<]
TUDelft

Delft University of Technology

On Structured Design Space Exploration for Mapping of Quantum Algorithms

Bandic, Medina; Zarein, Hossein; Alarcon, Eduard; Almudever, Carmen G.

DOI
10.1109/DCI1S51330.2020.9268670

Publication date
2020

Document Version
Final published version

Published in
2020 35th Conference on Design of Circuits and Integrated Systems, DCIS 2020

Citation (APA)

Bandic, M., Zarein, H., Alarcon, E., & Almudever, C. G. (2020). On Structured Design Space Exploration for
Mapping of Quantum Algorithms. In M. Lopez-Vallejo, & C. Lépez Barrio (Eds.), 2020 35th Conference on
Design of Circuits and Integrated Systems, DCIS 2020 Article 9268670 (2020 35th Conference on Design of
Circuits and Integrated Systems, DCIS 2020). IEEE. https://doi.org/10.1109/DCIS51330.2020.9268670

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1109/DCIS51330.2020.9268670
https://doi.org/10.1109/DCIS51330.2020.9268670

On Structured Design Space Exploration for
Mapping of Quantum Algorithms

Medina Bandic*, Hossein Zarein, Eduard Alarcon’ and Carmen G. Almudever*
*Delft University of Technology, The Netherlands
Y Technical University of Catalunya, BarcelonaTech, Spain

Abstract—Quantum algorithms can be expressed as quantum
circuits when the circuit model of computation is adopted. Such
a circuit description is usually hardware-agnostic, that is, it
does not consider the limitations that the quantum hardware
might have. In order to make quantum algorithms executable
on quantum devices they need to comply to their constraints,
which mainly affect the parallelism of quantum operations and
the possible interactions between the qubits. The process of
adapting a quantum circuit to meet the quantum chip restrictions
is known as mapping. The resulting circuit usually has a higher
number of gates and depth, decreasing the algorithm’s reliability.
Different mapping solutions have been already proposed. Most
of them are meant for a specific quantum processor and differ
in methodology, approach and features. In addition, they are
usually only compared in terms of added gates, circuit depth
and compilation time. No thorough comparative analysis of the
different mapping solutions performance and features has been
performed so far.

In this paper, we propose to apply structured design space
exploration (DSE) methodologies to the mapping procedures.
This will allow not only to have a more in depth and structured
analysis of their performance but also to identify what features
are key and worth to implement. By using DSE we will be
able to: i) determine in what regimes some mapping solutions
outperform others; ii) derive optimal mapping strategies for
specific quantum algorithms and quantum processors; and iii)
perform an scalability analysis. In addition, DSE techniques
cannot only be applied to the mapping layer that is key for
bridging quantum applications to quantum devices, but also to
the full-stack quantum computing system allowing for its cross-
layer co-design.

Index Terms—Quantum circuit mapping, Design Space Explo-
ration, quantum performance metrics, quantum benchmarks.

I. INTRODUCTION

Quantum computing is one of the most active and promising
research areas nowadays because it has the potential to solve
problems which are intractable even for the most powerful
classical supercomputers. Although current quantum proces-
sors, so-called Noisy Intermediate-Scale Quantum (NISQ) de-
vices, are now capable of handling simple quantum algorithms,
they are limited in size and by the presence of noise. In
addition, they have several constraints that must be taken into
account when executing quantum algorithms.

In most of current quantum processors qubits are arranged
in a specific topology with limited connectivity, allowing only
nearest-neighbour interactions among them. This is one of the
main constraints of these devices, because in order for qubits
to interact (perform a two-qubit gate), they should often be

978-1-7281-9132-4/20/$31.00 ©2020 European Union

moved to become adjacent to each other. This means that
quantum algorithms, usually described as hardware-agnostic
quantum circuits, need to be adapted to respect the con-
straints of quantum processors. The procedure of modifying
the quantum circuit to satisfy all hardware restrictions is called
mapping (also known as routing, transpiling, compiling or
synthesis).

