm.org/publications/policies/artifact-review-badging

20 Chapter 4. Reproducibility study

In Artificial Intelligence (AI) area, another classification is used to denote the
level of reproducibility. The classification is based on the aforementioned one and
it provides a ranked list based on the type of results or documentation [Gundersen
and Kjensmo, 2018]. The categories are the following:

C1 - experimental reproducibility - It implies that the same results are produced by
using the same implementation and data as in the original study.

C2 - data reproducibility - The category implies that the same results should be pro-
duced if an alternative implementation is used, but the same data as men-
tioned in the original study.

C3 - methods reproducibility - This category suggests that the same results should
be obtained using an alternative implementation and a different dataset.

Regardless of the differences in terminology, the awareness among the scientific
community towards reproducibility, in any flavor, is increasing, due to surveys that
suggest a reproducibility crisis. According to Baker, 2016, the research is facing a
reproducibility crisis in many domains such as chemistry, earth and environment,
biology, medicine, physics and engineering, and others. The majority (52%) of re-
searchers that were interviewed indicated the existence of a significant crisis. To
mitigate it, the community encourages adopting the practices that lead to a success-
ful reproducible study. One example is represented by Papers with Code2, an online
platform with the mission of making the code and evaluation tables publicly avail-
able. The motivation of reproducing one’s research relies on the following: ensure
that the results are not influenced by hidden factors [Manolescu et al., 2008], discover
bugs that lead to non-similar results [Peng, 2011], increase the impact and visibility
[Freire, Bonnet, and Shasha, 2012] and allow future research to rely on published
and available research.

The matter has been tackled in the database community ever since 2008 when
SIGMOD published a report regarding the assessment of results reproducibility cate-
gory [Manolescu et al., 2008]. Although interested in the matter, the authors claimed
that the reproducibility issue should remain optional due to the intellectual property
rights some might have. The experiment was successful because 66% of the submit-
ted papers provided the necessary means to repeat the experiments and the majority
of the participants reported that the process is helpful and “it raises the standards for
the community” [Manolescu et al., 2008]. Moreover, in the same year, the SIGKDD
conference announced that the papers which do not provide the implementation
details and parameter specifications will be downgraded. Similarly, the VLDB con-
ference included in the review guidelines the necessity of experiment descriptions.
Ever since, the conferences incentivise the authors to provide the necessary require-
ments for assessing the results reproducibility and the awarded papers are publicly
available3 4 5.

Aside from the efforts employed by the conferences to raise the attention to the
reproducibility subject, research has been published to address the pitfalls and sug-
gest recommendations on how to improve. To assess how well a paper can be repro-
duced, three characteristics of the experiments were identified [Freire, Bonnet, and

2https://paperswithcode.com/
3http://db-reproducibility.seas.harvard.edu/
4https://vldb-repro.com/
5https://www.kdd.org/awards/sigkdd-best-research-paper-awards

https://paperswithcode.com/
http://db-reproducibility.seas.harvard.edu/
https://vldb-repro.com/
https://www.kdd.org/awards/sigkdd-best-research-paper-awards

4.2. Paper selection 21

Shasha, 2012]: depth, portability and coverage. The depth of the experiments sug-
gests how much they were made available and the default level is represented by
the figures that are associated with the paper. The next levels are: availability of the
scripts and data used to generate the figures, the data used for the experiments, the
actual experiments and the system, either as a white box with details about build and
deployment or as a black box. The portability represents the system’s dependency on
the running environment and it can be measured in three levels: the system can
run only on the original environment, on a similar environment (different machine,
same operating system) or a different one (different machine and different operating
system). Finally, the coverage represents the proportion of the experiments that can
be reproduced: partially or totally.

The three characteristics represent a good indication of how well a paper is repro-
ducible and while analysing the research, the following pitfalls have been identified
[Vitek and Kalibera, 2011]:

• unclear experimental goals - as a consequence of the fact that the experiments are
usually poorly defined, authors report good results even if the improvements
are small;

• implicit assumptions or experimental methodology - the experiments should con-
tain all the necessary steps and all the assumptions should be explicitly de-
clared;

• proprietary benchmarks and data sets - experiments that do not indicate the data
sources diminish their value, because the claims can not be verified;

• weak statistical analysis - most of the measurements are effectuated without any
indication of the uncertainty;

• measuring the wrong thing / right thing meaninglessly;

• lack of a proper baseline - instead of referring to the state-of-the-art, many au-
thors use as a baseline their implementation by adding or removing certain
optimisations;

• unrepresentative workloads - either using a data distribution that does not reflect
a real life scenario or using an over-representative benchmark.

To overcome these pitfalls, the minimum recommended is that the code and data
should be openly available in a centralised location where the data should have a
non-proprietary format [Peng, 2011]. Moreover, the research community needs open
source benchmarks to assess the quality of the algorithms on objective data [Vitek
and Kalibera, 2011]. Fulfilling these requirements will further encourage publishing
reproduction studies and will help repeating the published results.

4.2 Paper selection

Chapter 4 aims to assess the degree of reproducibility of the state-of-the-art de-
scribed in the literature survey (Chapter 2). In this section we will present the cri-
teria used for choosing the papers that will belong to the reproducibility analysis.
The main criterion used for selecting the papers is represented by how varied in
approach the algorithms are. The variety in approach can be observed in Table 3.2,
which summarizes the findings in the taxonomy and the characteristics of each re-
search described in the literature survey. Moreover, the taxonomy presents three

22 Chapter 4. Reproducibility study

main categories for schema matching algorithms based on the data type they use:
schema level, instance level and the combination of both. We chose one representa-
tive research for each category as follows:

• schema level - The schema level data is the most used type of data in the litera-
ture review (Table 3.2) and it accounts for 55% of the total. We chose as the most
representative paper, the one from Madhavan, Bernstein, and Rahm, 2001,
named further Cupid6. Cupid as COMA [Do and Rahm, 2002] and S-Match
[Giunchiglia, Shvaiko, and Yatskevich, 2004] belong to six sub-categories. How-
ever, Cupid represents the most popular schema matching algorithm and it is
widely referenced in the literature.

• instance level - The instance level data became popular from 2005, although
the first paper mentioned in our literature review is from in 2003. In total, we
discovered only four papers that use instance data, which accounts for 20%
of the total. We decided that the paper which qualifies for the reproducibil-
ity analysis should be the one by Zhang et al., 2011, because it explores both
element and structure level and it uses the clustering algorithm which repre-
sents an additional complexity level. The paper will be further named Instance
Clustering.

• schema and instance level - The algorithms that use both schema and instance
level data have been used since 1994 until 2018, which represents the entire
analysis period of our review. Most of the algorithms explore the same sub-
categories and we decided to analyse the newest, which is represented by Fer-
nandez et al., 2018b, referred next as SemProp.

4.3 Reproducibility analysis

The purpose of this analysis is to determine the degree of reproducibility of the most
representative papers from the literature review, which were previously selected in
Section 4.2. We want to provide a quantitative evaluation before starting the devel-
opment of the algorithms or performing the experiments. Previously (Section 4.1),
we have identified three characteristics that specifies to what extent a paper is repro-
ducible: depth, portability and coverage. Although depth can be assessed a priori,
the portability and the coverage can not be assessed until the experiments are run or
the algorithms are developed, which does not constitute the goal of the analysis.

Moreover, in the database community, the reproducibility assessment is not well
enforced and it is based on volunteering. Thus, the authors that want to pass the re-
producibility test should provide external materials with details about system, data,
code and experiments7. This type of assessment does not match with our goal, be-
cause we want to measure the degree of reproducibility based on the details pro-
vided in the papers.

Therefore, in order to achieve our goal, we use the categories C1, C2 and C3 de-
scribed in the introduction (Section 4.1) and all the variables identified under each
category as presented in Gundersen and Kjensmo, 2018 and stated in Table 4.1. We
use the following formulas to quantify the degree of reproducibility:

6We used the extended version of the paper
7http://db-reproducibility.seas.harvard.edu/#Guidelines

http://db-reproducibility.seas.harvard.edu/#Guidelines

4.3. Reproducibility analysis 23

C1D(e) =
δ1Method(e) + δ2Data(e) + δ3Experiment(e)

δ1 + δ2 + δ3
,

C2D(e) =
δ1Method(e) + δ2Data(e)

δ1 + δ2
,

C3D(e) = Method(e),

where e denotes the experiment and δ represents an uniform weight (δi = 1). Each
factor Method, Data, Experiment represents a weighted sum of the truth values for
the variables indicated in Table 4.1 using the same uniform weights.

