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A B S T R A C T

The use of overconstrained mechanisms is often avoided in precision mechanics. Misalignments in the mechanism can cause deteriorated system behaviour, such as
buckling. Overconstrained designs do have several advantages, such as higher load bearing capacity and higher natural frequencies. However, these advantages are
only present if the mechanism is aligned within certain tolerances. In this paper a method is introduced to identify the limits of these alignment tolerances. The
method allows the calculation of the forces in the mechanism due to misalignment. The internal forces are compared to the buckling loads of the mechanism yielding
the critical misalignments; the method is corroborated using a multibody simulations. Subsequently, both analyses are compared to an experimental setup; this setup
measures the first three modal frequencies and identifies the buckling modes. The proposed method and multibody simulation match with each other and the
experiment. However, the critical misalignments are about 20% larger in the experiment; this is mainly attributed to hardware imperfections. Due to misalignment
and flatness limitations of the flexures, the undeflected stiffness in the experiment is lower than modelled. The deterioration of the support stiffness is smaller in the
experiment. In the most serious case, it retains 80% of the modal frequency in the support directions. The proposed method can be used as a guideline to estimate the
manufacturing and assembly tolerances of an overconstrained flexure-based mechanism.

1. Introduction

Compliant mechanisms are known for their predictable behaviour,
no backlash, low hysteresis and no friction, which is why they are used
in precision mechanics [1–10].

A second principle often used in precision mechanisms is the use of
exact constraint design, which ensures a mechanism has exactly the
right amount of constraint (stiff) and free (compliant) directions.
However, this principle has some drawbacks such as limited load car-
rying capability, limited support stiffness, asymmetry, often complex
design and high stress concentrations at the attachments [11].

Overconstrained designs do not suffer from these drawbacks, but are
sensitive to misalignments due to assembly, fabrication tolerances and
asymmetric expansion due to heat sources. Misalignment causes in-
ternal stress which will cause unwanted static and dynamic system
behaviour, such as buckling and deteriorated support stiffness
[8,9,11,12].

The consequences of misalignment on a once-overconstrained par-
allel leaf spring guidance have been investigated by Meijaard et al.
[11]; a small misalignment in the overconstrained direction caused
significant changes in the static and dynamic system behaviour. It
especially showed a strong decrease in stiffness in the supporting

directions; which is particularly disturbing for the use in precision
mechanisms. However, when the misalignment was kept below 50% of
the buckling angle, the stiffness of the mechanism was not influenced
significantly.

Nijenhuis et al. concluded that for a cross flexure with one over-
constraint the critical misalignment level is considerably larger in
practice than the idealized theoretical value. Practical mechanisms
seem more tolerant to misalignment errors than the ideal bifurcation
buckling load suggests, due to extra sources of compliance that are
present [12].

This article investigates the effects of overconstraints on an entire
mechanism opposed to the effects of overconstraints on a single com-
pliant joint. Specifically the effects of misalignments on a compliant 4-
bar mechanism is investigated. This mechanism only has over-
constraints on the mechanism level; the compliant joints are exact
constrained.

As such, the work outlined in this article can be used as a guideline
to estimate the manufacturing and assembly tolerances of an over-
constrained flexure-based mechanism. The proposed method de-
termines the critical misalignments of a flexure-based mechanism and
thus the range of pre-buckling behaviour. The range of pre-buckling
behaviour of a three times overconstrained compliant 4-bar mechanism
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is determined. The sensitivity for misalignment on the system beha-
viour in each of the overconstrained directions is analysed. The pro-
posed method is corroborated against a multibody simulation to com-
pare the obtained critical misalignments. These approaches are then
validated with a measurement setup. The relation between the change
in stiffness and the critical misalignment is also investigated. This will
reveal any significant change in the dynamic behaviour. The limits of
the optimal stiffness behaviour is also denoted by this change in dy-
namic behaviour.

In section 2 the 4-bar mechanism and measurement setup are in-
troduced that will be used to investigate the effects of multiple over-
constraints. In section 3 the proposed method for estimating the critical
misalignments is introduced. Section 4 compares the buckling method
results with numerical models and the results of the experiment. The
experiment also contains a modal analysis to analyse the dynamic ef-
fects of the misalignments. The work concludes with a discussion and a
conclusion on the results.