The mapping problem is NP-complete and so far various
solutions have been proposed to solve it [1]-[9]. They differ
in approach, methodologies and metrics. What is common for
most of them is that they take a bottom-up approach in which a
mapper was developed for a specific quantum processor(s) and
technology. In addition, the quality of the proposed mapping
methods is usually assessed in terms of circuit depth and/or
quantum gates overhead they result in and its compilation
time. That is, the lower the added number of gates and/or the
circuit depth overhead and compilation time are, the better the
mapper is. However, those performance metrics do not provide
any information on why or in what regime a given mapping
solution is more beneficial. Therefore, we are still missing
a more comprehensive comparison between those existing
alternative mapping solutions.

In this paper, we propose to apply structured design space
exploration (DSE) methodologies to further explore and per-
form a more thorough comparison of different mapping so-
lutions and optimize them for specific quantum processors
given a set of applications. More precisely, by using DSE
techniques we will be able to identify what mapping features
are worth it to implement, in what ranges a specific mapping
method outperforms others or to optimize the mapper for a
target processor and application. To this purpose, we focus
on the following quantum system layers: quantum algorithms
(benchmarks), mappers and quantum devices. It is worth
noting that although in this work we focus on the application
of DSE techniques to the mapping problem, this can be seen
as the first step towards the development of a cross-layer co-
design framework for full-stack quantum systems that will
allow for a top-bottom, bottom-up optimization across layers.
We envision that by using DSE techniques we can obtain
performance trends and dimensioning design guidelines for
current and next generations of quantum devices as well as
for the full-stack quantum system when considering several
architectural layers.

The paper is organized as follows. In section II, we will first
review the basics of quantum computing. Afterwards, we will

Authorized licensed use limited to: TU Delft Library. Downloaded on January 14,2021 at 16:05:16 UTC from IEEE Xplore. Restrictions apply.

provide an introduction and overview of the mapping problem
and the different proposed solutions emphasizing what cost
functions can be optimized in the mapping process. Section
IIT will introduce the DSE methodology and explain how it
can be applied to the mapping problem. Furthermore, we will
give an overview of currently used performance metrics and
benchmarks with focus on quantum volume. In section IV, we
will show some preliminary results of our work so far related
to applying DSE to the mapping problem. In Section V, the
extension of DSE methodologies to other architectural layers
and across the full-stack quantum system will be discussed.
In Section VI, conclusions and future work are presented.

II. RUNNING A QUANTUM ALGORITHM ON A REAL
QUANTUM PROCESSOR

A. Basics of Quantum Computing

In order to understand the mapping problem and what it
is used for, we first need to briefly introduce the basics of
quantum computing that include: qubits, quantum gates and
quantum circuits. Contrary to classical computing, where we
use bits to store information, the elementary information unit
for quantum computing is the quantum bit or qubit. The
difference is that rather than having only two possible states
(‘0 and ‘1’ for bits and |0) and |1) for qubits), qubits can also
be in superposition of both. More precisely, a quantum state
(state of the qubit) can be described as: |¢) = «|0) + 3 1),
where o, 3 € C and |a|?+|3|? = 1. After measuring the qubit,
the result will be a binary value 0 or 1 with probabilities |a|?
and |f|?, respectively. Furthermore, its state will collapse to
one of those binary outcomes, changing the state of the qubit
to |0) or |1) and destroying the superposition.

To modify the state of a qubit, we can also apply other
type of operation, a quantum gate. All quantum gates can be
described as unitary matrices and can act on one or more
qubits. The ones that are most common and supported by most
of devices are single- and two-qubit gates. Hadamard gate,
Pauli X, Y and Z are some examples of the gates that act on
single qubits. A Hadamard gate for instance, takes the state of
the qubit to superposition. On the other hand, controlled NOT
(CX, CNOT) gate and controlled Z (CZ, CPhase) are examples
of two-qubit gates. In two-qubit gates, one qubit always acts
as control qubit and the other one acts as target. This means
that the state of the target qubit after applying the gate depends
on the state of the control qubit. For instance, in the CNOT
gate and X gate is applied on the target qubit (open circle) if
the control qubit (black dot) is in sate |1). The matrices and
symbols of the aforementioned single- and two-qubit gates are
shown in Figure 1 and 2, respectively.

