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iii) Compute [4] P. W. Tuinenga, Spice, a Guide io Circuir Simularion & Analysis Using 
Englewood PSpice, (with accompanying PC disk by MicroSim Corp. 

Cliffs, NJ: Prentice-Hall, 1988. c x  = (&/2TfT) - c,. ( 12) 
iv) Estimate C,,, the pan of C, attributed to depletion capac- 

itance, at the Q-point where the unity gain frequency was mea- 
sured. For strongly forward-biased pn junctions, (IO) does not give 
correct results [6]. A suggested estimate [6, p. 401 is 

[SI I-G Spice User’s Manual. 
[61 p.  R. Gray and R. G .  M e w ,  Analog Integrated Circuirs, 2nd ed. 

New York: Wiley, 1984. 

Tampa, FL: A. B. Associates, 1987. 

c,, = 2 x CJE. (13) 

The Discrete Fourier Transform Data Sequence Need v) Compute the “charge-storage” part of e,, c b ,  using 

c, = c, - qe. (14) Not Be Circularly Defined 
vi) The forward transit time is now found from 

TF = Cb/C,. (15) 

IV. EXAMPLE 
Spice parameters for the BJT’s of the CA3086, a general pur- 

pose NPN transistor array, were obtained as follows. 
1) Curves of VBE versus temperature were given for several val- 

ues of I E ,  from which the point ( I E ,  VBE) = (0.5 mA, 0.68 V )  was 
obtained. 

From Eq. (l) ,  IS = 7.69 x 
2) Given hybrid parameters, measured at I ,  = 1 mA and VcE = 

hf, = 100 h,, = 3.5 KQ h, = 15.6 ps h, = 1.8 x 

A. 

3 V, were 

From (2), BF = 100. 
From (3), g, = 10-3/0.025 = 0.040 S. 
From (4), rx = 100/0.040 = 2.5 KQ. 
From (9, r, = 2.5 K/1.84 x 
From(6), l /r ,  = 15.6 X 

From (7), VAF = (1.190 x lo5) x 1 x 
From (8), RB = 3.5 K - 2.5 K = 1 KO. 

tions were listed on the data sheet. 

= 13.9 MQ. 
- 100/13.9 X lo6, therefore 

r,  = 1.19 X lo5 O. 
= 119 V. 

3) The following capacitance values and measurement condi- 

CcBo = 0.58 pF, at VCB = 3 V 

CE, = 0.60 pF, at VE, = 3 V 

CcI = 2.8 pF pF, at Vc, = 3 V 

From (9), CJC = 0.58 X 1 + 3/O.55lo5. 
From (lo), CJE = 0.60 X IO-’’[ 1 + 3/0.71° 33 

From ( l l ) ,  CJS = 2.8 X lo-’’[ 1 + 3/0.52]05 
4) The unity gain frequency and its measurement conditions 

A. VAN DEN BOS 

Abstract-In literature the finite discrete Fourier transform (DFT) 
data sequence is usually assumed to be circular. It is shown that the 
familiar DFT theorems can be proved without this often somewhat ar- 
tificial assumption. 

I. INTRODUCTION 
In the literature on the finite discrete Fourier transform (DFT) 

various assumptions are found with respect to the data sequence 
itself andlor the hypothetical sequences preceding and following 
it. Cooley, Lewis, and Welch [ l ] ,  Oran Brigham [2], and Kay and 
Marple [3] assume that the finite data sequence is one period of an 
otherwise infinite periodic sequence. Oppenheim and Schafer [4] 
also represent the data sequence as one period of a periodic se- 
quehce. However, outside this period the amplitudes are assumed 
to be equal to zero. Moreover, the shifted version of the data se- 
quence is represented as one period of the equally shifted periodic 
sequence. The purpose of this paper is not to question the correct- 
ness or the usefulness of these points of view. The purpose is to 
investigate whether or not it is possible to make no assumptions at 
all about the data sequence and the sequences preceding and fol- 
lowing it. The motivation for this is that the DFT data represen- 
tations described above may be puzzling for the student or user of 
the DFT. The data sequence available will often clearly not be one 
period of a periodic sequence nor will the sequences preceding and 
following it be zero-valued. For that purpose, in the next section 
three key DFT theorems (inversion, shift, and convolution) will be 
reconsidered without assumptions on the data sequence. The re- 
sulting conclusions are summarized in a final section. 