2. System description

The 4-bar mechanism under consideration is shown in Fig. 1. The
rigid bars are connected by four compliant hinges. These four hinges
are equal in dimension, but different in orientation. Hinges A and C
have the same orientation and hinges B and D are rotated 90° relative to
hinges A and C. The flexure hinges must behave as exact constraint
revolute joints in order for the compliant 4-bar mechanism to have the
same amount of constraints as its kinematic equivalent. The resulting
compliant 4-bar mechanism has one degree of freedom (DOF) and 3
overconstraints.

2.1. System kinematics

A 4-bar mechanism consists of four links and four revolute joints.
The mobility of a 4 bar mechanism can be determined with Grübler's
equation [13]. In the 2D analysis it has 1 DOF; in the 3D analysis it has
−2 DOF. It appears that in 3D the 4-bar mechanism has negative mo-
bility. The result of Grübler's equation in 3D case can be considered as
the sum of the mobility (“underconstraints”) and overconstraints; a
planar 4-bar mechanism has one DOF and therefore must also have
three overconstraints [14]. However, Grübler's equation does not list in
which directions the mobility and overconstraints are.

A way to investigate this is to open the loop and deduce the mobility
and overconstraints. The kinematic loop can be opened at one of the
hinges as seen in Fig. 2.

The left chain consists of two revolute joints and two links; the right
chain consists of two revolute joints and one rigid link, both chains
have two DOFs.

As seen in Fig. 2, the left chain has the following freedoms and

constraints.

= =t t f m m mf c{ }; { }x y z x y zl l (1)

The freedoms are listed as movement in a direction, whereas the
constraints are listed as forces and moments that prevent movement in
those directions. The right chain has the following freedoms and con-
straints.

= =t r f f m mf c{ }; { }x x y z x yr r (2)

Here the freedoms are expressed as fl and fr for the left and right
chains respectively. The directions are the translations tx , ty and tz,
while the rotations around these axes are expressed by rx , ry and rz re-
spectively.

The constraints are expressed as cl and cr. There are three forces: fx ,
fy and fz, that constrain translations in those directions; there are also
three moments: mx , my and mz .

The total mobility of the mechanism is determined by the inter-
section of the mobility of the chains [15]:

= =M tf f { }xl r (3)

In the case of a planar parallel 4-bar mechanism this is the trans-
lation in the x-direction.

The constraints of the mechanism are determined by the span of the
constraints of the chains.

= =C f f m m mc c{ } { }y z x y zl r (4)

The three overconstraints can be obtained by the intersection of the
constraints of the left and right chain.

= =O f m mc c { }z x yl r (5)

These three overconstraints are in the out-of-plane directions, which
are z, φ and ψ directions for the fz, mx and my constraints respectively
(see Fig. 2). This corresponds with the results of Grübler's equation,
where the overconstraints only manifest in the spatial case.

Exact constraint compliant hinges are needed to achieve the same
amount of overconstraints in the compliant 4-bar mechanism. This is
done by placing two wire parallel flexures perpendicular to a leaf
spring. The wire flexures are offset from each other. Each wire-flexure
constrain 1 DOF and the leaf spring constrain 3 DOFs. All constraints
are applied independently; i.e. no constraint can be expressed as a
combination of the other constraints. This leads to 5 constraints in total.
The resulting flexure hinge has no overconstraints and one compliant
rotation.

2.2. System dimensions and properties

The length of the leaf spring and the wire flexures in the hinges are
both lh. The thickness and height of the leaf spring are tlf and blf re-
spectively; the wire flexures have a thickness twf and a height bwf . The
wire flexures are a distance dwf apart. The rigid bars are of length lb so
that the centres of the hinges are L apart. The values used for these
variables can be seen in Table 1.

The flexures are made from stainless spring steel (EN 1.4310) that is
laser-cut from a larger sheet. These are clamped with steel blocks to the
aluminium bars. The material properties of all components of the me-
chanism are shown in Table 2.

The elastic properties of the bars are not considered; the masses and
moments of inertia of the bars are. The mass of a bar is the lumped mass
of all the steel blocks and aluminium components between two hinges;
the mass properties (masses/moments of inertia/centre of mass) can be
seen in Table 3. The axes are in the global mechanism coordinate
system (Fig. 2); the origin is at the centre of hinge A. All non-mentioned
parameters are zero; the data is obtained using a CAD program.