One of the most relevant gates for the mapping problem is
the so-called SWAP gate (Figure 2). As its name suggests, it
exchanges the state of the two qubits it is applied on. This
operation is used for routing the qubit states for some of the
quantum technologies such as superconducting qubits as it will
be described later. Note that a SWAP gate is equivalent to
apply three CNOTs.

i B e

1 000
o 01 00 ?
X = or
|.0 0 (l) (1)J an
F 00 ()w
01 0 0
7 or
CZ=10 01 o
L() 0 0 71J
ql = q0

1

ql

N
WV

000 1] q © a—P

fan)
A\

q0

Fig. 2: Two-Qubit Gates.

Quantum algorithms can be represented by a sequence of
quantum gates that are usually described in form of quantum
circuit diagrams, as shown in Figure 3. This circuit example
consists of 7 qubits (horizontal lines) in which 5 CNOT gates
are applied. It is worth noting that current NISQ devices are
error prone. Qubits are very fragile elements that easily lose
their information (decohere) and gates are not perfect, showing
error rates of 1072 — 1073, This poses a limit on the size of
the algorithms, in terms of number of gates and circuit depth
(number of time-steps), that can be successfully run on NISQ
Processors.

q0
ql
q2
q3
q4

q5
q6 4&9*

Fig. 3: Example of a quantum circuit.

B. The Mapping Problem

Quantum algorithms, described as quantum circuits, are
quantum hardware-agnostic and therefore cannot be directly
run on quantum devices. They need to be adapted to specific
constraints of quantum chips in order to be executed. This
is known as the mapping problem. Quantum hardware con-
straints may vary between different processor architectures,
even within the same quantum technology. The constraint that
has been mainly considered in previous works on mapping of
quantum circuits and that is affecting this process the most is
the (limited) qubit connectivity. This restriction is related to

Authorized licensed use limited to: TU Delft Library. Downloaded on January 14,2021 at 16:05:16 UTC from IEEE Xplore. Restrictions apply.

the execution of two-qubit gates. For instance, for technologies
like superconducting qubits and quantum dots, where qubits
are arranged in a 2D topology with nearest-neighbor (NN)
interactions, qubits need to be adjacent in order to interact - i.e
to perform a two-qubit gate. One example of such architecture
is shown in Figure 4. Another constraint that needs to be
considered during the mapping process is the primitive gate
set, which is a reduced set of gates specific for each quantum
device. That means that the gates that compose a quantum
circuit need to be decomposed into the ones supported by the
quantum chip. In order to respect these quantum hardware
constraints and transform a given quantum circuit to a version
that is executable on the quantum device, a mapping procedure
is required. It consists on the following steps (not necessarily
in this order):

1) Decompose the gates of the circuit to the primitive gates
supported by the quantum processor.

2) Map virtual qubits (qubits of circuit to be executed) to
physical qubits (actual qubits on device). Also called
initial placement of qubits or qubit allocation.

3) Schedule quantum operations so that all the dependen-
cies between them (and other possible constraints com-
ing from the use of shared classical control electronics
[8]) are respected, while trying to minimize the circuit
depth an therefore the execution time of the circuit.

4) Routing of qubits - moving qubits that need to interact
so that they are adjacent, usually done by inserting
SWAP operations. This process results in an increase
of the number of operations as well as the circuit
depth, decreasing the algorithm reliability or success
rate. As we previously mentioned, qubits decohere and
operations are faulty. Therefore, it is crucial that the
overhead caused by the routing is minimal.

