
Ultra Low-Power Biomedical Signal
Processing

An Analog Wavelet Filter Approach for Pacemakers

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus Prof.dr.ir. J.T. Fokkema
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op dinsdag 12 december 2006 om 10:00 uur

door

Sandro Augusto PAVLÍK HADDAD
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Chapter 1

Introduction

“Reading, after a certain age, diverts the
mind too much from its creative

pursuits. Any man who reads too much
and uses his own brain too little

falls into lazy habits of thinking.” - Albert Einstein

Around 40% of all human deaths are attributed to cardiovascular diseases.
A practical way to decrease the overall cardiac mortality and morbidity is to
supply patients at risk with an implantable device, known as artificial pace-
maker, that is designed to monitor the cardiac status and to regulate the
beating of the heart. Cardiac pacing has become a therapeutic tool used
worldwide with over 250.000 pacemaker implants every year.

Cardiac pacemakers include real-time sensing capacities reflecting the state
of the heart. Current pacemaker detection circuitry can be interpreted as a
cardiac electrical signal compression algorithm squeezing the time signal in-
formation into a single event representing the cardiac activity. Future cardiac
pacing algorithms, however, are believed to take advantage of the morpho-
logical aspects of the sensed cardiac signal, improving the analysis and the
recording of relevant cardiac activity data via implantable sensors. This will
provide, for instance, a new opportunity for monitoring and managing infarct-
threatened patients and post-infarction patients outside of the hospital.

In implantable medical devices, such as pacemakers, power consumption
is critical, due to the limited power density and the longevity of currently
available portable batteries. This implies that the design of such devices has
to be optimized for very low power dissipation.

The purpose of this thesis is to detail the significant advances in cardiac
pacing systems and to develop novel signal processing methodologies and ana-
log integrated circuit techniques for low-power biomedical systems.
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1.1 Biomedical signal processing

Biomedical signal processing centers on the acquisition of vital signals ex-
tracted from biologic and physiologic systems. These signals permit us to
obtain information about the state of living systems, and therefore, their mon-
itoring and interpretation have significant diagnostic value for clinicians and
researchers to obtain information related to human health and diseases.

The processing of biomedical signals strongly depends on the knowledge
about the origin and the nature of the signal and poses many special properties,
which usually presents some unique problems. The reason for this is mainly
due to the complexity of the underlying biologic structures and their signals,
and the need to perform indirect, noninvasive measurements. In addition, the
detected signals are commonly corrupted with noise, and thus, the relevant
information is not “visible” and cannot be readily extracted from the raw
signal. For such reasons, advanced signal processing is usually required.

Another important aspect of biomedical signals is that the information of
interest is often a combination of features that are well localized temporally
(e.g., spikes) and others that are more diffuse (e.g., small oscillations) [6]. This
requires the use of analysis methods sufficiently versatile to handle events that
can be at opposite extremes in terms of their time-frequency localization. In
this thesis, we will investigate the ability of the Wavelet analysis to extract
information from a biomedical signal.

1.2 Biomedical applications of the wavelet trans-
form

Physiological signals are mostly non-stationary, such as the electrocardiogram
(ECG), the electroencephalogram (EEG) and the electromyogram (EMG).
Those signals represent the electrical activity of the heart, the brain and the
muscles, respectively. The main difficulty in dealing with biomedical signal
processing is the extreme variability of the signals and the necessity to op-
erate on a case by case basis [6]. The Wavelet transform (WT) has been
extensively used in biomedical signal processing, mainly due to the versatil-
ity of the wavelet tools. The WT has been shown to be a very efficient tool
for local analysis of nonstationary and fast transient signals due to its good
estimation of time and frequency (scale) localizations [13] [14]. The wavelet
transform is a linear operation that decomposes a signal into components that
appear at different scales (or resolutions). The transform is based on the con-
volution of the signal with a dilated filter, thereby mapping the signal onto a
two-dimensional function of time and frequency.

The uses of the WT in biomedical applications are extremely diverse. Sig-
nal analysis methods derived from wavelet analysis [13] carry large potential
to support a wide range of biomedical signal processing applications including
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noise reduction [4], feature recognition [6] and signal compression [7]. The
discussion here shall deal with wavelet techniques for cardiac signals analysis.

Cardiac signal analysis

In the past few years, many new approaches to cardiac signal analysis have
been proposed [5], e.g., algorithms based on filter banks [7] , artificial neu-
ral networks [8], nonlinear transformations [9] and the wavelet transform [10].
In Fig.1.1, one can compare the numbers of publications in the IEEE online
database related to electrocardiogram (ECG) signal detection for three dif-
ferent types of algorithms, being filter-based, wavelet transform and neural
networks. Besides the fact that wavelet analysis is still relatively new, the
wavelet-based signal processing methods have been evolving very rapidly and
the rate of publication keeps increasing steadily.
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Figure 1.1: IEEE online database publications of cardiac signal detection for
different types of algorithms

There are reasons for the growing number of algorithms using wavelets.
Since usually cardiac signal and noise components share the same spectral
bands, the scope of linear signal processing methods (linear filtering) is rather
limited. Therefore, signal analysis methods improving discrimination of sig-
nals from noise and interference are of great importance. Several approaches
[5] have demonstrated the potential of wavelet-based feature extraction for
discriminating between normal and abnormal cardiac patterns.



12 Introduction

Being a multiscale analysis technique, wavelets allow analysis of the elec-
trogram focusing on the signal at various levels of detail, in analogy with
inspection of a sample with a microscope at various levels of magnification.
As one can see in Fig.1.2, at very fine scales (smaller values of scale a), details
of the electrogram, e.g., the QRS-complex (most striking waveform within the
ECG), are revealed while unimpaired by the overall structure of the signal.
At coarse scale (larger values of the scale factor a), the overall structure of the
electrogram can be studied while overlooking the details. Note that by this
global view, both the QRS-complex and the T-wave can be detected.
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Figure 1.2: Wavelet analysis of an intracardiac signal (IECG). For small values
of scale a, the QRS-complex information is dominant, whereas for large values
of a both QRS and T waves are well localized.

1.3 Analog versus digital circuitry - a power con-
sumption challenge for biomedical front-ends

A modern pacemaker consists of a telemetry system to receive and transmit
data, a sense amplifier (analog or digital) consisting of passive/active filters,
an amplifier and a comparator, analog output circuitry (also known as pulse
generator) which stimulates the heart, and a microprocessor acting as a con-
troller for all the settings of the pacemaker system. Moreover, an algorithm in
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the microprocessor determines whether pacing is needed or not. Nevertheless,
the longevity of a pacemaker must not be shortened by new improved features,
so, reliable detection performance as well low power consumption is one of the
most challenging design constraints.

The sense amplifier plays a fundamental role in providing information
about the current state of the heart. State of the art implantable pulse gen-
erators or cardiac pacemakers include real-time sensing capabilities that are
designed to detect and monitor intracardiac signal events (e.g., R-waves in the
ventricle). A sense amplifier and its subsequent detection circuitry, together
called the front-end, are shown in the block diagram in Fig.1.3. As one can see
in Fig.1.3, the signal processing block of the front-end can be implemented with
analog or digital circuitry and in the subsections that follow we will compare
the minimum power required for both analog and digital implementations.

Analog

signal 

processing

A/D 

converter

(8-14 bits)

Digital

signal 

processing

A/D 

converter

(1 bit)

Logic

stage

Logic

stage

Response

(stimulus)

Response

(stimulus)

Analog sense amplifier

Digital sense amplifier

Figure 1.3: Analog and digital sense amplifiers for pacemakers

1.3.1 Power consumption in analog sense amplifiers

Generally, the detection of the electrical activity of the heart requires filter-
ing, where there is a discrimination between cardiac signals and noise based
on differences in energy spectra, and comparison to determine if a heart beat
has occurred. Therefore, an analog sense amplifier derives only a single event
(characterized by a binary pulse from the 1-bit A/D converter) and feeds this
to a micro-controller (logic stage) that decides upon the appropriate pacing
therapy to be delivered by the stimulator. The system consists of an ana-
log signal processing unit, usually a bandpass filter, and a 1-bit comparator
circuit. The bandpass filter is used to specifically select intra-cardiac signals
and to minimize the effect of the noise and interference. Normally, an inte-
grated continuous-time filter is realized as a network of integrators and this
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integration is exclusively performed by capacitive elements. The power per
pole figure of merit [11] gives an indication of the power dissipation associated
with the elementary signal processing operation of integration (filtering).

Power per pole for analog filters

From this figure of merit, the minimum power dissipation (Pan) of an integra-
tor, connected as a first-order low-pass filter and driven by a sinusoidal input
signal, can be expressed in terms of the dynamic range (DR)

Pan = 8fkTξD R (1.1)

where f is the cut-off frequency, kT is the thermal energy and ξ is the excess
noise factor of the (trans)conductance element [12]. ξ is fundamentally greater
equal than 1

2 . Thus, a large value for the noise factor translates directly to
a proportionate disadvantage in terms of power dissipation. For a linearized
transconductor, for instance a Gm − C structure, the excess noise factor can
be significantly larger, with common values of ξlin ≈ 3 to 8 [13]. Whereas, for
log-domain integrators, the noise factor can be approximated as ξlog ≈ 3

2 [13].
This means that log-domain filter allows a substantial power saving compared
to more traditional continuous-time filters. This can be partially explained
by the fact that log-domain filters do not require any local linearization as
traditional filters do [12].

1.3.2 Power consumption in digital sense amplifiers

Digital information is different from its continuous counterpart in two impor-
tant respects: it is sampled, and it is quantized. In order to interface digital
circuitry with the physical world, analog-to-digital converters (ADC’s) are
required, which convert the continuous-time signals to discrete-time, binary-
coded form.

Power consumption in A/D converters

The resolution of the converter indicates the number of discrete values it can
produce. The signal-to-noise ratio (SNR) of an ideal ADC is given by

SNRdB = 6.02N − 1.25 + 10 · log fs

fsig
(1.2)

where N is the stated number of bits, fs is the sampling frequency and fsig is
the highest frequency of the input signal. It can be noticed that for a Nyquist
converter, where sampling frequency is defined as fs = 2fsig, the SNRdB is
now given by

SNRdB = 6.02N + 1.76. (1.3)
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In [14], a figure of merit (F) has been defined that emphasizes efficiency
with respect to power dissipation and signal-to-noise-and-distortion ratio SNDR

F =
2Nfs

P
(1.4)

where P is the power dissipation. Here we will consider an optimistic case
where SNDR is equal to the Dynamic Range (DR). By this, one can quantify
the ADC power consumption performance (PADC), which can be related to
the correspondent DR by

PADC =
2ENOBfs

F
=

2
DRdB−1.76

6.02 fs

F
(1.5)

In this analysis, we will consider F equal to 1.2 ·1012, which represents the
present-day state-of-the-art A/D according to Walden in [14]. Another figure
of merit known as the quantization energy (EQ) per conversion step [15], is
based on the effective resolution bandwidth (FBW ) instead of the sampling
rate. This is defined as

EQ =
PADC

2N2FBW
(1.6)

where for Nyquist ADC, FBW is equal to fs. As one can see, this quantity
is nearly the inverse of the figure of merit suggested by Walden. Again, the
analysis for minimal power consumption will be based on recently published
papers, where the lowest reported number for EQ is 2.8pJ [16].

Finally, the fundamental limit for the quantization energy can be calcu-
lated based on the minimum thermal noise per pole (single capacitor) and the
quantization-noise [17]. This absolute lower bound on the quantization energy
EQ for an ADC of a given resolution N at any speed is given by [17]

EQmin > 48kT2N (1.7)

Thus, the absolute minimum power per cycle for an analog-to-digital con-
verter can be defined from Eq. 1.6 and Eq.1.7, resulting in

Pmin,ADC > 48kT22N (1.8)

The following analysis relates consumed power to the function of the num-
ber of bits (N) representing the filtered information inside the digital filter.
In the case of pacemakers, for instance, proper cardiac signal characterization
would require at least 8-12 bits A/D conversion, at a sample rate of 1kHz [18].

Power consumption in digital filters

To have a fair comparison of the minimal power needed in analog and digi-
tal filters, we will assume that the only noise source presented in the circuit



16 Introduction

is the thermal noise integrated on the capacitor, which presents a Gaussian
distribution. Note that in a digital filter, the signal is represented by a se-
quence of bits, rather than a voltage or current. Then, for digital signals, we
can consider the associated noise in terms of probability that a bit-error will
occur.

The bit-error function Pbit,error is defined by the probability of having
an instantaneous noise amplitude exceeding a certain threshold, so that the
wrong decision about the logic level will be made. It is known that the power
consumed by the digital filter and its correspondent dynamic range depend on
the probability of the error we can allow in the logic gates [19], [20]. Hence,
the function Pbit,error can defined as [19]

Pbit,error =
1
4
(

1
DR

− 1
22N−1

) =
1
2
Erfc(

1
2

√
Pdig

fkTN
) (1.9)

where Erfc represents the error function given by Erfc(x) = 1− 2√
(π)

∫ x
0 e−t2 .

Note that from Eq.1.9, we can relate the dynamic range (DR) with the corre-
sponding power dissipation (Pdig) in a digital filter.

Fig.1.4 shows minimal power consumption per cycle, (Pan
f ), (PADC

f ) (Pdig

f ),
for the analog (analog filter) and digital (digital filter plus A/D converter)
sense amplifiers, respectively, as a function of the DR achieved in the system.
One can see that a digital filter presents lower power consumption than the
equivalent analog filter. Nevertheless, due to the huge amount of power re-
quired for the analog-to-digital conversion, application of a fully digital signal
processing in implantable devices like pacemakers is not feasible yet.

As a prediction of the power consumption related to the A/D converters
over the years, we can use the EQ figure of merit described before. Fig.1.4
also shows how much the lowest reported quantization energy, and the cor-
responding PADC

f , decrease yearly [17]. One can see, that EQ delays almost
linearly, from 29.3Jp in 1995 [17] to 2.8pJ in 2004 [16], with only a factor of
ten improvement over nine years.

Then, we conclude that the power efficiency of A/D converters needs to
improve considerably in order to have the power dissipation of the digital
sense amplifier comparable to the analog signal processing and, due to its
power constrains, implantable devices will still be implemented using analog
signal processing for many years to come.

1.4 Objective and scope of this thesis

The main objective of this thesis is the design of a novel signal processing
system for ultra low-power real-time sensing of cardiac signals in pacemakers.
Given the advantages in previous sections, the system will be based on wavelet
transform using continuous-time analog circuitry.
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Figure 1.4: Comparison of the analog and digital sense amplifiers’ power con-
sumption

The Wavelet Transform (WT) has been shown to be a very efficient tool for
analysis of non-stationary signals, like cardiac signals. Being a multiscale anal-
ysis technique, it offers the possibility of selective noise filtering and reliable
parameter estimation.

Low-power analog realization of the wavelet transform enables its appli-
cation in vivo, e.g., pacemakers. In this application, the wavelet transform
provides a means to extremely reliable cardiac signal detection A promising
technique for the design of ultra low power analog integrated circuits is Dy-
namic Translinear (DTL) circuits. The DTL principle can be applied to the
implementation of functions described by linear and nonlinear polynomial dif-
ferential equations. Another suitable technique for low-power filters design is
based on CMOS triode nA/V transconductor for linear gm − C filters.

In this thesis we propose a method for implementing the novel signal pro-
cessing based on WT in an analog way. The methodology will focus then on
the development of ultra low-power analog integrated circuits that implement
the required signal processing, taking into account the limitations imposed by
an implantable device.
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1.5 Outline of the thesis

A brief overview of the history and development of circuit designs applied
in pacemakers is presented in Chapter 2. The advances in integrated circuit
designs have resulted in increasingly sophisticated pacing circuitry, providing,
for instance, diagnostic analysis, adaptive rate response and programmability.
Also, based on future trends for pacemakers, some features and improvements
for modern cardiac sensing systems are described.

Chapter 3 deals with the properties of the WT as well as the definition of
some wavelet bases. In addition, an example is given to illustrate the advan-
tages and limitations of the frequency (Fourier transform), time (windowing
function) and time-frequency (wavelet transform) representations.

From the wavelet definition, we can state that a wavelet filter implemen-
tation is based on a bandpass filter design which presents an impulse response
equal to a wavelet base. In order to obtain the transfer function of certain
wavelet filter, mathematical approximation techniques are required. Some of
those approximation methods, i.e, Complex first order system (CFOS), Padé
and least mean square (L2) approaches, will be presented in Chapter 4.

In Chapter 5, one will see that there are many possible state space de-
scriptions, and, of course, different filter topologies that implement a particu-
lar transfer function. By this, we are able to achieve the required low-power
specifications. Some of the requirements treated in this chapter are dynamic
range, sensitivity and sparsity.

The trend towards lower power consumption, lower supply voltage and
higher frequency operation has increased interest in new design techniques for
analogue integrated filters. The class of translinear (TL) filters, also known
as log-domain filters, has emerged in recent years as a promising approach to
face these challenges and it will be presented in Chapter 6. In addition, new
Class-A log-domain and Class-AB Sinh integrator designs will be presented.
In the field of medical electronics, active filters with large time constants are
often required to design low cutoff-frequency filters (in the Hz and sub-Hz
range), necessitating the use of large capacitors or very low transconductances.
To limit capacitors to practical values, a transconductor with an extremely
small transconductance gm (typically a few nA/V) is needed. Ultra low-power
CMOS triode nano-A/V and pico-A/V transconductors for low-frequency gm−
C filters are also introduced in this chapter.

In Chapter 7, the methodology presented in the previous chapter is now
employed in the design of several ultra low-power biomedical systems. First, a
benchmark cardiac sense amplifier, i.e., a standard pacemaker front-end, based
on the Dynamic Translinear (DTL) circuit technique is presented. Then, an
analog QRS complex detection circuit, based on the Wavelet Transform (WT)
is described. The system uses an CFOS structure to approximate the Gaussian
wavelet base and the decision stage detects the wavelet modulus maxima of
the QRS complex. Two convenient methods to provide the transfer function of
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the wavelet filter are given by the Padé and L2 approximations and, thus, some
designs based on these approaches, for Gaussian and Morlet wavelet bases, will
also be presented. In addition, a complex wavelet filter design, based on the
combination of the real and the imaginary state-space descriptions is described.
To fulfill the low-power requirement, the filter’s state space description will be
optimized. Simulations and measurement results of the various systems are
also presented in this chapter.

Finally, Chapter 8 presents the conclusions and suggestions for further
research in this area.
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Chapter 2

The Evolution of Pacemakers:
An Electronics Perspective

“The heart is the only broken instrument

that works.” - T. E. Kalem

Since the first artificial pacemaker was introduced in 1932, much has
changed and will continue to change in the future [1], [2], [3]. The complex-
ity and reliability in modern pacemakers has increased significantly, mainly
due to developments in integrated circuit design. Early pacemakers merely
paced the ventricles asynchronously, not having the capability of electrogram
sensing. Later devices, called demand mode pacemakers, included a sense am-
plifier measuring cardiac activity, thereby avoiding competition between paced
and intrinsic rhythms. By the introduction of demand pacemakers, also the
longevity increased since pacing stimuli were only delivered when needed. In
1963 pacemakers were introduced having the capability to synchronize ven-
tricular stimuli to atrial activation. Since that time, clinical, surgical and
technological developments have proceeded at a remarkable pace providing
highly reliable, extensive therapeutic and diagnostic devices that we know
today.

Modern pacemaker topologies are extremely sophisticated and include an
analog part (comprising the sense amplifier and a pacing output stage) as well
as a digital part (consisting of a micro controller, and some memory), im-
plementing diagnostic analysis of sensed electrograms, adaptive rate response
and device programmability. Pacemakers have become smaller and lighter over
the years. Early devices weighed more than 180g, whereas today devices are
available weighting no more than 25g [4]. This weight reduction has occurred
partly due to the development of high energy-density batteries. Finally, there
have been remarkable advances in cardiac lead technology. Novel electrode tip
materials and configurations have provided extremely low stimulation thresh-
olds and low polarization properties [5]. In this chapter, we will concentrate
on the evolution of analog circuit designs applied in cardiac pacemakers.
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2.1 The Heart

In order to better understand why some patients require pacemakers and how
these devices work, it is worth briefly discussing how the heart and its electrical
system work. In a global view one can think of the heart as a pumping station
which pumps the blood through the body. In order to do so, the heart is
divided into four chambers: two atria and two ventricles, as shown in Fig. 2.1.
The two atria act as collecting reservoirs (primer pump) for blood returning
to the heart while the two ventricles act as pumps to eject the blood to the
body. Deoxygenated blood returning from the body via the superior and
inferior vena cava, enters the right atrium and passes through the tricuspid
valve to the right ventricle, which expels it through the pulmonary artery to
the lungs. Oxygenated blood returning from the lungs enters the left atrium
via the pulmonary veins, passes via the mitral valve to the left ventricle and is
pumped out through the aorta back to the body. The tricuspid and the mitral
valves are important to prevent the back flow of blood from the respective
ventricle to the atrium [6].

Figure 2.1: The heart

The pumping action starts with the simultaneous contraction of the two
atria, called ”diastole”. This contraction serves to give an added push to get
the blood into the ventricles. Shortly after that, the ventricles contract virtu-
ally in unison, making the beginning of ”systole”. Therefore, from electrical
point of view the heart can, in most instances, be treated as just two chambers.

Excitation and Conduction system

The heart is composed basically by three types of cardiac muscle: the atrial
muscle, the ventricle muscle and the specialized fibers (which can be further
subdivided into excitation and conduction fibers). Both the atrial and the
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ventricle muscles, which make up the myocardium, each have a similar form
of contraction to other muscles of the body, but with a larger period of contrac-
tion time. On the other hand, the excitation and conduction fibers have very
weak contractions, but do have rhythmicity and variable conduction speed.
Once an electrical activation has occurred, contraction of the muscle follows.
An orderly sequence of activation of the cardiac muscle in a regularly timed
manner is critical for the normal functioning of the heart.

The excitation and conduction system of the heart, responsible for the
control of the regular pumping of the heart, is presented in Fig.2.2. It consists
of the sinoatrial node (SA node), internodal tracks and Bachmann’s bundle,
the atrioventricular node (A-V node), the bundle of His, bundle branches and
Purkinje fibers. A heart pacemaker is a device that exhibits automaticity,
i.e. generates electrical impulses (known as action potentials) via automatic
self activation, and delivers them to the muscles of the heart in such a way
to contract those muscles and the heart to beat. Several cells in the heart
are able to generate inherent impulses (inherent rate in A-V node is about 50
beats per minute and in Purkinje fibers about 40 beats per minute), but with
lower rate than the SA node (about 60-80 beats per minute). The normal
rhythm of the heart, between 60 and 100 beats per minute, is controlled by
the discharges from the SA node, unless the SA node is nonfunctional. The
Internodal tracks and Bachmann’s bundle transmit this excitation throughout
the atria and initiate a coordinated contraction of the atrial walls. Meanwhile,
the impulse reaches the A-V node, which is the only electrical connection
between atria and ventricles. The A-V node introduces an effective delay,
allowing the contraction of the atria to finish before ventricular concentration
begins. By this delay, an optimal ventricular filling is achieved. Subsequently,
the electrical impulses are conducted very rapidly through the His-Purkinje
system (comprising the bundle of His, bundle branches and Purkinje fibers).
Once the bundle of His activates, its signal splits into the right bundle branch,
which goes to the right ventricle, and the left bundle branch which leads to
the left ventricle. Both bundle branches terminate in Purkinje fibers. The
Purkinje fibers are responsible for spreading the excitation throughout the
two ventricles and causing a coordinated ventricular contraction [6].

2.2 Cardiac Signals

2.2.1 Surface Electrocardiogram

The electrocardiogram (ECG) is the recording on the body surface of the
electrical activity generated by heart. It was originally observed by Waller
in 1899 [7]. In 1903, Einthoven introduced some concepts still in use today,
including the labelling of the various waves. He chose the letters from P to
U to label the waves and to avoid conflict with other physiologic waves being
studied at that time [7]. Fig. 2.3 depicts a typical ECG signal.
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Figure 2.2: The cardiac conduction system

ECG signals are typically in the range of 2 mV peak-to-peak and occupy
a bandwidth of 0.05 to 150 Hz. The character of the body surface waves de-
pends on the amount of tissue activating at one time and the relative speed,
direction of the activation waveform (action potentials) and the position of the
electrodes. Therefore, the pacemaker potentials, i.e. the SA node potentials,
that are generated by a small tissue mass are not seen on the ECG. The first
ECG wave of the cardiac cycle is the P wave, and it represents the depolariza-
tion of the atria. Conduction of the cardiac impulse proceeds from the atria
through a series of specialized cardiac cells (the A-V node and the His-Purkinje
system) which was explained in the previous section. Again the total mass is
too small to generate a signal large enough to be seen on the ECG. There is
a short relatively isoelectric segment following the P wave. This is the P-Q
interval which is defined by the propagation delay time of the specialized cells
and, usually, is 0.2 s. Once the large muscle mass of the ventricles is excited,
a rapid and large deflection is seen on the body surface. This ventricles’ de-
polarization waveform is generically called the QRS complex. Following the
QRS complex is another isoelectric segment, the S-T interval. The S-T inter-
val represents the duration of the action potential, normally about 0.25s to
0.35s. After this short segment, the ventricles return to their electrical resting
state, and a wave of repolarization is seen as a low-frequency signal known as
the T wave. In some individuals, a small peak occurs at the end or after the
T wave and is called the U wave. Its origin has never been fully established,
but it is believed to be a repolarization potential [8].
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Figure 2.3: Typical Electrocardiogram

2.2.2 Intracardiac electrogram (IECG)

An intracardiac electrogram (IECG) is a recording of changes in electric poten-
tials of specific cardiac locations measured by electrodes placed within or onto
the heart by using cardiac catheters. The IECG can be recorded between one
electrode and an indifferent electrode, usually more then 10 cm apart (unipolar
electrogram) or between two more proximate electrodes (< 15 mm) in con-
tact with the heart (bipolar electrogram). Sensing the intrinsic activity of the
heart depends on many factors related to the cardiac source and the electrode-
tissue interface where complex electrochemical reactions take place. In most
situations it is desirable that the IECG does not contain signals from other
more distant cardiac chambers. Bipolar lead systems are much less sensitive
to far-field potentials and electromagnetic inference (EMI) sources obscuring
the cardiac signal.

2.2.3 Cardiac Diseases - Arrythmias

Arrhythmias (or dysrhythmias) are due to cardiac problems producing ab-
normal heart rhythms. In general arrhythmias reduce heamodynamic perfor-
mance including situations where the heart’s natural pacemaker develops an
abnormal rate or rhythm or when normal conduction pathways are interrupted
and a different part of the heart takes over control of the rhythm. An arrhyth-
mia can involve an abnormal rhythm increase (tachycardia; > 100 bpm) or
decrease (bradycardia; < 60 bpm), or may be characterized by an irregular
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cardiac rhythm, e.g. due to asynchrony of the cardiac chambers. An ”artificial
pacemaker” can restore synchrony between the aria and ventricles.

2.3 The history and development of cardiac pacing

2.3.1 What is an artificial pacemaker?

An artificial pacemaker is a device that deliveries a controlled, rhythmic elec-
tric stimulus to the heart muscle in order to maintain an effective heartbeat for
long periods of time and thereby ensures the pumping capacity of the heart.
Indication for permanent pacemaker implantation and the selection of the ap-
propriate pacemaker mode are based mainly on the cardiac diseases such as
failure of impulse formation (sick sinus syndrome) and/or conduction (A-V
block). Functionally, a pacemaker comprises at least three parts: a electrical
pulse generator, a power source (battery) and an electrode (lead) system, as
we can see in Fig. 2.4 [9].

Pulse

generator
Electrodes

Power

Source

Figure 2.4: Basic pacemaker functional block diagram

Different types of output pulses (monophasic, biphasic, etc.) can be used
to stimulate the heart. The output stimulus provided by the pulse generator is
the amount of electrical charge transferred during the stimulus (current). For
effective pacing, the output pulse should have an appropriate width and suffi-
cient energy to depolarize the myocardial cells close to the electrode. Gener-
ally, a pacemaker can provide a stimulus in both chambers of the heart. During
AV-block, ventricular pacing is required because the seat of disease is in the
AV-node or His-Purkinje system. However, in case of a sick sinus syndrome,
the choice of pacemaker will be one that will stimulate the right atrium. A
pacemaker utilizes the energy stored in batteries to stimulate the heart. Pac-
ing is the most significant drain on the pulse generator power source. The
battery capacity is commonly measured in units of charge (ampere-hours).
Many factors will affect the longevity of the battery, including primary device
settings like pulse amplitude and duration and pacing rate. An ideal pulse
generator battery should have a high energy density, low self-discharge rate
and sufficient energy reserve between early signs of depletion and full depletion
to allow for safe replacement of the device. The electrical connection between
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the heart and the implanted pulse generator is provided by an implantable
electrode catheter called ’lead’. In an implantable pulse generator system,
commonly two types of lead systems are used. A unipolar lead system has a
single isolated conductor with an electrode located at the tip. A bipolar lead
has two separate and isolated conductors connecting the two electrodes, i.e.
the anode and cathode, usually not more than 12 mm apart. The cathode
refers to the electrode serving as the negative pole for delivering the stimu-
lation pulse and the anode to the positive pole. For unipolar pacing-sensing
systems, the distance between anode and cathode easily exceeds 10 cm. Its
cathode is typically located at the lead tip whereas the pulse generator hous-
ing, usually located in the pectoral region, is used as anode. Several types
of bipolar leads exist, including the coaxial lead allowing a diameter in the
range of 4 to 5 F (French = 0.33 mm), which is comparable to state-of-the-
art unipolar leads. The sensing behavior of bipolar lead systems outperform
their unipolar counterparts by providing a better signal to interference ratio.
Especially for sensing atrial activation, bipolar electrodes are less sensitive to
far-field potentials generated by the ventricles. Moreover, bipolar leads are
less sensitive to electromagnetic interference (EMI) sources and skeletal mus-
cle potentials. However, owing to their construction, bipolar leads are stiffer
and more complex from a mechanical construction point of view.

2.3.2 Hyman’s Pacemaker

In the early nineteenth century, many experiments such as drug therapy and
electrical cardiac pacing had been conducted for stimulating heart arrest. Pre-
vious methods employed in electrically stimulating the heart were performed
by applying the same current that would cause contraction of the muscle tissue
of the heart. Whereas in the latter theory, Albert S. Hyman stated that ”the
introduced electric impulse serves no other purpose than to provide a control-
lable irritable point from which a wave of excitation may arise normally and
sweep over the heart along its accustomed pathways.” Hyman designed the
first experimental heart pacemaker in 1932 [10], shown in Fig. 2.5.

Hyman’s pacemaker was powered by a hand-wound, spring-driven genera-
tor that provided 6 minutes of pacemaking without rewinding. The operation
is as follows: The hand crank (F) winds the spring motor (D) which drives
the magneto-generator (A) at a controlled speed (E and H) and causes the in-
terrupter disc (not shown) to rotate. The magneto-generator supplies current
to a surface contact on the interrupter disc. The companion magnet pieces
(B’and B”) provides the magnetic flux necessary to generate current in the
magneto-generator. Subsequently, the interrupter disc produces a pulsed cur-
rent at 30 60 or 120 beats per minute, regulated by the impulse controller
(G), which represents the periodic pacing waveform delivered to the electrode
needle (L).The neon lamp (C) is illuminated when a stimulus is interrupted.
In Fig.2.6 a suitable block diagram of the Hyman’s pacemaker is given [11].
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Figure 2.5: The first artificial pacemaker. A, magneto-generator; B’ and B”,
companion magnet pieces; C, neon lamps; D, spring motor; E, ballistic gover-
nor; F, handle; G, impulse control; H, speed control; I, flexible electric cord;
J, insulated handle; K, handle switch, and L, electrode needle.

Hand Crank Winds up Spring Motor Magneto-generatorDrives

Interruptor Disc

Speed control

Impulse control

Needle ElectrodeStimulusHeart (Right Atrium)

Figure 2.6: Block diagram of Hyman pacemaker

2.3.3 Dawn of the Modern Era - Implantable Pacemakers

The origin of modern cardiac pacing is defined as the time when the first
pacemaker was implanted without the need for opening the chest. The first
pacemaker, developed by Dr. Rune Elmqvist, was used in a patient in 1958
by Dr. Ake Senning [12]. In 1959 the engineer Wilson Greatbatch and the
cardiologist W.M. Chardack developed the first fully implantable pacemaker
[13]. This device was essentially used to treat patients with complete A-V
block caused by Stokes-Adams diseases delivering a single-chamber ventricular
pacing. It measured 6 cm in diameter by 1.5 cm thick and the total weight of
the pacemaker was approximately 180g. The pacemaker circuit delivered to
the electrode pulses 1ms wide, pulse amplitude of 10mA and a repetition rate
of 60 beats per minute. The average current drain of the circuit under these
conditions was about 12µA which, energized by 10 mercury-zinc cells, gave a



2.3 The history and development of cardiac pacing 31

continuous operation life estimated at 5 years. The schematic of the implanted
pacemaker is shown in Fig.2.7 and consists of a pulse forming (square pulse)
oscillator and an amplifier.
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Figure 2.7: Schematic of the first implanted pacemaker [13]

Basically, the cardiac pacemaker includes a blocking oscillator [14], which is
a special type of wave generator used to produce a narrow pulse. The blocking
oscillator is closely related to the two-transistor astable circuit, except that it
uses only one amplifying device. The other is replaced by a pulse transformer,
which provides inductive regenerative positive feedback. The transistor of the
blocking oscillator is normally cut off between pulses and conducting during
the time that a pulse is being generated. The operation of a blocking oscillator
during a single cycle may be divided into three parts: the turn-on period, the
pulse period and the time interval between adjacent pulses (relaxation period).
The turn-on period (t0) occurs when V cc is applied to the circuit, R1 and R2
provide forward bias and transistor Q1 conducts. Current flow through Q1

and the primary (L1) of T1 induces a current through the secondary (L2),
increasing the voltage across C1 and thus across the base-emitter junction
of Q1. The positive voltage of L2 is coupled to the base of the transistor
through C1. This provides more collector current and consequently more
current through L1. Very rapidly, sufficient voltage is applied to saturate the
base of Q1. Once the Q1 becomes saturated, the circuit can be defined as
a series RL (resistance-inductance) circuit and the current increase in L1 is
determined by the time constant of L1 and the total series resistance. From
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t0 to t1 (pulse period) the voltage across L1 will be approximately a constant
value as long as the current increase through L1 is linear.The pulse width
depends mainly on the time constant τC = L1/R3. At time t1, L1 saturates.
At this time, C1, which has charged during the pulse period, will now discharge
through R1 and cut off Q1. This causes collector current to stop, and the
voltage across L1 returns to 0. The length of time between t1 and t2 is the
relaxation period.

Demand Pacemaker

As was shown in previous section, the early pacing devices simply delivered a
fixe-rate pulse to the ventricle at a preset frequency, regardless of any spon-
taneous activity of the heart. These pacemakers, called asynchronous or fixed
rate, compete with the natural heart activity and can sometimes induce ar-
rhythmias or ventricular fibrillation. By adding a sensing amplifier to the
asynchronous pacemaker in order to detect intrinsic heart activity and thus
avoid this competition, one obtains a demand pacemaker, which provides elec-
trical heart-stimulating impulses only in the absence of natural heartbeat. The
other advantage of the demand pacemaker compared to the fixed rate system is
that now the battery life of the system is prolonged because it is only activated
when pacing stimuli are needed.

