
Rigid-body kinematics Versus Flapping

Kinematics of a Flapping Wing Micro Air

Vehicle

J. V. Caetano*
Portuguese Air Force Academy Research Laboratory, Sintra, Portugal

M. B. Weehuizen�, C. C. de Visser�, G.C.H.E. de Croon�, M. Mulder§
Control and Simulation Department, Aerospace Faculty, Delft University of Technology,

Delft, The Netherlands

Several formulations have been proposed to model the dynamics of or-

nithopters, with inconclusive results regarding the need for complex kine-

matic formulations. Furthermore, the impact of assumptions made in the

collected results was never assessed by comparing simulations with real

flight data. In this study two dynamic models of a Flapping Wing Micro

Aerial Vehicle (FWMAV) were derived and compared: a) single rigid body

aircraft equations of motion and b) Virtual Work Principle derivation for

multiple rigid body flapping kinematics. The aerodynamic forces and mo-

ments were compared by feeding the states that were reconstructed from

the position and attitude data of a 17 gram free flying FWMAV into the

dynamic equations of both formulations. To understand the applicability

of rigid body formulations to FWMAVs, six wing-to-body mass ratios and

two wing configurations were studied using real flight data. The results

show that rigid body models are valid for the aerodynamic reconstruction
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with a total wing-to-body mass ratio below 24% and 5.6%, respectively,

without considerable information loss.

Nomenclature

Acronyms

CG Center of Gravity

EOM Equations of Motion

FWMAV Flapping Wing Micro Air Vehicle

Variables

(p, q, r) Angular Velocities in the body frame axes

(ṗ, q̇, ṙ) Angular Accelerations in the body frame axes

(u, v, w) Linear velocities in the body frame axes

(u̇, v̇, ẇ) Linear Accelerations in the body frame axes

(L,M,N) Aerodynamic Moments in the body axes

(X, Y, Z) Aerodynamic Forces in the body axes

Cθw0
Affine coefficient for estimated wing pitch angle

Cθwζ
Coefficient for ζ

Cθw
ζ̇

Coefficient for ζ̇

Ii Moment of Inertia of the ornithopter in the i axis

Iij Product of Inertia of the ornithopter in the i j product axes

Ni Total number of state observations

Qj Generalized forces

R2 Coefficient of Determination

T Flap period

Fi External acting forces

Mg Moment caused by gravity force in the Body frame

Mi External acting moments

qj Array of generalized coordinates

uj Array of quasi-velocities

vi Linear velocity of body i in the Body frame

v̇i Linear acceleration of body i in the Body frame

Rb,I Rotation matrix from Inertial to Body frame, in the Bing frame

Rb,wi
Rotation matrix from Body to Wing frame i, in the Body frame

Rw1,b Rotation matrix from Body to Wing frame i, in the Wing frame

mi Mass of body i

n Total number of bodies in flapping model

2 of 31

Final Manuscript available on JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS 
DOI 10.2514/1.G000923  
http://arc.aiaa.org/doi/abs/10.2514/1.G000923 
 



t Time instant

t∗ Dimensionless time with respect to flap period

(e0, e1, e2, e3) Quaternion vector

Greek

(φ,θ,ψ) Euler Angles - Roll, Pitch, Yaw

(φ̇,θ̇,ψ̇) Attitude Angle rates

RMSE Root Mean Square of the Error

βij Angular velocity coefficient matrix

δf Flapping frequency input

δe Elevator angle input

δr Rudder angle input

γij Linear velocity coefficient matrix

gb Gravity vector in the Body frame

ωi Angular velocity of body i in the Body frame

ω̇i Angular velocity of body i in the Body frame

ρbwi,h
Vector from CG of wing i to hinge point, in the Body frame

ρci Vector from the reference point of a body to its center of mass

ρ̈ci Acceleration of vector ρci in the Body frame

ρh,b Vector from wing hinge point to CG of the main body

ρwi,h Vector from CG of wing i to hinge point, in the Wing frame

θwi
Pitch angle of the wing using chord reference line i

θ̂wi
Estimated wing pitch angle using chord reference line i

ζ0 Dihedral of the wings

ζ Wing angle

ζ̇ Flap angular velocity

ζ̈ Flap angular acceleration

Reference Frames and Subscripts

B Body Reference Frame

I Inertial Frame Subscript

I Inertial Reference Frame

Wi Reference Frame of wing i

b Body Frame Subscript

w Wing Frame Subscript

(xI , yI , zI) Unit axes of the Body reference frame

(xb, yb, zb) Unit axes of the Body reference frame

(xw, yw, zw) Unit axes of the Wing reference frame
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I. Introduction

The evolution of Flapping Wing Micro Aerial Vehicles (FWMAVs) has lead to the de-

velopment of high-end bioinspired robots, such as Aerovironment’s Nano-Hummingbird [1],

Harvard’s RoboBee [2], Carnegie Mellon’s [3] and UC Berkeley’s [4] FWMAVs and TU Delft’s

DelFlys [5]. These benefit from having a more extensive flight envelope than conventional

fixed or rotary wing platforms, as they are capable of hover, fast forward flight and perching,

while making use of efficient lift generation strategies when in forward flight.

To take full advantage of the capabilities of the FWMAV, an accurate dynamic model is

needed for automatic control and design improvement. Such model can either relate the in-

puts and states to the outputs through black-box or nonlinear dynamic inversion approaches,

or it can use a white-box phenomenological approach applied to a set of consecutive kine-

matic and aerodynamic blocks. In the latter approach, the kinematic block is the basis

of the dynamic models, which will affect the aerodynamic reconstruction and aerodynamic

identification cycle, as presented in Fig. 1.

There is no consensus on how representative rigid body kinematic models are of flapping

wing systems, with several studies arriving at contradicting results. While some authors

claim the need for devising complex equations of motion that model the flapping and have

used, e.g., Newton-Euler’s force principles [6], Kane’s equations [7], Lagrange’s energy-based

methods [8] or d’Alembert’s virtual work principle [9, 10], other authors [11, 12] have used

simple aircraft equations of motion to simulate the behavior of bird-like FWMAV and have

demonstrated dynamic model stability, as well as a flying simulation.