An illustrative example of the mapping process is shown
in Figure 4 in which the circuit in Figure 3 is mapped to the
Surface-7 quantum processor [10]. In this example, for sake of
simplicity, we assume that all gates in the circuit are supported
by the device and only the qubit connectivity restriction is
considered. The first three CNOTs can be directly performed
as the qubits are placed in adjacent positions. However, it is
not possible to execute the fourth and fifth CNOTs because g/
and g5, as well as g5 and g6 are not placed on near-neighbor
qubits on the chip. We need then to insert a SWAP gate which
exchanges the placement of virtual qubits g3 and ¢5 in the
chip allowing to execute all quantum gates till the end of the
circuit.

C. Prior Work

Many solutions have already been proposed in order to solve
the mapping problem and some of them included in quantum
compilers. The solutions differ in strategy, methodology and
metric to minimize. Therefore, they can be classified based on
different criteria:

o Strategy: We can categorize solutions in two ways.
First categorization is optimal (exact) vs. heuristic so-

40+ Q0 q0+>Q0 q0-» Qo
@ @ g1 Q1 f"‘\ ql>a1 als a1
q2 »Q2 t “ q2+Q2 92+ Q2
@.@.@ 3 »Q3 i —| g3 >Q3 T (43 »Q5
@ @ q4 > Q4 f qa»Qa | ad>aa
45+ Q5 95+Qs5 | a5» 03
q6 »> Q6 q6->Q6 q6 -»Q6 ¥

Fig. 4: Running a quantum circuit on the Surface-7 quantum pro-
cessor. The most left diagram is the coupling graph of the Surface-7
chip in which each circle represents a physical qubit (Q0 to 6) and
the edges the connections (possible interactions) between them. Qi
is the physical qubit label and qi represents the qubit in the circuit.
In this case there is a ¢; to (); mapping. An extra SWAP gate is
required for being able to perform the last two CNOT gates.

lutions. Exact solutions in [5], [11], [12], use brute-
force techniques that can obtain minimal results for small
circuits. However, for more scalable solutions heuristics
are needed [1], [13], [14]. Second, we can classify them
as local (layer & permutation -based) [5] vs. global
solutions (SWAP-based) [1]-[3]. Some of tools/methods
used include Satisfiability Modulo Theory (SMT) solvers
[2], [11], search and greedy heuristic algorithms [1],
[5], [15], [16], MILP and MinLA solvers [8], [16] and
machine-learning-based solutions [9], [17].

o Metric(s) to be optimized (cost function): Most of
works so far were focused on minimizing the number of
gates [5]. That metric depends on the number of SWAPs
added during the routing step. Second mostly used metric
is circuit depth [8]. That metric represents the number
of time-steps (layers) in the circuit. Each qubit can be
engaged only in one gate per time-step. The less the
number of time-steps, the shorter the circuit duration.
Some works tried to combine these two in one cost-
function, or check their trade-offs against each other, but
no common conclusion about the matter has been made
[1], [7]. Lastly, some works suggest the circuit reliability
as a metric to optimize, where by choosing the most
reliable path one can minimize the overall error rate [2].

o Hardware constraint to focus on: Most works focused
on the qubit connectivity constraint and topology [11],
[13]. However, other important restrictions that originate
from the use of shared classical control electronics should
be considered as proposed in [8], [18].

o Additional differences: Solutions also differ in some
other aspects. For example, in using random or exact
initial placement, whether they use look-ahead [1], [5],
[13] or look-back schemes while scheduling operations
or whether they are variation-aware [2], [3] or not (in
terms of location on chip - different reliabilities of links
between physical qubits and time and different coherence
times of qubits).

In the majority of the mapping solutions mentioned in
this section, a mapper was developed for a specific quantum
processor in which different algorithms (used as a benchmarks)
were mapped. In addition, all the proposed mapping methods
so far are evaluated based on quantum gates overhead or/and

Authorized licensed use limited to: TU Delft Library. Downloaded on January 14,2021 at 16:05:16 UTC from IEEE Xplore. Restrictions apply.

circuit depth they result in (raw data) and compilation time.
However, those performance metrics are insufficient in case we
want to have a more in depth and comprehensive comparison
between solutions and determine why and in what regimes
(e.g. for different number of qubits, different error rates)
given mapping solutions are more favorable. As we will
explain in the next section, we propose to use structured
design exploration methodologies to have a more thorough
comparison between different mapping solutions as well as
optimize them for specific quantum processors and a class of
applications.