Fig. 1. Overconstrained 4-bar mechanism with exactly constrained cross pivot
flexures as hinges.

W.W.P.J. van de Sande, et al. Precision Engineering 60 (2019) 143–151

144



2.3. Description of test setup and equipment

An overview of the experimental setup is shown in Fig. 3. There are
four exactly constrained cross pivot flexures (Fig. 3 A through D). At
point D a manipulator connects the mechanism to the fixed world. The
manipulator enables adjustment of the 3 overconstrained directions of
the mechanism. It can be adjusted to result in a near stress-free 4 bar
overconstrained mechanism. The three arms of the manipulator are
placed 120° apart. These are constrained by three folded sheet flexures
Fig. 3 G); The flexures constrain the movement in the in-plane direc-
tions (x, y and θ), but leave the overconstrained directions of the me-
chanism free. The goal is to be able to precisely align or misalign the
overconstrained directions in order to observe the change in behaviour
of the mechanism. The height of each of the three arms can be set by a
screw (Fig. 3H); the arms are preloaded against the screws with three
helical springs. The preload ensures contact with the screws; this
eliminates play in the positioning of the manipulator. It also increases
the stiffness of the connection between the ground and the manipulator
in the overconstrained directions. The height of the arms is measured
by three dial gauges (Fig. 3 E).

The vibrations of the end-effector are measured using three accel-
erometers (Fig. 3 F). The acceleration is measured at three positions: at
two locations next to hinges at the end of the end-effector facing
downwards and one at the top of the inverted T facing towards the
manipulator.

The end-effector is excited using a modal hammer (Fig. 3 J); the
force was applied next to one of the downward facing accelerometers
(Fig. 3C and F). The data is processed in a Mueller-BBM Pak Mk II
system (Fig. 3 L). The compliant mode is measured using a laser dis-
placement sensor (Fig. 3 K); to avoid non-linear effects the compliant
mode is positioned against a stop (Fig. 3 I) to ensure repeatable am-
plitudes at every measurement. The buckling of the flexures is observed
visually.

3. Method

The critical values and shapes of buckling are identified in a com-
pliant 4-bar mechanism with exact constraint cross pivot flexures. We
introduce a method that will obtain a relation between misalignments
and the resultant loads in the mechanism. These resultant loads are
compared to the buckling scenarios.

3.1. Buckling scenarios of a compliant 4-bar mechanism

In the compliant 4-bar mechanism only the cross pivot flexures are
prone to buckling. In this compliant hinge there are two distinct
buckling modes: axial buckling of a wire flexure and lateral buckling of
the leaf spring flexure. The hinge is assumed to be in its neutral position
and will stay in or near its neutral position when buckling.

Fig. 2. The kinematics of a 4-bar mechanism illustrated by opening the loop at hinge C.

Table 1
Dimensions of the components in the mechanism.

Variable lh tlf blf twf bwf dwf lb L

value (mm) 30 0.5 19.7 0.7 0.8 39 170 200

Table 2
Material properties of the components in the mechanism.

Property unit spring steel steel aluminium

ρ kg/m3 8000 7800 2800
E GPa 200 200 70
ν – 0.3 0.3 0.3

Table 3
Mass properties of the bars.

Bar left effector right

m (kg) 0.48 0.58 0.48
J (kgm )xx 2 2.81 10 3 4.65 10 4 2.81 10 3

J (kgm )yy 2 1.11 10 4 3.18 10 3 1.11 10 4

J (kgm )yz 2 0 2.58 10 6 0

J (kgm )zz 2 2.79 10 3 2.81 10 3 2.79 10 3

x (mm)c −12.1 100 212.1
y (mm)c 100 212.1 100
z (mm)c 0 9.28 0

Fig. 3. Overview of the experimental setup.
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Lateral buckling of a leaf spring can occur due to a force in the
direction of the height of the flexure and a moment in the plane of the
flexure. The buckling loads can be determined with the classical
equations outlined by Timoshenko [16].

The buckling of a leaf spring is governed by the following equations.

=

=

M
l

EI GJ

F
l

EI GJ

cr lf z t

cr f z t

,
1

2
2l (6)

The buckling moment, Mcr lf, , and the buckling force Fcr lf, are de-
pendent material properties: the Young's Modulus, E and the modulus
of rigidity, G. The following geometric properties also influence the
buckling loads: the second moment of area, Iz, and the torsional con-
stant Jt and the length of the flexure l. The buckling moment and force
are corrected with the parameters 1 and 2 respectively. These para-
meters are influenced by the constraints of the leaf spring, such as the
elastic boundary conditions and warping constraints.

