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Human Factors in User Modeling
for Intelligent Systems

Maria Soledad Pera , Federica Cena , Monica Landoni ,
Cataldo Musto , and Alain D. Starke

Abstract In the current digital landscape, humans take center stage. This has caused
a paradigm shift in the realm of intelligent technologies, prompting researchers and
(industry) practitioners to reflect on the challenges and complexities involved in
understanding the (potential) users of the technologies they develop. In this chapter,
we provide an overview of human factors in user modeling, a core component of
human-centered intelligent solutions. We discuss critical concepts, dimensions, and
theories that inform the design of user models that are more attuned to human char-
acteristics. Additionally, we emphasize the need for a comprehensive user model
that simultaneously considers multiple factors to represent the intricacies of individ-
uals’ interests and behaviors. Such a holistic model can, in turn, shape the design of
intelligent solutions that are better able to adapt and cater to a wide range of user
groups.
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1 Introduction

While physics and mathematics may tell us how the universe began, they are not much use
in predicting human behavior because there are far too many equations to solve - Stephen
Hawkins [87].

Intelligent systems refer to advanced technologies that perceive and respond to the
world around them [241]. Given the highly interconnected digital world we live in,
the ubiquity of these systems is not unexpected; neither is their ability to enable the
completion of numerous tasks in a very broad range of domains.

Among the many components that encompass intelligent systems, we find the
user model (UM) essential for adaptability and personalization [31, 188]. In the
Human-Computer Interaction field [85], the UM concept is used as a synonym of the
Cognitive Model, which is a model created and used by human-focused researchers
for describing different typologies of users, and then exploited by the interface design-
ers to design effective user interfaces. Instead, our focus is on the concept of the UM
within the context of intelligent solutions and therefore we refer to it as “a representa-
tion of information about an individual user” [31]. We see the UM as a data structure
that contains all the features of a particular user known by the system at a certain
time. In other words, at time t , the UM contains a snapshot of the characteristics of
the user U, as collected, inferred, and stored by the system S1 [185].

Although the amount and the nature of the data captured in a UM are largely depen-
dent on the purpose of each specific intelligent solution [31], traditional UMs are
known to include user-provided background information (e.g., demographic infor-
mation) as well as users’ implicit and explicit preferences and behavior (e.g., clicks,
ratings, and other user-system interactions captured over time). In light of technolog-
ical advances, and given the pursuit of a more profound understanding of users for
adaptation and personalization, it is unsurprising that more research and development
efforts are allocated to better serve a broad range of users. Notably, there is a shift
toward allowing human factors to drive the design. This is evidenced, for example,
by the consideration of other more intrinsic user characteristics as part of the user
modeling process, including personality or affective states [31, 37, 185, 190].

In this chapter, we center our discussion on human factors and their connection
to UMs in the context of human-centered intelligent solutions. To manage scope, we
specifically delve into intelligent solutions that involve decision-making, in addition
to seeking and utilizing presented information. This includes recommender systems,
intelligent search systems, and learning systems, among others. Our primary objec-
tive is to bring awareness to human factors (and associated theories and methodolo-
gies) that are at the core of the design of UMs so that ultimately proposed solutions
can aid a diverse range of users with distinct needs and expectations across various
contexts, accomplishing a variety of tasks.

1 By considering the system itself, we account for the fact that individual users—and hence their
respective UMs—may change while they interact with the system.
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In Sect. 2, we revisit foundational background work about UMs and the user mod-
eling process. We also summarize the evolution of user modeling strategies over time.
This is followed by an overview of human preferences and how they can impact user
modeling and interaction with intelligent systems (Sect. 3). Savolainen [230] empha-
sizes the interplay between cognitive and affective factors in information seeking and
use, whereas Deniz [66] highlights personality as another dimension of interest, par-
ticularly in decision-making. These perspectives play a crucial role in shaping how
users are modeled and how they ultimately interact with intelligent systems within
their ecosystems. With that in mind, in Sect. 4, we discuss different theories and
methodologies that showcase which and how cognitive, affective, and personality
traits can be modeled. In Sect. 5, we bring together the different concepts, theo-
ries, and dimensions presented in this chapter and introduce the notion of a holistic
approach to user modeling—one that simultaneously accounts for multiple factors
and perspectives. Lastly, in Sect. 6, we offer some concluding remarks.

In summary, the purpose of this chapter is twofold: (i) to provide a theoretical
basis and (ii) to issue a call to action for researchers and practitioners responsible
for creating the next generation of intelligent systems. Moreover, we underscore the
crucial—albeit sometimes challenging—undertaking of integrating human factors
into the design and development phases.

2 The User Modeling Process

In this section, we provide an overview of user modeling methods for intelligent
systems and discuss how user modeling techniques have changed over the years. It is
important to note that whenever we mention the term UM, we refer to an individual
UM that stores information about a single user, and not to group models which
represent groups of users (e.g., a class of learners) [112].

2.1 Processing User Models

The user modeling process [28, 82] deals with establishing algorithms and methods
for creating digital representations of users; inferring knowledge about the user based
on past and present interactions; and utilizing UMs for adapting the interface or the
content of (intelligent) systems (or technologies). Personalized systems maintain a
model of the user and then employ it to adapt themselves to the user.

According to Kobsa et al. [138], the user modeling process involves six stages:

1. Identification of the user features.
2. Acquisition of data about the user.
3. Representation of the UM.
4. Reasoning on user data.
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5. Adaptation based on UM data.
6. Evaluation.

Below, we provide a brief description of each stage. It is worth noting, however, that
the process is iterative and, typically, the first four stages are performed in parallel
[41].

2.1.1 Identification of User Features

The primary task in this stage involves determining which user features should be
incorporated in the UM, given a specific scenario and domain. Traditionally, a UM
can contain [136]: user data (demographic data, user knowledge and expertise, user
preferences and interests, user goals and plans), usage data (data about observable
usage, usage regularities), and environment data (information about software and
hardware environment, location). The emergence of the Social Web and the Internet
of Things introduces novel opportunities for gathering a wider range of data (Sect. 5).

UM features can be categorized as domain-independent (regarding the user as an
individual, like demographics) or domain-dependent (user attitudes toward objects
within a specific domain, like knowledge on some topics or preferences for certain
items). The latter requires a domain representation as well. It is also necessary to
decide the lifetime of the UM: whether it will be a short-term UM valid for a specific
session/task or a long-term UM that stores knowledge, interests, demographics, etc.,
which are valid for longer periods. In the case of a long-term UM, it is necessary
to explicitly manage the changing of interest over time (dynamic UM) [6, 68]. This
requires a mechanism for updating the UM. One approach to meet this need is a
critiquing approach, involving the update or refinement of a UM based on critiques
or feedback provided by users [50]. Conversational agents could also be used to
elicit feedback from users [116]. As an illustration, consider the work by Martina
et al. [162] who propose a conversational agent that provides users with movie
recommendations. Here, feedback from users is elicited through the dialogue, which
is then used to update the profile based on whether the user liked the recommendation
or not. In turn, genres or directors of a disliked movie are not proposed again.

2.1.2 Acquisition of Data About the User

In this stage, the goal is to find the best modality to gather user data.2 Some data
are easier to obtain or to infer than others. One option involves asking the user
directly to explicitly provide their data by filling in a form [114, 205] or by rating
and evaluating the items in the system [167, 277]. Alternatively, a system can simply
gather (raw) user data by unobtrusively monitoring the user’s interactions [130] and

2 Information elicitation methods exploited by adaptive systems should be customized to account for
individual preferences and differences, such as the level of expertise, to increase users’ satisfaction
[134, 135].