III. DESIGN SPACE EXPLORATION METHODOLOGIES
A. What is DSE about?

Design space exploration is a structured design approach
based on interdependencies of parameters, variables and met-
rics of some system, used for optimizing it. The goal of DSE
is to improve some predefined performance metrics or a com-
bination of them, by concurrently sweeping over a wide range
of all input variables (multidimensional sweep). Therefore, for
applying DSE methodologies to a given problem one needs
to: i) define the design space. That is, the specific problem
is described in terms of input variables and a range of values
or design points that will be swept; ii) select the performance
metrics that are described as functions depending on a set of
different input variables; iii) choose a global cost function as
a figure of merit which is composed of different performance
metrics and allows to identify overall optimal points; and iv)
model the interdependencies between performance metrics and
input parameters. This can be done by using analytical models,
computer-based simulation or experimental data that can be
interpolated. Note that input variables can take continuous as
well as discrete values or even to be knobs that can be turned
on and off or define alternative choices. By using structured
DSE methodologies one can:

o Identify design trends: through observation of the dif-
ferent performance metrics and figure of merit, design
trends can be identified (e.g. optimal points, sweet spots,
exponential or linear growth, valleys, saturation, etc.) by
performing a qualitative analysis.

o Determine boundaries in the input design space: by
projecting the performance metrics back to the input
design space, different design areas of operations can be
defined. For instance, in which parameter range a design
option outperforms others. This is a quantitative analysis
that provides dimensional design guidelines.

o Derive an optimal design of the system and related set of
parameters.

o Perform a technology gap analysis (make predictions) by
making future assumptions in the input design variables.

B. Applying DSE to the mapping problem

As mentioned already, so far most of the mapping solu-
tions are quantum processor-specific and assessed just using
single-number metrics such as quantum gate and/or circuit
depth overhead and compilation time. The lower the mapping

* Number of qubits

* Number of gates

« Circuit depth and latency

* Quantum instr. dependency graph

* Interaction graph)

APPLICATION

= Routing options

= Scheduling options

= Initial placement options

« Gate-decomposition method

= Number of qubits

* Gate duration

* Chip topology & connectivity

« Gate fidelity

* Qubit decoherence

« Technology spedific parameters

Fig. 5: DSE layers and Variables for mapping of quantum circuits.

overhead and compilation time are, the better the mapper
is. However, these metrics that are also used for comparing
different mapping solutions do not provide any insights on
performance-complexity trade-offs, or in what cases to use
different mapping approaches.

The application of DSE methodologies will allow to per-
form a comprehensive and structured analysis of the different
mapping procedures and help us to determine which fea-
tures and optimization techniques are worth to implement, to
identify in what input variable regimes a mapping approach
outperforms others, to derive optimal mapping strategies for
certain kind of applications and quantum processors and to
perform a scalability analysis of them.

In order to achieve the outcomes stated above, we propose
the layered approach shown in Figure 5 where we highlight the
importance of defining proper open variables and performance
metrics, and how they relate to each other. Possible input
variables for each of the layers are the following.

Quantum Processor Layer: variables for this layer include
the hardware constraints described in Section II such as qubit
topology and connectivity and the primitive gate set. Other
additional parameters are the number of qubits, gate duration
(how long a gate takes to be executed), gate fidelity (how reli-
able the gate is), qubit decoherence (how long a qubit can hold
its state), and technology-specific parameters (e.g. number of
frequencies used for superconducting qubits, the trap size for
trapped ion systems). These variables can therefore be used to
generate different quantum processor designs whose properties
(constraints) are provided to the mapper layer.

Mapper Layer: in this layer, the variables to be considered
correspond to the different options and features that the
several steps of the mapping process, which includes gate
decomposition, placement of qubits in the physical quantum
device, scheduling of operations and routing of qubits, have as
described in Section II.C. For instance, routing choices include
brute-force vs. heuristics, number of calculated routing paths,
metric to optimise during the routing process, etc.