Likewise the buckling of a wire flexure due to an axial force is as
follows.

=F
l

EIcr wf z,
3
2 (7)

The correcting factor, 3, is only dependent on the boundary con-
ditions. There are two parallel wire flexures in the hinge. A moment in
the plane of these flexures will yield an axial load on both wire flexures.

=M d
l

EIcr wf z,
3
2 (8)

In which Mcr wf, is the critical buckling moment and d the distance
between the flexures. The cross pivot flexure has three distinct buckling
scenarios that correspond with the overconstrained directions: a force
in the z-direction in the mechanism coordinate system and two mo-
ments perpendicular to each other and the z-direction.

3.2. Hinge compliance

As a first step, an expression for the lumped compliance of the
hinges has to be found. In this parallel configuration of the cross pivot
flexure, the stiffness of the flexure is the sum of the stiffness contribu-
tions of the leaf spring and the wire flexures. The flexure is designed
such that the centres of compliance of the leaf spring and wire flexures
overlap. The centre of compliance is the point in certain flexures where
a force or moment in a certain direction will only cause a displacement
in that same direction [17]. This will yield a diagonal compliance
matrix. Consequently, the stiffness in the centre of compliance of the
cross pivot flexure is the sum of the stiffness of the leaf spring and wire
flexures.

Both the leaf spring and the wire flexures are made of the same
material. Using the geometric properties outlined in the previous sec-
tion and the well-known formulas the stiffness in the centre of com-
pliance of the leaf spring and wire flexure are determined [17,18].
These expressions are valid for small deflections.

=K diaglf
Eb t

l
GJ

l
Eb t

l
Et b

l
Et b

12l
Eb t

12l
lf lf

h

t,lf

h
lf lf
h

lf lf
3

h
3

lf lf
3

h

lf lf
3

h

3

3 (9)

= +K 2 d 2diag d2 2 2 2
Ebwf twf

lh wf
2wf

Ebwf twf
lh

Etwf bwf
lh

GJt wf
lh

Ebwf twf
lh

wf
Ebwf twf

lh

Ebwf twf
3

12lh

3

3

3

3
,

3

3
2

(10)

The stiffness matrix of the leaf spring is expressed as Klf and the
stiffness matrix of the pair of wire flexures is defined as Kwf . The tor-
sional constants Jt lf, and Jt wf, are derived from the dimensions of the
cross sections. In all directions, except the compliant rotation around
the z-axis, one of the flexures is dominant in stiffness. The dominant
stiffness contributions are listed in bold in equations (9) and (10). The
hinge stiffness is approximated by neglecting the relative small terms in

the sum.

+K diag d2 2h
Eb t

l
Eb t

l

Et b

l

Et b

l
Eb t

l wf
Eb t

l

Eb t

l12
2

12 12
wf wf

h
lf lf

h

lf lf

h

lf lf

h

wf wf

h

lf lf

h

wf wf

h

3

3

3 3 3

(11)

The stiffness matrix of a hinge Kh is inverted to obtain the hinge
compliance matrix Ch.

4. Equivalent compliance of a serial chain

The misalignments are applied at the manipulator at the centre of
compliance of hinge D. The relation between a misalignment and the
resultant loads at hinge D is expressed by the stiffness of the mechanism
at hinge D. The 4-bar mechanism is connected at the world at hinge A.
It can be expressed as a serial chain of links and hinges towards hinge D;
therefore the compliance of all hinges can be added together.

=
=

C H CHtotal
M

i

n

i M
i

i M
T( )

1
,( )

( )
,( )

(12)

The compliance of each hinge is expressed in its local reference
frame. As such, the compliance of each hinge i has to be transformed to
the mechanism reference frame, M( ). This can be achieved by the
transformation matrix H; H is a 6 by 6 transformation matrix. The
transformation matrix is made up out of a 3 by 3 rotation matrix R and a
3 by 3 matrix T. The matrix T is the skew-symmetric, or cross-product,
matrix of a 3 by 1 translation vector t [19].

