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 A B S T R A C T

Reinforcement learning has shown some success in automating process design by integrating data-driven 
models that interact with process simulators to learn to build process flowsheets iteratively. However, 
one major challenge in the learning process is that the reinforcement learning agent demands numerous 
process simulations in rigorous process simulators, thereby requiring long simulation times and expensive 
computational power. We propose employing transfer learning to enhance the reinforcement learning process 
in process design. This study examines two transfer learning strategies: (i) transferring knowledge from 
shortcut process simulators to rigorous simulators, and (ii) transferring knowledge from process variational 
autoencoders (VAEs). Our findings reveal that appropriate transfer learning can significantly improve both 
learning efficiency and convergence scores. However, transfer learning can also negatively impact the learning 
process when there are substantial discrepancies in decision range and reward function. This suggests that 
pre-trained process data should match the complexity of the fine-tuning task.
1. Introduction

Conceptual process design is a complex task executed by engi-
neers. Classical conceptual process design methods are either manual 
works that demand long development times or superstructure meth-
ods that are limited to the pre-defined superstructures and difficult 
to solve the resulting mixed-integer nonlinear optimization problems 
(MINLPs) (Mitsos et al., 2018). Additionally, artificial intelligence (AI) 
has also been leveraged in conceptual process design. Notably, a num-
ber of expert systems (Siirola and Rudd, 1971; Mahalec and Motard, 
1977) were proposed in the first wave of AI where experts inte-
grate domain experience and facts into a knowledge base to perform 
reasoning for design problems. However, those expert systems were 
difficult to maintain and extend, which hindered further developments 
in conceptual process design.

Recently, reinforcement learning (RL), a subclass of machine learn-
ing (ML), has demonstrated excellent performance in solving com-
plicated sequential decision-making problems such as gaming (Mnih 
et al., 2013; Silver et al., 2018), process control (Nian et al., 2020), 
and molecular design (Olivecrona et al., 2017). RL is a computational 
approach in which an agent iteratively interacts with its environment 
to sequentially make decisions and achieve its objectives (Sutton and 
Barto). Several initial first steps have been made towards applying 
RL in conceptual process design, as summarized in our recent review 
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paper (Gao and Schweidtmann, 2024). Perera et al. (2020) first uti-
lized an RL agent as a supporter for suggesting dispatch strategies 
for energy systems design based on the pre-defined structure. Khan 
and Lapkin (2020) utilized RL to search the optimal flowsheet with 
a hydrogen production process case study, where a value-based agent 
was used to estimate the value for the next processing step based 
on the intimidate flowsheet. Furthermore, Midgley (2020) leveraged 
a soft-actor–critic RL agent to design a separation process for non-
azeotropic mixtures. In their approach, the agent first chooses whether 
to add a new distillation column and then chooses the corresponding 
continuous operation variables, and the flowsheet is simulated in the 
open-source process simulator COCO. Additionally, Göttl et al. (2021) 
represented a full flowsheet in a matrix for two competing players as 
state space and proposed hierarchical reinforcement learning (HRL) to 
design more advanced processes including recycles. HRL is an approach 
that decomposes a complex task into simpler subtasks. For example, in 
the context of process design, the agent first determines an open stream 
to add a unit operation, then the type of unit operation, then design 
variables, and, finally, operating variables. Khan and Lapkin (2022) 
also implemented HRL where a high-level agent chooses a sub-objective 
of the process section and a low-level agent chooses unit types and cor-
responding control variables within the section. Moreover, Plathottam 
et al. (2021) introduce RL in a solvent extraction process design by 
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Fig. 1. General framework of RL in process design.
optimizing design variables for predefined flowsheets. In a recent pub-
lication, Stops et al. (2022) introduced a graph-based representation of 
the process, which more naturally captures the flowsheet topologies, 
and utilized the HRL agent to design processes. Reynoso-Donzelli and 
Ricardez-Sandoval (2024a,b) further implemented a masked RL agent 
which allows the exclusion of infeasible or irrelevant actions based 
on process constraints, ensuring that the RL agent focuses only on 
viable process decisions. Furthermore, several studies deployed hybrid 
approaches within the RL framework. For example, Tan et al. (2024) 
combined RL with mathematical programming to perform the design 
of heat exchanger networks. Also, Göttl et al. (2024) utilized RL for 
the discrete decisions alongside a genetic algorithm for the continuous 
decisions for hybrid action spaces, which is illustrated by two real-
world use-cases: Synthesis of chemical process flowsheets and design 
of optical multi-layer films.

Although there are some successful applications for RL in process 
design, one major remaining challenge is that the RL training process 
is trial-and-error-based. Thereby, the learning process typically requires 
a large number of process simulations, which demands expensive com-
putational power and long simulation times. Therefore, to mitigate this 
problem, most works previously deployed shortcut process simulation 
methods to efficiently simulate the process, which may potentially lead 
to inaccurate results. Recently, van Kalmthout et al. (2022) leveraged 
a rigorous process simulator (Aspen Plus) to perform RL in process 
design tasks. Recently, Göttl et al. (2025) demonstrated a generalized 
RL framework that can adapt to different chemical systems during the 
inference time without retraining, which significantly reduces the com-
putational burden associated with RL-based process design. However, 
the long simulation time and convergence issue in the training phase 
still hinder further advances.

Transfer learning has been used to accelerate the learning process 
in many domains such as computer vision (Hussain et al., 2018), 
and natural language processing (Ruder et al., 2019). Transfer learn-
ing is a method that transfers knowledge from different but rele-
vant domains to the target domain, thereby improving the learning 
performance (Zhuang et al., 2021). In the context of RL in process 
design, Wang et al. (2022) first trained the RL agent with one case 
study and then transferred the RL agent to another case study to 
demonstrate the generalizability of the RL agent. With their following 
work, Tian et al. (2024) further applied RL to a hydrodealkylation 
2 
example. Additionally, our previous work (Gao et al., 2023) demon-
strates that pretraining RL agents on the shortcut process simulation 
method and then fine-tuning the transferred agents in the rigorous 
simulator can not only accelerate the learning process but also improve 
the convergence score. Therefore, transfer learning has huge potential 
to mitigate long simulation time problems with rigorous simulators for 
RL in process design. However, there exist many possible strategies to 
perform transfer learning. Comparing them and identifying promising 
ones is still an open research question. Also, the effectiveness of transfer 
learning is not always guaranteed and it has been observed that trans-
fer learning can bring negative contributions to the fine-tuning task, 
namely negative transfer (Zhang et al., 2023). The effect has not yet 
been discussed in the context of RL for process design.