Human Factors in User Modeling for Intelligent Systems 7

then infer some knowledge from raw data using some form of deductive reasoning or
machine learning techniques. The primary source of raw data utilized in conventional
user modeling stems from the World Wide Web, where users generate a substantial
amount of traces in the form of their activities while browsing or engaging in social
networking sites [20, 23, 234].

Regardless of how data is acquired, it is crucial to respect the privacy preferences
and concerns of the users [133]. Users should be free to choose what personal infor-
mation they wish to share about themselves. However, the repercussions of revealing
personal information can be unclear, or even possibly unknown, which is why this
choice is frequently difficult and burdensome. Special attention has to be paid when
collecting data from vulnerable users, such as children, where legal requirements
are particularly stringent, and rightly so. Ethical concerns are also relevant when it
comes to user data collection, particularly in finding a balance between users’ right
to have their identity protected and the potential advantages they could derive from
personalized solutions based on their profiles.

2.1.3 Representation of the User Model

Here, the goal is to choose how to represent the data in the UM. It is possible to
explicitly represent user features in an explicit data structure (explicit UM) or the
UM can be a function obtained by an inductive learning process (implicit UM).

Explicit UMs explicitly represent the relevant aspects of the users as closely as
possible (heuristics-based approach). An explicit user profile can be depicted as a
set of feature-value pairs or as vectors of terms. The simplest way to represent a UM
is through a flat model comprised of variables and the respective associated values.
Such variables can be represented in different forms, including attribute-value pairs
[64], probability distributions [38], fuzzy intervals [40], plain vectors [158], bags of
words [49], and Vector Space Models [177, 192]. If the UM contains aspects that
are relatively broader and more general than others, then a hierarchical structure
(like a tree or a directed acyclic graph like an ontology) can be used [109, 132,
154, 216]. Domain-dependent user attributes, such as interests or knowledge, can be
represented by an Overlay over the domain (overlay UM) [30]. The user’s current
attitude concerning every item in the domain is recorded. The main advantages of
explicit UMs are that they are intuitive, interpretable, and reproducible. However,
they come with limitations in terms of scalability and extendability.

Implicit UMs refer to statistical models and machine-learned models. Model-
based approaches can learn a regression or classification model starting from a collec-
tion of items rated, clicked, or reviewed by users. Implicit UMs are flexible and useful
for dealing with huge quantities of data but they may be less intuitive for humans to
interpret. This type of UM is often leveraged by modern knowledge-aware recom-
mender systems [111] in which features that describe the items (typically available in
exogenous knowledge sources, such as a knowledge graph) are used to infer general
user preferences. For instance, Musto et al. [178] utilized features extracted from
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DBpedia to populate user profiles, whereas in [179], the authors relied on textual
descriptions processed through Word2Vec to infer user preferences.

Another popular lens to craft UMs are personas [212]—descriptions of ficti-
tious users constructed from different forms of field data. Personas can originate
from a combination of surveys, user interviews, observations, or other user research
methods. They are grounded in real user data to avoid stereotypical representations,
steering clear of common beliefs or the so-called “elastic” users that adapt to fit a
system perspective. The persona creation process is typically based on the analysis
of a substantial amount of user data [3]. Designers can also invite users to create per-
sonas, allowing them to represent their lives and explore perspectives beyond their
own, a practice particularly common when users are children [173]. The use of per-
sonas increases end-user empathy and engagement, aiding designers in envisioning
the end-user in future use situations and supporting different phases and iterations
of the design process [189].

2.1.4 Reasoning on User Data

The user data in the UM can be used for deriving new knowledge. The process of
interpreting the observations about the user can be done using conditions, rules, or
other forms of deductive reasoning, and then the inferred knowledge is stored in the
UM. When raw data (e.g., mouse clicks or visited pages) are abundant, they can
be exploited as training sets for machine learning algorithms that yield models of
users’ preferences or behavior. Common modeling strategies include unsupervised
approaches (e.g., k-means clustering [172], fuzzy clustering [119], association rules
[54]), or supervised approaches (e.g., decision trees, Naïve Bayesian classifier [291],
Support Vector Machine [225]). For example, Web traces, like pages visited, search
history, tags, comments, and posts can be analyzed to learn further user features, such
as user preferences [62, 119, 132, 172, 196, 286, 291], knowledge [4, 150, 224,
253], emotions and mood [70, 226, 273], goals [54, 225] as well as more complex
user characteristics such as personality traits [13, 97, 273] or cognitive functions
[56, 145, 237]. Similar strategies are also used in recent neuro-symbolic approaches
that apply reasoning strategies to infer information about user preferences and needs
[276, 285].

2.1.5 Adaptation Based on User Model Data

The ultimate objective of the user modeling procedure is to generate a digital picture
of the user that can be employed to tailor a system. Adaptive systems are those that
“reflect some features of the user in a user model and apply this model to adapt
various visible aspects of the system to the user” [28]. For example, the system can
show a selected number of documents or items deemed relevant to the user; display
only selected relevant parts of a document; or simply provide a selected number of
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relevant links. Adaptive systems find applications in various domains, particularly in
e-commerce, e-learning, online information systems, and web information retrieval.

According to Kobsa et al. [138], there are three categories of adaptation tech-
niques: adaptive content selection, adaptive presentation, and adaptive navigation
support. Adaptive content selection picks the most relevant items for a specific user.
Recommender systems [115] are perhaps the most well-known type of adaptive sys-
tems [153, 218, 219, 251]. They filter items based on similarity with other items
the user liked in the past (content-based) [146], or based on similarity among users
(collaborative filtering) [167]. Adaptive presentation shows information to the user
in a personalized way, according to their current level of knowledge, goals, etc. The
content does not change, but the presentation and the modality of the content rep-
resentation do [14, 15, 83, 99, 106, 186]. Adaptive navigation support selects the
appropriate link to present, delete, or even generates new ones to support users in the
exploration of the content. Different techniques can be used, such as link annotation
[279], link ordering and hiding [27, 243], and link generation [9].

2.1.6 Evaluation

Measuring the quality of a UM is complex.3 User-centered evaluation refers to the
process of assessing and testing a system from the perspective of its end-users, ensur-
ing that it aligns with their needs and expectations. To achieve this, it is crucial to
involve users throughout every phase of the design process, rather than just at the end.
In the case of user-adapted systems, it is needed to assess the (explicit) UM before
implementing the whole adaptive system, often in the formative phase. Formative
evaluations assess a model during its construction, involving end-users for determin-
ing, for example, whether the UM contains the relevant aspects for them and with
the right value. This type of evaluation exploits both qualitative techniques (usability
tests, observational methods, interviews, card sorting, etc.) and quantitative methods
(questionnaires, experiments, etc.), mainly drawn from usability research [81].