=H R TR
R0 (13)

The matrix H is in this shape since the compliance matrix transforms
loads into displacements. Moments and translations are invariant under
translation of a coordinate system. In a load vector the moments are at
the bottom, whereas in a displacement vector the translations are at the
top. The transformation matrix H is also used to transform displacement
vectors.

For load vectors and the stiffness matrix the transformation matrix
is different.

= =A R
TR R H0 T

(14)

The transformation matrices are dependent on the pose of the me-
chanism. For simplicity it is assumed that is adequate enough for small
deflections.

4.1. Critical misalignments of the overconstrained compliant 4-bar
mechanism

The contents of the previous sub-sections are used to obtain the
critical misalignments.

The compliances of the hinges are added together to get the com-
pliance at the manipulator using equation (12). The transformations are
from the centre of compliance at each hinge to the centre of compliance
of hinge D. The centre of compliance of each hinge has specific co-
ordinates with respect to the manipulator.

= = = =t L t L L t L t{ 0 0} ; { 0} ; {0 0} ; {0 0 0}A
T

B
T

C
T

D
T

(15)

In this specific arrangement of hinges, hinges B and D are rotated
90° with respect to the global coordinate system (see Fig. 2).

The sum of all these matrices is the equivalent compliance at the
manipulator at hinge D.

The lengths between the centres of compliances of the hinges is L.
The terms sa, sb, sc, s , s and s are the cardinal compliances of the
hinge; these are the inverse of the terms found in equation (11). The
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compliance of the overconstrained directions (columns 3 through 5 in
equation (16)) is decoupled from the compliance in the in plane di-
rections. This submatrix is inverted to obtain the equivalent stiffness
matrix.

With the overconstraint stiffness matrix we can obtain the resultant
loads in the overconstrained directions at the manipulator as a result of
a chosen misalignment. These are chosen to be mm1 in the z direction
and mrad1 in the φ and ψ directions. This misalignment is written as a 3
by 1 displacement vector. The resultant load vectors at the hinges are
determined using the transformation matrix from the manipulator to
the hinge.

= A Kij m j
m

i,
( ) (17)

In which ij is a load due to a misalignment δ in the direction of i at
hinge j. The transformation matrix Amj determines the load at hinge j
due to a load at the manipulator m. The load at the manipulator is
determined with the overconstraint stiffness matrix at the manipulator

Km( ) and the misalignment in the direction of i at the manipulator. This
results in 12 unique load cases: one for any of the four hinges due one of
the three misalignments. Each of the twelve unique load cases is com-
pared to each of the three buckling scenarios. These buckling scenarios
are the buckling of a wire flexure due a moment in the plane of the two
wire flexures, lateral buckling of the leaf spring flexure due to a mo-
ment in the plane of the leaf spring flexure or a force in the lateral
direction of the leaf spring. These buckling loads are expressed by the
parameter pk ; the values can be obtained via equations (6) and (8). The
buckling multipliers are defined as the ratio between the buckling
scenarios and the resultant loads ij.

=c
p

ijk
k

ij (18)

This buckling multiplier, c, indicates how many times the resultant
load to a chosen misalignment needs to be applied before buckling
occurs. Only one instance of buckling will occur: the one with the
lowest buckling multiplier. The critical misalignment is the product of
the lowest multiplier and the chosen misalignment, δ. For each type of
misalignment there will be one critical misalignment per hinge. The
lowest critical misalignment for each type of misalignment will de-
termine which hinge will buckle first; this is also the buckling mode for
the mechanism due to that specific misalignment.

5. Comparison and validation

5.1. Buckling of the hinge

The buckling loads of the cross pivot hinge were obtained using the
program SPACAR [20]; this was done since simulations could better
ascertain the boundary condition of the buckling problem. In these si-
mulations constrained warping was considered [21]. Also, rotational

stiffness was added in the direction of the DOF of the hinge; this must
be added to account for the stiffness of the other hinges as all hinges
must deflect the same amount. The simulation solves these equations
for a single hinge. Table 4 shows the values for all three buckling sce-
narios. The buckling load of the wire flexures is lower than that of the
leaf spring flexure.

With the help of eq:comptot,eq:resload,eq:bumu and the geome-
trical and material properties of the mechanism, the buckling multi-
pliers can be determined. Only the lowest multipliers of the twelve load
cases are listed in Table 5; the lowest buckling multiplier for each hinge
is listed in bold. In the case of a z-misalignment there is no preference in
which hinge buckles first. In the φ- and ψ-misalignment this would be
hinge D and C respectively. The orientations of the hinges ensure that in
every case the wire flexures buckle.