We propose and investigate two transfer learning strategies: (i) 
transfer learning from shortcut simulation methods to a rigorous pro-
cess simulator and (ii) transfer learning from generative AI models. 
In the first strategy, we first pre-train the RL agent with shortcut 
simulation methods and then further fine-tune it with a rigorous process 
simulator, DWSIM. Specifically, we explore different transfer methods 
within the RL agent architecture and apply these to an illustrative 
case study comprising equilibrium reactions, azeotropic separation, and 
recycles. In the second strategy, we utilize the encoder of a variational 
autoencoder (VAE), which was pre-trained on flowsheet data, and then 
further fine-tuned with the rigorous process simulator DWSIM.

2. RL for process synthesis

A RL problem can be formulated as a Markov decision process 
(MDP): 𝑀 = {𝑆,𝐴, 𝑇 ,𝑅} with states 𝐬 ∈ 𝑆, actions 𝐚 ∈ 𝐴, the transition 
function 𝑇 ∶ 𝑆×𝐴×𝑆 → [0, 1], and the reward function 𝑅 ∶ 𝑆×𝐴×𝑆 →

R. Fig.  1 shows a framework in the context of RL in process design. The 
agent learns to design processes by iteratively placing unit operations 
together with corresponding design/operating variables, simulating the 
process in the environment, and maximizing the long-term rewards, 
thereby obtaining optimal processes. Specifically, the states 𝐬 repre-
sent the information including flowsheet topology as well as design 
variables, operating variables, thermodynamic stream data, flowrates, 
and compositions. The agent, typically consisting of neural networks, 
takes the current states 𝐬 as input and based on that takes actions 
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Fig. 2. One example of process graph. Feeds, unit operations, and products are represented as nodes which are associated with node features. Streams are represented as edges 
which are also associated with corresponding edge features.
𝐚. Notably, the action space can be hybrid and hierarchical. A hy-
brid action space means the actions include discrete choices (e.g., the 
selection of open streams, or unit operation types) and continuous 
choices (e.g., the length of a reactor, or operating temperature). A 
hierarchical action space indicates that the agent can make decisions 
sequentially. For example, the agent first determines an open stream 
to add a unit operation, then the type of unit operation, then design 
variables, and finally operating variables. In chemical processes, the 
design variables are usually determined during the initial design phase 
and typically remain fixed throughout the operation. While operating 
variables can be adjusted during operation. After a new unit operation 
is added, the new flowsheet is simulated in an environment, which is 
typically a process simulation software. Subsequently, the environment 
sends a numerical reward R to the agent, which is the corresponding 
objective for optimization such as net present value. Ultimately, the 
agent learns to design optimal flowsheets by repeating the whole steps 
and maximizing the cumulative rewards.

2.1. Information representation

Chemical processes contain various information such as topology, 
design variables, operating variables, thermodynamic stream data, 
flowrates, and compositions. Presenting this information in a mean-
ingful way is critical for the learning process of the RL agent. In this 
work, we present the flowsheets as directed homogeneous graphs as 
Fig.  2 shows. Within the process graph, the feeds, unit operations, and 
products are denoted as nodes, namely vertices 𝑣 ∈ 𝑉 , and streams are 
denoted by directed edges 𝑒𝑣𝑤 ∈ 𝐸 linking two nodes 𝑣 and 𝑤. Notably, 
each node and edge is associated with one node feature vector 𝐟𝑣 ∈ 𝐹 𝑉

and edge feature vector 𝐟𝑒𝑣𝑤 ∈ 𝐹𝐸 , respectively. The node feature 
vector typically contains types of unit operations, corresponding design 
variables, and operating variables. The edge feature vector includes 
thermodynamic stream data, compositions, and flowrates. Additionally, 
in the uncompleted flowsheet, open streams are linked to ‘‘undefined’’ 
nodes because open edges are prohibited in graph representations. 
These undefined nodes serve as temporary placeholders for future unit 
operations. Essentially, incorporating a new unit operation involves 
substituting an ‘‘undefined’’ node with a specific type of unit operation 
node.
3 
2.2. Agent architecture

In this section, we introduce the proposed agent architecture, as 
Fig.  3 shows. The architecture is actor–critic based and consists of 
three parts: A graph encoder, hierarchical actor networks, and critic 
networks. First, a graph neural network (GNN) is utilized to encode 
flowsheet graphs into a flowsheet fingerprint. The actor then takes 
actions at three levels: (1) select an open stream, (2) select a unit op-
eration and (3) select a design/operating variable. The critic networks 
evaluate the value of the flowsheet fingerprint to optimize the reward 
functions. In Section 2.2.1, Section 2.2.2, and Section 2.2.3, we will 
introduce the graph encoder, hierarchical actor networks, and the critic 
network, respectively.

2.2.1. Graph encoder
The flowsheet graphs are processed by a GNN, as illustrated in 

Fig.  4. The architecture of the proposed GNN consists of two primary 
phases: message passing and readout. During the message passing 
phase, graph convolutional networks (GCNs) are utilized to update the 
node embeddings for the flowsheet graph. Specifically, Fig.  5 illustrates 
the message passing step for a node represented in red. Initially, 
the message function 𝐦 combines the information from neighboring 
nodes (colored yellow) and their connecting edges into a message. 
Subsequently, this message is utilized to update the feature of the 
targeted node using an update function 𝐮, such as the sum function. 
This update process is iteratively applied to each node in every layer 
𝑙 ∈ 𝐿 within a GCN, allowing nodes to cumulatively gather information 
from their neighbors up to a distance determined by the number of 
layers 𝐿. Afterward, in the readout phase, the structure information 
learned during the message passing phase for each node is aggregated 
into a flowsheet fingerprint by a pooling function.