Flapping wing kinematic formulations can be complicated to derive [7,8,10] and are not

practical for iterative system development, as new formulations have to be devised for each

change in the design of the FWMAV. This way, rigid body kinematic models would facilitate

system identification techniques and the derivation of phenomenological aerodynamic models

that could more easily be used for onboard flight control strategies and simulations.

Only a few studies have used real flying robots for aerodynamic characterization [8, 13],

and none of them focused on comparing the impact of the kinematic formulations in system

identification or force simulation. A first comparison between two dynamic formulations

that represented a real FWMAV was attempted by [14], but this work only included one

degree of freedom (d.o.f.) on the wings and its results only addressed the applicability of

each formulation to that particular FWMAV.

The current study aims at better understanding the need for complex kinematic for-

mulations for the aerodynamic identification of FWMAVs by assessing the applicability of

rigid body kinematics to bioinspired FWMAV. It is applicable to ornithopters inspired in

bird species like the Pomatorhinus Ruficollis or the Coturnix Coturnix [15] or in insect

4 of 31

Final Manuscript available on JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS 
DOI 10.2514/1.G000923  
http://arc.aiaa.org/doi/abs/10.2514/1.G000923 
 



species like the Schistocerca Gregaria [16] or the Manduca Sexta [17], in terms of body mass,

wing-to-body mass ratio and wing flap frequency, as well as to ornithopters with ‘X’ wing

configuration, used in Academia [18, 19] and industry.

The study is done through the comparison of the aerodynamic forces and moments recon-

structed from real flight data using two different dynamic models: a) simple Newton Euler’s

single rigid body general aircraft equations of motion and b) complex Virtual Work Princi-

ple multi-rigid body flapping formulation. The analyses are further extended by changing

the wing-to-body mass ratios of simulated FWMAVs using the same flight data to predict

the effects of wing mass and number of wings on the reconstructed aerodynamic forces and

moments. This provides a wing-to-body mass ratio confidence interval for the application of

rigid body kinematics to FWMAVs with four and two wings that have a similar configuration

to the ornithopter that was used in the flight tests. A description of the present study and

its involving framework is presented in Fig. 1.

Innovation

System Identification Cycle

Present Contribution:

Effects of Kinematic Model On

Aerodynamic Reconstruction

Aerodynamic

Identification

Parameter

Estimation

Validation

Flight Tests

Flight Path

Reconstruction

Aerodynamic

Model

Selection

Ornithopter

Design

Kinematic

Model

Selection

Aerodynamic

Force / Moment

Reconstruction

Onboard

Controller

Figure 1. Contribution of the current study in the System Design and Identification cycles.

The article is structured as follows: it starts by presenting the FWMAV model in Section

II, and continues with the derivation of two dynamic formulations. Section III presents the

experimental techniques and the states reconstructed from the free flight tests. In Section

IV the aerodynamic forces and moments were calculated for the real FWMAV and used to

assess the applicability of rigid body kinematics to different FWMAVs. Section V concludes

that rigid body formulations are applicable to FWMAVs within a certain wing-to-body mass

ratio.

II. Model and Dynamic Formulations

This section presents the mathematical principles and assumptions of the two dynamic

formulations that are compared in this study. It starts by presenting the FWMAV model,
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followed by the two dynamic formulations that were derived for that model.

The formulations have different approaches. The first, typically known as the general

aircraft equations of motion, uses Newton-Euler’s principle to derive the equations of motion

of a rigid non-flapping body. The second uses the Principle of Virtual Work applied to rigid

bodies to determine the kinematics of a flapping platform.

A. The Flapping Wing Micro Aerial Vehicle Model

The FWMAV used for the present study, named DelFly II, has four wings in ‘X’ configuration

and an inverted ‘T’ tail (Figs. 2 and 3). Its wings are made of Mylar foil and very thin

carbon rods, having a closed wing dihedral of 13°. This wing configuration minimizes the

flapping-induced oscillations in the body due to the opposite movement of the upper and

lower wings, which rotate with symmetric angular velocities and accelerations around xb

(Fig. 2).

The tail of the ornithopter is made from thin Styrofoam for rapid construction, robustness

and visual referencing in flight. It introduces static stability on the platform and can be used

for attitude control through its elevator and rudder. It also simplifies the wing design and

control strategies by decoupling the lateral control from the wings, thus allowing it to have

two d.o.f. (active rotation around xb and passive rotation around the leading edge spar)

with only one control input.

This ornithopter is capable of sustained flight from hover to 7m/s of total flight speed.

Depending on the payload, it flaps at frequencies between 12 and 14Hz for regimes close to

hover, reducing the flap rate down to 8Hz for fast forward flight.

xb

yb

zb

Figure 2. Wing configuration and Body frame axis (xb, yb, zb).

Table 1 presents the masses of the composing parts of the DelFly. These will be mentioned

further in the article to explain some of the assumptions that were taken.
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Figure 3. The DelFly FWMAV with reflective markers used in the flight testing.

B. Single Rigid Body Dynamic Model

1. Model and Reference Frames

The first model approach considers the DelFly as a rigid body with no moving parts. Six

assumptions were taken in this rigid body kinematic formulation: a) non-flapping rigid body;

b) constant mass; c) no inertia changes due to flapping or bending; d) symmetric platform;

e) stationary atmosphere; f) flat Earth.