Following the formative phase, there is a summative phase during which is essen-
tial to evaluate the accuracy of the final user-adaptive system (for example by measur-
ing the prediction accuracy in the case of recommender systems). The effectiveness
of the summative evaluation depends upon how appropriate the UM is. However, the
fact that isolating the impact of the UM itself can be challenging cannot be over-
looked. For this reason, and due to the complexity of adaptive systems, there is a
need for a layered-evaluation [198], a combination of user-based evaluation with a
dataset-based one. The latter assesses certain aspects of the UM, such as the accuracy
of rating prediction, using standard metrics like Root Mean Squared Error (RMSE)
and Mean Absolute Error (MAE). The former relies on different techniques, such as

3 Assessing the quality of a UM becomes more challenging with the introduction of human factors.
As the number of human factors included in the UM increases, the evaluation approach becomes
more user-centered than what is typically employed for assessing UMs.
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User Surveys and Questionnaires, User Interviews, Heuristic Evaluation, Usability
and Accessibility Testing, and A/B Testing, to gauge user engagement, satisfaction,
or other relevant metrics.

2.2 User Modeling Over the Years

Methods, techniques, and approaches to user modeling have consistently evolved in
response to technological advancements, adapting to new opportunities, challenges,
and emerging techniques.

The origins of research on user modeling can be traced back to the initial work by
Allen, Cohen, and Perrault [58, 203] as well as Rich [220]. They inspired the creation
of many systems that can adapt to users in a variety of ways. The initial propositions
lacked a precise differentiation between the constituent elements responsible for user
modeling and those that fulfilled other functions. One of the earliest techniques to
model a user was using stereotypes [220]. Systems that rely on stereotypes map users
based on certain characteristics into a class and use the information about the class
to suggest things to them.4 Grundy [220] is one of the best-known stereotype-based
systems, but other works in different areas also used stereotypes [5, 143, 292].

Early in 1990, the research started to focus on how to make the user model-
ing component reusable among systems. This led to the development of “generic
user modeling systems,” also known as “user modeling shell systems.” A user mod-
eling server [136] is a separate module that adaptive system developers can use
by filling it with application-specific user knowledge. Examples of user modeling
servers are TAGUS [194], um [126], MT [25], and BGP-MS [140]. Similarly, a user
modeling server shares a UM in a centralized repository in a client-server archi-
tecture [84, 136, 139]. Examples are DOPPELÄNGER [193], Learn Sesame [34],
GroupLens [141], LMS [160], Personis [128], MEDEA [265], Cumulate [29], and
UMS [137]. Recently, Polignano et al. [211] proposed verticalizing these principles
in the health domain. In particular, they presented a lifelong centralized health UM,
based on a combination of explicit and implicit data.

Centralized user modeling systems had several shortcomings [139]: they were
too rigid and restrictive; they also posed a potential central failure point for data
protection. To address these issues, and with the advent of mobile computing devices
with user data distributed across different platforms [127], the need for decentralized
solutions for UMs started to arise [156]. Decentralized UMs collect UM fragments
from the systems the user interacts with. Decentralized user modeling studies how to
merge partial user data and make sense of them in a specific application domain [72,
108, 272]. Decentralized user modeling solutions are known to leverage semantic

4 Although somewhat related, as they represent “classes of users,” stereotypes are different from
personas. The latter are tools distilled from large sets of user data and used by human designers to
keep the user perspective during different stages of system development, whereas stereotypes are
automatically created and used by technologies.
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web technologies [21] to implement functions for mapping and integrating different
models [26, 36, 39, 73, 108, 166, 288]. A decentralized architecture is represented
by UM Agents, which depict the user and cooperate with different systems to satisfy
the user’s needs [156, 191]. Finally, we bring attention to mixed solutions, where
each system maintains the private UM but refers to a centralized model for the most
common concepts in the domain [19, 175, 269].

3 The Human Perspective

UMs are designed to capture different characteristics of the individuals who interact
with intelligent technologies, namely human users. These models are built upon
our comprehension of human traits and behavior. This understanding is typically
derived from models developed in social science theories, such as those emerging
from psychology and sociology. We argue that this human perspective is invaluable to
user modeling in general, but more so when the focus is on (intelligent) technologies
that strive to put the human at the center.

3.1 Decision-Making

For constructing UMs, particularly those that aim to represent a “human” rather than
merely a “user,” it is fundamental first to understand how human preferences are
formed and how individuals make decisions. The underlying rationale is that models
should capture human behavior, cognition, judgment, and preferences as closely
as it is feasible, given the constraints of the human-centered technology at play.
However, such technologies are typically subjected to restrictions. This is reflected,
for example, in how information filtering and retrieval models can be constructed,
as well as how they relate to underlying user characteristics [107, 219].

An important concern about human-centered technologies is how to present the
most relevant content to users. Research on such personalization can be characterized
by the taxonomy of Hanani et al. [107], describing systems with different levels
of information filtering—from how the type of filters that can be applied vary in
terms of adaptivity to how closely they mimic human behavior. An early example of
personalization with a human dimension was adaptive hypermedia [65, 102], which
applied cognitive filtering through three distinct parts [65]: the relationship between
different parts of the items, a UM describing how a user would acquire knowledge
about the items, and an adaptation model driven by how users and items would relate.

Later approaches tended to focus on a general UM applicable across multiple
platforms to enable personalization [171]. In doing so, human preferences were
typically emulated and predicted through historical data. This made databases and
datasets capturing such data fundamental to intelligent technologies [115]. A main
assumption is the relative stability of these preferences, where past behavior serves as
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an indication of future interactions, such as choices and clicks [219]. This, however,
is at odds with various theories on how human preferences are formed. For instance,
the theory of constructive consumer processes posits that preferences are constructed
upon decision-making [22], being strongly dependent on a user’s underlying attitude
as well as the decision-making interface at hand [260].

Another constraint to most user modeling approaches is their assumption of “ratio-
nality.” Systems that predict how users will act or what they will like operate under the
premise that individuals know exactly what they want. Moreover, there is an expec-
tation that individuals will act and like similar things in similar ways over time. This
assumption introduced the concept of “preference inertia,” exemplified, for instance,
when consumers have a degree of brand loyalty [289]. Arguably, this is not a realis-
tic assumption for many systems, as people are known to explore new preferences,
valuing diversity and serendipity [51, 255]. On the contrary, the rationale that the
past can reliably predict the future stems from a more “homo economicus” perspec-
tive toward user preferences [204]. This perspective assumes that humans strive for
efficiency and act as rational decision-makers [232]. According to this view, users
interacting with systems would have a clear understanding of their own preferences,
at any given time of the day and in any given behavior or decision scenario.

The rationality assumption, popular in economic theory and studies on game
theory [18, 59], often does not hold when studying decision-making—a core process
driving interactions with recommender systems or systems that enable information
seeking. This has become apparent in various studies in (consumer) psychology and
behavioral economics, demonstrating that humans have “bounded rationality” and
that their judgment and decision-making are influenced by a number of biases and
heuristics [71, 121, 122].

Behavioral economics is a scientific field that emerged from psychology to cri-
tique the rationality assumptions of economic models and theories [259, 260]. It
has brought forth “Nudges” as a mainstream decision-making theory [259], which
are defined as changes made to a choice architecture (e.g., an interface) that lead
to a predictable change in behavior [261]. Research demonstrates that decisions are
susceptible to biases that undermine typical “rational” user modeling and that these
biases are systematic and, therefore, “predictable” [121, 122]. Consequently, we
argue that algorithmic predictions are also bounded by the humans using them, as
well as the utilized interface [118].

