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Preface

Except for thanking all people involved in the successful delivery of this thesis and obtaining
my master of science degree in aerospace engineering, I would like to use this chapter to put
down an idea related to the topic of this thesis.

I am currently working at IBM. A company which recently started up a new business unit
around the Watson supercomputer. Watson is an artificially intelligent computer system
capable of answering questions posed in natural language. In 2011, Watson competed on
Jeopardy! against former winners Brad Rutter and Ken Jennings, and won! Watson had
access to 200 million pages of structured and unstructured content consuming four terabytes
of disk storage including the full text of Wikipedia, but was not connected to the Internet
during the game. For each clue, Watson’s three most probable responses were displayed on the
television screen. An interesting fact about Watson is that at its core lies the same statistical
technique as used in this thesis, i.e. Bayesian inference.

In this thesis, three RANS turbulence models and three flow cases have been investigated for
which the experimental data was available. There are many more turbulence models available
though, and the number of flow cases one can think of are basically infinite. Although there
is no experimental data available for all of these, there is of course plenty more experimental
data spread across the world.

Now imagine that, similar to what IBM is doing with Watson, one could gather all this
experimental data and these available models from research institutions around the world.
Consequently, a supercomputer could use all this information intelligently and come up with
the most probable answer. It is a certainty that this approach would yield more accurate
results than a single model currently in use can provide. While I admit it is a daunting
task ,, one might ask what is more probable in the near term: finding the solution of the
Navier-Stokes equations or what I’ve just proposed.

I would like to say thank you to whoever is part or has been part of the great institutions
where I received my higher education. Starting with Delft University of Technology, and more
specifically the Aerospace engineering faculty, who’s great teachers, facilities and network have
brought me opportunities I wouldn’t have gotten at other places. In a similar fashion, I also
want to thank İstanbul Teknik Üniversitesi, Télécom ParisTech, The University of Texas at
Austin and École Nationale Supérieure des Arts et Métiers ParisTech. Thank you also to all
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the great friends I have made along the road.

Next I would like to thank Ir. Gigi van Rhee MBA, managing director of Stratelligence, for
providing me my first professional experience; Lorant Czaran, former head of office of United
Nations Office for Outer Space Affairs, for providing me the opportunity to work in a great
international environment; and LL.M. Stan Pieters, managing director of Spinfin, for being a
great mentor when it comes to entrepreneurship.

I am also grateful for the half year I spent at De Kleine Consultant, a strategy consultancy
run by students and supported by AT Kearney. It was a tremendous amount of fun, with
nice people and a great spirit.

To my first full-time employer, IBM, my mentors Pierre Valentin, Philipp Hansmann and Jim
Hulders: thank you for believing in me! Working parallel at IBM and on my thesis was a
challenge, but I could always count on you.

A big thank you also goes to my thesis supervisors Prof. Paola Cinnella and Dr. Richard
Dwight for their constructive support, and for the interactions with Ir. Wouter Edeling and
the other PhD. students who provided me useful insights into the thesis’ topic.

Then the famous last but definitely not least... Thank you to my family. Thank you for your
unconditional love, even when I was often far away from home.

Moeke, papa, ik had geen betere ouders kunnen wensen. Dichtbij of ver weg, weet dat ik
altijd aan jullie denk. Zonder jullie was ik niets.

Bert Kwanten
Leuven, Belgium
March 9, 2014
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Summary

Scientists and engineers use observations, mathematical and computational models to pre-
dict the behaviour of physical realities such as turbulent flows. However, as a consequence
of observational errors, errors in the mathematical models and discretisation errors in the
computational models, our knowledge about what happens in reality is imperfect.

The main purpose of the thesis is to investigate whether it is possible to quantify and to reduce
the uncertainty of Reynolds-averaged Navier-Stokes (RANS) models - more specifically the
Spalart-Allmaras, Smith’s KL and the Launder-Sharma RANS turbulence models - using the
Bayesian inference theorem. An underlying objective is to do determine the prior uncertainty
by means of the analyst’s knowledge of the used model, instead of merely guessing it, and the
development of a methodical way to create and verify the correctness of a surrogate model
for the RANS models.

Inherent to using RANS models is the closure problem resulting from applying the Reynolds-
averaging technique to the Navier-Stokes equations. The model equations that are created
(e.g. SA, KL and LS model) to mitigate the closure problem contain coefficients who’s values
are determined from calibration with experimental values. It is for some of these so-called
closure coefficients that a prior uncertainty interval is determined.

A detailed study is performed on the prior uncertainty intervals for the closure coefficients.
Some of the models’ closure coefficients can be related to each other, effectively reducing
the number of uncertainty parameters. For each model, we finally consider five uncertain
parameters. In order to produce a reliable uncertainty interval for these closure coefficients,
it is important to know the model inside out. The better knowledge you have about the
model, the more reliable your prior uncertainty interval will be. In this thesis, the intervals
have been determined by studying how the models are build up, and by comparing the values
of the closure coefficients from different sources in literature.

Note that for each model, there are some coefficients they have in common. For example,
the Von Kármán coefficient κ is present in each model, and coefficient Cµ occurs in both the
KL and LS model. We have kept the interval the same for each of these coefficients across
the three models. It is arguable that this is not necessarily the best approach as they don’t
directly correspond with a physical quantity. Therefore, as is concluded from the Bayesian
calibration, their values can be different for each model.
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viii Summary

The prior uncertainty interval that is determined for the uncertainty parameters needs to be
propagated through the models in order to be able to apply Bayesian calibration. To enable
this, surrogate models of the actual RANS turbulence models are created. We are able to
create surrogate models for all RANS models and every use case.

Overall it can be concluded that there is room for improvement when creating these surrogate
models. The sometimes large errors when compared to the actual simulation results should be
eliminated as much as possible. It is not completely clear whether these large errors are the
result of a combination of values for the uncertainty parameters that turn the model unstable.
However, as these errors usually occur at the boundaries of the envelope, this is expected to
be the main cause. In retrospect, when determining the interval of the prior uncertainty
coefficients, it would be good to look at which combinations of closure coefficients yield a
model for which convergence can be obtained. This would probably eliminate the large error
at the boundaries of the surrogates.

After Bayesian calibration of the models, we observe that the prior uncertainty is significantly
reduced. Hence, our thesis has been proven. Note that the best results are obtained at places
where the density of the experimental data is highest. In addition, when the experimental
uncertainty is lower, this also improves the uncertainty of the Bayesian calibrated simulation
results. It is therefore very important to be in the possession of good experimental data in
order to apply the technique successfully.

The Bayesian calibrated results also prove to be much more accurate than the deterministic
results obtained using the default closure coefficients. The variance between the different
model’s results has also reduced.

Finally, when comparing the Bayesian calibrated closure coefficients for the different scenarios,
we can conclude that they are both flow case as well as model dependent. Choosing a constant
value for these parameters, as is regular practice when using RANS simulations, is therefore
a rather inadequate approach.
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Chapter 1

Introduction

This chapter introduces the concept of uncertainty in predictive science. The first section will
explain the so-called imperfect path to knowledge that scientists and engineers use to make
predictions of the physical reality surrounding us. It also describes the different kind of uncer-
tainties, i.e. epistemic and aleatoric uncertainty. Consequently, the second section describes
the thesis’s objective. Finally, the last section outlines the structure of this document.

1.1 Sources of Uncertainty in Predictive Science

Scientists and engineers use observations, mathematical and computational models to pre-
dict the behaviour of physical realities such as turbulent flows. However, as a consequence
of observational errors, errors in the mathematical models and discretisation errors in the
computational models, our knowledge about what happens in reality is imperfect. Figure 1.1
shows a schematic representation of this ‘imperfect path to knowledge’ as it was defined by
Oden et al. [18].

The errors as depicted in Figure 1.1 are inherently present in any scientific prediction. There-
fore, in order to make valuable predictions, these errors are managed by means of the process
of predictive science, through which the errors are identified, quantified and, if possible, re-
duced. This process consists of four stages, and can be summarized as follows:

1. Identifying Quantities of Interest: It is of utmost importance to define the quan-
tities of interest (QoI) in advance. A particular model might be perfectly capable of
simulating certain features of a phenomenon, while totally incapable of modelling others.

2. Verification: Verification is the process of detecting and controlling the errors caused
by the corruption of mathematical models through discretisation and errors arising from
the implementation of the model in software (bugs).
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Physical Reality 
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Validation Verification 

Figure 1.1: The imperfect path to knowledge

3. Calibration: Mathematical models usually contain adjustable parameters. The pro-
cess of tuning these parameters in such a way that predictions and experimental obser-
vations come into closer agreement is called calibrating.

4. Validation: The validation process consists of carrying out carefully designed experi-
ments in order to assess the legitimacy of the theoretical models in making predictions
about the quantities of interest.

However, even when the process of predictive science is carefully applied, it is impossible to
be completely certain that there are no errors present in a computational model. Therefore,
next to errors, uncertainty is something which has to be dealt with. One kind of uncertainty
is related to lack of knowledge, or so-called epistemic uncertainty [4][11][17][18].

Epistemic uncertainty:
A potential deficiency in any phase or activity of the modelling process that is
due to a lack of knowledge.

This kind of uncertainty usually originates from imperfections in the mathematical models,
or lack of knowledge about physical model parameters. In principal this uncertainty can be
reduced when knowledge about physical reality increases. Therefore, epistemic uncertainty is
said to be characteristic of the analyst, as it depends on the analyst’s knowledge [11].

Imagine the hypothetical event in which there are no errors, nor epistemic uncertainties
present in the computational model. In that case, the computational model would still have
to cope with another kind of uncertainty. This kind of uncertainty is irreducible, and is
related to the natural variability which is present in all physical realities. An example of
natural variability is the uncertainty about initial and boundary conditions, e.g. the geometric
description of a model. In literature this is referred to as aleatoric uncertainty [4][11][17][18].
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1.2 Thesis Objectives 3

Aleatoric uncertainty:
The physical variation present in the system being analysed or its environment.

Note however that the distinction between epistemic and aleatoric uncertainty is susceptible
to interpretation and dependent on context. An example used by Oden et al. [18] is the
throwing of a dice. In the context of a game, the outcome of throwing a dice is considered
to be random and therefore the uncertainty about the outcome is called aleatoric (alea is
actually Latin for dice). However, one could argue that it is possible to model the physical
process behind throwing a dice, which would make the outcome deterministic. Therefore, the
only uncertainty related to the outcome of throwing a dice would be epistemic, i.e. stemming
from a lack of knowledge of the analyst.

This thesis focuses on reducing uncertainty by means of using Bayesian inference. From the
definitions given above, it can be concluded that the part of the uncertainty which we are able
to reduce is definitely of epistemic nature. However, whether the uncertainty which remains
after applying Bayesian inference is epistemic or aleatoric is unknown.

1.2 Thesis Objectives

The main purpose of the thesis is to investigate whether it is possible to quantify and to reduce
the uncertainty of RANS models using the Bayesian inference theorem. More specifically, we
will investigate the Spalart-Allmaras, KL and Launder-Sharma RANS turbulence models.

An underlying objective is to do determine the prior uncertainty by means of the analyst’s
knowledge of the used model - instead of merely guessing, and the development of a methodical
way of creating and verifying the correctness of a surrogate model for the investigated RANS
models.

1.3 Thesis Outline

Chapter 2 introduces the mathematical framework we will use to calibrate uncertain pa-
rameters of the Reynolds-Averaged Navier-Stokes (RANS) Spalart-Allmaras (SA), KL and
Launder-Sharma (LS) turbulence models. The framework consists of three parts, i.e. the
Bayesian inference theorem, the probabilistic collocation method and the Markov Chain
Monte Carlo method. First, we dive into the application of the Bayesian inference tech-
nique to the calibration of uncertain model parameters, as it is the backbone of the entire
framework. Applying the Bayesian calibration technique to turbulence models is computa-
tionally expensive, because the stochastic nature of Bayesian calibration requires running the
turbulence models several times over for different input parameters. Therefore, we make use
of what one could call an efficient interpolation technique, i.e. the probabilistic collocation
method. This method is introduced in Section 2.2, along with an application to the 1D Vis-
cous Burgers Equation. Finally, Section 2.3 explains the Markov Chain Monte Carlo method,
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4 Introduction

which is used to obtain the posterior samples that finally result into the posterior (calibrated)
distributions of the uncertain parameters.

The first step in the application of the Bayesian inference technique to the calibration of
uncertain RANS model parameters, is to define an initial (prior) uncertainty interval for these
parameters. Chapter 3 starts by explaining how the RANS equations are confronted with a
so-called closure problem, resulting in the necessity of models containing closure coefficients
who’s values are uncertain. This is followed by an extensive discussion on the determination
of prior uncertainty intervals for each of the considered model’s uncertain parameters.

To be able to compare the uncertainty of the Spalart-Allmaras, Launder-Sharma’s k − ε and
Smith’s k − l turbulence model, we need to apply them to a couple of test cases. For this
purpose, three turbulent flat plate flows have been selected. The main difference between
them is that each are subject to a different pressure gradient, i.e.

• Wieghardt’s zero pressure gradient case (zpg) [16];

• Ludwieg and Tillman’s favourable pressure gradient case (fpg) [15];

• and Ludwieg and Tillman’s adverse pressure gradient case (apg) [15].

These three test cases are discussed in Chapter 4.

The next step is to propagate the uncertain parameters that are determined in Chapter 3
through the SA, KL and LS model for the three different test cases. In order to do that, we
use the probabilistic collocation method to create surrogate models. The creation of a total
of nine (3 models × 3 test cases) is covered in Chapter 5.

Finally, Chapter 6 discusses the results of the Bayesian calibration for the SA and KL model.
Unfortunately the Bayesian calibration for the Launder-Sharma model did not work. Why
that is the case is unclear, as the process that was followed was exactly the same as for the
two other models.
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Chapter 2

Theory and Problem Definition

This thesis aims to investigate the reduction of the epistemic uncertainty, which was intro-
duced in Chapter 1. The mathematical framework we will use consists of three parts, i.e.
the Bayesian inference theorem, the probabilistic collocation method and the Markov Chain
Monte Carlo method. First, we dive into the application of the Bayesian inference technique
to the calibration of uncertain model parameters, as it is the backbone of the entire framework.
Applying the Bayesian calibration technique to turbulence models is computationally expen-
sive, because the stochastic nature of Bayesian calibration requires running the turbulence
models several times over for different input parameters. Therefore, we make use of what one
could call an efficient interpolation technique, i.e. the probabilistic collocation method. This
method is introduced in Section 2.2, along with an application to the 1D Viscous Burgers
Equation. Finally, Section 2.3 explains the Markov Chain Monte Carlo method, which is used
to obtain the posterior samples that finally result into the posterior (calibrated) distributions
of the uncertain parameters.

2.1 Theory of Bayesian Calibration

2.1.1 Computational and Experimental Uncertainty

The sources of uncertainty in any scientific prediction are introduced in Chapter 1, and
modelled into the so-called Imperfect path to knowledge. It includes uncertainty resulting
from faulty experimental observations and erroneous computational models. This section will
describe these sources of uncertainty in more detail.