TABLE 4.1: The table indicates the main categories assessed in the
reproducibility study and the variables for computing the degree of
reproducibility for each paper. Based on these variables, we present
the correspondence between them and each paper and compute the

reproducibility degree for each category.

Categories Variables Cupid Instance Clustering SemProp

Method

Problem 4 4 4

Objective/Goal 4 4 4

Research method 4 4 4

Research questions 4 4 4

Pseudo code 4 4 4

Data

Training data
Input data

Test data
Validation data

Results 4 4

Experiment

Hypothesis 4 4 4

Prediction — — —
Method source code 4

Hardware specifications 4 4

Software dependencies 4

Experiment setup 4 4 4

Experiment source code

Score
C1D 0.44 0.66 0.66
C2D 0.5 0.625 0.625
C3D 1 1 1

The variables for each factor are the result of the investigation of AI studies,
though a few of these variables are not applicable for assessing the reproducibil-
ity level of schema matching research. For the Data factor, unlike AI, the schema
matching research does not use training, validation and test data. We use the com-
plete dataset to run the algorithms, while the validation is performed against the
gold standard. Thus, we will not take into consideration the training data and test
data variables, but we will refer to those as input data, which is represented by the
data sources indicated in the experiments, while the validation data will be repre-
sented by the gold standard. In terms of results, we can validate the performance of
a model by executing different evaluation metrics on the output generated by the al-
gorithms (set of matches) or by having the results of the evaluation metrics, without
any output. The indication of any of the two will be considered as a correspondence

24 Chapter 4. Reproducibility study

of the results variable. For the Experiment factor, schema matching does not provide
any prediction for the hypothesis and often both the hypothesis and the prediction
indicate the same thing. Thus, we will not take into consideration the prediction
variable.

The target of the reproducibility study is represented by having a high value
for the C1D(e) metric, which reports the degree to which the same results can be
obtained using the same implementation and the same data. A high value for the
C2D(e) score is also a good indication of reproducibility and it represents the de-
gree to which the same results can be achieved using an alternative implementation,
but the same data. The C3D(e) presents the most relaxed requirements in terms of
documentation and experiments and a high value is expected.

The maximum value for each metric is

max
i∈1,2,3

CiD(e) = 1,

and according to Table 4.1, only one paper has the C1D(e) value below 0.5, which
represents a low reproducibility degree. However, Instance Clustering and SemProp
both have C1D(e) = 0.66 which indicates that is possible to reproduce the papers
to some extent. Unhappily, none of the algorithms specify the input data or the val-
idation data. Although they indicate the name of the open-source databases, they
do not specify the year or the version number. Giving the fact that the majority of
the open-source databases are constantly updating and changing, we can not as-
sume that the input data exists. Such an assumption will introduce bias because we
can not assess how much the differences between the versions will influence the fi-
nal results. Moreover, none of the papers suggest the experiment source code and
only one indicates the method source code. Finally, as predicted, the C3D(e) has the
biggest value among the metrics and it suggests that the studies are well defined,
although the experiments can not be performed using the same implementation and
dataset.

In conclusion, Cupid, Instance Clustering and SemProp are method reproducible,
as they achieved the highest score possible for C3D(e) metric. Although the papers
are not experimental reproducible, nor data reproducible, in the next chapter we will
discuss the implementation design decisions that we have made to achieve an alter-
native implementation. Finally, using a different dataset we will be able to assess the
method reproducibility and compare the results.

4.4 Implementation design decision

In the previous section, we proved that Cupid, Semprop and Instance Clustering
are only method reproducible, which represents achieving the same results, using an
alternative implementation and a different dataset. Thus, in this section, we present
the design decisions made to achieve a similar algorithm implementation and be-
havior.

4.4. Implementation design decision 25

4.4.1 Cupid

Description

“Generic schema matching with Cupid” [Madhavan, Bernstein, and Rahm, 2001]
presents an approach that consumes only schema level information, which is trans-
formed into a schema tree. The most simple schema tree representation is the trans-
formation of relational databases: the schema contains tables that contain columns.
Using the tree structure, the algorithm captures structural information, which will be
used to adjust the similarities between elements. Prior to computing the structural
similarity, the algorithm computes the linguistic similarity, which is based on the
name of the elements, their synonyms, and hypernyms and their type, such as the
data type or the high-level concept expressed (e.g. Price and Cost belong to the Money
concept). Moreover, the algorithm relies heavily on the existence of a thesaurus that
is used to compute the linguistic similarity. The thesaurus should provide informa-
tion about the synonyms and hypernyms of the elements and also the category they
belong to. Furthermore, in the pre-processing phase, where the elements are split
into tokens, the thesaurus is used to provide the concept of each token and expand
any existing abbreviations. Finally, the pipeline also involves the user, as he can
add initial mappings between elements, provide thresholds and finally, verify and
validate the result.

Based on the algorithm description, we have identified three key parts: the lin-
guistic matching, the structural matching and the pipeline that incorporates the two
similarities and outputs the matches. Furthermore, we will describe the limitations
and the choices made to overcome them.

Linguistic matching

The linguistic matching contains three steps: normalization, categorization and com-
parison and is responsible for computing the similarity based on the column names
and their semantic properties. First, we will discuss normalization.

The normalization step provides a set of tokens that are syntactically similar,
meaning that any additional characters or special formatting will be reduced to a
normalized form. The step is also divided into four other sub-steps: the tokeniza-
tion, expansion, elimination, and tagging. Both expansion and tagging are depen-
dent on the thesaurus, which the authors argue that it “plays a crucial role in linguis-
tic matching” [Madhavan, Bernstein, and Rahm, 2001]. Although they mention that
it has significant importance in the algorithm, the authors do not indicate the source
of the thesaurus. This fact allows us to freely choose any thesaurus and we decided
on using WordNet8. However, WordNet does not provide expansions for abbrevia-
tions for all the domains or all the words, nor can it indicate concepts. Therefore, in
our implementation, we excluded the expansion and the concepts from the normal-
ization phase.

The next step is the categorization which aims to group the elements in order to
reduce the number of comparisons. The categories are determined by the concepts,
data types, and containers. The containers are a special type, because they represent
the combination of two or multiple elements under a single one (e.g. Street and City
are part of Address, therefore Address is the container). Since we can not identify both
concepts and containers, we rely only on the data types for the categorization phase.

8https://wordnet.princeton.edu/

https://wordnet.princeton.edu/

26 Chapter 4. Reproducibility study

In the comparison step, we compute the linguistic similarity, which is based on
the name similarity of the elements. The name similarity is computed as a weighted
mean of the tokens based on their categories and it uses the synonyms and hyper-
nyms from the thesaurus to calculate the similarity score. If the information is not
available, the authors suggest using the sub-strings of the words to match them. For
this type of computation, we have used the n-gram distance as defined in [Kondrak,
2005].

Structural matching

The structural matching is using the tree structure in order to compute the similarity
between the elements that occur in the same context. It is mentioned that for all the
leaf elements, the structural similarity is initialized with the data type compatibility,
which is retrieved from a compatibility table provided by the user. It is also men-
tioned that the maximum value for data type compatibility is 0.5, in order to allow
a further increase in value during another step of the algorithm. As the thesaurus,
the source of the data type compatibility table is not mentioned. We consider that
manually providing such compatibility table is biased, because the values can be
subjective and dependent on the user’s preferences. Therefore, we rely on the name
similarity formula to compute the data type similarities. For the non-leaf elements,
the structural similarity it is computed using the formula introduced in the paper:

ssim(s, t) =

∣∣∣∣ {x | x ∈ leaves(s) ∧ ∃y ∈ leaves(t), stronglink(x, y)}
∪ {x | x ∈ leaves(t) ∧ ∃y ∈ leaves(s), stronglink(y, x)}

∣∣∣∣
|leaves(s) ∪ leaves(t)| ,

where the stronglink represents the weighted similarity:
wsim = wstruct × ssim + (1− wstruct)× lsim.

Pipeline

The algorithm combines the structural similarity and the linguistic similarity using
the formula for wsim presented above. Moreover, it uses tree traversal to access the
elements and compute the similarities, all being incorporated under a single algo-
rithm, named tree match. The algorithm is straightforward and we did not encounter
difficulties implementing it.