Berkovits introduced in June 1964 the demand concept, which is the basis
of all modern pacemakers. In Fig.2.8 a suitable block diagram of a demand
pacemaker is given. Intracardiac electrodes of conventional demand pacemak-
ers serve two major functions, namely pacing and sensing. Pacing is achieved
by the delivery of a short, intense electrical pulse to the myocardial wall where
the distal end of the electrode is attached, similarly as in the early pacing de-
vices. However the same electrode is used to detect the intrinsic activity of the
heart (e.g., R-waves in the ventricle). The electrical pulse generator consists
of the following components: a sense amplifier circuit, a timing control circuit
and an output driver circuit (electrical impulse former).

textSense

amplifier

Timing

control

Output

driver
Electrodes

Power

source

Pulse generator

Figure 2.8: Basic demand pacemaker functional block diagram

The schematic of the pulse generator designed by Berkovits is given in Fig.
2.9 [15]. The general function of this circuit was to make the timing circuit
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responsive to cardiac activity. This allowed inhibition of the pacing pulse from
the pulse generator whenever the heart beats on its own. To achieve such func-
tion the sense amplifier played a fundamental role. It was designed to amplify
and normalize the cardiac signal. Also, the sense amplifier was configured to
filter out the undesired signals such as P and T wave and 60 Hz stray signal.
The electrical signals picked up by the electrodes are coupled across capacitor
Cc1 in the input of the sense amplifier. The first two transistors Q1 and Q2
are class A amplifiers. The maximum gain of this amplifier stage is above 50.
AC signals at the collector of Q2 are coupled through capacitor CC2 to the
bases of both transistors Q3 and Q4. The circuit is symmetrically responsive
to negative or positive inputs, since signals of positive polarity turn on Q3 and
signals of negative polarity turn on Q4. Either transistor momentarily turns
on Q6 which is the timing capacitor (Ct) discharge switch.

A bandpass filter with bandwidth of 20-30 Hz was incorporated in the sense
amplifier. Three differentiators (RB1 and CC1, RE1 and CE1, and RE2 and
CE2) limited the low frequency response of the detecting circuit to discriminate
against the P and T waves and any other frequencies well below 20 Hz. Two
integrators (RI1 and CI1, and RI2 and CI2) were designed to reduce high
frequency noise components well above 30 Hz. However, these filters were
not totally effective in preventing the triggering of Q6 by 60 Hz signals. For
this reason, a rate discrimination circuit (including transistor Q3, Q4 and Q5,
resistors RE5 and RUNI , and capacitors CUNI and CC3) was provided.

Then, the rate discrimination stage had two functions. First, to provide
unipolar current pulse (rectifier) of constant magnitude independent of the
amplitude of input signals above a threshold value (1 V at the bases of Q3
and Q4). A phase inverter circuit (Q5, Rphi1 and Rphi2) was provided to invert
the polarity signal from transistor Q3. Second, to provide a rate discrimination
which avoided triggering of Q6 by signals occurring at a rate greater than a
minimum value. The 60 Hz signals have a rate of 120 pulses per second which
is much greater than 72 pulses per minute. Each pulse fully charged CUNI

and the next pulse was delivered before the capacitor had an opportunity to
discharge to any meaningful extent and the increase in the capacitor voltage
was negligible. Consequently, steps of negligible magnitude were transmitted
through capacitor CC3 to the base of transistor Q6.

The switch S was used only to define the operation mode of the system,
free-running mode (switch closed) or demand mode (switch opened). In free-
running mode, the switch had to be closed and, therefore, the transistor Q6
remained in cut-off condition. When the switch was opened, i.e., in the case
of a pacer required to operate in the demand mode, each pulse transmitted
through capacitor CC3 to the base of transistor Q6 caused the transistor to
conduct. Capacitor CT discharged through the collector-emitter circuit of the
transistor. In such a case, the timing cycle was interrupted and the junction of
capacitor CT and resistor Rp did not increase in potential to the point where
transistors Q7 and Q8 were triggered to conduction. After capacitor CT had
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discharged through transistor Q6, the transistor turned off. The capacitor
then started charging once again and the new cycle began immediately after
the occurrence of the last heartbeat. The free-running operation would take
place were there no input to the base of transistor Q6. Transistor Q6 would
remain non-conducting and would not affect the charging of capacitor CT . The
capacitor CT would trigger, and discharge through transistors Q7 and Q8 to
control the generation of a pulse. The timing control circuit which determines
the pulse duration (1 ms) and the repetition rate (72 pulses per minute)of the
pulse generator, is made up of the transistors Q7 and Q8, the capacitor CT

and the resistances Rp, RT , R8 and R9. The pulse duration is determined by
the time constant τp = CT × Rp and the rate mainly by τT = CT × RT . The
capacitor charge current flows through the resistances. During the charging
period both transistors are off. As the CT charges, the emitter voltage of
Q7 rises and eventually exceeds the 4.2V reference sufficiently to forward bias
the transistor causing collector current to flow. This turns on Q8 raising its
emitter voltage which in turn raises the potential on the lower plate of the
capacitor. This creates a regenerative turn on of both Q7 and Q7 which is
sustained as long as CT can supply current, a time determined primarily by
resistor Rp. During this discharge time, the output transistor Q9 is turned on,
causing current to flow in the electrode circuit. The output driver comprises
the transistor Q9, the resistor Rout and the capacitor Cc4. After 1 ms CT is
discharged, the transistors Q7, Q8 and Q9 turn off and the pulse is terminated.

Finally, to avoid damage to the circuit due to high voltage signals from
the electrodes, a zener diode (Z1) was placed between the terminals of the
electrode.
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Figure 2.9: Schematic of the pulse generator of the first demand pacemaker
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A variation of this concept is the demand-triggered pacemaker, which stim-
ulates every time it senses intrinsic heart activity, i.e., the stimulus falls di-
rectly on the natural QRS.

Dual-chamber Pacemaker

A dual-chamber pacemaker typically requires two pacing leads: one placed
in the right atrium, and the other placed in the right ventricle. A dual-
chamber pacemaker monitors (senses) electrical activity in the atrium and/or
the ventricle to see if pacing is needed. When pacing is needed, the pacing
pulses of the atrium and/or ventricle are timed so that they mimic the heart’s
natural way of pumping.

Dual-chamber pacemakers were introduced in the 1970’s. One of the first
description of a dual-chamber pacemaker was given by Berkovits in 1971.
Berkovits announced a ”bifocal” (AV sequential) pacer that sensed only in
the ventricle but paced both chambers. In the presence of atrial standstill
or a sinus node syndrome plus A-V block, the bifocal pacemaker could de-
liver a stimulus to the atrium and then, after an appropriate interval, to the
ventricle. Berkovits improved on his original design given in Fig.2.9 with a
dual-chamber demand pacemaker. An schematic of this design is given in Fig.
2.10 [16] . In accordance with the principles of the demand pacemaker design,
a sense amplifier was provided to detect intrinsic ventricular activity. The
timing control circuits determined both atrial and ventricular timeout stim-
ulating period. However the atrial-stimulating impulse was generated first,
and, after a predetermined time interval (200 ms), the ventricular-stimulating
impulse was generated. Three electrodes were provided, a neutral electrode,
an electrode for atrial stimulation and an electrode for ventricular pacing and
sensing. The FET switch (S FET) was inserted in the feedback path of the
ventricular electrode in order to avoid erroneous detection because of the atrial
contraction. The FET switch was normally conducting. The negative pulse
generated at the atrial electrode was transmitted through the diode Da, charg-
ing the capacitor Ca and turning off the switch. When the atrial-stimulating
terminated, Ca discharged through resistor Ra and turned on the switch again.
In this manner, the sense amplifier was disabled during each atrial stimulation
and for a short interval thereafter.

More Sophisticated dual-chamber pacemakers that sense intrinsic activity
and pace in both chambers were developed, with the first use in late 1977.

Rate-responsive Pacemaker

The latest innovations include the development of ”rate-responsive” pacemak-
ers in the early eighties, which could regulate their pacing rate based upon
the output of a sensor system incorporated in the pacemaker and/or lead. A
sensor system consists of a device to measure some relevant parameter from
the body (body motion, respiration rate, pH, blood pressure and so forth)
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Figure 2.10: Schematic of the Dual-chamber demand pacemaker

and an algorithm in the pacemaker, which is able to adjust the pacemaker
response in accordance with the measured quantity. Modern rate-responsive
(also called frequency-response) pacemakers are capable of adapting to a wide
range of sensor information relating to the physiological needs and/or the
physical activity of the patient.

A block diagram of a rate-responsive pacemaker is given in Fig. 2.11.
The system is based on a pacemaker having a demand pulse generator, which
is sensitive to the measured parameter. Many rate-responsive pacemakers
currently implanted are used to alter ventricular response in single-chamber
ventricular systems. However, rate-responsive pacing can also be done with a
dual-chamber pacing system.

2.4 New Features in Modern Pacemakers

A modern pacemaker consists of a telemetry system, an analog sense amplifier,
analog output circuitry, and a microprocessor acting as a controller, as one
can see in Fig. 2.12 [4].

Nevertheless, the sense amplifier plays a fundamental role in providing in-
formation about the current state of the heart. State of the art implantable
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pulse generators or cardiac pacemakers include real-time sensing capabilities
that are designed to detect and monitor intracardiac signal events (e.g. R-
waves in the ventricle). A sense amplifier and its subsequent detection cir-
cuitry, together called the front-end, derive only a single event (characterized
by a binary pulse) and feed this to a micro-controller that decides upon the
appropriate pacing therapy to be delivered by the stimulator. Over the years,
huge effort is put into the improvement of sense amplifier and detection cir-
cuitry. The dynamic range of the atrial and ventricular electrograms sensed by
an endocardial lead typically lies between 0.5-7 mV and 3-20 mV respectively.
Slew-rates of the signals range between 0.1 and 4 V/s. For the QRS complex,
spectral power concentrates in the band from 10 to 30 Hz. The T wave is
a slower signal component with a reduced amount of power in a band not
exceeding 10 Hz. Amplification of intrinsic cardiac signals requires circuitry
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that is robust against artifacts generated from non-cardiac electromagnetic
sources located outside or inside the patient. Introduction of electronic article
surveillance systems (EAS) has raised concerns with regard to the possible
interaction between emitting field sources and the sense amplifiers of medical
implantable devices like pacemakers [17], implantable cardioverter defibrilla-
tors and insertable loop recorders [18]. Other sources of electromagnetic infer-
ence (EMI) include cellular phones, airport metal detector gates, high voltage
power lines [19], electro-cautery devices and MRI equipment [20]. Especially
the more sensitive atrial-sensing channel of a brady-arrhythmia device is more
prone to detection of EMI. Any type of EMI having sufficient amplitude could
cause the pacemaker to react in a clinically undesirable way either inhibiting or
triggering stimuli. Fortunately, noise reversion algorithms and circuits mostly
provide reliable discrimination between EMI and intrinsic cardiac activity.

Morphological analysis

In pacemakers, one of the challenges is the reduction of unnecessary therapies
delivered to the patient’s heart when the heart rate dynamics becomes compa-
rable to that of lethal tachyarrhythmias like ventricular tachycardia (VT) or
ventricular fibrillation (VF). This situation includes supraventricular tachycar-
dia (SVT) that may occur as a result of atrial fibrillation. As heart rate does
not discriminate between lethal tachyarrhythmias like VT/VF and SVT or
atrial tachyarrhythmias, the morphology of the QRS complex, or more specif-
ically, the R-wave morphology can be used for a more accurate discrimination
between SVT and VT.

In addition, to ensure efficient use of the memory available in an im-
plantable device, the incidence of false positives, erroneously triggering au-
tomatic storage, should be minimized. For insertable loop recorders (ILRs),
promoting factors include the low amplitude electrogram signal as a result of
the limited vector available for pseudo ECG measurement and the presence
of muscle EMG and mechanical disturbance of the electrode tissue interface.
Therefore, signal analysis methods improving discrimination of signals from
noise are of great importance.

Since the information retrieved by the above front-end circuit is reduced
to a single event, morphological attributes of the electrogram are completely
suppressed. Recent research and clinical studies report details on how morpho-
logical aspects of the electrogram relate to various pathological states of the
heart and on how the wavelet transform can contribute efficiently to analysis.

Analyzing the structure of the electrogram over multiple scales allows dis-
crimination of electrogram features pertaining over all scales from those only
seen at fine or coarse scales. Based on such observation, the presence or ab-
sence of electrogram features related to proximal or distal electrophysiological
phenomena can be discriminated. The wavelet transform, being a multiscale
analysis technique, offers the possibility of selective noise filtering and reliable
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parameter estimation. An algorithm based on wavelet analysis that compares
morphologies of baseline and tachycardia electrograms based on differences
between corresponding coefficients of their wavelet transforms has been found
highly sensitive for VT detection [21]. Whereas smoothing attenuates spec-
tral components in the stop band of the linear filter used, wavelet-denoising
attempts to remove noise and retain whatever signal is present in the electro-
gram.

Off-line ECG analysis, like Holter analysis, employs the discrete wavelet
transform, implemented in the digital domain using multi-rate filter banks
[22]. In these applications, the wavelet transform provides a means to reliably
detect QRS-complexes. However, in patient worn external applications (e.g.
intelligent Holter devices), it is not favourable to implement the WT by means
of digital signal processing due to the high power consumption associated with
A to D conversion and computation.

2.5 Summary and Conclusions

A brief overview of the history and development of circuit designs applied in
pacemakers has been presented. The advances in integrated circuit designs
have resulted in increasingly sophisticated pacing circuitry, providing, for in-
stance, diagnostic analysis, adaptive rate response and programmability. Also,
based on future trends for pacemakers, some features and improvements for
modern cardiac sensing systems have been described.

In the next chapters we will investigate a fully integrated implementation
of the analog WT circuit to be used in pacemakers. But, before that, the
advantages of the wavelet over the Fourier analysis will be the subject of the
following chapter.
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Chapter 3

Wavelet versus Fourier
analysis

“Concentrating on transients is probably a strategy for selecting
important information from the overwhelming amount of

data recorded by our senses.” - Stéphane Mallat

3.1 Introduction

The Fourier transform, named after Jean Baptiste Joseph Fourier, is an inte-
gral transform that re-expresses a function in terms of sinusoidal basis func-
tions, i.e. as a sum, possibly infinite, of sines and cosines functions multiplied
by some amplitude coefficients. The Fourier transform can thus be defined as
frequency-amplitude decomposition [1].

The big disadvantage of a Fourier expansion however is that it has only
frequency resolution and no time resolution. This means that although we
might be able to determine all the frequencies present in a signal, we do not
know when they are present. To overcome this problem in the past decades
several solutions have been developed which are able to represent a signal in
the time and frequency domain at the same time. The wavelet transform or
wavelet analysis is probably the most recent solution to overcome the short-
comings of the Fourier transform. The idea behind these time-frequency joint
representations is to decompose the signal of interest into several parts and
then analyze the parts separately. It will be clear from the next sections that
analyzing a signal in this way will give more information about the ’when’
and ’where’ of different frequency components. In addition, one will see that
in contrast to the Fourier filters, a wavelet filter is not exclusively defined by
its frequency behavior and one of the most important design aspect for an
wavelet filter is the impulse response definition in time-domain.
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3.2 Fourier transform

The behavior of a linear, continuous-time, time-invariant system (LTI) with
input signal x(t) and output signal y(t) is described by the convolution integral
[8]

y(t) =
∫ ∞

−∞
x(τ)h(t− τ)dτ (3.1)

where h(t) is the response of the system to a unit impulse input. Since complex
sinusoidal waves ejωt are eigenvectors of linear time-invariant operators (eigen-
vectors of convolution operators), the Fourier transform is widely used in LTI
signal processing [14]. Another way to think of Fourier analysis is as a math-
ematical technique for transforming the signal from time-based to frequency-
based. This is due to the fact that the Fourier transform of f(t) = ejω0t is a
Dirac function f̂(ω) = 2πδ(ω − ω0).

The Fourier coefficients are obtained by correlating the input signal f(t)
with a sinusoidal wave ejωt given by the equation

f̂(ω) =
∫ ∞

−∞
f(t)e−jωtdt (3.2)

The Fourier integral described in Eq. 3.2 measures the amplitude spectrum
of f(t) at frequency ω. Note that the Fourier basis functions are represented
by periodic infinite duration functions (sinusoidal waves), giving information
only in frequency domain. Hence, when the signal are periodic and sufficiently
regular, the Fourier coefficients converge quickly. For nonperiodic signals, the
Fourier integral gives a continuous spectrum. Hence, the Fourier transform is
not satisfactory for analyzing signals whose spectra vary with time. In Fig. 3.1
one can see the Fourier Transform of a nonstationary signal. From the Fourier
analysis, the signals’ frequency content is easily detected. However the time
information, i.e., when the change of the momentary frequency component
took place, is lost, as can be seen from the inverse Fourier Transform.

To characterize the time information of f(t) (i.e., the discontinuity) it is
necessary to decompose it over waveforms that are also well localized in time.

3.3 Windowing function

To characterize the time information of f(t) (i.e., discontinuities) it is nec-
essary to decompose it over waveforms that are well localized in time. For
instance, one can apply a rectangular (so-called Haar-basis) window function
[1], which is well localized in time, to ”zoom-in” on the singularity of the signal
in the time domain. However, its Fourier transform is defined over the entire
frequency axis (i.e., it has a poor resolution in frequency domain). As an ex-
ample, we apply two signals with different frequency components, as depicted
in Fig. 3.2.a and Fig. 3.2.b, respectively. The smaller the window we choose,



3.4 Wavelet transform 45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.5

0

0.5

1

Time (s)

0 50 100 150 200 250 300
0

100

200

300

Frequency (Hz)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

-1

0

1

2

Time (s)

(a) 

(b) 

(c) 

Figure 3.1: (a) Input signal with two frequency components with different
instant in time (b) Fourier Transform (c)Inverse Fourier Transform

the better we can locate sudden changes, such as peak or discontinuities, but
the ”blinder” we become to the lower frequency components of both signals.
The truncated analyzed signal and its Fourier transform are plotted respec-
tively in Fig. 3.2.c and Fig. 3.2.d. It can be easily seen that the singularity
of the signal is now better localized in time, but it is not well represented in
frequency by its Fourier transform. Note that we cannot discriminate both
input signals from their frequency components anymore.

3.4 Wavelet transform

The Fourier basis provides a very efficient representation of functions that
exhibit long term oscillatory behavior whereas the Haar basis best represents
functions that consist of sharp peaks and discontinuities. Unfortunately, these
two representations are orthogonal to each other, meaning that it is not easy
to extract frequency information from the time representation and vice versa.
To overcome these limitations, we must decompose signals over basis functions
that are well concentrated in time and frequency and the Wavelet Transform
(WT) is well suitable for local time-frequency decomposition. As an example
we can apply the WT to the signal in Fig. 3.1.a. The left side of the Fig.
3.3 shows the wavelet mapping of the input signal in the time domain (using
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Figure 3.2: (a) Input signals with two frequency components with different
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different scaling parameter a), and their Fourier spectra are plotted on the
right. Note that, depending on the value of a, one can zoom into the singularity
or obtain a global view to preserve the frequency information. This is the
zooming ability of wavelets that will be explained below.

For signal processing, the Wavelet Transform (WT) has been shown to be
a very promising mathematical tool [13], [14], [4], particularly for local anal-
ysis of nonstationary and fast transient signals, due to its good estimation
of time and frequency localizations. Fig. 3.4 shows an example of the WT
analysis of an intracardiac signal (IECG). In Fig. 3.4.a, the WT is applied
for QRS-complex detection using a typical IECG signal. As one can see, the
maximum values of the WT correspond to the QRS-complex, and thus, the
time position of the QRS-complex can be easily identified at several scales,
i.e., a varying from 2 to 32. Another important advantage of the WT com-
pared to the Fourier analysis is given by Fig. 3.4.b, where a white Gaussian
noise is added to an IECG. By definition, white Gaussian noise covers the
whole frequency spectrum, so its frequency spectrum overlaps with the car-
diac signal. Therefore, the in-band noise cannot be removed by applying a
Fourier analysis. In addition, due to the large amplitude of the noise, one
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Figure 3.3: Morlet wavelet transform with 7 scales of the signal in Fig.3.1.a.
Time-response is shown in the left side and the corresponding frequency-
response is given in the right side

cannot discriminate the desired signal from the noise in time-domain (ampli-
tude threshold). Nevertheless, for certain scale values, the WT can distinguish
cardiac signal points from noise and the maxima of the QRS-complex can still
be identified for a equals 8, 16 and 32, as seen from the wavelet analysis in
Fig. 3.4.b. This denoising characteristic of the WT is based on correlation
factor, and it will be explained later.

Wavelet literally means small wave. Wavelet analysis is performed using
a prototype function called the wavelet base, which decomposes a signal into
components appearing at different scales (or resolutions). Since the Wavelet
Transform is a linear operation that decomposes a signal into components that
appear at different scales (or resolutions)[14], the WT is a so-called constant-
Q analysis (bandpass filters with constant relative bandwidth). The wavelet
transform of a function f(t) at scale a and position τ is given by

Wf (τ, a) =
1√
a

∫ ∞

−∞
f(t)ψ∗(

t− τ

a
)dt (3.3)
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Figure 3.4: Wavelet analysis of an Intracardiac signal (a) Typical IECG (b)
IECG with additive white Gaussian noise

where ψ(t) is the wavelet base (or mother wavelet) and ∗ denotes the complex
conjugation. The factor 1/

√
a is used for energy normalization. Hence, the

WT is based on the convolution of the signal with a dilated impulse response of
a filter (defined by ψ(t)), mapping the signal onto a two-dimensional function
of time and frequency. The main idea of the WT is to look at a signal at various
windows and analyze it with various resolutions. It provides an alternative to
the classical Short-Time Fourier Transform (STFT) or Gabor Transform [4].
In contrast to the STFT, which uses a single analysis window, the WT uses
short windows (small a) at high frequency analysis and long windows (large
a) at low frequency analysis. The time-frequency plane of a WT is shown in
Fig.3.5.a. As one can see, the time-frequency (or time-scale) representation
has an intrinsic limitation: the product of the resolution in time and frequency
is limited by the uncertainty principle (Heisenberg inequality)[1], [4].

∆t∆ω >
1
2

(3.4)

with

∆t =

√∫
t2|ψ(t)|2dt∫ |ψ(t)|2dt

(3.5)
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∆ω =

√∫
ω2|Ψ(ω)|2dω∫ |Ψ(ω)|2dω

(3.6)

where Ψ(ω) is the Fourier transform of the wavelet base ψ(t) and ∆t and ∆ω
are the time and frequency resolution, respectively. Note that the denominator
of Eq.3.5 and Eq.3.6 represent the energy of the function related to Parseval’s
theorem. The uncertainty principle states that one can only trade time reso-
lution for frequency resolution and vice versa. This means that the resolution
in time and frequency cannot be arbitrarily small, because their product is
lower bounded.
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Figure 3.5: Wavelet transform system, (a) Time-frequency plane, (b) Morlet
WT system with multiple scales

3.4.1 Continuous-time wavelet bases

The wavelet analysis is thus performed using a prototype function called the
wavelet base, ψ(t) (ψ(t) ∈ L2, i.e. finite energy functions). The main charac-
teristic of the wavelet base is given by

∫ ∞

−∞
ψ(t)dt = 0 (3.7)

This means that the wavelet base is oscillatory and has zero mean value.
Also, this function needs to satisfy the admissibility condition so that the
original signal can be reconstructed by the inverse Wavelet Transform

∫ ∞

−∞

|Ψ(ω)|2
|ω| dω = CΨ < ∞ (3.8)

The admissible condition implies that the Fourier transform of the wavelet
must have a zero component at zero frequency. Hence, the wavelets transforms
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are inherently band-pass filters in the Fourier domain, defined as Wavelet
filters. Any function that has finite energy is square integrable and satisfies
the wavelet admissibility condition can be a wavelet [13].

There are several types of well-defined wavelet bases, and, depending on the
application (and the properties of the wavelet function), one may be preferred
over others. Three different types of wavelet bases will be presented here, being
Gaussian wavelets (derivatives of a Gaussian function), Morlet and Daubechies
Wavelets (dbN). A number of other wavelet bases can be found in [13], [14].

Gaussian wavelets (gaus) are symmetric with infinite support. The Gaus-
sian wavelet family is defined from the derivatives of the Gaussian function
[14] and is given by

ψn(t) = Cn · dn

dtn
(e−t2) (3.9)

where n denotes the order, d
dt is the symbolic derivative and C is a normalizing

constant, which depends on n. Gaussian functions are often used as mother
wavelets since they provide the best resolution in time and in frequency (min-
imum time-frequency product, ∆t∆ω). The gaus1 and gaus2 (also known as
Mexican hat) are depicted in Fig.3.6.a and Fig.3.6.b, respectively.

The Morlet wavelet base is obtained from a Gaussian envelope multiplied
by a cosine function [14], and described by

ψ(t) = cos(5
√

2(t− τ))e−(t−τ)2 (3.10)

The Morlet wavelet, shown in Fig.3.6.c, can be defined as the original
wavelet, where J. Morlet (a French geophysical engineer), in 1984, came up
with an alternative for the short-time Fourier transform, windowing a cosine
wave using a smooth window (gaussian window), which is well localized in the
time-frequency domain.

A family of orthogonal wavelets was first constructed by Ingrid Daubechies
in 1992 [13]. Daubechies wavelets are orthogonal functions with compact sup-
port of 2N−1 and N vanishing moments, where N is the order of the wavelet.
The orthogonality of the Daubechies wavelets has a very important mathemat-
ical and engineering consequence: any continuous function may be uniquely
projected onto the wavelet basis functions and expressed as a linear combina-
tion of the basis functions. Daubechies wavelets are nonsymmetric and have
no explicit expression except for N = 1, which is the Haar wavelet (the Haar
wavelet is the simplest orthogonal function). One example of this wavelet
family, Db6, is given in Fig.3.6.d.

Furthermore, in order to avoid redundancy, one can sample the scale pa-
rameter along the dyadic sequence (2j)j∈Z , i.e., a = 2j [14]. Fig.3.5.b shows a
wavelet system with multiple scales in parallel that can be used to compute the
WT in real time. As an example, a Morlet WT system has been represented.
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Figure 3.6: Wavelet bases; (a) First derivative of Gaussian (gaus1) (b) Second
derivative of Gaussian (gaus2) (c) Morlet and (d) Daubechies (db6)

3.4.2 Complex continuous wavelet bases

Complex wavelets provide more detail information in transient signal detection
than real-valued wavelets. Often the wavelet transform of a real signal by
means of a complex wavelet is plotted in modulus-phase form, rather than
using the real and imaginary representation. In the complex wavelet transform
analysis, the modulus maxima and the phase crossings point out the locations
of sharp signal transitions. Nevertheless, the phase information reveals isolated
singularities in a signal more accurately than does the modulus [8]. Also, using
the phase information, different kinds of transition points of the analyzed
signal, i.e. local maxima and inflection points, can be distinguished. For
instance, using the first complex Gaussian wavelet (cgau1), the −π to +π
phase crossings point define the inflection points, whereas ±π to 0 is associated
with the local maxima points (peaks), as one can see in Fig. 3.7.

One example of a complex wavelet function is the Gabor wavelet. The
Gabor wavelet is obtained from a complex Gaussian function (complex expo-
nential windowed by a Gaussian function) as basic functions [14], described
by

ψ(t) = C · e−jωte−t2 = Ccos(ωt)e−t2 − jCsin(ωt)e−t2 (3.11)
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Figure 3.7: Complex wavelet transform using cgau1 (a) Input signal (b)
Wavelet transform coefficients with four dyadic (a = 2i) scales (c) One co-
efficient line (a = 4)

where e−jωte−t2 is the complex Gaussian function and C is a normalizing con-
stant. From the Gabor wavelet one can derive some complex wavelet families,
e.g. the complex Gaussian and the complex Morlet.

The modulus, the real and imaginary parts and the phase of the complex
Gabor wavelet for ω = 2 are given in Fig. 3.8.

(a) (b)

Figure 3.8: Complex Gabor Wavelet (a) Modulus (b) Phase
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3.5 Signal Processing with Wavelet Transform

Over the last decade, wavelets have had a growing impact on signal processing
theory. Wavelets are useful tools for signal processing applications such as
singularity detection, denoising and data compression [8] - [17].

3.5.1 Singularity detection - Wavelet Zoom

Singularities (sharp signal transitions) and irregular structures often carry
essential information in a signal. Singularities and edges are detected by fol-
lowing the wavelet transform local maxima at fine scales.

Modulus maxima

We use the term modulus maxima to describe any point (to, ao) such that
|Wf (t, a)| is locally maximum at t = to. This implies that

∂Wf (to, ao)
∂t

= 0 (3.12)

t and a represent the time and scale parameters of the WT, respectively. A
definition of a modulus maximum of the wavelet transform is given as follows
[14]:

“Any point (to, ao) such that |Wf (t, ao)| < |Wf (to, ao)| when t belongs to
either a right or a left neighborhood of to, and |Wf (t, ao)| ≤ |Wf (to, ao)| when
t belongs to the other side of the neighborhood of to.”

This local maximum should be a strict local maximum in either the right or
the left neighborhood of to, to avoid having any local maxima when |Wf(t, ao)|
is constant. We call a “maxima line” any connected curve a(t) in the scale-
space plane (t, a) along which all points are modulus maxima.

The singularities of a nonstationary signal are detected by finding the ab-
scissa where the wavelet modulus maxima converge at fine scales. However,
in signal processing, fractal dimensions (e.g., in the form of a Lipschitz com-
ponent) are increasingly important, especially in the context of singularity
processing. Signal characterizations, classifications, and recognition can ben-
efit from information provided by the Lipschitz exponent.

Lipschitz exponent - Regularity

To characterize singular structures, it is necessary to precisely quantify the
local regularity of a signal f(t). Lipschitz (also known as Holder) exponents
provide uniform regularity measurements over time intervals, but also at any
point ν. If f(t) has a singularity at ν, which means that it is not differentiable
at ν, then the Lipschitz exponent at ν characterizes this singular behavior.
The wavelet theory proves that these Lipschitz exponents can be computed
from the evolution across scales of the wavelet transform modulus maxima.
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A function f is uniformly Lipschitz α over [a, b] if for all ν ∈ [a, b]

eν(t) = |f(t)− pν(t)| ≤ K|t− ν|α (3.13)

where pν(t) is the Taylor polynomial, eν(t) is the approximation error and
K is a positive constant, which is independent of ν. Suppose f is “m” times
differentiable, the Taylor polynomial is given by

pν(t) =
m−1∑

k=0

f (k)(ν)
k!

(t− ν)k (3.14)

This means that the mth order differentiability of f(t) in the neighborhood
of ν yields an upper bound on the error eν(t) when t tends to ν. The Lipschitz
regularity refines this upper bound with non-integer exponents.

As an example, consider a signal

f(t) = 1− |1− t|α (3.15)

shown in Fig.3.9. In the intervals, 0 ≤ t < 1 and 1 < t ≤ 2, the signal is regular
with Lipschitz exponent α. However the regularity ends at t = 1, hence f(1)
is singular with the following behavior: on the left side the singular point has
a Lipschitz α (increasing from the left to the right) while on the right side it
has a Lipschitz α (decaying from the left to the right). The exponent is also
called singularity strength.
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Figure 3.9: Lipschitz exponent from 0.2 to 2 for f(t) = 1− |0.5− t|α

It is important to observe that knowing the singularity behavior at f(0.5)
is sufficient to describe f(t). Hence, singularities (i.e., α of both sides and
their corresponding increasing/decaying trends) contain signal information
compactly.

The Fourier transform is a powerful tool for measuring the minimum global
regularity of functions. However, it is not possible to analyze the regularity
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of f at a particular point ν from the decay of |F (ω)| at high frequencies . In
contrast, since wavelets are well localized in time, the wavelet transform gives
Lipschitz regularity over intervals and at points.

Wavelet Vanishing moments

To measure the local regularity of a signal, it is not important to use a wavelet
with narrow frequency support, but vanishing moments are crucial. The van-
ishing moment can be defined by

∫ +∞

−∞
tkψ(t)dt = 0 (3.16)

for 0 ≤ k < n. If the wavelet has n vanishing moments, then the WT can be
interpreted as a multiscale differential operator of order n.

Applying the WT to a signal defined by f(t) = pν(t) + eν(t), we obtain

Wf(t) = Wpν(t) + Weν(t) = Weν(t) (3.17)

This result shows that a wavelet estimates the exponent α by ignoring the
polynomial pν (a phenomenon known as polynomial suppression). For this
purpose, to calculate the Lipschitz α from a signal, one has to use a wavelet
base that presents n > α vanishing moments. For instance, the first derivative
of a gaussian presents one vanishing moment, where the modulus maxima
are used to locate discontinuities - A function with α = 0 is bounded but
discontinuous at ν - and points where the function is not differentiable (α < 1).
For the second derivative of a gaussian, the modulus maxima correspond to
high curvatures.

Regularity Measurements with Wavelets

The decay of the modulus maxima amplitude of the WT across scales is related
to the Lipschitz regularity (uniform and pointwise) of the signal. Measuring
this asymptotic decay is equivalent to zooming into signal structures with a
scale that goes to zero.

The decay of |Wf(t, a)| in the neighborhood of ν is controlled by the decay
of the modulus maxima included in the cone of influence |t − ν| ≤ Ca. f is
uniformly Lipschitz α in the neighborhood of ν if and only if there exits A > 0
such that each modulus maximum in the cone satisfies

|Wf(t, a)| ≤ Aaα+ 1
2 (3.18)

which is equivalent to

log2|Wf(t, a)| ≤ log2A + (α +
1
2
)log2a (3.19)
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Eq.3.18 shows that |Wf(t, a)| decays like aα+ 1
2 over intervals where f is

uniformly Lipschitz α. Mallat and Hwang [7] have proven that the local max-
ima of the wavelet transform modulus provide enough information for analyz-
ing such singularities and proved that modulus maxima detect all singularities.
The Lipschitz regularity at ν is thus the maximum slope of log2|Wf(t, a)| as
a function of log2a along the maxima lines converging to ν. Fig. 3.10 shows
an example of Lipschitz exponent extraction by means of the wavelet modulus
maxima across scales. The applied wavelet base is the first derivative of a
Gaussian and the input signal has two singular structures, α = 2 and α = 0.5.
Note that for the case of α = 2, the Lipschitz exponent is larger than the
vanishing moment of the wavelet and the modulus maxima can detect the po-
sition of the inflection points, but can not characterize the singularity type. In
the other hand, for α = 0.5, the modulus maxima point exactly the position
ν and characterize the shape of the singularity by log2|Wf(t, a)| = 0.5.

Figure 3.10: Extraction of the Lipschitz exponent equals 0.5 by means of the
modulus maxima line using a gaus1 wavelet base
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3.5.2 Denoising

Detection and classification of signals in the presence of noise and interference
is a critical issue in many areas of signal and image processing and analysis.
Wavelet transform has been generally applied to signal denoising due to its
ability to detect transient features in signals. In essence, the WT performs a
correlation analysis, so that we can expect its output to be maximum when
the input signal most resembles the analysis template ψ(t), and much smaller
coefficients when there is mostly noise. This principle is the basis for the
matched filter, which is the optimum detector of a deterministic signal in
the presence of additive white Gaussian noise. However, the advantage of
the WT compared with matched filter is that WT use several scales, and
thus, decomposing the signal into several resolutions. Denoising techniques
are based on the idea that the amplitude (correlation factor) rather than the
location of the spectrum of the signal is different from the noise.

The denoising can be done by simply thresholding the WT coefficients
based on the so-called wavelet shrinkage (nonlinear hard or soft thresholding)
technique. By selecting an appropriate threshold and applying the inverse
Wavelet transformation (WT−1), an asymptotically optimal denoising perfor-
mance can be achieved.