In the paper of Cheung et al. [2], the process of collecting data is defined by Figure 2.1.
From this figure, it can be observed where the uncertainties within experimental observations
originate from. A first error source is the experimental apparatus itself. Due to conversions
in the experimental apparatus, the measured values d are not necessarily the same as the
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6 Theory and Problem Definition

actual values of the observables dactual. Another source of uncertainty are the conditions at
which the experiment is executed. During an experiment, the input parameters θ govern-
ing the investigated phenomenon are set to certain values given on a display of some sort.
Unfortunately, it is impossible to know whether the input parameters are set to the exact
value as given on the display. Most likely, they are not. Therefore, the exact value of the
input parameters θactual is unknown. In addition, it is sometimes even unknown what all the
input parameters governing the observed phenomenon are. A second source of uncertainty is

Actual 
Phenomenon 

Experimental 
Apparatus 

Actual 
Parameters 

Actual 
Observations 

Measured 
Data 

actualθ actuald d

Figure 2.1: The process of collecting data as defined by Cheung et al. [2]

the used computational model. A computational model uses algorithms to solve a discretised
form of a mathematical model. In general, it consists of two parts:

• A vector θ of n parameters, which can be anything ranging from material properties,
coefficients, constitutive parameters, boundary conditions, initial conditions, etc.;

• A set of governing equations r(θ,u(θ)) = 0, in which the solution u(θ) represents the
state variables or model state.

Next to these state equations, the computational model also includes functions which calculate
model output data y(θ,u), and predicts a vector of m quantities of interest q(θ,u). The
important distinction between y and q is that the former can be compared with experimental
data during the calibration of the model, while the latter can not as these are predictions of
a (currently) unmeasurable quantity. A schematic representation of a computational model
is given by Figure 2.2. Finally, it should be noted that computational models can be either

Core of a 
Computational Model: 

 

Functions: 
 
 

Model Parameters Model State Model Output Data 

Model Prediction  ,  0r u

 

 

,

,

y u

q u





Full Computational Model 

 u

y

q

Figure 2.2: The representation of a computer model as defined by Cheung et al. [2].

deterministic or stochastic. Our interest goes out to the stochastic kind in which at least one of
the parameters has been assigned a probability density function, representing its uncertainty.
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2.1 Theory of Bayesian Calibration 7

2.1.2 Inverse Problems and the Bayesian Formula

A computational model can be used to solve two kinds of problems, i.e. forward and inverse.
In the case of a forward problem the parameters θ are given and the state variables u, model
output data y and prediction/quantity of interest q need to be calculated. An inverse problem
on the other hand, estimates the values of the parameters θ in such a way that the model’s
output data y fits the experimental data d as accurately as required/possible. This process is
also called model calibration, and usually precedes the computation of quantities of interest q.
Both the inverse and forward problem are represented in Figure 2.3. In the previous section,

Figure 2.3: (a)generic inverse problem (b)generic forward problem [2].

a final note was made stating that we are interested in stochastic computer models. The
stochastic representation of a forward problem is similar to the deterministic case. However,
for the inverse problem, the Bayesian approach needs to be adopted. The solution of the
statistical inverse problem is the posterior probability density function, given as

pposterior(θ|d) =
plikelihood(d|y, r, θ)pprior(θ)

p(d)
, (2.1)

in which pprior is the prior information about the parameters, these can be obtained from liter-
ature, experiments or previous simulations, among others. The likelihood plikelihood(d|y, r, θ)
is the probability of observing the data d, given the model and parameters θ. The information
on the data pd is only used to normalize the solution and sometimes omitted. The Bayesian
formula is one of the fundamental concepts used in quantifying uncertainty. A schematic
representation of a statistical inverse and forward problem is given by Figure 2.4.

Figure 2.4: (a)statistical inverse problem (b)statistical forward problem [2].
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8 Theory and Problem Definition

2.1.3 Stochastic Model Classes

In the Bayesian framework, a key concept is that of a stochastic system model class, consisting
of a chosen set of probabilistic input-output models for a system and a chosen prior probability
density function. A probabilistic input-output model is created by incorporating stochastic
models into the considered simulation model. Mathematically it can be described as follows:

r(θ,u, ξ) = 0,

y = y(θ,u, ε),

d = d(θ,dactual, ζ), (2.2)

in which the model state u is the solution of the stochastic equation r(θ,u, ξ) = 0; y is the
stochastic model output; d is a random vector or random field obtained from the measured/ob-
served data D; and dactual, which is some subset of y, is the actual quantity corresponding
to d. The additional variables ξ, ε and ζ are random vectors or random fields with a joint
probability density function p(ξ, ε, ζ|θs,Mj), in which θs is a subset of the uncertain parame-
ter vector θ of the stochastic system model class Mj . The prior probability density function
represents the initial relative plausibility of each model based on expert knowledge or other
sources such as literature and previous experiments, etc.

To make the Bayesian formula explicitly dependent on the model class Mj , it can be rewritten
as follows:

p(θ|D,Mj) =
p(D|θ,Mj)p(θ|Mj)

p(D|Mj)
=

p(D|θ,Mj)p(θ|Mj)∫
p(D|θ,Mj)p(θ|Mj)dθ

, (2.3)

in which the model class Mj is dependent on the parameters θj ∈ Θ ⊂ Rn. The denominator
of equation (2.3) is called the evidence for Mj given D[1]. More specifically, it expresses
the probability of measuring/observing the data D for a model Mj ; p(θ|Mj) is the prior
probability density function of the model θ within Mj ; and p(D|θ,Mj) is the likelihood
function, expressing the probability of observing D given the predictive model θ within Mj :

p(D|θ,Mj) =

∫
p(D|w, θ,Mj)p(w|θ,Mj)dw, (2.4)

in which w represents all the unobserved model outputs, model states, modelling and measure-
ment errors, boundary conditions and initial conditions[2]. The probability density function
p(D|w, θ,Mj) is given by

p(D|w, θ,Mj) =

∫
p(D|d̃,w, θ,Mj)p(d̃|w, θ,Mj) dd̃, (2.5)

where d̃ are the exact values of the measured quantities.

Now that the Bayesian formula (2.1) is rewritten into its explicit form (2.3), consider the set
of candidate competing model classes M = {M1,M2, ...,MNM }. Each model within this set
is different from each other because of parametric, structural or other uncertainties. Now, for
each of these models, the posterior probability density function, evidence, relative plausibility
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2.1 Theory of Bayesian Calibration 9

and predictions can be determined. The relative plausibility is defined by the posterior prob-
ability P (Mj |D,M), which can be found by applying Bayes’ theorem to the prior probability
P (Mj |M):

P (Mj |D,M) =
p(D|Mj)P (Mj |M)∑NM
k=1 p(D|Mk)P (Mk|M)

(2.6)

Without a priori information, P (Mj |M) is often taken as uniform. The evidence of each
model class determines the corresponding posterior probability, and can be found using the
Theorem of Total Probability [1]:

p(D|Mj) =

∫
p(D|θ,Mj)p(θ|Mj)dθ, (2.7)

as was already indicated in equation (2.3). The posterior predictive probability distribution
of the unobservable quantities of interest q for model class Mj is given by

p(q|D,Mj) =

∫
p(q|θ,D,Mj)p(θ|D,Mj)dθ, (2.8)

where the predictive probability density function of each model Mj is weighted by its posterior
probability. Next to an individual prediction for each model class, also an overall prediction
can be obtained based on the prediction of all model classes described as

p(q|D,M) =

NM∑
j=1

p(q|D,Mj)P (Mj |D,M), (2.9)

in which the robust posterior predictive probability density function for each model class Mj

is weighted by its posterior probability P (Mj |D,M). It is important to note that multi-
dimensional integrals, such as (2.8) cannot be evaluated analytically. Hence, methods are
developed to provide the samples θ(k), which are needed to approximate the posterior prob-
ability density function p(θ|D,Mj) by means of the following equation:

p(q|D,Mj) ≈
1

K

K∑
k=1

p(q|θk, D,Mj) (2.10)

The sampling method used in this thesis is the Probabilistic Collocation Method, which is
described in Section 2.2.

Experimental Uncertainty

A probabilistic model of the observation process, which is shown in Figure 2.1, is mathemat-
ically represented by

di = d̃i + ei, (2.11)

in which di and ei are the i-th components of random vectors d ∈ RN and e ∈ RN respectively.
The quantities in vector d̃ represent the true values corresponding to the quantities in vector
d, while the components of vector e are independent, Gaussian random variables, with mean
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10 Theory and Problem Definition

zero and prescribed standard deviations: ∼ N (0, λi). In the example of Cheung et al.[2],
standard deviations are set to 2% and 5% of the observed value for the velocity and shear
stress measurements respectively.

Given the previous assumptions, the probability density function p(d|d̃,Mj) can be written
as

p(d|d̃,Mj) =
1√

(2π)NdetKe

exp

[
−1

2
(d− d̃)TK−1

e (d− d̃)

]
, (2.12)

in which Ke is a diagonal matrix with the i-th diagonal entry equal to the variance of ei.

Model Inadequacy

Next to uncertainty in the experimental data, we also have to deal with uncertainties related
to the computational model. As there are many stochastic models which can be used to deal
with this model inadequacy, a set of candidate model classes is defined. The model classes
are constructed based on stochastic equation

d̃i = ηiyi(θp), (2.13)

in which y(θp) denotes the model output quantities from the RANS-SA model corresponding
to the quantities in d̃; and ηi is the i-th component of a random vector η which corrects for
the mismatch between y(θp) and d̃. The multiplicative form is chosen such that the no-slip
boundary condition is satisfied, i.e. u = 0 at the wall. Once the probability density function
for η is known, (2.13) is completely defined.

Cheung et al.[2] consider three model classes which are only different in the way they model
η:

1. No Uncertainty: η = 1, in which 1 is a vector of ones;

2. Independent Gaussian uncertainty: ηi ∼ N (1, σ2) for i = 1, ..., N , in which σ is an
additional uncertain parameter and p(d̃|θ) ∼ N (y(θp),Kmi);

3. Correlated Gaussian uncertainty: η ∼ N (1,Kmc), in which 1 is the mean vector
and Km the covariance matrix determined from a Gaussian random field model of the
velocity field.

It is important to note that η may depend on additional uncertainty parameters θu, which
are included in the total parameter vector θT = [θTp , θ

T
u ]. The probability density function of

d̃ conditioned on θT , p(d̃|θ), can now be computed.

The Calibration Problem

From equation (2.5) and the models found in the previous two subsections, the likelihood
function p(d̂|θ,Mj) is found to be a Gaussian probability density function given by (2.14):

p(d̂|θ,Mj) =
1√

(2π)NdetK
exp

[
−1

2
(d̂− y)TK−1(d̂− y)

]
, (2.14)
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2.2 The Probabilistic Collocation Method 11

in which d̂ is the vector in which measured data D is stored. This vector can be interpreted
as a realization of the random vector d ∈ RN . Equation (2.14) is different for the three model
classes, as the covariance matrix K is different for all three of them. More specifically:

1. M1: K = Ke;

2. M2: K = Ke +Kmi;

3. M3: K = Ke +Kmc.

In this thesis, we only use the model class of the first kind.

2.2 The Probabilistic Collocation Method

Several techniques have been developed in order to run the uncertainty of input parameters
through a simulation code. These methods usually require a number of deterministic com-
putations of the code, which makes them computationally expensive. Therefore, continuous
effort is made to find efficient propagation techniques, requiring an ever smaller number of
deterministic solves. Furthermore, non-intrusive techniques are preferred, as they can be
coupled to any commercial solver without having to adapt the solver itself. One such rela-
tive efficient and non-intrusive technique is the Probabilistic Collocation method developed
by Loeven et al. [12]. This technique is based on the intrusive Galerkin Polynomial Chaos
method [8][9][25], which is covered to some detail in Appendix A. In Section 2.2.1 the theory
of the probabilistic collocation method is explained. Section 2.2.2 shows the application of
the Probabilist Collocation method to the 1D viscous Burgers equation.

2.2.1 The Probabilistic Collocation Method Explained

In order to explain the Probabilistic Collocation method, we rewrite Equation (2.2) into a
general stochastic differential equation:

L (x, t, θ;u(x, t, θ)) = S (x, t, θ) , (2.15)

in which L is a differential operator, S a source term and u the solution depending on
space, time and a random event θ. Similar to the Galerkin Polynomial Chaos method, also
the Probabilistic Collocation method decomposes the solution u into a deterministic and a
stochastic part,

u (x, t, θ) ≈
Np∑
i=1

ui(x, t)Li (ξ(θ)) (2.16)

in which the coefficients ui are the deterministic solutions at the so-called collocation points
θi, with Li the corresponding Lagrange interpolating polynomial chaos. These polynomial
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12 Theory and Problem Definition

chaoses are a function of the random variable ξ(θ), whose standard parametric domain cor-
responds to [−1, 1], [0,∞) or (−∞,∞) depending on the chosen probability density function.
Each ξi is determined in such a way that the uncertain parameters a become a linear function
of ξ(θ):

a(θ) =
a(θ1)ξ(θ0)− a(θ0)ξ(θ1)

ξ(θ0)− ξ(θ1)
+

a(θ0)− a(θ1)

ξ(θ0)− xi(θ1)
ξ(θ) = ã0 + ã1ξ(θ). (2.17)

Finally, the Lagrange interpolating polynomial chaoses are polynomials of the order NP − 1,
which pass through the NP collocation points. They are computed using

Li(ξ(θ)) =

NP∏
j=1
j 6=i

ξ(θ)− ξ(θj)
ξ(θi)− ξ(θj)

, (2.18)

with Li(ξ(θ)) = δij , the Kronecker delta1. The NP collocation points are specifically selected
sample points, such that they correspond to the Gauss quadrature points used to integrate
the solution u(x, t, θ) in the θ-domain, which is necessary to obtain the mean and variance of
the solution. The method used by Loeven et al. [13] to determine the Gaussian quadrature
rules, is the Golub-Welsch algorithm [10]. This algorithm needs the recurrence coefficients of
polynomials which are orthogonal to the weighting function of the integration as an input.
In order to obtain the exponential convergence for arbitrary probability distributions, the
polynomials have to be orthogonal with respect to the probability density function of ξ,
hence w(ξ) = fξ(ξ). When multiple uncertain parameters are considered, the process is done
for each ξj , j = 1, ..., d separately. The number of collocation points in that case become
NP = (p + 1)d, for which p is the polynomial chaos’ order and d is the number of uncertain
parameters.

The orthogonal polynomials discussed, can be constructed using the three-term recurrence
relation, i.e.

Ψi+1(ξ) = (ξ − αi)Ψi(ξ)− βiΨi−1 i = 2, 3, ..., NP ,

Ψ0(ξ) = 0,Ψ1(ξ) = 1, (2.19)

where αi and βi are the recurrence coefficients determined by the weighting function w(ξ)
and {Ψi(ξ)}NPi=1 is a set of (monic) orthogonal polynomials with Ψi(ξ) = ξi + O(ξi−1), i =
1, 2, ..., NP . The recurrence coefficients are given by Darboux’s formulae [7]:

αi =
(ξΨi,Ψi)

(Ψi,Ψi)
i = 1, 2, ..., NP , (2.20)

βi =
(Ψi,Ψi)

(Ψi−1,Ψi−1)
i = 1, 2, ..., NP , (2.21)

in which (·, ·) represents an inner product, which is defined by equation (A.6). The first
coefficient β1 is given by (Ψ1,Ψ1). The different recurrence coefficients are computed using

1The Kronecker delta is 1 if the variables are equal, and 0 otherwise: δij = 0 if i 6= j and δij = 1 if i = j.
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2.2 The Probabilistic Collocation Method 13

the discretised Stieltjes procedure [6]. This procedure discretises the weighting function w(ξ)
by

wN (ξ) =

N∑
j=1

wjδ(ξ − ξj) wj > 0, (2.22)

where δ is the Dirac delta function. The Stieltjes procedure starts by calculating the coefficient
α1 and β1 using equations 2.20 and 2.21. Consequently, Ψ2(ξ) is computed by the recurrence
relation 2.19. This process is repeated for i = 2, 3, ..., NP .