Additionally, the paper describes methods for including other properties that
might be detected in XML/XSD or object-oriented schemas, such as isDerivedFrom
relationships. However, relational databases do not contain such types of relation-
ships and we decided to omit that part of the algorithm.

Another addition to the algorithm is represented by mapping the referential con-
straints, which can be part of the relational schema elements. The authors describe
the method to incorporate the constraints in the tree schema, which results in a Di-
rect Acyclic Graph (DAG) [Thulasiraman and Swamy, 2011]. However, traversing
the DAG does not output a unique path. The problem is addressed in the paper but
does not offer a concrete solution: “determining which ordering would be best is still
an open problem” [Madhavan, Bernstein, and Rahm, 2001]. Therefore, we decided
to omit this part as well.

4.4. Implementation design decision 27

TABLE 4.2: The table summaries the differences in implementation
between the original study and our interpretation

Original Own interpretation

Thesaurus WordNet
Abbreviation expansion N/A

Concepts N/A
Containers N/A

Sub-string matching N-Gram distance
Data compatibility table Name similarity for data types

isDerivedFrom relationships N/A
Constraints N/A

Conclusion

In conclusion, a summary of the algorithm changes that we have employed can be
observed in Table 4.2. The first three rows in the table with not applicable (N/A) in-
stances are the result of the unspecified source of the thesaurus in the original paper
and missing information from our chosen thesaurus. This emphasizes its importance
in the algorithm and different results are expected depending on the vocabulary.

4.4.2 Instance Clustering

Description

Instance Clustering represents an algorithm entirely based on the data instances, be-
ing categorized in the taxonomy as an instance-level algorithm. It is independent of
any external information and it uses strictly the distribution of the data and graph
operations. The algorithm contains two phases: computing the distribution clusters
and computing attributes.

The distribution clusters are calculated using the EMD metric. Based on a user-
defined threshold, all the values under the threshold are considered to be part of the
same cluster and they are mapped in a graph structure as neighboring nodes.

The second phase consumes the connected components of the graph structure,
which are the result of either a depth-first search or breadth-first search [Thulasir-
aman and Swamy, 2011]. It uses the intersection EMD to differentiate between
columns that do not have any values in common but reported a high value for the
default EMD. Phase two follows the same principle as the first one: after the inter-
section EMD is computed, the values under the threshold represent the same cluster
and are being connected in the graph. Next, the adjacency matrix of the graph is
computed and the edges are split into positives and negatives based on their value
in the matrix. Phase two outputs the correlation clustering, which represents the
result of solving a linear integer problem. As in the previous section, we will detail
the challenges and the solutions for each phase.

Phase one

In this phase, the default EMD is used to find the elements that correspond together,
forming the clusters. The algorithm is very well defined and we managed to suc-
cessfully follow every step. The only expected difference between the implementa-
tions is the EMD formula. Originally, EMD consumes numbers instead of strings.

28 Chapter 4. Reproducibility study

However, the authors mention an alternative for strings and we obtained the same
distributions as pictured in the paper, which we consider a sufficiently good valida-
tion of our implementation. Finally, considering performance, the EMD is computed
using quantile histograms, which results in an approximate distribution, as stated in
the original paper.

Phase two

Phase two follows the same logic as phase one, with the difference that it uses in-
tersection EMD instead of the default. The intersection EMD is computed following
the formula:

EMD∩(C, C′) =
1
2)

(EMD(C, C ∩ C′) + EMD(C′, C ∩ C′)),

where the C, C′ represent the columns. The values below the threshold represent
similar attributes and they are mapped in a graph structure as neighboring elements.
Next, the adjacency matrix is computed and it is used to detect the positive and nega-
tive edges. Finally, the graph is solved using correlation clustering, which minimizes
the number of disagreements: “the number of positive edges whose endpoints are
in different clusters, plus the number of negative edges whose endpoints are in the
same cluster” [Zhang et al., 2011].

One change that we employed in our algorithm is related to the linear program
that is used to solve the correlation clustering problem. In the paper, CPLEX9 is men-
tioned as the liner integer problem solver. However, we opted for the open-source
version PuLP10. The reasons for choosing PuLP over CPLEX are strictly related to
the portability and ease of access, as CPLEX is an integrated framework that requires
more assistance during installation.

Conclusion

In conclusion, phase one is implemented entirely as stated in the paper, while phase
two differs in the choice of the linear program solver. Regardless of this difference,
we are expecting very similar results in the evaluation section.

4.4.3 SemProp

Description

SemProp represents an algorithm that uses both schema information and data in-
stances to find matches between databases. The algorithm relies on word embed-
dings and it tackles two limitations: the inability of word embeddings to address
a combination of words (e.g. "drug interaction") and handling the words that do
not exist in the vocabulary. Therefore, the paper introduces coherent groups, which
focuses on solving the two limitations. Moreover, the algorithm uses both semantic
approaches, such as coherent groups, and syntactic approaches. The results of each
approach represent the similarity between the words, which is then combined in a
DAG structure together with match operators such as union, set-difference and the
structural summarizer. We identified three main steps of the algorithm: the semantic
matching step, the syntactic matching, and the final step, structural summarizer. In

9https://www.ibm.com/nl-en/analytics/cplex-optimizer
10https://pythonhosted.org/PuLP/

https://www.ibm.com/nl-en/analytics/cplex-optimizer
https://pythonhosted.org/PuLP/

4.4. Implementation design decision 29

what follows, we will discuss in detail each step, the difficulties identified and the
solutions we propose.

Semantic matching

The semantic matching introduces the coherent groups, which represent the average
of all-pairs similarities between two elements, where the elements can have more
than two words. Based on the result and given a user-defined threshold, the ele-
ments are split into positive signals (the values above the threshold) and negative
signals (the values below the threshold). The negative signals are further used to
filter the results of the syntactic matchers. Moreover, this phase manages the special
case where the word embedding thesaurus does not contain all the words of the el-
ements. The unknown words are then penalized and the similarity becomes zero.
This solution is based on the fact that the data should be clean (it does not contain
typos), which implies that the word does not exist in the vocabulary. Another special
case is identified when computing the similarities between identical words, which
results in perfect matching. The authors decided to discard this similarity, which
will increase the weight for the rest of the words.

Based on the description of the coherent groups and the special cases, we did not
encounter any difficulties in implementing the semantic matching step.

Syntactic matching

In the syntactic matching phase two types of matchers are employed: one instance
based matcher that uses Jaccard similarity [Gower, 1985] and one matcher that com-
putes the syntactic similarity of names. The problem identified in this step is the
choice of matchers. In the original paper, it is mentioned that the state-of-the-art al-
gorithms are applied, but they are referenced using the survey [Rahm and Bernstein,
2001] that we followed in the literature review. The survey presents six algorithms
for syntactic name similarity and we do not have any indication on which is the one
referred in the original paper of SemProp. One of the six algorithms is Cupid, for
which we already have an alternative implementation of it that we can use.

Structural summarizer

The structural summarizer uses ontologies to reduce the number of links between
elements and refine the matches. The algorithm starts when an element has more
than N (summaryThreshold) links. The first step implies retrieving all the ancestors of
the classes from the ontology, starting at the root and adding them to a trie structure.
Next, we should find the class that summarizes most of the links. To achieve this,
we should find the child node that represents the largest number of links. If the
ratio between the number of links contained by the node and the total number of
links is smaller than a threshold, all its children are returned. They represent now
the new links to summarise. The most confusing part of the algorithm is the last
part, which indicates another method in their pseudo-code (Figure 4.1), which is not
detailed anywhere in the paper. At this point, the implementation of the structural
summarizer is blocked.

Moreover, another pseudo-code is given to solve the problem of two elements
having links to classes with relationships between them. The pseudo-code contains
parts that are not self-explanatory and no explanation or interpretation is given. At
this point, we can not make any assumptions about the algorithm and the imple-
mentation is revoked.

30 Chapter 4. Reproducibility study

FIGURE 4.1: The structural summarizer algorithm as presented in
Fernandez et al., 2018b. The highlighted part represents the new func-

tion that is not described anywhere in the paper.

Conclusion

Although the algorithm could not be implemented due to missing implementation
details, the authors provided11 the link to the open-source code of the framework
that incorporates the entire SemProp algorithm. We encountered difficulties identi-
fying all the parts of the algorithm as described in the paper, but one of the authors
replied to our questions via email and we were able to construct the entire pipeline.
We concluded that indicating the source code of the algorithm allowed the authors
to omit many implementation details.