3.5.3 Compression

Wavelet compression is a form of data compression well suited for image com-
pression (sometimes also video compression and audio compression). Com-
pression is possible because most real-world data are very statistically redun-
dant and, by this, the information can be encoded (or transformed) using
much less data bits than a one-by-one linear representation would use. Com-
pression is usually achieved by setting small wavelet coefficients to zero, and
this leaving out important components from the original function. A certain
loss of quality is accepted (lossy compression). Using a wavelet transform, the
wavelet compression methods are better at representing transients, such as
percussion sounds in audio, or high-frequency components in two-dimensional
images, for example an image of stars on a night sky. This means that the
transient elements of a data signal can be represented by a smaller amount of
information than would be the case if some other transform, such as the more
widespread discrete cosine transform, had been used.

3.6 Low-power analog wavelet filter design

By definition, an electrical filter is a system that can be used to modify, re-
shape, or manipulate the frequency spectrum of an electrical signal according
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to some prescribed requirements [8]. One can represent the filter by an oper-
ator L, resulting in

L[f(t)] = h(t)⊗ f(t) =
1
2π

∫ ∞

−∞
f̂(ω)ĥ(ω)ejωtdω (3.20)

Thus, the operator L amplifies or attenuates the frequency components of
f by ĥ(ω). Some well-known types of electrical filters can be found in liter-
ature where the corresponding frequency property (L) is completely defined,
e.g., Butterworth, Chebyshev and Elliptic filters. Those filters can be classi-
fied as Fourier filters. However, a wavelet filter is not exclusively defined by
its frequency behavior and another main design aspect for an wavelet filter is
the impulse response definition. In contrast to the Fourier filters, the signal is
decomposed into waves of finite length in the wavelet filter. For this reason,
wavelets allow different parts of the signal frequency spectrum to be filtered
individually, whereas Fourier filtering affects all data points in the same man-
ner.

Basically, the design of a low-power analog wavelet filter can be summa-
rized by the steps shown in the block diagram of Fig.3.11, which will be in-
vestigated in the next chapters.
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Figure 3.11: Block diagram of an analog filter design

The starting point of an analog filter design is the definition of the respec-
tive transfer function (or differential equation). However, a linear differential
equation having a predefined desired impulse response does not always exist.
Hence, one is obliged to use a suitable approximation method, the topic of
Chapter 4. There are several mathematical techniques that are frequently
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used to achieve the best approximation possible. Nonetheless, one of the most
important aspects of an analog filter synthesis is that the approximating func-
tion must lead to a physically realizable network which is dynamically stable.

Next, as there are many possible state-space descriptions for a circuit that
implements a certain transfer function, the designer has to find a circuit that
fits his specific requirements. For low-power low-voltage applications, we op-
timize the state-space description of the filter for dynamic range, sensitivity
and sparsity requirements (Chapter 5). We will focus on a synthesis technique
that is exclusively based on integrators. Note that two general types of analog
filters can be identified, namely, continuous-time and discrete-time filters. To
implement a discrete-time filter, one must obtain an transfer function in the
z-domain whereas a continuous-time filter is described mathematically by a
rational function in the Laplace domain.

The last step will be the integrator design, which will be the main building
blocks of the wavelet filter (Chapter 6). For continuous-time filters, there are
basically two possible integrator implementations, based on either linear or
nonlinear (e.g., log-domain) mapping. One important design aspect of the
integrator that will be considered here is its ability to handle a large dynamic
range in a low-voltage environment. Moreover, since in conventional ultra low-
power designs resistors would become too large for on-chip integration, their
superfluity is a very important advantage.

3.7 Conclusions

In this chapter, a comparison between frequency analysis, by means of the
Fourier transform, and time-frequency representation, by means of wavelet
transform, was presented. From a nonstationary example signal, the good
time and frequency characteristics extraction of the wavelet was pointed out.
In addition, the properties of wavelet bases functions and WT signal processing
applications were described.

In the next chapter, we will describe a methodology to obtain the approxi-
mated transfer function that relates to the impulse response of the correspon-
dent analog wavelet filter.
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Chapter 4

Analog Wavelet filters: the
need for approximation

“Mathematics compares the most diverse phenomena and

discovers the secret analogies that unite them.” - Joseph Fourier

4.1 Introduction

The purpose of this chapter is to construct a set of wavelet filters which will
perform (a part of) the wavelet transform on an ECG input signal. Each
wavelet filter computes one scale, hence all filters are a scaled versions of one
basis filter.

As mentioned before, approximation methods should be applied to obtain
the required transfer function of a wavelet impulse response. In many respects,
a time-domain approximation problem invokes the general theory of mathe-
matical approximation. Several mathematical techniques are frequently used
to achieve the best approximation possible [1], which will be presented in the
sections that follow.

In addition, any approximation method should be associated with some
measure of error. Therefore we employ an error criterion based on the Mean
Square Error (MSE) [9] which is defined as

MSE =
1

b− a

∫ b

a
|h(t)− h′(t)|2dt (4.1)

where h(t) and h′(t) are the desired impulse response and the approximated
impulse response, respectively.

To obtain an approximated transfer function of a certain wavelet filter, in
this chapter three main approaches will be presented. They are the CFOS-
based, Padé and L2 wavelet bases approximations. Besides, to benchmark
these approaches, few other time-domain approximation methods will also be
described in this chapter.
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4.2 Complex First Order filters

In this section, an analog wavelet filter design based on Complex First Order
Systems (CFOS) [8], [3] will be presented. The CFOS-based approach will be
mainly used to approximate Gaussian window functions, such as Gaussian,
Gabor and Morlet wavelet bases and it will be shown later that in order to
have an increasingly better approximation to the Gaussian function, we need to
connect the CFOS stages in cascade. Thus, the starting point of the CFOS-
based wavelet filter design is the definition of the number of stages which
defines the appropriate Gaussian envelope to set the width of the wavelet.
Before this, we will first present the properties of a Complex First Order
System.

A complex filter has a transfer function with complex-valued coefficients,
which is not limited to complex-conjugate pairs of poles or zeros. A single-pole
complex filter with a real-axis coordinate σ and an imaginary-axis coordinate
ω has the transfer function given by

H(s) =
Vout(s)
Vin(s)

=
1

s + (σ − jω)
=

s + σ + jω

(s + σ)2 + ω2
(4.2)

Applying complex feedback to an integrator stage, it is possible to design
an efficient complex pole realization, as one can see in Fig. 4.1

H(s) =
1
s

1− 1
s (−σ + jω)

(4.3)

U(s)

S

1
+

X(s)

ωσ j+−

Figure 4.1: Complex feedback diagram

In Fig. 4.2 one sees the effects of this complex feedback on the pole position
of the integrator in the S-plane.

A complex lossy integrator can be realized by means of two cross-coupled
real integrators. This representation, denominated Complex First Order Sys-
tem (CFOS), is given in Fig. 4.3.

A CFOS is defined by the following set of equations [3]

ẋ(t) = (σ − jω)x(t) + (cre + jcimag)u(t) (4.4)

x(t) = xre(t) + jximag(t) (4.5)
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Figure 4.3: Complex First Order System block diagram

where u is an input signal assumed to be real, x is a state variable assumed
to be complex, σ, ω, cre and cimag are system parameters assumed also to be
real. After substitution of Eq.4.5 into Eq.4.4, the real and imaginary part of
x, xre and ximag, can be described by

ẋre = σxre − ωxim + creu (4.6)

ẋimag = σximag + ωxre + cimagu (4.7)

From Eq.4.4, we can represent the envelope of the impulse response of the
first order real input circuit by the following equation

h(t) = (cre + jcimag)eσtU−1(t) (4.8)

where U−1(t) denotes unit step function. Subsequently, we can connect CFOS’s
in cascade as shown in Fig. 4.4 in order to make a sufficient approximation to
a Gaussian function.
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CFOS

Real input Real outputpartReal

partImaginary

CFOS CFOS

Imaginary output

Figure 4.4: Cascade connection of CFOS

The envelope of the impulse response of these (n + 1) CFOS stages con-
nected in cascade, with all poles at the same location, is given by

h(t) = (cre + jcimag)n+1 tn

n!
eσtU−1(t) (4.9)

Eq.4.9 can also be defined as a Poisson function. In the theory of statistics,
it is well-known that when n →∞, the Poisson function approaches a Gaussian
function. Therefore, by increasing the number of stages, we can achieve an
increasingly better approximation to the Gaussian function.

As one can see in Fig.4.5 (time-domain) and in Fig. 4.6 (frequency-
domain), an improvement in the approximation to a Gaussian is obtained
for a larger number of stages [4].
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Figure 4.5: Impulse response when increasing the number of stages

This improvement is also verified in Tab.4.1, where the time resolution
(∆t), the frequency resolution (∆ω) and their product (∆t∆ω) have been
given for a cascade of n stages.

Subsequently, once the Gaussian envelope has been defined, the real and
the imaginary impulse responses are obtained. Applying Eq. 4.4 and Eq. 4.5,
the complex impulse response of n + 1 CFOS stages is given by

h(t) = (cre + jcimag)n+1 tn

n!
e(σ+jω)tU−1(t) (4.10)
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Figure 4.6: Frequency response when increasing the number of stages

n ∆t ∆ω ∆t∆ω

1 0.7068 1.3732 0.9705
2 0.6124 1.1544 0.7069
3 0.5773 1.0954 0.6323
5 0.5477 1.0541 0.5773
11 0.5222 1.0235 0.5344
50 0.5050 1.005 0.5075

Gaussian 0.5 1 0.5

Table 4.1: Number of stages versus time-bandwidth product

From Eq.4.10 one easily calculates the general transfer function of the
n + 1 CFOS system for the real and the imaginary outputs, which are given
as follows

Hre(n) =
(s + σ) ·Hre(n− 1)− ω ·Himag(n− 1)

(s + σ)2 + ω2
(4.11)

Himag(n) =
(s + σ) ·Himag(n− 1) + ω ·Hre(n− 1)

(s + σ)2 + ω2
(4.12)

with

Hre(1) =
(s + σ)

(s + σ)2 + ω2
(4.13)

Himag(1) =
ω

(s + σ)2 + ω2
(4.14)

which correspond to the transfer function of the first order complex filter in
Eq.4.2.

Choosing the right values for σ and ω, we can obtain the first and the
second derivatives of Gaussian for the imaginary and the real part, respectively,
as one can see in Fig.4.7 for different number of stages.
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Figure 4.7: Complex Gaussian wavelet approximation using CFOS’s (a) Imag-
inary output (First derivative of Gaussian) (b) Real output (Second derivative
of Gaussian)

Finally, the Complex Morlet Wavelet can also be approximated in a similar
manner. Again, we need to choose the right value for ω in order to have the
appropriate frequency component for the Morlet wavelet. In Fig.4.8 one see
the impulse response of a tenth order filter.
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Figure 4.8: Complex Morlet wavelet approximation using CFOS’s (a) Real
output (b) Imaginary output

4.3 Padé Approximation in the Laplace domain

A method which proves to be more successful than the method presented
in the previous section is provided by Padé approximation of the Laplace
transform of the impulse response h(t) of the filter. Padé approximation is
an approximation that concentrates around one point of the function that
needs to be approximated. In the Padé approximation, the coefficients of the
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approximating rational expression are computed from the Taylor coefficients
of the original function [5], [6]. If the approximation rational function has a
numerator of order m and a denominator of order n, the original function can
be approximated up to order m + n.

The reason to apply the Padé approximation to the Laplace transform of
h(t) is that it immediately yields a rational expression that is suitable for im-
plementation. Actually, a Padé approximation of H(s) represents the transfer
function of a possible filter. If we would apply the Padé approximation to h(t)
in the time domain, we would have to transform this function to the Laplace
domain, which would possibly yield difficult non-polynomial expressions or
even a non-causal or unstable filter. Now we derive the Padé approximation
of a general function F (s). Suppose we have the truncated the Taylor series
expansion of F (s) around some point, e.g. s = 0

F (s) = c0 + c1s + . . . + cks
k + O(sk+1) (4.15)

The constant c0 to ck are called the Taylor coefficients of F (s). Unfor-
tunately, F (s) is not a suitable expression to build a filter, since it has only
zeros. Henceforth, to resolve this, a Padé approximation of function F (s) is
applied and is given by [11]

F̂ (s) =
P (s)
Q(s)

=
p0 + p1s + . . . + pmsm

q0 + q1s + . . . + qnsn
(4.16)

where F̂ (s) is the truncated Taylor series given by (4.15), with k = m + n.
The coefficients of P (s) can be computed as follows. When a product of
two polynomials is taken, the coefficients of the product polynomial can be
computed by taking the convolution of the coefficients of both factors. Thus,
the coefficients of P (s) can be computed from the convolution of the Taylor
coefficients of F̂ (s) with the finite number of coefficients of Q(s). We can write
this convolution in a matrix-vector form [5], [16]

[F̂ ] · [Q] = [P ] →




c0 0 . . . 0

c1 c0
...

... c1
. . . 0

...
...

. . . c0
...

... c1
...

...
...

ck ck−1 . . . ck−n




·




q0

q1
...

qn


 =




p0

p1
...
...
...
...

pk




(4.17)

As the entries of [F̂ ] are given by the Taylor coefficients of F (s), the entries
of [P ] depend only on the choice of [Q]. In other words, the choice of [Q] is
determined by the restrictions on [P ]. Note that the desirable value of [P ] is
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defined by two constraints: k should be as large as possible, since this gives the
most accurate approximation; P (s) should have the desired order m (m ≤ n)
for a causal filter.

From these constraints it can be concluded that the coefficients pm+1 to
pk should be zero. Let [F̂ ]m+1,k denote the submatrix of [F̂ ], containing rows
m + 1 to k of [F̂ ]. Then [Q] can be expressed as




pm+1
...

pk


 = [F̂ ]m+1,k · [Q] = 0 (4.18)

which yields

q
¯
∈ Nullspace




cm+1 . . . c0 0
cm+2 c1 c0

...
...

cm+n . . . cm


 (4.19)

with qn = 1 for normalization. Finally, the coefficients of [P ] are defined by




p0

p1
...

pm


 =




c0 0 . . . 0

c1 c0
...

... c1
. . . 0

...
...

. . . c0
...

... c1
...

...
...

cm cm−1 . . . cm−n




·




q0

q1
...

qn


 (4.20)

with ck = 0 for k < 0. If the approximating rational function has a numerator
of order m and a denominator of order n, the original function can be approx-
imated up to order m + n. For instance, one can apply the Padé function to
approximate the first or the second derivative of Gaussian as seen in Fig.4.9.
We apply a [6/10] Padé approximation, i.e. m = 6 and n = 10, which yields
an approximation of order k = 16 of the Taylor series expansion, resulting in
an MSE of 0.19 · 10−4 and 0.548 · 10−3 for the first and the second derivative,
respectively. In Table 4.2 one can see the Taylor and Padé coefficients of both
functions.

In order to compare the Padé approximation with the approximation using
CFOS one can verify the associated Mean-Square Error for both approxima-
tion. The results obtained varying the order of the filter are illustrated in
Table.4.3, where the first and the second derivatives of a Gaussian function
(Gaussian wavelet bases) have been approximated, respectively.

As seen from the Mean-Square Error comparison for n > 5, the Padé
method yields a much better approximation than the method using CFOS for
a filter of the same order.
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Figure 4.9: Impulse response approximation using Padé [6/10] (a) First deriva-
tive of Gaussian (b) Second derivative of Gaussian

Table 4.2: Taylor and Padé coefficients of the first and the second derivative
of Gaussian

1st diff. Gaussian 2nd diff. Gaussian

Expression (time) ψ(t) = −2(t− 3)e−(t−3)2 ψ(t) = (−2 + 4(t− 3)2)e−(t−3)2

Taylor expansion F̂ (s)=0+1.77s−5.31s2+8.41s3−9.3s4+ F̂ (s)=0s+1.77s2−5.31s3+8.41s4−9.3s5−
(Laplace domain) +8.03s5−5.74s6+3.54s7−1.92s8+ −9.3s5+8.03s6−5.74s7+3.54s8−

k = 16 +0.94s9−0.42s10+0.17s11−0.066s12+ −1.92s9+0.94s10−0.42s11+0.17s12−
+0.023s13−0.008s14+0.002s15−0.007s16 −0.066s13+0.023s14−0.008s15+0.002s16

[Q] coefficients
n = 10

q0 = 38.6 · 103

q1 = 103.6 · 103

q2 = 130.5 · 103

q3 = 102.2 · 103

q4 = 55.3 · 103

q5 = 21.7 · 103

q6 = 6.3 · 103

q7 = 1.35 · 103

q8 = 205.6
q9 = 20.27
q10 = 1

q0 = 37.8 · 103

q1 = 100.7 · 103

q2 = 126.4 · 103

q3 = 98.6 · 103

q4 = 53.3 · 103

q5 = 20.9 · 103

q6 = 6.1 · 103

q7 = 1.30 · 103

q8 = 199.7
q9 = 19.91
q10 = 1

[P] coefficients
n = 6

p0 = −4.77

p1 = 68.5 · 103

p2 = −22 · 103

p3 = 6.1 · 103

p4 = −576.95
p5 = 44.67
p6 = 5.81

p0 = −4.67
p1 = −13.21

p2 = 11.1 · 103

p3 = −3.7 · 103

p4 = 1.08 · 103

p5 = −131.28
p6 = 13.54

order CFOS Padé

n First diff. Second diff. First diff. Second diff.

3 0.0444 0.0513 0.0899 0.0927

4 0.0382 0.0380 0.0817 0.0468

5 0.0339 0.0302 0.0454 0.0185

6 0.0308 0.0251 0.0178 6.05e-3

7 0.0284 0.0216 7.75e-3 1.01e-3

8 0.0265 0.0190 2.30e-3 0.040e-3

9 0.0250 0.0170 0.74e-3 0.033e-3

10 0.0238 0.0154 0.13e-3 0.020e-3

Table 4.3: Order of the filter versus mean-square error for CFOS and Padé
approximation

One of the main advantages of Padé approximation is that the linear system
of equations yield a unique solution, which is generically easy to compute.
Moreover, a good match is guaranteed between the given function Ψ(s) and its
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approximation H(s) in a neighborhood of the selected point s0. However, the
selection of the expansion point s0 is a trade-off between stability and a good fit
around zero in the time domain. Indeed, in order to obtain a good fit near t = 0
by choosing s0 = ∞, it may easily happen that the resulting approximation
becomes unstable [10]. In this respect, the Padé approximation described in
this section was obtained with the choice s0 = 0, which corresponds to a good
fit in the time domain for large values of t [6].

Furthermore, the selection of the orders m and n is not a straightforward
task. An unlucky choice may yield an inconsistent system or an unstable
approximation. Nevertheless, this is not an important issue, because one can
easily solve this problem [10] by changing the value of m, for a certain nth
order approximation.

In addition, the Padé approximation presents some problems of conver-
gence when we try to approximate a function which has many oscillations, for
instance, the Morlet wavelet. Due this reason we introduced the procedure
described in the next section in order to obtain a stable transfer function for
this kind of wavelet bases. By this, we obtain a more general procedure, which
is suitable for implementation as an analog filter, to obtain various types of
wavelet bases.

Oscillated wavelet bases approximation

The proposed procedure that generates a transfer function of a wavelet base
can be seen in the flow chart in Fig.4.10 [16]. The procedure is based on the
Padé approximation described in the previous section. The starting point is
the definition of an expression in the time domain which represents the wavelet
under investigation. If the wavelet base does not have an explicit expression
(e.g., Daubechies wavelets), then the splines interpolation method [9] is used.
Subsequently, one determines the appropriate envelope to set the width of the
wavelet. Once again, if the envelope does not have an explicit expression, the
splines interpolation is applied. The Gaussian pulse has been chosen as the en-
velope, which is perfectly local in both the time and frequency domain. Once
the envelope has been defined, the Padé approximation is executed to find a
stable and rational transfer function which is suitable for implementation as
an analog filter. As the main advantage of the Padé method is its computa-
tional simplicity and its general applicability [5], it can easily be applied to
other envelopes as well. The Padé approximation is preceded by a two-step
procedure. First, a Laplace transform is executed, and then a Taylor expan-
sion is performed on the expression of the envelope in the Laplace domain.
Finally, the wavelet is decomposed into a Fourier series to find the dominant
term (the term with the largest coefficient) such that when multiplied with
the envelope in the time domain, it results in the approximated wavelet base.
The results obtained from the use of this method are illustrated in Fig. 4.11,
where the Morlet and the Daubechies (db6) wavelet bases have been approxi-
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Figure 4.10: Flowchart of the wavelet filters approach

mated, respectively. Other wavelet bases can also be approximated in a similar
manner.

As an example we consider a Morlet wavelet filter. The related expression
of the Morlet wavelet base approach, the Padé expression of the envelope
function and, the transfer function of the Morlet wavelet filter are given in
Table 4.4. L and L−1 represent the Laplace transform and the inverse Laplace
transform, respectively.

4.4 L2 Approximation

Another alternative to find a suitable wavelet base approximation can be pro-
vided by the theory of L2 approximation. Approximation techniques are usu-
ally based on certain assumed criteria of measuring the error and then the
error is minimized. One of the most frequently used criteria is the least-mean-
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Figure 4.11: Ideal impulse (solid line) and the approximated (dashed line)
response of example Wavelets filters, (a) Gaussian envelope, (b) Morlet and
(c) db6 wavelet base. The mean-square errors between the ideal and the
approximated impulse responses are equal 0.00123, 0.0108 and 0.0598 for the
Gaussian, the Morlet and the Daubechies wavelets, respectively

square-error approximation [14]. The L2 approximation technique is based on
minimizing the least-mean-square-error.

The advantage of the L2 method compared to the Padé approximation is
that the L2 approximation offers a more global approximation, i.e., not con-
centrating on one particular point [10]; Padé is usually computed at the origin.
Also, the fit is performed directly in the time domain yielding good control
and easy interpretation of the optimization criteria. In addition, according to
Parseval’s identity [9]

∫ ∞

0
[ψ(t)− h(t)]2dt =

1
2π

∫ ∞

−∞
|Ψ(jω)−H(jω)|2dω, (4.21)

the L2 criterion can be equivalently be used in the frequency domain too. In
this scheme the error integral, which is the difference between ψ(t) and its
approximation h(t), is defined by

εL2 =
∫ ∞

0
[ψ(t)− h(t)]2dt (4.22)
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Table 4.4: Morlet wavelet base approach parameters
Morlet wavelet base

Expression (time) ψ(t) = cos(5
√

2t)e−(t−3)2

Envelope Gaussian ⇒ e−(t−3)2

Fourier Series (Dominant term) cos(5
√

2t)

Padé [3/5](Gaussian) Hgaussian(s) = −1.31s3+8.82s2−25.11s+31.74
s5+6.66s4+21.14s3+38.59s2+39.56s+17.91

Morlet transfer function H(s) = L{L−1{Hgaussian(s)} × cos(5
√

2t)}
H(s)= 0.9s8−13s7+177s6−618s5+345s4+7·104s3−4·105s2+2·106s−3·106

s10+13s9+336s8+3·103s7+4·104s6+2·105s5+2·106s4+8·106s3+4·107s2+9·107s+3·108

This means that the L2 criterion value corresponds to the energy of the
difference between the wavelet and its approximation and, by this, we have
an interpretation of the optimization in the time domain as well as in the
frequency domain.

In this L2 approach [10], [11], [12], we first express the impulse response
(in the time domain) of a general filter. After that, the error εL2 is minimized
with respect to the poles and zeros of the filter. For the generic situation of
stable systems with distinct poles [1], h(t) may typically have the following
form

h(t) =
n∑

i=1

Aie
Pit

=
k∑

i=1

cie
pit + ck+1e

pk+1tsin(pk+2t) + ck+2e
pk+1tcos(pk+2t)

+ · · ·+ cn−1e
pn−1tsin(pnt) + cnepn−1tcos(pnt) (4.23)

where Ai and Pi can be real or complex numbers; ci and pi are real numbers,
representing the impulse response function h(t) as a linear combination of
damped exponentials and exponentially damped harmonics. k corresponds to
the number of real poles and n is the order of the filter.

Given the explicit form of a wavelet base ψ(t) and the approximated im-
pulse response h(t), the L2-norm of the difference ψ(t) − h(t) can now be
minimized in a straightforward way using standard numerical optimization
techniques and software. The most direct way to find the minimum of Eq.4.22
is by computation of all partial derivatives of εL2 with respect to Ai and Pi

and setting them equal to zero, namely

∂εL2

∂Ai
,
∂εL2

∂Pi
= 0 for i = 1 . . . n (4.24)

Note that, due to the fact that Ai and Pi can be complex numbers, we have
to perform the differentiation with respect to the real parts and the imaginary
parts of Ai and Pi separately.

One important aspect of the L2 approximation is that the zero-mean con-
straint of the wavelet bases is imposed in the computation of the error in Eq.
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4.22. Thus, the resulting transfer function is such that the numerator of the
transfer function does not have a constant term. In other words, the transfer
function becomes zero for s=0, which implies that the integral of the wavelet
approximation is zero [10].

One example of wavelet base approximation using L2 approach is given in
Fig.4.12, where the Morlet wavelet base has been approximated using a 7th
order transfer function.
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Figure 4.12: Morlet wavelet base approximation using L2 approach

Again, to compare the L2 approximation with Padé and CFOS approaches,
one can check the associated Mean-Square Error for approximations, shown in
Fig.4.13. The MSE has been calculated for two different wavelet bases, being
the first derivative of Gaussian and the Morlet, using several filter orders. As
seen from the plots, the Padé and the L2 approximations present a much better
approximation than the CFOS, especially for high-order systems, whereas for
low-order systems L2 presents the best performance.

As mentioned before, the L2 approach has the advantage that it allows for
a description in the time domain as well as in the Laplace domain, so that
both frameworks can be exploited to develop further insight. Specific points
can be defined in the Laplace domain at which the approximation is required
to be good, whereas in the Padé approach, the approximation is done at one
specific point (usually at the origin).

One of the disadvantages of an L2-approximation approach is that there is
a risk that the numerical optimization ends in a local, non-global optimum. In
general, L2 provides no global optimality guarantee. Different starting points
can give different local optima and thus can be used to find better solutions
[11]. Another drawback is that it is computationally more demanding than
the Padé approach.
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Figure 4.13: Order of the filter versus mean-square error for L2, Padé and
CFOS approximations (a) First derivative of Gaussian and (b) Morlet wavelet
bases

4.5 Other approaches for Wavelet bases approxima-
tion

4.5.1 Bessel-Thomson filters - a quasi-Gaussian impulse re-
sponse

The pure, theoretical, Gaussian filter is not actually physically realizable.
However, there are some well-known monotonic quasi-Gaussian filters, such
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as Bessel-Thomson filters, which try to approximate the ideal Gaussian in
both the time domain and the frequency domain [1].

The Bessel filter is sometimes called the maximally-flat delay filter. The
Bessel transfer function (also known as the Thompson function) has been
optimized to obtain a linear phase, which implies a maximally flat (group)
delay in the passband.

The transfer function for an ideal time delay is given by

T (s) = e−s =
1
es

=
1

sinh(s) + cosh(s)
(4.25)

Using the hyperbolic function identity

coth(s) =
cosh(s)
sinh(s)

(4.26)

and the truncated fraction expansion of the coth(s) function

coth(s) =
1
s

+
1

3
s + 1

5
s
+ 1

7
s +...

(4.27)

the result is a quotient of polynomials where the numerator is identified with
cosh(s) and the denominator with sinh(s). The sum of the numerator and
denominator polynomials is thus the approximation to es. Note that adding
the numerator and denominator truncated after n terms we obtain the Bessel
polynomials [1]. The general Bessel polynomial becomes

Bn = (2n− 1)Bn−1 + s2Bn−2 (4.28)

where B0 = 1 and B1 = s + 1.
Thus, the nth Bessel filter transfer function is given by

Hn(s) =
B0

Bn
=

1
(2n− 1)Bn−1 + s2Bn−2

(4.29)

One can notice that the above transfer function represents an all-pole filter
topology. The Bessel poles lie on a unit circle where the vertical spacing
between the poles is equal.

Finally, the impulse response, shown in Fig.4.14, of Bessel-Thomson filters
tends towards a Gaussian as the filter order is increased.

4.5.2 Filanovsky’s filter approach [15]

Filanovsky’s method describes synthesis of pulse-forming networks with quasi-
Gaussian impulse responses using passive networks. It is well known that the
sin2(πt/τ) function over one semi-period is a sufficiently good approximation
to the Gaussian response. In this approach, the transfer function is obtained
using the first semi-period of the 2

τ sin2 π
τ (t− π

2 + τ
2 ) function, with τ ≤ π, as
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Figure 4.14: Approximated Gaussian function using Bessel filter

an initial approximation to the network impulse response. The corresponding
Laplace-domain function is given by

F (s) =
8(π/τ)2 sinh(τs/2)
τs[s2 + (2π/τ)2]

e−
π
2
s ≈ e−

π
2
s (4.30)

where the function sinh has been represented by the first two terms of the
infinite product, sinh(x) =

∏∞
i=1(1 + x2

i2π2 ). One can note that the above
function is a non-realizable transfer function. In [15] a realizable transfer
function F̃ (s was presented that approximates the previous function F (s)

F̃ (s) =
A1∏n1

i=0[s2 + (2i + 1)2] + A2s
∏n

i=1[s2 + 4i2]
(4.31)

where A1 and A2 are constants and should be positive and real. To find
both constants A1 and A2, one equates F (s) and F̃ (s) at s = 0 and s = j,
respectively, which yields

A1 =
n1∏

i=1

(2i + 1)2

A2 =
τ [(2π/τ)− 1]A1

8(π/τ)2 sin(τ/2)
∏n

i=1[(2i)2 − 1]
(4.32)

As an example, one can see the approximation of a Gaussian using the de-
scribed method. The approximated impulse responses are shown in Fig.4.15a.

In addition, the first derivative of Gaussian can be described by delayed
positive and delayed negative semi-periods of sine-squared functions. Applying
the same procedure, one can also obtain a transfer function which describes
the first derivative of a Gaussian and the impulse responses are shown in
Fig.4.15b.
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Figure 4.15: Approximated (a) Gaussian function and (b) first Gaussian
wavelet base using Filanovsky’s method

4.5.3 Fourier-series method

The Fourier-series method is an orthogonal-function approximation in the time
domain. The big advantage of this method is that the series is readily trans-
formable into the frequency domain, as given by

f(t) =
N∑

k=−N

ake
jkωt ⇔ F (s) =

N∑

k=−N

ak

s− jωk
(4.33)

where this Fourier series is truncated to include only terms inside the interval
−N < k < N . However, the disadvantage of the Fourier-series method lies
in the fact that f(t) is a periodic function. Thus, the Fourier series cannot
always be used to approximate an impulse response hT (t) limited in time (i.e.,
h(t) = 0 for t < 0 and t > T ) directly. To overcome this limitation, the
following scheme may be employed.

First, to eliminate the part of f(t) for t > T , we may use the double-step
weighting function [1], w(t), given by

w(t) = uo(t)− uo(t− T ) (4.34)

to be convolved with the function f(t), resulting in

hT (t) = w(t)⊗ f(t) ⇔ HT (s) = (1− e−sT ) · F (s) (4.35)

Thus, the effect of convolving a function with w(t) is to add to the function
its own negative delayed by T . However this function is not rational and cannot
be realized. To make use of this Fourier-series technique and its associated
properties, some additional mathematical artifices are necessary.
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Assuming that hT (t) may be considered zero for t > T , we may create two
periodic functions, hp1(t) and hp2(t), such that

hp1(t) = hp2(t) =
1
2
hT (t), 0 < t < T (4.36)

and hp1(t) repeats every T with alternate sign while hp2(t) repeats every T
with the same sign. Due to the symmetry of these functions, hp1(t) will have
only odd harmonics and hp2(t) will have only even harmonics. Another series
hsum and hsub, which are related to hp1(t) and hp2(t) can also be defined by

hsum(t) = hp1(t) + hp2(t)
hsub(t) = hp2(t)− hp1(t) (4.37)

where hsum and hsub are the summation and subtraction series, respectively,
of period 2T . Note that the subtraction series hsub represents hsum(t) delayed
by T seconds. Then, in the Laplace domain

Hsub(s) = Hsum(s)e−sT (4.38)

Substituting Eq.4.37 into Eq.4.38 and squaring both side gives

e−2sT = [
Hp2(s)−Hp1(s)
Hp2(s) + Hp1(s)

]2 (4.39)

From Eq.4.35 one can derive the approximated transfer function HT (s),
yielding

HT (s) = (1− e−2sT )Hsum(s) =
4Hp2(s)Hp1(s)

Hp2(s) + Hp1(s)
(4.40)

Thus a rational function has been generated that approximates the partic-
ular hT (t).

As an example one can find the approximated transfer function of a Gaus-
sian function, e−0.5(t−2)2 , shown in Fig.4.16a. As mentioned before, a Gaussian
function can be approximated by sin2(πt/τ). Then, following the methodol-
ogy presented before, the periodic Fourier series hp2(t) and hp1(t) will become

hp2(t) = 0.5sin2(
πt

4
) = 0.25− 0.25cos(

2πt

4
))

hp1(t) = 0.5sin(
πt

4
) (4.41)

as shown in Fig.4.16b and Fig.4.16c, respectively.
And the corresponding transfer functions are given by
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Hp2(s) =
0.25
s

− 0.25s
s2 + 2.467

Hp2(s) =
0.3926

s2 + 0.6168
(4.42)

0 5 10 15
0

0.5

1

0 5 10 15
0

0.5

0 5 10 15
-0.5

0

0.5

0 5 10 15

0

0.5

1

0 5 10 15

0

0.5

1

Time(s)

�D�

�E�

�F�

�G�

�H�

2)2(5.0)( −−= tetf

)(2 thp

)(1 th p

)(thsum

)(thsub

Figure 4.16: Periodic Fourier-series for the approximation method (a) Ideal
Gaussian (b)hp2(t) (c) hp1(t) (d) hsum(t) (e) hsub(t)

Finally, applying Eq.4.40 in order to obtain the rational transfer function
for the approximated Gaussian gives

HT (s) =
2.467

s3 + 1.57s2 + 2.467s + 0.968
(4.43)

The approximated function in time is plotted in Fig.4.17 together with the
ideal Gaussian function.
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Figure 4.17: Approximated Gaussian function using Fourier-series method
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From this example it is shown that the Fourier-series method is very easy
to implement, especially when the Fourier series of a given function is already
available. Also, the approximated function has a good matching with the
desired impulse response with a very low-order system, in this case third order
system for a Gaussian function approximation.

However, the drawback of this method is that the resulting transfer func-
tion is not always stable, i.e., it can have poles in the right half plane. Although
the poles of both Hp1(s) and Hp2(s) are all on the j-axis, the poles of HT (s)
(from Eq.4.40) are the zeros of Hp1(s) + Hp2(s), which could be anywhere on
the s plane.

4.6 Discussion

In this chapter we have presented several methods to obtain good approxi-
mations in the time domain of the wavelet bases functions. One important
objective of the introduced approaches is that the resulting approximated func-
tion should be rational and stable in the Laplace domain. This means that
the approximating function must lead to a physically realizable network.

Nevertheless, one can notice that due to limitations in chip area, power
consumption and coefficient matching, there is a trade-off between the approx-
imation accuracy versus the order of the implemented filter. Thus, the design
challenge is to obtain a low-order system while preserving a good approxima-
tion to the intended function.

We first proposed a wavelet function approximation based on Complex
First Order Systems (CFOS). The Gaussian approximation using CFOS is
improved by the Poisson distribution, tn

n! , where n represents the number of
CFOS stages. Therefore, we can achieve an increasingly better approximation
to the Gaussian function by increasing n. As a consequence, from the CFOS-
based approach one can obtain wavelet bases related to the Gaussian function,
such as Gaussian, Gabor and Morlet wavelet bases.