Once all the recurrence coefficients are known, the Golub-Welsch algorithm [10] can be used to
compute the transformed collocation points ξi and corresponding weights wi. The recurrence
coefficients are used to construct a Jacobi matrix:

J =



α1
√
β2√

β2 α2
√
β3 ∅√

β3 α3
√
β4

. . .
. . .

. . .

∅
√
βNP−1 αNP−1

√
βNP√

βNP αNP


(2.23)

The coefficients ξi are the eigenvalues of J and the roots of the polynomial of order NP . The
weights are defined as

wi(ξ) = β1v
2
1,i i = 1, 2, ..., NP , (2.24)

where v1,i is the first component of the normalized eigenvector corresponding to the eigenvalue
ξi. Now the transformed collocation points in the ξ-domain are known, the collocation points
θi are found by

θi = Fξ(ξi) i = 1, 2, ..., NP . (2.25)

Finally, equation (2.16) can be substituted into (2.15) and the approximated Galerkin pro-
jection is applied on each polynomial {Lj(ξ(θ))}:〈

L

(
x, t, θ;

NP∑
i=1

uiLi

)
, Lj

〉
= 〈S,Lj〉 j = 1, 2, ..., NP (2.26)

This results in a fully decoupled deterministic system of equations. Finally, the mean and
variance of the solution u are given by the following two equations:

µu =

NP∑
i=1

ui(x, t)wi (2.27)

σ2
u =

NP∑
i=1

(ui(x, t))
2wi − µ2

u, (2.28)

in which ui(x, t) is the solution of collocation point θi, with wi its corresponding weight. The
next section will show the application of the polynomial collocation method to the 1D viscous
Burgers equation.

MSc. Thesis Bert Kwanten



14 Theory and Problem Definition

2.2.2 Example: The 1D Viscous Burgers Equation

As an example, we study the 1D viscous Burgers equation for x ∈ [−1, 1], x ∈ R and t > 0.
The velocities at the boundaries are u(x = −1) = 1 and u(x = 1) = −1, also known as the
Dirichlet boundary conditions.

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂2x
(2.29)

The parameter which is considered uncertain is the viscosity coefficient ν. It is assumed
that its value is Gaussian distributed with a mean µν = 0.15 and a coefficient of variation
CV = 1.5%2. For this case, we will use the Gauss-Hermite chaos quadrature.

The probabilistic collocation method starts by obtaining the collocation points at which the
deterministic solutions have to be obtained. These collocation points correspond to the
quadrature points, which are equal to the roots of the Hermite polynomial θi

3. Finally,
the values of the viscosity can be calculated from the transformation ξ(θ) = µν +

√
2σνθi. For

a polynomial order of 5, we obtain 5 different values for the viscosity. The solutions of the
1D viscous Burgers equation for these 5 different values are plotted in Figure 2.5.

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

u

Figure 2.5: The deterministic solutions of the 1D viscous Burgers equation at the five quadrature
points. The uncertain parameter is the viscosity ν, which is assumed to be Gaussian distributed
with a mean µν = 0.15 and a CV = 1.5%.

From the deterministic solutions ui and the obtained weights wi, the mean and variance of
the solution can be obtained using Equations (2.27) and (2.28). To illustrate the efficiency of
the Probabilistic Collocation method, it is compared to a Monte Carlo method4 using 2000
random samples of the proposed Gaussian distribution for the viscosity parameter ν. Note
that the error between the two methods is relatively small.

2The coefficient of variation is calculated as the standard deviation of the random variable divided by its
mean: CV = σ

µ
.

3For details about the Hermite polynomials, see Appendix B.
4For a detailed explanation of the Monte Carlo method, see Appendix C.
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(a) A comparison of the mean solution.
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(b) A comparison of the variance.

Figure 2.6: Comparison of the statistics obtained by the Probabilistic Collocation method (PC)
and the Monte Carlo method (MC). In (a) the error is normalized by the maximum error in the
domain, while in (b) the error ∆var = varPC − varMC .

2.3 Markov Chain Monte Carlo for Posterior Sampling

The Markov chain Monte Carlo method (MCMC) is a more efficient adaptation of the basic
Monte Carlo method, which is explained in Appendix C. More efficient in the sense that it
needs less samples to reconstruct a particular probability density function, in our case of the
posterior P (θ | d). In addition to its enhanced efficiency, it is also an important property
of the MCMC method to not need a normalisation factor P (d), which is generally hard to
obtain as was mentioned in Section 2.1.

The enhanced efficiency of the MCMC method as compared to the basic Monte Carlo method
is the result of the application of a Markov chain. A Markov chain is a sequence of random
variables xn+1, xn,..., x0 with the Markov property, i.e. the next state is only dependent on
the present state and not on any other state in the past:

p(Xn+1 = x|X1 = x1, X2 = x2, ..., Xn = xn) = p(Xn+1 = x|Xn = xn). (2.30)

This means that, contrary to the basic Monte Carlo method, the MCMC method’s samples
are not entirely independent. The MCMC method which we apply to sample the posterior
distribution is a random walk Monte Carlo method. This method is often implemented by
the Metropolis-Hastings algorithm, which is also the preferred choice in our work.

Metropolis-Hastings

1. Randomly generate the initial parameter vector θt=0 using the prior distribution P (θ).
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16 Theory and Problem Definition

2. Generate a candidate vector θ
′

by adding a δθ, generated from a proposal distribution,
to the current state θt, i.e. θ

′
= θt + δθ.

3. Obtain the likelihood term for the current state P (d | y, r,θt) and candidate future
state P (d | y, r,θ′

), using Equation (2.14).

4. Using Bayes theorem (2.1), the posterior probability of the current state P (θt | d) and
candidate future state P (θ

′ | d) can now be computed.

5. Calculate the acceptance ratio a = min

{
1, P (θ

′
|d)

P (θt|d)

}
.

6. Pick a random value b from a uniform distribution with bounds 0 and 1, i.e. U(0, 1).

7. If b ≤ a, the candidate vector is accepted and θt+1 = θ
′
. When a candidate vector is

not accepted, we start again from the current state, i.e. θt+1 = θt.

8. Repeat steps 2 to 7 until a sufficient number of samples is obtained to reconstruct the
posterior probability density function.

As the Markov chain starts with a random initial parameter vector θt=0, it takes some it-
erations before it converges to the equilibrium solution. These first iterations are part of
the so-called burn-in period, and are eliminated from the final samples which compose the
probability density function of the posterior.
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Chapter 3

Parametric Uncertainty of Reynolds-averaged
Navier-Stokes Models

The first step in the application of the Bayesian inference technique to the calibration of
uncertain RANS model parameters, is to define an initial (prior) uncertainty interval for these
parameters. The chapter starts by explaining how the RANS equations are confronted with a
so-called closure problem, resulting in the necessity of models containing closure coefficients
who’s values are uncertain. This is followed by an extensive discussion on the determination
of prior uncertainty intervals for each of the considered model’s uncertain parameters.

3.1 The Reynolds-averaged Navier-Stokes Models and the
Closure Problem

A commonly used technique to determine the mean flow properties of a turbulent flow is
the application of Reynolds-averaging to the Navier-Stokes equations. Assuming zero body
forces, the Navier-Stokes equations as represented by Equation (3.1), (3.2) and (3.3) describe
the motion of incompressible fluids by embodying the principles of conservation of mass,
momentum and energy, respectively.

∂ui
∂xi

= 0 (3.1)

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂x2

j

(3.2)

∂θ

∂t
+ uj

∂θ

∂xj
= κ

∂2θ

∂x2
j

(3.3)
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18 Parametric Uncertainty of Reynolds-averaged Navier-Stokes Models

Consequently, the Reynolds-averaged Navier-Stokes equations can be derived by using
Reynolds decomposition, i.e. the instantaneous variables for velocity (u) and pressure (p),
are split into a mean part and a fluctuating part i.e.

q = Q+ q′. (3.4)

The mean (Q) in this equation is described as an ensemble mean,

Q = lim
N→∞

1

N

N∑
α=1

q(α) = q̄, (3.5)

which is obtained by averaging all realizations, qα, of an experiment performed N times.

The Reynolds-averaged Navier-Stokes equations can now be obtained by substituting the
decomposed variables into the Navier-Stokes equations.

∂ūi
∂xi

= 0 (3.6)

ρ

(
∂ūi
∂t

+ ūj
∂ūi
∂xj

)
= − ∂p̄

∂xi
+ µ

∂2ūi
∂x2

j

−
∂ρu′iu

′
j

∂xj
(3.7)

∂θ̄

∂t
+ ūj

∂θ̄

∂xj
= κ

∂2θ̄

∂x2
j

−
∂u′jθ

′

∂xj
(3.8)

In these equations, µ = ν/ρ is the dynamic viscosity, p̄ the mean pressure and ū the mean
velocity in direction i.

Notice the last term of (3.7). This so-called Reynolds stress term represents the additional
stress caused by the transportation of mean momentum by turbulent fluctuations. Using the
equation for shear stress

τ̄ij = 2µSij = µ

(
∂ūi
∂xj

+
∂ūj
∂xi

)
, (3.9)

with Sij the strain-rate tensor, (3.7) can be rewritten to

ρ
∂ūi
∂t

+ ρ
∂

∂xj
(ūiūj) = −∂p̄

∂x
+

∂

∂xj

(
τ̄ij − ρu′iu′j

)
. (3.10)

The pressure and shear stress terms on the right hand side of this equation are related to
molecular stress, while the term Σij ≡ −ρu′iu′j represents the turbulent stress tensor or
Reynolds stress tensor.

As a result of the additional Reynolds stress terms, there are more unknowns than avail-
able equations. This so-called closure problem has to be resolved by introducing additional
relationships between the variables. In order to close the problem, let’s first compare the
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3.2 Parametric Uncertainty of the Spalart-Allmaras Turbulence Model 19

molecular stress σij to the turbulent stress tensor Σij . The molecular shear stress is given by

σij = −pδij + τij = −pδij + µ

(
∂ui
∂xj

+
∂uj
∂xi

)
, (3.11)

in which the first part of the equation is the isotropic part related to pressure. The second
part is deviatoric and caused by shear stress. Analogous to equation (3.11), the turbulent
stress tensor can be rewritten to

Σij = −1

3
ρū2

kδij + ρ

(
−uiuj +

1

3
ū2
kδij

)
. (3.12)

Here again, the first part of the equation is the isotropic part, which can be seen as turbulent
pressure. The second part of the equation is the deviatoric part, interpretable as the turbulent
shear stress. Based on the similarity of the Reynolds stress with the molecular stress, the
Boussinesq hypothesis is formulated as

ρ

(
−u′iu′j +

1

3
u′2k δij

)
= ρνt

(
∂ūi
∂xj

+
∂ūj
∂xi

)
= 2µTSij , (3.13)

in which νT and µT are called the eddy or turbulent kinematic/dynamic viscosity.

The Boussinesq hypothesis shifts the closure problem towards determining the turbulent vis-
cosity νT . Usually, one or more differential equations are constructed in order to determine
this quantity. Based on the number of additional differential equations, the models are clas-
sified as zero-, half-, one- and two-equation models. This thesis will address several types
of models: the one-equation Spalart-Allmaras model, the two-equation k − ε model and the
two-equation Smith k− l model. In the remainder of this chapter, the composition and prior
uncertainty of these models will be described in Section 3.2, 3.3 and 3.4.

3.2 Parametric Uncertainty of the Spalart-Allmaras Turbu-
lence Model

3.2.1 The Composition of the Spalart-Allmaras Turbulence Model

This section presents the Spalart-Allmaras (SA) model the way it was originally defined in
1992 [22], with the exception of the so-called transition terms1. It is important to understand
how the SA model is constructed, because it is its particular composition which finally leads to
the uncertainty in the model’s predictions. As mentioned in the introduction of this chapter,
the SA model is a one-equation model. In this case, the single additional equation represents
transport of turbulent viscosity, and is constructed by means of dimensional analysis and
empiricism. The following describes step by step how the equation is constructed. It does
this by defining the relationship for a simple free shear flow first. Consequently, terms are
added to include the effects of walls for an approximately inviscid and, finally, viscous flow.

1The transition terms provide control over the laminar region of the shear layers, i.e. these terms determine
where transition from laminar to turbulent flow occurs. Note that the SA model can by no means predict
transition. For more information about the transition terms, see reference [22].
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20 Parametric Uncertainty of Reynolds-averaged Navier-Stokes Models

Free Shear Flows

As was mentioned in the introduction of this section, the additional equation models transport
of turbulent viscosity νt. Its simplest version is constructed for free shear flows at high
Reynolds numbers. Consequently, molecular viscosity is negligible. For such flows, it can be
assumed that the energy cascades unidirectionally from the largest towards the smaller scales.
This assumption results from the conceptualization of turbulent flows as a superposition of
so-called eddies, which are broadly defined as coherent patterns of velocity, vorticity and
pressure at different scales. The largest eddies are created by instabilities in the mean flow
and are intrinsically unstable. As a result they brake down into ever smaller eddies, until their
energy is finally dissipated at the smallest, or Kolmogorov scales. This is what is referred to
as the energy cascade.

With this assumption in mind, the first version of the model can be constructed. The left-hand
side of the equation consists of the material derivative of the turbulent viscosity, representing
its rate of change in time. The right-hand side of the equation is composed of a production
term and a diffusion term. For the production term, the scalar norm S of the strain rate tensor
Sij ≡ (∂Ui∂xj

+
∂Uj
∂xi

)/2 is multiplied by the turbulent viscosity and a so-called basic coefficient

cb1. The diffusion term consists of the spatial derivatives of νt, a second basic coefficient cb2
and a Prandtl number σ. The basic model for free shear flows then becomes:

Dνt
Dt

= cb1Sνt +
1

σ

[
∇ (νt∇νt) + cb2 (∇νt)2

]
. (3.14)

Notice that this version of the SA model contains three closure coefficients, i.e. σ = 2/3,
cb1 = 0.1355 and cb2 = 0.622. Their values have been determined by calibrating the model
with experimental data for mixing layers and wakes. A more thorough discussion of how the
closure coefficients are determined will follow in Section 3.2.2.

This concludes the discussion of the SA model for free shear flows. The next section will tune
this model in such a way that it becomes capable of predicting wall-bounded flows at high
Reynolds numbers, i.e. inviscid wall-bounded flows.

Near-wall Region, High Reynolds Number

Additional terms need to be added to the free shear flow version of the model (3.14) in order
to predict the behaviour of wall-bounded flows. The presence of a wall causes a disturbance
in the pressure term which is felt throughout the flow, and acts as a destruction term for
the Reynolds shear stress. Such a destruction term can be defined as a negative contribution
to the turbulent viscosity. Furthermore, its effect becomes negligible far away from the wall,
hence from dimensional analysis the destruction term can be defined as −cw1(νt/d)2, with
d the distance to the wall. The coefficient cw1 cannot be determined independently, as an
equilibrium between the production and diffusion terms (both positive) and the destruction
term is required. Knowing that S = uτ/(κd) and νt = uτκd in the log layer2, with friction

2After Reynolds-averaging the Navier-Stokes equations, wall-bounded flows can be divided into several
regions in which certain laws apply. These regions are usually called the viscous sublayer and buffer layer,
together forming the inner layer, the overlap or log layer, and the outer layer. See Appendix F for a more
thorough discussion on this topic.
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3.2 Parametric Uncertainty of the Spalart-Allmaras Turbulence Model 21

velocity uτ and Von Kármán constant κ = 0.41, cw1 is constrained as follows:

cw1 = cb1/κ
2 + (1 + cb2)/σ. (3.15)

Note that up to now there are a total of five parameters defined: σ, cb1, cb2, cw1 and κ.
However, there are only two independent parameters, which are a turbulent Prandtl number
σ and the Von Kármán constant κ.