3.2 Human Cognition

Models of human preferences and behavior are developed beyond the technological
context. Studies performed in social science fields have introduced various theoretical
frameworks that are used to model human behavior. To better account for human
judgment and decision-making, we discuss models of human cognition that can aid
the development of appropriate UMs; along the way, we mention relevant biases that
underpin human decision-making.
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Human cognition has been described by various psychological theories. The
notion of bounded rationality is fundamental to most of them [121]. This refers to
the limited processing capacity and decision-making capabilities that humans have,
which prevents them from making a rational choice or the “best” decision possible
[239]. The concept was coined by psychologist and Nobel laureate Herbert Simon
and points toward humans often making “satisficing” decisions, rather than “maxi-
mizing” decisions [121]. This refers to a decision-making strategy where a human
only invests time, costs, and effort to reach an outcome that is satisfactory or adequate
[199]. Often, this is the result of a specific decision-making situation, such as when
users are under time pressure (e.g., when ordering food at a restaurant), or when not
all alternatives are known [22, 121].

3.2.1 Dual-Process Theory

Human cognition is commonly described through dual-process theory [46, 268].
This refers to how human thought is the result of two mostly parallel processes: one
path is considered to be explicit and conscious, while the other is more implicit,
uncontrolled, and unconscious [122]. The main distinctions are made based on the
extent to which thought is processed consciously and explicitly.

Dual-process theory has been operationalized into multiple models of cognition
and information processing. One model that is commonly used in studies on persua-
sion is the Elaboration Likelihood Model (ELM) [207]. This is an application of the
dual-process theory that describes how attitudes can be changed through two routes
of information processing: a central route and a peripheral route, which form a con-
tinuum between them [55, 271]. The central route relies on thoughtful processing of
information, which may eventually lead to longer-lasting attitudinal change [271].
In contrast, the peripheral route concerns more automatic responses related to either
positive or negative cues, such as mechanisms observed in classical conditioning or
a person judging source credibility [55].

An individual’s motivation is the main determinant in the ELM as to how informa-
tion is processed [144]. Highly motivated individuals, or users of technologies for that
matter, are more likely to engage in thoughtful deliberation of information presented
or communicated to them [207]. Less motivated individuals can still be persuaded, be
it often with more short-term effects. ELM is used in human-centered technologies
that aim for behavioral change, as is often the goal in persuasive technologies [88,
270]. Such technologies aim to change attitudes with a specific behavior or a behav-
ioral goal in mind. Nevertheless, such technologies do not apply to all domains, as
there is, for instance, little behavior-specific persuasion involved in a movie recom-
mender system (cf. [74, 100]). Instead, ELM is useful when convincing an individual
to engage in a behavior for their “better self,” such as health-related behaviors [55].

Another dual-process theory for learning is described by two-system thinking.
Initially coined by Stanovich [244] and later popularized by Kahneman [121], two-
system thinking differentiates between System 1 and System 2 for “implicit” and
“explicit” forms of reasoning, respectively. System 1 encompasses more uncon-
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scious, automatic, and unintentional responses to information [80, 122]. Judg-
ments are typically made without much control, deeming it the effortless and near-
instantaneous form of reasoning. For example, people might respond to a threat
before even recognizing what it is [122]. System 2 instead involves effortful and
conscious deliberation, which is attributed to behavior and decisions that involve
much effortful thought, such as complex purchase scenarios (e.g., buying a house).

Two-system thinking aligns closely with the general definition of dual-process
theory. For this specific modeling, the distinction between both systems is valuable for
predicting the types of decisions individuals are likely to make in specific scenarios. In
the context of human-centered technology, different technologies may evoke varying
responses based on how consciously involved humans are. For example, adapting the
photos of recipes to make them visually more attractive can affect user preferences at
a more unconscious level [248]. On the other hand, designing recommender systems
that provide specific justifications for their content can assist users in deliberation,
influencing preferences through informed decision-making or framing information
[183, 247, 249], which are System 2 phenomena.

A confounding factor to human cognition regarding judgment and decision-
making is affect. This refers to one’s experienced feelings, emotions, and mood,
either as a general state in time or with regard to a specific (attitudinal) object.
These responses can be positively or negatively valenced [284] and experienced as
(un)pleasant feelings. In the context of dual-process theory, affect is considered to
play a role in System 1 reasoning [122]. Emotional attributions and responses typ-
ically influence snap, unconscious judgments. For example, if an individual has a
bad feeling about a person they see on the street (“There is something off about this
person”), this feeling often arises without much conscious thought. Reasons for a
particular feeling are sometimes found afterward or may never be fully rationalized.
Affect can moderate System 2 thoughts. In this sense, cognitive processes are typi-
cally the result of the sum of the two parts. However, judgments in both systems are
prone to a number of mental shortcuts, as well as limitations.

3.2.2 Biases and Heuristics

Key in human-centered user modeling is recognizing the “irrationality” inherent in
human cognition. Humans display systematic biases in their decision-making, where
the bias is operationalized as the systematic deviation from an optimal decision or
the norm [8]. The systematic nature of such biases also surfaces, for instance, in
the definition of a nudge—“[...] choice architecture that alters people’s behavior
in a predictable way without forbidding any option or significantly changing their
economic incentives” [262, p. 6]—which includes the word predictable.

A notable bias in human judgment and decision-making is prospect theory, also
known as “loss-aversion” theory [91]. Coined by Kahneman and Tversky [123],
it describes how human preferences for different options depend on how they are
framed or presented. Loss aversion [123, 267], a key concept in prospect theory,
describes the human tendency to be more sensitive to losses compared to equivalent
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gains. Put in simple terms, “losses loom larger than gains” [123], where losses are
weighted more than twice as strongly as gains. This effect is demonstrated in dis-
crete choice experiments [267], where participants are asked to choose between two
wagers. People avoid risks when it comes to gains, but are risk-seeking regarding
losses [122]. For example, when asked to choose between a 90% chance of gaining
$100 or a certain gain of $90 (of note, both have an expected value of $90), most
people will take $90. In contrast, when asked to choose between a 90% chance of
losing $100 or a certain loss of $90, most individuals will take the 90% wager.

Loss aversion is observed beyond the wagers that corroborate prospect theory.
Studies have found humans to value their current situation more highly than an
alternative scenario [71, 228]. Another main theory describing this is the endowment
effect, which explains how humans value items they own more than equivalent items
they do not own [122]. Pioneering work done by Thaler [258] showed this effect in
various experiments [90, 124]. For example, if one were to hand out mugs to only
half of the students in a classroom and then ask both the mug-endowed and mug-less
students how much they would pay for that mug, students who just received a mug
would note down a much higher figure. The endowment effect is rather immediate
and is also observed in situations without actual ownership. In other words, people
are rather likely to accept default options, as shown by the effectiveness of opt-out
systems in organ donation [117], but also tend to stick to whatever list or setting
is shown to them first in a recommender interface [151, 245]. This can in part be
explained by the status-quo bias in humans [228], underpinning the endowment
effect [259].

Some biases are systematic, but also intentional. In certain decision-making sce-
narios, humans purposefully take a mental shortcut and use limited information to
arrive at a judgment. This allows for faster decision-making. Such mental shortcuts
are referred to as heuristics [95]. Similar to heuristics in computer science [202],
they are in psychology associated with faster (mental) processing times [122]. They
can be attributed to both System 1 and System 2 processes.

Heuristics typically ease the burden of judgment and decision-making by focus-
ing on the most relevant aspects of a specific problem [96]. This tendency can be
traced back to evolutionary foundations of humankind, where, for example, humans
would judge the size of an animal to decide whether to engage or run away. Heuris-
tics address the challenge of bounded rationality [95], acknowledging that, due to
limitations in processing capacity, intentional or unintentional, humans tend to make
decisions based on limited information. That is why, for example, framing effects in
interfaces are rather effective at steering user preferences [247].