Application Layer: it consists of a set of quantum algo-
rithms which can be described as hardware-agnostic quantum
circuits. Currently, the quantum algorithms used as a bench-

Authorized licensed use limited to: TU Delft Library. Downloaded on January 14,2021 at 16:05:16 UTC from IEEE Xplore. Restrictions apply.

marks for analysing the performance of the mappers are not
representative as they are in most cases reversible circuits that
will not provide any computational advantage compared to
their classical counterparts. In addition, they are usually only
profiled in terms of number of gates, circuit depth, percentage
of two-qubit gates and number of interactions between qubits
pairs (this latter used for deriving an optimal placement of
qubits). By having a more in depth profiling of the quantum
algorithms in which characteristics of the interaction graphs
(i.e. how many times each pair of qubits interact and how those
interactions are distributed among qubits and in time) and
of the quantum instruction dependency graph (i.e. identifying
clusters of operations) can be beneficial for obtaining optimal
mapping solutions. These variables derived from the algorithm
profiling will also be essential for developing application-
specific quantum systems.

Choosing the set of performance metrics is one of the crucial
parts during the DSE process. Performance metrics depend
upon multidimensional functions that consider different input
variables as the ones previously described in this section.
Performance metrics are defined per DSE layer and serve to
asses it (e.g circuit reliability for the mapper layer). However,
we should also define global performance metric(s), that
aggregates all the layer metrics and serve as figure of merit
that should be optimized. Such a global metric should be
architecture-neutral. One possible figure of merit can be the
one proposed by IBM, the so-called Quantum Volume [19].

Quantum volume (QV) is an architecture-agnostic, single-
number metric, which can be used for fair comparison be-
tween quantum technologies and devices. It is perhaps still
early to form and be certain of a metric that will be able
to be effective even after the NISQ era, on more scalable
devices. Nevertheless, QV managed to catch the attention
of the quantum research community, because it aggregates
most of the elements from different layers that can affect the
performance of a quantum systems. These elements include:
number of physical qubits used for executing a given quantum
circuit, number of gates that can be applied before gate
errors and decoherence mask the result, qubit connectivity,
available parallelization of operations, hardware-provided gate
set, fidelity of operations and possibilities for circuit rewriting
and optimization. In summary, QV tries to provide an answer
to a question: can the device execute the given algorithm?.
Note that devices with high-fidelity gates, good qubit connec-
tivity, diverse gate set, and optimal circuit-rewriting tools will
consequently have higher QV. In order to improve the QV
value with higher number of qubits, improving gate fidelity
and mapping optimization methods is a must.

IV. PRELIMINARY RESULTS

As a first attempt to use DES methodologies to gain insight
into the possible mapper solutions and features, we have swept
in a structured way several internal parameters of the Q@map
mapper presented in [8]. Figures 6(b) and 6(c) show how the
most common metrics used to assess the mapping procedure,
the quantum gates (Goyerheaq) and circuit latency overhead

(Loverhead), vary under different mapper design configurations
(Config. 1-4) ordered in increasing complexity for the three
routing strategies (Trivial, MinPath and MinextendRC) used in
[8]. Each point represents an algorithm (benchmark) that has
been mapped into the Surface-17 chip (see Table II in [8]).
An aggregated figure of merit encompassing both metrics has
been defined as GmrhmdiLMwhmd' We can derive from these
graphs that: i) increasing the complexity (more or improved
features) of the mapper not always monotonically leads to
lower gates/latency overhead; ii) the MinPath router, that
optimizes for number of operations and therefore just takes one
of the shortest path, and the MinextendRC, that chooses the
routing path that minimally extends the circuit latency, show
negligible difference; and 3) when considering both metrics
(Figure 6(a)), it is observed that the overall goodness of the
solution slightly improves, fluctuations apart, when increasing
the complexity.