According to Spalart and Allmaras, tests show that the model including the destruction
term makes an accurate prediction of the log layer. However, its prediction for the friction
coefficient is too low. In order to overcome this deficiency, the destruction term needs to
be multiplied with a function fw, which makes the destruction term decrease faster within
the outer region of the boundary layer. To guarantee equilibrium, this function is of non-
dimensional nature and equals 1 within the log layer.

The non-dimensional variable r of the function fw equals the square of lm/κd, in which
lm ≡

√
νt/S represents the mixing length3. With this in mind, the wall function fw is defined

as follows:

fw(r) = g

[
1 + c6

w3

g6 + c6
w3

]1/6

g = r + cw2(r6 − r) (3.16)

r ≡ νt
Sκ2d2

.

The transport equation for turbulent viscosity which includes the effects of walls at high
Reynolds numbers results into the second version of the model:

Dνt
Dt

= cb1Sνt +
1

σ

[
∇ (νt∇νt) + cb2 (∇νt)2

]
− cw1fw

[νt
d

]2
. (3.17)

This version of the model introduces two additional independent parameters, i.e. cw2 and
cw3. The original paper of Spalart and Allmaras states that the results are most sensitive to
the slope of fw, which is controlled by cw2. The coefficient cw3 is used in the conversion of
g into fw, which is only intended to prevent undesirably large values of fw. About the value
of cw3, Spalart and Allmaras say nothing more than that 2 is a reasonable value for it. After
setting cw3 equal to 2, the wall coefficient cw2 is calibrated such that the resulting friction
coefficient matches the friction coefficient for a flat plate boundary layer. This is done for a
friction coefficient of Cf = 0.00262 at Reθ = 104, and results into cw2 = 0.3.

The model given by equation (3.17) is capable of predicting wall-bounded flows at high
Reynolds numbers. Finally, we would also like to predict wall-bounded flows for low Reynolds
numbers, where viscous effects become important. Therefore, the following section discusses
the third version of the SA model, which takes these effects into account.

3Ludwig Prandtl introduced the concept of mixing length lm. It is based on the fact that for a turbulent
boundary layer, the turbulent viscosity varies with the distance from the wall: νt = Sl2m
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22 Parametric Uncertainty of Reynolds-averaged Navier-Stokes Models

Near-wall Region, Finite Reynolds Number

When including the viscous effects into the SA model, some additional tuning is needed for
the buffer layer and viscous sublayer. The turbulent viscosity νt in the buffer layer cannot be
modelled in the same way as for the log layer, i.e. νt = κyuτ . In order to model the near-wall
behaviour correctly, a damping function fv1 is introduced, and multiplied with the turbulent
viscosity as modelled for the log layer, i.e. ν̃ ≡ κyuτ . The turbulent viscosity for the entire
flow is defined as

νt = ν̃fv1, fv1 =
χ3

χ3 + c3
v1

, (3.18)

in which χ ≡ ν̃

ν
, with ν the molecular viscosity.

Finally, a similar kind of damping function is applied to the production term, i.e. cb1Sνt. Its
strain rate tensor S is redefined as

S̃ ≡ S +
ν̃

κ2d2
fv2, fv2 = 1− χ

1 + χfv1
. (3.19)

This way, also S̃ maintains its log-layer behaviour all the way to the wall. As such, the
standard version of the SA model is fully defined by (3.20). The relations between its variables
are given by (3.21).

∂ν̃

∂t
+ ūj

∂ν̃

∂xj
= cb1S̃ν̃ − cw1fw

(
ν̃

d

)2

+
cb2
σ

∂ν̃

∂xk

∂ν̃

∂xk
+

1

σ

∂

∂xk

[
(ν + ν̃)

∂ν̃

∂xk

]
, (3.20)

where; νt = ν̃fv1, χ =
ν̃

ν
, r =

ν̃

S̃κ2d2
, g = r + cw2

(
r6 − r

)
,

fv1 =
χ3

χ3 + c3
v1

, fv2 = 1− χ

1 + χfv1
, fw = g

[
1 + c6

w3

g6 + c6
w3

]1/6

,

S̃ =
√

2ΩijΩij +
ν̃

κ2d2
fv2, Ωij =

1

2

(
∂ūi
∂xj
− ∂ūj
∂xi

)
. (3.21)

From the above, it can be concluded that there are a total of seven closure coefficients: σ,
cb1, cb2 κ, cw2, cw3 and cv1. The first wall coefficient cw1 is considered to be a function of
κ, σ, cb1 and cb2 as defined by equation (3.15). The suggested values for these constants by
Spalart and Allmaras are listed below:

σ = 2/3, cb1 = 0.1355, cb2 = 0.622, κ = 0.41, cw2 = 0.3, cw3 = 2, cv1 = 7.1

From the derivation of the SA model, its empirical nature becomes apparent. The model
itself is a composition of approximations, and also its parameters are uncertain. Particularly
this parametric uncertainty is what will be discussed in the coming section.
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3.2.2 The Prior Uncertainty of the Spalart-Allmaras’ Closure Coefficients

The Von Kármán Constant

The Von Kármán constant is a returning dimensionless constant in many turbulence models
as it describes the velocity profile of a turbulent boundary layer within the log-layer. Within
this layer, the velocity profile is determined by

u+ =
1

κ
ln
(
y+
)

+ C+. (3.22)

A common value for the Von Kármán constant is κ = 0.41, however, other values have been
reported by several authors of which plenty are conveniently summarized by Zanoun et al.
[26]. In this article, the Von Kármán constant ranges from 0.33 to 0.45, often in combination
with a varying value for the constant C+.

Now, let’s have a look at the velocity profiles of the experiments we are using for calibration
in this thesis. We will consider incompressible flat plate flow for a zero, a favourable and
an adverse pressure gradient is considered. Figure 3.1 shows that their profiles more or less
coincide where the log-layer holds. In addition, the logarithmic law is plotted for the minimum
and maximum values of the Von Kármán constant as found by Zanoun et al., i.e. κ = 0.33
and κ = 0.45, and the common value for the Von Kármán constant κ = 0.41. Figure 3.1 (a)
assumes a constant value for C+ = 5.5, while in Figure 3.1 (b) this constant varies.
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Figure 3.1: These graphs show the velocity profiles for a turbulent flat plate flow under zero,
adverse and favourable pressure gradient conditions. In addition, (a) shows the plots of the
logarithmic law for varying κ and constant C+, while in (b) also C+ is varying.

Figure 3.1 (b) seems to confirm that various values for the Von Kármán constant, in combi-
nation with a certain value for C+, can deliver a velocity profile which is in close agreement
with experimental values. For a value of κ = 0.33, which is a relatively large deviation from
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24 Parametric Uncertainty of Reynolds-averaged Navier-Stokes Models

its common value, the slope of the velocity profile deviates significantly. However, it seems
to coincide with the experimental velocity profiles for higher values of y+. Hence, one could
conclude that the value for the Von Kármán constant also depends on the chosen borders of
the log-layer, which are indeed uncertain as well.

From the arguments above, it is concluded that choosing an interval ranging from [0.3-0.5]
should suffice to include all physically possible values for the Von Kármán constant. Larger
deviations would generate unrealistic slopes of the velocity profiles within the log-layer.

The Spalart-Allmaras Turbulent Prandtl Number and Basic Coefficients

Notice that there are three coefficients in the model which need to be calibrated, i.e. cb1, cb2
and σ. According to Spalart and Allmaras, this can be done by requiring correct levels of
shear stress for two-dimensional mixing layers and wakes. In their original paper, they assume
peak shear stresses of 0.01(∆U)2 and 0.06(∆U)2 for the mixing layers and wakes, respectively,
in which ∆U represents the peak velocity difference. From these conditions, the coefficients
cb1 and cb2 can be expressed in terms of σ by equations (3.23) and (3.24), respectively. Note
that these relationships, as well as Figure 3.2 are derived from a similar image as presented
in the original Spalart-Allmaras paper [22].

10cb1 = 0, 187σ2 − 0, 4973σ + 1, 6046 (3.23)

1 + cb2 = 0, 0751σ2 + 0, 0834σ + 1, 5321 (3.24)

0.2 0.4 0.6 0.8 1.0 1.2
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1.2
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10cb1

1 +cb2

Figure 3.2: The basic coefficients cb1 and cb2 in relation to σ.

Originally, Spalart and Allmaras assumed the plausible range of σ to be at most [0.6-1]. First
of all, from their paper, it is unclear how they arrived at this assumption. Consequently, by
choosing different values for σ within this plausible range, they matched their results for a
mixing layer to existing numerical data. Based on how well their results match the data,
they “favour a fairly diffusive member of the plausible range”. Finally, a value for σ = 2/3
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3.2 Parametric Uncertainty of the Spalart-Allmaras Turbulence Model 25

was chosen, which corresponds to cb1 = 0.1355 and cb2 = 0.622. They state that the peak
turbulent viscosity in the wake is in good agreement with experimental results for these values.

One can see that the approach to determine the coefficients is of an empirical nature. Fi-
nally, it is questionable whether choosing a constant value for these coefficients is the correct
approach to simulate different flow cases. Of course, this has been considered by Spalart and
Allmaras as well. They for example did not attempt to match their results to any axisym-
metric flow, and also mention the model is not intended to be universal. This confirms what
is stated in Section 1.1; it is important to choose an appropriate model for the investigated
quantity of interest.

In this thesis, we will consider the full plausible range of σ, which was defined to range from
[0.6-1] by Spalart and Allmaras.

The Wall Coefficients

When looking back to the relations given in (3.21), we see that the function fw uses the wall
constants cw2 and cw3. The original paper by Spalart and Allmaras [22] states that the results
are most sensitive to the slope of fw at r = 1, which is controlled by cw2 as can be seen from
Figure 3.3 (a). The conversion of the function g into fw only serves the purpose of preventing
large values for fw. Basically no argumentation for a value of cw3 = 2 is given, except that
it is a reasonable value. In fact, Figure 3.3 (b) shows that the closure coefficient cw3 = 2 has
no influence on the value for fw.
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Figure 3.3: These graphs show the variation of the wall function fw with changing wall coeffi-
cients cw2 and cw3, respectively (a) and (b).

After defining the value of cw3 = 2, Spalart and Allmaras[22] calibrated cw2 such that the
predicted skin-friction coefficient would match the one in a flat-plate boundary layer. Finally,
a value of cw2 = 0.3 was determined based on a friction coefficient of Cf = 0.00262 at
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26 Parametric Uncertainty of Reynolds-averaged Navier-Stokes Models

Reθ = 104. In the paper of Cheung et al., an interval of ±50% of the nominal value was
chosen. Although the resulting posterior distribution for cw2 = 0.3 of Cheung et al. remains
more or less within these bounds, it tends towards the upper boundary of the chosen range.
Therefore we define a uniform distribution for cw2 ranging from [0.2-0.5]. Although it is
expected that the value for closure coefficient cw3 will have little influence, it is still assumed
uncertain and given a range of [0.2-0.5]. As such, it can be checked whether our hypothesis
is correct.

The Viscous Coefficient

Equation (3.18) introduces the viscous coefficient cv1. The value of this closure coefficient is
based on Spalart and Allmaras’ believes of where the point is located at which the velocity
profile can be modelled by means of the log law (3.22). They mention that Mellor and
Herring, of whom they borrowed the fv1 function, use a value of cv1 = 6.9. Spalart and
Allmaras state that this yields a low intercept of the log law, which is why they prefer a value
of cv1 = 7.1. Based on the fact that the prior distribution defined by Cheung et al.[2] proved
to be satisfactory, i.e. keeping the posterior well within bounds, we define a uniform prior
distribution with bounds [4.0-10.0] for the coefficient cv1.

A total of five uncertain closure coefficients have been defined. A summary of the ranges of
their prior uniform distributions is given in Table 3.1.

Table 3.1: Summary of the ranges for the prior uniform distributions of the SA closure coefficients

Parameter Lower Upper

κ 0.3 0.5

σ 0.6 1.0

cw2 0.2 0.5

cw3 1.0 3.0

cv1 4.0 10.0

3.3 Parametric Uncertainty of the k − ε Turbulence Model

3.3.1 The Composition of a k − ε Turbulence Model

The k − ε turbulence models obtain the local turbulent viscosity (3.25) by means of solving
the transport equations for the turbulent kinetic energy (3.26) and the energy dissipation rate
(3.27).

µT = Cµfµρk
2/ε (3.25)

Bert Kwanten M.Sc. Thesis



3.3 Parametric Uncertainty of the k − ε Turbulence Model 27

ρ
Dk

Dt
=

∂

∂y

[(
µ+

µT
σk

)
∂k

∂y

]
+ µT

(
∂u

∂y

)2

− ρε− 2µ

(
∂k

1
2

∂y

)2

(3.26)

ρ
Dε

Dt
=

∂

∂y

[(
µ+

µT
σε

)
∂ε

∂y

]
+ Cε1f1

ε

k
µT

(
∂u

∂y

)2

− Cε2f2
ρε2

k
+ 2µµT

(
∂2u

∂y2

)
(3.27)

The boundary conditions for the turbulent kinetic energy k[m2/s2] and the energy dissipation
rate ε[m2/s3] are defined as follows, where y indicates the distance from a wall:

y = 0; k = 0, ε = 0 and (3.28)

y = yG; uG
dkG
dx

= −εG, uG
dεG
dx

= −Cε2f2ε
2
G/kG. (3.29)

The subscript G denotes the free-stream conditions.

In the RANS code of Cinnella, there are three k − ε models available, i.e. Launder-Sharma,
Jones-Launder and Chien. The difference between these models is in the definition of the
damping functions and the closure coefficients. A summary of these for the three k − ε
models included is given in Table 3.2, where ReT ≡ k2

νε .

Table 3.2: Summary of closure coefficients and damping functions for the k − ε model.

Launder-Sharma Jones-Launder Chien

Damp. Func.

f1 1.0 1.0 1.0

f2 1.0− 0.3 exp(−Re2
T ) 1.0− 0.3 exp(−Re2

T ) 1.0− 0.22 exp(−ReT
6 )2

fµ exp [−3.4/(1 +ReT /50)] exp [−2.5/(1 +ReT /50)] 1.0− exp(−0.0115y+)

Clos. Coeff.

Cµ 0.09 0.09 0.09

Cε1 1.44 1.55 1.35

Cε2 1.92 2.0 1.8

σk 1.0 1.0 1.0

σε 1.3 1.3 1.3
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Notice that the Jones-Launder and Launder-Sharma turbulence model use the same damping
functions, except for a slight difference in the numerator value for fµ’s exponent. It will be
interesting to see whether there is a similarity in the calibrated results for these two models.
To reduce the simulation time, we therefore opted to simulate only these two k − ε models
and disregard the Chien model.

3.3.2 The Prior Uncertainty of the k − ε Turbulence Model’s Closure Co-
efficients

Note that the below is largely based on work of Platteeuw [19] and Edeling [5].