Heuristics are limited in what they can achieve in terms of decision accuracy. It is
in this lack of accuracy that algorithmic predictions of human preferences might be at
odds with what humans actually do. Take ratings for recipes in a food recommender
system: these ratings might have been given after an elaborate experience process
(cf. [75]), whereas subsequent decisions might be made under time pressure.

In the context of decision-making, various heuristics play a role in shaping judg-
ments. These include heuristics related to the distortion of memory (e.g., availability
heuristic), stereotyping (e.g., representativeness heuristic), and making inferences
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based on the behavior of others (e.g., social heuristics). Certain heuristics are simply
the result of a decision-maker acting upon a bias [71, 122]. For example, when faced
with uncertainty about what to choose, decision-makers may engage in various forms
of social comparison, making them susceptible to biases like majority or authority
bias. Specific heuristics have been applied in studies with digital systems, such as
introducing social explanations in an energy recommender system [246], or examin-
ing which type of social explanation is the most effective on a social networking site
[235]. In the context of web search, Rieger et al. [221, 222] mention that when indi-
viduals use shortcuts to simplify complex search tasks, like seeking information on
debated topics, they may become more efficient. However, this efficiency comes with
a susceptibility to cognitive biases that can introduce errors in judgments. Searchers
can also be influenced by confirmation biases, causing them to click on retrieved
resources that align with their beliefs.

4 Cognitive, Affective, and Personality Factors in User
Modeling

Building computerized models that capture the multiple factors that can simultane-
ously influence human thinking in complex scenarios is challenging [47]. We argue
that given the role these models play, in terms of impacting not only the design
but also the overall user experience intelligent solutions can provide, understand-
ing these models is of utmost importance. When thinking of cognitive computing,
we often allude to technologies aiming to emulate human intelligence on a large
scale [53, 103]. Cognitive computing has received attention from both academic
and industry practitioners; still, technologies in this realm have so far focused on
improving intelligence by inferring cognition from data and information [52]. This
evinces the need to move beyond traditional modeling strategies driven solely by
user interactions and explore models that capture contextual and dynamic aspects
of human behavior [233]. Additionally, ethical considerations must be taken into
account when (semi-)automatically predicting human aspects, such as personality
or psychology [86, 176]. Consequently, it becomes imperative to further look into
“human-centered intrinsic information such as emotions and mentality” [52]. In this
emerging paradigm where the user is at the forefront, it becomes critical to con-
sider the broad spectrum of human factors that can directly or indirectly impact
user modeling, adaptation, personalization, and human interaction with intelligent
solutions.

Informed by our discussion in Sect. 3, where we presented theories and models that
could govern human-system interactions, in this section, we outline traits that depict
users as “humans.” When adopting a human-centered approach to user modeling,
it is vital to consider these traits. Accordingly, we enumerate different perspectives
that can be utilized in user modeling to capture human qualities: cognitive, affective,
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and personality traits. This list is not exhaustive, rather, it serves as a starting point to
exemplify the multiple (and sometimes complementary) viewpoints that can be taken
into consideration when constructing UMs to more accurately represent humans, as
opposed to “merely users.”

4.1 Cognitive Factors

Cognition refers to mental processes via which individuals analyze and interpret
the world around them, their thoughts, and their actions [274]. Given this broad
definition, the lack of consensus on what constitutes cognitive factors is unsurprising.
Therefore, in line with Savolainen [230], we describe these factors based on the
perspectives considered for their definition.

From a cognitive science viewpoint, the main subdomains of study are human
intelligent behaviors or actions; human propositional attitudes; human knowledge
representation and use; and human cognitive capacities whose exercise is sensitive
to the subject’s goal and general knowledge [274, pp. 58–95]. Cognitive psychology
is similarly concerned with factors such as attention, memory, learning, language
use, problem-solving, and decision-making [230, 242, 250]—all aspects that impact
how individuals interact with intelligent solutions related to, for instance, recom-
mender systems, tutoring systems, and information seeking. From a cognitive style
standpoint, cognitive factors have been associated with tendencies displayed by indi-
viduals to adopt a particular type of information processing strategy [89].

The literature on theories of the cognitive process, and how these theories guide
the modeling of cognitive factors, is rich. Following the taxonomy proposed by Lex
et al. [148], we discuss prominent methods that can be used to model cognition5;
along with relevant examples applying different theories to produce UMs.

Empirical approaches often involve gathering and analyzing behavioral data using
statistical models derived from mathematical psychology [2, 94]. These models
leverage parameters that represent cognitive constructs. For instance, Papanikolaou
et al. [197] conducted empirical studies on two educational systems, Flexi-OLM
and INSPIRE. They did so to examine users’ learning and cognitive styles, as well
as preferences during their interaction with these systems. Cognitive-computational
approaches, on the other hand, specify cognitive assumptions and use computable
models to simulate specific aspects of the human mind [78]. As an illustration within
the domain of web search we find SINF-ACT [93, 208], which simulates the mental
or physical steps that enable users to follow information scent cues, guiding them to
locate desired information [92].

Memory is another factor intricately linked to human cognition. Memory directly
impacts goal-directed interactions with the physical and social environment [231].
Modeling approaches based on memory models have been broadly applied. Com-

5 For an in-depth discussion of cognitive process theories, along with an overview of the applicability
of computational cognitive models to improve intelligent systems, please refer to [148].
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mon examples include utilizing the Ebbinghaus forgetting curve to better support
knowledge acquisition and retention of school subjects in a mobile game environ-
ment [48], in addition to learning and tracking the drifting of the users’ interests,
thereby influencing the quality of generated recommendations [287].

Attention, a mechanism to “selectively process information in an environment in
the face of distraction” [148], is central to triggering any human cognition model.
Most research leveraging attention mechanisms is more commonly associated with
deep learning-based models [275, 290]. Still, Wood et al. [282] spotlight the chal-
lenges of modeling this dynamic and multi-faceted phenomenon, whereas Ma et al.
[159] propose an architecture to model user attention based on visual, linguistic, and
aural lenses, which they apply to the personalization of video summarization.

Other examples that showcase the use of different theories to guide the design
of UMs for intelligent systems include the work by Huang et al. [110], who rely on
cognitive factors to explore the continued use of information systems. While Ravi et
al. [215] introduce a cognitive user preference model to improve the recommendation
process, Contreras and Salamo [60] leverage long- and short-term cognitive behavior
to improve location recommendation. Cognitive modeling is also known to support
decision-making in the finance and education domains [101, 125, 252].

4.2 Affective Factors

Affective aspects play a major role in human-centered approaches to producing UMs.
In their survey, Julien et al. [120] discuss the importance of the affective dimension
(e.g., emotion or confidence) in human information behavior. They advocated for the
research community to explicitly include affective dimensions in their studies. Emo-
tions, viewed as one of these affective dimensions, can be defined as “an integrated
feeling state involving physiological changes, motor-preparedness, cognitions about
action, and inner experiences that emerge from an appraisal of the self or situation”
[164].