2.2.2. Hierarchical actor networks
The architecture of actor networks is primarily shaped by a hierar-

chical and hybrid action space, as illustrated in Fig.  6. This framework 
encompasses three decision-making levels: (i) selecting an open stream, 
(ii) choosing a specific unit operation, and (iii) identifying a design 
or operating variable. The initial two levels involve making discrete 
choices, whereas the final level is continuous, which together are 



Q. Gao et al. Computers and Chemical Engineering 201 (2025) 109192 
Fig. 3. The example agent architecture.
Fig. 4. The example architecture of the graph encoder, which is adapted from Schweidtmann et al. (2020).
referred to as a hybrid action space. In the first level, the agent selects 
an open stream which marks the location for subsequent expansion 
within the flowsheet.

In the second level, the agent selects the type of unit operation to 
be added, which could be a heat exchanger, a reactor, a distillation 
column, or even a recycling process through the introduction of an 
additional splitter and mixer. This step also includes the option of 
choosing an open stream as a product, effectively terminating the 
expansion for that particular pathway. The decisions in the third level 
are directly tied to those in the previous level. For instance, upon the 
addition of a reactor, the agent is tasked with determining a specific 
design variable, such as the reactor length. For simplicity, only one 
variable is selected for each unit operation. It is important to note that 
within the current implementation, the recycle stream can be integrated 
solely into the feed stream.

The implementation of actor networks echoes the hierarchical and 
hybrid action space, as depicted in Fig.  3. In action level 1, the updated 
4 
graph (before the readout phase) in the graph encoder is further 
processed by two additional GCN layers. Within these two GCN layers, 
all node features are compressed to a single dimension, similar to the 
approach used in node classification tasks. Furthermore, we apply a 
zero mask vector to effectively eliminate the selection probability of all 
nodes, with the exception of those categorized as ‘‘undefined.’’ This en-
sures that nodes corresponding to feed and unit operations are excluded 
from selection. This selected node feature is concatenated with the 
flowsheet fingerprint, forming the input for subsequent action levels. 
In action level 2, a Multilayer Perceptron (MLP) calculates probabilities 
for each possible unit operation. For action level 3, each unit operation 
is associated with its own MLP, which predicts two parameters, 𝛼 and 
𝛽, for a beta distribution 𝐵(𝛼, 𝛽) A continuous decision regarding the 
respective design/operating variable is then made based on this beta 
distribution.
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Fig. 5. An overview of node message passing in graph convolution layers.
Fig. 6. An overview of node message passing in graph convolution layers.
2.2.3. Critic networks
The critic network estimates the value of the current state, providing 

crucial feedback to the actor network (Sutton and Barto). This value 
estimates the total expected rewards from the current state to the 
end of an episode under the current policy. This feedback helps the 
actor adjust its policy to maximize long-term rewards. Specifically, as 
shown in Fig.  3, in our framework we calculate a generalized advantage 
estimation 𝐴̂, which assesses whether actions taken yield better or 
worse outcomes than predicted, which is crucial for computing the 
critic network’s loss function.

3. Case study

The proposed framework is illustrated through a case study centered 
on a hypothetical reaction synthesis process and its according separa-
tion. This process operates within a chemical system comprising four 
5 
compounds: A, B, C, and D. Additionally, we consider a scenario in 
which the resulting mixtures are assumed to behave ideally and are 
separated exclusively through distillation. In all simulations, the initial 
conditions feature a feed composed of an equimolar binary mixture 
of A and B. The molar flow rate is set to 100 mol s−1, with the feed 
temperature maintained at 300 K.

3.1. Environment

Two different environment settings are utilized in this study: Short-
cut process models and DWSIM. The short-cut process methods for 
pre-training are illustrated in our previous work (Stops et al., 2022). 
Here, we introduce the DWSIM process simulator as an RL environ-
ment. As introduced in Section 2.2.2, the agent can choose between 
reactors, distillation columns, and heat exchangers as unit operations. 
Besides, the agent can also decide to add recycles or claim open streams 
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as products. The types of unit operations and the corresponding design 
variables are defined below.

3.1.1. Reactor
A plug flow reactor (PFR) is deployed to convert reactants to the 

desired products. Specifically, the following reversible reaction takes 
place as Eq. (1) shows and C is the desired product. 

A + B ←←←←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←←←← C + D (1)

To further enhance the reaction engineering challenge, we assumed the 
reaction kinetics of our hypothetical reaction to follow those of Xu and 
Chuang on the esterification of acetic acid with methanol to produce 
methyl acetate (Xu and Chuang, 1996) However, it is important to note 
that while we have adopted their kinetic data, our case study differs 
from their experimental setup. Specifically, we have simplified the 
model by not considering catalyst loading and simulating the reactor 
isothermally which indicates the constant reaction rates. We note that 
using a PFR was partly an arbitrary choice for this case study, as it is 
a common reactor type. Additionally, the reactor cross-sectional area 
is determined by 𝑁∕10, where 𝑁 is the inlet molar flow. The design 
variable is the reactor length, which will be determined by the agent 
in the third-level continuous decision process. The range is from 3 to 
30 𝑚.

3.1.2. Distillation column
A distillation column is provided in the environment to separate 

product C from the quaternary system. Rigorous distillation columns 
are used instead of shortcut columns in the previous work (Stops et al., 
2022) to account for more realistic factors such as varying stage con-
ditions. The rigorous column models provide multiple possible choices 
of design parameters, from which the distillate to feed ratio (𝐷∕𝐹 ) is 
selected as the third-level decision. Other adjustable parameters such 
as the number of stages and reflux ratio are set as fixed values (35 and 
1.5, respectively). The 𝐷∕𝐹  ratio can range from 0.3 to 0.7.

3.1.3. Heat exchanger
For temperature changes, we provide the agent with the DWSIM 

heater model. In the proposed framework, the heat exchanger is sim-
ulated based on the outlet temperature, which is used as a design 
variable determined by third-level decisions. A temperature range from 
278.15 to 330.05 K is defined, where the upper limit refers to the lowest 
boiling point of the components, which is product C.