Coefficient Cε2

The traditional calibration method starts with considering a homogeneous, decaying turbulent
flow, i.e. gradients and production equal zero. As a result, (3.26) and (3.27) reduce to

dk

dt
= −ε (3.30)

dε

dt
= −Cε2

ε2

k
(3.31)

The solutions for these equations are

k(t) = k0

(
t

t0

)−n
(3.32)

and

ε(t) = ε0

(
t

t0

)−(n+1)

(3.33)

where k and ε have the values k0 and ε0 at reference time t0 = n
k0

ε0
, and n = 1/ (Cε2 − 1).

Hence, the closure coefficient Cε2 is actually fully dependent on the decay exponent n.

Cε2 =
n+ 1

n
(3.34)

Mohamed & LaRue [14] have investigated the value of the decay exponent n with respect to
the Reynolds number ReMu . They looked at four cases with changing mesh size (Mu = 2.54
cm to Mu = 5.08 cm) or solidity (σ = 0.34 to σ = 0.44). Each of these cases is pictured
in Figure 3.4. From this figure, we observe that the minimum value attained for the decay
component equals about n = 1.23, while reaching a maximum value of about n = 1.34. For
convenience, the relationship between Cε2 and n will be coded into pyPCM. As a consequence,
we’ll investigate the decay exponent as the uncertain parameter instead of Cε2 directly. The
used interval for the decay exponent will be n = [1.23− 1.34].
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Figure 3.4: This figure shows the variation of the decay exponent n for different Reynolds num-
bers, mesh sizes Mu and solidities σ [14].

Coefficient Cµ

In order to calibrate the coefficient Cµ, we consider the approximate balance between produc-
tion and dissipation which exists in free shear flows and certain parts of the boundary layers,
i.e.

P = −u′v′ ∂ui
∂xj

= Cµ
k2

ε

(
∂ui
∂xj

)2

= ε (3.35)

Iwamoto and Hoyas & Jimenez simulated a free shear flow using direct numerical simulation
at Reynolds numbers ranging from Reτ = [110 − 2000]. The results of these simulations
can be substituted into Equation (3.35), of which the outcome is presented in Figure 3.5.
Note that there seems to be quite some variation in the value of Cmu. Close to the wall,
a steep gradient can be observed. Furthermore, overall, the value for Cµ is decreasing with
increasing Reynolds number. To cover the full spectrum of values for Cµ, a range is taken of
Cµ = [0.02− 0.14].

Coefficient Cε1

The value for Cε1 can be found by considering a uniform shear flow (S = ∂u
∂y = cst). For

these kind of flows, Reynolds stresses are self-similar and the non-dimensional parameters
Sk/ε and P/ε are constant. As a consequence, also the turbulence timescale τ ≡ k/ε is
constant. Taking these conditions into account, the following equation can be derived from
the governing equations (3.26) and (3.27):

d

dt

(
k

ε

)
=

dτ

dt
= (Cε2 − 1)− (Cε1 − 1)

(
P

ε

)
. (3.36)
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Figure 3.5: This figure shows the variation of the decay exponent n for different Reynolds num-
bers, mesh sizes Mu and solidities σ [14].

As the timescale τ ≡ k/ε is constant, the following holds:(
P

ε

)
=
Cε2 − 1

Cε1 − 1
. (3.37)

As a consequence, the coefficient Cε1 can be expressed as a function of Cε2 and the ratio P/ε.

Cε1 =
1

(P/ε)
Cε2 +

(P/ε)− 1

(P/ε)
(3.38)

This last relation will be coded into pyPCM. Consequently, the uncertainty parameter be-
comes the ratio P/ε. The value which is normally taken for the k− ε model is 2.09. However,
Tavoularis et al. reported P/ε values between 1.33 and 1.75 for several uniform flows. We
will consider a relatively wide range, i.e. P/ε = [1.30− 2.90].

Coefficient σε

When calibrating for the coefficient σε, we need to take a constraint into account which results
from considering a fully developed channel flow.

κ2 = σεC1/2
µ (Cε2 − Cε1) (3.39)

Notice the introduction of the Von Kármán constant, whose uncertainty interval is already
defined for the Spalart-Allmaras turbulence model. In addition, the interval for coefficients
Cε1 and Cε2 was defined earlier in this chapter. As a consequence, we have all the information
to derive the interval for σε. However, for convenience, we will continue with using the Von
Kármán constant as the uncertain parameter and code the relationship with σε in pyPCM.
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Coefficient σk

The coefficient σk represents the turbulent Prandtl number. Generally, very little experimen-
tal data can be found regarding this model constant. As a result, a rather crude estimate of
the range will be taken, i.e. ±50% of its nominal value σk = [0.5− 1.5].

This concludes the discussion on the uncertainty parameters for the k − ε turbulence model.
Notice that throughout the discussion, constraints and dependencies were found which shifted
the uncertainty from the closure coefficient level to other dependent parameters. Table 3.3
summarizes the parameters we will work with during the calibration and their considered
intervals.

Table 3.3: Summary of the ranges for the prior uniform distributions of the k − ε uncertain
parameters

Parameter Lower Upper

n 1.23 1.34

Cµ 0.02 0.14

P/ε 1.30 2.90

κ 0.3 0.5

σk 0.5 1.5

3.4 Parametric Uncertainty of Smith’s k− l Turbulence Model

3.4.1 The Composition of Smith’s k − l Turbulence Model

This section presents the original k − l turbulence model as defined by Smith [21]. The
k − l model is a rewritten version of the k − kl model, such that it would be able to predict
the profiles of turbulent kinetic energy and velocity in the viscous sublayer of a turbulent
boundary layer. Both the k − l and k − kl model are similar to the k − ε models. The main
difference between them is in the definition of the second transport equation, which is used
to define the dissipation length scale.Compared to the k − ε model, the k − l model has the
advantage that it is much easier to resolve numerically. Moreover, Smith claims the model is
more accurate for compressible turbulent boundary layer flows.

The first equation models the transport of turbulent kinetic energy in terms of k:

ρ
Dk

Dt
= P − ρ (2k)3/2

B1l
+

∂

∂xi

[(
µ+

µT
σk

)
∂k

∂xi

]
− 2µ

∂k1/2

∂xi

∂k1/2

∂xi
. (3.40)
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Here, P represents the turbulence production

P = τ
′
ij

∂Ui
∂xj

. (3.41)

The Boussinesq hypothesis is used to obtain the turbulent stresses

τ
′
ij = µT

[(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3

(
∂ui
∂xi

)]
− 2

3
ρkδij . (3.42)

The next step is to find an equation for the turbulent length scale l. First, near wall terms
need to be added to the kl equation Smith defined in his earlier paper [20]. Doing this results
in

ρ
Dq2l

Dt
= E1lP −

ρq3

B1

[
E2 + (2− E2)

(
l

κd

)2
]
− 2µl

∂q

∂xi

∂q

∂xi
− 2µ

∂l

∂xi

∂q2

∂xi

− q2µT
σll

∂l

∂xi

∂l

∂xi

(
l

κd

)2

+
∂

∂xi

(
µ+

µT
σl

)
∂q2l

∂xi
(3.43)

where q2 = 2k, d depicts the distance to the wall, and E1 and E2 are empirical constants.
As q ∝ y and l ∝ y, q2l becomes very small near the wall, which causes numerical problems.
Rewriting Equation (3.43) in terms of l solves these problems.

ρ
Dl

Dt
= (2− E2)

ρq

B1

[
1−

(
l

κd

)2
]
− µT
σll

∂l

∂xi

∂l

∂xi

(
l

κd

)2

+
2µT
σlq2

∂l

∂xi

∂q2

∂xi
+

∂

∂xi

[(
µ+

µT
σl

)
∂l

∂xi

]
(3.44)

Note that the length scale production term can only be eliminated when empirical constant
E1 = 2.0. Finally, as q2 = 2k, (3.44) is rewritten in terms of k, such that consistency with
(3.40) is guaranteed:

ρ
Dl

Dt
= (2− E2)

ρ
√

2k

B1

[
1−

(
l

κd

)2
]
− µT
σll

∂l

∂xi

∂l

∂xi

(
l

κd

)2

+
2µT
σlk

∂l

∂xi

∂k

∂xi
+

∂

∂xi

[(
µ+

µT
σl

)
∂l

∂xi

]
. (3.45)

The turbulent viscosity µT for the k − l turbulence model is a function of the molecular
viscosity µ, the turbulent kinetic energy and the turbulent length scale. This is expressed by
the relationships given in (3.46). Here, fµ is a damping function for the turbulent viscosity
in the viscous sublayer and buffer regions. In the logarithmic layer and up, fµ = 1. The
constants for the damping function are set to c1 = 25.5 and c2 = 2.0.

Finally, the Menter shear stress transport (SST) correction is applied to the researched k − l
model. This correction is based on the empirical Bradshaw’s assumption, connecting the
shear stress to the turbulent kinetic energy for a two-dimensional boundary layer:

−u′v′

k
=

√
Pk
ε

√
Cµ, (3.47)
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µT = µχfµ ; χ =
ρ
√

2kl

µB
1/3
1

fµ =

(
c4

1f1 + c2
2χ

2 + χ4

c4
1 + c2

2χ
2 + χ4

)1/4

; f1 = exp

[
−50

(
l

κd

)2
]

(3.46)

in which the constant Cµ = 0.09. The constraint on the turbulent viscosity, derived from
Bradshaw’s assumption, reads as follows in case of the k − l model:

νT = min

[
µχfµ
ρ

,
ck√

2|Ω|F2 (y)

]
, (3.48)

in which c = 0.3, Ω represents the vorticity and F2 is a so-called blending function tending to
zero outside of the boundary layer.

Finally, for the entire model, we investigate five empirical constants: κ = 0.41, B1 = 18,
E2 = 1.2, σk = σl = 1.43 and Cµ = 0.09. Note that E1 = 2.0 cannot be varied, or Equation
(3.45) will not hold.

The next section will dive deeper into the determination and possible variation of the closure
coefficients.

3.4.2 The Prior Uncertainty of the k − l Turbulence Model’s Closure Co-
efficients

This section discusses the prior uncertainty of the closure coefficients for the k− l turbulence
model, i.e. κ, B1, E2, σk = σl and Cµ. Just as with the SA and k − ε turbulence models, a
uniform distribution is assumed for all coefficients.

The prior uncertainty of the Von Kármán constant κ is already defined in Section 3.2.2.
Therefore, we will use the same interval in the case of the k− l model. Secondly, the Menter
coefficient is defined by Bradshaw’s assumption (3.47). Knowing that P = −u′v′S, the Menter
coefficient can be expressed as

cµ =
Pk
ε

( ε

Sk

)2
. (3.49)

This definition equals the one for the cµ coefficient of the k − ε turbulence models. As a
consequence, also the same prior uncertainty range is taken into account for the Menter
coefficient.

Regarding the tuning of the coefficients B1, E2, σk and σl, very little information can be
found. In his original paper on the k − kl turbulence model, Smith only mentions that the
constants were determined from simple shear flows, flat plate boundary layer flows, and the
decay of isotropic turbulence. For this model, the coefficients were defined as B1 = 19.25,
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E2 = 0.7, σk = σl = 5. In his succeeding paper on the k − l turbulence model, these values
change. The constants then become B1 = 18.00, E2 = 1.2, σk = σl = 1.43.

As the information on the tuning of the coefficients is very limited, we will have to make some
assumptions on their prior uncertainty range. These assumptions will be based on the amount
of variation of the coefficients by comparing their values for the k − kl and k − l turbulence
model. In case of the coefficient B1, a relatively small variation in the value of the coefficient
is observed, i.e. B1 = 19.25 compared to B1 = 18.00. Therefore a range for B1 of [15 − 21]
is taken, which is slightly more than double the variation observed when comparing the B1

values for k − l and k − kl model. It is assumed that this double margin should be sufficient
to include all possible values for the coefficient. In line with this reasoning, the range for the
coefficient E2 is defined as [0.2− 2.2].

This philosophy cannot be applied to determine the range of σk = σl, as this would result into
negative values for the coefficients. This is caused by the large variation of the coefficient’s
value, i.e. 350% when comparing the two models. In addition, it seems implausible that
there would be such a large variation with respect to the nominal value of the coefficient
when considering a single model. Therefore, the range for the σk = σl is defined as [0.7−2.1],
which is a range of ±50% of the coefficient’s nominal value for the k − l model.

We recognize that the current definition of the prior uncertainty ranges for the k − l closure
coefficients is crude. However, limited information on the tuning of these coefficients has led
to this choice. Note also that a crude definition of the closure coefficients is common, e.g.
Cheung et al.[2], who simply defined uncertainty ranges of ±25 or 50%. However, it does hold
an increased risk of ending up with truncated posterior distributions.

A prior uncertainty range for the closure coefficients of the k− l turbulence model is given in
Table 3.4.

Table 3.4: Summary of the ranges for the prior uniform distributions of the k − l closure coeffi-
cients

Parameter Lower Upper

κ 0.3 0.5

σk = σl 0.7 2.1

B1 15.0 21.0

E2 0.2 2.2

cµ 0.02 0.14
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Chapter 4

Deterministic Simulations for Turbulent Flat
Plate Flows

To be able to compare the uncertainty of the Spalart-Allmaras, Launder-Sharma’s k − ε and
Smith’s k − l turbulence model, we need to apply them to a couple of test cases. For this
purpose, three turbulent flat plate flows have been selected. The main difference between
them is that each are subject to a different pressure gradient1, i.e.

• Wieghardt’s zero pressure gradient case (zpg) [16];

• Ludwieg and Tillman’s favourable pressure gradient case (fpg) [15];

• and Ludwieg and Tillman’s adverse pressure gradient case (apg) [15].

For this chapter, the deterministic results of the three studied turbulence models have been
compared for the zpg, fpg and apg flow case. The quantity of interest in this thesis is the
friction coefficient Cf , usually defined as

Cf =
τw

1
2ρū

2
, (4.1)

in which τw represents the wall shear stress, ρ the local air density and ū the local airspeed.
However, the results as presented here are normalized using the velocity at the end of the
plate.

Cf =
τw

1
2ρū

2
e

. (4.2)

1Note that the experimental data for the listed cases can be found in Appendix D.
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36 Deterministic Simulations for Turbulent Flat Plate Flows

4.1 Test Case 1: A Zero Pressure Gradient Turbulent Flat
Plate Flow

This section dives deeper into the zero pressure gradient flow case of Wieghardt. In his
experiment, the velocity of the flow was set to u∞ = 33[m/s] and remains approximately
constant along the length of the plate. First, the used mesh and boundary conditions will be
discussed. Consequently, the obtained results for Spalart-Allmaras, Launder-Sharma’s k − ε
and Smith’s k − l turbulence model are presented and compared.

The mesh layout for the zero pressure gradient case is represented in Figure 4.1. The mesh
is constructed using Grid95 with settings as depicted in Table 4.1. One can see that at the
start and close to the plate, the density of the grid cells increases.

Figure 4.1: Mesh for the zero pressure gradients case.

Table 4.1: Mesh layout for the zero pressure gradient case

Boundary Begin End Stretching Function Coefficient Grid gap

a - b (-1.00, 3.00) (-1.00, 0.00) Geometric Progression 1.05 80

b - c (-1.00, 0.00) (0.00, 0.00) Exponential Function 7.00 15

c - d (0.00, 0.00) (0.00, 16.50) Exponential Function 8.00 95

d - e (16.50, 0.00) (16.50, 3.00) Geometric Progression 1.05 80

e - f (16.50, 3.00) (0.00, 3.00) Exponential Function 8.00 95

f - a (0.00, 3.00) (-1.00, 3.00) Exponential Function 7.00 15

Figure 4.2 shows the deterministic results of the three models under investigation for the zero
pressure gradient case. One can observer that there is quite some variance in the results. By
using Bayesian calibration, this variance should be reduced.
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Figure 4.2: Friction coefficient comparison for the zero pressure gradients case.