Emotions impact how users engage and interact with intelligent solutions. Their
influence can be observed, for instance, in the choice of strategy users employ to
engage with information systems or how far and deep the searchers will browse the
list of results in a Search Engine Result Page (SERP) [240]. When confronted with a
new search task, users experience feelings of uncertainty, confusion, and frustration,
which are often accompanied by negative emotions like sadness, fear, and anger
[209]. Searchers experience anxiety about being unable to fulfill their information
needs and consequentially fear not accomplishing the task at hand. On the other hand,
successful search outcomes elicit positive feelings while dealing with failure at the
end of a session engaging with an intelligent system that can prompt reflections on the
overall system usability, as discussed in [17]. In particular, through analysis of textual
feedback provided by searchers after they had successfully performed their tasks,
Barifah and Landoni [17] acknowledged the presence of trust, joy, and anticipation.
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Instead, participants reporting failed searches expressed anger and sadness in their
feedback.

The duration of a search process has been linked to subjective feelings of being
lost in web searches, as demonstrated by a study conducted by Gwizdka and Spence
[105]. In a more recent investigation by Kazai et al. [129], the authors discuss the role
of emotions in SERPs and how searchers tend to explore more snippets charged with
positive emotions. Along similar lines, Landoni et al. [147] investigated the search
behavior of primary school children in relation to positive and negative emotions in
SERPs. Similar to adults, children were attracted by results conveying positive emo-
tions, but interestingly, they were even more compelled to concentrate on searches
with results that had a negative tone. Their will to “fix things” made them keener to
engage in longer search sessions and go deeper in the exploration of retrieved results.
Examining the broader impact of the search experience on children’s emotional state,
Bilal [24] observed that children were negatively affected by the lack of matches and
difficulty in finding the answer. In this respect, the work by Nahl [184] and her defini-
tion of affective load theory (ALT) illuminate how different search behaviors can be
influenced by the presence of affective coping skills (e.g., self-efficacy and optimism)
and how these skills could compensate for lower cognitive skills. A more compre-
hensive study by Lopatovska [155] considered primary and secondary emotions in
participants and their moods during searches. Primary emotions, derived from the
analysis of facial expressions, proved to be directly linked with search actions, indi-
cating a reciprocal relationship. On the other hand, there was no evidence of a link
between secondary emotions (gathered through post-search interviews) and partici-
pants’ evaluations of their search experience. Moods appeared to remain stable and
unaffected by the search experience, and vice versa.

Kazai et al. [129] describe how lexica such as SentiWordNet and EmoLexData—
commonly used to detect the presence of sentiments (positive, negative, or objective)
and emotions (such as being afraid, amused, angry, annoyed, don’t care, happy,
inspired)—roughly associate to the eight elements of Plutchik’s Wheel of Emotions.
Similarly, Landoni et al. [147] highlight that in a study involving children, young
searchers were drawn to content expressing positive sentiments and joyful emotions.
Unlike adults, children tended to become more involved in the search activity when
faced with unpleasant stimuli generating negative emotions like fear and sadness.
This gives a unique perspective on how to more accurately model children’s behavior,
level of engagement, motivation, and expectations when interacting with (intelligent)
search and recommendation systems.

A wide range of UMs that incorporate different affective factors have found
applications in diverse domains, including educational recommender systems [227,
229], personalization of news suggestions [170], and many other intelligent solutions
involving decision-making [210].
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4.3 Personality Factors

Personality traits have long been considered as a mean to better understand users
and in turn improve personalization and adaptation of intelligent systems [67, 190].
Their impact on user modeling is well documented.

Regarding models of personality, the Big 5 model [98] is the most popular [79]. It
describes personality based on five traits: extraversion, agreeableness, openness, con-
scientiousness, and neuroticism. As presented by Fehrer and Vernon [79], however,
many other dimensions can be accounted for when modeling personality. Following
the taxonomy introduced in [79], we outline some of the more prominent models
beyond the Big 5.

Looking into alternative models of personality, we find HEXACO [10], which
accounts for six personality factors: Honesty-humility, Emotionality, Extraversion,
Agreeableness, and Openness to Experience. Given its predictive power of criteria
like psycophantic traits, egoism, and phobic tendencies, it is not surprising that it has
been used to model users in intelligent applications involving decision-making [281].
Supernumerary models of personality traits, like Supernumerary Personality Inven-
tory [201], look into conventionality, seductiveness, manipulativeness, thriftiness,
humorousness, integrity, femininity, religiosity, risk-taking, and egotism. The Psy-
chobiological model [57] focuses instead on aspects reflecting temperament and char-
acter traits. Focusing on the so-called narrow personality traits, we should mention
Dark Tetrad [200] (accounting for psychopathy, narcissism, sadism, and Machiavel-
lianism), Self-defeating personality style [1] (which measures insecure attachment,
undeserving self-image, and self-sacrificing nature), and emotional intelligence [206]
(encompassing expressing emotions, perceiving emotions, regulating emotion, social
abilities, etc.).

Personality-based UMs in the context of intelligent systems encompass a range
of applications. Examples include intelligent technologies that leverage personality
traits to improve users’ well-being [131], introduce diversity among choices [283],
support tourism recommendations [44], provide personalized explanations [142],
and aid education [45].

5 A Holistic Perspective

The landscape of user modeling has undergone significant transformations in recent
years, shaped by the constant evolution of the digital environment. The proliferation
of mobile and social web platforms enhances our capacity to access information and
communicate with others on a global scale, while wearable and ubiquitous technolo-
gies expand the scope of digital integration in our daily lives. The quantity and variety
of data attainable regarding users, which can be utilized for UM development, has
increased exponentially. The integration of diverse datasets covering different facets
of individuals’ daily lives holds the potential to enrich UMs, essentially creating
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a comprehensive “digital twin” of the user [254]. The aforementioned alterations
give rise to novel research inquiries regarding the potential services that may be
offered, the efficacious means of communicating innovative forms of personaliza-
tion and adaptation, and the necessary modifications to be made to conventional user
modeling to capitalize on this potential to provide personalized services.

The concept of a holistic user model (HUM) was born in this context [41, 43,
180]. A HUM is a comprehensive profile that encapsulates all the information about a
user’s interests, feelings, psychological states, health, social connections, and behav-
ior in a single profile. Creating such a profile requires collecting information from
different places like social networks, smartphones, wearable devices, and environ-
mental sensors, which will be ultimately used to populate the different facets of the
profile.

Although the concept of HUMs shares a connection with Generic User Model-
ing and User Modeling Servers [136], which gained popularity in the early 2000s
(see Sect. 2.2), the current user modeling landscape is completely different, i.e.,
background in the area has evolved to support the recent spread of this family of
approaches. In recent years, two main phenomena have notably influenced user mod-
eling:

• The evolution of the web 2.0 [165] facilitated a paradigm shift from traditional
passive consumption of information by web users to an active role as information
producers. This transformation enabled the rise and expansion of various collabo-
rative platforms exemplified by Wikipedia, alongside the production and adoption
of social networking applications like Twitter, Facebook, and YouTube.

• The growth of the Internet of Things [280] has been a contributing factor to the
emergence and growth of the Quantified Self and Personal Informatics movement
[157]. Consequently, contemporary and cost-effective instruments using advanced
sensing and technological mechanisms are currently available for acquiring and
retaining data about an individual’s routine activities.

The convergence of both trends mentioned above has resulted in an escalated and
unregulated proliferation of data, exacerbating the issue [76]. Undoubtedly, users
demand a heightened level of assistance to navigate the copious amounts of infor-
mation that they are required to handle. Personalized search engines [236], recom-
mender systems [217], and intelligent personal assistants [63] can be used to support
the users. At the same time, as the quantity of available data increases, it becomes
necessary to have methods and tools to efficiently process and store these data to
create a model.