To obtain a more general procedure, the Padé approximation was intro-
duced, which can theoretically implement any function that is represented by
a Taylor series. The Padé approximation is used to approximate the Laplace
transform of the desired wavelet transfer function by a suitable rational func-
tion around a selected point so (in the example we used so = 0).

Another approach that can approximate all kinds of wavelet functions was
given by the L2 method. The advantage of this method compared to the Padé
is that the L2 offers a more global approximation, i.e., not concentrating on
one particular point. Also the L2 method can be applied in the time domain as
well as in the Laplace domain. However, the computation complexity of this
method is much higher than the CFOS-based and the Padé approximation,
and, depending on the starting point, there is a risk for non-global optimum
numerical approximation for certain nth order system.
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From a Mean-Square Error (MSE) comparison, we have analyzed the
performance of the given approximation methods. For low-order systems,
L2 approximation yields better wavelet matching than the CFOS-based and
Padé approaches. However, increasing the order of the filter the approximation
accuracy becomes very similar for both L2 and Padé.

In addition, three other approaches for time-domain approximation were
presented. First, a Bessel-Thomson filter was presented. The transfer function
of this filter, an all-pole transfer function, is based on the Bessel polynomial.
The approximation of a Gaussian function using the Bessel-Thomson filter
results in a high-order system, mainly because the transfer function is found
indirectly from the requirements in the frequency domain. Another limitation
of this method is that it is restricted to just Gaussian function approximation.

The approach defined here as the Filanovsky’s method obtains the ap-
proximated transfer function using the first semi-period of the sine squared
function as an initial approximation to the network impulse response. From
the obtained Gaussian and first derivative of Gaussian approximations, one
can conclude that the approximation accuracy of this method is not so good
compared to the Padé and the L2 approaches.

Finally, a very simply method based on Fourier-series has been presented.
The Fourier-series method leads to the same order of accuracy as the Fourier-
series approximation of h(t) in the time interval 0 < t < T .

Hence Bessel, Filanovsky and Fourier-series approximations are most suit-
able for those impulse responses that do not have any discontinuity or in
situations where a large number of poles is acceptable.

4.7 Conclusions

Due to their general applicability, and the excellent accuracy results, in this
thesis, the Padé and the L2 approximations have been chosen, which generate
reasonable low-order and good fit transfer functions.

Thus, the Padé and the L2 transfer functions describing the wavelet filter
will be implemented in a suitable filter topology in the next chapter. We will
map these transfer functions onto certain state space descriptions that are
suitable for low-power implementation.
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Chapter 5

Optimal State Space
Descriptions

“What we know is not much.

What we do not know is immense.” - Pierre-Simon Laplace

This chapter describes the next step towards the implementation of the
wavelet filter. Departing from the transfer functions defined in Chapter 4, we
derive a state space description of the filter. Since state space descriptions
are not unique representation of a dynamical system, they allow the designer
to find an implementation that fits the best to the requirements, e.g. easy
coefficients, a prescribed circuit topology, or maximum dynamic range. The
description is transformed into the desired form by state space transforms
or similarity transforms. In the context of low-power, low-voltage analogue
integrated circuits, the most important requirements are the dynamic range,
the sensitivity, and the sparsity, all of which will be treated in the sections
that follow.

5.1 State space description

In the state space method, the nth-order differential equation (DE) describing
a dynamic system is organized as a set of first-order DE’s. The common form
of a state space description is given by

dx(t)
dt

= Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t) (5.1)

The input and output signals of the system are u(t) and y(t), respectively.
The vector variable x(t) represents the state of the system. The minimum
number of state variables required to represent a given system is usually equal
to the order n of the system’s defining differential equation. A, B and C are the
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state, input, and output matrices of the state-space description, respectively,
as illustrated by the block diagram in Fig.5.1. The entries of A, B, C and D
are derived directly from the coefficients of the transfer function [1], [2], [3],
[4].

%
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Figure 5.1: Block diagram of the state space description

The state of a dynamic system directly describes the distribution of internal
energy in the system [1]. State variables must be linearly independent. So,
we can relate the state to the system inputs and outputs and thus connect
the internal variables to the external inputs and outputs, whereas the transfer
function relates only the input to the output and does not show the internal
behavior [2].

The general expression of the transfer function corresponding to a state
space description can be easily derived from Eq.5.1 and is given by

H(s) = C · (sI −A)−1 ·B + D (5.2)

The entries of the matrices A, B, C and D are derived directly from the
coefficients of the transfer function. The poles of the transfer function are the
eigenvalues of A. In other words, the denominator of the transfer function is
given by the determinant of sI −A, where I is the identity matrix. The zeros
of the filter are constituted from the contents of all four system matrices, and
is given by C · adj(sI − A) · B + D, where adj computes the adjoint of the
respective matrix [2].

One can also derive from Eq.5.1 two intermediate transfer functions, F (s)
and G(s), which are the signal and noise transfer functions, respectively [5].
F (s) represents the transfer function from the filter input u(s) to the integrator
outputs x(s)

F (s) =
x(s)
u(s)

= (sI −A)−1 ·B (5.3)

and G(s) contains the transfer function from integrator inputs to the filter
output y(s)

G(s) =
y(s)
ε(s)

= C · (sI −A)−1 (5.4)
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where ε(s) models the noise generated at the input of the integrator.
The internal state variables are the smallest possible subset of system vari-

ables that can represent the entire state of the system at any given time.
Hence, the output of a system at any instant is determined completely from a
knowledge of the system state and the input at that instant. Nevertheless, a
given transfer function can be converted into a state equation in several ways.
This is due to the fact that the initial conditions of a system can be specified
in many different ways, and consequently, the system state can be specified in
many forms. This means that state variables (and as a consequence, the state
space equations) are not unique.

5.2 Dynamic Range

A system’s dynamic range is essentially determined by the maximum process-
able signal magnitude and the internally generated noise. It is well known
that the system’s controllability and observability gramians play a key role in
the determination and optimization of the dynamic range [10], [5].

The controllability and observability gramians are derived from the state
space description. The definition of the controllability gramian, related to the
system matrices A and B equals:

K =
∫ ∞

0
eAtBBT eAT tdt =

1
2π

∫ +∞

−∞
F (jω)F ∗(jω)dω (5.5)

The observability gramian, related to the system matrices A and C equals:

W =
∫ ∞

0
eAT tCT CeAtdt =

1
2π

∫ +∞

−∞
G∗(jω)G(jω)dω (5.6)

If A is stable, the controllability (K) and observability (W ) gramians are
the unique, symmetric solutions of the following two Lyapunov equations

AK + KAT + 2πBBT = 0 (5.7)

AT W + WA + 2πCT C = 0 (5.8)

where A, B and C are the state, input, and output matrices of the state-space
description, respectively.

In [6] it is shown that, in order to maximize the dynamic range of the
system, one should minimize the objective functional, which represents the
relative improvement of the dynamic range and contains all parameters which
are subject to manipulation by the designer. The objective functional is given
by

FDR =
maxikii

(2π)2
∑

i

αi

Ci
wii (5.9)
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where kii and wii are the main diagonal elements of K and W , respectively,
αi =

∑
j |Aij | is the absolute sum of the elements on the i-th row of A, and

Ci is the capacitance in integrator i.

5.2.1 Dynamic Range Optimization

Departing from the transfer function derived in Chapter 4, one can generate a
state space description of the filter, which is optimized with respect to the Dy-
namic Range [7], [6]. In [6] a method to optimize the state space description of
a dynamical system is presented, based on the observability and controllability
gramians. The resulting system has, under certain conditions, the maximum
dynamic range achievable, given the total amount of capacitance.

The optimization is based on space transforms, also known as similarity
transforms. A similarity (coordinate) transform, indicated by an invertible
matrix T , defines a new state vector

x′ = T−1x (5.10)

assuming det(T ) 6= 0.
And consequently, the transformation results in new system matrices, given

by

A′ = T−1AT

B′ = T−1B

C ′ = CT

D′ = D (5.11)

By the state space transformation the controllability and observability
gramians become optimal

K ′ = T−1KT−T

W ′ = T T WT (5.12)

where T−T = (T−1)T .
As the dynamic range of a circuit is defined as the ratio of the maximum

and the minimum signal level that it can process, optimization of the dynamic
range is equivalent to the simultaneous maximization of the (distortionless)
output swing and the minimization of the overall noise contribution [7].

From the state space representation, geometry concepts can be useful in
visualizing the solution of a system. In [6], Rocha gives a geometric inter-
pretation of the optimization of the dynamic range. A visualization of the
optimization procedure can be seen in Fig.5.2, for a system with tree state
variables. The output swing is related via the controllability gramian to the
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space of ’occurring’ state-space vectors. Under the assumption of a random
input signal, the shape of this space is generally a multidimensional ellipsoid.
The constraint that each integrator has a maximum representation capac-
ity (M) defines a multidimensional cuboid, which, for a distortionless transfer,
should contain the former mentioned ellipsoid completely. As the mean square
radius of the ellipsoid is equivalent to the maximum output swing, the output
swing is maximal when the mean square radius is. This can occur if and only
if the ellipsoid becomes a spheroid. In that case the controllability gramian
is a diagonal matrix with equal diagonal entries, which means that all axes of
the ellipsoid have equal length. Thus, the first optimization step boils down
to a similarity transform, such that the controllability gramian of the new sys-
tem becomes a diagonal matrix with equal diagonal entries. This transform is
given by

TK = PKD
1/2
K (5.13)

where PK is the eigenvector matrix of K and DK is a diagonal matrix whose
diagonal entries are the eigenvalues of K. In the second step of the optimiza-
tion procedure, the system is optimized with respect to its noise contribution.
Rocha defines another ellipsoid, which describes the noise that is added to
the state vector in each direction. While preserving the result of the first
optimization step, it is possible to rotate the state space, such that the ob-
servability gramian becomes a diagonal matrix as well. In that case, the axes
of the noise ellipsoid are aligned with the ’system axes’. The transformation
of W is defined as

TW = PW (5.14)

where PW is the eigenvector matrix of W .
Finally, profiting from the well-known fact that the relative noise contribu-

tion of an integrator decreases when the capacitance and bias current increase,
we match the optimal capacitance distribution to the noise contributions of
each individual integrator (noise scaling), i.e, the diagonal entries of W , com-
bined with the coefficients in matrix A, which is defined by [6]

Ci =
√

αiwiikii∑
j

√
αjwjjkjj

(5.15)

5.3 Sparsity

The drawback of a dynamic-range optimal system is that its state-space ma-
trices are generally fully dense, i.e., all the entries of the A, B, C matrices are
filled with nonzero elements. These coefficients will have to be mapped onto
circuit components, and will result in a complex circuit with a large number of
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Figure 5.2: Dynamic Range optimization based on the similarity transforma-
tion of K and W and capacitance distribution. The coordinate axes represent
the state variables and the cuboid represents the maximum signal amplitude
(M) that the integrators are able to handle (a) The initial state space represen-
tation (ellipsoid) is usually not well adapted to the integrator’s representations
capacity bounds (cuboid) (b) The (rotated) ellipsoid’s principal axes are now
aligned to the coordinate axes, as a result of the diagonalization procedure
to the matrices K and W (c) Finally, the optimized state representation is
obtained by scaling the states variables. Note that the sphere represents the
maximum possible mean square radius which can be fitted into the integrator’s
capacity cuboid.

interconnections. For high-order filters it is therefore necessary to investigate
how a realization of the desired transfer function having sparser state-space
matrices would compare to the one having maximal dynamic range.

By definition, a sparse matrix is a matrix populated primarily with zeros.
For a less complex circuit, it is possible, for instance, to transform the state
space matrix A in a similar decomposition and by this reducing the number
of non-zero coefficients in A. One important characteristic of a similarity
transformation matrix T is that, considering a system of order n, T has n2

degrees of freedom. Thus, the system can be transformed in several ways,
achieving the desired sparsity requirements.

However, these transformations lead to an increase in the system noise and
consequently to an increase in the objective functional, (5.9). Considering the
fact that for a given system the choice of state is not unique, in the next
subsections we will review some well-known state forms and analyze the state
space matrices with respect to dynamic range and sparsity.

5.3.1 Orthogonal transformations

The orthogonal (unitary) transformation-based forms are called condensed
forms. Some examples of these condensed forms are the Hessenberg and the
Schur decomposition, which will be described below.

Any orthogonal transformation, described by T T T = I, has n(n − 1)/2
degrees of freedom and, consequently, it is possible to create n(n− 1)/2 zeros.
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In other words, these transformations are extremely useful in zeroing specified
elements in a matrix.

Hessenberg decomposition

A Hessenberg decomposition is a matrix decomposition of a matrix A into a
unitary matrix U and a Hessenberg matrix AHess such that

A = UAHessU
T (5.16)

For real matrices, a unitary matrix is a matrix U for which U−1 = UT .
AHess is similar to A and has the same eigenvalues as A. The Hessenberg
decomposition transforms a matrix in an upper diagonal matrix where only
the elements of the main sub-diagonal are different from zero

AHess =




a11 a12 a13 . . . a1,n−1 a1,n

a21 a22 a23 . . . a2,n−1 a2,n

0 a32 a33 . . . a3,n−1 a3,n

0 0 a43 . . . a4,n−1 a4,n
...

...
...

. . .
...

...
0 0 0 . . . an,n−1 an,n




(5.17)

where the matrix B and C have no specific structure, being defined by BHess =
U−1B and CHess = CU . Then, as one can see in Eq.5.17, an upper Hessenberg
matrix has zero everywhere below the diagonal except for the first subdiagonal
row. However, if the matrix A is symmetric, the Hessenberg form becomes a
tridiagonal representation.

Schur decomposition

The Schur decomposition of a square matrix A is a matrix decomposition of
the form

ASchur = QT AQ = D + N (5.18)

where Q is a orthogonal (unitary) matrix and ASchur is an upper triangular
matrix which is the sum of a D = diag(λ1, λ2, . . . , λn) (i.e., a diagonal matrix
consisting of eigenvalues λ of A) and a strictly upper triangular matrix N .
Thus, the eigenvalues of A appear on the main diagonal of ASchur.
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The Schur decomposition of a square matrix A involves finding a unitary
matrix Q that can be used for a similarity transformation of A to form a block
upper triangular matrix ASchur, defined by

ASchur =




a11 a12 a13 . . . a1,n−1 a1,n

0 a22 a23 . . . a2,n−1 a2,n

0 0 a33 . . . a3,n−1 a3,n

0 0 0 . . . a4,n−1 a4,n
...

...
...

. . .
...

...
0 0 0 . . . 0 an,n




(5.19)

The Schur decomposition always exists and so the similarity transformation
of A to upper triangular always exists. This contrasts with the eigensystem
similarity transformation, used to diagonalize a matrix, which does not always
exist.

For complex values, Schur decomposition produces a quasi-triangular ma-
trix. Under real (orthogonal) transformations one can not triangularize a
matrix if it has complex conjugate eigenvalues. Instead one can always obtain
a quasi-triangular form with 1×1 or 2×2 blocks on the diagonal corresponding
to the real and complex conjugate eigenvalues, respectively.

With respect to sparsity, the preference is for the Schur decomposition
rather than for the Hessenberg decomposition, because it returns a matrix
with a larger number of zeros.

5.3.2 Canonical form representations

From control theory, it is known that a general transfer function, described
in Eq.5.20, can be written directly into (controllable or observable) canonical
form [1], [4].

H(s) =
pn−1s

n−1 + pn−2s
n−2 + . . . + p1s + p0

sn + qn−1sn−1 + . . . + q1s + q0
(5.20)

The entries of A, B, C and D of a canonical form are derived from coeffi-
cients inspection of the transfer function, as given below.
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A state-space system in controllable canonical form has the following struc-
ture

Ac =




0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

0 0 0 . . . 1
−q0 −q1 −q2 . . . −qn−1




Bc =




0
0
...
0
1




Cc = [p0 p1 . . . pn−2 pn−1] D = [0]

(5.21)

This state-space realization is called controllable canonical form because
the resulting model is guaranteed to be controllable. The coefficients of the
numerator appear in the Cc matrix and the coefficients of the denominator
appear (with opposite sign) as the last row of the Ac matrix. The central
feature of the controllable form is that each state variable is connected by the
feedback to the control input, as shown in Fig.5.3.

∫ ∫ ��X�W�

[Q�W�

SQ��
SQ��

∫ \�W�

�TQ��
�TQ��

[Q���W�
S�

�T�

[��W�
S�

�T�

Figure 5.3: Controllable canonical form realization
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The transfer function coefficients can also be used to construct another
type of canonical form, the observable canonical form defined by

Ao =




0 0 . . . 0 −q0

1 0 . . . 0 −q1
...

...
...

...
...

0 0 . . . 0 −qn−2

0 0 . . . 1 −qn−1




Bo =




p0

p1
...

pn−2

pn−1




Co = [0 0 . . . 0 1] D = [0]

(5.22)

This state-space realization is called observable canonical form because
the resulting model is guaranteed to be observable. The coefficients of the
numerator appear in the Bo matrix and the coefficients of the denominator
appear (with opposite sign) as the last column of the Ao matrix. Fig.5.4 shows
the implementation of these matrices in a block diagram.

∫ ∫� ��
X�W�

[Q�W�

SP
SP��

∫ \�W�

�TQ��

�TQ��

[Q���W�S�

�T�

[��W�

Figure 5.4: Observable canonical form realization

One can note the relationship between the controllable and observable
canonical forms. The A matrices in these two cases are the transpose of one
another, and the B of one is the transpose of C in the other, and vice versa.
This is defined as a duality relation.

Controllability and observability are qualitative properties of a system.
These properties depend on the elements of the A, B and C matrices. Control-
lability refers to the ability of the input to control (or affect) each of the system
modes, whereas the observability occurs when each of the modes can be de-
tected at the output. A basic result in control theory is that a system in state-
space form is controllable if and only if the matrix [B, AB, A2B, . . . , An−1B]
has a full rank n (i.e., is invertible). The rank of an arbitrary rectangular
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matrix A is the dimension of the largest square submatrix that has nonzero
determinant, i.e., defines the number of linearly independent rows or columns
in a matrix. Similarly, a state-space system is observable if and only if
[CCA . . . CAn−1]T is nonsingular with rank equals n.

The advantage, with respect to sparsity, of a canonical decomposition is
that the canonical forms have n2 elements assigned either to 0 or to 1, which
corresponds to a extremely sparse matrix.

5.3.3 Biquad Structure

A high-order transfer function H(s) can be factored into the product of the
first and second order transfer functions. Hence, as shown in Fig. 5.5, a filter
can be implemented as a cascade of second-order biquadratic blocks, also called
biquad stages (and a first-order block, if necessary) [8].

H
1
(s) H

2
(s) H

3
(s) H

N
(s)

H(s) = H
1
(s).H

2
(s).H

3
(s)...H

N
(s)

u
1
=u u

2
=y

1
u
3
=y

2
y
N
=y

Figure 5.5: Biquad cascade realization of an nth-order transfer function

The signal flow graph of a biquad stage is shown in Fig.5.6.

\�W�
∫ ∫� ��

X�W�

E�
D��

D��

E�D��

D��

F�
G

F�

Figure 5.6: Block diagram of the second-order biquad

The corresponding second-order transfer function of a biquad, Hi(s), is
expressed in terms of A, B, C and D.

Hi(s) =
(c1b1 + c2b2)s + c1a12b2 + c2a21b1 − c1a22b1 − c2a11b2

s2 + (−a11 − a22)s + a11a22 − a12a21
+ d (5.23)

Cascading of n stages means that we connect the output of Hn−1(s) to
the input of Hn(s), such that the product of the individual transfer functions
Hi(s) implements the prescribed function H(s). Note that the numerators and
denominators of Hi(s) can be combined in different ways in order to obtain the
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final transfer function H(s). One way to decrease the coefficients sensitivity,
is by grouping the zeros with the nearest pole pair. Finally, one can derive
the combined state space description of the cascade connected system which
is given by

A=




A1 0 0 . . . 0
B2C1 A2 0 . . . 0

B3D2C1 B3C2 A3 . . . 0
B4D3D2C1 B4D3C2 B4C3 . . . 0

...
...

...
...

...
BNDN−1 . . . D2C1 BNDN−1 . . . D3C2 BNDN−1 . . . D4C3 . . . AN




B =




B1

B2D1

B3D2D1

B4D3D2D1
...

BNDN−1 . . . D1




CT =




DN . . . D2C1

DN . . . D3C2

DN . . . D4C3
...

DNCN−1

CN




(5.24)
The main advantage of cascade filters is their generality, i.e., any arbitrary

stable transfer function can be realized as a cascade circuit, and very easy
tuning because each biquad is responsible for the realization of only one pole-
zero pair. By this, the realizations of the individual critical frequencies of the
filter are decoupled from each other. The disadvantage of this decoupling is
that for high-order filters, cascade designs are often found to be too sensitive
to component variations.

5.3.4 Diagonal controllability gramian - an Orthonormal Lad-
der Structure

When designing high-order filters, it is very desirable to concentrate on circuits
that are less sensitive to component variations. It is known that an optimal
dynamic range system will also have optimal sensitivity [7]. Nevertheless, in
order to improve the state-space matrices’ sparsity, an orthonormal ladder
structure can be implemented, which still presents a good behavior with re-
spect to sensitivity. Fig.5.7 shows a block diagram of a general orthonormal
ladder filter [9]. As shown in the block diagram, the filter output is obtained
from a linear combination of the outputs of all integrators.

Another useful property of orthonormal ladder filters is the ability to real-
ize any stable transfer function. Arbitrary poles are realized using the ladder
feedback structure while transmission zeros are realized using an output sum-
ming stage. Additionally, since for a given transfer function the orthonormal
ladder realization is unique, the design procedure is more easily automated
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than the process of finding an optimal biquad cascade design where pole-zero
pairing and cascade ordering are important.
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Figure 5.7: Block diagram of an orthonormal ladder filter, (a) Leapfrog struc-
ture; (b) Output summing stage

The A, B and C matrices of this structure are given by

A=




0 α1 . . . 0
−α1 0 α2 . . . 0

−α2 0 α3 . . .
...

. . . . . . . . .
...

0 . . . −αn−2 0 αn−1

0 . . . −αn−1 αn




B =




0
0
0
...
0√
αn
π




CT =




c1

c2

c3
...

cn−1

cn




(5.25)

The A matrix is tridiagonal and is very nearly skew-symmetric except for
a single nonzero diagonal element. One important property of orthonormal
ladder filters is the fact that the resulting circuits are inherently state scaled,
i.e., the controllability gramian is already a identity matrix [9]. From the
Lyapunov equation in Eq. 5.7 and assuming K = I, B results in an all zeros
matrix except for the Nth element with bn given by

√
αn
π . The drawback of

this structure is that the system is not optimized with respect to its noise
contribution, i.e. the observability gramian W is not transformed.

The coefficients α are defined as
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αi =

√
1

xixi+1
1 ≤ i < n;

αn =
1
xn

i = n. (5.26)

where xi are the reactive components of a singly terminated LC ladder struc-
ture. In order to calculate the values of the reactive elements xi one needs to
apply a continued fraction expansion on the denominator of the transfer func-
tion H(s) = N(s)

D(s) . The denominator can be converted into a simple continued
fraction by the following procedure. First, the polynomial D(s) of degree n is
represented by

D(s) = Deven(s) + Dodd(s) (5.27)

where Deven(s) and Dodd(s) are the even and the odd parts of D(s), respec-
tively. Then, applying the ratio between both parts such as

Dcf (s) =
Deven(s)
Dodd(s)

if n is even

Dcf (s) =
Dodd(s)
Deven(s)

if n is odd (5.28)

we end up with the continued fraction expansion of D(s) in the following
manner

Dcf (s) =
P

Q
= x0 +

r0

Q
= x0 +

1
x1 + r1

r0

= . . . = x0 +
1

x1 + 1
x2+ 1

...+ 1
xn

(5.29)

where the ri are the remainders and the xi the integral parts of the interme-
diate fractions which defines the reactive components values.

Finally, in order to implement the numerator N(s) of the transfer function
H(s), the proper C vector must be obtained. Using the intermediate functions
Fi, the coefficients ci can be written as

N(s) = c1 · F1 + c2 · F2 + . . . + cn · Fn (5.30)

where

F1 =
√

xi

π
·N(0)

F2 =
s

α1
F1

Fi =
1

αi−1
(sFi−1 + αi−2Fi−2), 3 ≤ i ≤ n(5.31)
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The result is the state-space structure given in Eq. 7.36 with the coeffi-
cients calculated from Eq. 5.26 and Eq. 5.30.

5.3.5 Sparsity versus Dynamic Range comparison

A comparative analysis of the Dynamic Range and the Sparsity properties of
several state space representations will be performed in this section. First,
Fig. 5.8 shows the obtained objective functionals (FDRs) for a specific trans-
fer function, in this case the Padé [8/10] Morlet wavelet filter transfer func-
tion given in Table 4.4. As one can see, the FDR of the orthonormal ladder
structure (FDRorth = 21.6 dB) is very close to the optimal representation
(FDRopt = 19.8 dB), only 1.8 dB larger than the optimum one, whereas
the canonical forms present the largest FDRs (FDRcont,can = 149 dB and
FDRobs,can = 167 dB).
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Figure 5.8: FDR comparison of different state space descriptions for the Padé
[8/10] Morlet wavelet filter transfer function in Table 4.4

Furthermore, in order to compare the Dynamic Range versus the order of
the system, Fig. 5.9 illustrates the FDR of different state space descriptions
applied to a Gaussian wavelet filter transfer function. The transfer function
of the filter was obtained by a Padé approximation with order varying from 2
to 10. Note that for lower order, all the state space representations present a
similar performance, with FDR values close to each other, whereas for higher
order, the FDRs of some representations deviate too much from the optimal
case. In this case, the Dynamic Range optimization becomes a very important
requirement in high-order analog filters design. Again, one can see that the
orthonormal state space is very close to the optimal representation even for
high-order systems.
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Figure 5.9: FDR versus order of the filter for different state space representa-
tions

5.3.6 New Sparsity Figure-of-Merit (SFOM)

In order to define the sparsity property versus dynamic range for a specific
state space description, we derive a new figure-of-merit. The static power con-
sumption of an analog active filter is basically determined by the bias currents
inside the filter. From a state space representation one can define the total
bias current by NcIo where Nc represents the number of nonzero coefficients
presented in the sate matrix A, B and C and Io is the current necessary to
implement each coefficient. As a result, the static power consumption of a
filter can be written as

Pstatic = NcIoVcc (5.32)

On the other hand, in [6], the dynamic power dissipation of a n-th order
filter has been expressed in terms of the dynamic range, and yields

Pdynamic = 8nfkTξfDR = 4nf

(
M

δ(p)

)2

Tr(KQ)
1

FDR
(5.33)

where n is the order of the filter, f is the operating frequency, M is the maxi-
mum output amplitude, δ(p) is a nonlinear monotonically increasing function
of the fraction of time p that the integrators are allowed to clip, and is rep-
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resented by δ(p) = −2 ln(1 − p). Tr represents the trace of a matrix and
Q = CT C is the state weighting matrix. Tr(KQ) is invariant under a similar-
ity transformation and is thus beyond the designer’s control.

Dividing Pstatic by Pdynamic we end up with

Pstatic

Pdynamic
=

NcIoVcc

4n
(

M
δ(p)

)2
Tr(KQ) 1

FDR

=
IoVcc

4
(

M
δ(p)

)2
Tr(KQ)

NcFDR
n

(5.34)

where IoVcc

4( M
δ(p)

)
2
Tr(KQ)

is defined by the circuit implementation, while NcFDR
n can

be controlled at system level. So, in order to design an optimal state space
description with respect to Dynamic Range and Sparsity, we present a new
figure-of-merit, giving by

SFOM =
Nc × FDR

n
(5.35)

From Eq. 5.35 one can see that the optimal case is the one with SFOM
minimum, i.e., the system which presents a good sparsity (large number of
zeros) while preserving a low FDR (i.e., a large Dynamic range).

The number of nonzero coefficients Nc for different state space representa-
tions is given in Table 5.1.

Table 5.1: Number of nonzero coefficients Nc in A, B and C

Optimal n2 + 2n

Hessenberg n(n+1)
2 + 3n− 1

Schur n(n+1)
2 + 2n

Canonical 3n

Biquad 5n

Orthonormal 3n

Finally, several SFOMs versus the order of the system are plotted in Fig.
5.10. As expected, the orthonormal presents the best performance (lower
SFOM) mainly due to its excellent sparsity behavior and its near-optimum
FDR property.

5.4 Sensitivity

To accurately realize a transfer function using analog integrated filters, the
circuit components of the filter must match closely, and the sensitivity of the
transfer function to the values of the filter’s components must be low. This
sensitivity depends on the filter network, and thus depends on the state-space
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Figure 5.10: SFOM versus order of the filter for different state space descrip-
tion

representation. Hence, the sensitivity of the transfer function of a particu-
lar state-space representation is an important criterion for the comparison of
different network realizations.

The sensitivity of the transfer function H(s) to the component values of
a state-space realization depends on the sensitivity to the entries of the state
matrices A, B and C (D is usually zero). Here we will consider an abso-
lute sensitivity measurement, which can be used to establish the relationship
between the absolute changes ∆aij , ∆bi and ∆cj [8].

The absolute sensitivities of H(s) with respect to variations of the coeffi-
cients can be given by [10].

Saij (s) = ∂H(s)
∂aij

= c(sI −A)−1eiej(sI −A)−1b = Gi(s)Fj(s)

Sbi(s) = ∂H(s)
∂bi

= c(sI −A)−1ei = Gi(s)

Sci(s) = ∂H(s)
∂ci

= ei(sI −A)−1b = Fi(s) (5.36)

where ei is the unit vector with ith element unity. In the case of a statistical
derivation analysis, the frequency dependent variances of the transfer function
are defined as
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Σ2
∆H,A(s) = E{|

n∑

i=1

n∑

j=1

Saij∆aij |2}

=
n∑

i=1

n∑

j=1

|Saij |2 = G(s)G∗(s)F ∗(s)F (s)

Σ2
∆H,B(s) = E{|

n∑

i=1

Sbi∆bi|2} =
n∑

i=1

|Sbi |2 = G(s)G∗(s)

Σ2
∆H,C(s) = E{|

n∑

j=1

Scj∆cj |2} =
n∑

j=1

|Sci |2 = F ∗(s)F (s) (5.37)

where the variations of the coefficients have been considered statistically inde-
pendent. Integrating the transfer function variances over the whole frequency
range, new sensitivity measures related to the observability and controllability
gramians have been defined in [10], and are given by

mA ≤ tr(K)tr(W )
mB = tr(W )
mC = tr(K) (5.38)

where mA, mB and mC , represent, respectively, the sensitivity of the matrices
A, B and C to their coefficients. Finally, the total sensitivity measure, mT ,
of a transfer function with respect to the state space representation matrices
can be obtained as

mT = mA + mB + mC ≤ tr(K)tr(W ) + tr(K) + tr(W ) (5.39)

The maximum sensitivity measure (worst-case sensitivity), considering
mT = tr(K)tr(W ) + tr(K) + tr(W ), can be seen in Fig. 5.11 as function
of the order n of a specific transfer function, for different state space repre-
sentations. One can note that the optimal DR state space representation will
also be optimal with respect to sensitivity. The Schur and Hessenberg decom-
posed from an optimal system also present an optimal sensitivity because the
orthogonal transformation does not affect the sensitivity. The orthonormal
structure has a reasonable low sensitivity to coefficient mismatch, close to the
optimal case. Both controllable and observable canonical forms have the worst
sensitivity measures for high order filters, as expected.

5.4.1 New Dynamic Range-Sparsity-Sensitivity Figure-of-Merit
(DRSS)

To conclude the analysis of the state space descriptions we will present a new
figure of merit that expresses the correlation of Dynamic Range, Sparsity and
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Figure 5.11: Sensitivity versus order of the filter for different state space de-
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Sensitivity parameters. In order to relate these three aspects, we introduce
the Dynamic range-Sparsity-Sensitivity figure-of-merit (DRSS), given by

DRSS =
Nc × FDR×mT

n
(5.40)

As one can see from Eq. 5.40, the objective functional, FDR, gives the
relative improvement of the dynamic range, Nc

n is related to the sparsity of
the system and mT defines the sensitivity of the matrices A, B and C with
respect to their coefficients. Fig. 5.12 shows the DRSS figure-of-merit versus
the order of the system. Again, the orthonormal ladder structure presents
the best performance (minimum DRSS) compared to the other state space
descriptions presented in this chapter. Thus, we can state that the orthonor-
mal structure is the optimal state space description for a system design where
the most important requirements are the dynamic range, sparsity and sensi-
tivity. Although the state space description obtained from the optimization
procedure in Section 5.2.1 gives us the optimal representation with respect to
dynamic range and sensitivity, its matrices are fully dense, and consequently,
its SFOM and DRSS performances are relatively poor.
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5.5 Conclusion

In this chapter we presented the description and a comparison of several state
space representations. The analysis was based on dynamic range, sparsity and
sensitivity properties, which are the most relevant aspects for an ultra low-
power analog dynamic system. From the two new figure-of merits described
above, viz., the SFOM and DRSS, we concluded that the orthonormal ladder
structure is the optimal state space representation, and therefore, it will used
for the design of wavelet filters and biomedical systems in Chapter 7.
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Chapter 6

Ultra Low-power Integrator
Designs

“Exploiting the transistor’s potential caused
many headaches. A colleague called it

a ‘persistor’, because persistence was what

it took to make it”.” - William Shockley

The trends towards lower power consumption, lower supply voltage and
higher frequency operation have increased the interest in new design techniques
for analogue integrated filters. In this chapter, we will focus only on ultra
low-power integrated continuous-time filter designs. The current state-of-the-
art design approaches for such filters are transconductance amplifier-capacitor
(gm-C) and translinear (log-domain) methods, which will be described in the
following sections.

As mentioned in previous chapters, one can implement an n-th order linear
differential equation, which describes a filter of the same order, by means of n
intercoupling integrators. An on-chip integrator is an electronic circuit that re-
alizes the transfer function G

sC , where G is implemented by a (trans)conductor
stage (which converts voltage-to-current), and the integrating component 1

sC
is usually realized by a capacitor (integrating a current into a voltage). There-
fore, integrators can be seen as the main building blocks of a filter topology
and, consequently, in this chapter we will concentrate on the design of ultra
low-power integrators.

6.1 Gm-C filters

One of the most popular technique for realizing analog integrated filters is
the transconductance amplifier-capacitor, or simply Gm-C technique [1]. The
main circuit building block of a Gm-C integrator, as shown in Fig.6.1, is a lin-
ear transconductance cell, which converters the input voltage into an output
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current. The output current of the Gm block and, consequently, the capaci-
tance current, is linearly related to the differential input voltage signal by

Icap = GmVin (6.1)

G
m C

V
capV

in

I
cap+

-

Figure 6.1: A single-ended Gm-C integrator

This output current is applied to the integrating capacitor, C, resulting in
a voltage across C, given by

Vcap =
Icap

sC
=

GmVin

sC
(6.2)

which defines the integrator time constant to be τ = C/Gm. Besides the lin-
earity, an additional requirement for this transconductance amplifier, in order
to be applied in a filter, is that it should have a well-known transconductance
value which is not the case, for instance, for an operational-amplifier (Opamp).

As one will see in the next chapter, in the field of medical electronics,
active filters with large time constants are often required to design low cutoff-
frequency filters (in the Hz and sub-Hz range), necessitating the use of large
capacitors or very low transconductances. To limit capacitors to practical val-
ues, a transconductor with an extremely small transconductance Gm (typically
a few nA/V ) is needed. Two very low-frequency transconductor designs, that
rely on CMOS transistors operating in the triode region, will be presented
here.