4.2 Test Case 2: A Favourable Pressure Gradient Turbulent
Flat Plate Flow

The second test case considers a turbulent flat plate flow subject to a favourable pressure
gradient. As a result of the favourable pressure gradient, the flow will be accelerating along the
length of the plate. At the start of the plate, the airspeed is approximately u∞ = 11.5[m/s].
It increases to about u∞ = 27.5[m/s], which are still subsonic conditions. As a favourable
pressure gradient is considered, we need to install a converging mesh and change our boundary
conditions with respect to the zero pressure gradient case. How this is done will be discussed
in the following section. After that, the results obtained by the Spalart-Allmaras and k-l
model for the favourable pressure gradient case will be presented.

In order to simulate a favourable pressure gradient flow, we need to model a converging mesh
as is shown in Figure 4.3. The rate of convergence is dependent on the steepness of the
pressure gradient. The settings of the mesh for this flow case can be found in Table 4.2.
While introducing the converging duct, it is important to keep the density of the grid cells
high at the start and close to the plate. In addition, the grid cells should remain parallel for
a sufficient distance lateral to the plate.

Figure 4.4 shows the deterministic results for the fpg case. One observes that there is quite
some variance between te results again. Especially comparing the SA and KL model to the
LS model. Towards the end of the plate, the SA and KL model’s results do converge.
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Figure 4.3: Mesh for the favourable pressure gradient case.

Table 4.2: Mesh layout for the favourable pressure gradient case

Boundary Begin End Stretching Function Coefficient Grid gap

a - b (-1.00, 4.10) (-1.00, 1.80) Geometric Progression 1.00 6

b - c (-1.00, 1.80) (-1.00, 0.00) Geometric Progression 1.15 74

c - d (-1.00, 0.00) (0.00, 0.00) Exponential Function 7.30 14

d - e (0.00, 0.00) (4.80, 0.00) Exponential Function 7.30 66

e - f (4.80, 0.00) (14.4, 0.00) Geometric Progression 1.00 30

f - g (14.40, 0.00) (14.4, 1.80) Geometric Progression 1.15 74

g - h (14.40, 1.80) (14.40, 2.00) Geometric Progression 1.00 6

h - i (14.40, 2.00) (4.80, 3.80) Geometric Progression 1.00 30

i - j (4.80, 3.80) (0.00, 4.10) Exponential Function 7.30 66

j - a (0.00, 4.10) (-1.0, 4.10) Exponential Function 7.30 14
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Figure 4.4: Friction coefficient comparison for the adverse pressure gradients case.
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4.3 Test Case 3: An Adverse Pressure Gradient Turbulent
Flat Plate Flow

Finally, the third test case considers a turbulent flat plate flow subject to an adverse pressure
gradient. This is simulated by running the flow through a diverging channel, which results in
a slowdown of the flow. The velocity at the beginning of the plate is about u∞ = 34[m/s],
while u∞ = 23[m/s] at the end. The remaining part of this chapter presents the mesh,
boundary conditions and results for the adverse pressure gradient case in a similar way as for
the previous two cases.

To model the adverse pressure case, we need to construct a diverging mesh. They layout for
this mesh is represented by Figure 4.5. More details can be found in Table 4.3. Similarly to
what is been done for the zpg and fpg case, we also introduce more grid cells close to and
at the start of the plate. We also keep the cells lateral to the plate for a sufficient upward
distance.

Figure 4.5: Mesh for the adverse pressure gradients case.

Table 4.3: Mesh layout for the adverse pressure gradient case

Boundary Begin End Stretching Function Coefficient Grid gap

a - b (-1.00, 2.00) (-1.00, 1.80) Geometric Progression 1.00 4

b - c (-1.00, 1.80) (-1.00, 0.00) Geometric Progression 1.15 76

c - d (-1.00, 0.00) (0.00, 0.00) Exponential Function 7.30 14

d - e (0.00, 0.00) (4.80, 0.00) Exponential Function 7.30 66

e - f (4.80, 0.00) (14.40, 0.00) Geometric Progression 1.00 30

f - g (14.40, 0.00) (14.40, 1.80) Geometric Progression 1.15 76

g - h (14.40, 1.80) (14.40, 3.10) Geometric Progression 1.00 4

h - i (14.40, 3.10) (4.80, 2.38) Geometric Progression 1.00 30

i - j (4.80, 2.38) (0.00, 2.00) Exponential Function 7.30 66

j - a (0.00, 2.00) (-1.00, 2.00) Exponential Function 7.30 14
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Figure 4.6 shows the deterministic results for the apg flow case. One observes that the results
for the KL and SA model are similar, while there is a higher variance with the LS model.
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Figure 4.6: Friction coefficient comparison for the adverse pressure gradients case.

Overall it can be concluded that there is quite some variance present between the results of
the of the different models for all flow cases. This variance between models should be reduced
significantly after the application of Bayesian calibration. The Bayesian calibrated results are
discussed in Chapter 6.
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Chapter 5

The Creation of Surrogate Models using the
Probabilistic Collocation Method

The next step is to propagate the uncertain parameters that are determined in Chapter 3
through the SA, KL and LS model for the three different test cases. In order to do that, we
use the probabilistic collocation method to create surrogate models. The creation of a total
of nine (3 models × 3 test cases) is being covered in this chapter.

5.1 Surrogates for the SA Model

In order to create a surrogate model for the SA, KL and LS RANS models, we use the
Probabilistic Collocation method. Section 2.2.1 explains the theory behind this method. The
first step in the Probabilistic Collocation method is obtaining the collocation points at which
the deterministic solutions have to be obtained. To determine these collocation points, we
first need to estimate the polynomial order for each uncertainty parameter until we get an
amount that suffices to obtain quality surrogate models.

Section 3.2.2 describes the SA model’s uncertainty parameters and their intervals. Now we
need to determine the polynomial order for each single one of them. In order to do this, five
deterministic simulations for each uncertainty parameter are performed while only varying the
value of the uncertainty parameter within the predetermined intervals; every other parameter,
including boundary conditions are kept equal.

The resulting graphs for the SA model’s uncertainty parameters are displayed in Figure 5.1.
In these graphs, the friction coefficient Cf is plotted against each uncertainty parameter of
the SA model. The order of these polynomials can now be determined from these figures.
Table 5.1 summarizes the polynomial orders for each uncertainty parameter. The number
of collocation points then becomes (3 + 1)2 × (2 + 1)3 = 432. For each of these collocation
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points, we run a deterministic simulation. The results of these then serve as the basis of the
surrogate model.

The polynomial order for each uncertainty parameter is not the only conclusion that can be
obtained from the graphs displayed in Figure 5.1. By looking at the variation of the QoI
within the predetermined interval of the uncertainty parameters, we can conclude which ones
are most influential. As such, it can be concluded that for the SA model the QoI is most
dependent on the values of the viscous coefficient cv1 and the Von Kármán coefficient κ.

For the LS and KL model, the same procedure is being followed. Note that for the SA model,
it was repeated for the zpg, fpg, and apg case. However, the results were the same for each
flow case. Therefore, for the other models this exercise was done for just one of the flow cases.

The graphs for the uncertainty parameters of these models are depicted in Figures 5.2 and
5.3. In case of the LS model we end up with a total of 192 collocation points, while for the
KL model it adds up to 180 collocation points. For the LS model, just as for the SA model, it
can be concluded that two uncertainty parameters are much more influential on the solution
than the others, i.e. the Von Kármán coefficient κ and the ratio of P/ε. For the KL model,
these are the parameters E2 and the Von Kármán coefficient κ.

Performing such a huge amount of simulations makes it seem as if the Probabilistic Collocation
method is computationally expensive. In a certain way it is of course, as the number of
deterministic simulations that have to be run to generate a surrogate model increases rapidly
with the number of uncertainty parameters. However, by looking at the sensitivity of the
model to the chosen uncertainty parameters, a number of them can be eliminated without
significant effect, as they have little influence on the results of the simulation. The amount of
required deterministic simulations will consequently decrease, resulting in less computational
time. However, in the present investigation the non-influential uncertainty parameters are
included as to prove this point.

SA Model Poly. Order LS Model Poly. Order KL Model Poly. Order

κ 2 n 2 κ 2

σ 3 Cµ 3 σk = σl 2

cw2 2 P/ε 3 B1 1

cw3 3 κ 3 E2 4

cv1 2 σk 0 cµ 1

Bert Kwanten M.Sc. Thesis



5.1 Surrogates for the SA Model 43

2 3 4 5 6 7 8 9 10
cv1

0.0020

0.0022

0.0024

0.0026

0.0028

0.0030

0.0032

C
f

(a)

0.20 0.25 0.30 0.35 0.40 0.45 0.50
cw2

0.001160

0.001165

0.001170

0.001175

0.001180

0.001185

0.001190

0.001195

C
f

(b)

1.0 1.5 2.0 2.5 3.0
cw3

0.00246

0.00248

0.00250

0.00252

0.00254

C
f

(c)

0.2 0.3 0.4 0.5 0.6
0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

C
f

(d)

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
σ

0.00235

0.00240

0.00245

0.00250

0.00255

0.00260

C
f

(e)

Figure 5.1: These five figures show the evolution of the friction coefficient with a single varying
closure coefficient - keeping all else equal - for the SA model.
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Figure 5.2: These five figures show the evolution of the friction coefficient with a single varying
closure coefficient - keeping all else equal - for the LS model.
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Figure 5.3: These five figures show the evolution of the friction coefficient with a single varying
closure coefficient - keeping all else equal - for the KL model.
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5.2 An Accuracy Check of the Surrogate Models

To check the accuracy of the surrogate models with respect to the simulation code, we perform
two types of comparisons:

1. A comparison of the surrogate model’s and simulation code’s results at a single x-
location while varying the two most influential uncertainty parameters;

2. A comparison of the surrogate model’s and simulation code’s results along the entire
length of the flat plate using the uncertainty parameter’s values at the boundaries of
the predetermined intervals.

These checks are done for every model and every use case.

Figure 5.4 shows the comparison of type 1 for the SA model zpg case. Figure (a)
shows the results for the simulation code, while Figure (b) shows the results for the surrogate
model. They are constructed by running the simulation code and surrogate model 64 times
at 64 different combinations of the two depicted uncertainty parameters, i.e. κ and cv1 in
this case. The coloured lines on the planes of the graphs show the 2-dimensional relationship
between the uncertainty parameters and the friction coefficient and their mutual relationship.
Figure (c) finally shows the relative error of the surrogate model as compared to the simulation
code. This error is calculated using Equation 5.1.

RelativeError[%] =
Cfsimulation − Cfsurrogate

Cfsurrogate
× 100 (5.1)

One can see that for the SA model zpg case, the results of the simulation code and the
surrogate model look similar in shape. This is also shown by the calculated relative error,
which doesn’t exceed 2% at any point of the uncertainty parameter envelope. The largest
error is observed at the smallest values for κ and cv1.

Figure 5.5 shows the comparison of type 1 for the SA model fpg case. For the SA
model fpg case, again one can see that the similar results are obtained from the simulation
code and the surrogate model. However, this time there is a significant relative error between
the two. For a large part of the uncertainty parameter envelope, a relative error of -7% is
present, with peaks to more than -10%. Furthermore, the graph depicts that for a combination
of low κ and high cv1 values, the error becomes positive, reaching a peak of 5%.

Figure 5.6 shows the comparison of type 1 for the SA model apg case. When
comparing graphs (a) and (b) of the SA model apg case, they look similar in shape. Graph
(c) however, shows a relative error ranging between 7-9% for the majority of the envelope,
with a peak to 10%. Finally, when comparing the proximity of the lines in the 2-dimensional
planes, it can be concluded that the Von Kármán constant κ is the most influential uncertainty
parameter for all three pressure gradient cases. This can also be seen when comparing graph
(a) and (d) of Figure 5.1. Nevertheless, the difference of influence is much more pronounced
in the zpg and apg case. It is unknown why this is the case.
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Figure 5.7 shows the comparison of type 2 for the SA model. Graphs (a) and (b)
show the results of the SA zpg case. In graph (a), the red dotted lines show the results
obtained by the simulation code, while the blue dash-dotted line shows the results obtained
by the surrogate model. One can conclude that for the default and lower end values of the
uncertainty parameters, the relative error converges quickly to a small value. For the upper
end of the uncertainty parameter envelope, it takes longer. Nevertheless, towards the end of
the plate it becomes similar in absolute terms to the error at the lower end of the envelope.

Graphs (c) and (d) show the results of the SA fpg case. Looking at the error for the default
and lower end values of the uncertainty parameters, a similar conclusion as for the SA zpg case
can be made. They converge quickly to a small error. For the upper end of the uncertainty
parameter envelope, this is not at all the case. Rather large errors ranging between ±10%
occur.

Finally, for the SA apg case, we observe the opposite. Graph (e) shows that at the lower
end of the uncertainty parameter envelope the solution obtained by the surrogate model is
rather unstable. As a result, there is a large fluctuation in its relative error. Now, for the
default and upper end uncertainty parameter values, the relative error converges to a small
value quickly. Nevertheless, for the upper boundary, the error increases again to a value of
about 10%.

Figure 5.8 shows the comparison of type 1 for the LS model zpg case. Although
at first sight the shapes of graphs (a) and (b) look similar, there are notable differences when
you take a closer look. This becomes especially obvious when comparing the 2-dimensional
planes to each other. While the friction coefficient Cf plunges abruptly around Pε = 1.6,
there is a smoother transition taking place with the surrogate model. This results in a large
relative error for values of Pε < 1.6. For larger values of Pε the error remains close to zero.

Figure 5.9 shows the comparison of type 1 for the LS model fpg case. In the LS fpg
case, graphs (a) and (b) are very similar to the LS zpg case. Again, for values of Pε < 1.6,
very large relative errors are observed. This means that if we would obtain small values for
Pε after Bayesian calibration, the result should be considered untrustworthy.

Figure 5.10 shows the comparison of type 1 for the LS model apg case. Graphs
(a) and (b) for the LS apg case seem to have a very different shape from the ones that are
generated for the zpg and fpg case. That should not be the case as the same LS model was
used for all three cases and the mathematical relations therefore stay the same. In fact, when
you have a closer look, they are not that different. The only difference is that there is no
plunge for the two graphs at value of Pε < 1.6. Without the plunge, the relative error for the
LS apg case is also limited between ±6%.

Figure 5.11 shows the comparison of type 2 for the LS model. Note that for the LS
model, the relative error for at the upper and lower end of the uncertainty parameter envelope
is perfectly zero. That is because we cheated a bit. For the SA model the real default, lower
and upper boundary values were simulated. In the LS model case we used the simulations for
the collocation points that matched closest the default, lower and upper boundaries in order
to save simulation time. After applying our interpolation technique, this causes an exact
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match for the simulation and surrogate model results in case the upper and lower end values
are used. However, for the default values this is not the case. Except towards the end of the
plate for the apg case, graph (f), a large relative error occurs when the default values are
used. Also for graph (e), showcasing the LS apg case, an instability can be observed towards
the end of the plate when using the lower end of the uncertainty parameter envelope.