Most of the approaches for building UM suffer from two issues:

• Online platforms generally use one type of information, even though there is a lot
of different data available. For instance, some websites only look at the information
users leave on the Internet, not what their phone or smartwatch can tell them about
their health, where they have been, or what they have been doing.

• The vast majority of individual data is maintained and leveraged by a singular plat-
form that refrains from conversing with comparable systems concerning the data
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it retains. The issue, commonly known as the data silo problem, has a detrimental
impact on the resultant profiles.

The goal of a HUM should be to assist users in their decision-making processes
across various, even complex, domains. We posit that such a comprehensive user
representation is core to human-centered intelligent technologies, as they are the
means to better capture humans—who are ultimately the users of the technology—
and thereby enhance the overall performance of the technology.

An area where we see progress toward incorporating HUMs is in recommender
system research by using cross-domain recommenders [35]. These recommenders
use what a user likes in one area to try and figure out what they might like in
another area and make suggestions accordingly [149, 195]. However, these systems
do not fully capitalize on information integration. In other words, they do not exploit
together the different kinds of information on the user’s life, which may potentially
influence the recommendation process. Instead, the idea here is to simultaneously
exploit diverse kinds of information about the user’s life [43].

5.1 Facets of a Holistic User Model

A HUM is a comprehensive representation of the individual that is constructed using
heterogeneous traces spread by the users in both their online activities (e.g., generated
content, purchases, social connections, and search histories) and real-world behavior
(such as localization, daily activities, and physical data). A similar concept in the
learning domain is the Lifelong UM [278], which aims to produce a complete picture
of the user by merging various aspects of their life in a unified space. HUM, however,
differs in that it strives to be domain-independent and applicable across several
scenarios.

Inspired by the conceptualization introduced by Cena et al. [41], where real-world
data from environmental and wearable sensors are used for modeling, a HUM should
also integrate information from the web (social connections, posts, comments, tags,
and interactions) to create a more comprehensive profile of the individual. In partic-
ular, a HUM can be divided into different facets, each describing a specific aspect
of the person: demographics, interests, knowledge and skills, affects, psychological
traits, behaviors, social connections, and physical states. Table 1 summarizes the
(groups of) short-term and long-term features that could be ideally encoded in a
HUM.

Demographics. These features regard the demographic information about the user
(age, gender, city of birth, and so on). This set of attributes is generally not domain-
specific and exhibits minimal to negligible variability.

Interests. This accounts for the user’s preferences about some domain objects.
This feature is the building block of intelligent systems [115] like recommender
systems that mainly rely on ratings to produce suggestions, both in collaborative and
content-based filtering [153]. Such a feature is typically domain-dependent.
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Table 1 Features that can be accounted for by a holistic user model; Adapted from [41]

User data Short term Long term

Demographics Address, Job, Marital status,
etc.

Name, Date of birth, etc.

Knowledge and skills Particular skills General capabilities

Preferences Opinions short-term interests Believes long-term interests

Affects Emotions, Moods Emotional disorder

Psychological traits Cognitive states (level of
attention, etc.)

Cognitive skills (orientation,
etc.) personality traits

Behavior Tasks, Activities Habits

Physical states Physiological parameters
(blood pressure, etc.)

Chronic diseases

Social connections Encounters User’s social network

Affective aspects. This deals with users’ feelings, emotions, and moods. It can be
domain-independent and context-dependent and can vary greatly. As shown in the
literature, mood and emotions are fundamental for modeling a user [264].

Psychological aspects. This includes information about users’ personality traits
and other psychological aspects such as Locus of Control [223], Self-efficacy [16],
Need for Cognition [33], as well as the level of empathy [61]. These aspects are
more stable than affective aspects, and they are domain- and context-independent.
The importance of these aspects for UMs has been shown in several studies [11, 257,
263].

Behaviors. This comprises all the tasks, actions, and activities the users engage
with, in principle both online and in the real world. It can contain for example data
about users’ physical activities, such as when they are walking or running, where,
and for how long. This type of data can be collected by the sensors in smartphones
and wearable devices. Inference in user’s actions can lead to learning their habits.

Physical states. This aspect regards physiological and physical data about the user,
including physical parameters like heart rate, blood pressure, and temperature. They
are short-term and domain-independent information that can be directly gathered by
the means of sensors in wearable devices [214]. By applying some form of reasoning
to these data, it is possible to derive more complex user dimensions, such as chronic
diseases, or stress and anxiety.

Connections. The social connections and the relationships of the user are key
aspects of user modeling. They provide valuable insights into predicting user behav-
ior. In research areas like social recommender systems [104], the information derived
from a user’s social connections plays a crucial role. More recently, methods employ-
ing graph neural networks have been proposed, leveraging the user’s personal net-
work for improved modeling [77].

The list of features presented thus far includes some highly sensitive informa-
tion. Given the potential privacy concerns for users, it becomes crucial to design and
implement robust privacy policies [42]. Respecting user privacy is a paramount con-
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sideration, and any approach undertaken to develop HUMs should align with ethical
standards and legal regulations, ensuring the safeguarding of sensitive information.

5.2 Building a Holistic User Model

The construction of a HUM involves two main steps: (i) collecting raw data about
an individual from sources like social networks, smartphones, and wearable devices;
and (ii) processing this data using natural language processing and machine learning
techniques to populate the facets that constitute a HUM.

To support this vision, some tools have been implemented over the years [43]. An
example of such a tool is Myrror [180], a platform that allows user to connect their
digital identities to acquire personal data and process them to generate holistic user
profiles. Myrror is organized by following the typical layered architecture consisting
of a data acquisition layer, a data processing and enrichment layer, a holistic profile
builder, and a final layer for data visualization and data exposure.

The typical workflow carried out by Myrror is captured in Fig. 1. The construction
of a holistic user profile begins with the data acquisition phase, where raw data are
extracted from social networks and combined with information extracted from per-
sonal devices and the Internet of Things (i.e., smart bands and smartwatches). Next,
the collected data undergoes a processing and enrichment phase, involving aggrega-
tion and processing through mapping and reasoning mechanisms. These mechanisms
facilitate the inference of high-level features from the raw data. As an example, user
preferences can be inferred by mining entities mentioned in the user’s posts, mood
can be deduced from the sentiment of recent posts, and GPS sensor data can con-
tribute to inferring recent activities. Finally, once the data is processed, a holistic user
profile is constructed by mapping the learned features to the facets defined for the
holistic user profile. The resulting user profiles are made available to the user, either
through a classical web interface or REST APIs. An advanced version of Myrror,
known as MyrrorBot [182], allows querying user profiles in natural language and
utilizing personalized services based on holistic user profiles.

5.3 Exploiting Holistic User Models

When individuals interact with intelligent solutions, particularly those involving
decision-making and information seeking, they commonly focus on (and are influ-
enced by) different aspects, on the domain of the choice and even other (apparently
unrelated) domains [113]. Here, we explore a context and user groups to emphasize—
in practice, not just theory—the importance and need for a HUM to effectively rep-
resent and cater to users in human-centered intelligent technologies.
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5.3.1 Food Recommendation

When a person is deciding what to eat, various factors can influence the decision-
making process. While most people may first consider their preferences in the food
domain (“I’d like cake”), other aspects might also play a role [181]. This concerns
contextual factors related to how an individual thinks and feels, such as a user’s
current mood (“I feel sad”), their past experiences (“When I feel sad usually sweets
help me”), constraints related to their health condition (“But I have to control my
glucose intake”), long-term goals (“I’d like to lose weight for the summer”), contex-
tual factors (“there are no good pastry shops nearby and I have no time to search for
other places”), and social acceptability (“maybe my boyfriend would be disappointed
if I don’t eat with him”). Much of this information may be compatible (e.g., mood
and sugar intakes), or at odds with each other (e.g., the momentary desire of eating
sweets and its long-term consequences). Hence, some kind of cost-benefit evaluation
among these aspects needs to be performed by the user [213], even when decisions
are unconscious and thus users are not aware of the underlying process [69, 152].