5.2. Simulation results

The method is checked against a full multibody simulation, also
done in the software SPACAR. Gravity is not considered, but con-
strained warping is. The critical misalignments can be seen in Table 6.
The values for the method were obtained by taking the lowest buckling
multipliers for each hinge and multiplying them with the corresponding
unit misalignment.

The mechanism simulation shows overall lower values for the cri-
tical buckling multipliers when compared to the method. In the case of
the φ- and ψ-misalignments it is about 96% of the estimated analytical
buckling multiplier. The z-direction is different; the multibody analysis
is about 80% of the amount predicted by the analytical model. The
buckling modes are consistent with the prediction of the method. For
instance, it can be seen in Table 5 that in case of a φ-misalignment a

Table 4
Buckling loads obtained using simulation; the leaf spring flexure lf( ) buckles
due to lateral loads, whereas the wire flexures wf( ) buckle due to axial loads.

lateral buckling axial buckling

F (N)lf 2.22 103 –
M (Nm)lf 10.39 –
M (Nm)wf – 8.40

Table 5
The buckling multipliers of the hinges determined with the method; the
buckling scenario is listed (w) for wire flexures and (l) for leaf spring flexures.
The lowest buckling multipliers per misalignment are shown in bold.

Misalignment hinge A hinge B hinge C hinge D

z 2.64 (w) 2.64 (w) 2.64 (w) 2.64 (w)
φ 10.87 (l) 26.20 (w) 26.43 (w) 8.79 (w)
ψ 26.20 (w) 26.43 (w) 8.79 (w) 10.87 (l)

=

=

+ +
+ +

+ + + +
+ +
+ +

=
C C

s L s s s L s L
s L s L s s s L

s L s L s

4s 2s L 2s L L s L s L s L s
L s L s 2s 2s 0
L s L s 0 2s 2s

2 2 2 0 0 0 2
2 2 2 0 0 0 2

0 0 ( ) ( ) 0
0 0 ( ) 0
0 0 ( ) 0

2 2 0 0 0 4

M D
j

n
M i

a b

a b

c 2 2

( )

1

( )

2 2

2 2

(16)
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wire flexure of hinge D buckles first; the mechanism simulation also
shows this behaviour (Fig. 4).

5.3. Experimental results

An experiment was conducted to validate the results of the method
and the multibody simulation. An additional multibody simulation is
done up to account for gravity; this is done to accurately compare to the
conditions in the experiment. The experiment and the new simulation
with gravity are compared to the multibody simulation without gravity
and the method. The simulations and experiment also contain modal
data. Three rigid body modes of the end-effector are compared, see
Fig. 5. The first mode is the mode of the DOF of the mechanism, which
is in the x-direction (see coordinate system Fig. 2). The second mode is
the z-motion of the end-effector, whereas the third modes is the ψ-
motion of the end-effector. These three modes are compared for all
three types of misalignments. The misalignments are varied using the
manipulator; it is increased until visible buckling was observed. The
modes are measured using the accelerometers. The data is transformed
to the frequency domain to obtain the modal frequencies and phases.
This is done by the PAK software that comes with the Müller-BBM PAK
MkII measurement system. The frequencies and the phase of the data
were used to identify the mode shapes. For instance, for the second
mode the outermost accelerometers are in phase with one another.
Whereas for the third mode these are in counter phase.

In the simulations the flexures were pre-curved with half the
thickness of the leaf spring. In Fig. 6 the effect of pre-curving can be
seen; without pre-curving the flexures there is an abrupt change in
frequency near the critical misalignment. In the experiment the dete-
rioration is much more gradual. As such, the value of half the leaf

spring thickness was chosen to ensure a gradual frequency deterioration
as seen in the experiment. This value is also small enough to assume
that the mechanism is in the neutral position.

The results of the simulations and experiment can be seen in
Figs. 7–9 for the z-, φ- and ψ-misalignments respectively. The critical
misalignments are indicated by vertical lines. The experimental data is
shown in black. It was fitted on the measurement points which are
shown as open circles. The simulation without and with gravity are
shown in red and green respectively.