The Body reference frame is attached to the main body, with its origin at the CG. The

main body is aligned with the xb axis; the yb axis points out of the right side of the DelFly;

the zb points down, perpendicular to the xbyb plane, as indicated in Fig. 2.
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Table 1. Masses of the Components of the Ornithopter

Component Mass (g)

Main Rod 0.791

Autopilot 1.454

Battery 5.640

Servo (x2) 0.536

Driving Mechanism 3.182

Horizontal Tail Structure 1.215

Vertical Tail Structure 0.279

Reflector balls (x3) 0.33

Other (glue + wires) 1.48

Body & Tail 16.2

Wing 0.298

Total 17.4

Wing-to-Body Mass ratio 1.8 %

2. Mathematical Formulation

The Newton-Euler based rigid body equations of the DelFly are given by [20]:

X = m(g sin θ + u̇+ qw − rv)

Y = m(−g sinφ cos θ + v̇ + ru− pw)

Z = m(−g cosφ cos θ + ẇ + pv − qu)

L = Ixṗ− Ixz(ṙ + pq) + (Iz − Iy)qr

M = Iy q̇ + (Ix − Iz)rp+ Ixz(p
2
− r2)

N = Iz ṙ − Ixzṗ+ (Iy − Ix)pq + Ixzrq

ψ̇ = (q sinφ+ r cosφ)/cosθ

θ̇ = q cos θ − r sin θ

φ̇ = p + (q sinφ+ r cos φ)tanθ

(1)

The first six equations represent the acting aerodynamic forces (X, Y, Z) and moments

(L,M,N) along the body axes of the vehicle (xb,yb, zb). The translational and angular

velocities are represented by (u, v, w) and (p, q, r), respectively, while (u̇, v̇, ẇ) are the linear

accelerations at the CG and the last three equalities relate the Euler angles (φ, θ, ψ) and
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rates (φ̇, θ̇, ψ̇) to the body angular velocities.

3. Applicability Aspects

The previous formulation does not account for any moving parts and considers the inertia

tensor as being constant. Moreover, the non-flapping validity region depends not only on

the wing-generated evolution of the forces and moments over the flap cycle but also on the

wing mass to body ratio and the wing inertia to body inertia ratio.

The rigid body formulation, however, benefits from being easily devised for non-exotic

aircraft configurations while still taking into consideration the accelerations and Coriolis

couplings of rigid body dynamics. This approach is justified by the wing configuration of

the ornithopter that minimizes the CG oscillations over a flap cycle, as the lower wing flap

counteracts the upper wing’s to a great extent, as shown in Figure 4.

Furthermore, Figure 4 compares the position of CG of the DelFly with a similar or-

nithopter that would have only two wings similar to the ones on the test ornithopter. It

is known [5] that the ‘X’ wing configuration maximizes lift and thrust production by more

that 150% when compared to a two-winged ornithopter. Hence, this comparison is still con-

servative, since a two-winged ornithopter would need bigger and heavier wings for sustained

flight thus inducing bigger oscillations on the CG location.
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Figure 4. Location of the CG with respect to the body carbon rod within two flapping cycles

for the DelFly and for a two-winged ornithopter with similar wings.

The DelFly is manually built making it not perfectly symmetric around the xbzb plane.

However, the symmetry assumption is justified by the small moments of inertia around xb

and crossed moments of inertia, making the coupled Ixy, Iyz negligible, here assumed to be

zero.
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The last three equalities of Eq. 1 are not well defined for pitch angles close to 90° since a
small variation in yaw will induce a large oscillation in ψ, resulting in inadequate information

in ψ̇ and consequently wrong angular velocity r determination. The same happens to the

roll angle, as a rotation around zb affects the heading angle ψ which, in turn, feeds a rolling

miss-information to the Euler angles.

Moreover, the singularity at θ =90° denies the calculation the Euler angles, and hence,

the rotational rates (p, q, r). The ornithopter can enter such singularity conditions for certain

elevator pitch-up maneuvers. Thus, to prevent p, q, r from feeding wrong information into

the force and moments equations, new attitude angles were devised. This methodology is

explained in [21].

C. Multi-Rigid Flapping Wing Dynamic Model

1. Model and Reference Frames

The second method models the DelFly as a combination of five rigid bodies - a main body and

four wings. The main body includes the carbon rod that connects the parts, the hardware

attached to the rod, as well as the vertical and horizontal tails. In the real ornithopter, only

the elevator and rudder have one degree of freedom with respect to the rigid body. These

surfaces vibrate during flight due to the flapping, given the play that the small servos allow

- as can be seen in Fig. 10. However, their low mass (0.46g for the elevator and 0.15g for he

rudder) compared to the total mass of the body (16.2g) associated with the small amplitudes

of vibration make their contribution to the kinematics nearly non-existent, which justified

the modeling of the components as a single rigid body.

The wing bodies, identified as W1, W2, W3 and W4 in Fig. 6b, on the contrary, are

modeled separately since all of them have different kinematics that will affect the overall

kinematic behavior of the ornithopter. The Body reference frame (B) was defined as in the

previous rigid body method, and is presented in Fig. 2. The reference frames and θw are

depicted in Fig. 5

Wing Frame (W) A separate reference frame was used for each wing, whose origin is

at the hinge point and the xwyw plane coincident with the wing surface. The frames are

assumed to rotate with the wing around xb and yw.

Two vectors describe the motion of the CG of all wings in the Body frame: ρh,b represents

the position of the hinge point with respect to the CG of the main body; ρw,h connects the

hinge point to the CG of the wings, as indicated in Fig. 6a.

Wing Modeling The four wings are modeled as rigid bodies that are geometrically iden-

tical to the real wings [14]. The wing models have two d.o.f.: active rotation around xb with
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xI yI

zI

xb

yb

zb

xw
yw

zw

θw (ζ−ζ0)

Figure 5. Inertial (xI ,yI,zI), Body (xb,yb,zb) and Wing (xw,yw,zw) reference frames.

an angle ζ (Fig. 6b) and passive rotation around yw with an angle θw (Fig.5). The wings

are set at a dihedral angle ζ0 of 13° and the flapping angle ζ is defined from ζ0 to the wing

for all wings, as shown in Fig. 6b.

For the current model, the wing pitch angle (θw) is taken around the yw axis of the wing

as being the angle between the chord line of the wing foil and the xbyb plane. This angle will

determine the evolution of the CG of the wing during the flap cycle. Figure 7 presents the

chordwise evolution of the lower wing surface of the real ornithopter during one flap cycle

for a section located at 70% of the wing span. It was processed from high speed imagery

collected when testing the DelFly in a wind tunnel [22]. It is divided in six time-steps:

first three subfigures (a, b, c) represent the out-stroke motion; last three subfigures (d, e, f)

represent in-stroke motion; t∗ = t
T
represents dimensionless time, with T being the period

of the flap. Bottom wings are assumed to have a mirrored evolution.