Figure 5.12 shows the comparison of type 1 for the KL model zpg case. The
simulation code’s results show similar behaviour to what is observed for the LS model’s zpg
and fpg case. Here, there is an abrupt dent in the results at a value of κ > 0.50, especially
when combined with high values of E2. This then becomes apparent in graph (c), showing a
large relative error when κ > 0.50 and growing for increasing E2. The exact same conclusions
can be drawn from Figure 5.13, which shows the comparison of type 1 for the KL
model fpg case. However, note that the peak relative error is still much smaller compared
to the zpg case, i.e. 150% vs. 600%.

Figure 5.14 shows the comparison of type 1 for the KL model apg case. The KL
model’s apg case shows similar behaviour as the zpg and fpg case, however, the large error is
postponed for larger values of E2. It can be concluded that if after calibration we’re obtaining
large values of κ and E2, the results should be considered unreliable.

Figure 5.15 shows the comparison of type 2 for the KL model. For the KL model,
the same ”trick” is applied as for the LS case to save simulation time. One can observe that
the simulation code and surrogate results almost match exactly. Although there is a rather
large oscillation when the default values are used, the error quickly turns to practically zero
as well, which was notably not the case for the LS model.

Overall it can be concluded that there is room for improvement when creating the surrogate
models. The sometimes large errors that occur should be eliminated as much as possible. It
is not completely clear whether these large errors are the result of a combination of values for
the uncertainty parameters that turn the model unstable. However, as these errors usually
occur at the boundaries of the envelope, this is expected to be the main cause.
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Figure 5.4: These three figures show the evolution of the friction coefficient at a single location
on the flat plate for two varying closure coefficients. These are results for the zpg case using the
SA model. Figure (a) shows the results from the simulation code, Figure (b) shows the results
from the surrogate model for the same simulation conditions and finally Figure (c) shows the error
between the two results.
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Figure 5.5: These three figures show the evolution of the friction coefficient at a single location
on the flat plate for two varying closure coefficients. These are results for the fpg case using the
SA model. Figure (a) shows the results from the simulation code, Figure (b) shows the results
from the surrogate model for the same simulation conditions and finally Figure (c) shows the error
between the two results.

Bert Kwanten M.Sc. Thesis



5.2 An Accuracy Check of the Surrogate Models 51

cv1

3
4

5
6

7
8

9
0.25

0.30

0.35
0.40

0.45
0.50

S
im

u
la

ti
o
n
 c

o
d
e
 C

f
0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

(a)

cv1

3
4

5
6

7
8

9
0.25

0.30

0.35

0.40

0.45

0.50

S
u
rr

o
g
a
te

 m
o
d
e
l 
C
f

0.0010

0.0015

0.0020

0.0025

0.0030

(b)

c v1

3
4

5
6

7
8

9

0.25 0.30 0.35 0.40 0.45 0.50

R
e
la

tiv
e
 e

rro
r [%

]

3

4

5

6

7

8

9

(c)

Figure 5.6: These three figures show the evolution of the friction coefficient at a single location
on the flat plate for two varying closure coefficients. These are results for the apg case using the
SA model. Figure (a) shows the results from the simulation code, Figure (b) shows the results
from the surrogate model for the same simulation conditions and finally Figure (c) shows the error
between the two results.
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Figure 5.7: These six figures show the results for the zpg, fpg and apg case using the SA model
and its surrogate model, as well as an error measurement at the outer edges of the closure
coefficient’s uncertainty intervals.
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Figure 5.8: These three figures show the evolution of the friction coefficient at a single location
on the flat plate for two varying closure coefficients. These are results for the zpg case using the
LS model. Figure (a) shows the results from the simulation code, Figure (b) shows the results
from the surrogate model for the same simulation conditions and finally Figure (c) shows the error
between the two results.
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Figure 5.9: These three figures show the evolution of the friction coefficient at a single location
on the flat plate for two varying closure coefficients. These are results for the fpg case using the
LS model. Figure (a) shows the results from the simulation code, Figure (b) shows the results
from the surrogate model for the same simulation conditions and finally Figure (c) shows the error
between the two results.
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Figure 5.10: These three figures show the evolution of the friction coefficient at a single location
on the flat plate for two varying closure coefficients. These are results for the apg case using the
LS model. Figure (a) shows the results from the simulation code, Figure (b) shows the results
from the surrogate model for the same simulation conditions and finally Figure (c) shows the error
between the two results.
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Figure 5.11: These six figures show the results for the zpg, fpg and apg case using the LS
model and its surrogate model, as well as an error measurement at the outer edges of the closure
coefficient’s uncertainty intervals.
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Figure 5.12: These three figures show the evolution of the friction coefficient at a single location
on the flat plate for two varying closure coefficients. These are results for the zpg case using the
KL model. Figure (a) shows the results from the simulation code, Figure (b) shows the results
from the surrogate model for the same simulation conditions and finally Figure (c) shows the error
between the two results.
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Figure 5.13: These three figures show the evolution of the friction coefficient at a single location
on the flat plate for two varying closure coefficients. These are results for the fpg case using the
KL model. Figure (a) shows the results from the simulation code, Figure (b) shows the results
from the surrogate model for the same simulation conditions and finally Figure (c) shows the error
between the two results.
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Figure 5.14: These three figures show the evolution of the friction coefficient at a single location
on the flat plate for two varying closure coefficients. These are results for the apg case using the
KL model. Figure (a) shows the results from the simulation code, Figure (b) shows the results
from the surrogate model for the same simulation conditions and finally Figure (c) shows the error
between the two results.
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Figure 5.15: These six figures show the results for the zpg, fpg and apg case using the KL
model and its surrogate model, as well as an error measurement at the outer edges of the closure
coefficient’s uncertainty intervals.
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Chapter 6

Bayesian Calibrated Uncertainty Parameters

This chapter discusses the results of the Bayesian calibration for the SA and KL model.
Unfortunately the Bayesian calibration for the Launder-Sharma model did not work. Why
that is the case is unclear, as the process that was followed was exactly the same as for the
two other models. The results for the SA and KL model proved to be successful as you will
see later on in this chapter.

When looking at Figures 6.1, 6.3 and 6.5, it can be concluded that for the SA model the Von
Kármán coefficient κ and the viscous coefficient cv1 are well-informed by the experimental
data. Unsurprisingly, these are also the two coefficients to which the SA model is most
sensitive as is shown in Chapter 5. For the other coefficients, cw2, cw3 and σ, no clear
conclusion on their posterior probability can be drawn as they are not sufficiently informed
by the experimental data. The exception is the apg flow case however, where a tendency does
seem to appear for the 3rd and 4th most sensitive coefficients cw3 and σ.

The most probable value for the Von Kármán coefficient in the zpg case lies a bit below 0.36.
For the fpg case the value gets closer to 0.24, and in the apg case it’s slightly higher than
0.30. This shows that the Von Kármán coefficient is flowcase dependent. In addition, for non
of the cases it reaches a value which is close to its default value of 0.41.

When looking at the viscous coefficient cv1, the value for the zpg case is around 4.5. In the fpg
case, it moves to the lower edge of the uncertainty interval that was determined in Chapter
3, i.e. 2.0. The same, but less outspoken, happens in the apg case. It can be concluded
therefore that it would have been better to increase the uncertainty parameter range to a
lower boundary than 2.0. Secondly, the uncertainty parameter is dependent on the flowcase,
similarly to what was observed with the Von Kármán parameter. Finally, also the most
probable values of the viscous coefficient doesn’t get close to its default value of 7.1.

In the SA model apg case, also coefficients cw3 and σ are informed to some extent. Although
the results are not as clear as for the κ and cv1 coefficients, a tendency can be observed
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towards slightly higher values of cw3 and slightly lower values of σ.

Similar conclusions can be drawn for the KL model, represented in Figures 6.7, 6.9 and 6.11.
The two most influential coefficients, E2 and κ, are also the ones that are well-informed by
the data. For the other coefficients, no clear conclusion can be drawn, except that B1 seems
to have a tendency to the lower bounds of the uncertainty interval for the zpg and apg case.

In the KL model zpg case, the most probable value for coefficient E2 is slightly above 0.24.
For the fpg case, the value of E2 seems to have two preferred values. One is close to E2 = 1.2,
but a higher probability is achieved at a value close to E2 = 0.4. The reason for this bimodel
distribution is unclear. Finally for the apg case, the most probable value for E2 is close to
1.56. As was the case for the SA model, again a high dependency is observed between the
posterior probability distribution of the closure coefficient and the flowcase. This proves that
choosing a default value of E2 = 1.2 is rather crude.

For the KL model Von Kármán coefficient, one observes that the highest probability is where
it obtains a value between κ = 0.3 − 0.38 in the zpg case, κ = 0.41 − 0.45 in the fpg case
and κ = 0.48 − 0.55 in the apg case. For the apg case, the probability density function is
truncated at the higher end of the interval. Hence, it would be better to choose an even larger
uncertainty interval. Again the coefficient proves to be flowcase dependent. In addition, the
Von Kármán coefficient is model dependent, as for the KL model it obtains totally different
values than for the SA model.

Figures 6.2, 6.4, 6.6, 6.8, 6.10 and 6.12 display the friction coefficient resulting after Bayesian
calibration of the uncertainty parameters. The red dots show the experimental data, with an
added experimental uncertainty indicated by the error bars. The dashed blue line shows the
mean value (µ) for the friction coefficient ± one standard deviation σ. The blue line shows
the mean value ± three standard deviations. Note that the friction coefficient given in the
histograms is basically a ”cross-section” at a single location of the plate, while these figures
show the evolution along the entire length of the plate.

Generally we observe that the uncertainty of the results is reduced at places where the density
of the experimental data is highest. In addition, when the experimental uncertainty is lower,
this also improves the uncertainty of the simulation results. This can be seen by comparing
the calibrated results for the apg cases to the results of the zpg and fpg case. For the apg
cases, the experimental uncertainty of the data is chosen to be lower as can be seen from the
red ”error” bars. This reduces the uncertainty which is apparent by µ ± σ and µ ± 3σ lines
lying closer to each other.

The Bayesian calibrated results also prove to be much more accurate than the deterministic
results obtained using the default closure coefficients. The variance between the different
model’s results has also reduced as predicted in Chapter 4.

The above discussion leads to the overall conclusion that closure coefficients are both flow
case as well as model (in case of the Von Kármán coefficient) dependent. Choosing a constant
value for these parameters, as is regular practice when using RANS simulations, is therefore
a rather inadequate approach.
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Figure 6.1: Histogram for the SA model zpg case after Bayesian calibration.
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Figure 6.2: Friction coefficient along a flat plate for the SA model zpg case after Bayesian
calibration.
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Figure 6.3: Histogram for the SA model fpg case after Bayesian calibration.
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Figure 6.4: Friction coefficient along a flat plate for the SA model fpg case after Bayesian
calibration.
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Figure 6.5: Histogram for the SA model apg case after Bayesian calibration.
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Figure 6.6: Friction coefficient along a flat plate for the SA model apg case after Bayesian
calibration.
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Figure 6.7: Histogram for the KL model zpg case after Bayesian calibration.
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Figure 6.8: Friction coefficient along a flat plate for the KL model zpg case after Bayesian
calibration.
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Figure 6.9: Histogram for the KL model fpg case after Bayesian calibration.
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Figure 6.10: Friction coefficient along a flat plate for the KL model fpg case after Bayesian
calibration.
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Figure 6.11: Histogram for the KL model apg case after Bayesian calibration.
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Figure 6.12: Friction coefficient along a flat plate for the KL model apg case after Bayesian
calibration.
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Chapter 7

Conclusions and Recommendations

The main purpose of the thesis is to investigate whether it is possible to quantify and to
reduce the uncertainty of RANS models using the Bayesian inference theorem. More specif-
ically, the Spalart-Allmaras (SA), KL and Launder-Sharma (LS) RANS turbulence models
are investigated. A secondary objective is to determine the prior uncertainty by means of
the analyst’s knowledge of the considered RANS models, rather than merely guestimating a
prior uncertainty interval. In addition, a method is developed to create a surrogate model for
these models and to verify their correctness.

7.1 The Prior Uncertainty of RANS Turbulence Models

A closure problem results from applying the Reynolds-averaging technique to the Navier-
Stokes equations. The model equations that are created (e.g. SA, KL and LS model) to
mitigate the closure problem contain coefficients who’s values are determined from calibration
with experimental values. It is for some of these so-called closure coefficients that a prior
uncertainty interval is determined in this thesis. Chapter 3 contains a detailed study on the
prior uncertainty intervals for the closure coefficients. Some of the models’ closure coefficients
can be related to each other, effectively reducing the number of uncertainty parameters. For
each model, we finally consider five uncertain parameters. In order to produce a reliable
uncertainty interval for these closure coefficients, it is important to know the model inside
out. The better knowledge you have about the model, the more reliable your prior uncertainty
interval will be. In this thesis, the intervals have been determined by studying how the models
are build up, and by comparing the values of the closure coefficients from different sources in
literature.

Tables 7.1, 7.2 and 7.3 contain a summary of the prior uncertainty intervals that are deter-
mined for the different models. Note that for each model, there are some coefficients that they
have in common. For example the Von Kármán coefficient κ is present in each model, and
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coefficient Cµ occurs in both the KL and LS model. In this thesis, we have kept the interval
the same for each of these coefficients across the three models. It is arguable that this is
not necessarily the best approach as they don’t directly correspond with a physical quantity.
Therefore, as is concluded from the Bayesian calibration, their values can be different for each
model.

Table 7.1: Summary of the ranges for the prior uncertainty interval of the SA closure coefficients

Parameter Lower Upper

κ 0.3 0.5

σ 0.6 1.0

cw2 0.2 0.5

cw3 1.0 3.0

cv1 4.0 10.0

Table 7.2: Summary of the ranges for the prior uncertainty interval of the k−ε closure coefficients

Parameter Lower Upper

n 1.23 1.34

Cµ 0.02 0.14

P/ε 1.30 2.90

κ 0.3 0.5

σk 0.5 1.5
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Table 7.3: Summary of the ranges for the prior uncertainty interval of the k−l closure coefficients

Parameter Lower Upper

κ 0.3 0.5

σk = σl 0.7 2.1

B1 15.0 21.0

E2 0.2 2.2

Cµ 0.02 0.14

7.2 The Surrogate Model Creation

The prior uncertainty interval that is determined for the uncertainty parameters needs to
be propagated through the models in order to be able to apply Bayesian calibration. To
enable this, surrogate models of the actual RANS turbulence models are created. The first
step in the process is to estimate a polynomial order for each single uncertain parameter. A
reasonable estimate can be obtained by performing deterministic simulations for a varying
closure coefficient, while keeping all other parameters constant. The polynomial orders for
the uncertainty parameters of each model are summarized in Table 7.2. Note that the same

SA Model Poly. Order LS Model Poly. Order KL Model Poly. Order

κ 2 n 2 κ 2

σ 3 Cµ 3 σk = σl 2

cw2 2 P/ε 3 B1 1

cw3 3 κ 3 E2 4

cv1 2 σk 0 cµ 1

closure coefficient does not necessarily have the same polynomial order across the different
models, proving that its order is definitely model dependent. In case of the Spalart-Allmaras
model, the polynomial order has also been determined for the different flow cases. However,
results showed that for varying flow cases, the polynomial order did not change. Hence, the
polynomial order is not dependent on the flow cases and these results have therefore been
disregarded.