There is no real difference between the simulations in the case of ψ-
misalignment. This is different when it comes to misalignment in the φ-
direction. A wire flexure of hinge D buckles; the location and orienta-
tion of that wire flexure plays a large role in the support of the me-
chanism (see Fig. 6). This can be seen in the change of the second mode
(Fig. 8). The resurgence of the first mode after buckling in the simu-
lations was also observed in the experiment. The asymetry of the first
mode due to φ-misalignment in the simulation with gravity was also
observed. There is also an asymetry due to ψ-misalignment which was
not displayed in the simulations. The change in frequency of the first
mode from zero misalignment to the critical misalignment is about
0.35 Hz.

The critical misalignments values found in the experiments exceed
those of the simulations and the method. This can be hard to see in the
figures due to difference in alignment between the experiment and si-
mulations. Table 7 lists the distance between the positive and the ne-
gative misalignments for better comparison.

The experiment exceeds both simulations by about 20%. This dif-
ference can be partly explained by the fact that the simulations display

Table 6
The derived and simulated critical misalignments of the mechanism without
gravity.

Misalignment z mm( ) mrad( ) mrad( )

mechanism simulation 2.10 8.48 8.48
method 2.64 8.79 8.79

Fig. 4. Buckling of hinge D due to a φ-misalignment.

Fig. 5. Modal shapes of the first three modes, from left to right: the x-motion of the first mode, the z-motion of the second mode and the ψ-motion of the third mode.

Fig. 6. Effects of a precurve of the flexures on the dynamic behaviour of the
mechanism blue: no precurve green: precurve of half the leaf spring thickness
(0.25 mm) red: precurve of a single leaf spring thickness (0.5 mm) grey: critical
misalignment in simulation. (For interpretation of the references to colour in
this figure legend, the reader is referred to the Web version of this article.)

W.W.P.J. van de Sande, et al. Precision Engineering 60 (2019) 143–151

148



Fig. 7. Change in three modes due to a misalignment in the z-direction vertical lines denotes the critical misalignment red: simulation without gravitygreen
simulation with gravity black: experimental data (fitted with data points as circles). (For interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)

Fig. 8. Change in three modes due to a misalignment in the φ-direction vertical lines denotes the critical misalignment red: simulation without gravity green:
simulation with gravity black: experimental data (fitted with data points as circles). (For interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)
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the theoretical buckling misalignment; the critical misalignment in the
experiment was observed visually (black vertical lines in Figs. 7, 8 and
9). Observed buckling is most likely higher than theoretical buckling.
The range of high frequency before it deteriorates due to internal stress
is wider in the experiment. This effect cannot simply be explained by a
higher observed buckling value. The deterioration of the modal fre-
quencies in the support directions is limited. In the worst case, a φ-
misalignment, the frequency of the second mode decreases by 20% at
most. Other effects, such as hardware and assembly errors can also
cause the higher critical misalignment. For instance, extra compliance
in the flexures as well as small alignment errors in the clamping of the
flexures can cause a higher critical misalignment. Other effects, such as
the flatness and minor deflections of the flexures will also affect the
stiffness of the mechanism.

The frequencies of the first and third modes are lower in the ex-
periment than in the simulations. The masses of the accelerometers are
taken into account in the simulations, so this is not the cause of the
difference. The frequency of the second mode does not display the same
behaviour; the frequency matches between the simulations and the
experiment.

This difference in frequency is probably caused by hardware im-
perfections in the experimental setup that were not included in the
numerical model. These factors can be the clamping effects of the
hinges and errors in manufacturing and assembly [22].

6. Discussion

The buckling analysis method is a suitable method to determine the
critical misalignments in a 4-bar mechanism. Although the buckling
method is applicable in this specific case, it has some limitations. First,
the precise buckling boundary conditions and warping constraints must
be determined to calculate the buckling multipliers. This remains a
difficult problem; in this article this was only done using simulation. An
analytical solution is yet to be determined. Furthermore, the changes in
frequency seen in the experiment indicate that the mechanism loses
stiffness when approaching critical misalignment. This change influ-
ences the boundary conditions of the buckling problem, which explains
the lower critical misalignment of the multibody simulation when
compared to the method.

The method is able to compute the equivalent compliance of the
mechanism at the manipulator as a serial linkage consisting of the hinge
compliances and the rigid bars. Mechanisms can have other topologies
than a pure serial chain of compliant joints. The applicability of this
method in those cases is not investigated in this work. However, as long
as an expression of the equivalent stiffness can be obtained the steps
outlined in the method are valid. The method can also be applied to
other types of flexure hinges as long as the topology does not change.