6.1.1 nA/V CMOS Triode-Transconductor

The transconductor proposed in [2] is based on the use of CMOS transistors
operating in the strong-inversion triode region(SI-TR). As shown in [2], tran-
sistors kept in the triode region benefit from a lower Gm/ID ratio than the ones
operating in saturation (active) or weak-inversion regions. This means that,
for a certain biased current ID, the triode transconductor presents the low-
est Gm value. In addition, triode-based transconductors have better linearity
performance than transconductors with transistors operating in saturation.

The triode-transconductor is shown in Fig. 6.2. It should be stated here
that in this circuit, not all transistors are in the triode region. Only M1A

and M1B are biased in the strong-inversion triode region, whereas the other
transistors are operating in the weak inversion region.

Input transistors M1A-M1B have their drain voltages regulated by an aux-
iliary amplifier that comprises the current conveyer M2A-M2B, M3A-M3B and
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Figure 6.2: Schematic of the nA/V CMOS triode-transconductor [2]
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Figure 6.3: Cirucit diagram of the bias generator [2]
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M4A-M4B, and bias current sources M7A-M7B and M8A-M8B. Internal volt-
ages VB, VC and VDC are derived from the bias circuit shown in Fig.6.3 [Jader].
The bias generator is structurally alike the transconductor so that the external
voltage VTUNE is reflected to the drain of M1A-M1B. A low voltage cascade
current mirror comprising M5A-M5B and M6A-M6B provides a single-ended
output. Referring VTUNE to VDD, one can define the Gm of the transconduc-
tor as

Gm = β · VTUNE (6.3)

with β = W
L µCox. In order to obtain a Gm-C filter realization using the pro-

posed integrator, we must be able to map the corresponding filter coefficients
on the respective Gm values. From the transconductance definition in Eq.6.3,
one can notice that we may vary the value of Gm by changing the drain-source
voltage (VTUNE) or, alternatively, β (the aspect ration W/L) of transistor M1.
In Fig. 6.4 one can see the acquired Gm values varying from 1nA/V to 5nA/V
with VTUNE changing from 10mV to 50mV, respectively, for a fixed aspect
ration (W

L = 0.6µm
240µm (solid line).

However, due to the additional bias stages required to obtain different filter
coefficients, realization of the various VTUNE bias generators would increase
the power consumption by a factor of (n−1) ·PBias, where n is the number of
implemented coefficients and PBias represents the power consumption of the
biasing stage. Hence, from a power consumption perspective, the best choice
to obtain the Gm values is by tuning β. Various values of Gm, ranging from
1nA/V to 5nA/V are also shown in Fig. 6.4 for WM1A,M1B linearly varying
from 0.6µm to 3µm, respectively, with VTUNE equals to 10mV (dashed line).
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Figure 6.4: Different Gm values obtained by varying VTUNE (solid line) or
WM1A,M1B (dashed line)
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6.1.2 New pA/V Delta-Gm (∆−Gm) Transconductor

In order to decrease the values of Gm even further, a new CMOS triode-
transconductor design is presented here. The schematic of the pA/V Delta-Gm
Transconductor is given in Fig. 6.5.
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Figure 6.5: Schematic of the pA/V Delta-Gm Transconductor

The description of the proposed integrator is given as follows. The GmT

of the transconductor is given by

GmT =
Iout

Vin
(6.4)

The current Iout can be defined in terms of the currents flowing through
transistors M1A-M1B-M1C-M1D, resulting in

Iout = −IM1A − IM1C + IM1D + IM1B (6.5)

which can be expressed as

Iout = GmM1AVin+ + GmM1CVin− −GmM1DVin+ −GmM1BVin− (6.6)



116 Ultra Low-power Integrator Designs

Employing Eq. 6.3 for a transistor operating in strong-inversion triode region
and assuming that the aspect ratios of M1A and M1B are (1+∆) times larger
than the ones of M1C and M1D, we end up with

Iout =
W (1 + ∆)

L
µCoxVTUNEVin+ +

W

L
µCoxVTUNEVin−

− W

L
µCoxVTUNEVin+ − W (1 + ∆)

L
µCoxVTUNEVin− (6.7)

= ∆
W

L
µCoxVTUNE(Vin+ − Vin−) (6.8)

Assuming Vin = Vin+−Vin− and β = W
L µCox, the transconductance of the

circuit in Fig. 6.5 is given by

GmT = ∆βVTUNE = ∆Gm (6.9)

where Gm is the transconductance of the triode-transconductor shown in Fig.
6.2.

In order to verify the circuit principle, we have simulated the new pA/V
Delta-Gm transconductor using a stantard 0.35µm CMOS technology. The
GmT values can be seen in Fig. 6.6 with ∆ varying from 1 to 0.1. As one
can see, extremelly small values of GmT can now be obtained, ranging from
1nA/V up to 100pA/V for a triode-tranconductance Gm equal to 1nA/V.
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Figure 6.6: Gm values obtained by varying ∆ from 0.1 to 1

6.2 Translinear (Log-domain) filters

The supply voltage severely restricts the maximum Dynamic Range (DR)
achievable using conventional filter implementation techniques, such as opamp-
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MOSFET-C, gm-C and switched-capacitor. In addition, since transistors are
inherently non-linear transconductors, these techniques require the develop-
ment of linearization or compensation schemes, usually at the expense of power
consumption or bandwidth. The class of translinear (TL) filters has emerged
in recent years [3], [4] as a promising approach to face the analog filters’
challenges, i.e., lower power consumption, lower supply voltage and higher
frequency operation.

The translinear approach is a current-mode technique [5], which is inher-
ently non-linear and performs a compression and an expansion on the pro-
cessed signal. This property is called the companding (compressing and ex-
panding) principle [4]. The benefit of a companding system is that a signal
with certain DR can be processed in a system block with a smaller DR than
the signal, and by this, offer low-voltage and low-power operation.

Translinear circuits [6], [7], also known as Log-domain [8], Externally Lin-
ear Internally Nonlinear systems (ELIN) [9] or Exponential-State Space (ESS)
[10] circuits, exploit the exponential large-signal transfer function of the semi-
conductor devices to implement a desired linear or nonlinear differential equa-
tion, which will be explained below.

6.2.1 Static and Dynamic Translinear principle

Translinear circuits are based on the exponential relation between voltage
and current, a characteristic for any device whose operation is dominated
by minority carries, such as diodes, bipolar transistors and MOS transistors
operating in the weak inversion region. They can be divided into Static and
Dynamic Translinear circuits.

Static Translinear (STL) circuits are implemented to realize any static
transfer function. Their principle applies to loops of semiconductor junctions
[5]. A TL loop is characterized by an even number of junctions. The number
of devices with a clockwise orientation equals the number of counterclockwise
oriented devices. An example of a four-PN junction TL loop is shown in Fig.
6.7. The STL principle states that this circuit can be best described in terms
of the collector currents I1 through I4. The translinear loop is thus described
by a simple equation in terms of products of currents, being

I1I3 = I2I4 (6.10)

Linear or nonlinear dynamic, i.e., frequency-dependent, functions (differ-
ential equations) can be implemented by Dynamic Translinear (DTL) circuits.
The DTL principle is shown in the sub-circuit in Fig.6.8 [11].

This circuit is described in terms of the output current Iout of the expo-
nential device and the capacitance Icap flowing through the capacitance C.
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1I 2I 4I3I

Figure 6.7: A four-PN junction translinear loop

Figure 6.8: Principle of dynamic translinear circuits

Note that the dc voltage source Vconst does not affect Icap. Iout is based on
the exponential law and can thus be described by:

Ic = Ise
Vcap
VT (6.11)

Vcap, Is, VT being the capacitance voltage, a specific current and a specific
voltage respectively. An expression for Icap can be derived from the time
derivative of the output current:

CVT İout = IcapIout (6.12)

where the dot represents differentiation with respect to time. This expression
defines the principle of dynamic translinear circuits: “A time derivative of
a current can be mapped onto a product of currents.” For the realization of
this product of currents the conventional static translinear principle can be
used. Using dynamic translinear circuits, several classes of filters have been
proposed [5, 6]. The characteristics of these classes can be derived from their
output structures. Strictly speaking, the class of log-domain filters is based on
a single-transistor output structure in line with Fig.6.8. Nevertheless, other
output stages can be used to implement non-linear differential equations, e.g.,
the ones that belong to oscillators [12] and RMS-DC converters [4].

6.2.2 Log-domain integrator

Electronics circuits map mathematical operations onto silicon. In order to
accomplish this, the mathematical equations (in case of filters, differential
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equations) should be transformed into a set of electrical equations, which rep-
resent voltage or current relations. In log-domain circuits the mathematical
input and output variables are related linearly to currents (current mode op-
eration), whereas the relation between the state variables and the capacitance
voltages has a logarithmic character. However, by proper use of the corre-
spondence relation, the linearity of the overall transfer function of the system
can be maintained.

A typical log-domain integrator can be characterized by the diode-capacitance
circuit in Fig.6.9a and the corresponding block diagram is given by Fig.6.9b
[17].
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Figure 6.9: (a) Typical representation of the log-domain integrator (b) Corre-
sponding block diagram

The capacitance current Icap can be expressed in terms of the voltages Vin

and VC , which obeys the exponential law of the device (in this case, the diode)

Icap = Id = CV̇C = Ise
Vin−VC

VT (6.13)

where Is is the reverse saturation current and assuming that the capacitor
is not loaded and Icap = Id. From the basic log-domain equation presented
above, one can notice that such an integrator is inherently nonlinear. Then, in
order to maintain the overall linearity of the log domain system, an input cur-
rent signal is converted into a voltage by a logarithmic converter (typically, a
bipolar transistor), and is then processed internally by the nonlinear integrator
before it is converted into an output current signal by an exponential converter
(another bipolar transistor). The block diagram of a linear log-domain filter
is illustrated in Fig.6.10.
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Figure 6.10: Linear Log-domain filter block diagram

One can see the linearity of the expression of the log-domain filter applying
Vin = VT ln

(
Iin
Is

)
and VC = VT ln

(
Iout
Is

)
into Eq.6.13

CVT
d

dt

[
ln

(
Iout

Is

)]
= Is

eln(
Iin
Is

)

eln(
Iout
Is

)
⇒ CVT İout = Iin (6.14)

which represents a first-order linear differential equation in current domain.
From a circuit design perspective, the most simple implementation of a

first-order log-domain filter is given by the combination of the static and the
dynamic translinear loops, shown in Fig.6.7 and Fig.6.8, respectively. A bipo-
lar filter implementation is given in Fig.6.11. According to the STL principle,
the products of the currents of forward biased junctions in the clockwise and
counter-clockwise oriented devices are equal. Hence

I1I3 = I2I4 ⇒ IinIo = (Io + Icap)Iout. (6.15)

The DTL loop equation, defined by the capacitor and transistor Q4, is
given by

IcapIout = CVT İout. (6.16)

Using Eq.6.15 and Eq.6.16, this yields

CVT İout + IoIout = IoIin (6.17)

which is a linear differential equation, describing a low-pass filter with
cutoff frequency ωc according to

ωc =
Io

CVT
. (6.18)

In the next sections, we will present some log-domain integrator designs,
which are suitable for high frequency and/or low-power low voltage applica-
tions.
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Figure 6.11: First-order low-pass log-domain filter

6.3 Class-A log-domain filter design examples

Under class-A operation, the collector currents of the transistors in the log-
domain filter have to be strictly positive for the transistor to work in the active
exponential region. Consequently, the ac signal has to be superimposed on a
dc bias current Io. That is, for a correct operation of the input and output
filter stages without clipping distortion, the relation Iin, Iout > −Io has to be
satisfied at all times.

A few class-A log-domain integrator design examples will be presented
here.

6.3.1 Bipolar multiple-input log-domain integrator

One example of an low-power log-domain integrator is given in Fig.?? [15],
which represents a bipolar multiple-input log-domain integrator.

A pair of log-domain cells with opposite polarities and an integrating ca-
pacitor form the core of the integrator. Vip and Vin are the noninverting and
inverting input voltages, respectively, and the input currents are Iip and Iin,
which are superimposed on the dc bias currents. The output voltage Vo is given
by the voltage across the capacitor. The circuit is composed of two identical
log-domains cells, a voltage buffer, and a current mirror. The log-domain cells
Q1-Q2 and Q3-Q4 generate the log-domain currents Ic2 and Ic4, respectively.
A voltage buffer realized by Q5-Q6 is inserted between them. Therefore, the
output log-domain voltage Vo at the emitter of Q2 also appears at the emitter
of Q4. Finally, to obtain a log-domain integrator equation, a current mirror
Q7-Q8 is used to realize the difference between the two log-domain currents
on the capacitor node. The connection from the bases of transistors Q7 and
Q8 to the collector of Q6 closes the feedback loop around Q6 and Q7. This
connection is convenient because it ensures that the overall voltage headroom
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is minimized. The equation that relates the input and output voltages to the
current flowing in the integrating capacitor becomes

Ci
dVo

dt
= (Io + Iip)e

Vip−Vo

VT − (Io + Iin)e
Vin−Vo

VT (6.19)

4� 4� 4�4�

&L

9LS

4� 4�

4� 4�
9R 9R 9LQ

,R

,R

,R

,R

,R

,R

,R

,R

,LS ,LQ

�D�

�,R� &L

�E�

9R

9LQ

9LS
,LS

� �

,LQ
��

Figure 6.12: (a) The multiple-input low power log-domain integrator, and (b)
its symbol [15]

Notice that the input and output voltages of the integrator are at the same
dc level. Therefore log-domain filter synthesis can easily be achieved by direct
coupling of these integrators.

6.3.2 CMOS multiple-input log-domain integrator

Log-domain filters can also be implemented using MOS transistors biased in
weak inversion (WI) in order to preserve the exponential I-V characteristic
required by the log-domain companding principle. MOS transistors do not
suffer from the base current drawback of bipolar transistors. On the other
hand, maintaining the transistors biased in weak inversion usually requires
large devices and results in frequency limitations. The CMOS integrator pro-
posed in [16] is given in Fig.6.13.

Note that the relation between the input and output voltages and the
capacitance current is also given by Eq.6.19. In the previous implementa-
tion shown in Fig.6.12, the integration capacitor is connected to the emitter
(or source for MOS in WI) of a transistor. In this way, the capacitor is
charged/discharged by a current which is exponentially dependent on the ca-
pacitor voltage, representing an inherent feedback. In the implementation in
Fig.6.13, the same feedback is accomplished by connecting the capacitor to the
drain of the exponential transconductors, M2 and M3, while the capacitance
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Figure 6.13: Inverting and noninverting Class-A CMOS log-domain integrator
[16]

voltage is sensed at their source through the adjustable level shifter made of
current source Io and transistors M3 and M5. The capacitor is now discharged
by the drain current of transistor M3 and charged by the drain current of M2

through the current mirror M7-M8.

6.3.3 New high-frequency log-domain integrator in CMOS tech-
nology

Usually, only active devices are used to implement translinear circuits, being
bipolar transistors [17], MOS transistors in the weak inversion region [18] or
lateral bipolar transistors in standard CMOS technology [19].

Due to low-cost fabrication process, effors have been taken to extend the
log-domain approach from bipolar to CMOS technology. In addition to the
economic reasons, MOS transistors do not suffer from the base current draw-
back of bipolar transistors. The exponential dependence of the drain current
upon the gate-source voltage in subthreshold operation may suggest the use of
MOS devices in DTL circuits. However, since such conditions are met by only
a large device width or low current density, the speed of subthreshold circuits
is severely limited. The same high frequency limitation holds for lateral bipo-
lar transistors in standard CMOS technology [19]. An alternative topology to
implement DTL and Log-domain circuits, which improves the high-frequency
performance, is proposed here [20]. It is based on the exponential relation
between voltage and current of passive PN-diodes (diode connection of lateral
PNP transistor in CMOS technology), shown in Fig.6.14, and uses the CMOS
transistor only to provide gain, in accordance with the original idea proposed
by Adams [3].
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Lateral PNP transistor

Vertical PNP transistor �D�

�E�

Figure 6.14: (a) CMOS process cross section [Duerden et al., ISCAS 2001] (b)
Schematic representation of PNP transistors

The earliest log-domain filter as proposed by Adams, 1979, lends itself to
be implemented in any CMOS IC technology and does not require exponential
behavior of the CMOS transistors. See Fig. 6.15. The circuit is a first-order
low-pass filter. The analysis of this circuit is given below.

Figure 6.15: Adams’ low-pass log-domain filter

The four (exponential) diodes, D1-D4, constitute a TL loop. The combi-
nation of the capacitor C, the right voltage follower (an opamp in unity-gain
configuration) and diode D4 is similar to the output sub-circuit shown in
Fig. 1. Diode D3 is biased by a dc current Io and therefore complies with
a constant voltage source. The output current flows through diode D4. The
current through D2 equals (Io + Icap) and the input current, together with
biasing current Ibias, flows through diode D1. According to the TL principle,
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the products of the currents of forward biased junctions in the clockwise and
counter-clockwise oriented devices are equal. Hence:

(Ibias + Iin)Io = (Io + Icap)(Idc + Iout) (6.20)

Using 6.16 and 6.20, this yields:

CVT İout + IoIout = IoIin (6.21)

which represents the linear differential equation of a low-pass filter.

Voltage follower

The main requirements of the voltage followers that are employed in the circuit
of Fig.6.15 are high-frequency response, low gain error, high linearity and
a sufficiently low output resistance. The proposed voltage follower, to be
implemented in CMOS technology, is based on a symmetrical structure of
a two-stage topology [21]. Compared to single-stage topologies, two-stage
topologies increase the loop gain and therefore decrease the output impedance
of the circuit. The characteristics of this particular circuit are a nominally
zero systematic offset and highly reduced harmonic distortion and transfer
gain error.

The two-stage topology adopts the Miller compensation technique to achieve
stability in closed-loop conditions. However, such compensation also results in
a right half-plane zero in the open-loop gain, due to the forward path through
the compensation capacitor to the output. The right half-plane zero reduces
the maximum achievable gain-bandwidth product, since it makes a negative
phase contribution to the open-loop gain at a relatively high frequency. An
optimized compensation strategy is based on the use of a voltage follower [22].
It efficiently uses the finite output conductance of a voltage buffer to pro-
vide pole-zero compensation, thus allowing a great increase in the loopgain-
poles [23] product to be achieved. The voltage buffer is implemented with the
common-drain configuration shown in Fig. 6.16.

Vdd

out

in
CM

CI CC

Figure 6.16: Voltage buffer for frequency compensation

The circuit diagram of the voltage follower is depicted in Fig.6.17. M1 and
M2 form the source-coupled pair of the differential stage. M3 and M4 are both
diode-connected to improve the symmetry of the topology. Transistors M5
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and M6 enhance the overall loop gain while maintaining identical source-drain
voltage drops across transistors M7 and M8. Transistors M7-M14 implement
the bias circuit. M13 is employed to obtain a good matching between p-
channel and n-channel current sources. Finally, transistor M15 is used for
the frequency compensation as described above. M1-M4 and M5-M9 have the
same aspect ratios respectively.

1M 3M 4M
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11M 12M

14M

13M

BIASI

9M

8M

5M 6M

7M

LC

outin

15M

CI
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Figure 6.17: Circuit diagram of the voltage follower

Simulation results

The circuit was simulated using PSPICE transistor and diode models of the
0.35 µm CMOS Si-gate AMS IC process. The filter has been designed to
operate from a 3.3-V supply . Bias current Io ranges from 50nA to 0.5mA.

Fig.6.18 depicts the cut-off frequency as a function of current Io for four
different capacitance (C) values: 100 fF, 1 pF, 10 pF and 100 pF.

From this plot, it can be deduced that this filter can be controlled over a
wide frequency range. Also indicated is that the filter exhibits less than 1%
THD for a capacitance equal to 10 pF for a 316 kHz input signal and 2.4%
THD for a capacitance equal to 100 fF at 100 MHz. The cut-off frequency for
Io = 50µA and C = 100 fF equals 222 MHz. Note that this circuit exhibits
a better high-frequency performance than the circuit presented in [3] which
yields a cut-off frequency below 30 MHz.

The AC response of the low-pass filter with Io equal to 5 nA, 50 nA, 0.5µ
A, 5µA and 50µA, respectively, and C equal to 10pF is shown in Fig.6.19. The
cut-off frequencies of these filter responses are 3.13 kHz, 31.6 kHz, 316.2 kHz,
3.10 MHz and 31.62 MHz, respectively.

Note that either lossless or inverting lossy integrators can be realized by
adding appropriate unity-gain positive feedback or applying current mirrors
respectively.
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Figure 6.18: Simulated cut-off frequency as a function of current Io for five
different capacitor values.
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Figure 6.19: Simulated log domain filter response with C = 10pF.

As was mentioned before, using the companding principle one can design
analog integrated circuits with higher Dynamic Range compared to conven-
tional circuit design techniques. Moreover, the Dynamic Range of low-voltage
companding analog circuits can further be extended using Class-AB current-
mode based circuit topologies, which will be discussed in the next section.

6.4 Low-power Class-AB Sinh Integrators

Class AB circuit design is an efficient approach to matching the requirements of
good linearity, low noise contribution and low power consumption. In a Class-
AB topology the quiescent bias levels in the actives devices are set at relatively
low levels, usually much lower than the expected signal swings. Consequently,
for small signals the circuit operates in Class-A and for large signal swings
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operates with the efficiency of a Class-B design. This results in a higher
Dynamic Range (DR) compared to conventional Class-A operation together
with an improvement in power efficiency.

In log-domain filters operating in class A, the currents are limited by
Iin, Iout > −Io. This means that the restriction in current-mode circuits is only
single-sided. Hence, the combination of the companding circuit technique and
Class-AB operation enables us to obtain more power-efficient analog signal
processing where the DR can be extended without increasing the maximum
SNR or the quiescent power consumption.

The hyperbolic-sine (Sinh) function is at the base of most of the Class-AB
translinear filters. Instead of a single transistor in common-emitter configu-
ration as for class A integrators, the class-AB sinh filter is characterized by
hyperbolic-sine transconductors, as described in the following sections.

6.4.1 A State-Space formulation for Class-AB Log-domain in-
tegrator

In [24], a general state-space description for a sinh filter has been proposed.
The formulation consists of the hyperbolic sine mapping on the state variable.
As an example, consider a first-order lowpass state-space description

ẋ = −ω0x + ω0u

y = x (6.22)

Applying the state variable mapping, the state-space variables can now be
expressed as

x = 2CVT sinh(Vcap/2VT )
u = 2CVT sinh(Vin/2VT ) (6.23)

resulting in the externally linear internally nonlinear system defined by

CV̇cap = 2CVT ω0{cosh(Vin − Vcap)/2VT ]− 1}tanh(Vcap/2VT )
+2CVT ω0sinh[(Vin − Vcap)/2VT ]

Iout = 2CVT sinh(Vcap/2VT ) (6.24)

The circuit which realizes this state-space representation is shown in Fig.
6.20. The corresponding mapping contains compound transistors in order to
implement the tanh function.

The analysis of this first-order low-pass filter consists of 5 static and 1
dynamic fundamental translinear loops, given by
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Figure 6.20: Class-AB Sinh low-pass filter [24]

STL:

IQ2IQ3 = IQ1IQ4 ⇒ Iin+Iin− = I2
dc/4 (6.25)

IQ6IQ7 = IQ5IQ8 ⇒ Ip1Ip2 = I2
o/4 (6.26)

IQ12IQ13 = IQ11IQ14 ⇒ Iout+Iout− = I2
dc/4 (6.27)

IQ2IQ6IQ12 = IQ1IQ5IQ11 ⇒ 8Iin+Ip1Iout+ = IoI
2
dc/4 (6.28)

IQ9IQ12IQ12 = IQ10IQ11IQ11 ⇒ 4I9I
2
out+ = I10I

2
dc (6.29)

DTL:

Icap = 2CVT
İout+

Iout+
(6.30)

where the dot represents differentiation with respect to time. It is interesting
to notice that the corresponding loops in 6.25, 6.26 and 6.27 are geometric
mean TL loop equations and the loop defined by 6.29 contains both compound
transistors, Q11 and Q12, and single bipolar transistors, Q9 and Q10.

Thus, for the differential pairs, the currents IQ11 and IQ12 can be defined
and is given by

I9 =
1
2
(2Ip1 − Io − Icap) (6.31)

I10 =
1
2
(2Ip2 − Io + Icap) (6.32)

And from relations 6.25-6.28 we can define Ip1 and Ip2 in terms of Iin+,
Iin−, Iout+ and Iout−, which yields
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Ip1 =
IoI

2
dc

8Iin+Iout+
(6.33)

Ip2 =
IoI

2
dc

8Iin−Iout−
(6.34)

Then, applying these equations into 6.31-6.32 we can also represent I9 and
I10 in terms of the input and output currents, and replacing these values in
6.29, we finally end up with the linear differential equation representing the
low-pass filter

Iin = Iout +
2CVT

Io
İout (6.35)

6.4.2 New Class-AB Sinh integrator based on State-Space for-
mulation using single transistors

The circuit shown in Fig.6.20 contains compound and single transistors. In
order to have the TL loops with only single transistors, a new structure for
the Class-AB Sinh lossy integrator is presented here. The schematic is shown
in Fig.6.21.
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Figure 6.21: New Class-AB Sinh low-pass filter

The proposed integrator consists of three hyperbolic-sine transconductors,
Q1 −Q4, Q5 −Q8 and Q11 −Q14, two static TL loops comprising transistors
Q16−Q15−Q9−Q10−Q11−Q12 and Q1−Q2−Q5−Q6−Q11−Q12 and one
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dynamic TL loop C−Q11−Q12. The translinear analysis of the new integrator
is the same as the one presented in Section6.4.1. As one can see, in order to
implement Eq.6.29, the transistors Q15 and Q16 have been introduced.

To validate the correct mapping of the equations, we have implemented the
lossy integrator using quasi-ideal exponential devices, i.e. bipolar transistors
with very large current gain (β = 106). The transient responses of the input
currents (Iin+ and Iin−) and the output current (Iout); the capacitance current
Icap and the intermediate currents Ip1− I9 and Ip2− I10 are given in Fig.6.22a
and Fig.6.22b, respectively, showing the correct mapping of the equations
presented in previous section. Note that from Eq.6.31 and Eq.6.32, we have

Ip1 − I9 =
1
2
(Io + Icap) (6.36)

Ip2 − I10 =
1
2
(Io − Icap) (6.37)

which corresponds to the waveforms shown in Fig.6.22b.
As one can see, the generic state-space formulation for sinh integrators is

quite abstract and does not provide much insight into the operation of these
filters. Due to this fact, we will present in the next sections other approaches
for sinh filter design which are much easier to apply to both the synthesis and
analysis of Class-AB filters.

6.4.3 Companding Sinh Integrator

The design proposed in [25]] is based on the general block diagram of a com-
panding integrator, defined by Seevinck [4].

The block diagram of a companding sinh integrator is given in Fig.6.23.
It consists of a divider, a linear time integrator, a hyperbolic-sine expander
block that generates the output current Iout from the internal capacitance volt-
age Vcap, Iout = sinh(Vcap), and a hyperbolic-cosine block that generates the
derivative of the output signal Iout with respect to Vcap, Icosh = dsinh(Vcap)

dVcap
=

cosh(Vcap).
From the bock diagram given in Fig.6.23, one can see that the capacitance

current can be defined as

Icap =
Iin

Icosh
(6.38)

The V-I transfer function of the sinh output structure, is described by

Iout = 2Iosinh(
Vcap

VT
) = Ioe

Vcap
VT − Ioe

−Vcap
VT . (6.39)

Despite the nonlinear relations of the output current to the capacitance
voltage and the capacitance current to the input current, the integrator can be
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Figure 6.22: Transient response of the New Class-AB Sinh integrator based
on State-Space formulation ,(a) (Iin+, Iin−) and (Iout), (b) Icap, Ip1 − I9 and
Ip2 − I10

considered to be an implementation of a first-order linear differential equation
Iin = dIout/dt by applying the chain rule

Iin = Icap · Icosh = C · dVcap

dt
· dsinh(Vcap)

dVcap
⇒ Iin = C · dIout

dt
. (6.40)

Circuit design

To implement the companding integrator presented in Fig.6.23, a class-AB
sinh integrator has been proposed in [25]. The basic schematic is shown in
Fig. 6.24.
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Figure 6.23: Block diagram of the companding sinh integrator
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Figure 6.24: Schematic of the lossless sinh integrator [25]

The translinear analysis of this circuit is quite simply. First, a current
splitter is required to split the input current Iin into two parts, Iin+ and Iin−,
both strictly positive, such that

Iin = Iin+ − Iin− (6.41)
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The current splitter comprising transistors Q1 through Q4 is a geometric-
mean current splitter, and implements the function

IQ2IQ3 = IQ1IQ4 ⇒ Iin+Iin− = I2
dc (6.42)

The dividers for both positive and negative inputs are given by the translin-
ear loops Q5A −Q6A −Q7A −Q8A and Q5B −Q6B −Q7B −Q8B respectively,
which yields

I5AI6A = I7AI8A ⇒ (Iin+)Io = (Iout+ + Iout−)I8A (6.43)
I5BI6B = I7BI8B ⇒ (Iin−)Io = (Iout+ + Iout−)I8B (6.44)

The current flowing through the capacitor is given by

Icap = I8A − I8B (6.45)

In addition, from the DTL loops, the capacitance current can be related
to the output currents by

Icap = CVT
İout+

Iout+
= −CVT

İout−
Iout−

(6.46)

Finally, applying 6.41, 6.43, 6.44 and 6.46 into 6.45 and considering a Sinh
output stage which implements Iout = Iout+ − Iout−, we end up with

IoIin = CVT İout (6.47)

which represents a linear lossless integrator. Note that applying a unity-
feedback path from the output to the input, one can obtain a lossy integrator
configuration.

6.4.4 New Ultra Low-power Class-AB Sinh Integrator

To implement the companding integrator presented in Fig.6.23, we propose a
new ultra low-power Class-AB sinh integrator. The schematic of the completed
integrator is given in Fig.6.25.

Instead of a single transistor in common-emitter configuration in class A in-
tegrators, the class-AB sinh filter is characterized by hyperbolic-sine transcon-
ductors.

One can analyze the new sinh integrator in terms of Translinear Loops
(TL). As seen from Fig. 6.25, the integrator consists mainly of 3 sinh transcon-
ductors, defined from the translinear loops Q1A − Q2A − Q2B − Q1B, Q3A −
Q4A−Q4B −Q3B and Q5A−Q6A−Q6B −Q5B, which implement the current
splitter, the divider-Cosh block and the Sinh output stage, respectively.

At the output, the relation between Iout, Iout+ and Iout−, defined from the
Sinh output stage Q5A −Q6A −Q6B −Q5B, is described by
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Figure 6.25: Circuit diagram of the proposed class-AB sinh integrator

Iout = Iout+ − Iout− (6.48)
Iout+ · Iout− = I2

dc. (6.49)

The current splitter comprising transistors Q1A through Q1B, which is a
geometric-mean current splitter, implements

Iin = Iin+ − Iin− (6.50)
Iin+ · Iin− = Iout+ · Iout− = I2

dc. (6.51)

In addition, the third sinh transconductor Q3A−Q4A−Q4B−Q3B realizes
the divider-Cosh block, thus defining the correct non-linear current through
the capacitor to obtain a global linearization, i.e., an externally linear transfer
function. The currents ICA, ICB and Icap are given by

Icap = ICA − ICB (6.52)

ICA · ICB =
IdcIo

Icosh
· IdcIo

Icosh
(6.53)

assuming Icosh = Iout+ + Iout−. Hence, considering also the static translinear
loop Q1A −Q2A −Q3A −Q4A −Q5A −Q6A, we have

IQ1A
IQ3A

IQ5A
= IQ2A

IQ4A
IQ6A

⇒ Iout+ · IdcIo

Icosh
· Idc = Iin− · ICA · Iout+. (6.54)
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Thus, substituting Eq.6.51 into Eq.6.54, we end up with

ICA =
Iin+Io

Icosh
(6.55)

and having Eq.6.55, Eq.6.53 and Eq.6.51, the current ICB can be written as

ICB =
Iin−Io

Icosh
. (6.56)

Subtracting Eq.6.56 from Eq.6.55 results in

ICA − ICB =
Iin+Io

Icosh
− Iin−Io

Icosh
⇒ Icap =

IinIo

Icosh
. (6.57)

From Eq.6.57, we can verify that the proposed integrator indeed imple-
ments a companding sinh integrator as shown in Fig.6.23. Next, from the
dynamic translinear loops, consisting of C −Q5A −Q6A and C −Q5B −Q6B,
we obtain

IcapIout+ = CVT İout+ (6.58)

and

IcapIout− = −CVT İout− (6.59)

where the dot represents differentiation with respect to time. Finally, substi-
tuting Eq.6.58 and Eq.6.59 in Eq.6.57, we can obtain the input-output relation

Iin =
CVT

Io
İout (6.60)

which is a linear differential equation, describing an inherent lossless com-
panding integrator with time constant τ = CVT

Io
. In order to obtain a lossy

integrator we can easily introduce a negative feedback path from the output
to the input of the integrator, resulting in

Iin = Iout +
CVT

Io
İout (6.61)

describing a first-order low-pass filter with cutoff frequency ωC according to

ωC =
Io

CVT
. (6.62)

Simulating first the proposed integrator using quasi-ideal exponential de-
vices, i.e. bipolar transistors with very large current gain (β = 106), one can
see in Fig.6.26 the magnitude of the frequency response of the sinh lossy in-
tegrator, with the cutoff frequency varying from 318 Hz to 636 kHz, showing
the large frequency tuning range typical to translinear filters.

The externally linear internally nonlinear (ELIN) behavior of the integrator
can be seen from the output current and the capacitance current, respectively,
in Fig.6.27 for an input signal swing much larger than the bias current Io.
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CMOS Integrator Implementation

To validate the circuit principle, we have implemented and simulated the pro-
posed integrator using models of AMS’s 0.35 µm CMOS IC technology. The
circuit has been designed to operate from a 1.5-V (± 0.75V) supply voltage.
The schematic of the completed integrator is given in Fig.6.28. The bipolar
transistors have been replaced by equivalent CMOS transistors operating in
weak inversion. The transistors have an aspect ratio of 100µ/1µ, in order to
extend the weak inversion operation up to 2µA. In addition, to realize the
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expression IoIdc
Icosh

, we added in the loops transistors M7 and M8. The current
Icosh can be obtained easily by adding the positive and the negative output
currents.
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Figure 6.28: Schematic of the CMOS class-AB sinh integrator

In class-AB operation, a static non-linear current splitter is used at the
input to divide the bipolar input current Iin into two currents Iin+ and Iin−,
which are both strictly positive. The current splitter presented here is a
geometric-mean splitter, comprising transistors M1A − M2A − M2B − M1B,
where the corresponding equations are given by

Iin+, Iin− =
±Iin +

√
I2
in + 4I2

o

2
. (6.63)

The output splitter currents are shown in fig.6.29, for a sinusoidal input
signal with an amplitude of 10nA and a bias current Io of 1nA.