4.5 Conclusion

In conclusion, reproducibility represents a term often used interchangeably with re-
peatability and it describes an approach still young in the data community. As our
reproducibility study presents, the papers do not provide the two most essential
variables: the data and the source code. However, if the source of the data is indi-
cated, important details about the versions or retrieval year are not specified. Besides
the method source code, the papers should also contain the code for the experiments
and explicitly indicate the golden standard or provide scripts to construct it based
on the open-source data.

Finally, our study reported that the most representative state-of-the-art papers
are only methods reproducible, which indicates that the same results should be ob-
tained using an alternative implementation and different data. Furthermore, we
demonstrated that an alternative implementation is possible and in the next chapter
we will evaluate the models implemented using similar open-source data.

11The link is mentioned in the conclusion of the paper

31

Chapter 5

Evaluation

In the Evaluation chapter we continue the reproducibility study. Previously, we de-
scribed the term reproducibility and presented the reproducibility status of schema
matching. Furthermore, we selected three representative studies based on the data
type they employ and in accordance with categories presented in the taxonomy: one
schema-based paper, one instance-based and a paper that uses both schema and in-
stances. Finally, we analyzed the papers and demonstrated that they are only meth-
ods reproducible, which implies that the same results should be obtained using an
alternative implementation and a different dataset. We have provided an alterna-
tive implementation of each algorithm in the previous chapter, while in this chapter
we will present the results of running the alternative versions of the algorithms on
the selected data and conclude the reproducibility study. The goal of the evaluation
section is to demonstrate that we have successfully implemented the algorithms and
the results are similar with the ones reported in the original papers.

In terms of data, each algorithm consumes a different dataset as described in
the original studies [Madhavan, Bernstein, and Rahm, 2001, Fernandez et al., 2018b,
Zhang et al., 2011]. Although the exact version or source of each dataset is not always
specified in the original papers, we have searched for the most accurate representa-
tion of each dataset, as it is mentioned in the original papers. Besides the dataset,
the gold standard is also needed and rarely available. Thus, we have contacted the
authors and solicited the gold standard data or we have developed it by manually
searching for the correspondences or employing automatic methods. More details
about each dataset are available in the sections concerning each algorithm.

The evaluation will be performed against the gold standard and we will adopt
the most used metrics in schema matching evaluation: precision, recall and the F1-
score (or F-measure) [Do, Melnik, and Rahm, 2002, Yatskevich, 2003, Duchateau,
Bellahsene, and Hunt, 2007, Bellahsene et al., 2011]. In order to fully understand the
terms, we provide the following definitions:

Gold standard represents the ground truth or all the real matchings. It is usually
created manually by the experts in the field or provided by automated means and verified by
the experts [Do, Melnik, and Rahm, 2002].

Precision represents the amount of correct matchings returned by the algorithm among
the total machings returned [Do, Melnik, and Rahm, 2002]:

Precision =
correct matchings
total matchings

Recall represents the amount of correct matchings generated by the algorithm among
the gold standard [Duchateau, Bellahsene, and Hunt, 2007]:

Recall =
correct matchings

gold standard

32 Chapter 5. Evaluation

F1-Score represents the accuracy of a test and it is a trade-off between the precision
and recall. It is defined as the harmonic mean between the precision and recall as follows
[Bellahsene et al., 2011]:

F1− Score =
2 ∗ Precision ∗ Recall

Precision + Recall

For a schema matching algorithm the metrics represent the following: maximum
precision indicates that all the generated matchings were correct, maximum recall
signifies that the correct matchings generated by the algorithm represents the entire
gold standard dataset and a schema matching algorithm can achieve maximum F1-
score if all the generated matchings are correct and they represent all the matchings
from the gold standard.

The chapter is structured according to the papers analysed: Cupid, SemProp and
Instance Clustering. Moreover, the chapter contains an additional analysis of data
used in industry settings. The goal is to measure the performance of the algorithms
in a real-life situation, instead of using only synthetic datasets.

5.1 Cupid

In the original paper, the evaluation of Cupid is conducted as a comparative study
and the performance of the algorithm is compared against the performance of Dike
[Palopoli, Sacca, and Ursino, 1998] and MOMIS [Bergamaschi, Castano, and Vincini,
1999], two other similar algorithms. The algorithms are first tested on canonical
examples and small subsets from the data are reported in the results. The data and
the tests are not mentioned and the results are reported in a table using a binary
variable which indicates the ability of the algorithm to identify the elements (yes or
no).

Another test is performed on real data and the schemas are provided as pictures,
instead of actual data files. The test contains two scenarios: one scenario containing
XML data and the other one containing relational data. Our goal implies testing
the algorithms only on the relational data, thus we focused on the second scenario.
Furthermore, the initial study briefly mentions the gold standard and the authors do
not use any metrics to measure the performance. Instead, they report what pairs of
elements were matched and not matched by each algorithm.

In our evaluation, we use the same relational data as indicated in one of the
figures from the original paper and we devised the gold standard according to the
specifications. Moreover, we augmented the gold standard with the primary-foreign
key (PK-FK) pairs that were not originally indicated.

Considering the fact that we conduct the evaluation on an alternative implemen-
tation, we investigate the performance of the algorithm using different values of the
thresholds than mentioned in the original paper. The algorithm uses seven differ-
ent thresholds, but we have tested only five for different values: thaccept because it
determines which elements are matching based on their leaf similarity, thlow and
thhigh accordingly, because they should be lower or higher than the accept threshold
and they determine which similarities to increase or decrease for the second run and
wstruct for leaves and non-leaves nodes, which are used to assign different weights to
either linguistic or structural similarity based on the node type. The initial thought
was that wstruct leads to similar results, but on a different scale. However, the exper-
iments revealed a different behavior. The thresholds that we do not change are the
multiplicative thresholds because they only impact the result on the second run of

5.1. Cupid 33

the algorithm that determines the relation between table names and thns which rep-
resents the name similarity threshold that is used to prune the number of element
to element comparisons, which decreases the processing time. The thresholds are
summarized in Table 5.1.

Figure 5.1 presents the precision, recall and F1-score using different values for
the thresholds, as indicated in Table 5.1. The best F1-score value is achieved for
wstruct lea f = 0.5 and thaccept = 0.37. However, the precision is approximately 0.2,
while the recall is between 0.4 and 0.5. We can also observe that for a small value of
thaccept we achieve maximum recall, while for bigger values we achieve maximum
precision. This behavior is due to the output of the algorithm as follows:

• For a small thaccept, the algorithm outputs all or almost all possible combina-
tions between the schema elements. Therefore, the recall is maximum, while
the precision is significantly small.

• Increasing the value of thaccept, we noticed that the number of returned match-
ings is decreasing, until the maximum values where it outputs a small list (ap-
proximately five matchings), thus we achieved the highest precision.

Moreover, we noticed an unusual behavior while increasing the value of wstruct lea f .
A high value favors more the structural similarity and less the linguistic similarity.
For a relational dataset, this is not the behavior we prefer, because the structure of
a relational dataset is very simple: the schema contains the tables and the tables
contain the columns. Therefore, a higher weight for the linguistic similarity is more
preferable as the results indicate.

Due to these differences, to compare the output presented in the original paper
and the output achieved using our alternative version, we decided to set the thresh-
olds according to the F1-score, which reports the trade-off between the precision and
recall. Therefore, the best values from Table 5.1 are chosen according to the fifth plot
in Figure 5.1.

Our alternative version and the original version have more similarities than dif-
ferences in results, as presented in Table 5.2. They both find the same columns and
make the same mistakes, but our version cannot identify the primary-foreign key
combinations. The inability to discover the PK-FK matchings is motivated by the
fact that we did not map the constraints because of the missing implementation de-
tails in the original paper.

To conclude, we proved that although a few implementation details are miss-
ing and we used slightly different algorithms or thesaurus, we achieved the same
general behavior, however not the same results.

TABLE 5.1: The table summarizes the thresholds that we tuned, it
shows the value ranges used, the values for the best configuration

and the values reported in the original paper.