Initially the behaviour of the first mode was not much of interest
since a decrease in the stiffness of the DOFs of a mechanism is con-
sidered beneficial. However, the behaviour seen in that mode proved
helpful in aligning the mechanism by maximising the first mode; it also
displays the effects of the misalignments really well. Further attention is
still required to properly align the measurement setup.

The frequencies of the first and third mode found in the experiment
are lower than those found in the simulations. This is not true for the
second mode; this mode describes the up and down (z-direction) vi-
brations of the end-effector. The cause of this difference is not clear.
Damping causes the natural frequencies of the mechanism to decrease.
The damping was not measured; from observation it was assumed that

Fig. 9. Change in three modes due to a misalignment in the ψ-direction vertical lines denotes the critical misalignment red: simulation without gravity green:
simulation with gravity black: experimental data (fitted with data points as circles). (For interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)

Table 7
Difference between the positive and negative critical misalignments for all three
overconstrained directions (both in distance and as a percentage of the simu-
lation without gravity).

Total misalignment z mm( ) mrad( ) mrad( )

simulation without gravity 4.20 (100%) 17.0 (100%) 17.0 (100%)
simulation with gravity 4.24 (101%) 17.4 (103%) 17.0 (100%)
experiment 5.00 (119%) 20.0 (118%) 20.0 (118%)
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the damping was very low. It took several minutes for the mechanism to
stop oscillating. If damping is the cause, this would indicate that the
damping is also higher for the first and third modes. The second and
third modes share the same type of deformations of the flexures; which
seems to contradict that explanation. The different also cannot be due
to inaccurate modelling of the mass or stiffness, since the other modes
would be similarly affected. The only significant difference is that the
second mode is in the direction of gravity; this might cause a difference
in stiffness or damping.

The mechanism was designed with the explicit goal to determine the
critical misalignments. Three modes were used in the analysis; the end-
effector was also designed to be able to measure the modes properly.
The cross pivot flexures were orientated in such a way that in any case a
wire flexure would buckle; this could be easily observed in the ex-
periment. A result of these adaptations to the basic design before con-
ducting the experiment was helpful; these ensured that the experiment
was relatively straightforward and did not require multiple design
iterations.

7. Conclusion

The effects of misalignments on the stiffness behaviour of a com-
pliant 4-bar mechanism with three overconstraints was investigated. A
method was developed to ascertain the amount of misalignment where
buckling occurs; this buckling indicates the limits of optimal stiffness
behaviour in the mechanism. The method is far less complicated and
time-consuming than modelling the entire mechanism in question.

The method was compared to full mechanism simulations in which
the misalignment was increased until the post-buckling range was
reached. The introduced method has slightly higher values for the cri-
tical misalignments than the simulation: about 25% for the z-mis-
alignment and 3% for the other two misalignments. This is likely caused
by an improper assessment of the elastic boundary conditions.

An experiment was done to validate the results of the method and
simulation. A change in all three modal frequencies was observed due
to all three misalignments. The same buckling modes were seen in the
method and in the simulations. The values of the critical misalignments
are about 20% higher than in the simulations. This result can be ex-
plained by several effects. First, buckling was visually observed, which
could yield higher values than the theoretical values. In addition, sev-
eral imperfections in the setup, in hardware and assembly, are likely to
influence the behaviour.

The dynamic behaviour observed the simulation was compared with
that observed in the experiment. It shows the same trend as the buck-
ling comparison: a decrease of the modal frequencies is seen when the
misalignments approach their critical values. In the experiment the
deterioration sets in later, resulting in an increased range of optimal
frequency. At worst, the modal frequency in one of the support direc-
tions drops 20% at the critical misalignment. The frequencies are
generally lower in the experimental setup than in the simulation.
However, a qualitative agreement between simulation and experiment
is observed. The differences can be attributed to multiple factors;
hardware imperfections and model simplifications are present but were
not identified explicitly.

Importantly, the critical misalignments can be obtained without

using complex simulations. The values obtained from the buckling
analysis method compare well with multibody simulations. These
misalignments can be used to determine the manufacturing tolerances
of a mechanism. The approach outlined in this article can be adapted to
fit other types of compliant mechanisms.
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