As shown in Fig. 6.23, and in Eq.6.48 and Eq.6.57, the companding inte-
grator can be characterized by a hyperbolic-sine transconductor at the output
and a combined cosh-divider block at the input, which relates the currents
Iout and Icosh = Iin·Io

Icap
to the capacitance voltage Vcap, respectively. The simu-

lated transfer functions of those blocks are shown in Fig. 6.30. The simulated
output current with respect to the capacitance voltage is shown in Fig. 6.30a
whereas the ratio between the input and capacitance currents versus Vcap is
illustrated in Fig. 6.30b.
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Figure 6.29: Simulated current splitter output currents

-0.06 -0.04 -0.02 0 0.02 0.04 0.06
-10

-8

-6

-4

-2

0

2

4

6

8

10

Vcap

Io
ut

 (
nA

)

(a)

-0.06 -0.04 -0.02 0 0.02 0.04 0.06
0

1

3

5

7

9

11

Vcap

Ic
os

h 
(n

A
)

(b)
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(a) output current Iout and (b) Icosh

The hyperbolic-sinusoidal transconductance of the output stage results in
an inherently nonlinear dynamic relation between Icap and Iout, which can be
described by [7]

Icap = CVT
İout√

I2
out + 4I2

o

. (6.64)

As shown in Fig.6.31, Icap is nearly sinusoidal for low values of m, where
m represents the modulation index (m = Iin/Io). This linear behavior can
be explained through the denominator of Eq.6.64, which does not vary that
much for low output currents. Thus, the Icap is more or less proportional to
the derivative of Iout. The capacitance current becomes more nonlinear when
m increases, i.e. for large output swings, as seen in Fig.6.31.

However, despite the nonlinear nature of the capacitance currents in sinh
integrators, an exactly linear transfer function can be realized, as one can see
in Fig.6.32, where the output is still defined by a sine function for m varying
from 1 to 20.
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Figure 6.31: Simulated capacitance current Icap with Io equals 1nA and input
amplitude changing from 1nA to 20nA
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Figure 6.32: Simulated output current Iout with Io equals 1nA and input
amplitude changing from 1nA to 20nA

In addition, one can see the linear tunability of the filter, described in
Eq.6.61, from the simulated frequency response, given in Fig.6.33. With ref-
erence to Eq.6.62, the cutoff frequency is directly proportional to bias current
Io, changing from 318 Hz to 1.2 MHz with Io equal to 500 pA and 2 µA,
respectively, and C equal to 10 pF. Thus, it can be deduced that the cutoff
frequency of the filter can be linearly controlled over a wide frequency range.

The Dynamic Range (DR), defined as the ratio between the maximum
signal amplitude for a given distortion (in this case, 1-dB compression point)
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and the noise floor, is shown in Fig.6.34. The output RMS current noise is
4.2pA, resulting in a DR at the 1-dB compression point of approximately 75
dB.
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Figure 6.34: Signal-to-noise ratio at 1dB compression point for Io = 1nA

Fig.6.35 shows the total harmonic distortion (THD) at the output as a
function of the modulation index m and input signal frequency. At a frequency
much lower than the cutoff frequency (fc), i.e. fc/10, the THD is kept below
1%, with a modulation index as high as 20. As expected, the THD increases
for an input signal frequency close to fc. In this case, fc equals 636 Hz and
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results in a THD at the cutoff frequency of 0.3% for m = 1 and 3.2% for
m = 20. The performance of the filter is summarized in Table 6.1.
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Figure 6.35: Total Harmonic Distortion versus m for frequencies @fc and
@fc/10

Table 6.1: Performance of the proposed integrator for two different cutoff
frequencies

Technology 0.35µm CMOS
Bias current Io = 1nA Io = 2µA
Capacitance 10pF 10pF
Supply voltage 1.5V 1.5V
Center frequency (fc) 636Hz 1.27MHz
Total bias Io (Lossless integrator) 11nA 22µA
Total bias Io (Lossy integrator) 14nA 28µA
Power dissipation 22.5 nW 45 µW
Dynamic Range (1-dB) 75 dB 75 dB
Noise current (rms) 4.2pA 6.9nA
Supply voltage range 1V - 3V 1.5V - 3V
Power diss. per pole & fc 35.37pJ 35.37pJ

Table.6.2 makes a comparison with other log-domain Class-AB designs.
The first advantage of this design is that it uses only one capacitor to im-
plement a Class-AB integrator, which saves considerable chip area. This is
particularly important for low-frequency designs where we inevitably need to
use large capacitance values. Furthermore, the proposed circuit presents an
excellent performance with respect to power efficiency. The power efficiency
of a continuous-time filter is a figure of merit used in comparing various filter



6.5 Discussion 143

topologies and can be estimated by means of the power dissipation per pole
Pdiss & cut-off frequency fc, defined as Pdiss

fc
[30].

Table 6.2: Performance comparison of the proposed class-AB integrator with
other implementation

Serdijn PunzenbergerEl-Gamal Python Redondo This work
et al. [25] et al. [26] et al. [27]et al. [28]et al. [29]

Technology Bipolar BiCMOS Bipolar CMOS CMOS CMOS
Capacitance 1 · C 2 · C 2 · C 2 · C 2 · C 1 · C
Bias current
(without splitter) 13 · Io 11 · Io 12 · Io 12 · Io 13 · Io 9 · Io

Supply voltage 3.3V 1.2V 1.2V 1.5V 1V 1.5V
Cut-off freq. (ωc) Io

CVT

Io

CVT

Io

CVT

Io

CVT

Io

CVT

Io

CVT

Pdiss per pole
& ωc (quiescent) 42 · CVT 13 · CVT 14 · CVT 18 · CVT 13 · CVT 13 · CVT

Conclusions

A new ultra low-power Class-AB Sinh integrator based on hyperbolic-sine
transconductors is presented. The proposed integrator uses only one grounded
capacitor and shows excellent power efficiency, compared with existing log-
domain Class-AB implementations. The lossy integrator is simulated using
CMOS transistors in weak-inversion, operating from a 1.5-V (± 0.75V) supply
voltage. The total current consumption of the first-order low-pass filter is
14nA and the DR at the 1-dB compression point is 75 dB. The filter can
handle signals much larger than the bias current, while keeping THD below
1%.

6.5 Discussion

In the linear transconductors presented here, the input transistors are kept in
the triode-region to benefit from the lowest Gm/ID ratio. The main advantage
of this technique is the ability to obtain extremely small transconductances,
which enable us to design very low-frequency filters. Translinear circuits be-
come difficult to integrate when it’s necessary to design low cutoff-frequency
filters for use in the Hz and sub-Hz range. For example, for Gm = 1nA/V ,
the proposed transconductor need to be biased with a quiescent current Io

= 315pA. To achieve the same time constant and considering the same bias
current, the translinear circuits needs an increase of 12.6 times in the capaci-
tor value. Or, to maintain the same capacitor, it is necessary to decrease the
current to 25pA, which is difficult to obtain precisely.

Contrary to the Translinear approach, the time constant of the filter (and,
of course, the corresponding cut-off frequency) is controlled by a voltage rather
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than by a current, which is limited by the supply voltage; whereas the fre-
quency tunability of the translinear circuits can be controlled over a wide
range, usually several decades. Moreover, in linear Gm-C filters, due to the
inherently non-linear behavior of the transistors, the transconductors have
to be linearized, in order to implement the desire transfer function. This un-
avoidably degrades the available transconductance, resulting in a poor current
efficiency.

The main advantages of translinear circuits with respect to other low-power
techniques are, first of all, the property of handle a large dynamic range in a
low-voltage environment. In contrast to Gm-C filters, the capacitor current is
no longer a linear function of the input voltage, but an exponential one. This
means, that the voltages in translinear filters are logarithmically related to
the currents, and, as a result, the voltage excursions are small, typically only
a few tens of millivolts. Thus, the maximum signal swing in a current-mode
circuit is not limited by the supply voltage anymore.

Second of all, the static and dynamic translinear principles can be ap-
plied to the implementation of a wide variety of nonlinear functions, static
nonlinear polynomial transfer functions and nonlinear differential equations,
respectively. Also, only transistors and capacitors are required to realize a
filter function. Since in conventional ultra low-power designs resistors would
become too large for on-chip integration, their superfluity is a very important
advantage. Other advantages are that they present a high functional density
and are theoretically process and temperature independent.

6.6 Conclusions

Several ultra low-power integrator designs were presented in this chapter. The
integrators were based on two different techniques, being the Gm-C approach
and the translinear (log-domain) method. The advantages and the limitations
of these techniques were also highlighted. To summarize, both techniques can
be directly used in low-power analog filters and ultra low-power biomedical
systems designs, as can be seen in the next chapter.
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Chapter 7

Ultra Low-power Biomedical
System Designs

“There’s nothing you can do that

cannot be done.” - Lennon/McCartney

The methodology presented in previous chapters will now be employed in
the design of several ultra low-power biomedical systems and analog wavelet
filters.

In the first part of this chapter, a benchmark cardiac sense amplifier, i.e.
the front end of a pacemaker, based on the Dynamic Translinear (DTL) circuit
technique is presented. The system consists of a voltage-to-current converter,
a bandpass filter, absolute value and RMS-DC converter circuits and an event
detection circuit. From simulations, it is demonstrated that the DTL tech-
nique is a good alternative to conventional sense amplifiers for intra cardiac
applications since they handle the required dynamic range and perform non-
linear operations at low supply voltages.

Another approach for ultra low-power analog QRS complex detection cir-
cuit, for pacemaker applications, is presented in this chapter. The system is
based on the Wavelet Transform (WT) and detects the wavelet modulus max-
ima of the QRS complex. It consists of a wavelet transform filter based on
CFOS approach, an absolute value circuit, a peak detector and a comparator.
Simulations indicate a good performance of the Wavelet Transform and the
QRS complex detection.

To validate both systems principles and to check the circuits performances,
the sub-circuits as well as the whole systems have been implemented in our
in-house bipolar semi-custom DIMES IC process, SIC3A. Typical transistor
parameters are fT,npn,max = 15GHz and βF,npn = 150 (smallest emitter size)
[1].

Moreover, a few wavelet filter designs will also be presented. Two conve-
nient methods to provide the transfer function of the wavelet filter are given
by the Padé and L2 approximations and, thus, two designs based on these
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approaches, for Gaussian wavelet base,will be designed using the Gm-C and
the DTL circuit techniques, respectively. In addition, a complex wavelet filter
design, based on the combination of the real and the imaginary state-space
descriptions is described.

Finally, the implementation of a Morlet wavelet filter using the procedure
in Chapter 4 is presented. First, the approximation based on the Padé method
is used to calculate the transfer function of the filter, whose impulse response
is the Morlet wavelet base. Next, to meet low-power low-voltage requirements,
we optimize the state-space description of the filter with respect to dynamic
range, sensitivity and sparsity, as presented in Chapter 5. The filter design that
follows is based on an orthonormal ladder structure and employs log-domain
integrators as main building blocks. We have implemented the log-domain
state-space wavelet filter in IBM’s 0.18µm BiCMOS IC process.

7.1 Dynamic Translinear Cardiac Sense Amplifier
for Pacemakers

Conventional pacemaker topologies usually are divided into an analog part
(comprising a sense amplifier and a heart stimulator) and a digital part (com-
prising a micro controller). The sense amplifier plays a fundamental role in
providing information about the current state of the heart. It is designed to
detect and monitor intracardiac signal events (e.g., R-waves in the ventricle).
After signal sensing, the signal is fed to the digital microprocessor that decides
upon the appropriate pacing therapy to be delivered by the stimulator. How-
ever, the algorithm in the microprocessor requires from the sense amplifier the
accurate measurement of the heart activity even in the presence of noise and
interference. The diverse features of the intracardiac signals, therefore, require
a large dynamic range, i.e., a large signal-to-noise-plus-interference level, for
the sense amplifier.

This design presents the applicability of DTL circuits to the design of car-
diac sense amplifiers to be implemented in pacemakers. In Fig.7.1 a suitable
block diagram of a sense amplifier for cardiac signal detection is given [2].
The system consists of a V-I (voltage-to-current) converter, a bandpass fil-
ter, absolute value [3] and RMS-DC converter circuits [4], and a comparator
circuit ??. The chip microphotograph of the sense amplifier implemented in
SIC3A semi-custom IC process is given in Fig. 7.2. Additionally, an EMI fil-
ter is implemented off-chip for electromagnetic interference cancellation (not
shown). It is a 2nd order bandpass filter to suppress dc and signals beyond
1kHz. The V-I converter is required as the input and output quantities of the
EMI filter are voltages and translinear circuits are inherently current-mode as
will be treated in Section 3. The bandpass filter is used to specifically select
intra-cardiac signals, in our case being the QRS complex or R-wave, and to
minimize the effect of the overlapping myocardial interference signals and low
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frequency breathing artifacts. The center frequency of the bandpass filter is
located at 25 Hz. The reason to use an absolute value circuit is to be indepen-
dent from the electrode position in the heart. Accommodation to changes in
the average input signal level is realized using the RMS-DC converter. This
circuit implements two functions, a squarer-divider and a lowpass filter. At the
end of the block schematic, the detection signal (a binary value) is generated
depending upon a threshold level, which is given by:

IThr = IABS − (
3
4
IRMS + ICTh) (7.1)

where IThr is the adaptive threshold level, the IABS variable is the output
signal of the absolute value circuit. IRMS is the output of the RMS-DC con-
verter. ICTh is a constant value that can be derived from typical values of the
input signal.
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Figure 7.1: Block diagram of the sense amplifier

V-I converter

Bandpass filter

Absolute value circuit RMS-DC converter

Comparator

Figure 7.2: Sense amplifier chip microphotograph
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7.1.1 Differential voltage to single-ended current converter

The output signal of the EMI filter is a differential voltage, in the order of
a few millivolts, and the input signal of the bandpass filter is a single-ended
current. The required transformation of the differential input voltage into
a single-ended current can be simply performed by a differential pair loaded
by two current mirrors as shown in Fig.7.3. Note that the transconductance
factor is determined by the value of the current Io and equals Io/4VT . Since the
output nodes of the EMI filter are floating, the differential input nodes of the
V-I converter need to be biased at a voltage in between the power supplies.
This CM (common-mode) input voltage is set by the CM loop comprising
Q3-Q7 and approximates Vcc − 3Vbe.

+ + + +

++

+

-
Vin

Iout

Q1 Q2

Q3 Q4

Q5

Q6

Q7

Io

Q8 Q9 Q10 Q11

Q12 Q13

Figure 7.3: Differential input voltage to single-ended current converter

The dc transfer of the V-I converter circuit is given in Fig. 7.4. The value
of current Io is 10.4nA resulting in a transconductance factor of 0.18 µA/V to
accommodate the desired input signal range.

7.1.2 Bandpass filter

To achieve sufficient selectivity around 25 Hz the filter is implemented by a
cascade of two biquadratic bandpass filter sections. These biquads, in turn,
are realized by two lossy integrators according to the block diagram given in
Fig. 7.5a. The integrators comprise four transistors and one capacitor in a
loop and implement

CVT İout + IoIout = IoIin (7.2)
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Figure 7.4: DC transfer of the V-I converter (a) V-I characteristic (b)
Transconductance factor.

where Io is a dc bias current and Iout is the low-pass filtered version of Iin.
The expression above is a linear differential equation, describing a low-pass
filter with cutoff frequency ωC according to

ωC =
Io

CVT
(7.3)

In Fig. 7.5b the circuit diagram of one biquad for realizing a part of the
bandpass filter is given. The integrator loops are defined by transistors Q1-
Q4 and capacitor C1 and Q5-Q8 and C2, respectively. A positive feedback
network using current mirror Q11-Q12 turns the lossy integrator into a lossless
integrator.

For a system with the poles in Butterworth position the values of the
capacitances are given by

Lossy integrator:

C1 =
Io

VT (p1 + p2)
(7.4)

Lossless integrator:

C2 =
Io

VT
√

p1p2
(7.5)

where p1 and p2 are the poles of the Butterworth polynomial implemented by
the biquad. The magnitude and phase response of the bandpass filter is shown
in Fig.10a and Fig.10.b, respectively. Note that the center frequency of the
bandpass is indeed located around 25 Hz. The first biquad has Io and C1 and
C2 equal to 2nA, 80pF and 170pF respectively. For the second biquad these
values are 0.4nA, 94pF and 131pF, respectively.
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Figure 7.5: (a) Block diagram of the bandpass biquad filter (b) Circuit
schematic

7.1.3 Absolute value and RMS-DC converter circuits

Since the polarity of the input signal is not known, its absolute value is gener-
ated. The required function Iout = |Iin| is realized with the circuit in Fig.7.7
[3]. The translinear loop in the circuit consists of transistors Q2, Q1, Q5 and
Q7, implementing

(Io + Iout)(Io − Iout) = (Io + Iin)(Io − Iin) (7.6)

The dc transfer of the absolute value circuit is given in Fig.7.8. The circuit
provides correct operation up to Io.

The RMS transfer is implemented by a squarer/divider circuit [4] and a
low-pass filter and produces

Iout =
∫

I2
in

Iout
dt (7.7)

Its translinear differential equation describing a first-order RMS-DC con-
version then follows as

CVT İoutIout + IoI
2
out = IoI

2
in (7.8)

Note that this is a nonlinear differential equation. A possible implemen-
tation is shown in Fig.7.9 [4]. Q1 through Q6 form the static translinear loop
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Figure 7.6: Frequency response of the biquad (a) Magnitude (b) Phase
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Io

Iin

Iout
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Q1

Q4

Q3

Q5

Q8Q7

Q6

Figure 7.7: Absolute value circuit

implementing (Icap + Io)I2
out = IoI

2
in and C, Q4-Q6 the dynamic translinear

loop, implementing 2CVT Iout = IcapIout. The quadratic factors Iin2 and Iout2
are implemented by Q1-Q2 and Q5 - Q6 respectively. Q7 and Q8 are buffers
to avoid the base current error in Q2 and Q4.

The output current of the RMS-DC converter is a time average of the input
signal as seen from Eq.7.8. The cut-off frequency is given by Eq.7.3. To achieve
a cut-off frequency of 1.5Hz, the values of Io and C in Fig.7.9 are 0.125nA and
1nF respectively. A transient analysis of the RMS-DC converter connected
to the absolute value circuit is given in Fig.7.10. With a sinusoid applied at
the input to validate the operation of the circuit, having a frequency of 10Hz
and amplitude of 1.5nA, the RMS-DC circuit produces an output (drawn line)
amplitude around 1nA, which is close to the ideal response (dotted line).
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Figure 7.8: DC transfer of the absolute value circuit

Q1

Q2

Q7 Q8

Q3 Q4 Q5

Q6C 2Io

Io Iout
+

+

+
Iin

Figure 7.9: RMS-DC converter circuit

7.1.4 Detection (Sign function) circuit

Since TL circuits can implement polynomial functions only, we first need to
approximate the Sign function by a polynomial function. A static translinear
loop equation to achieve a good approximation to the Sign function is described
by [3]

(Io + Iin)(Io − Iout)(Io + Iout) = (Io − Iin)(Io + Iin)(Io + Iout) (7.9)

Figure 7.10: RMS-DC converter circuit
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yielding

{
Iout = 0 ifIin < 0
Iout = Io ifIin > 0

(7.10)

Its corresponding TL circuit is given in Fig. 7.11 [3].

+

+ + +

+

Io

Io - IinIo + Iin

Iout

Q1 Q2

Q3 Q4

Q5 Q6

Q7 Q8 Q9

Figure 7.11: Comparator circuit

In Fig. 7.12, the DC transfer of the comparator circuit, with Io equal to
1nA, is shown.

Figure 7.12: DC response of the comparator circuit

Finally, a test signal is applied to the system to verify the performance
and efficiency of the complete sense amplifier according to Fig.7.1. A typical
intra-cardiac signal measured in the ventricle, shown in Fig.7.13a, is applied
to the input of the system. The transient responses of the blocks are shown in
Fig.7.13b. The system is clearly able to detect the R-wave, which represents
the cardiac event that the circuit was supposed to detect.

The characteristics of the sense amplifier are summarized in Tab. 7.1.
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�D�

�E�

Figure 7.13: (a) Intra-cardiac signal (b) transient response of the complete
sense amplifier

Table 7.1: Simulated sense amplifier characteristics
Power supply 2.0V
Total bias current 120 nA
Power consumption 240 nW
Eq. rms noise voltage @ V-I converter input 0.1 mV
Eq. rms noise current @ Abs. value circuit output 3.6 pA
SNR @ Abs. value circuit output (10Hz - 1kHz) 39 dB
Eq. rms noise current @ comparator input while switching 6.5 pA

7.2 QRS-complex wavelet detection using CFOS

QRS complex detection is important for cardiac signal characterization. Many
systems have been designed in order to perform this task. In [5] it was shown
that, in spite of the existence of different types, a basic structure is common
for many algorithms. This common structure is given in Fig. 7.14a. It is
divided into a filtering stage (comprising linear and/or nonlinear filtering)
and a decision stage (comprising peak detection and decision logic).

The algorithm detection of the QRS complex presented here is based on
modulus maxima of the wavelet transform. The two maximas with opposite
signs of the WT correspond to the complex QRS and are illustrated in Fig.
7.14b.
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Figure 7.14: (a) Block diagram of the basic structure of the QRS detectors [5]
(b) Cardiac signal and the modulus maxima of the WT

The block diagram is given in Fig.7.15 and contains the required circuits
to design the QRS detection system [6].

At the input, a wavelet filter is situated which implements an approxi-
mation to the first derivative Gaussian WT. The complete filter comprises
multiple scales in parallel in order to compute the WT in real time. Subse-
quently, the signal is fed through an absolute value circuit, followed by a peak
detector, to generate an adjustable threshold level according to

Thj = Abs− 3
4
Peak (7.11)

with

{
Peak = Abs forAbs ≥ Peak
dPeak

dt = −τPeak forAbs ≤ Peak
(7.12)

where Thj is the threshold value for scale a=2j , Abs is the absolute value
and Peak is the output value of the peak detector circuit. τ is the time
constant of the peak detector and the d

dt represents differentiation with respect
to time.

The final signal processing block is a comparator in order to detect the
modulus maxima position of the QRS complex. The time localization of the
modulus maxima and the classification of characteristic points of the cardiac
signal is processed by the digital logic circuit, and will not be described here.
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Figure 7.15: Block diagram of the wavelet system

7.2.1 Filtering stage - CFOS wavelet filter

We first propose an analog bandpass filter, of which the impulse response is an
approximated first-derivative gaussian window function. In order to achieve
this, we adapted the Wavelet Transform filter introduced in [7]. This filter has
been implemented with a cascade of Complex First Order Systems (CFOS)
[8].

We apply the DTL circuit technique to the design of the analog imple-
mentation of the WT. In Fig.3, the equivalent dynamic translinear circuit for
realization of a CFOS is depicted. The related expressions are given by

İx(re) =
Io

CVT
Ix(re) − n

Io

CVT
Ix(im) +

Io

CVT
Iu(re) (7.13)

İx(im) =
Io

CVT
Ix(im) + n

Io

CVT
Ix(re) +

Io

CVT
Iu(im) (7.14)

where Iu(re) is the real input signal, Iu(im) is the imaginary input signal;
Ix(re) and Ix(im) represent the real and imaginary part of the output signal,
respectively. n is defined by n = ω

σ , where ω and σ are the corresponding
parameters of the complex first order system equation in Chapter 4. In order
to implement a Wavelet Transform, we need to be able to scale and shift
this Gaussian function in time. By changing the values of the capacitance C
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Figure 7.16: Equivalent DTL circuit for complex input for the analog CFOS
stages

accordingly we implement short windows at high frequencies and long windows
at low frequencies.

Fig. 7.17a shows the ideal impulse response of the wavelet filter with 3
CFOS stages, whereas in Fig.7.17b the simulated impulse response is pre-
sented. The number of stages has been chosen by trading time-frequency
resolution (Chapter 4) for power consumption and noise contribution. For
cardiac signal characterization, we are interested in the approximation to a
first derivative Gaussian function, which is present in the imaginary output.
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Figure 7.17: Impulse response of the wavelet filter with 3 CFOS stages (a)
Ideal, (b) Simulated response
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7.2.2 Decision stage - Absolute value and peak detector cir-
cuits

Fig. 7.18a. shows a simple circuit [9] to implement an absolute value function.
Its operation is given as follows: when Iin is positive, it is handled by current-
mirror Q1-Q2; when negative, it is conveyed to the summation node S by
cascode transistor Q3. The bias voltage at the base of Q3 is obtained by the
two diode-connected transistors Q4 and Q5. The basic design of the employed
peak detector is shown in Fig. 7.18b. Its operation is as follows: When
Iin > Ic,Q1 (collector current of Q1), capacitor C is rapidly charged by Q4
until Iin = Ic,Q1. For Iin < Ic,Q1, C is discharged by the rather small base
current of Q3. The comparator circuit described in Section 7.1 will also be
used here.

Iin

Iout_abs

Ibias

+ +

Q1 Q2

Q3

Q4

Q5

Q6 Q7
S

(a) (b)

C
Q1 Q2

Q3

Q4

+

+

Iin

Iout_peak

Ibias

Figure 7.18: (a) Absolute value circuit (b) Peak detector circuit

The DC response of the absolute value circuit is given in Fig.7.19a. |Iin|
is also shown, for reference purposes. The transient responses of the absolute
value and the peak detector circuits are provided in Fig. 7.19b, respectively,
for a ventricular signal at the absolute circuit input.

�D� �E�

Figure 7.19: (a) DC Response of the absolute value circuit (b) Transient re-
sponse of the absolute value and peak detector circuits with a ventricular
signal at the input.
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Finally, in order to verify the performance and efficiency of the whole sys-
tem, a set of cardiac signals was applied to the input of the system. Fig.7.20a
shows the ideal wavelet transform for 5 scales with a ventricular signal at the
input. In Fig.7.20b gives the simulation result of 3 CFOS stages; one can see
the similarity between the ideal WT and the WT from the CFOS filter.
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Figure 7.20: (a)Ideal wavelet transform (b)Wavelet using 3 CFOS stages

Then, to show the denoising property of the wavelet, we apply a noisy
signal into the QRS detection system. Fig.7.21b shows a typical ventricular
signal with 50Hz interference (input signal) and in Fig.7.21c gives the wavelet
transform at various scales. We can see in Fig.7.21d that the modulus maxima
of the QRS complex for a specific scale (a = 24) of the WT indeed have been
detected. The total power consumption is 55nW per scale.

7.2.3 Measurement results

A microphotograph of the circuit implemented in DIMES SIC3A IC process
is shown in Fig.7.22. In this design, we have chosen to have off-chip capaci-
tors. Hence, different wavelet scales can be obtained by simply using different
capacitance values. From the characteristics of cardiac signals we have chosen
to use the scales as defined in Table 7.2.

To check the performance of the wavelet filter, we will first measure its
impulse response. Ideally, an impulse is defined as a pulse with infinite am-
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(a)

(b)

(c)

(d)

Figure 7.21: (a)Ventricular signal (b)Ventricular signal with 50Hz interference
(c) the wavelet transform at five subsequent scales (d) QRS complex modulus
maxima detection for j=4.

V-I converter Wavelet filter Absolute value circuit

Peak detector circuit

Comparator

Figure 7.22: Chip microphotograph of the QRS-complex wavelet detection

plitude and zero width. Nevertheless, since the input signal is limited by the
bias current of the filter, we can not apply an impulse of infinite height. Also,
in order to deliver some energy to the circuit, we should give the pulse a finite
length. Strictly speaking, the response to a finite length pulse is not the same
as the mathematical impulse response. However, if the pulse length is short
compared to the length of the dynamics in the impulse response, the difference
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Table 7.2: Frequency response and capacitance value of the wavelet system
ate dyadic scales

Scale a Capac. C(F) Center Freq. (Hz) height
21 27.5p 174
22 55p 87
23 110p 43.5
24 220p 21.7
25 440p 11

is negligible. Then, to measure properly the impulse response of the filter, we
applied at the input an pulse signal of length 0.5ms. The imaginary and the
real output response of the filter with a 165pF (3 × 55pF) total capacitance
and a bias current Io equals 1nA is given in Fig. 7.23.

Imaginary output

Real output

Figure 7.23: Measured imaginary and real impulse responses

Fig.7.24 compares the measured impulse response from the imaginary out-
put of the wavelet filter with the simulated and the ideal responses using 3
CFOS stages. As one can see, the responses are very similar which confirms
the excellent performance of the filter.

As described above, the wavelet transform can be obtained by just scaling
the impulse response of the filter in time. This is done by simply controlling
the capacitance value C. Fig. 7.25a shows a 3-scales wavelet system by scaling
the off-chip capacitors values from 27.5pF to 110pF with a factor of 2 (dyadic
scales). The resulting center frequencies giving in Fig. 7.25b range from 174Hz
to 43Hz. The value of current Io equals 1nA.

The output transient response of the whole system, i.e., the filter, the
absolute value and the comparator circuits, for a pulse input signal is given
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Figure 7.24: Comparison of the measured imaginary impulse response with
the simulated and the ideal impulse responses using 3 CFOS stages
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Figure 7.25: Measured (a) Impulse and (b) frequency response for 3 scales

in Fig. 7.26. The circuit operates from a 2-V supply voltage and dissipates in
total 110nW per scale.

As stated before, wavelets allow analysis of the ECG signal focusing on the
signal at various levels of detail. Analyzing the structure of the electrogram
over multiple scales allows discrimination of electrogram features pertaining
over all scales from those only seen at fine or coarse scales. As one can see
in Fig. 7.26, at very fine scales (smaller values of scale a), details of the
electrogram, i.e. the QRS-complex, are revealed. At coarse scale (larger values
of the scale factor a), the overall structure of the electrogram can be studied
while overlooking the details. Note that by this global view, the P-wave, the
QRS-complex and the T-wave can be detected.

One important application of wavelet transforms is for in-band noise re-
moval or denoising. The out of band noise can be removed by applying a
linear time-invariant filtering approach (Fourier analysis). However, it cannot
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Figure 7.26: Measured output transient of the filter, the absolute and the
comparator circuits
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Figure 7.27: Measured output transient of the filter with an ECG input signal

be removed when it overlaps the signal spectrum. Being a multiscale analysis
technique, the wavelet transform offers the possibility of selective noise filter-
ing and reliable parameter estimation. Denoising is based on correlation factor
(amplitude) discrimination. This feature can be used to distinguish cardiac
signal points from noise and interferences, regardless of the frequency content
of the noise. Fig. 7.28 shows a typical ventricular signal with additive white
gaussian noise (a random signal with a flat power spectral density). One can
see in Fig. 7.28 that the wavelet can effectively remove the in-band and out of
band noise present in the signal and the modulus maxima of the QRS-complex
is identified.

The measured performance of the QRS complex detection wavelet system
are summarized in Tab. 7.3.
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Imaginary output

Abs. value output

ECG + random noise

Figure 7.28: Measured output transient of the filter for an ECG input signal
with additive random noise

Table 7.3: Measured performance of the QRS complex detection complex
wavelet system

Technology Bipolar DIMES SIC3A
Supply voltage 2.0V
Total bias current
(per scale) 55 nA
CFOS bias current
(per scale) 35 nA
Power consumption 110 nW
Eq. rms noise voltage @ input 130 µV
Dynamic range
(1-dB compression point) 41 dB

7.3 Wavelet filter designs

7.3.1 Gaussian filters

In many biomedical research applications, the first order derivative of the
Gaussian function, is a favorite mother wavelet [10], which is given by

Ψ(t) = −2 · t · e−t2 (7.15)

There are two reasons for the use of the Gaussian wavelet. The main reason
is that the product of its time resolution and its frequency resolution takes
the theoretical minimum value of 1/2. Consequently, a wavelet transform
with the gaussian wavelet gives the most accurate estimation of frequency
components localized in time. The second reason can be seen from detection
theory. A certain waveform in a signal with additive gaussian white noise will
be detected optimally if the impulse response of the filter is the time-reverse
of that waveform. Applying this to the case of ECG analysis, we denote some
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similarity between the contents of the ECG, particularly the QRS complex,
and the gaussian wavelet. Therefore the first order derivative of the gaussian
function is a good approximation to the ’matched’ filter.

Optimized Padé implementation using DTL circuits [11]

The first step of this implementation is the approximation of the ideal gaussian
wavelet by using the Padé approach. On the basis of the mean-square error
shown in Fig. 4.13.a, one can see that the [3/5] Padé approximation is a
suitable candidate for implementation. It is almost symmetrical, it has almost
no overshoot and its time-frequency resolution product is only 5% above the
Heisenberg limit of 1/2, while its order 5, is reasonable. The corresponding
transfer function is given by

H[3/5](s) =
5.75s3 − 18.3s2 + 92.4s

s5 + 8.33s4 + 33s3 + 74.8s2 + 94.5s + 52.3
(7.16)

Second, the filter’s state space description is optimized with respect to dy-
namic range, using the method presented in Section 5.2.1. The fully optimized
state space description for the filter described by Eq. 7.16 is defined as

A=




−0.176 1.36 0.309 0.192 0.0792
−1.80 −0.283 −0.194 −0.547 −0.122
−0.734 −0.346 −0.257 −1.34 −0.201
0.912 1.95 2.67 −1.73 −1.38
−2.11 −2.46 −2.26 7.77 −5.88




B =




0.593
0.753
0.717
−1.86
3.43




CT =




0.121
−0.115
−0.0615
−0.08
−0.026




(7.17)

And the normalized capacitance distribution becomes

Cap = C
(
0.342 0.304 0.168 0.146 0.039

)
(7.18)

where C represents the unit-less value of the total capacitance. Compared to
a straightforward implementation, i.e. canonical form, the dynamic range of
the optimized state space description has increased by approximately 20 dB.

Next, we will design the circuit implementing our wavelet filter, based on
the multiple-input log-domain integrator. The multiple-input log-domain in-
tegrator is shown in Fig.7.29. The operation of the circuit is as follows. A
positive voltage across the base-emitter junction of Q1 causes a collector cur-
rent, which discharges the capacitance through the collector-base connection.
A positive voltage across the base-emitter junction of Q2 causes a collector
current, which charges the capacitance via the current mirror on top. The net
current flowing into the capacitance is the difference of collector currents from
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the positive and negative input side. Vip and Vin are the positive and negative
input currents, respectively. In addition, we implement the state space coeffi-
cients (aij or bi), by placing constant voltage sources, Vmp and Vmn, in series
with each base-emitter junction. Finally, we propose to subtract a constant
number α of each exp() term in order to perform the integration operation
for both positive and negative input variables. This is implemented by the
transistors Q3 and Q4 and the constant voltages sources Vbp and Vbn, respec-
tively. An alternative view on subtracting a constant number is defining the
operating point. This is basically the same as biasing. However, in contrast to
the regular design of linear circuits, we cannot separate the design of the signal
processing function and the design of the bias function. Since the circuit is
nonlinear and intended to be used in the large signal range, the superposition
principle is not valid. Therefore, the biasing function is an integrated part of
the signal processing design. Thus, the current flowing into the capacitance is
defined as

Icap = CV̇cap = Ise

(
Vcap+Vmp−Vip

VT

)
− Ise

(
Vcap+Vmn−Vin

VT

)

+ Ise

(
Vcap+Vbp

VT

)
− Ise

(
Vcap+Vbn

VT

)
(7.19)

with

Vmp,mn = VT ln
(

(aij , bi) · CiVT

Is

)
(7.20)

Vbp,bn = αVmp,mn (7.21)

where aij , bi are the multiplication coefficients of the matrix A or matrix B in
the state space description. Vmp,mn are the positive and negative multiplica-
tion voltages respectively. Vbp,bn are the positive and negative voltages which
implement the biasing function. Is is the saturation current.

In order to maintain the overall linearity of a log-domain system, a LOG
stage must be added to the input, while an EXP stage is required at the output.
The LOG and EXP stages are shown in Fig.7.30. By adding a summation stage
at the output, we can obtain the expression for output current. The nullors can
be implemented by a cascade of a common-collector and a common-emitter
stage, or, in case of a BiCMOS process, a single common-source stage.

A block schematic of the total filter is drawn in Fig. 7.31. The A-matrix,
B-matrix and C-matrix each have five connections to the capacitances.