Threshold Value range Best value
Best value

original paper

thaccept 0.05–0.5 (step 0.02) 0.37 0.5
thlow thaccept - 0.01 0.27 0.35
thhigh thaccept + 0.01 0.47 0.6

wstruct lea f 0.1–1.0 (step 0.1) 0.5 0.5
wstruct non lea f wstruct lea f + 0.1 0.6 0.6

34 Chapter 5. Evaluation

0.10 0.20 0.27 0.40 0.50
th_accept threshold

0.0

0.2

0.3

0.5

0.6

0.8

1.0

Va
lu

e

Precision/Recall/F1-score for w_struct_leaf = 0.1
Precision
Recall
F1-score

0.10 0.20 0.29 0.40 0.50
th_accept threshold

0.000

0.100

0.256

0.400

0.600

0.800

1.000

Va
lu

e

Precision/Recall/F1-score for w_struct_leaf = 0.2
Precision
Recall
F1-score

0.10 0.20 0.31 0.40 0.50
th_accept threshold

0.000

0.100

0.296

0.400

0.600

0.800

1.000

Va
lu

e

Precision/Recall/F1-score for w_struct_leaf = 0.3

Precision
Recall
F1-score

0.10 0.20 0.33 0.40 0.50
th_accept threshold

0.000

0.100

0.234

0.400

0.600

0.800

1.000

Va
lu

e

Precision/Recall/F1-score for w_struct_leaf = 0.4

Precision
Recall
F1-score

0.10 0.20 0.30 0.37 0.50
th_accept threshold

0.00

0.20

0.33

0.50

0.60

0.80

1.00

Va
lu

e

Precision/Recall/F1-score for w_struct_leaf = 0.5

Precision
Recall
F1-score

0.10 0.20 0.30 0.39 0.50
th_accept threshold

0.000

0.100

0.282

0.400

0.600

0.800

1.000

Va
lu

e

Precision/Recall/F1-score for w_struct_leaf = 0.6

Precision
Recall
F1-score

0.10 0.20 0.30 0.40 0.47
th_accept threshold

0.000

0.100

0.205

0.400

0.600

0.800

1.000

Va
lu

e

Precision/Recall/F1-score for w_struct_leaf = 0.7

Precision
Recall
F1-score

0.10 0.20 0.30 0.40 0.49
th_accept threshold

0.000

0.100

0.205

0.400

0.600

0.800

1.000

Va
lu

e

Precision/Recall/F1-score for w_struct_leaf = 0.8

Precision
Recall
F1-score

0.10 0.20 0.30 0.40 0.49
th_accept threshold

0.000

0.100

0.205

0.400

0.600

0.800

1.000

Va
lu

e

Precision/Recall/F1-score for w_struct_leaf = 0.9

Precision
Recall
F1-score

FIGURE 5.1: The precision, recall and F1-score for different configu-
rations of the parameters.

TABLE 5.2: The table presents the similarities and differences be-
tween the output of Cupid in the original paper and the output of

Cupid in our alternative version

Original version Our version

Orders/OrderDetails -> Sales Same except the KFs
Products -> Products Same except the KF

Customers -> Customers Only two matchings from six
Region/Territory -> Geography All
TerritoryRegion -> Geography None

Three PostalCode columns -> Customers.PostalCode Same except the KF
No match CustomerName -> ContactFirstName Same
No match CustomerName -> ContactLastName Same

5.2 SemProp

The evaluation of SemProp conducted in the original paper is based on the ability
of the algorithm to create quality links between different elements, which means
positive matchings. Thus, the evaluation section is based on six scenarios that test
different parts of the algorithm and show how each component improves the pre-
cision and recall, having as the baseline the performance of the syntactic algorithm
alone.

5.2. SemProp 35

0.4 0.5 0.6 0.7 0.8 0.9
Semantic similarity threshold

0.28

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

F1
-s

co
re

F1-score for negative signal threshold = 0.1
syn-0.1-coh-sem-0.2
syn-0.1-coh-sem-0.4
syn-0.1-coh-sem-0.6
syn-0.2-coh-sem-0.2
syn-0.2-coh-sem-0.4
syn-0.2-coh-sem-0.6
syn-0.3-coh-sem-0.2
syn-0.3-coh-sem-0.4
syn-0.3-coh-sem-0.6

0.4 0.5 0.6 0.7 0.8 0.9
Semantic similarity threshold

0.28

0.30

0.32

0.34

0.36

0.38

0.40

0.42

F1
-s

co
re

F1-score for negative signal threshold = 0.2

syn-0.1-coh-sem-0.2
syn-0.1-coh-sem-0.4
syn-0.1-coh-sem-0.6
syn-0.2-coh-sem-0.2
syn-0.2-coh-sem-0.4
syn-0.2-coh-sem-0.6
syn-0.3-coh-sem-0.2
syn-0.3-coh-sem-0.4
syn-0.3-coh-sem-0.6

FIGURE 5.2: The precision, recall and F1-score for different configu-
rations of the parameters.

The evaluation is conducted on three different datasets: two public and one pri-
vate, each using different ontologies accordingly. Despite the fact that a few datasets
are public, the authors do not report the versions used or the gold standard. To
overcome this issue, we have emailed one of the authors and he provided us with
the gold standard between the ChEMBL_22 database1 [Gaulton et al., 2017] and EFO
ontology2.

In our evaluation, we use the ChEMBL_22 dataset, the EFO ontology and the
gold standard provided and we measure the precision, recall, and F1-score. This
dataset configuration represents only half of the data used in the original paper for
evaluation, thus we can not obtain the same results. However, our goal is to prove
that the algorithm expresses the same behaviors: (1) decreasing the F1-score while
increasing the syntactic similarity threshold and (2) based on the best configuration,
demonstrate the sensitivity of the structural summarizer in relation to two thresh-
olds: cuttingRatio - “higher values indicate that the algorithm will only summa-
rize when a large portion of the links are children of an ancestor” [Fernandez et al.,
2018b] and summaryThreshold - “the best values [..] are achieved as soon as there
is more than one link between a source element and an ontology class” [Fernandez
et al., 2018b].

Firstly, we want to discover which parameters yield the best F1-score. Although
in the original paper only a few of the thresholds are mentioned, we discovered
more thresholds in the repository3. Therefore, we conducted several experiments in
order to determine the best configuration. The tested parameters summarized in Ta-
ble 5.3 are the semantic similarity threshold sem used to output the positive signals,
the negative signal threshold neg which implies that all the pairs with the semantic
similarity threshold below neg are negative and will be used to prune the results
of the syntactic matcher, the semantic similarity threshold for the coherent groups
coh − sem which implies that if the semantic distance of two word embeddings is
bigger than the threshold, then the words belong in the same coherent group and
the syntactic similarity threshold syn which is the only one mentioned in the origi-
nal paper. The behavior of the latter one indicates that for a bigger value, the preci-
sion, recall, and F1-score are decreasing. We were able to reproduce the result and

1http://chembl.blogspot.com/2016/09/chembl-22-released.html
2https://www.ebi.ac.uk/ols/ontologies/efo
3https://github.com/mitdbg/aurum-datadiscovery

http://chembl.blogspot.com/2016/09/chembl-22-released.html
https://www.ebi.ac.uk/ols/ontologies/efo
https://github.com/mitdbg/aurum-datadiscovery

36 Chapter 5. Evaluation

Figure 5.2 illustrates the same behavior as follows: each figure presents three dif-
ferent configurations for each syntactic similarity syn value based on the semantic
similarity threshold for coherent groups cog− sem. We can observe that the best F1-
score is achieved in the first figure, which corresponds to neg = 0.1. Thus, the best
thresholds are: neg = 0.1, sem = 0.5, coh− sem = 0.2 and syn = 0.1.

FIGURE 5.3: Sensitivity of StructS as provided in the original paper.
Source: Fernandez et al., 2018b

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
summaryThreshold

0.9

0.8

0.7

0.6

0.5

cu
tti

ng
Ra

tio

Sensitivity of StructS

0.30

0.35

0.40

0.45

0.50

0.55

0.60

FIGURE 5.4: Sensitivity of StructS as provided by our experiments.

Furthermore, we want to prove the same sensitivity of the structural summarizer
in relation to the cutting ratio and the summary threshold as provided in the original
paper (Figure 5.3). As a consequence of the fact that the authors do not mention the
complete configuration of the algorithm, we decided to use the best values resulted
from the first experiment and noted in Table 5.3. Moreover, due to time limitations,
the value range used for cutting ratio is 0.5− 0.9 instead of 0.1− 0.9 as indicated in
Figure 5.3. The result of the experiment is illustrated in Figure 5.4 and it shows the
same sensitivity as in the original paper.

5.3. Instance Clustering 37

In conclusion, we proved that SemProp is methods reproducible because we ob-
tained the same results using a different dataset. To the best of our knowledge, the
implementation is the same as in the original paper, thus the similarity between re-
sults was expected.