3.1.4. Recycle
The recycling action consists of additional units that include a 

splitter and a mixer. Firstly, the process stream is split into a recycle 
stream and a purge stream. Secondly, the recycled stream is merged 
with the selected feed using a mixer. Thereby, the split ratio is the 
third-level decision of the agent, which lies in the range of 0.1 to 0.9. 
In the current setting, the recycle destination is always the feed stream. 
In principle, it is possible to predefine the destination of a recycle 
stream within our framework. For instance, one might specify that the 
recycle stream can only be directed to the inlet before the reactor. 
When the agent selects a recycle action, the RL environment can then 
check whether a reactor exists. If so, the recycle stream is placed at 
the reactor inlet; if not, the action is deemed invalid, and a penalty 
is given. However, in a more realistic scenario, the RL agent should 
have the flexibility to determine the optimal recycle location. Future 
work could address this by introducing an additional action level 4, 
leveraging GNNs for edge (stream) classification, similar to action level 
1 (node classification). When the RL agent selects a recycle action, the 
action level 4 GNN will predict the most suitable recycle destination.
6 
3.2. Reward

We calculate the reward according to Eq.  (2) when a flowsheet is 
completed. 

𝑟 =
∑

𝑃products −
∑

𝐶feed −
∑

(

𝐶operation + 0.15 ∗ 𝐶invest

)

units
(2)

where 𝑃products is the revenue of the sold product (Seider et al. 2008), 
𝐶feed is the costs of feeds, 𝐶operation is the operation costs (Smith, 2016) 
and 𝐶invest is the total capital investment which is multiplied by factor 
0.15 (Seider et al. 2008). In the case of negative rewards, a reduction 
factor of 10 is applied to encourage the exploration of the design space. 
Additionally, a reward of 0 e is given when the incomplete flowsheets 
can converge after every single action because the economic value is 
difficult to assess for an incomplete flowsheet. Whenever the agent 
fails the simulation by taking infeasible actions, the episode will be 
terminated immediately, and a negative reward -10M e is given.

3.3. Constraints

In our framework, we incorporate constraints at three levels: vari-
able bounds, soft constraints, and masking. Hard constraints are a 
promising future work. First, we apply variable bounds (aka design 
constraints) to define the ranges of feasible values for each decision. 
For example, we predetermine the allowable PFR length so the RL 
agent can only select feasible lengths. Second, we introduce soft con-
straints that penalize infeasible actions through the reward function 
without strictly forbidding them. For instance, if an action leads to non-
convergence, the agent incurs a large negative reward, discouraging it 
from selecting similar actions again. A temperature constraint on the 
PFR could be also handled through a soft constraint method. Finally, 
we also employ an action-masking strategy. For example, in action 
level 1, when selecting an open stream, we apply action masking to 
prevent the selection of ‘‘illegal’’ streams, ensuring that only valid 
open streams are chosen. However, the consideration of nonlinear 
constraints is an active field of research in RL. There exist a number 
of methods that could be integrated into our framework as a future 
work. For example constrained RL algorithms (Achiam et al., 2017) and 
safe exploration techniques (García and Fernández, 2015) have been 
successfully applied in control settings to handle constraints, and could 
similarly be leveraged for process design tasks in future work.

3.4. Training process

The method described is implemented using Python 3.9, with the 
training scheme based on the Proximal Policy Optimization (PPO) 
algorithm developed by OpenAI (Schulman et al., 2017). This approach 
involves several epochs of minibatch updates, where each minibatch is 
formed by sampling transition tuples that have been saved in mem-
ory. The agent’s networks are updated through gradient descent. The 
final loss is the weighted sum of each individual actor network, their 
entropies, and the critic’s loss, ensuring a balanced update mechanism 
that considers both exploration (via entropy) and exploitation (via actor 
and critic losses).

The agent’s decision-making capabilities are enhanced throughout 
the training process by adjusting its weights and biases. In our training 
setup, the agent’s parameters are updated every 20 steps. At each 
update interval, the agent executes a batch loss computation using 30 
randomly selected samples from its memory, subsequently updating its 
parameters through the backpropagation algorithm.

The experiments are performed on a Windows server with a 3.5 GHz 
24 cores Intel(R) Xeon(R) W-2265 CPU, NVIDIA GeForce RTX 3090 
GPU, and 64 GB memory. The hyperparameters can be found in Table 
8 and Table  9.
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Fig. 7. Overview of transfer learning. In T1 pretraining, the agent interacts with shortcut models to build foundational knowledge. The agent is then fine-tuned with the rigorous 
process simulator DWSIM. Concurrently, T2 pretraining involves an encoder–decoder architecture, and then the part of the encoder is transferred and fine-tuned with the rigorous 
process simulator DWSIM.
Table 1
Overview of transfer learning models strategies.
 Model components 𝑇 1 𝑇 2

 E1 E2 E3 E4 E5 E6

 Graph encoder ✓ ✓ ✓ ✓ ✓ ✓ 
 Actor level 1 – ✓ ✓ ✓ ✓ –  
 Actor level 2 – – ✓ ✓ ✓ –  
 Actor level 3 – – – ✓ ✓ –  
 Critic network – – – – ✓ –  

3.5. Transfer learning

Transfer learning is a machine learning technique where a model 
developed for one task is reused as the starting point for a model on 
a second task, incorporating pre-existing knowledge to improve per-
formance or reduce training time. We propose to utilize two different 
transfer learning strategies as Fig.  7 illustrates. Table  1 depicts detailed 
transferred components of the models for two strategies.

In the first transfer learning strategy (𝑇 1), we pre-train the agent 
using a shortcut process model from our prior research (Stops et al., 
2022), followed by fine-tuning with the rigorous DWSIM simulator on 
the same case study. Throughout both phases, the agent maintains 
an identical architecture. We explore four distinct experiments by 
transferring various combinations of model component groups E1 to 
E5.