The state space representation for a fifth order system can be written as
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ẋi =
5∑

j=1

τ−1aijxj + biu

y =
5∑

i=1

cixi (7.22)

where τ = CVT
Io

represents the time constant of the filter. We define the five
states x1 to x5 with an exponential relation to the capacitance voltages Vc1 to
Vc5. The input signal u and output signal y are linearly related to the currents
Iu and Iy. So the correspondence relation is defined as

ICi = −
∑

j:aij>0

|aij |τ−1CiVT e

(
VCi−VCj

VT

)
+

∑

j:aij<0

|aij |τ−1CiVT e

(
VCi−VCj

VT

)

+
∑

j

aijτ
−1CiVT e

(
VCi
VT

)
− biIoIue

(
VCi
VT

)

= −
∑

j:aij>0

|aij |Ioe

(
VCi−VCj

VT

)
+

∑

j:aij<0

|aij |Ioe

(
VCi−VCj

VT

)

+
∑

j

aijIoe

(
VCi
VT

)
− biIoIue

(
VCi
VT

)
(7.23)

and

Iy =
5∑

i=1

ci

(
Ioe

“
VCi
VT

”
− Io

)
(7.24)

We see that the terms of the capacitance current have the same form as
in Eq.7.19 and thus the state space matrices can be implemented by intercon-
necting multiple-input log-domain integrator stages.

To check the circuit performance, the system has been simulated using
models of our in-house bipolar semi-custom IC process, SIC3A. The circuit
has been designed to operate from a 2-V supply voltage. First, we have set
τ = 1ms, which gives Io = 1nA and C = 40pF. The impulse response of the
circuit was simulated by applying an input pulse waveform of length 0.1µs
and of height 1nA. The acquired output signal is plotted in Fig. 7.32. The
output current presents an offset of approximately 80pA. For illustration we
have added the plots of the mathematical impulse response of the original
state space filter and the delayed first derivative of the Gaussian.

As we can see in Fig. 7.32, the simulated impulse response differs only
slightly from the approximated response, which was acquired directly from the,
Padé approximation. We conclude that the coefficients have been implemented
successfully.
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L2 approximation employing CMOS triode-transconductors

The filter design that follows is based on an orthonormal ladder structure
and employs the nA/V and the pA/V ∆ − Gm transconductors described in
Sections 6.1.1 and 6.1.2, respectively.

The wavelet base approximation using the proposed L2 approach is given
in Fig.7.33, where the first derivative of a Gaussian wavelet base (gaus1) has
been approximated using the corresponding 6th-order transfer function

H[4/6](s) =
−0.16s4 + 8.32s3 − 6.64s2 + 139s

s6 + 5.9s5 + 30.5s4 + 83.1s3 + 163s2 + 176s + 93.3
(7.25)
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Figure 7.33: 6th-order L2 approximation of the gaus1

The block diagram of the wavelet filter is given in Fig. 7.34, where two dif-
ferent transconductors have been employed as the basic building block, being
the nA/V and the pA/V ∆−Gm (with ∆ = 0.4) transconductors. The values
of Gm and the total capacitance, required to implement the transfer function
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in Eq.7.25, are also shown in Fig. 7.34. Note that, maintaining the same time
constant for both transconductors and using the ∆−Gm block with ∆ = 0.4,
we are able to reduce the corresponding Gm values, and, consequently reduce
the total capacitance by a factor of 0.4.
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Figure 7.34: Block diagram of the wavelet filter

The wavelet Gm-C filters have been simulated using AMS’s 0.35/mum
CMOS transistors model. In order to implement the different coefficients of
the state-space representation we can vary the width of transistors M1A and
M1B, as mentioned before. Fig. 7.35 shows the simulated impulse response
of the wavelet filter for VTUNE = 20mV . The excellent approximation of
the first Gaussian wavelet (gaus1) can be compared with the obtained L2-
approximated function to confirm the performance of the Gm-C filter. The
total filter’s current consumptions, using the nA/V and the pA/V ∆ − Gm

transconductors, are 56nA and 114nA, respectively, operating from a 1.5-V
supply voltage. The performance of the filters is summarized in Table 7.4.

Finally, to implement a Wavelet Transform, we need to be able to scale
and shift in time (and, consequently in frequency) the gaus1 function. By
changing the values of the VTUNE accordingly we implement different scales,
while preserving the impulse response waveform, as one can see in Fig. 7.36a.
Fig. 7.36b illustrates 4 dyadic scales with center frequencies ranging from
14Hz to 120Hz for VTUNE varying from 10mV to 80mV, respectively.

7.3.2 Complex Wavelet filter implementation

In this design we present an analog implementation of the complex Gabor
wavelet transform using the Padé approximation. The complex wavelet filter
design is based on the combination of the real and the imaginary state-space
descriptions that implement the respective transfer functions. In other words,
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Figure 7.35: Simulated and L2-approximated impulse response

Table 7.4: Performance of the wavelet filters
nA/V −Gm pA/V −Gm(∆ = 0.4)

Technology 0.35µm CMOS
Minimum Gm [nA/V] 1 0.4
Gm variation [%] 2.7 2.9
(Monte Carlo)
Total capacitance [pF] 120 48
VTUNE [mV] 20 20
Filter power [nW] 51 114
Supply voltage 1.5V 1.5V
Input RMS noise [µV] 119 460
THD [dB] -53 -51

a complex filter is implemented by an ordinary state-space structure for the
real part and an extra C matrix for the imaginary part [12].

The Gabor wavelet is obtained from a complex Gaussian function (complex
exponential windowed by a Gaussian function) as basic functions, as described
by

ψ(t) = C · e−jωte−t2 = Ccos(ωt)e−t2 − jCsin(ωt)e−t2 (7.26)

where e−jωte−t2 is the complex Gaussian function and C is a normalizing con-
stant. From the Gabor wavelet one can derive some complex wavelet families,
e.g. the complex Gaussian and the complex Morlet. The complex Morlet

wavelet is obtained by simply applying ω = π
√

2
ln2 ' 5.3364 [13] in Eq.7.26.
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Figure 7.36: Wavelet filter scaling by changing VTUNE (a) Impulse response,
(b) Frequency response

The complex Gaussian wavelet family is defined from the derivatives of the
Gabor wavelet [14] and is given by

ψn(t) = Cn · dn

dtn
(e−jωte−t2) (7.27)

where n denotes the order, d
dt is the symbolic derivative and C is a normalizing

constant, which depends of n.
In order to implement the complex Gabor wavelet filter, we first apply a

[2/5] Padé approximation (i.e. m = 2 and n = 5, which yields an approxi-
mation of order k = 7 of the Taylor series expansion) to obtain the Gaussian
envelope. The transfer function resulting from this approximation is given by

Hgaus(s) =
5.7s2 − 18.2s + 92.416

s5 + 8.3s4 + 33s3 + 74.8s2 + 94.5s + 52.3
(7.28)
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To obtain the transfer function of the real and the imaginary parts of the
Gabor function in Eq.7.26 one can easily apply

HGabor(s) =
s

s2 + ω2
∗Hgaus(s)− j

ω

s2 + ω2
∗Hgaus(s) (7.29)

where the asterisk ∗ is the symbol for convolution and s
s2+ω2 and ω

s2+ω2 are
the Laplace transforms of cos(ωt) and sin(ωt), respectively. Notice that both
transfer functions are related by

HReal(s) = − s

ω
∗HImag(s) (7.30)

From Eq.7.30, one can verify that the poles of the real and the imaginary
transfer function are the same, only differing in the zeros. Therefore, we can
implement both transfer functions by changing only the C-matrix of the state-
space representation, as shown in Fig.7.37.

Figure 7.37: Block diagram of the Complex Wavelet system

Using the procedure described in Eq.7.29, yields tenth order transfer func-
tions with 7 zeros. Its corresponding impulse responses are given in Fig.7.38.

Circuit design

The filter design that follows is also based on an orthonormal ladder structure
and the bipolar multiple-input low-power log-domain integrator presented in
Section 6.3.1 will be used as the basic building block for the implementation
of the tenth order state space equations of the Gabor wavelet filter.
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(a)
(b)

Figure 7.38: Complex Gabor Impulse response approximation (a) Imaginary
output (b) Real output

The static translinear principle can be applied to the implementation of the
required nonlinear transfer functions of the modulus and arctangent stages.
First, the required modulus function |z| =

√
Re2 + Im2 is realized with the

circuit in Fig.7.39(a) [3]. The translinear loops in the circuit consist of tran-
sistors Q1, Q7, Q8 and Q4 and Q6, Q11, Q10 and Q4, implementing

2(Io − Re)(Io + Re) = (
√

2Io − z)(
√

2Io + z + p)
2(Io − Im)(Io + Im) = (

√
2Io − z)(

√
2Io + z − p) (7.31)

where Io is the bias current and p is a coupling parameter equal to 2Re2−z2

z−√2Io
.

Notice that both variables, Re and Im, are bipolar quantities.
From the complex waveforms shown in Fig.7.38, we can now obtain the

phase information by simply applying the arctangent to the ratio between the
imaginary and the real outputs. This operation can be approximated using
the translinear principle as [4]

Phase =
Im

0.63Re +
√

0.88Re2 + Im2
' 2

π
arctan(

Im

Re
) (7.32)

where the square root term is provided by the modulus circuit in previous sec-
tion. The division operation can easily be implemented using the factorization
z = x

y ⇒ Io+z
Io−z = y+x

y−x [3] and the schematic is given in Fig.7.39(b) [15]. We
have simulated the filter, the modulus stage and the phase stage using models
of IBM’s 0.18µm BiCMOS IC technology. The filter has been designed to
operate from a 1.2V supply and a 100pF total capacitance. Fig.7.40 shows
the impulse response of the real and imaginary outputs of the wavelet filter.
The excellent approximation of the complex Gabor wavelet can be compared
with the ideal Gabor function to confirm the performance of the filter. Finally,
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(a) (b)

Figure 7.39: (a) Modulus (Vector magnitude) circuit [3] (b) Divider circuit for
the Arctangent stage [15]

Fig.7.41 shows the modulus stage and phase stage outputs, which are close to
the ideal cases for the complex Gabor wavelet in Fig.3.8.

(a) (b)

Figure 7.40: Simulated impulse responses of the complex Gabor wavelet filter
(a) Imaginary output (b) Real output

7.4 Morlet Wavelet Filter

The discussion in this section shall be related to the design and implementation
of a Morlet wavelet filter [16].

The Morlet wavelet base is obtained from a Gaussian envelope multiplied
by a cosine function (cosine windowed by a Gaussian function) [14], and is
described by

ψ(t) = cos(5
√

2(t− 3))e−(t−3)2 (7.33)
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(a) (b)

Figure 7.41: Simulated complex Gabor wavelet filter (a) Modulus and (b)
Phase responses

In order to control the frequency range of the wavelet system and the
respective scales, one can add a time constant term τ into Eq.7.33, resulting
in

f(t) = cos(
5
√

2
τ

(t− 3 · τ))e−( t−3·τ
τ

)2 (7.34)

and the corresponding Fourier transform is giving by

F (ω) =
√

π

2
(e−

1
4
(ω−5

√
2·τ−1

τ−1 )2 + e−
1
4
(ω+5

√
2·τ−1

τ−1 )2) (7.35)

The time and frequency response of the Morlet wavelet base are given in
Fig.7.42. Note that by changing τ the Q-factor of the filter remains constant
and in this case is equal to 2, 55.

125 −×= τωc

7LPH�GRPDLQ )UHTXHQF\�GRPDLQ

177,2 −×=∆ τω

55,2=
∆

=
ω

ωcQ

( )112,1 −×= τcf

( )144,0 −×=∆ τf

f
widthPulse

∆
= 2

Figure 7.42: Ideal Morlet function. Time and frequency response
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As described before, the Padé approximation has some convergence prob-
lems when one tries to approximate a function with many oscillations, such as
the Morlet wavelet. Thus, in Section 7.4 we presented a generalized procedure
for implementing analog filters of various types of wavelet bases. The results
obtained from the use of this method for have been illustrated in Fig.4.11 and
in Table 4.4.

The flow chart in Fig. 7.43. summarizes the implementation of this pro-
cedure to obtain the tenth-order Morlet wavelet filter transfer function.

From the discussion in Chapter 5, we opt again for an orthonormal state
space representation. The A, B and C matrices of this structure for the defined
transfer function are given by

A=




0 6.54 0 0 0 0 0 0 0 0−6.54 0 1.83 0 0 0 0 0 0 0
0 −1.83 0 6.59 0 0 0 0 0 0
0 0 −6.59 0 2.72 0 0 0 0 0
0 0 0 −2.72 0 6.37 0 0 0 0
0 0 0 0 −6.37 0 3.89 0 0 0
0 0 0 0 0 −3.89 0 6.27 0 0
0 0 0 0 0 0 −6.27 0 5.88 0
0 0 0 0 0 0 0 −5.88 0 10.47
0 0 0 0 0 0 0 0 −10.47 −13.31




B =




0
0
0
0
0
0
0
0
0

2.05




C = [ 0.75 −1.34 0.75 0.68 −0.57 0.44 −0.002 −0.10 0.04 0 ]

(7.36)

In this case, the objective functional becomes FDR = 147.90, which is not
so far from the optimum case (FDR = 96.98), which is the absolute minimum
value of the objective functional associated with this transfer function. The
Dynamic Range has decreased by only 1.83dB. Finally, the normalized capaci-
tance distribution is given by (C1, ..., C10) = C′(0.142, 0.162, 0.110, 0.117, 0.086, 0.091,

0.073, 0.080, 0.073, 0.061) , where C ′ represents the unit-less value of the total
capacitance when expressed in F.

7.4.1 Circuit design

By applying a simple mapping to the linear state-space equations (7.36), we
can obtain the corresponding log-domain circuit realization which employs the
log-domain integrator cell. Note that the implemented filter is a tenth order
filter.

The block diagram of the log-domain implementation of (7.36) is illustrated
in Fig.7.44, using the log-domain integrator cell described in Section 6.3.1 [17].
Note that each column of the filter structure corresponds to a row in the state-
space formulation. The parameter Aij is implemented by the corresponding
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Figure 7.43: Flowchart of the wavelet base approximation

log-domain integrator with bias current IAij , defined by

IAij = Aij · 2πτ−1

2Q
CiVT (7.37)
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Figure 7.44: Complete State-space filter structure

where τ−1 and Q are, respectively, the inverse of the time constant and the
quality factor mentioned in Section 3.6 and Ci represents the i-th capacitance
of the filter. The input section, as governed by the state-space vector B, can
be defined as the input LOG operator and is realized by the first row from
the top of Fig.7.44. The current IBi is related to the parameter Bi by

IBi = Bi · 2πτ−1

2Q
CiVT (7.38)

In the orthonormal case, only one non-zero parameter of the B vector is
present (B10). Consequently, IBi = IB. Finally, in order to restore the overall
system linearity one should realize the weighted summation state with the
corresponding EXP operators. Then the bias current vector ICj , which is
controlled by the vector C, is defined as

ICj = Cj · IB (7.39)

Then, the normalizing current IA in Fig.7.44, which will control the overall
time constant of the filter, is implemented by

IA =
IAij

WAij

LAij

(7.40)

with
WAij

LAij
=

IAij(1nA)

1nA
(7.41)
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where WAij

LAij
are the aspect ratios of the PMOS current mirrors and were defined

for IA equals to 1nA. The current IC is obtained in a similar way, giving by

IC =
ICj

WCj

LCj

(7.42)

for WCj

LCj
being the aspect ratios of the transistors in current matrix ICj and

defined by
WCj

LCj
=

ICj(1nA)

1nA
(7.43)

Fig.7.45 shows the impulse response of the wavelet filter for IA = IC =
1nA and IB = 2nA, which corresponds to τ−1 = 5, 178 · 103. The excellent
approximation of the Morlet wavelet can be compared with the ideal Morlet
function to confirm the performance of the log-domain filter. Fig.7.46 shows
the Monte Carlo analysis for process and mismatch variation of the technology
in use. As evident from the Monte Carlo simulation (i.e. after 100 runs), the
system characteristics show insensitivity towards both absolute and relative
variations in the process parameters. Even though the impulse response may
be slightly affected, the wavelet analysis is not completely distorted.
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Figure 7.45: Simulated impulse response

In addition, in order to verify the performance of the whole wavelet system,
one needs to scale and shift the wavelet base function. By changing the values
of the bias currents accordingly, one can obtain a dyadic scale system, as
illustrated in Fig.7.47. Alternatively, one also may change the capacitance
values, Ci. To implement a wavelet system, which usually consists of 5 dyadic
scales, one needs to implement a filter bank (a parallel structure) with a total
capacitance of 193.75pF (capacitance value scaled by a factor of two, i.e.,
100pF for the first scale, 50pF for the second, 25pF for the third, 12.5pF for
the fourth and 6.25pF for the last scale), preserving the same bias current.
This result indicates that the system shown in Fig.7.15 is feasible.
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(a) (b)

Figure 7.46: Monte Carlo analysis (a) process variation, (b) mismatch varia-
tion
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Figure 7.47: Simulated impulse responses of a wavelet system with 5 scales.
The scales are obtained by varying the current (from 0.125nA to 2nA) or the
capacitance (from 100pF to 6.25pF).

7.4.2 Measurement results of the Morlet wavelet filter [18]

To validate the circuit principle, we have implemented the log-domain state-
space wavelet filter in IBM’s 0.18µm BiCMOS IC process. A microphotograph
of the circuit is shown in Fig.7.48.

The measurement setup is presented in Fig.7.49. Log-domain filters process
signals in the current domain. Accurate current measurements require linear
transconductance and transimpedance stages at the input and at the output,
respectively. These are implemented by a large resistor at the input and by a
Keithley 428 nanoamp transimpedance amplifier at the output. However the
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Figure 7.48: Chip microphotograph. The die area is 0.89mm2 (0.78mm ×
1.14mm) and the filter active area is 0.28mm2 (0.35mm× 0.79mm)

transimpedance amplifier has a cutoff frequency up to 175kHz, depending on
the gain factor. To be able to measure beyong 100 kHz, a transimpedance
stage implemented by a low noise op amp (LF 356) and a 1kΩ shunt feedback
resistor is used. The cutoff frequency of this stage is 10MHz.
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Figure 7.49: Measurement setup

The circuit has been designed to operate from a 1.5V supply. Fig.7.50
shows the measured impulse response of the wavelet filter and the respective
frequency response for IA = IC = 4.3nA and IB = 8.5nA, which corresponds
to τ−1 = 22 · 103. The transient response of the Morlet wavelet filter can be
compared with the simulated filter response to confirm the performance of the
log-domain filter.
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Figure 7.50: Measurement results (a) Measured and simulated impulse re-
sponse (b) Measured frequency response

The total filter’s current consumption is 4.5µA with a 100pF total capaci-
tance. The rms output current noise is 66.97pA, resulting in a DR at the 1-dB
compression point of approximately 30dB. The power efficiency of any band-
pass continuous-time filter is a figure of merit to be able to compare various
filter topologies and can be estimated by means of the power dissipation per
pole, center frequency (fc), and quality factor (Q) defined as [30]

Power per pole & bandwidth =
Pdiss

n · fc ·Q (7.44)

where Pdiss is the total power dissipation and n is the order of the filter. The
power efficiency of this filter is equal to 10.58pJ.

By changing the values of the bias currents accordingly, one can obtain a
dyadic scale system, as illustrated in Fig.7.51. The current IA has been scaled
from 2nA to 8nA, resulting in a 3-scales wavelet system.

Finally, in order to show that the same procedure can be applied for
medium frequency applications, we tuned the frequency response of the filter
by varying the bias current over about three decades with center frequencies
ranging from 14kHz to 8.1MHz, while preserving the impulse response wave-
form. Again, one can obtain the wavelet scales around this frequency (i.e. 8.1
MHz) by scaling the current, accordingly.
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Figure 7.52: Time and frequency response of the Morlet filter varying the bias
current Ia to 1.4µA for high frequency operation

The performance of the filter is summarized in Table 7.4.2.

7.5 Conclusions

Several ultra low-power biomedical system and wavelet filter designs were pre-
sented in this chapter. First, a cardiac sense amplifier based on the Dynamic
Translinear circuit technique has been proposed. It comprises a V-I converter,
a bandpass filter and absolute value, RMS-DC converter and comparator cir-
cuits. The obtained results in the sense amplifier demonstrate the desired
performance of the sub-circuits and efficient detection of the R-wave for a
typical intracardiac signal in an ultra low-power environment.
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Table 7.5: Performance per scale for two different operating frequencies
Technology 0.18µm BiCMOS
Die area 0.89mm2

Active area 0.28mm2

Bias current Io = 4.3nA Io = 1.4µA
Total capacitance 100pF 100pF
Supply voltage 1.5V 1.6V
Center frequency (fc) 25kHz 8.1MHz
Power dissipation 6.75 µW 2.3mW
Dynamic Range (1-dB) 30 dB 30 dB
Noise current (rms) 66.97pA 481.3nA
Supply voltage range 1.2V - 1.8V 1.5V - 2.1V
Power dissipation per pole
fc and Q 10.58pJ 11.13pJ

Secondly, a new QRS-complex detection circuit for pacemaker applications
has been proposed. The circuit is based on the wavelet transform. Applying
the DTL principle, an analog system consisting of a wavelet filer, an absolute
value circuit, a peak detector and a comparator has been designed. The sim-
ulated and measured results for a typical cardiac signal demonstrate a good
performance in generating the desired Wavelet Transform and achieving cor-
rect QRS-complex detection.

Next, two analog implementations of the Gaussian wavelet transform in an
ultra low power environment, using the Gm-C and the DTL circuit techniques
have been presented. Simulations from different continuous-time integrator
designs demonstrated excellent approximations to the ideal wavelets using
both Padé and L2 approaches.

Furthermore, an analog implementation of the complex wavelet transform
was presented. The complex wavelet filter design was derived from the com-
bination of the real and the imaginary state-space descriptions. By this, we
were able to implement a complex filter, i.e. both real and imaginary transfer
functions, with just an extra C matrix into an ordinary state-space structure
and several complex wavelets can be obtained.

Finally, a Morlet wavelet filter using the procedure in Chapter 4 has been
presented. Measurements demonstrated an excellent approximation of the
Morlet wavelet base. The filter was optimized with respect to dynamic range.
Moreover, sensitivity and sparsity were also taken into account in the design
of the filter. Hence, the filter was able to meet the requirements imposed by
a low-power environment. From the results obtained, we deduced that this
procedure could very well be used to approximate other wavelet bases as well
and to implement them on chip in an analog fashion using little power.
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Chapter 8

Conclusions and Future
Research

“What you’ve got they can’t deny it

can’t sell it, or buy it. Walk on ...” - Bono Vox

Since the first artificial pacemaker was introduced, much has changed and
will continue to change in the future. The complexity and reliability in mod-
ern pacemakers has increased significantly, mainly due to developments in
integrated circuit design, providing, for instance, diagnostic analysis, adaptive
rate response and programmability. Nevertheless, the future trends for pace-
makers indicate that much more advanced signal processing methods will be
required than nowadays. Signal analysis methods improving discrimination of
signals from noise and interference are of great importance. Also, due to var-
ious pathological states of the heart recently reported, morphological aspects
of the cardiac signal needs to be taken into account.

The Wavelet Transform (WT) has been shown to be a very efficient tool
for analysis of non-stationary signals, like cardiac signals. Being a multiscale
analysis technique, it offers the possibility of selective noise filtering and re-
liable parameter estimation, and therefore, can contribute efficiently to the
morphological analysis. WT has been extensively used in biomedical signal
processing, mainly due to the versatility of the wavelet tools. Signal analysis
methods derived from wavelet analysis carry large potential to support a wide
range of biomedical signal processing applications including noise reduction,
feature recognition and signal compression.

In implantable medical devices, such as pacemakers, the power consump-
tion is a critical issue, due to the limited power density and the longevity of
currently available portable batteries. This implies that the design of such
devices has to be optimized for very low power dissipation. Due to the rel-
atively huge amount of power required for the analog-to-digital conversion
and its improvement in power efficiency over the years, we now predict that
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the implementation of a fully digital wavelet signal processor in implantable
pacemakers will not be feasible for many decades to come.

For this reason, we proposed a method for implementing the novel biomedi-
cal signal processing based on Wavelet Transform using continuous-time analog
circuitry. The methodology is based on the development of ultra low-power
analog integrated circuits that implement the required signal processing, tak-
ing into account the limitations imposed by an implantable device.

First, a brief overview of the history and development of circuit designs ap-
plied in pacemakers was presented in Chapter 2. Also, based on future trends
for pacemakers, some features and improvements for modern cardiac sens-
ing systems were described and we pointed out the need for a morphological
wavelet analysis of the cardiac signal.

Next, in Chapter 3, a comparison between frequency analysis, by means
of the Fourier transform, and time-frequency representation, by means of the
wavelet transform, was depicted. From a example of a nonstationary signal,
the good extraction of the time and frequency characteristics of the wavelet
was revealed. In addition, the properties of wavelet bases functions and WT
signal processing applications were described.

From the wavelet definition, we stated that the implementation of a wavelet
filter is based on a bandpass filter design that presents an impulse response
equal to a wavelet base. In order to obtain the transfer function of certain
wavelet filter, mathematical approximation techniques are required. In Chap-
ter 4, we indicated several methods to obtain good approximations in the
time domain of the wavelet bases functions. One important objective of the
introduced approaches is that the resulting approximated function should be
rational and stable in the Laplace domain. This means that the approximating
function must lead to a physically realizable network. Nevertheless, we can
notice that due to limitations in chip area, power consumption and coefficient
matching, there is a trade-off between the approximation accuracy versus the
order of the implemented filter. Thus, the design challenge is to obtain a low-
order system while preserving a good approximation to the intended function.
Due to their general applicability, and the excellent accuracy, the Padé and
the L2 approximations were chosen, which generate reasonable low-order and
good-fit transfer functions.

Subsequently, in Chapter 5 we presented the description and a comparison
of several state space representations. There are many possible state space
descriptions for a circuit that implements a certain transfer function. The
same holds for practical realizations. This allows the designer to find a circuit
that fits his specific requirements. From the two new figure-of merits defined
in this chapter, we concluded that the orthonormal ladder structure is the
optimal state space representation with respect to dynamic range, sparsity
and sensitivity, which represent the most important design aspects in low-
power low-voltage analog filters.
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The trend towards lower power consumption, lower supply voltage and
higher frequency operation has increased the interest in new design tech-
niques for analogue integrated filters. A few ultra low-power integrator de-
signs were presented in Chapter 6, being, a new pA/V Delta-Gm CMOS
triode-transconductor, two Class-A log-domain integrators and a new ultra
low-power Class-AB sinh integrator. The integrators were based on two dif-
ferent techniques, being the Gm-C approach and the translinear (log-domain)
method, which can be directly used in low-power analog filters and ultra low-
power biomedical system designs. The advantages and the limitations of these
techniques were also highlighted.

Finally, the methodology presented in previous chapters was employed in
the design of several ultra low-power biomedical systems and analog wavelet
filters. Two ultra low-power biomedical systems and four wavelet filter de-
signs were presented in Chapter 7. First, a cardiac sense amplifier based on
the Dynamic Translinear circuit technique was proposed. The obtained results
in the sense amplifier demonstrate the desired performance of the sub-circuits
and efficient detection of the R-wave for a typical intracardiac signal in an ul-
tra low-power environment. Moreover, a new QRS-complex detection circuit,
based on the wavelet transform, for pacemaker applications has been proposed.
The simulated and measured results for a typical cardiac signal demonstrate a
good performance in generating the desired Wavelet Transform and achieving
correct QRS-complex detection. At last, a few wavelet filter designs were also
presented. Two convenient methods to provide the transfer function of the
wavelet filter are given by the Padé and L2 approximations and, thus, some
designs based on these approaches, for Gaussian, complex Gabor and Morlet
wavelet bases, were designed using the Gm-C and the DTL circuit techniques.
Simulations and measurements demonstrated an excellent approximation of
the desired wavelet base.

From the results obtained, we deduced that this procedure can very well be
used to approximate several wavelet bases and other time-domain waveforms
as well as to implement them on chip in an analog fashion using little power.

8.1 Future Research

In this thesis, the transient detection capability of the WT has been exploited
for detection of the QRS complex. However, other important aspects in the
cardiac signal, such as T wave or QT interval can also be detected using
wavelets.

Further analysis techniques of cardiac signals using wavelets are being de-
veloped by the Electronics Research Laboratory of Delft University of Tech-
nology, together with the University of Maastricht and Medtronic Bakken
Research Center. Research on concepts such as the mathematical modelling
of cardiac signals and pathologies, and the design of WT-based algorithms for
intelligent sensing and feature extraction are under progress. In addition, a
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fully integrated implementation of the analog WT circuit to be used in pace-
makers is currently being investigated.

It remains to be demonstrated in clinical practice that these novel signal
analysis methods will contribute to the further development and application
of dynamical electrocardiography in implantable devices.

Biomedical Applications of Wavelets

In this thesis we presented the application of the WT in cardiac signal (ECG)
analysis. Nevertheless, Wavelet Transform has become a powerful method in
many other medical ultra low-power applications due to their suitability for
analyzing nonstationary signals.

The Wavelet Transform is extremely versatile for the analysis of various
electrophysiological signals (EXG), i.e., Electroencephalogram (EEG), Elec-
tromyogram (EMG), and Electrocardiogram (ECG). As an example, neuro-
logical EEG signals represent rhythmic potential fluctuations on the head sur-
face created by the synchronous discharge of nerve cells and has been used
to diagnose epilepsy. One of the early signs of a seizure is the presence of
characteristics transient waveforms in the EEG (spikes and sharp waves). The
sharp and size of these waveforms can vary from one patient to the other sub-
stantially. WT is used as the detection tool due to the very mixed nature
of these phenomena and the wavelet analysis have been shown to be useful
in identifying the features localized within the EEG signal. Then, one could
apply the proposed low-power wavelet filter design methodology for an EEG
characterization in neurostimulator implantable devices.

Finally, one can consider the applications of 2-D wavelets to biomedical
imaging in an ultra low-power environment, for instance artificial retinae. Hu-
man beings have the capacity to recognize objects in natural visual scenes
with high efficiency despite the complexity of such scenes, which usually con-
tain multiple objects. Each object in our environment can cause considerably
different patterns of excitation in our retinae depending on the observed view-
point of the object. One possible mechanism for dealing with this situation is
selective attention. The scene is first analyzed at a coarse resolution level, and
the focus of attention enhances iteratively the resolution at the location of an
object until the object is identified, similar to the principle of multiresolution
wavelet analysis. Thus, the 2-D wavelet transform can be very well used for
image processing tasks like detection, extraction, or classification of the vari-
ous features in the images. In addition, the amount of information is usually
very large and compression methods are highly needed in order to reduce the
required processing time and/or archiving space. High level of compression
should be achieved without loss of information. Because wavelet transform
coefficients are localized in both frequency and space, they are theoretically
better suited to image compression than other common transform methods.
Wavelets have recently been applied to medical image compression and were
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found to be very effective. However, power consumption is an important is-
sue in a battery-operated artificial retinae design. Image computation usually
requires large arrays of pixels. Thus, due to the massive parallel process neces-
sary for artificial implantable vision systems, digital processing, where a huge
amount of A/D converters would be required (one A/D converter per pixel),
turns out to be impracticable. This makes the analog implementation much
more efficient that digital one with respect to power consumption and chip
area, and again the approach described in this thesis can be used for a com-
plex biomedical image processing design in an ultra low-power environment.

Ultra Wideband Applications

Impulse radio, or Ultra Wideband (UWB) radio, is a promising new technol-
ogy for wireless communications. Rather than modulating the information on
a carrier, the data is transmitted using a coded series of very narrow pulses,
carrying information in the time and the frequency domain. From the proper-
ties of the WT described before, one can say that the Wavelet bases are good
candidates for these pulses. In the AIRLINK research project, a collaboration
of TNO-FEL and various groups within Delft University of Technology, im-
pulse radio is being investigated. The real-time synthesis of UWB pulses by
means of low-power analog integrated circuits is one of the core research issues
in this project and as shown in Appendix D, the same methodology procedure
described in this thesis can be very well used into the design of UWB pulse
generators and time-domain delays.
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Appendix A

High-Performance Analog
Delays

A delay is a fundamental block in signal-processing systems. Pure delays
should ideally not change the magnitude or shape of the input signal. Consid-
ering a fixed delay of τ , its frequency-domain transfer function is defined by
the exponential H(s) = e−τs, which cannot be realized with a finite number
of lumped elements [1]. The best solution is an approximation with a rational
quotient of polynomials: G(s) = N(s)/D(s). One common approach to ap-
proximate a delay transfer function is through the use of Bessel polynomials
leading to an all-pole filter approximation called Bessel-Thomson realization.
Another approximation yielding a rational expression suitable for implemen-
tation through the use of a Taylor expansion of the frequency-domain non-
rational transfer function around one point is called the Padé approximation.
By narrowing of a Gaussian impulse-response function with the use of smaller
pulse width s, the delta time-domain impulse response of a delay is approxi-
mated as a third method in this work. The new delay-approximation method
is completed through the application of a Padé approximation on the Laplace
transform of the Gaussian function. The performance of these different ap-
proximations of a delay filter has been systematically compared, in regard to
achievable cut-off frequency and time-domain characteristics. It was revealed
that our Gaussian approximation of the time domain transfer function de-
creased overshoot in the step response, while keeping the other characteristics
fixed.

A.1 Bessel-Thomson approximation

Bessel Thomson is the most widely used approximation method of delay filters.
This method leads to a family of low-pass all-pole transfer functions T (s),
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which would give approximately constant time delay over as large frequency
range as possible. The resultant transfer functions are of the form [1]:

Tn(s) =
B0(s)
Bn(s)

=
1

(2n− 1) ·Bn−1(s) + s2 ·Bn−2(s)
(A.1)

where Bn(s) is the general Bessel polynomial of order n with B0(s) = 1 and
B1(s) = s + 1. In this approximation, the only degree of freedom available is
the filter order, determined by the number of poles. A frequency-domain anal-
ysis of these filters illustrates a low-frequency behavior in which the roll-off
frequencies are increased by filter-order increase. Fig. A.1 illustrates the cor-
respondent amplitude and delay responses of Bessel-Thomson filters of order
1 to 12.
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Figure A.1: (a) Bessel-Thomson filter amplitude responses for orders 1 to 12
(b) Phase responses of the same filters

Fig. A.2 illustrates the step responses of different orders of Bessel-Thomson
delay filters. The most important characteristic of the Bessel-Thomson filter,
which is an overshoot-free step response, in addition to the resultant decrease
of rise time due to filter-order increase can also be viewed here.

A.2 Padé approximation

Fig. A.3 illustrates that in a Padé-approximated delay filter, for an increase of
denominator order, the 3-dB cut off frequency of amplitude response increases,
while peaking occurs for increase of order difference between numerator and
denominator.

A delay-response simulation of Padé-approximated delay filters for differ-
ent order differences between numerator and denominator order (n-m), while
increasing the denominator order (n) from 5 to 12 is illustrated in Fig. A.4.
This figure illustrates that for higher denominator order, higher delay roll-
off frequency is achieved, while the peaking effect near the roll-off frequency
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increases for higher numerator and denominator order differences. More ac-
curate delay response is achieved for smaller order difference and higher de-
nominator order.

A series of time-domain simulations on the step response of Padé-approximated
delay filters illustrates that the rise time decreases with the increase of the de-
nominator order (Fig. A.5), while zero-time oscillations are generated when
the order difference between the denominator and numerator decreases. These
zero-time oscillations are not favorable and might cause instability in some ap-
plications.

Fig. A.6 illustrates that the filter order increase results in a faster step
response while filters with larger numerator and denominator order difference
provide smaller rise times.
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Figure A.5: Rise-time decrease with filter order increase

A.3 Comparison of Bessel-Thomson and Padé ap-
proximation delay filters

In this section a comparison of the frequency-domain and time-domain per-
formance metrics of Bessel-Thomson and Padé-approximated delay filters are
illustrated. According to amplitude and delay responses sketched for differ-
ent order combinations of Bessel-Thomson and Padé delay filters, in Fig. A.7
and Fig. A.8 respectively, the lower orders of Padé approximation can al-
ways achieve higher frequencies than the highest reasonable Bessel-Thomson
approximations.