TABLE 5.3: The table summarizes the thresholds that we tuned, it
shows the value ranges used, the values for the best configuration

and the values reported in the original paper.

Threshold Value range Best value
Best value

original paper

sem 0.4–0.9 (step 0.1) 0.5 —
coh− sem 0.2–0.6 (step 0.2) 0.2 —

neg 0.1, 0.2 0.1 —
syn 0.1–0.3 (step 0.1) 0.1 0.2

5.3 Instance Clustering

The experiments in the Instance Clustering paper [Zhang et al., 2011] are conducted
using three open-source datasets: TPC-H4, IMDB5 and DBLP6. However, the datasets
do not have any version associated and we noticed that IMDB is refreshed daily,
DBLP has additional attributes with every release and TPC-H provides corrections
or additional items in the database with every revision. Therefore, we chose to con-
duct the experiments using only the TPC-H example from the paper and we used
version 2.18.0. It is a small subset of the TPC-H database and the authors mention
the gold standard as an illustration.

The metrics used for evaluation are custom precision and recall, which use the
attributes and the matchings between the columns inside an attribute, instead of
simple comparison between matchings pairs. The metrics are defined as follows:

Let A = {A1, A2, ..., Am} be the set of discovered attributes and T = {T1, T2, ..., Tm}
be the set of attributes from the gold standard. “Let Ai correspond to Tj if and only if the
majority of columns in Ai also belong in Tj” [Zhang et al., 2011]. The following formulas
are used to compute the precision and recall for an attribute:

Precision(Ai) =
|Ai ∩ Tj|
|Ai|

Recall(Ai) =
|Ai ∩ Tj|
|Tj|

The final precision and recall are computed as an average over the precision and
recall for each attribute:

Precision(A) =
∑m

i=1 Precision(Ai)

m

Recall(A) =
∑m

i=1 Recall(Ai)

m

4http://www.tpc.org/tpch/
5https://www.imdb.com/interfaces/
6http://dblp.uni-trier.de/xml/

http://www.tpc.org/tpch/
https://www.imdb.com/interfaces/
http://dblp.uni-trier.de/xml/

38 Chapter 5. Evaluation

orders__o_custkey
europe_customer__c_custkey

customer__c_custkey
asia_customer__c_custkey

customer__c_name
europe_customer__c_name
asia_customer__c_name

asia_customer__c_address
europe_customer__c_address

customer__c_address

asia_customer__c_nationkey
customer__c_nationkey
nation__n_nationkey

customer__c_phone
asia_customer__c_phone

asia_customer__c_comment
orders__o_comment

customer__c_comment
europe_customer__c_comment

(A) θ = 0.1 (B) Original paper

orders__o_custkey
europe_customer__c_custkey

customer__c_custkey
asia_customer__c_custkey

customer__c_name
europe_customer__c_name
asia_customer__c_name

asia_customer__c_address
europe_customer__c_address

customer__c_address

asia_customer__c_nationkey
customer__c_nationkey
nation__n_nationkey

europe_customer__c_nationkey

europe_customer__c_phone
customer__c_phone

asia_customer__c_phone

asia_customer__c_comment
orders__o_comment

customer__c_comment
europe_customer__c_comment

(C) θ = 0.2

FIGURE 5.5: The figure illustrates the output of our experiments (A
and C) and the output reported in Zhang et al., 2011 (B).

The performance of the algorithm using the small subset is not explicitly indi-
cated in the original paper, thus we do not have any measurements to compare with.
Instead, we compare our results with the attributes indicated in the original paper
and illustrated in Figure 5.5b.

We conducted two experiments using two different cutoff thresholds θ = 0.1 and
θ = 0.2, which represent the smallest and the largest values used in the evaluation
section in the original paper. We conformed to the rest of the specifications and
we used the maximum number of quantiles, which is reported to output positive
results: quantiles = 256.

The outcome of our experiments is illustrated in Figure 5.5. It can be observed
that both experiments add an extra element in the last cluster: the column comment
from the orders table. Moreover, for a smaller θ, one element is missing from the
phone cluster and one from the nationkey cluster.

In conclusion, we demonstrated that the same results can be obtained using an
alternative implementation and a different dataset. However, we can only assume
that the datasets are different because there is no indication of the version in the
original paper.

5.4 Industry case study

In the previous sections, we demonstrated that we can achieve similar behaviors
or results using the alternative implementation of the algorithms and datasets that
resemble the ones used to evaluate the algorithms in the original papers. In this
section, we evaluate the algorithms in an industry setting and discuss their perfor-
mance in comparison with the synthetic data.

The industry setting is represented by ING. The company faces data integration
problems such as manually creating mediation schemas. This represents an issue
for the company for the following reasons: firstly, manually inspecting all the data
and gaining insights is a very laborious process and secondly, it requires permanent
maintenance due to the continuous transformation of data (data is produced daily).
One approach to solving the issue is schema matching. Therefore, we will evaluate

5.4. Industry case study 39

the algorithms on a small subset of the data and decide if they are suitable for the
company environment.

0.07 0.20 0.30 0.40 0.50
th_accept threshold

0.075

0.200

0.400

0.600

0.800

1.000

Va
lu

e

Precision/Recall/F1-score for w_struct_leaf = 0.3
Precision
Recall
F1-score

0.10 0.19 0.30 0.40 0.50
th_accept threshold

0.000

0.233

0.400

0.600

0.800

1.000

0.100

Va
lu

e

Precision/Recall/F1-score for w_struct_leaf = 0.4
Precision
Recall
F1-score

0.10 0.23 0.30 0.40 0.50
th_accept threshold

0.077

0.200

0.400

0.600

0.800

1.000

Va
lu

e

Precision/Recall/F1-score for w_struct_leaf = 0.5
Precision
Recall
F1-score

0.10 0.20 0.29 0.40 0.50
th_accept threshold

0.00

0.20

0.33

0.60

0.80

1.00

0.50

Va
lu

e

Precision/Recall/F1-score for w_struct_leaf = 0.6
Precision
Recall
F1-score

0.10 0.20 0.30 0.35 0.50
th_accept threshold

0.000

0.200

0.341

0.600

0.800

1.000

0.500

Va
lu

e

Precision/Recall/F1-score for w_struct_leaf = 0.7
Precision
Recall
F1-score

0.10 0.20 0.30 0.39 0.50
th_accept threshold

0.00

0.20

0.33

0.60

0.80

1.00

0.50

Va
lu

e

Precision/Recall/F1-score for w_struct_leaf = 0.8
Precision
Recall
F1-score

FIGURE 5.6: The precision, recall and F1-score for different configura-
tions of the parameters of the Cupid algorithm in the industry setting.

The evaluation scenario includes datasets produced by systems containing con-
figuration data. Ideally, the results of running the algorithms on the configuration
data will help the company integrate different datasets such as historical data, met-
rics and event logs. The proposed dataset for the evaluation contains two tables with
33 and 16 columns and 1000 rows each.

As demonstrated in the previous sections, not all the algorithms are suitable for
a certain scenario. Therefore, for the scenario proposed by the ING data science
team together with the data extraction team, we are not able to run SemProp, due to
the fact that it requires ontologies in order to infer the meaning of the data. In the
setting proposed by ING, the meaning of the data resides outside of an open-source
ontology thus, this algorithm did not undergo the evaluation.

On the other hand, Cupid can be evaluated on the proposed dataset and we used
the same approach as in Section 5.1. We performed a search for the best values
of the thresholds presented in Table 5.1 using the same value ranges in order to
discover the configuration that outputs the best F1-score. We used experts from
ING to inspect the results and devise the gold standard to derive statistics. As such,
the result of the experiments can be observed in Figure 5.6, which illustrates a very
similar behavior with the results presented in Section 5.1 of evaluating the algorithm
on the synthetic data.

The last algorithm evaluated at ING is the Instance Clustering. Reporting the re-
sults to the experts, they could not agree on what should be the correct clustering
output, therefore we could not provide any measurements, such as precision, recall,
and F1-score. However, they indicated that the performance is significantly better
than the performance of Cupid. Nevertheless, Instance Clustering produces false pos-
itive due to the similarities in the data. One example of such similarity is noticed
between columns Description and ShortDescription that share many values. Essen-
tially, both teams were satisfied with the results of the algorithm. As such, the next
steps proposed by the company is increasing the number of data instances in order

40 Chapter 5. Evaluation

to be able to determine the accuracy of the algorithm. Such scenario could not be
implemented yet, due to internal policies.