V. DISCUSSION ON THE EXTENSION OF THE DSE
METHODOLOGY

In the work presented here we have focused on the ap-
plication of DSE methodologies to the mapping problem.
However, more broadly, DSE methods can be applied to derive
feasible and optimal quantum chip architectures as well as full-
system designs for a specific kind of applications. Therefore,
DSE methodologies will allow to perform a cross-layer co-
design of the full-stack quantum system which is crucial in
the NISQ era due to the relatively low number of qubits and
the impact of noise on computation. Note that along the same
lines, researchers recently started evaluating different quantum
processor architecture designs based on an application-driven
approach for different quantum technologies such as super-
conducting qubits [4] and trapped ions [20].

In addition, by extending this methodology across the sev-
eral layers of the full-stack quantum system we could evaluate
and compare different technologies and quantum processor
choices (device level) as well as complete system designs
(system level) and provide design guidelines and application-
specific optimal designs for both current and future (scalability
analysis) quantum hardware and full-stack quantum systems.

To this purpose, it is (again) essential the definition of a
complete and classified set of benchmarks and appropriate
system performance metrics, which are still missing. This issue
was already identified in [21] in which they present a very
large family of benchmarks, called volumetric benchmarks,
that generalize the benchmarks used by IBM for measur-
ing quantum volume [19]. They proposed to create such a
benchmark family for probing the performance of a quantum
computer and hope that a wide variety of them will be
proposed to capture different performance aspects. So far,
there is no consensus in the quantum computing community on
what metric(s) should be used to assess quantum computers.

VI. CONCLUSION AND FUTURE WORK

A key step in the compilation of quantum algorithms is the
mapping process, in which the corresponding quantum circuit

Authorized licensed use limited to: TU Delft Library. Downloaded on January 14,2021 at 16:05:16 UTC from IEEE Xplore. Restrictions apply.

1
Goverhead * Loverhead

Goverhead

Config. 1 Config. 1

Config. 2 Config. 2

(@ (b)

Config. 3

Loverhead

Config. 4

Config. 1

Config. 4 Config. 2 Config. 3

(©)

Fig. 6: (a) Figure of merit. (b) Gate overhead. (c) Latency overhead.

is modified to comply to the quantum processor constraints.
In this paper, we have proposed the application of structured
DSE methodologies to perform a thorough performance com-
parison of different mapping solutions, allowing to analyse
performance-complexity-scalability trade-offs, identify opera-
tional ranges and derive optimal designs for set of quantum
applications and quantum devices. In this approach is funda-
mental to define the appropriate input variables to be swept
and performance metrics. This idea of using DSE can also be
extended to the full-stack quantum computing system to have
a comprehensive understanding, and architecting and dimen-
sioning the software and hardware layers for optimal design of
current and future quantum computers. An important research
topic towards the realisation of the approach presented here
include the definition of accurate performance metrics for
assessing the quality of the mapper as well as the quantum
system and the proposition and in depth profiling of sets of
quantum algorithms for benchmarking them.

ACKNOWLEDGMENTS

MB and CGA would like to acknowledge funding from Intel
Corporation.

[1]

[2]

[3]

[4]

[5]

[6]

REFERENCES

Gushu Li, Yufei Ding, and Yuan Xie. Tackling the qubit mapping
problem for NISQ-era quantum devices. In International Conference
on Architectural Support for Programming Languages and Operating
Systems, pages 1001-1014, 2019.

Prakash Murali, Jonathan M Baker, Ali Javadi-Abhari, Frederic T
Chong, and Margaret Martonosi. Noise-adaptive compiler mappings
for noisy intermediate-scale quantum computers. In International
Conference on Architectural Support for Programming Languages and
Operating Systems, pages 1015-1029, 2019.

Swamit S. Tannu and Moinuddin K. Qureshi. Not all qubits are created
equal: A case for variability-aware policies for NISQ-era quantum
computers. In International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 987-999, 2019.
Gushu Li, Yufei Ding, and Yuan Xie. Towards efficient superconducting
quantum processor architecture design. In Proceedings of the Twenty-
Fifth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 1031-1045, 2020.
Alwin Zulehner, Alexandru Paler, and Robert Wille. An efficient
methodology for mapping quantum circuits to the IBM QX architectures.
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 2018.