It is important to use the real wing pitch angle information in the kinematic modeling.

In order to add one d.o.f. to the model (wing pitch angle) and keep the same number of

generalized coordinates, the wing pitch angle θw of the model has to be a function of the

wing flap angle ζ . This allows for the adjustment of the kinematic model to different flapping

frequencies as well as a better approximation to the real wing pitch angle.

Fig. 7a presents two possible model chord distributions indicated by the Wing frame

axes xw1
(dashed) and xw2

(dottted). xw1
was obtained by connecting the leading edge of

the real foil distribution to the trailing edge; xw2
was obtained in the same way, using a

point placed at 50% of the wing foil.

The selection of 50% of the chord is justified by the movement of the wing during flap. It

represents the evolution of the wing relative to the air flow around it, which can be observed
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B
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(a) Top view: ρw1,h and ρb,h

representation, from the CG of

the body to the CG of the wing,

with closed wings.
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(b) Front view: wings open at

angle ζ; dashed line represents

the position of the closed wings

at ζ0.

Figure 6. Simplified Model with CG, Body (B) and Wing (W1 to W4) reference frames.

in Fig. 7 that represents the beginning of the out-stroke. The leading edge foil separates

from the upper wing (peel motion [23]) while the after part of the foil closer to trailing

edge lags considerably behind it until a t∗ = 0.3. Furthermore, a selection of 50% of the

chord conserves the kinematic information, as the dashed line of xw2
will better represent

the position of the CG of the wing, presented in Fig. 6, thus more accurately modeling the

kinematic forces that will act on the ornithopter.

θw1

θw2

xw1

xw2

xb

(a) t∗ = 0.2 (b) t∗ = 0.3 (c) t∗ = 0.48

(d) t∗ = 0.71 (e) t∗ = 0.90 (f) t∗ = 1

Figure 7. Chordwise evolution of the airfoil during one flap cycle at 70% of the span.

Different functions were used to fit the real wing pitch angle as a function of other states.

From comparing the wing pitch angle evolution with flapping in air and in vacuum it was

observed that the wing deformation is more influenced by the flapping states than by other

states, e.g., the free stream velocity. This way, a function (Eq. 2) was fitted to the geometric

data used in Fig. 7, resulting in a model estimated wing pitch angle θ̂w. This approach

also allows for the pitch model to include only kinematic related states, thus separating

kinematics from aerodynamics.
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θ̂w = Cθw0
+ Cθwζ

ζ + Cθw
ζ̇
ζ̇ (2)

The real wing surface evolution was used to estimate the wing model pitch angle under

the following assumptions:

1. the wing pitch angle data for one flap cycle is representative of all flap cycles in flight

test data;

2. the wing pitch angle data measured at 70% of the span is applied on the complete span

of the wing;

3. deformation of the wing in chord-wise direction is neglected;

4. all four wings have the same evolution.

The coefficients of Eq. 2 were estimated using least squares for both θw assumptions and

are shown in Table 2.

Table 2. Estimated Coefficients for Eq. 2 using two chord assumptions.

Coefficient θw100%
θw50%

Cθw0
0.4476 0.5016

Cθwζ
-1.2946 -1.5849

Cθw
ζ̇

-0.0160 -0.0216

The measured wing pitch angle (θw) and the estimated pitch angle (θ̂w) are presented in

Fig. 8 for one flap cycle. The lines in full represent the measured wing pitch angle (θw) for

the two chord lines xw1
and xw2

shown before in Fiq. 7a and the dashed lines represent the

estimated wing pitch angle evolution, computed using Eq. 2.

Unlike the xw2
, the chord line xw1

connects the leading edge to the trailing edge, thus

not conserving the camber information of the wing, which is responsible for the differences

in the recorded pitch angle evolution presented in Fig. 8.

The inflections on both evolutions of the measured pitch angle are subject to noise from

the visual data acquisition, which is more pronounced in xw2
, e.g. between t∗ ∈ [0.25, 0.35]

and t∗ ∈ [0.8, 0.9]. Nevertheless, despite not perfectly following the collected data, the

estimated wing pitch angle (θ̂w) avoids the noisy pitch oscillations and presents an evolution

over one flap cycle that avoids kinematic force issues in the formulations that would come

from the noisy data.

Body Frame to Wing Frames The transformation from the Body frame to each of

the four Wing frames consists of a first rotation around the xb axis followed by a second

rotation around yw, defined as:
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Figure 8. Recorded (θw) [22] and estimated (θ̂w) wing pitch angles for two chords evolutions.

Rw1,b=













cos(θw) sin(θw) sin(ζ0+ζ) − sin(θw) cos(ζ0+ζ)

0 cos(ζ0+ζ) sin(ζ0+ζ)

sin(θw) − cos(θw) sin(ζ0+ζ) cos(θw) cos(ζ0+ζ)













Rw2,b=













cos(θw) sin(θw) sin(ζ0−ζ) − sin(θw) cos(ζ0−ζ)

0 cos(ζ0−ζ) sin(ζ0−ζ)

sin(θw) − cos(θw) sin(ζ0−ζ) cos(θw) cos(ζ0−ζ)













Rw3,b=













cos(θw) sin(θw) sin(−ζ0−ζ) − sin(θw) cos(−ζ0−ζ)

0 cos(−ζ0−ζ) sin(−ζ0−ζ)

sin(θw) − cos(θw) sin(−ζ0−ζ) cos(θw) cos(−ζ0−ζ)













Rw4,b=













cos(θw) sin(θw) sin(−ζ0+ζ) − sin(θw) cos(−ζ0+ζ)

0 cos(−ζ0+ζ) sin(−ζ0+ζ)

sin(θw) − cos(θw) sin(−ζ0+ζ) cos(θw) cos(−ζ0+ζ)













(3)

The position of the CG of each wing is first defined in its own Wing frame (W1 to

W4) as ρw,h (Fig. 6) and then transformed to the Body frame using the transpose of the

transformation matrices found in Eq. 3, resulting in:

ρbwi,h
= Rb,wi

ρwi,h with i = 1, 2, 3, 4 (4)

Inertial frame to Body frame The transformation from the Inertial frame to the

Body frame is done using quaternions and the rotation matrix takes the form [24]:
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Rb,I=











e21+e20−e22−e23 2(e1e2+e3e0) 2(e1e3−e2e0)

2(e1e2−e3e0) −e22−e20+e21+e23 2(e2e3+e1e0)

2(e1e3+e2e0) 2(e2e3−e1e0) −e23−e20+e21+e22











(5)

The angular velocities in the Body frame can now be determined using:



















0

p

q

r



















=2



















e0 e1 e2 e3

−e1 e0 e3 −e2

−e2 −e3 e0 e1

−e3 e2 −e1 0





































ė0

ė1

ė2

ė3



















(6)

Mass, CG Position and Inertia Moments The full FWMAV and wing CG positions

in the Body frame were (xb, yb, zb) = (−77, 0, 5.5)mm and (xb, yb, zb) = (−16.5,±67, 0)mm,

respectively measured from the hinge point of the wings, located at the nose. This position

can be seen in Fig. 6. The mass and moment of inertia along the main axes of all rigid

bodies is presented in Table 3.

Table 3. Mass and Moments of Inertia of Each Modeled Body

Complete DelFly Body Wing (x4)

Mass (g) 17.4 16.2 0.298

Ixx [Kgm2] 1.34E−05 5.94E−06 4.44E−07

Iyy [Kgm2] 6.58E−05 6.29E−05 1.74E−07

Izz [Kgm
2] 6.95E−05 6.27E−05 6.18E−07

Only the diagonal terms of the wing inertia tensor were used and transformed to the

Body frame using the inverse of Eq. 3:

Ibw = Rb,wIwR
T
b,w (7)

2. Mathematical Formulation

Generalized coordinates and Quasi-velocities The main body has six d.o.f. in

Inertial space which then translate into seven generalized coordinates (qj) [25] given the

quaternion-based rotation of Eq. 5; the four wings (W1 to W4) have two extra d.o.f., ζ and

θw. However, since θw is correlated ζ by Eq. 2 this results in only one added generalized

coordinate. Hence, there are eight generalized coordinates to be considered in the kinematic

equations: the inertial position of the main body (x, y, z), the quaternion terms (e0, e1, e2, e3)

and the flap angle ζ .

15 of 31

Final Manuscript available on JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS 
DOI 10.2514/1.G000923  
http://arc.aiaa.org/doi/abs/10.2514/1.G000923 
 



qj = [x, y, z, e0, e1, e2, e3, ζ ] (8)

There are also eight generalized velocities, which correspond to the time derivatives

of qj . Nevertheless, there are only seven quasi-velocities thanks to one non-holonomic [25]

constraint in the generalized coordinates, caused by the quaternion definition. Consequently,

the quasi-velocities are formed by the linear velocities (u, v, w), the angular velocities (p, q, r)

and the time derivative of the flapping angle (ζ̇), as follows:

uj = [u, v, w, p, q, r, ζ̇] (9)

Velocities The translational velocities for each rigid body written in the Body frame are:

v1 = uxb+vyb+wzb

vi = v1+ω1×ρh,b+ωi×ρbwi−1,h
with i = 2, 3, 4, 5

(10)

and the angular velocities are defined as:

ω1 =pxb + qyb + rzb

ω2 =(p+ ζ̇)xb + (q − θ̇wcos(ζ0 + ζ))yb+

(r + θ̇wsin(ζ0 + ζ))zb

ω3 =(p− ζ̇)xb + (q + θ̇wcos(ζ0 − ζ))yb+

(r − θ̇wsin(ζ0 − ζ))zb

ω4 =(p− ζ̇)xb + (q − θ̇wcos(−ζ0 − ζ))yb+

(r + θ̇wsin(−ζ0 − ζ))zb

ω5 =(p+ ζ̇)xb + (q + θ̇wcos(−ζ0 + ζ))yb+

(r − θ̇wsin(−ζ0 + ζ))zb

(11)

Accelerations Given the previous definitions, the translational and linear accelerations

of the main body terms become:

v̇1 =
∂v1

∂t
+ ω1 × v1 (12)

ω̇1 =
∂ω1

∂t
= ṗxb + q̇yb + ṙzb (13)

where ∂v1

∂t
is the change in speed observed from the rotating Body frame defined in Eq. 14.
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The second term is the acceleration caused by the rotation of the reference frame.

∂v1

∂t
= u̇xb + v̇yb + ẇzb (14)

The translational and angular accelerations of wing rigid bodies are defined, respectively,

by:

v̇i =
∂vi
∂t

+ ω1 × vi with i = 2, 3, 4, 5 (15)

ω̇i=
∂ωi

∂t
+ω1×ωi with i=2, 3, 4, 5 (16)

Generalized Forces Let Qj be the generalized forces related to each quasi-velocity uj,

which are defined using the virtual work principle:

Qj =
n
∑

i=1

(Fiγij +Miβij) (17)

with n the number of bodies, j the index of the generalized force, and Fi and Mi the exter-

nal acting forces and moments respectively. γij and βij respectively represent the velocity

coefficient matrix and the angular velocity coefficient and can calculated by differentiating

the linear and angular velocities of each body with respect to each quasi-velocity, using:

γij =
∂vi
∂uj

(18)

βij =
∂ωi

∂uj
(19)

The forces Q1, Q2 and Q3 are the resultant forces along the Body frame axes, which

include gravity and aerodynamic forces (that will be calculated bellow). The weight vector

is expressed in the Body frame axes by:

gb=Rb,I

[

0 0 g
]T

(20)

Hence, the first three generalized forces become:













Q1

Q2

Q3













=













X

Y

Z













+ (m1 +m2 +m3 +m4 +m5)gb (21)

The following generalized forces (Q4, Q5 and Q6) are the moments in the Body frame,
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which also include gravity (Mg) and aerodynamic (L,M,N) terms:













Q4

Q5

Q6













=













L

M

N













+Mg













xb

yb

zb













(22)

with Mg =
4

∑

i=1

ρwi,b × (mi+1gb) (23)

The last generalized force, Q7, is the moment needed to flap the wings, that represents

the motor torque needed to overcome wing kinematic loads (Mm):

Q7 =Mm (24)

D’Alembert’s Method For Rigid Bodies All the previous derivations can now be

used to calculate the aerodynamic forces (Eq. 21) and moments (Eq. 22) acting on the

FWMAV by replacing Qj in the previous formulations, using d’Alembert’s dynamic principle

of virtual work [25]:

n
∑

i=1

[mi(v̇i + ρ̈ci)γij + (Iiω̇i + ωi × Iiωi +miρci × v̇i)βij ] = Qj (25)

where i is the body index and j is the quasi-velocity or generalized force index, mi is the

mass of each rigid body, Ii the inertia matrices for the rigid bodies and ρci is the vector from

the reference point of a body to its center of mass. If the reference point of the rigid body

is its CG (ρci = 0) the equation simplifies to:

N
∑

i=1

[miv̇iγij + (Iiω̇i + ωi × Iiωi)βij ] = Qj (26)

3. Applicability Aspects

Such flapping wing kinematic model is able to better represent the physical FWMAV when

compared to rigid body models. It accounts for mass and inertia distribution changes and

separates the kinematic contribution from the aerodynamic forces and moments that are

reconstructed, allowing for a more accurate aerodynamic reconstruction. It also avoids the

complex differentiations of energy-based methods, e.g., using Lagrange’s formulation.

Despite modeling the flexible FWMAV wings as rigid bodies, this formulation still ac-

counts for the two d.o.f. of the wings and uses real wing chord evolution to model the

movement of the rigid bodies, thus minimizing the errors between the aerodynamic recon-
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struction of the model and the real FWMAV. Furthermore, this formulation results in a

simpler computational analysis when compared to flexible multi-body formulations, which

justifies its application for onboard modeling.

The errors resulting from modeling flexible structures as rigid bodies were considered

to be negligible for the assessment of the validity of rigid body formulations for FWMAV

aerodynamic reconstruction.

III. Experimental Approach

This section describes the experimental methodology and data processing techniques

used for aerodynamic reconstruction of the FWMAV. Detailed information can be found

in [21, 26].

A. Experimental Techniques

An external visual tracking system was used to capture the position of the FWMAV in free

flight, in 3D space at a frequency of 200Hz using eight reflective markersa. The flight chamber

had a volume of (22×17×10)m3. The markers were placed at the nose, wing trailing edge

(on fuselage/body), wings (at the intersection of the stiffeners with the leading edge spar),

horizontal and vertical stabilizers, as well as on the elevator and rudder, as indicated in Fig.

3.

For the current test cases, the DelFly was specially configured with an autopilot that

was able to maintain a trimmed flight condition, constant pitch angle, height and velocity

throughout the flights. Inputs on the elevator, rudder and flapping motor were commanded

at different frequencies inducing oscillations on the FWMAV around a trimmed flight [27].

B. Flight Path Reconstruction

The recorded data were processed using flight path reconstruction techniques [28]. A three-

point central difference method was used for calculating the velocities and accelerations, from

the position and attitude data. This method reduces the noise amplification by a factor of

two when compared with the two-point finite difference. To compensate for the added noise

effect, which is more significant at frequencies that are several times the flap frequency,

a Chebyshev type II low-pass filter was used, with -80dB attenuation and 40Hz cut-off

frequency. This way the more energetic contributions located at the flapping frequency

and the following two harmonics were conserved, while the higher frequency noisy data was

eliminated.

aAll flight tests in this paper were conducted at the U.S. Air Force Research Laboratory Micro Air Vehicles
Integration and Application Institute [27].
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The states and input commands that were reconstructed are presented in Table 4. All

states were calculated with respect to the CG of the ornithopter and were used for the

calculation of the aerodynamic forces and moments from the dynamic formulations that

were derived in the previous section.

Table 4. States and input commands reconstructed from flight data.

Quaternions Euler

Angles

Euler

Angle

Rates

Velocities Accelerations
Angular

Body

Rates

Angular

Body Accel-

erations
Flapping Inputs

e0

e1

e2

e3

φ

θ

ψ

φ̇

θ̇

ψ̇

u

v

w

u̇

v̇

ẇ

p

q

r

ṗ

q̇

ṙ

ζ

ζ̇

ζ̈

δf (flap freq.)

δe(elevator)

δr(rudder)

IV. Results and Discussion

The current section compares the aerodynamic forces and moments reconstructed from

the flight data using the dynamic models derived in Section II.

First, the control surface positions of the real FWMAV, as well as the aerodynamic

forces and moments reconstructed from each dynamic model are shown. This is followed by

an extension of the results to different wing-to-body mass ratios. Finally, the validity regions

of the models are discussed.

A. Force and Moment Identification Results

A single part of the flight tests was considered to be representative of the flight conditions,

as it covers trimmed flight and abrupt elevator changeb.

Fig. 9 presents a visualization of the trajectory of the FWMAV. It shows one second of

horizontal leveled flight, followed by an elevator doublet input over 2
3
seconds which induced

a longitudinal oscillatory movement that was dampened after three seconds. The red and

magenta parts in Fig. 9 represent the elevator deflection to maximum up (negative) and

down (positive), respectively, as indicated in the middle plot of Fig. 10, at 6sec. The blue

marker indicates the transition from positive to negative. The ornithopter goes over 90° in

pitch just before losing altitude. The arrows indicate the xb (black) and zb (gray) Body

axes along the maneuver and are equally spaced of 0.2sec. The flight patch is projected on

the xbyb plane for better visualization.

bThe selected flight test can be seen in the video file that accompanies the article.
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The loss of altitude during the maneuver is caused by the transition from forward to

hovering flight, causing the lift to be smaller due to the lack of relative wind on the wings

and tail. This effect is then aggravated by the elevator deflection down, which initially causes

the FWMAV to lose more altitude, and then contributes to an increase in forward velocity

u, that allows the FWMAV to regain altitude and return to leveled flight while keeping all

inputs at commands trimmed position.