In conclusion, according to the results and the resources necessary to execute the
algorithms (human experts to assess the quality, time and hardware to process each
configuration), ING concluded that these algorithms are not sustainable, by cause
of resource limitation. The motivation behind the conclusion relies on the fact that
data is updated very often and these algorithms require careful maintenance in order
to achieve satisfactory long term results. Although Cupid can be used to discover
the relations between tables based on the structure and the linguistic similarity, it
is very resource-intensive. Similarly, Instance Clustering requires special hardware
specifications in order to output explicit results, that can be easily verified by the
experts.

5.5 Conclusion

The chapter continues the reproducibility study, by performing experiments with
the goal of achieving the same results. As indicated in Chapter 4, the papers do
not provide the datasets, the gold standard or the experimental set-up. Under these
circumstances, achieving the same results is not possible. However, we wanted to
demonstrate that the algorithms express the same behavior, as such: increasing or
decreasing the precision, recall or F1-score by tuning certain parameters. Moreover,
we proved that the performance is also affected by the missing implementation de-
tails.

Furthermore, we evaluated Cupid and Instance Clustering in an industry setting
and the performance of the algorithms is similar to the performance reported on toy
data. Cupid is very sensitive to thresholds and the F1-score is rather low, produc-
ing a large number of false positives. On the other hand, Instance Clustering is less
sensitive to thresholds, being able to cluster similar columns together. To achieve a
more accurate result, the thresholds and the number of quantiles have to be carefully
tuned.

In conclusion, we can not expect the same results by relying on the descriptions
presented in the original papers. The best approach is having the source code and
at least a small subset from the same dataset. In the absence of them, we can only
demonstrate similar behavior.

41

Chapter 6

Conclusion

Over the past years, the reproducibility issue has been addressed more and more in
various domains. The academic area encouraged reproducibility by offering awards
or by rejecting the papers that are not reproducible. However, in the data manage-
ment community, adopting the guidelines and rules for a successful reproducible
paper is still a process in development. In this research, we address the issue by con-
ducting a reproducibility study on the most representative state-of-the-art schema
matching papers.

Firstly, we presented a literature survey on schema matching techniques on a
period of 24 years, from 1994 until 2018. The survey helped us understand the prob-
lems solved by schema matching, which could be classified in three large categories
based on the popularity of the database solutions: the multiple database era - when
schema matching was employed for federated databases and unified knowledge
bases, the general approach era - when the focus changed from particular problems
to more general applications, independent of a specific issue and the big data era -
when people are concerned with data curation and data discovery.

Based on the solutions described in the literature survey, we created a detailed
taxonomy and we identified the most important three categories of schema matching
techniques: schema-based - that uses only the schema information, instance-based
- that uses only the data instances and the combination of both. According to this
classification, we have identified the most representative paper for each category
and proceed with the reproducibility study. The selected papers are: Cupid [Mad-
havan, Bernstein, and Rahm, 2001], SemProp [Fernandez et al., 2018b] and Instance
Clustering [Zhang et al., 2011].

The study presents three types of reproducibility: experimental reproducibility -
where the same results are achieved using the same implementation and data as in
the original paper, data reproducibility - where the same results are achieved by us-
ing the same implementation, but different data and methods reproducible - where
the same results are achieved by using an alternative implementation and different
data. All three papers proved to be only methods reproducible, because they do
not indicate the source code, the data used in the experiments, nor the experimental
pipeline. As such, a high score for the methods reproducible category was expected,
as the category presents the most relaxed requirements. Furthermore, we proceeded
with the implementation of the algorithms and presented the implementation de-
sign decision in comparison with the specifications from the original papers.

Finally, our reproducibility study concludes with the evaluation section. Com-
pared with the original paper, we proved similar behaviors for all the algorithms
implemented. Moreover, we performed an industry case study, where we evaluated
the algorithms using industry data. The results were similar to the ones achieved
with the synthetic dataset and the company was satisfied with the outcome. How-
ever, considering the fact that the algorithms require careful maintenance and an

42 Chapter 6. Conclusion

abundance of resources, the company considered that they are not sustainable.
In conclusion, the data management community needs to evolve and assume the

reproducibility as part of the requirements for publishing a successful paper. Fur-
thermore, more studies should be conducted to assess the evolution of reproducible
research and encourage the community to share the source code and data. As a first
step in this direction, our code is publicly available on Github1:
https://github.com/AndraIonescu/reproducing-schema-matching.

6.1 Future work

Extend the reproducibility analysis
One limitation of the research is represented by the small number of papers that
were subject to the reproducibility analysis. Therefore, the analysis can be extended
by including the rest of the papers from the literature survey. Moreover, only the pa-
pers that achieve the highest score for the experiment reproducibility metric should
be implemented and evaluated. The result of the extended analysis would bring
new insights about the status and degree of reproducibility in the data management
community and would raise awareness about its importance.

Integrate the schema matching solutions
The variety of schema matching algorithms presented in the literature survey is em-
phasizing the importance of having a solution to decide upon an algorithm that
performs the best under a specific scenario. One solution should be a dedicated
platform to host all the open-source algorithms and the reproduced ones. There-
fore, multiple implementations of the same algorithms can undergo quality mea-
surements such as accuracy, execution time and complexity. Finally, the platform
can increase the visibility and importance of the reproducibility issue in the data
management community.

Benchmarking framework
Another solution to the problem of having multiple schema matching algorithms
without a performance indicator is the existence of a dedicated benchmarking frame-
work. Therefore, different algorithms can be evaluated on specific datasets and re-
port the performance metrics such as precision, recall, and F1-score. The results will
help to decide which algorithm is the best for a given dataset.

1https://github.com/

https://github.com/AndraIonescu/reproducing-schema-matching
https://github.com/

43

Bibliography

Baker, Monya (2016). “1,500 scientists lift the lid on reproducibility”. In: Nature News
533.7604, p. 452.

Batini, Carlo, Maurizio Lenzerini, and Shamkant B. Navathe (1986). “A comparative
analysis of methodologies for database schema integration”. In: ACM computing
surveys (CSUR) 18.4, pp. 323–364.

Bellahsene, Zohra et al. (2011). “On evaluating schema matching and mapping”. In:
Schema matching and mapping. Springer, pp. 253–291.

Bergamaschi, Sonia, Silvana Castano, and Maurizio Vincini (1999). “Semantic inte-
gration of semistructured and structured data sources”. In: ACM Sigmod Record
28.1, pp. 54–59.

Bernstein, Philip A, Jayant Madhavan, and Erhard Rahm (2011). “Generic schema
matching, ten years later”. In: Proceedings of the VLDB Endowment 4.11, pp. 695–
701.

Bilke, Alexander and Felix Naumann (2005). “Schema matching using duplicates”.
In: 21st International Conference on Data Engineering (ICDE’05). IEEE, pp. 69–80.

Castano, Silvana and Valeria De Antonellis (1999). “Deriving global conceptual views
from multiple information sources”. In: Conceptual Modeling. Springer, pp. 44–55.

— (2001). “Global viewing of heterogeneous data sources”. In: IEEE Transactions on
Knowledge and Data Engineering 13.2, pp. 277–297.

Chaudhuri, Surajit, Venkatesh Ganti, and Raghav Kaushik (2006). “A primitive op-
erator for similarity joins in data cleaning”. In: 22nd International Conference on
Data Engineering (ICDE’06). IEEE, pp. 5–5.

Clifton, Chris et al. (2004). “Privacy-preserving data integration and sharing”. In:
Proceedings of the 9th ACM SIGMOD workshop on Research issues in data mining and
knowledge discovery. ACM, pp. 19–26.

Collberg, Christian, Todd Proebsting, and Alex M Warren (2015). “Repeatability and
benefaction in computer systems research”. In: University of Arizona TR 14, p. 4.

Cortez, Eli et al. (2015). “Annotating database schemas to help enterprise search”.
In: Proceedings of the VLDB Endowment 8.12, pp. 1936–1939.

Dhamankar, Robin et al. (2004). “iMAP: discovering complex semantic matches be-
tween database schemas”. In: Proceedings of the 2004 ACM SIGMOD international
conference on Management of data. ACM, pp. 383–394.

Do, Hong-Hai, Sergey Melnik, and Erhard Rahm (2002). “Comparison of schema
matching evaluations”. In: Net. ObjectDays: International Conference on Object-Oriented
and Internet-Based Technologies, Concepts, and Applications for a Networked World.
Springer, pp. 221–237.