In the second transfer learning strategy (𝑇 2), a graph VAE is de-
veloped to learn from syntactical process data and actual process 
topology data. The actual process topology data comprises 730 flow-
sheets from simulation files (Vogel et al., 2023), P&ID-like flowsheets 
without control structure (Hirtreiter et al., 2023), and mined flowsheets 
from literature and the internet (Balhorn et al., 2022). The synthetic 
dataset consists of 7952 flowsheets, which are generated based on a 
Markov chain-like sampling with fixed probabilities and predefined 
local patterns, such as reaction, thermal separation, or recycling (Vogel 
et al., 2023). Only the encoder component of the process VAE is then 
transferred and fine-tuned using the rigorous process simulator DWSIM 
(group E6). For implementation details of the VAE, we refer readers to 
our paper (Theisen et al., 2025) .

4. Results and discussion

In this part, we will present the results of the two different transfer 
learning strategies separately. Specifically, in Section 4.1, we will dis-
cuss the results of learning curves from the with and without transfer 
7 
learning groups. Additionally, Section 4.2 presents the flow sheets 
generated from all the groups.

4.1. Learning curves

Fig.  8 and Table  2 display the learning curves and convergence 
scores for the baseline group (C1) and two transfer learning strategies 
T1 and T2. Every group conducted over 10000 episodes for three 
individual runs because we observed that the learning curves plateaued 
and showed no further improvement after 10,000 episodes. The score 
represents the moving average of the rewards over every 100 episodes. 
Specifically, the solid line in Fig.  8 represents the mean of three individ-
ual runs and the shaded area represents the standard deviation for each 
group. The training for the agent without transfer learning took 72 h 
over 10000 episodes. For the groups (E1–E5) in the transfer learning 
strategies T1, the pre-training took 2 h over 10000 episodes and the 
further training took 72 h over 10000 episodes. Furthermore, for the 
group (E6) in the transfer learning strategies T2, the pre-training took 
6 h and the further fine-tuning process took 72 h over 10000 episodes. 
Table  2 provides an overview of the convergence plateaus for groups 
with and without transfer learning. The convergence score, measured 
in millions of euros (ME), and the number of episodes required to reach 
various profitability thresholds (0 Me, 20 Me, 40 Me, 60 Me) are 
reported.

Upon learning convergence, all agents demonstrate the capacity to 
create feasible flowsheets, each achieving average scores exceeding 60 
million euros. The baseline group without transfer learning (C1) has a 
convergence score of 60.24 ± 3.25 Me. In contrast, groups E1 to E5, 
which incorporate transfer learning, all achieve higher convergence 
scores. For example, E1, which transfers only the graph encoder, im-
proves the convergence score by approximately 8.1% compared with 
C1. Remarkably, E5 with all transferred agent architectures has the 
highest convergence score 66.81 ± 2.84 Me, representing an improve-
ment of 11.0% over C1. The results demonstrate that agents can suc-
cessfully transfer the information learned in the shortcut environment 
to enhance performance when fine-tuning in rigorous environments. 
Furthermore, we utilize reaching episodes on certain thresholds to 
measure and compare the training efficiency and speed. For group C1, 
reaching the 0 Me, 20 Me, 40 Me, and 60 Me milestones required 
126, 1267, 2413, and 3975 episodes, respectively. Remarkably, groups 
E3, E4, and E5 demonstrate a significantly quicker learning process 
than C1. For example, all three groups can generate feasible flowsheets 
(> 0 Me) in the first episode, indicating the transferred information 
from the shortcut column contributes to making feasible action in the 
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Fig. 8. Learning curves of all groups, smoothed scores plotted with standard deviations. C1 represents the score from the agents without transfer learning. E2–E5 represent the 
scores from the agent with transfer strategy T1. E6 represents the score from the agent with transfer strategy T3. The detailed transfer learning strategies are depicted in Table  1.
very early stage when fine-tuning in rigorous simulation. Notably, E3 
in the first episode can reach the 40 Me threshold which decreases 
the training episode time by 99.92%. Additionally, E5 with transferring 
all components substantially boosts learning velocity with only 1436 
episodes for 60 Me milestones, which decreases the training episode 
time by 63.88% than C1. On the other hand, transfer learning strategies 
E1 and E2 led to less improved or even slower learning processes. On 
the other hand, transfer learning strategies E1 and E2 resulted in less 
improvement and even slower learning processes. Specifically, both 
groups required 4303 and 4276 episodes, respectively, to reach the 
60 million euro milestone, increasing the training episodes by 8.22% 
and 7.55%. This suggests that for E1 and E2, the agents may not 
efficiently utilize the state representations and initial policy guidance 
provided by the pre-trained encoder and first-level actor, which hinders 
comprehensive policy optimization and efficient exploitation of the 
learned state representations. In contrast, transferring additional actor 
levels and the critic, as seen in E3, E4, and E5, helps to better refine 
policies and value estimations, leading to faster convergence and higher 
overall performance.

The learning curve of E6 with the transferred VAE encoder demon-
strates a similar performance compared with C1. Quantitatively, the 
convergence score of E6 increases by 1.46% compared to C1. However, 
E6 requires significantly more episodes (333) to reach 0 Me, and 
ultimately 5505 episodes to reach 60 Me, indicating a less efficient 
learning process. This discrepancy may arise from the misalignment 
between the pre-training process data and the target process in RL. 
The pre-training process data consists of 730 flowsheet topologies from 
different resources (Balhorn et al., 2022; Schweidtmann, 2024), which 
are comparatively larger than the target process in RL and typically 
lack steam information. The processes used for pretrapping the VAE 
are further a diverse range of processes with a broader range of chemi-
cals, unit operations, and topologies. Therefore, the encoder from VAE 
during the pertaining process potentially yields mismatched learning 
semantics between the pre-training phase and fine-tuning phase. The 
mismatched semantics preserved in the encoder hinder further learning 
and converging in the fine-tuning within the target RL task.