A comparison of step responses of both approximations (Fig. A.9.a) illus-
trates that Padé-approximated delay filters always introduce more overshoot
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Figure A.7: Amplitude comparison of Bessel-Thomson delay filters of orders
4 to 12 vs. Padé approximated delay filters of order 2/4 to 10/12.

and oscillations in comparison to Bessel-Thomson counterparts, while the for-
mer has smaller rise times (Fig. A.9.b).

In order to have the higher frequency and faster time-domain response
of Padé approximation, together with less overshoots as the Bessel-Thomson
approximation achieves, a new approximation method is introduced in the
following section.

A.4 Gaussian Time-domain impulse-response method

The time-domain impulse response of a delay function is a delta function. A
delta function can be approximated by narrowing of a Gaussian time-domain
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Figure A.9: Comparison of (a) step response and (b) rise-time in both approx-
imations

transfer function with the use of smaller pulse width s, as illustrated by Eq.
A.2 and Fig. A.10.

h(t) =
1

σ
√

2π
e
−(t−µ)2

2σ2 (A.2)

In this method a Padé approximation is applied to the Laplace transform
of a Gaussian impulse response [3]. Figure A.11 illustrates that the amplitude
response of the Gaussian impulse-response delay filter becomes closer to the
response when using a Bessel-Thomson approximation for larger values of s,
decreasing the roll-off frequency, while Fig. A.12 illustrates that the effect on
the delay response is minimum.

An investigation of the Gaussian impulse-response delay filter’s step re-
sponse proves that the increase of s, making the impulse response wider, leads
to a decrease of the zero-time oscillations and overshoots, while it hardly in-
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creases the rise time. It is revealed that using a time-domain Gaussian impulse
response gives the possibility of decreasing the overshoots and zero-time ring-
ings in a Padé approximation of delay by increasing s, while the price paid is
an increase of insertion loss in the amplitude response and a slightly slower
rise time in the system step response. Fig. A.13 compares the step response
of a 6/8 Padé-approximated delay filter with the same order Gaussian impulse
response delay filter with s value equal to 0.05. As illustrated by this graph, for
the same nominator and denominator order, the Gaussian impulse response
delay has less overshoot.

We can conclude that while Bessel Thomson is the most widely used
method of delay-filter approximation, higher frequency and faster delay re-
sponses can be achieved through the use of Padé approximation at the ex-
pense of more overshoot. The here introduced method of Gaussian time-
domain impulse response produces a rational transfer function that is ready
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for implementation in an analog fashion and realizes a delay with both a large
bandwidth and little overshoot.



Appendix B

Model reduction - the
Balanced Truncation method

A wavelet filter design trade-off involves the approximation accuracy versus
the complexity (model order) of the implemented filter. On the other hand,
for analog active filters, the power consumption is directly proportional to the
order of the filter. Thus, the design challenge is to obtain a low-order system
while preserving a good approximation matching.

To overcome these difficulties one can employ model order reduction that
consists in an approximation of the dynamical system by a reduced order
system. It is required that the approximate system preserve properties of the
original system. Clearly, it is also desirable that the approximation error is
small.

There exist various model reduction approaches for standard state space
systems such as balanced truncation and moment matching approximations.
Balanced truncation method, which will be described here, usually presents
better approximation results compared to moment matching method. Also,
this method is strongly related to the controllability and observability grami-
ans, which is suitable for the dynamic range optimization procedure presented
in Sec.5.2.1. The balanced truncation method (BT) consists in transforming
the state space system into a balanced form whose controllability and observ-
ability gramians become diagonal and equal.

Then, the model reduction problem is one of finding a state-space system of
order k < n, such that the error E with respect to the L∞ norm is minimized
over all state-space systems of order k

E = ||H(s)−Hk(s)||L∞ (B.1)

where H(s) is the original transfer function and Hk(s) is the transfer func-
tion of the reduced-order model. The balanced truncation method produces
a guaranteed stable reduced model with globally accurate frequency response
approximation (L∞-error bound). In the continuous-time case, a reduced-
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order model computed by BT approximates the original one well at high fre-
quencies, with a perfect match at ω = ∞, which is suitable for time-domain
approximation around t = 0.

The starting point of the k-th order (square-root) balanced truncation
reduction is the calculation of the Cholesky factors ZB and ZC of the gramians
K and W , respectively. Any square matrix can be written as the product of
a lower triangular matrix Z and an upper triangular matrix ZT ; this is called
the Cholesky decomposition and is given with respect to the gramians by

K = ZB(ZB)T

W = ZC(ZC)T (B.2)

A merit of the BT method is that it relies on the Cholesky factors ZB and
ZC of the gramians K and W rather than the gramians themselves, which has
advantages in terms of numerical stability.

The next step of the reduction method is the calculation of the Singular
Value Decomposition (SVD) of the product (ZC)T ZB

(ZC)T ZB = ULΣ(UR)T (B.3)

with

UR = [uR
1 . . . uR

n ], UL = [uL
1 . . . uL

n ], Σ =




σ1 . . . 0
...

. . .
...

0 . . . σn


 (B.4)

where UL and UR are orthogonal matrices, and Σ is a diagonal matrix con-
taining the singular values of (ZC)T ZB. The singular values σ1, . . . , σn are
known as the Hankel singular values of the system.

If the system is normalized properly, i.e. internally balanced, the diagonal
diag(σ1, σ2, . . . , σn) of the joint gramian can be used to reduce the model order.
Because this diagonal reflects the combined controllability and observability
of individual states of the balanced model, you can delete those states with
a small σi while retaining the most important input-output characteristics of
the original system.

Finally, most model reduction methods for dynamic systems are proceeded
by projection, which is usually implemented using orthogonal projection ma-
trices. BT is a projection method with left projection matrix SC and right
projection matrix SB, such that (SC)T SB = Ik×k, given by

SB = ZB[uR
1 . . . uR

k ]




1/
√

σ1 . . . 0
...

. . .
...

0 . . . 1/
√

σk


 (B.5)
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and

SC = ZC [uL
1 . . . uL

k ]




1/
√

σ1 . . . 0
...

. . .
...

0 . . . 1/
√

σk


 (B.6)

Then, the new k-th order BT realization is given by

A′k = (SC)T ASB, B′
k = (SC)T B, C ′

k = CSB (B.7)

To conclude, from Eq.B.5 and Eq.B.6, one can see that every state space
system can be transformed to balanced form by means of a state change
x′ = Tx, where the balancing transformation is given by T = Σ

1
2 UL(ZB)−1 =

Σ−
1
2 UR(ZC)T . And the controllability and observability gramians of the bal-

anced k-th order reduced system are diagonal and equal, defined by

K ′
k = W ′

k = Σ = diag(σ1, σ2, . . . , σk) (B.8)

To illustrate the model reduction method for wavelet filters design, we
applied the BT approach into state space systems obtained from the Padé
and L2 approximations, shown in Fig.B.1.a and Fig.B.1.b, respectively. One
can note that we could reduce the 10th order (first derivative of Gaussian)
state space obtained by the Padé method to a 7th order system and the 7th
order L2 Morlet approximation into a 6th order.
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Figure B.1: Model reduction for (a) First derivative of Gaussian Padé and (b)
Morlet wavelet L2 approximations

Reduced model and optimal dynamic transformations comparison

In order to obtain the optimal dynamic range for the reduced model, we com-
pare the similarity transformations for the Balanced realization with the one
presented in Sec.5.2.1.
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One can see that the first step for both transformations is similar, where
makes the controllability Gramian equal to the identity. Since K is symmetric,
its singular value decomposition has the form K = PKDKP T

K , defining the
first transformation as TK1 = PKD

1/2
K . In these first transformed coordinates,

K1 = I and W1 = T T
K1WTK1.

In the second step of the balanced realization, we perform an SVD on
W1 to get W1 = PW1DW1P

T
W1. The second transformation is defined as

TW2,bal = PW1D
−1/4
W1 . In the new coordinates, both Gramians are equal and

diagonal: K2,bal = W2,bal = D
1/2
W1. Whereas, for dynamic range optimization,

we do not apply the scaling D
−1/4
W1 , and the transformation is just the rotation

TW2,opt = PW1.
Thus, considering the fact that the composite transformation (T1T2) for

the balanced and optimized realization are given by Tbal = D
1/2
K PKPW1D

−1/4
W1

and Topt = D
1/2
K PKPW1, respectively, to optimize the reduced model with

respect to the dynamic range, we need to apply just a scaling transformation
Tscal = W

1/2
2



Appendix C

Switched-Capacitor Wavelet
Filters

In this appendix we will present two discrete-time wavelet base implementa-
tions, being the first derivative of a Gaussian gaus1 and the Morlet, by means
of switched-capacitor filter technique.

As a filtering technique, switched-capacitors (SC) filters have become ex-
tremely popular due to their accurate frequency response as well as good
linearity and dynamic range. Accurate discrete-time frequencies are obtained
since filters coefficients are determined by capacitance ratios which can be set
quite precisely in an integrated circuit. Once the coefficients of a SC discrete
time filter are accurately determined, its overall frequency response remains a
function of the clock (or sampling) frequency and the capacitors ratio [2].

Then, to design the wavelet switched-capacitor filters will first obtain the
equivalent transfer functions. However, in order to obtain the approximation
of the desired wavelet base, we will apply first the Padé and the L2 approxima-
tions in continuous-time domain to have the laplace-domain transfer function
and after that use a z-transformation (impulse invariant) to obtain the proper
transfer function in z-domain.

The Padé and L2 approximated transfer functions for the Gaussian and
the Morlet wavelet bases, respectively, and the corresponding approximated
waveforms (Fig. C.1) are given below.

Padé [3/7] approximation of the gaus1 wavelet base:

Hgaus1(s) =
8.06s3 − 50.67s2 + 151.65s

s7 + 8.35s6 + 37.07s5 + 107.56s4 + 213.23s3 + 282.58s2 + 228.17s + 85.58
(C.1)

L2 [6/8] approximation of the Morlet wavelet base:

Hmor(s) =
0.88s6 + 1.61s5 + 45.48s4 + 128.4s3 − 451.3s2 + 1576s

s8 + 5.34s7 + 117.9s6 + 440.9s5 + 4610s4 + 11020s3 + 69880s2 + 82960s + 337900
(C.2)
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Figure C.1: Continuous-time approximated impulse response for (a) Padé [3/7]
approximation of the gaus1 and (b) L2 [6/8] approximation of the Morlet
wavelet base

In order to implement the filter in the discrete-time in z-domain, the im-
pulse invariance technique has been chosen to preserve the impulse response
of the continuous-time analysis by defining the relationship

hd[k] = Tshc(kTs) (C.3)

where Ts is the sample frequency, hd[k] and hc(kTs) are the discrete and con-
tinuous time impulse response, respectively. This means that, the discrete and
continuous time impulse responses match, up to a scale factor Ts, at the sample
instance. Then, the corresponding discrete-time z-domain transfer functions
applying impulse invariant z-transformation yields

Hgaus1(z) =
0.0039z7 − 0.011z6 + 0.026z5 + 0.014z4 − 0.03z3 − 0.003z2

z8 − 4.2z7 + 7.7z6 − 8.3z5 + 5.7z4 − 2.4z3 + 0.58z2 − 0.06z
(C.4)

and

Hmor(z) =
0.0021z8 − 0.0067z7 + 0.0015z6 + 0.024z5 − 0.05z4 + 0.047z3 − 0.022z2 + 0.004z

z8 − 6.5z7 + 19.4z6 − 34.3z5 + 39.4z4 − 30z3 + 14.8z2 − 4.3z + 0.58
(C.5)

Fig. C.2 shows both discrete-time impulse response for the Gaussian and
the Morlet wavelets.

Next, to design the SC wavelet filter we will obtain the spate space rep-
resentation in z-domain, applying the same procedure described in Chapter
5. In this case, we have chosen to obtain first the optimal DR state space
and then apply the Schur transformation. Nevertheless, we must take into
account that switched-capacitor integrators implement H(z) = 1

z−1 instead of
H(s) = 1

s . So, the state space description of a SC filter is given by
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Figure C.2: Discrete-time approximated impulse response for (a) Gaussian
and (b) Morlet wavelet bases

zx = (A− I)x + Bu

y = Cx + Du (C.6)

which is different from the usual state space description and I is the identity
matrix. As described before, the different coefficients in the state space ma-
trices represent the interconnections and multiplicative factors between the
various integrators and the input and output signals. Every coefficient from
A and B matrices will be realized by means of switched capacitor integra-
tors. The C matrix scales the output signals from the integrators so it will be
realized by using capacitors and adders.

A switched capacitor filter is realized with the use of some basic building
blocks such as opamps, capacitors and switches driven by non-overlapping
clock signals. The operation of a switched capacitor integrator is as follows.
Capacitors are charged and discharged by periodically opening and closing
the switches located on either side of the capacitor. This generates a charge
transfer that results in a pulsing current flow. The average current can be
calculated and, if the frequency is high enough, this current will be equivalent
to a current through a resistor. This means than the resistive elements in the
circuit can be replaced by capacitors. The amount of current, and thus the
equivalent resistance, depends on two variables: the size of the capacitor and
the switching frequency, and this means that also the frequency behaviour of
the filter will depend on this two parameters.

Non-inverting and inverting SC integrators

As it has been previously said we implement each of the coefficients of the
state-space matrices by means of capacitance ratios in the integrators. As
we have positive and negative coefficients it’s necessary to choose a different
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topology for each kind, being non-inverting and inverting integrators. The
circuit diagram of the non-inverting integrator is given in Fig. C.3 which
implements the first-order transfer function given by

H(z) =
(

C1

C2

)
1

z − 1
(C.7)

Figure C.3: Non-inverting SC integrator

Phi1 and Phi2 represents the clock phases. The right behaviour of the
clocks is essential for the proper function of the switches. The clocks set the
time when C1 and C2 will be charged and they must be non-overlapping in
order to guarantee charge is not inadvertently lost. The term non-overlapping
refers to two logic signals running at the same frequency and arranged in such
way that at no time both signals are high illustrated in Fig. C.4.a [2]. The
rise and fall time in the signals also plays an important roll on the circuit
behaviour since an ideal clock signal will induce the switches to drive more
charge into the circuit and thus to have clock forethought in the output [16].
A simple circuit to provide these non-overlapping clock signals is shown in Fig.
C.4.b.

(a) (b)

Figure C.4: Non-overlapping clock signals
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Finally, to implement the negative coefficients of the state space, Fig. C.5
shows one possible topology for the inverting SC integrator which implements

H(z) = −
(

C1

C2

)
1

z − 1
(C.8)

Figure C.5: Inverting SC integrator

The switches of both integrators can be implemented with just simple nmos
transistors. The most important characteristics they must fulfil are a very high
off resistance (so little charge leak occurs), a relatively low on resistance (so
the circuit can settle in less than half the clock period) and introduce no offset
voltage when they are turned on [2].

As one can see the nonidealities of the switches lead us to have glitches
in the signal. The MOS switch couples the clock transitions to the sampling
capacitor through its gate-drain or gate-source capacitance and the effect in-
troduces an error in the output sampled voltage [4]. In order to improve this
clock feed-through effect we can use Transmission Gates (TG). A Transmis-
sion Gate is a combination of p-MOS and n-MOS transistors as shown in Fig.
C.6. For this circuit, ideally the clock feed-through signals at the transistors
nodes cancel each other.

Figure C.6: Transmission Gate
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Finally, in order to cancel the effects of charge injection we can use dummy
switches. We can assume that the charge deposited by the transistors in the
capacitor can be removed by means of another transistor that will absorb it
to create a channel.

At last, in order to design the proper operational amplifier (opamp) for a
SC filter we must take in account some important aspects as dc gain, unity-
gain frequency, phase margin, slew-rate and dc-offset. The opamps can be
realized by two stages CMOS amplifier as given in Fig. C.7.

Figure C.7: Two stages CMOS operational amplifier

Simulation results using 0.35µm AMS CMOS IC process is given Fig. C.8.
As one can see, the obtained results are pretty close to the ideal impulse
response shown in Fig. C.2, which confirms the good performance of the
switched-capacitor wavelet filter.

(a) (b)

Figure C.8: Impulse response of the SC wavelet filters (a) first derivative of a
Gaussian and (b) Morlet



Appendix D

Ultra-Wideband Circuit
Designs

In today’s marketplace for emerging communication technologies, the focal
point of attention is ultra-wideband (UWB) radio as it not only promises en-
hanced data throughput with low-power consumption, but also provides high
immunity against electromagnetic interference (EMI) and robustness to fading.
It is expected that future short-range indoor ultra-wideband (UWB) telecom-
munication systems will operate in the frequency band from 3.1-10.6GHz
according to the Federal Communications Commission (FCC) mask [7-11].
Ultra-wideband communication offers significant contributions and advantages
but simultaneously a number of challenges also need to be addressed.

When implemented as impulse radio (IR-UWB) (i.e., where the informa-
tion is transmitted by very short EM pulses [7], [12]) this new communication
technology may revolutionize the way we think in wireless technology by mod-
ulating data in time rather than in frequency with low-power consumption.
From the perspective of traditional narrow-band systems, the wideband na-
ture of the front-end architecture employed in UWB systems requires a totally
different design methodology of both the UWB front-end architecture and its
constituting UWB circuit building blocks. In the following sections we describe
some UWB circuit designs using the methodology presented in this thesis.

D.1 Impulse Generator for Pulse Position Modula-
tor

Pulse Position Modulation (PPM)) is used to encode the binary transmitted
data [13], [14]. The waveform to be transmitted is the Gaussian monocycle
due to its intrinsic time-frequency resolution product [11], [15], which is impor-
tant for applications such as positioning and imaging. The impulse generator
consists of a cascade of a fast triangular pulse generator and a pulse-shaping
network or Gaussian filter (i.e., a filter with the first derivative of a Gaussian



218 Ultra-Wideband Circuit Designs

impulse response) [16], [17]. As mentioned in Chapter 4, a Gaussian filter can
be implemented by a cascade of complex first-order systems (CFOS). Then the
filter is implemented as a cascade of three complex first-order systems (CFOS),
which, in turn, consist of gm-C sections that employ differential pairs with par-
tial positive feedback. The entire Pulse Position Modulator block diagram is
show in Fig. D.1. The transmitter is the combination of the modulator with
the impulse generator.
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Figure D.1: Block diagram of the Pulse Position Modulator

The chip microphotograph and the layout of the Pulse Position Modulator
core is given in Fig. D.2. The circuit has been designed using IBM 0.18µm
BiCMOS IC technology.

(a) (b)

Figure D.2: (a) Microphotography and (b) Layout of the impulse generator
and modulator core.
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Fig. D.3 shows the measured Gaussian monocycle waveform. There is
a 75ps discrepancy in the pulse width as compared to the simulated results.
Furthermore, to verify pulse position modulation, a clock signal (15MHz),
which acts as the binary input signal, is streamed into the D-latch. A bit
code (0001) is chosen to verify that the least significant bit would vary the
position of the pulse by approximately 315ps. Finally, Table D.1 highlights
the measured parameters of the impulse generator.

? t=330ps

Bit code: 0001
I1=0.0625mA

Figure D.3: Measured impulse response of a monocycle Gaussian and pulse
position modulation for bit code 0001

Table D.1: Measured Performance of the impulse generator
Technology 0.18µm BiCMOS
Die area 1.25mm2

Active area 0.306mm2

Pulse width
Gaussian Monocycle 375ps - measured on PCB
Time delay
Bit code: 0001 315ps
Current consumption
of Gaussian filter 14.4mA @ 1.8 V

D.2 A Delay Filter for an UWB Front-End

A continuous-time analog delay is designed as a requirement for the autocor-
relation function in the Quadrature Downconversion Autocorrelation Receiver
(QDAR) [1]. Fig. shows a Quadrature Downconversion Autocorrelation Re-
ceiver (QDAR) [1], which is designed to operate in the presence of strong
narrowband interference, while still being able to detect the incoming UWB
signal. Hence, to further reduce the influence of the narrowband interferers,
frequency selectivity is introduced in the delay element.
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Figure D.4: Quadrature Downconversion Autocorrelation Receiver

Assuming that the incoming waveform at the receiver, x(t), is a Morlet
given by,

x(t) = cos(ω0(t− τ))e−(t−τ 2 (D.1)

where ω0 is the center frequency and τ is the time instant at which the Morlet
waveform is centered, the impulse response, h(t), of the delay filter is chosen
to match the incoming signal (i.e. h(t) = x(t)) and therefore the output of
the time delay, y(t), is the convolution of the incoming signal and the impulse
response of the filter, given by,

x(t) = cos(ω0(t− 2τ))e−(t−2τ 2 (D.2)

where β is the gain factor of the convolved waveform. On comparing Eq. D.1
with Eq. D.2, one can see the distinct resemblance between the convolved
waveform and the incoming Morlet signal. As a result, the Morlet signal is
delayed by a time period equal to τ .

In regards to the transmit reference scheme and from an implementation
point of view, one is drawn to the conclusion that the bottleneck to this concept
is the physical realization of an accurate continuous-time delay required to
execute the autocorrelation function at high frequencies. Then an eight-order
Padé approximation of a Morlet function is selected to implement this delay.
Subsequently, the orthonormal state space is adopted due to the same reason
described in Chapter 5. Each coefficient in the state-space description of the
orthonormal ladder filter is implemented at circuit level using a novel 2-stage
gm cell employing negative feedback.

Simulation results in IBM’s BiCMOS 0.13µm technology show that through
convolution, the Morlet signal is delayed by a time period equal to τ , as shown
in Fig. D.5.

This delay filter requires a total current of 70 mA at a 1.6 V power supply.
The 1-dB compression point of the delay is at 565 mV and the SNR is 47.5 dB.
On performing a Monte Carlo simulation it becomes evident that the response
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td=2.72 ns

t=2.72 ns

Figure D.5: Time delay between the incoming Morlet waveform and convolved
signal

of the frequency selective analog delay does not suffer drastically from neither
process variations nor component mismatch.

D.3 A FCC Compliant Pulse Generator for UWB
Communications

In this thesis, we have shown that it is feasible to design filters with arbitrary
waveform responses. Therefore we propose an ultra-wideband pulse generator
incorporating a filter with a Daubechies’ impulse response (i.e. maximally flat
over the desired frequency range).

As seen in Fig. D.6, by generating a window-like response in the baseband
(i.e. with the Daubechies’ filter) and then through upconversion, the energy
spectrum of the pulse generator can be matched to that of the FCC frequency
mask. For detection in the receiver, the absolute shape of the transmitted
waveform is not relevant as seen in [4]. Biphase modulation of the transmitted
waveform can be achieved by alternating the polarities of the “impulses” that
are used to drive the Daubechies’ scaling function filter.

Biphase 
Modulator

Daubechies’ 
Scaling Function Filter

Local Oscillator 
(LO) @ 7GHz

Mixer
(dc-10.6GHz)

(dc-2.5GHz)

Rfout (4.5-9.5GHz)
Impulse

Data

Figure D.6: Proposed pulse generator block diagram

An eight-order Padé approximation of its transfer function is selected to
implement the FCC stipulated frequency spectrum. Again, the orthonormal
ladder structure has been chosen and the coefficients in the state-space descrip-
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tion is implemented at circuit level using a novel 2-stage gm cell employing
negative feedback.

From simulation results in IBM’s CMOS 0.13µm technology, Fig. D.7
demonstrates that the pulse generator response is closed to the ideal impulse
response. The Daubechies filter requires a total current of 25mA from a 1.2V
power supply.

Figure D.7: Impulse response of an 8th order Daubechies’ scaling function
filter

Finally, Fig. D.8 shows the frequency spectrum of the Daubechies’ scaling
function upconverted with a 7GHz carrier. As seen in the figure, the pulse
generator’s performance can now be optimized for maximum energy efficiency.
The frequency coverage of the simulated waveform is about 85% of the FCC
mask.

7.5GHz Bandwidth

GPS Band

0.96-1.6GHz

3.1GHz 10.6GHz

Indoor Limit
Part 15 Limit

Figure D.8: Frequency spectrum of the Daubechies’ scaling function



Summary

The purpose of this thesis is to describe novel signal processing methodologies
and analog integrated circuit techniques for low-power biomedical systems.

Physiological signals, such as the electrocardiogram (ECG), the electroen-
cephalogram (EEG) and the electromyogram (EMG) are mostly non-stationary.
The main difficulty in dealing with biomedical signal processing is that the in-
formation of interest is often a combination of features that are well localized
temporally (e.g., spikes) and others that are more diffuse (e.g., small oscilla-
tions). This requires the use of analysis methods sufficiently versatile to handle
events that can be at opposite extremes in terms of their time-frequency lo-
calization.

Wavelet Transform (WT) has been extensively used in biomedical signal
processing, mainly due to the versatility of the wavelet tools. The WT has
been shown to be a very efficient tool for local analysis of nonstationary and
fast transient signals due to its good estimation of time and frequency (scale)
localizations. Being a multiscale analysis technique, it offers the possibility
of selective noise filtering and reliable parameter estimation. Signal analysis
methods derived from wavelet analysis carry large potential to support a wide
range of biomedical signal processing applications including noise reduction,
feature recognition and signal compression. The discussion here deals with
wavelet techniques for cardiac signals analysis.

Often WT systems employ the discrete wavelet transform, implemented
on a digital signal processor. However, in ultra low-power applications such
as biomedical implantable devices, it is not suitable to implement the WT
by means of digital circuitry due to the relatively high power consumption
associated with the required A/D converter. Low-power analog realization
of the wavelet transform enables its application in vivo, e.g. in pacemakers,
where the wavelet transform provides a means to extremely reliable cardiac
signal detection.

In this thesis we present a novel method for implementing signal processing
based on WT in an analog way. The methodology presented focuses on the
development of ultra low-power analog integrated circuits that implement the
required signal processing, taking into account the limitations imposed by an
implantable device.



From the wavelet definition, we state that the implementation of a wavelet
filter is based on the design of a bandpass filter that presents an impulse re-
sponse equal to a wavelet base. To obtain the transfer function of a particular
wavelet filter, mathematical approximation techniques are required. We in-
dicate several methods to obtain good approximations in the time domain of
the wavelet bases functions. One important objective of the introduced ap-
proaches is that the resulting approximated function should be rational and
stable in the Laplace domain. This means that the approximating function
must lead to a physically realizable network. Nevertheless, we can notice that
due to limitations in chip area, power consumption and coefficient matching,
there is a trade-off between the approximation accuracy versus the order of
the implemented filter. Thus, the design challenge is to obtain a low-order
system while preserving a good approximation to the intended function. Due
to their general applicability and excellent accuracy, the Padé and the L2 ap-
proximation were chosen, which generate reasonably low-order and good-fit
transfer functions.

Subsequently, there are many possible state space descriptions for a circuit
that implements a particular transfer function. The same holds for practical
realizations. This allows the designer to find a circuit that fits specific re-
quirements. From two newly defined figure-of merits, we concluded that the
orthonormal ladder structure is the optimal state space representation with
respect to dynamic range, sparsity and sensitivity, which represent the most
important design aspects in low-power low-voltage analog filters.

A promising technique for the design of ultra low power analog integrated
circuits is the one of Dynamic Translinear (DTL) circuits. The translinear
circuit approach is a current-mode technique, which is inherently non-linear
and performs a compression and an expansion on the processed signal. The
benefit of a companding (compressing-expanding) system is that a signal with
specific DR can be processed in a system block with a smaller DR than the
signal, and by this, offer low-voltage and low-power operation. In addition,
only transistors and capacitors are required to realize a filter function. Since
in conventional ultra low-power designs resistors would become too large for
on-chip integration, their superfluity is a very important advantage. More-
over, the DTL principle can be applied to the implementation of functions
described by linear and nonlinear polynomial differential equations. Another
suitable technique for low-power low frequency filter design is based on CMOS
triode strong-inversion nA/V transconductor for linear gm − C filters. In the
field of medical electronics, active filters with large time constants are often
required to design low cutoff-frequency filters (in the Hz and sub-Hz range),
necessitating the use of large capacitors or very low transconductances. To
limit capacitors to practical values, a transconductor with an extremely small
transconductance Gm (typically a few nA/V ) is needed and transistors kept
in the triode region benefit from a lower transconductance than the ones op-
erating in saturation or weak-inversion regions.



Finally, the methodology presented is employed in the design of several
ultra low-power biomedical systems and analog wavelet filters. The simulated
and measured results demonstrate an excellent performance in generating the
desired Wavelet Transform and achieving correct cardiac signal detection in
an ultra low-power environment.





Samenvatting

Dit proefschrift beschrijft de ontwikkeling van nieuwe signaalbewerkings -
methodologieën en analoge gëıntegreerde circuit-technieken voor laagvermo-
gens biomedische systemen.

Fysiologische signalen, zoals het elektrocardiogram (ECG), het elektro-
encefalogram (EEG) en het elektromyogram (EMG) zijn voornamelijk niet-
stationair. De hoofdmoeilijkheid met betrekking tot biomedische signaalbew-
erking is dat de relevante informatie dikwijls een combinatie is van kenmerken
die goed in tijd gelokaliseerd zijn (b.v. pieken) en andere die meer verspreid
zijn (b.v. kleine oscillaties). Dit vereist het gebruik van analysemethoden
die voldoende veelzijdig zijn om overweg te kunnen met gebeurtenissen die
op tegenovergestelde uitersten in termen van hun tijd-frequentie lokalisatie
kunnen liggen.

De Wavelet Transformatie (WT) wordt veelvuldig gebruikt in biomedis-
che signaalbewerking, hoofdzakelijk dankzij de veelzijdigheid van de wavelet-
werktuigen. De WT is een heel efficint hulpmiddel gebleken voor lokale analyse
van niet-stationaire en snel veranderende signalen ten gevolge van zijn goede
schatting van tijd- en frequentie- (schaal) lokalisaties. Zijnde een analyse-
techniek op meervoudige schaal, biedt het de mogelijkheid van selectief filteren
van ruis en betrouwbare parameter-schatting. Signaal-analyse- methoden die
van de wavelet analyse afgeleid worden bieden goede mogelijkheden voor on-
dersteuning van een groot assortiment aan biomedische signaalbewerkings-
toepassingen inclusief ruis-reductie, het herkennen van eigenschappen en sig-
naal -compressie. De bespreking hier betreft wavelet-technieken voor de anal-
yse van hartsignalen.

WT systemen wenden dikwijls de discrete wavelet-transformatie aan, ge-
realiseerd op een digitale signaalprocessor. Echter, in ultra laag-vermogens-
toepassingen zoals biomedische implanteerbare apparaten, is het niet mogelijk
om de WT door middel van digitale circuits te implementeren als gevolg van
de reusachtige hoeveelheid vermogen noodzakelijk voor analoog-naar-digitaal
conversie. Een laag-vermogens- analoge realisatie van de wavelet-transformatie
biedt de mogelijkheid van toepassing in vivo, b.v. in pacemakers, waar de
wavelet-transformatie een middel biedt tot het uitermate betrouwbaar de-
tecteren van hartsignalen.



Dit proefschrift beschrijft een nieuwe methode voor het implementeren van
signaalbewerking gebaseerd op de WT op een analoge manier. De voorgestelde
methodologie richt zich op de ontwikkeling van ultra laag-vermogens- analoge
gëıntegreerde schakelingen die de noodzakelijke signaalbewerking uitvoeren,
rekening houdend met de beperkingen die door een implanteerbaar apparaat
opgelegd worden.

Uitgaande van de wavelet-definitie stellen wij dat de uitvoering van een
wavelet filter op het ontwerp van een banddoorlaat filter is gebaseerd waarvan
de impuls-responsie gelijk is aan een wavelet basis. Om de gewenste over-
drachtsfunctie van een wavelet filter te verkrijgen dienen benaderingsmetho-
den te worden toegepast. Wij geven enkele methoden om goede benaderingen
in het tijd-domein van de wavelet basis-functies te verkrijgen. Een belan-
grijk doel van de voorgestelde benaderingsmethoden is dat de resulterende
benaderende functie rationaal en stabiel in het Laplace-domein moet zijn.
Dit houdt in dat de benaderende functie tot een realiseerbaar netwerk moet
leiden. Desalniettemin kunnen wij opmerken dat, als gevolg van beperkin-
gen in chipoppervlak, vermogensverbruik en de overeenkomst van cofficinten,
er een afweging bestaat tussen de nauwkeurigheid van de benadering en de
orde van het gëımplementeerde filter. Dus, de ontwerp-uitdaging betreft het
verkrijgen van systeem van lage orde en tevens een goede benadering van de
beoogde functie. Tengevolge van hun algemene toepasbaarheid en uitstek-
ende nauwkeurigheid werden de Padé- en de L2-benaderingen gekozen, die
overdrachtsfuncties genereren van relatief lage orde en goede overeenkomst.

Vervolgens zijn er vele mogelijke state-space systemen voor een filter dat
een bepaalde overdrachtsfunctie implementeert. Hetzelfde geldt voor prak-
tische realisaties. Dit staat ontwerpers toe een filter-topologie te vinden die
het best aansluit bij hun eisen. Aan de hand van twee nieuw gedefinieerde
maatstaven concluderen wij dat de orthonormale ladder-structuur de optimale
state-space-systeem representatie is met betrekking tot dynamisch bereik, spa-
arzaamheid en gevoeligheid, welke de belangrijkste ontwerpaspecten in laag-
vermogens-, laag-spannings- analoge filters vertegenwoordigen.

Een veelbelovende techniek voor het ontwerp van ultra laag-vermogens-
analoge gëıntegreerde schakelingen is die van Dynamisch-Translineaire (DTL)
schakelingen. De translineaire schakelingen benadering is een stroom-modus
techniek, die inherent niet-lineair is en een compressie en een expansie ver-
richt op het verwerkte signaal. Het voordeel van een companderend (com-
primerend - expanderend) systeem is dat een signaal met specifiek dynamisch
bereik (DR) in een systeemblok met een kleiner DR dan het signaal verwerkt
kan worden en, hierdoor, laag-spannings- en laag-vermogens-werking mogelijk
maakt. Bovendien worden slechts transistoren en condensatoren vereist om een
filter-functie te realiseren. Aangezien in conventionele ultra laag-vermogens-
ontwerpen weerstanden te groot zouden worden voor op-chip integratie, is hun
overbodigheid een heel belangrijk voordeel. Bovendien kan het DTL-principe
toegepast worden om functies die beschreven worden door lineaire en niet-



lineaire polynomiale differentiaalvergelijkingen te implementeren. Een andere
geschikte techniek voor het ontwerpen van laag-vermogens-, laag-frequente
filters is gebaseerd op het gebruik van CMOS triode sterke-inversie nA/V
transconductors voor lineaire gm − C filters. Op het gebied van medische
elektronica worden dikwijls actieve filters met grote tijdconstanten vereist om
filters met lage kantel-frequenties (in het Hz en sub-Hz gebied) te ontwerpen,
welke het gebruik van grote condensatoren of heel lage transconductanties
noodzakelijk maken. Om condensatoren tot praktische waarden te beperken
is een transconductor met een bijzonder kleine transconductance Gm (typ-
isch enkele nA/V ) nodig en profiteren transistoren die in het triode gebied
gehouden worden van een lagere transconductantie dan diegene die in verzadig-
ing of zwakke inversie worden gebruikt.

Tenslotte is de voorgestelde methodologie aangewend in het ontwerp van
enkele ultra laag-vermogens- biomedische systemen en analoge wavelet-filters.
De gesimuleerde en gemeten resultaten spreiden een uitstekende prestatie in
het genereren van het gewenste Wavelet Transformatie en het bereiken van
correcte detectie van hartsignalen in een ultra laag-vermogens omgeving ten
toon.
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