The influence of the displacement of the wings during flapping (top plot of Fig. 10) is

visible on the sub-flap oscillations of the elevator (δe) and rudder (δr) positions, depicted in

the middle and bottom plots of Fig. 10.

−2.5 −2 −1.5 −1

−4

−2

0
2.4

2.5

2.6

2.7

2.8

−→x I (m)
−→y I (m)

−→ z
I
(m

) Start →

Figure 9. CG position of the FWMAV in the Inertial reference frame during the flight test.

The states in Table 4 that were reconstructed from the position and attitude of the

ornithopter can be found in [21].

The evolution of the aerodynamic forces and moments, presented in Fig. 11, shows

that both kinematic derivations lead to very similar aerodynamic forces and moments, even

during highly nonlinear maneuvers, like the one shown.

Among the forces, the Z force shows the biggest differences between both methods, while

X reveals an almost perfect match. The differences in Z are caused by the deceleration of

the wings at the end of the out-stroke, where the flap angle is maximum, since the wing

stroke plane is almost parallel to thezb axis. This results in added pitch inducing forces

along zb which, in turn, induce variations in the pitch moment M between both methods,

as observed in Fig. 11b.

The L moment reveals very similar results between the methods due to the symmetry

of the model along the xbzb plane. Alike the M moment, the N moment calculated for

the flapping kinematics has lower peaks due to separation between the kinematic and the
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Figure 10. Inputs: flap angle ζ; elevator angle deflection δe; rudder angle deflection δr.

aerodynamic effects of the wings.

The previous results point to the applicability of rigid body models for the aerodynamic

force identification of FWMAVs that have symmetric positioning of wings and a single wing-

to-body mass ratio under 1.8%, which is the ratio of the ornithopter that was used.

The following section explores the applicability of the kinematic models, testing the

identification procedure with different wing-to-body mass ratios and wing configurations.

B. Extension of Results to Different Wing-to-body Mass Ratios

1. Methodology Considerations

The previous results are extended here to assess the effects of relative wing-to-body mass

ratios in the aerodynamic force and moment reconstruction using the same flight data. In

particular, other four-winged and two-winged ornithopter kinematics were simulated for

different single wing-to-body mass ratios, while keeping the total mass of the FWMAV

constant.

Body masses were changed by assuming a uniform distribution of variable density in the

bodies. In effect, the inertia tensor was recalculated for each mass ratio and included in the

kinematic formulations. It was assumed that the simulated FWMAVs would flap with the

same frequency as the DelFly (∼ 12Hz).

Root Mean Square of the Error (RMSE) and the Coefficient of Determination (R2) were

used for the quantitative assessment of the applicability of rigid body formulations in both
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Figure 11. Aerodynamic forces and moments calculated using both kinematic models and

physical properties of the real ornithopter.

cases. The RMSE (Eq. 27) is an indication of the absolute difference between the two

signals. A value of zero indicates identical signals. The higher the value, the larger the

difference between the signals.

RMSEFflapping,Fsingle
=

√

∑

(Fflapping − Fsingle)2

Ni

(27)

It is worth noting that the aerodynamic forces and moments that were obtained with this

method consist of the ones that would have acted on a FWMAV with the indicated mass and

inertia properties, had it flown this trajectory. The results will be conservative since higher

wing-to-body mass ratios would also induce larger body oscillations during flapping, that

are not captured by the flight data. Nevertheless, this method consists of a sensitivity study

and is used to predict the effect of kinematic models in aerodynamic reconstruction, thus

providing a safety threshold for the application of rigid body kinematics. The fact that it uses

real flight data allows for more reliable conclusions than using pure simulated trajectories

based on aerodynamic models that are subjective to assumptions and approximations.

The Coefficient of Determination (Eq. 28) is the average of the squared error between

two signals divided by the variance of the original signal. A value of one means a perfect fit

and a value closer to zero means a bigger residual between the signals.
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R2
Fflapping,Fsingle

= 1−

∑

(Fflapping − Fsingle)
2

var(Fflapping)Ni

(28)

2. Four-winged FWMAV

The mass of the wings for a four-winged FWMAV is increased to obtain higher wing-to-body

mass ratios and the flapping wing model is again compared with the single body model. In

particular, the RMSE and the R2 are calculated for the longitudinal Z force to assess the

difference between the methods, as it is the force that presents larger differences.

Table 5 shows this analysis for six different single wing-to-body mass ratios, starting from

1.8% (mass ratio of the DelFly) to 15%. The differences grow with a higher wing-to-body

mass ratio, observed by the decreasing R2 and increasing RMSE – from a mass ratio of 8%

the R2 goes below 0.7. This means that the estimated forces and moments from the flapping

wing model are very different from the forces and moments estimated from a single rigid

body model. Hence, using single rigid body dynamics for higher mass ratios may result in

inadequate system identification results.

The forces and moments of both methods that would act on a four-winged vehicle with

mass ratio of 8% are shown in Fig. 12.

Table 5. Comparison between Single Body and Flapping Models for four-winged FWMAV.

Test
Body

Mass (g)

Single

Wing

Mass (g)

Mass

Ratio

(%)

RMSE Z

Force (N)

R2 Z

Force

1 (real) 16.2 0.298 1.8 0.0114 0.9806

2 15.5 0.466 3 0.0183 0.9478

3 14.5 0.725 5 0.0284 0.8652

4 13.2 1.05 8 0.0413 0.6992

5 12.4 1.24 10 0.0487 0.5770

6 10.9 1.63 15 0.0639 0.2838

For a better visual interpretation of the values presented in Table 5, the residuals in the

forces and moments between both kinematic formulations for different wing to body mass

ratios are presented in Fig. 13. To maximize figure readability only four ratios were included,

which cover all the cases of Table 5.