In summary, transfer learning from a shortcut process simulator to 
a rigorous simulator significantly enhances the learning performance 
of agents, as evidenced by all the higher convergence scores of groups 
8 
Table 2
Overview of convergence plateaus of with and without transfer learning groups.
 Group Convergence score (Me) Reaching episodes
 0 Me 20 Me 40 Me 60 Me

 C1 60.24 ± 3.25 127 1268 2414 3976  
 E1 65.12 ± 3.35 1 1063 2136 4303  
 E2 63.12 ± 3.66 201 1599 2712 4276  
 E3 66.59 ± 2.44 1 1 1 2373  
 E4 66.62 ± 3.03 1 1 324 1503  
 E5 66.81 ± 2.84 1 113 311 1436 
 E6 61.13 ± 3.45 333 1261 2125 5505  

E1 to E5. The varying degrees of improvement in learning efficiency 
between groups may also indicate the differential impact of the types 
of knowledge transferred, the strategies employed, and the adaptation 
to the new environment. In terms of learning curves, overall, group 
E5 demonstrates the highest convergence scores and the most efficient 
learning process. On the other hand, the results of transfer learning 
from a pre-trained VAE highlight the challenges of applying transfer 
learning in RL for process design, emphasizing the importance of 
aligning pre-training tasks closely with the target RL tasks to achieve 
meaningful performance improvements. 

4.2. Generated flowsheets

In this part, we discuss the generated flowsheets from all groups. 
Fig.  9 and Table  3 show the generated flowsheet with the highest score 
obtained from the pre-training phase of the shortcut model, which 
resembles our previous work (Stops et al., 2022). Furthermore, Fig. 
10 displays the flowsheet from C1 (250 episodes). Notably, agents 
without transfer learning tend to create unfeasible and lengthy flow-
sheets including multiple unnecessary heat exchangers in the early 
stage. This is due to the random exploration as part of the trial-and-
error nature of the RL. With random initialization, agents have an 
inadequate learning experience and a preference to consistently select 
heat exchangers because of their relatively low capital cost and ease 
of convergence. Fig.  11 visualizes the flowsheet from E3 (1 episode). 
Notably, with the transferred graph encoder and actor networks 1 and 
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Fig. 9. The generated flowsheet with the highest score 41.66 Me obtained from the 
shortcut model.

Table 3
Design variables of unit operations for the flowsheet shown in Fig.  9.
 Unit operation Design variable Unit Value for best run 
 R-101 Length m 8.07  
 T-101 D/F ratio \ 0.53  
 S-101 Split ratio \ 0.34  

2, agents can already generate a concise and feasible flowsheet in the 
first episode compared with C1. This additionally verifies that the agent 
can leverage the learned information from the shortcut process model 
and make quick and feasible decisions at a very early stage. Moreover, 
the decision-making ability of agents is reinforced by accumulated 
experiences, and thus, better initialization can contribute to long-term 
outcomes. For example, as Table  2 shows, the convergence score of E2 
increases by 8.41% than C1.

To delve deeper into the performance of agents from different 
groups, we discuss the flowsheets with the highest scores during the 
training phase from different groups. Fig.  9 illustrates the shortcut-
method flowsheet that achieved the highest reward (41.66 Me). The 
feed stream (F-101) first passes through a plug flow reactor (R-101), 
and the resulting quaternary mixture is then separated in a distillation 
column (C-101). The final product, component C, obtains from prod-
uct stream P-102 at 56.4% purity. Additionally, Fig.  12 presents the 
flowsheet with the highest reward (106.84 Me) from the C1 group. 
The corresponding design and operating variables are detailed in Table 
4. The feed (F-101) passes through two consecutive PFRs (R-101 and 
R-102), where products C and D are produced by the esterification 
of A and B. The resulting quaternary mixture is then separated in 
a distillation column (C-101). The overhead product from C-101 is 
further distilled in another column (C-102). In this setup, 90% of the 
bottom product is recycled and mixed back into the feed, while the 
mixture of B and D exits through product stream P-104. Additionally, 
C with 77.4% purity is obtained from product stream P-102, which 
increases by 37.2% compared with the flowsheet obtained from the 
shortcut methods, and pure D is obtained from product stream P-103. 
For the E3 group, the highest-scoring flowsheet achieved 107.53 Me, 
representing a 0.65% increase compared to the C1 group. As shown 
in Fig.  13, the flowsheet generated by the E3 group is similar to 
that of C1, with one notable difference: the inclusion of an additional 
cooler (H-101) before the second distillation column (C-102). At lower 
temperatures, the vapor–liquid equilibrium conditions change, which 
can favor the separation of components with higher relative volatilities. 
This modification potentially makes C more readily separable due to its 
properties at lower temperatures, resulting in a slightly higher purity 
of C in the E3 flowsheet compared to C1. Both flowsheets utilize two 
consecutive reactors, likely because the predefined reactor length range 
(3 to 30 m) is too short (see Tables  3 and 5).

Further investigation into the flowsheet generated by the E5 group, 
as shown in Fig.  14 and detailed in Table  6, achieves a highest score 
of 95.43 Me, which is 10.68% and 11.25% lower than the scores 
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Table 4
Design variables of unit operations for the flowsheet shown in Fig.  12.
 Unit operation Design variable Unit Value for best run 
 R-101 Length m 23.93  
 R-102 Length m 24.36  
 T-101 D/F ratio \ 0.70  
 T-102 D/F ratio \ 0.70  
 S-101 Split ratio \ 0.90  

Table 5
Design variables of unit operations for the flowsheet shown in Fig.  13.
 Unit operation Design variable Unit Value for best run 
 R-101 Length m 23.65  
 R-102 Length m 25.26  
 C-101 D/F ratio \ 0.69  
 H-101 Outlet temperature K 278.15  
 C-102 D/F ratio \ 0.70  
 S-101 Split ratio \ 0.90  

Table 6
Design variables of unit operations for the flowsheet shown in Fig.  14.
 Unit operation Design variable Unit Value for best run 
 R-101 Length m 27.22  
 C-101 D/F ratio \ 0.46  
 H-101 Outlet temperature K 279.23  
 R-102 Length m 23.29  
 C-102 D/F ratio \ 0.46  
 R-103 Length m 13.76  
 S-101 Split ratio \ 0.9  

Table 7
Design variables of unit operations for the flowsheet shown in Fig.  15.
 Unit operation Design variable Unit Value for best run 
 R-101 Length m 29.24  
 C-101 D/F ratio \ 0.66  
 R-102 Length m 22.40  
 C-102 D/F ratio \ 0.30  
 S-101 Split ratio \ 0.83  

from C1 and E3, respectively. The flowsheet from E5 includes several 
unsuitable designs: two unnecessary reactors are placed after the distil-
lation columns (C-101 and C-102), and an unnecessary heat exchanger 
(H-101) is added before the product stream (P-101). The underlying 
reason is that discrepancies in the reward function and design variables 
between the shortcut and rigorous simulators can introduce additional 
bias, leading to lower scores for the highest-scoring flowsheet compared 
to C1 and E3. E5 requires fewer episodes to reach the highest conver-
gence score threshold (60 Me), as indicated in Table  2. This further 
reflects that E5 has a more stable training process with consistent high-
reward flowsheets as the score is the moving average of the previous 
100 episodes.