When looking at the Figures from which the polynomial orders are determined, i.e. Figure 5.1,
5.2 and 5.3, it becomes apparent that some coefficients are more influential than others. For
the three investigated models, two coefficients were always so much more influential than the
others, that only they could be calibrated using Bayesian inference. Although not included in
the thesis, results have been obtained where the less influential coefficients do get calibrated
when the more influential are taken constant. However, this is not of much use, as they are
not influential enough on the solution to get a well-calibrated Quantity of Interest. It can
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therefore be concluded that only calibrating the most influential uncertainty parameters yield
good-enough results for the Quantity of Interest, while dramatically increasing the efficiency
of the technique, as much less simulations are required to obtain the surrogate model.

We are able to create surrogate models for all RANS models and every use case. Overall it can
be concluded that there is room for improvement when creating these surrogate models. The
sometimes large errors when compared to the actual simulation results should be eliminated
as much as possible. It is not completely clear whether these large errors are the result of a
combination of values for the uncertainty parameters that turn the model unstable. However,
as these errors usually occur at the boundaries of the envelope, this is expected to be the
main cause. In retrospect, when determining the interval of the prior uncertainty coefficients,
it would be good to look at which combinations of closure coefficients yield a model for which
convergence can be obtained. This would probably eliminate the large error at the boundaries
of the surrogates.

7.3 Results of the Bayesian Uncertainty Quantification

The results of the Bayesian calibration are discussed in detail in Chapter 6. Generally we
observe that the prior uncertainty is significantly reduced. Hence, the main objective of this
thesis has been achieved. Note that the best results are obtained at places where the density
of the experimental data is highest. In addition, when the experimental uncertainty is lower,
this also improves the uncertainty of the simulation results. It is therefore very important to
be in the possession of good experimental data in order to apply the technique successfully.
The availability of good experimental data is something which can definitely be improved.

The Bayesian calibrated results also prove to be much more accurate than the deterministic
results obtained using the default closure coefficients. The variance between the different
model’s results has also reduced as was predicted in Chapter 4.

Finally, when comparing the Bayesian calibrated closure coefficients for the different scenarios,
we can conclude that they are both flow case as well as model dependent. Choosing a constant
value for these parameters, as is regular practice when using RANS simulations, is therefore
a rather inadequate approach.
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Appendix A

The Galerkin Polynomial Chaos Method

The Galerkin Polynomial Chaos Method is the most general Polynomial Chaos method. Its
name originates from the Galerkin projection, which is used to obtain the polynomial chaos
coefficients. The general idea of the Galerkin Polynomial Chaos method is to introduce un-
certainty into the problem as an additional dimension on which the final solution depends.
A fundamental concept of the method is the decomposition of a random function into deter-
ministic and stochastic components. For example, a solution for a velocity field u, depending
on a transformed variable ξ(θ), is approximated by equation (A.1).

u (x, t, θ) ≈
M∑
i=0

ūi(x, t)Ψi (ξ(θ)) (A.1)

The solution u (x, t, θ) is a function of space x ∈ D ⊂ Rn, time t and the random event θ ∈ Θ.
The probability space is given by (Θ,F , P ), where Θ is the set of outcomes, F ⊂ 2Θ is the
σ-algebra of events, and P : F → [0, 1] is a probability measure [11].

In equation (A.1), the random variable u is divided into a deterministic part, the coefficients
ūi, and a stochastic part, the polynomial chaoses Ψi. Note that a polynomial chaos is a
polynomial dependent on random variables instead of ordinary variables. The vector ξ consists
out of these random variables {ξ1, ..., ξd}, which are linear transformations of the d uncertain
parameters. Furthermore, these polynomials are orthogonal with respect to the distribution of
the input parameters. For standard distributions, corresponding polynomials exist. These can
be found in the Askey scheme [25]. For arbitrary distributions, the orthogonal polynomial
can be constructed using the Gram-Schmidt algorithm, see Witteveen and Bijl [24]. The
expansion consists out of M + 1 terms, which are determined by the number of random
variables, d, and the highest order, p, of the applied set of polynomials, {Ψi}:

M + 1 =
(d+ p)!

d!p!
(A.2)

Now consider the general stochastic differential equation represented by equation (A.3).

L (x, t, θ;u (x, t, θ)) = S (x, t, θ) (A.3)
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The differential operator L contains space and time derivatives and can be stochastic, denoted
by θ. The source term S depends on space, time and a random event, just like the solution
u. The solution u (A.1), can now be substituted into the differential equation (A.3).

L

(
x, t, θ;

M∑
i=0

ūi(x, t)Ψi (ξ(θ))

)
≈ S (x, t, θ) (A.4)

Now the Galerkin projection can be applied on each basis polynomial {Ψk}. This is done in
order to ensure that the truncation error is orthogonal to the functional space spanned by
{Ψi}.(

L

(
x, t, θ;

M∑
i=0

ūiΨi

)
,Ψk

)
= (S,Ψk) k = 0, 1, ...,M, (A.5)

in which (·, ·) represents an inner product, which is defined by equation (A.6).

(f (ξ) , g (ξ)) =

∫
f(ξ)g(ξ)w(ξ)dξ, (A.6)

in which the weighting function w (ξ) denotes the probability density function of the uncertain
parameters. The following orthogonality holds:

(Ψi,Ψj) =
(
Ψ2
i

)
δij , (A.7)

where δij is the Kronecker delta. Finally, the resulting M + 1 set of deterministic equations
can be solved numerically in order to find the coefficients ūi. Once these are known, the
probability distribution of the solution (A.1) can be constructed. The mean and variance are
given by equation (A.8) and (A.9) respectively.

µu = ū0(x, t) (A.8)

σ2
u =

M∑
1

ūi(x, t)
2
(
Ψ2
i

)
(A.9)

Typically, a number of 2-5 iterations is required in order to solve for a number of M+1
coefficients ūi. This results into an order of 2-5 times M+1 deterministic computations,
depending on the required accuracy.
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Appendix B

The Hermite Polynomials

The Hermite polynomials are an orthogonal polynomial sequence used in probability theory.
The equation for the Hermite polynomials can be written as follows:

Hen(x) = (−1)nex
2/2 d

n

dxn
e−x

2/2 =

(
x− d

dx

)n
· 1 (B.1)

The first eleven Hermite polynomials are:

He0(x) = 1 (B.2a)

He1(x) = x (B.2b)

He2(x) = x2 − 1 (B.2c)

He3(x) = x3 − 3x (B.2d)

He4(x) = x4 − 6x2 + 3 (B.2e)

He5(x) = x5 − 10x3 + 15x (B.2f)

He6(x) = x6 − 15x4 + 45x2 − 15 (B.2g)

He7(x) = x7 − 21x5 + 105x3 − 105x (B.2h)

He8(x) = x8 − 28x6 + 210x4 − 420x2 + 105 (B.2i)

He9(x) = x9 − 36x7 + 378x5 − 1260x3 + 945x (B.2j)

He10(x) = x10 − 45x8 + 630x6 − 3150x4 + 4725x2 − 945 (B.2k)
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Appendix C

The Basic Monte-Carlo Method

A simple way to propagate an input distribution through a simulation is by means of a Monte-
Carlo method. The procedure of a basic Monte-Carlo method is executed as follows[23]:

1. Sample the (joint-) probability density function for the random variable(s).

2. Calculate the deterministic solution for each sampled input value

3. Determine the statistics of the output distribution from the obtained deterministic so-
lutions, e.g. mean, variance, skewness, ...

The statistics can be obtained from the definition of the expected value, E, of a function g(ξ),
in which ξ is a random variable. This definition is mathematically represented by equation
(C.1).

E [g(ξ)] =

∫
g(ξ)p(ξ)dξ, (C.1)

in which p(ξ) is the probability density function of variable ξ. The mean of the probability
density function, also called the first moment about the origin is defined by equation (C.2).

ξ̄ = E [ξ] =

∫
ξp(ξ)dξ, (C.2)

The rth moment about the mean is given by equation (C.3).

E
[
(ξ − ξ̄)r

]
=

∫
(ξ − ξ̄)rp(ξ)dξ, (C.3)

For numerical applications, the integrals represented by equation (C.3) are replaced by discrete
sums. The variance, skewness and kurtosis are respectively related to the 2nd, 3rd and 4th

moment about the mean. Finally, the distribution of the data can be derived from these
statistics.
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Theoretically, the Monte-Carlo method converges to the exact solution as the number of
samples N → ∞. However, the convergence of the method is slow, typically of the order
O
(
N−1/2

)
. Generally, the Monte-Carlo method is too expensive in terms of time and com-

puting power when complex simulations are considered.
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Appendix D

Experimental Turbulent Flat Plate Flow

This Appendix contains copies of experiments performed by Wieghardt [16] and Ludwieg &
Tillman [15]. These experiments are used as reference cases in this thesis.
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D.1 Wieghardt’s zero pressure gradient case
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D.2 Ludwieg & Tillman’s favourable pressure gradient case
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D.3 Ludwieg & Tillman’s adverse pressure gradient case
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Appendix E

Time and Spatial Discretisation Methods

This Appendix gives a short explanation about the space and time discretisations which
are used in the computational model. The first section describes the third-order spatial
discretisation method. Section E.2 discusses the time integration and dual-time stepping
technique.

E.1 Third-order Spatial Discretisation

The centred, third-order accurate scheme used in the RANS solver is constructed by correcting
the second-order dispersive error resulting from the spatial discretisation of the classical Jame-
son scheme for the Euler equations[3]. A third-order scheme for the classical one-dimensional
Euler equation is given by:

wt + fx(w) = 0 (E.1)

For a regular mesh, in which xj = jδx, the classical centred approximation of equation (E.1)
can be written as:

wt|j +
1

δx
δµf |j = 0, (E.2)

where (δφ)j+ 1
2

= φj+1 − φj and (µφ)j+ 1
2

=
1

2
(φj+1 + φj).

Equation (E.2) is a fourth-order approximation to:

wt + f(w)x +
δx2

6
f(w)xxx = 0, (E.3)

in which the additional last term represents a dispersive error. When this term is cancelled,
we are left with a fourth-order accurate non-dissipative approximation. In order to avoid
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numerical oscillations, numerical dissipation is introduced into the spatial approximation.
This is done by adding the Jameson’s artificial dissipation D to the scheme.

Dw =
1

δx

[
δ(ε2ρ(Ā)δw)

]
− 1

δx

[
δ(ε4ρ(Ā)δ3w)

]
,

ε2|j+ 1
2

= k2 max {νj , νj+1} ,

ε4|j+ 1
2

= max
{

0, k4 − ε2|j+ 1
2

}
,

νj =

∣∣∣∣pj+1 − 2pj + pj−1

pj+1 + 2pj + pj−1

∣∣∣∣, (E.4)

in which A is the flux Jacobian, ρ represents the spectral radius of a matrix, p is the fluid
pressure and k1, k4 are constant parameters. Finally, the scheme for the one-dimensional
Euler equations becomes:

wt|j + Lw|j = Dw|j , (E.5)

with

Lw =
1

δx
δ(µf − 1

6
δ2µf). (E.6)

For a region where w is smooth, ε2 = O(δx2) and ε4 = O(1). Hence, Dw = O(δx3) and scheme
(E.4), (E.5) and (E.6) are third-order accurate. Using a classical second-order discretisation
for the viscous terms, the numerical method has been extended to the Navier-Stokes equations.

E.2 Time Integration and the Dual Time Stepping Technique

For steady problems, a time-stepping technique base on a classical four stage Runge-Kutta
method with implicit residual smoothing is applied. The Runge-Kutta scheme reads:

w(0) = wn,

J (w(k) − w(0)) = −ak∆t(L −D)w(k−1), k = 1, ..., 4,

wn+1 = w(4),

(E.7)

where wn is the numerical solution at time n∆t, L denotes the approximation of the spatial
derivatives, D the numerical viscosity and a1 = 1/4, a2 = 1/3, a3 = 1/2 and a4 = 1[3]. The
implicit operator J for a one-dimensional problem, taking into account the contribution of
the Euler and viscous terms, is given by equation (E.8).

J = 1− βe
(

∆t

δx

)2

δ(λe2δ)− βv ∆t

δx2
δ(λvδ), (E.8)

in which λe and λv are respectively the spectral radii of the convective and diffusive terms,
and βe and βv are tunable parameters. When the Runge-Kutta method given by (E.7) is
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coupled to the third-order approximation given by (E.6) and numerical dissipation is assumed
zero (D = 0), then (E.7) is unconditionally stable for

βe ≥ 1

8
.

In case of a pure diffusion problem, the Runge-Kutta scheme (E.7) coupled to a second-order
centred discretisation of the viscous terms is unconditionally stable when

βv ≥ 2

Ωv
with Ωv ≈ 2.785.

Note that the second term of equation (E.8) is of the order O(∆t2), while the viscous term is
of the order O(∆t). Hence, for time-dependent Navier-Stokes calculations, second-order time
accuracy can be obtained by neglecting the viscous distribution, i.e. βv = 0. However, as a
result the unconditional stability will be lost. In practice, CFL numbers of about 100 can be
used in the wall region[3].
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Appendix F

The Turbulent Boundary Layer

When simulating turbulent flows, we are usually interested in the ones which are bounded
by walls. Therefore, most closure models have been developed with this fact in mind. This
section discusses how, after Reynolds-averaging the Navier-Stokes equations, wall-bounded
flows can be divided into several regions.

Wall-bounded turbulent flows are characterized by a boundary layer structure which can be
divided into several layers. A first distinction is made between the inner layer, the overlap
region and the outer layer. A second division is made within the inner layer, between the
viscous sublayer and the buffer layer. As its name suggests, the viscous sublayer is dominated
by viscous effects. Within the buffer layer, both viscous and Reynolds stresses are significant.
The overlap region is dominated by inviscid turbulent phenomena, i.e. viscous stress becomes
negligible. Finally, the outer layer’s behaviour depends on the type of boundary layer exam-
ined. When dealing with an external boundary layer, the outer layer is a region with high
intermittency, while for internal flow, they have more regular perturbations.

Each of the regions is described by a set of scaling parameters. For the inner region these are
the friction velocity, uτ , and viscosity, ν.

uτ =

√
τw
ρ
, (F.1)

in which τw is the average wall shear stress. The average velocity profile for the inner region
is defined by equation (F.2). This relation is referred to as the law of the wall.

U

uτ
= f

(yuτ
ν

)
for

y

δ
� 1, (F.2)

in which y represents the distance to the wall, and δ is the characteristic length of the problem
(e.g. boundary layer thickness).

The outer layer is characterized by the friction velocity, uτ , and the characteristic length of
the problem, δ. Its average velocity profile is described by the so-called defect law, which is
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given by equation (F.3).

U − U∞
uτ

= F
(y
δ

)
for

yuτ
ν
� 1, (F.3)

in which Uinf is a characteristic velocity of the problem, such as the free-stream velocity.

Within the overlap region, equations (F.2) and (F.3) are expected to match. This result into
the log-law of the wall, represented by equation (F.4).

u+ =
1

κ
ln
(
y+
)

+ C, (F.4)

where u+ ≡ U/uτ and y+ ≡ yuτ/ν. Furthermore, as the viscous sublayer is completely
dominated by viscous forces, and velocity fluctuations are negligible, equation (F.2) reduces
to u+ = y+ for y+ . 5. In Table F.1 the ranges and average velocity profiles related to these
different layers are summarized.

Table F.1: Summary of the average velocity profiles for wall-bounded flows

Layers Range Average velocity profile

Inner layer: Viscous sublayer y+ . 5 u+ = y+

Inner layer: Buffer layer 5 . y+ . 40 u+ = f (y+)

Overlap region y+ & 40 and y/δ . 0.2 u+ = 1
κ ln (y+) + C

Outer layer y/δ & 0.2 U−U∞
uτ

= F (y/δ)
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