Davide Venturelli, Minh Do, Bryan O’Gorman, Jeremy Frank, Eleanor
Rieffel, Kyle EC Booth, Thanh Nguyen, Parvathi Narayan, and Sasha
Nanda. Quantum circuit compilation: An emerging application for
automated reasoning. 2019.

[7]

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

L Lao, B van Wee, I Ashraf, J van Someren, N Khammassi, K Bertels,
and CG Almudever. Mapping of lattice surgery-based quantum circuits
on surface code architectures. Quantum Science and Technology,
4:015005, 2019.

Lingling Lao, Daniel M Manzano, Hans van Someren, Imran Ashraf,
and Carmen G Almudever. Mapping of quantum circuits onto nisq
superconducting processors. arXiv preprint arXiv:1908.04226, 2019.
Steven Herbert and Akash Sengupta. Using reinforcement learning to
find efficient qubit routing policies for deployment in near-term quantum
computers. arXiv:1812.11619, 2018.

Xiang Fu, L. Riesebos, M.A. Rol, Jeroen van Straten, J. van Someren,
Nader Khammassi, Imran Ashraf, R.F.L. Vermeulen, V. Newsum, K.K.L.
Loh, et al. eQASM: An executable quantum instruction set architecture.
In International Symposium on High Performance Computer Architec-
ture, pages 224-237. IEEE, 2019.

Aaron Lye, Robert Wille, and Rolf Drechsler. Determining the minimal
number of swap gates for multi-dimensional nearest neighbor quantum
circuits. In Asia and South Pacific Design Automation Conference, pages
178-183, 2015.

Marcos Yukio Siraichi, Vinicius Fernandes dos Santos, Sylvain Col-
lange, and Fernando Magno Quintdo Pereira. Qubit allocation. In
International Symposium on Code Generation and Optimization, pages
113-125, 2018.

Robert Wille, Oliver Keszocze, Marcel Walter, Patrick Rohrs, Anupam
Chattopadhyay, and Rolf Drechsler. Look-ahead schemes for nearest
neighbor optimization of 1D and 2D quantum circuits. In Asia and
South Pacific Design Automation Conference, pages 292-297, 2016.
Gian Giacomo Guerreschi and Jongsoo Park. Two-step approach
to scheduling quantum circuits. Quantum Science and Technology,
3(4):045003, 2018.

Mohammad Javad Dousti and Massoud Pedram. Minimizing the latency
of quantum circuits during mapping to the ion-trap circuit fabric. In
Design Automation and Test in Europe, 2012.

Tayebeh Bahreini and Naser Mohammadzadeh. An MINLP model for
scheduling and placement of quantum circuits with a heuristic solution
approach. Journal on Emerhing Technologies in Computing, 12(3):29,
2015.

Davide Venturelli, Minh Do, Eleanor Rieffel, and Jeremy Frank. Com-
piling quantum circuits to realistic hardware architectures using temporal
planners. Quantum Science and Technology, 3(2):025004, 2018.

Gian Giacomo Guerreschi. Scheduler of quantum circuits based on
dynamical pattern improvement and its application to hardware design.
arXiv:1912.00035, 2019.

Andrew W Cross, Lev S Bishop, Sarah Sheldon, Paul D Nation, and
Jay M Gambetta. Validating quantum computers using randomized
model circuits. arXiv:1811.12926, 2018.

Prakash Murali, Dripto M Debroy, Kenneth R Brown, and Margaret
Martonosi. Architecting noisy intermediate-scale trapped ion quantum
computers. arXiv preprint arXiv:2004.04706, 2020.

Robin Blume-Kohout and Kevin C Young. A volumetric framework
for quantum computer benchmarks. arXiv preprint arXiv:1904.05546,
2019.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 14,2021 at 16:05:16 UTC from IEEE Xplore. Restrictions apply.