Table  7 depicts the generated flowsheet with the highest score of 
93.09 Me, which is a decrease of 12.87% compared to group C1. One 
clear unsuitable design is that one reactor (R-102) is included after 
the distillation column (C-101), which is quite similar to the flowsheet 
from E5. Additionally, C with 57.9% purity is obtained from product 
stream P-102, which is comparatively lower than the other groups. The 
possible underlying reason is that the learned semantics from the pre-
trained encoder greatly mismatched the task in the fine-tuning RL task. 
This leads to a suboptimal solution within the same training episodes.

4.3. Discussion on negative transfer

Transfer learning not only contributes to higher convergence scores 
but also reduces training time, as demonstrated by the E3 group. 
However, in other groups — particularly those employing T2 strategies 
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Fig. 10. An example of process flowsheet diagram of group C1, number of episodes = 250.
Fig. 11. An example of process flowsheet diagram of group E3, number of episodes = 1.
Fig. 12. The flowsheet with the highest score (106.84 Me) from C1.
Fig. 13. The flowsheet with the highest score (107.53 Me) from E3.
— negative transfer becomes evident. For T1 strategies, this effect 
is especially significant in the E4 and E5 groups, which, unlike E3, 
also transfer the actor-level 3 and critic networks, respectively. A 
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key factor in the negative transfer observed for the E4 group is the 
substantial discrepancy between the design/variable ranges used in 
the pre-training phase and those used in the fine-tuning phase. For 
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Fig. 14. The flowsheet with the highest score (95.43 Me) from E5.
Fig. 15. The flowsheet with the highest score (93.09 Me) from E6.
instance, while the reactor length range for pre-training spans 0.05 to 
20 m, it shifts to 3 to 30 m during fine-tuning. Such a mismatch can 
initially place the model in a suboptimal portion of the design space, 
slowing adaptation and ultimately affecting the final convergence score 
within the same training episodes. Similarly, in the E5 group, the 
potential cause of negative transfer lies in the differences between the 
pre-training and fine-tuning objective functions. For example, during 
fine-tuning, we introduced various utility supplies for the heat ex-
changer (e.g., low/medium/high-pressure steam) to capture different 
temperature differences. By contrast, the utility supply was fixed during 
pre-training. This shift in how the objective function is formulated 
places the critic networks in a different operating regime. As a result, 
the networks struggle to accurately approximate the new objective 
function, ultimately leading to negative transfer.

The training data used for the VAE (Theisen et al., 2025) appears 
to be the potential cause of negative transfer for the T2 strategy. As 
shown in Fig.  16, the VAE was pre-trained on a dataset comprising 
both real (simulation files and flowsheet data from the literature) and 
synthetic datasets. For the node distribution, the real dataset aver-
ages 21.51 nodes per flowsheet, while the synthetic dataset averages 
18.50. In terms of edges, the real dataset averages 23.02 edges per 
flowsheet, whereas the synthetic dataset averages 18.23. Additionally, 
Fig.  16 illustrates that the real dataset has a long right tail with some 
flowsheets containing up to 200 nodes and edges. Clearly, both the 
real and synthetic datasets include significantly larger topologies than 
those used in the fine-tuning phase, where the final flowsheet contains 
only around 10 nodes. Additionally, the processes in the pre-training 
dataset differ significantly from the target process. For instance, many 
of the pre-training examples only involve separation processes, such 
as benzene-toluene separation or ethanol-water distillation. These are 
inherently different from the target process in our case study — a 
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combined esterification and separation process — which poses chal-
lenges for effective transfer learning. Furthermore, only the flowsheet 
topology (without edge features) was used when pre-training the VAE, 
whereas the fine-tuning phase includes edge attributes such as temper-
ature, pressure, and molecular fractions. This discrepancy in both the 
scale of flowsheet topologies and the nature of edge features potentially 
places the model in a suboptimal regime at the fine-tuning phase, 
ultimately contributing to the observed negative transfer.

For future works, several approaches could potentially help mitigate 
negative transfer in both the pre-training and fine-tuning phases. In 
pre-training, we suggest using unit operations and objective functions 
similar to those in the fine-tuning phase. For instance, if the fine-
tuning phase involves a compressor or a catalyst-based reactor, one 
could implement or reuse corresponding shortcut models with compa-
rable variable bounds and the same objective function. If a shortcut 
model is unavailable, surrogate models can serve as an alternative. 
A surrogate model is a computationally efficient approximation of a 
complex system, enabling rapid predictions, analysis, and optimization 
without sacrificing critical accuracy. Recent studies have shown the 
effectiveness of surrogate modeling for processes such as distillation 
columns (Lu et al., 2021) and reactors with catalysts (Lastrucci et al., 
2024). For VAEs, it is crucial that the pre-training dataset closely 
resembles the fine-tuning dataset, such as the number and types of 
unit operations, node and edge features, as well as the same target 
process with different topologies. This alignment can potentially re-
duce negative transfer. Additionally, supervised pre-training — such as 
cost prediction for flowsheets or imitation learning — offers another 
potential strategy. Imitation learning is a machine learning approach 
in which an agent acquires behaviors or decision-making strategies by 
mimicking demonstrations provided by an expert. However, collecting 
a sufficiently large dataset of flowsheets with labels, or obtaining expert 
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Fig. 16. Graph distributions for the synthetic and the real dataset.
demonstrations for imitation learning, remains a significant challenge 
in practice.