Recommendation algorithms in the food domain consider more than preference
optimization, as evidenced by the adoption of knowledge-based recommendation
strategies [181, 249]. These strategies should simultaneously take into account the
user’s food preferences, health data (e.g., overweight with a heart condition), cur-
rent mood (e.g., the user is sad, and sweets might turn the day for the better), how
much physical activity has been done (e.g., ran for 1 hour), and general goals (e.g.,
lose weight). This multi-faceted information can also be of use to support healthier
decision-making.

In multiple studies, Musto et al. [181, 183] examine how natural language justifi-
cations contribute to promoting healthier food choices. These justifications are based
on user characteristics, recipe features, and the relevant relationship between them.

Fig. 1 Sample workflow for producing Holistic User Models. Inspired by Myrror [180], building
holistic user profiles starts by gathering data from a multitude of online sources and culminates with
comprehensive profiles that users can access
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Fig. 2 An overview of a food recommender system with holistic user modeling. Depicted are two
recipes with a “single-style” justification from Musto et al. [183]. Justifications differed across
participants to examine which ones would support the healthiest recipe choices

By presenting pairs of recipes (one healthy, one popular) along with different justifi-
cations, the authors demonstrate that justifications influence preferences toward the
healthier recipe. A sample experimental pair is presented in Fig. 2, where a justifi-
cation related to food features is presented, this is because justifications that make
nutritional information transparent are identified as the most effective in supporting
healthier choices [183].

Musto et al. [183] argue their justifications tap into different user motivations.
Some justifications are rather context-rich and “immediate,” such as those that
describe different cooking times and difficulties for recipes. Others are more related
to health and long-term effects, describing for instance the relation between fat and
cardiovascular disease or sugar and diabetes. Different responses to these can be
explained by construal level theory, which describes the perceived psychological
distance of individuals toward (attitudinal) objects [266]. Justifications focusing on
health hazards in the long term might not resonate with users who have no prior
history of food-related illnesses and therefore have no long-term perspective on
decision-making.

In the end, the studies leverage a pipeline for holistic user modeling. As illustrated
in Fig. 3, the pipeline consists of (i) the Profiler module that collects user charac-
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Fig. 3 Schematic workflow that is used to generate natural language justifications. The justifications
are based on user and recipe features, which are paired based on inserted food knowledge. These
factors are also used for knowledge-based food recommendations

teristics, which are based on a holistic user profile. This leverages different types
of characteristics, including contextual constraints (e.g., time to cook), demograph-
ics (i.e., age, BMI), but also affect (e.g., a user’s current mood), and a user’s self-
reported health status and goals (e.g., lifestyle self-evaluation, weight-loss goals);
(ii) the Recipe Analyzer extracts the food features of the recipes in the database.
These include the nutritional content of food, such as fats and fibers, as well as an
aggregate FSA recipe health score (cf. [248] for computational details), and (iii) the
Generator outputs a justification, which is based on the relationship between user
input, recipe features, and information about possible relevant health effects, e.g.,
the justification may highlight that eating a recipe that contains a lot of fat may lead
to a higher risk of cardiovascular disease.

5.3.2 Personalized Support for Vulnerable User Groups

Individuals who are considered to be part of vulnerable user groups (such as people
with cognitive problems or neurodiversity, children, and the elderly) are critical use
cases for holistic user modeling for various reasons. For illustration purposes, we
bring attention to use cases in the realm of search and recommendation tasks that
could be enabled by intelligent technologies.

Because of their condition, individuals with cognitive issues often encounter seri-
ous difficulties in their daily lives and therefore need support. This assistance extends
beyond and is far more complex than single-domain recommendations. For example,
suggesting what to do in case of a problem during a move requires much more user
information compared to providing a suggestion about which movie to see or book to
read. In this case, a broader and more diverse set of information is essential, encom-
passing not only “traditional” details about preferences but also aversions, habits,
cognitive skills, and abilities, aligning with the HUM perspective.

Individuals with autism spectrum disorder (ASD) tend to adhere to rigid routines
and experience anxiety in unfamiliar situations [238]. Moreover, they are usually
overloaded by environmental sensory stimuli that do not usually cause any problems



28 M. S. Pera et al.

to neurotypical individuals [256]. These aversions are usually idiosyncratic, varying
from person to person. Therefore, to alleviate stress and discomfort, individuals
with ASD benefit from personalized support [187]. For instance, they could receive
suggestions for safe places to visit when experiencing anxiety. Such spatial support
should be tailored based on the user’s preferences (such as recommending a comic
bookshop if the user likes comics), aversions (by suggesting a less crowded route or
one avoiding places with sensory features that might not annoy other users [163]),
habits (by suggesting an activity that the user is used to do), and current emotional
state (by calling a caregiver if the user is in a state of panic).

Children, as another vulnerable user group with developing cognitive skills and
abilities, spotlight the vital role of HUMs in guiding search and recommender systems
tailored to this population. In this context, a traditional UM produced based on
user-system interactions and/or user preferences is not sufficient. Instead, a more
comprehensive counterpart that captures not only user interests but also individuals’
(cognitive) skills would be more advantageous [12, 147]. Affect is another important
factor that impacts children’s engagement with the completion of a search task [147].
Further, when it comes to online resources, children must be provided with suitable
materials they can comprehend. Still, children’s reading skills are very much in
development, and suitability is also something that gradually changes as children
grow; making text complexity and topic alignment crucial factors to model [12, 161,
168, 169, 174, 187].

While not exhaustive, it is clear from the aforementioned examples that HUM
should contain factors that capture both short-term and long-term information: Cog-
nitive status and skills, personality traits, spatial activities, habits, affects, along with
interests and aversion.

6 Concluding Remarks

The purpose of this chapter was to highlight the significance and diversity of human
factors that anchor the design, development, and deployment of intelligent systems
that prioritize humans, rather than just considering them as mere users. Specifically,
we presented key concepts, theories, and methodologies integral to human-centered
user modeling. While not exhaustive, they are meant to serve as a foundation and
provide understanding regarding: What is a UM?, What are human factors?, How to
collect data to enable user modeling? (and which type of data?), and How to produce
UMs driven by human factors?

The examples and overall discussion presented in this chapter not only evidence
the critical role of human factors but also emphasize the need for adopting a holistic
view to producing UMs. This comprehensive perspective is essential for enabling
adaptation and personalization in the context of intelligent solutions for a wide range
of users with different needs, abilities, and expectations.

Given the focus on human-centered user modeling, we cannot but urge researchers
and industry practitioners alike to reflect on the privacy, ethical, and broader societal
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implications of the data directly elicited, indirectly gathered (and their source), or
used to infer human factors for user modeling. Moreover, as Artificial Intelligence
(AI) continues to advance, there is a pressing need for further research to explore
and expand upon the strategies and perspectives discussed in this chapter. This is
particularly crucial in harnessing the potential of AI to keep users in the loop and
integrated at different stages of intelligent system development.
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