For visual interpretation, the residuals between the forces and moments calculated
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Figure 12. Aerodynamic forces (a) and moments (b) calculated using both kinematic models

for a four-winged ornithopter with a single wing to body mass ratio of 8%.
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Figure 13. Residuals of the aerodynamic forces (a) and moments (b) between both kinematic

models, for different single wing to body mass ratios, from 1.8% to 15%, for a four-winged

FWMAV.
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3. Two-winged FWMAV

A similar analysis was done for two-winged FWMAVs, where the mass and moments of

inertia of wings two and four (bottom wings) were set to zero, thus isolating the kinematic

effect of the two top wings, representing a bird-like FWMAV. Given the absence of valid

aerodynamic models to adequately simulate the flight trajectories, the flight data of the real

ornithopter was used for assessing the effects of varying the wing-to-body mass ratio. Instead

of comparing two-winged to four-winged configurations per se, this approach estimates the

impact of wing-to-body mass ratio in the difference between the forces and moments obtained

by both kinematic models,. Nevertheless, it conserves the impact of the kinematic model

in the parametric study and allows for the understanding of the errors of using rigid body

kinematics to model a FWMAV of such configuration. For the ease of comparison, the

wing-to-body mass ratios used were the same as for the four-winged FWMAV.

The results, presented in Table 6, indicate that the differences in the forces and moments

increase more rapidly for the same wing-to-body mass ratios – the R2 takes values lower than

0.8 from a mass ratio above 3%, highlighting the stabilizing effect of a four wing configuration

similar to the real ornithopter. The forces and moments acting on a two-winged FWMAV

with mass ratio 3% are shown in Figs. 14. As observed, the Z force and M moment present

the biggest variations among the methods.

Table 6. Comparison between Single Body and Flapping Models for two-winged FWMAV.

Test
Body Mass

(g)

Single

Wing

Mass (g)

Mass

Ratio (%)

RMSE Z

Force (N)

R2 Z

Force

1 16.8 0.302 1.8 0.0492 0.8182

2 16.4 0.49 3 0.0801 0.6687

3 15.8 0.79 5 0.1287 0.4931

4 15.0 1.19 8 0.1953 0.3468

5 14.5 1.45 10 0.2360 0.2892

6 13.4 2.01 15 0.3268 0.2062

The residuals of the aerodynamic forces and moments calculated between kinematic both

models of a two-winged ornithopter are presented in Fig. 15. The magnitude of the residuals

shows that small changes in the wing to body mass ratios can result in considerable offset of

the forces calculated using rigid body model, when compared to a flapping multi-rigid body

kinematic model.
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Figure 14. Aerodynamic forces (a) and moments (b) calculated using both kinematic models

for a two-winged ornithopter with a single wing to body mass ratio of 3%.
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Figure 15. Residuals of the aerodynamic forces (a) and moments (b) between both kinematic

models, for different single wing to body mass ratios, from 1.8% to 15%, for a two-winged

FWMAV.
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C. Discussion

The values of R2 presented in Tables 5 and 6 are shown in the plot of Fig. 16 for easier

comparison. For the current study, an R2 above 0.7 was considered as being acceptable for

the use of rigid body kinematics for FWMAV force reconstruction. Under this criterion,

single rigid body equations of motion can be used for force and moment reconstruction of

free flying FWMAVs, without considerable information loss, for cases where the flap induced

oscillations are small. This is the case of ornithopters with four-wings and also two-winged

ones whose single wing mass to body ratios are smaller than < 8% and < 2.8%, respectively

(Fig. 16).
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Figure 16. Coefficient of Determination of the Z force with mass ration for both configurations.

These results ease the aerodynamic identification procedures since single rigid body kine-

matics are more easily derived than multi-body ones which subsequently shortens the devel-

opment time of aerodynamic models.

Despite more complex, detailed multi-body kinematics allow for the direct assessment

of control forces and moments over the individual wings and driving mechanisms, with

applicability advantages for FWMAVs with active control of more than one d.o.f. of the

wings, as the case of insect inspired tailless designs. In the present case, a seventh generalized

force Q7 could be calculated which describes the flapping motor torque.

Multi-body formulations also allowed for the separation between kinematic and aero-

dynamic forces and moments in the identification procedure, thus providing an assessment

on the validity regions of rigid body formulations, allowing for more correct system iden-

tification in regions where rigid body formulations are not applicable. Furthermore, the

use of quaternions has beneficial effects in computational efficiency, as well as in avoiding

singularity issues of the Euler angles.
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V. Conclusion

This study compared the aerodynamic forces and moments computed from free flight data

using two kinematic formulations devised under different assumptions: a) single rigid body

equations of motion, using Newton-Euler formulation, commonly know as the general aircraft

equations of motion and b) multi-rigid body flapping wing kinematics using the virtual work

principle. In addition, it analyzed the extension of the first method to different Flapping

Wing Micro Aerial Vehicles (FWMAVs) that had different wing-to-body mass ratios.

It was observed that more descriptive formulations that use multi-rigid body kinematics

are suitable for complex FWMAVs, especially if they have more than one degree of freedom

on the wings or are tailless designs, as these formulations allow for control force and moment

determination, which is required for active control and dynamic simulation of such configu-

rations. However, single rigid body approaches are simpler to devise, being useful for tailed

or passively stable designs and for iterative studies of constantly changing FWMAV configu-

rations, as these formulations still provide correct aerodynamic reconstruction for FWMAVs

with low wing-to-body mass ratios without the need for costly derivations.

The results justify the use of single rigid body kinematics, here described as general

aircraft equations of motion, for the reconstruction of aerodynamic forces and dynamic

behavior of FWMAVs that have a single wing mass to body mass ratio under 8% for ‘X’

wing configurations and under 2.8% for two-winged FWMAVs, equivalent to 24% and 5.6%

of total ornithopter mass being at the wings for each configuration, respectively.

These results allow for the understanding of the effects of using simple rigid body kine-

matic models for force reconstruction of FWMAV and, consequently, ease the characteri-

zation of ornithopters with similar configurations [18, 19, 29–31], or ornithopters inspired in

some birds or insect species, e.g., Pomatorhinus Ruficollis, Coturnix Coturnix [15], Schisto-

cerca Gregaria [16], Manduca Sexta [17].
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