Do, Hong-Hai and Erhard Rahm (2002). “COMA: a system for flexible combination
of schema matching approaches”. In: Proceedings of the 28th international conference
on Very Large Data Bases. VLDB Endowment, pp. 610–621.

Doan, AnHai, Pedro Domingos, and Alon Y Halevy (2001). “Reconciling schemas of
disparate data sources: A machine-learning approach”. In: ACM Sigmod Record.
Vol. 30. 2. ACM, pp. 509–520.

44 BIBLIOGRAPHY

Doan, AnHai, Pedro M Domingos, and Alon Y Levy (2000). “Learning Source De-
scription for Data Integration.” In: WebDB (Informal Proceedings), pp. 81–86.

Dong, Xin Luna and Divesh Srivastava (2013). “Big data integration”. In: 2013 IEEE
29th international conference on data engineering (ICDE). IEEE, pp. 1245–1248.

Duchateau, Fabien, Zohra Bellahsene, and Ela Hunt (2007). “XBenchMatch: a bench-
mark for XML schema matching tools”. In: The VLDB Journal. Vol. 1. Springer
Verlag, pp. 1318–1321.

Fernandez, Raul Castro et al. (2018a). “Aurum: A data discovery system”. In: 2018
IEEE 34th International Conference on Data Engineering (ICDE). IEEE, pp. 1001–
1012.

Fernandez, Raul Castro et al. (2018b). “Seeping semantics: Linking datasets using
word embeddings for data discovery”. In: 2018 IEEE 34th International Conference
on Data Engineering (ICDE). IEEE, pp. 989–1000.

Freire, Juliana, Philippe Bonnet, and Dennis Shasha (2012). “Computational repro-
ducibility: state-of-the-art, challenges, and database research opportunities”. In:
Proceedings of the 2012 ACM SIGMOD international conference on management of
data. ACM, pp. 593–596.

Gaulton, Anna et al. (2017). “The ChEMBL database in 2017”. In: Nucleic acids research
45.D1, pp. D945–D954.

Giunchiglia, Fausto, Pavel Shvaiko, and Mikalai Yatskevich (2004). “S-Match: an al-
gorithm and an implementation of semantic matching”. In: European semantic web
symposium. Springer, pp. 61–75.

Goodman, Steven N, Daniele Fanelli, and John PA Ioannidis (2016). “What does re-
search reproducibility mean?” In: Science translational medicine 8.341, 341ps12–
341ps12.

Gower, John C (1985). “Measures of similarity, dissimilarity and distance”. In: Ency-
clopedia of Statistical Sciences, Johnson and CB Read 5, pp. 397–405.

Gundersen, Odd Erik and Sigbjørn Kjensmo (2018). “State of the art: Reproducibil-
ity in artificial intelligence”. In: Thirty-Second AAAI Conference on Artificial Intelli-
gence.

Halevy, Alon Y (2001). “Answering queries using views: A survey”. In: The VLDB
Journal 10.4, pp. 270–294.

Heimbigner, Dennis and Dennis McLeod (1985). “A federated architecture for in-
formation management”. In: ACM Transactions on Information Systems (TOIS) 3.3,
pp. 253–278.

Kang, Jaewoo and Jeffrey F Naughton (2003). “On schema matching with opaque
column names and data values”. In: Proceedings of the 2003 ACM SIGMOD inter-
national conference on Management of data. ACM, pp. 205–216.

Kondrak, Grzegorz (2005). “N-gram similarity and distance”. In: International sym-
posium on string processing and information retrieval. Springer, pp. 115–126.

Li, Wen-Syan and Chris Clifton (1994). “Semantic integration in heterogeneous databases
using neural networks”. In: Proceedings of the 20th international conference on very
large data bases.

Madhavan, Jayant, Philip A Bernstein, and Erhard Rahm (2001). “Generic schema
matching with cupid”. In: vldb. Vol. 1, pp. 49–58.

Madhavan, Jayant et al. (2005). “Corpus-based schema matching”. In: 21st Interna-
tional Conference on Data Engineering (ICDE’05). IEEE, pp. 57–68.

Manolescu, Ioana et al. (2008). “The repeatability experiment of SIGMOD 2008”. In:
ACM SIGMOD Record 37.1, pp. 39–45.

BIBLIOGRAPHY 45

Melnik, Sergey, Hector Garcia-Molina, and Erhard Rahm (2002). “Similarity flood-
ing: A versatile graph matching algorithm and its application to schema match-
ing”. In: Proceedings 18th International Conference on Data Engineering. IEEE, pp. 117–
128.

Miller, Renée J et al. (2001). “The Clio project: managing heterogeneity”. In: SIgMOD
Record 30.1, pp. 78–83.

Milo, Tova and Sagit Zohar (1998). “Using schema matching to simplify heteroge-
neous data translation”. In: vldb. Vol. 98. Citeseer, pp. 24–27.

Mitra, Prasenjit, Gio Wiederhold, and Jan Jannink (1999). “Semi-automatic integra-
tion of knowledge sources”. In: Proceedings of Fusion’99, July 1999.

Palopoli, Luigi, Domenico Sacca, and Domenico Ursino (1998). “Semi-automatic, se-
mantic discovery of properties from database schemes”. In: Proceedings. IDEAS’98.
International Database Engineering and Applications Symposium (Cat. No. 98EX156).
IEEE, pp. 244–253.

Peng, Roger D (2011). “Reproducible research in computational science”. In: Science
334.6060, pp. 1226–1227.

Popa, Lucian et al. (2002). “Translating web data”. In: Proceedings of the 28th interna-
tional conference on Very Large Data Bases. VLDB Endowment, pp. 598–609.

Rahm, Erhard and Philip A Bernstein (2001). “A survey of approaches to automatic
schema matching”. In: the VLDB Journal 10.4, pp. 334–350.

Rahm, Erhard and Andreas Thor (2005). “Citation analysis of database publications”.
In: ACM Sigmod Record 34.4, pp. 48–53.

Serafini, Luciano et al. (2003). An algorithm for matching contextualized schemas via SAT.
Tech. rep. University of Trento.

Sheth, Amit P and James A Larson (1990). “Federated database systems for manag-
ing distributed, heterogeneous, and autonomous databases”. In: ACM Computing
Surveys (CSUR) 22.3, pp. 183–236.

Shvaiko, Pavel and Jérôme Euzenat (2005). “A survey of schema-based matching
approaches”. In: Journal on data semantics IV. Springer, pp. 146–171.

Stonebraker, Michael et al. (2013). “Data Curation at Scale: The Data Tamer System.”
In: CIDR.

Thulasiraman, Krishnaiyan and Madisetti NS Swamy (2011). Graphs: theory and algo-
rithms. John Wiley & Sons.

Vitek, Jan and Tomas Kalibera (2011). “Repeatability, reproducibility and rigor in
systems research”. In: 2011 Proceedings of the Ninth ACM International Conference
on Embedded Software (EMSOFT). IEEE, pp. 33–38.

Yatskevich, Mikalai (2003). Preliminary evaluation of schema matching systems. Tech.
rep. University of Trento.

Zhang, Meihui et al. (2010). “On multi-column foreign key discovery”. In: Proceed-
ings of the VLDB Endowment 3.1-2, pp. 805–814.

— (2011). “Automatic discovery of attributes in relational databases”. In: Proceed-
ings of the 2011 ACM SIGMOD International Conference on Management of data.
ACM, pp. 109–120.

	Introduction
	Literature review
	What is schema matching?
	Paper selection
	Findings
	Multiple databases era
	General approach
	Big data era

	Conclusion

	Taxonomy
	Schema-based approaches
	Element-level techniques
	Structure-level techniques

	Instance-based approaches
	Element-level approaches
	Similarity measures

	Combined approaches
	Discussion

	Reproducibility study
	Introduction
	Paper selection
	Reproducibility analysis
	Implementation design decision
	Cupid
	Description
	Linguistic matching
	Structural matching
	Pipeline
	Conclusion

	Instance Clustering
	Description
	Phase one
	Phase two
	Conclusion

	SemProp
	Description
	Semantic matching
	Syntactic matching
	Structural summarizer
	Conclusion

	Conclusion

	Evaluation
	Cupid
	SemProp
	Instance Clustering
	Industry case study
	Conclusion

	Conclusion
	Future work

	Bibliography