For the fine-tuning phase, our results indicate that both the actor 
networks for continuous decisions and the critic network have a vi-
tal impact on transfer learning performance. If there is a substantial 
mismatch in design/operating variable ranges or objective functions 
between the pre-training and fine-tuning phases, we recommend re-
fraining from transferring these two components and instead training 
them from scratch. Another possible strategy is to initially freeze or 
remove the actor networks to focus on optimizing the topology first, 
then apply a separate method — such as a genetic algorithm — to opti-
mize the design/operating variables (Göttl et al., 2024). For VAEs, if the 
flowsheet distribution in the pre-training dataset diverges significantly 
from the target flowsheet distribution in fine-tuning, we likewise advise 
training the model from scratch. Alternatively, advanced techniques 
like Low-Rank Adaptation (LoRA) can be leveraged to help manage 
large parameter spaces and reduce the need for extensive retraining. 
For instance, applying LoRA to the actor network constrains updates 
to low-rank factors in the policy parameters, ensuring that the core 
policy representation remains largely intact. Similarly, using LoRA on 
the critic or on an encoder network focuses updates on a limited 
subset of parameters relevant to value estimation or feature extraction, 
respectively. In each case, the low-rank constraint could potentially pre-
vent the overwriting of beneficial pre-trained representations, thereby 
reducing the risk of negative transfer.

In conclusion, the learning curves and optimal flowsheets demon-
strate that suitable transfer learning can potentially accelerate the 
training speed and boost the convergence score. Specifically, within T1 
transfer learning strategies, the most suitable transfer learning strategy 
may involve transferring the encoder and the first two actor levels 
(E3), corresponding to the ability to accurately interpret states and 
determine the structure of the discrete process unit network, respec-
tively. Conversely, transferring the design variables and critic network 
may hinder exploration and lead to suboptimal solutions. Moreover, 
as transfer learning T2 shows, it is of great importance to align pre-
training tasks closely with the target RL tasks to achieve meaningful 
performance improvements.

5. Conclusions

We propose utilizing transfer learning to enhance the learning pro-
cess of RL in process design. Specifically, we investigate two transfer 
learning strategies: (i) transfer learning from shortcut process simula-
tors to rigorous simulators (T1) and (ii) transfer learning from process 
VAE (T2). Our results demonstrate that appropriate transfer learning 
can significantly improve both learning efficiency and convergence 
scores. For instance, transferring pre-trained encoder and actor levels 
1 and 2 (E3) reduced convergence training episodes by 63.88% and 
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increased convergence scores by 0.65% compared to the group without 
transfer learning (C1).

Conversely, transfer learning can also negatively impact the learn-
ing process. Transferring continuous action networks and critic net-
works can hinder agent learning if there are substantial discrepancies 
in decision range and reward function between pre-trained and fine-
tuning environments. Additionally, pre-training the encoder with exist-
ing flowsheet data yielded only minor improvements in convergence 
scores and sometimes slowed down the fine-tuning process. This sug-
gests that pre-trained process data should match the complexity of the 
fine-tuning task.

This work provides guidance on effectively utilizing transfer learn-
ing strategies to enhance the efficiency and effectiveness of RL in 
process design. Future research could explore incorporating more com-
prehensive flowsheet topology data with additional unit operations and 
stream information to pre-train the graph encoder. Additionally, RL 
could potentially integrate with other GenAI tools to support further 
engineering workflow (Schweidtmann, 2024).
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Table 8
Hyperparameters for the architecture and pre-training procedure of the actor–critic 
agent.
 Parameter Value

 Learning rate 𝛼 0.0002
 Policy clipping factor 𝜖 0.3
 Discount factor 𝛾 1.0
 𝜆-return factor 𝜆 0.95
 Number of steps after which the agent learns 𝑛B 60
 Batch size during learning 𝑛MB 30
 Number of epochs 𝑛E 4
 Weight for loss of level 1 actor 𝑐0 0.1
 Weight for loss of level 2 actor 𝑐1 1.0
 Weight for loss of level 3 actor 𝑐2 0.5
 Weight for loss of critic 𝑐3 0.2
 Weight for entropy of level 1 actor 𝑑1 0.001
 Weight for entropy of level 2 actor 𝑑2 0.3
 Weight for entropy of level 3 actor 𝑑3 0.001
 Hidden layers edge processing for fingerprint – 10
 Message passing steps for fingerprint – 6
 Hidden layers dimension level 1 actor – 12
 Hidden layers dimension level 2 actor – 256
 Hidden layers dimension level 3 actor – 256
 Hidden layers dimension critic – 256
 Feature size flowsheet fingerprint – 50

Table 9
Hyperparameters for the architecture and fine-tuning procedure of the actor–critic agent 
with rigorous simulator.
 Parameter Value

 Actor level 1 learning rate 𝛼1 1 × 10−6

 Actor level 2 learning rate 𝛼2 1 × 10−5

 Actor level 3 learning rate 𝛼3 1 × 10−6

 Critics network learning rate 𝛼4 1 × 10−6

 Policy clipping factor 𝜖 0.3
 Discount factor 𝛾 1.0
 𝜆-return factor 𝜆 0.95
 Number of steps after which the agent learns 𝑛B 20
 Batch size during learning 𝑛MB 30
 Number of epochs 𝑛E 4
 Weight for loss of level 1 actor 𝑐0 0.1
 Weight for loss of level 2 actor 𝑐1 1.0
 Weight for loss of level 3 actor 𝑐2 0.5
 Weight for loss of critic 𝑐3 0.2
 Weight for entropy of level 1 actor 𝑑1 0.001
 Weight for entropy of level 2 actor 𝑑2 0.3
 Weight for entropy of level 3 actor 𝑑3 0.001
 Hidden layers edge processing for fingerprint – 10
 Message passing steps for fingerprint – 6
 Hidden layers dimension level 1 actor – 12
 Hidden layers dimension level 2 actor – 256
 Hidden layers dimension level 3 actor – 256
 Hidden layers dimension critic – 256
 Feature size flowsheet fingerprint – 50
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