11. RECONSIDERATION OF THREE KEY DFT THEOREMS 
were 

Let x ( n ) ,  n = 0, * * , N - 1 be an otherwise unspecified and 
f, = 550 MHz. at IC = 3 mA and VCE = 3 V. possibly complex data sequence. Define 

Computing the value of C, = CcBo at thef, operating point gives 

C, = 1.474 X 10-12/[1 + 2.3/0.55]0’5 = 0.648 pF. 

N- I 

X ( k )  = x ( n ) W !  k = 0, * * , N - 1 (1)  
n = O  

From(12), C, = (0.120 2x550 x IO6)  - 0.648 x lo-’’ = 34.08 
X lO-‘Fd. 

From (13), Cj, = 2 x CJE = 2.078 x lo-’* Fd. 
From (14), c b  = 34.08 X lo-’’ - 2.078 X 

lo-’’ Fd. 

as the discrete Fourier transform (DFT) o fx (n ) ,  n = 0, * . . , N 
- 1 where WN = exp ( - j2x /N)  with j = fi. Then the inver- 
sion theorem states that the inverse discrete Fourier transform 
(IDFT) defined by = 32.00 X 

(2) 
I N - ‘  From (15), TF = 32 x 10-12/0.120 = 2.667 x s. - C X(k)W,& 
N k = O  

n = 0, * * * , N - 1 
Simulation results obtained using these parameter values agreed 

quite well with experimental results obtained in the laboratory. is equal to x ( n ) ,  = 0, . . . , N - 1. ~h~ proof of this theorem 
does not require x ( n )  to be periodic, circular, or equal to zero 
outside n = 0, * * . , N - 1; see [5]. 

REFERENCES 

J. D. Irwin, Basic Engineering Circuit Analysis, 2nd ed. 
Macmillan, 1987. 
A. S. Sedra and K.  C. Smith, Microelectronic Circuirs, 2nd ed. 
York: Holt, Rinehart, and Winston, 1987. 
S. G. Burns and P. R. Bond, Principles of Electronic Circuits. 
Paul, MN: West Pub. 1987. 

New York: 

New 

St. 

Manuscript received December 21, 1987. 
The author is with the Department of Applied Physics, Delft University 

IEEE Log Number 9038692. 
of Technology, 2600 GA Delft, The Netherlands. 

0018-9359/90/1100-0368$01.00 O 1990 IEEE 



IEEE TRANSACTIONS ON EDUCATION, VOL. 33, NO. 4. NOVEMBER 1990 369 

Next two other key theorems of the DFT, the shift theorem and 
the convolution theorem will be discussed. First consider the DFT 
Z ( k ) , k = O ,  , N -  l o f t h e s e q u e n c e z ( n ) = x ( n ) W k , n =  
0, . . . , N - 1, with 1 integer 

N -  1 N -  I 

n = O  n = O  
Z ( k )  = c ( x ( n ) W f ; ) W $  = c x ( n ) W $ + " " .  ( 3 )  

Since 

N (4) 

k = 0, . . . , N - 1 ( 5 )  
where, by definition, 0 5 ( ( k  + I )  modulo N )  5 N - 1. To be 
absolutely clear: ( 5 )  is what would have been found in the array 
Z ( k ) ,  k = 0, . . , N - 1 after computing the transformation ( 3 ) .  
Equations (3) and ( 5 )  describe the DFTfrequency shift theorem 

~ $ + / ) n  = ~ ( ( k + / ) r n o d u l o N ) n  

it follows that 

Z ( k )  = X ( ( k  + I )  modulo N )  

x(n)Wfit  * X ( ( k  + I )  modulo N )  (6)  
where et defines the DFT transform pair. Note that the frequency 
shift is circular. This is a consequence of WIyk+')n being circular, 
not of a supposed circularity of X ( k ) .  In the same way the dual 
DFT time-shift theorem states that 

x ( ( n  + I )  modulo N )  X(k)W,$. ( 7 )  
The proof of this theorem does not require x ( n )  to be circular. 

Central in Fourier theory in general are the convolution theo- 
rems. The DFT frequency convolution theorem may be described 
as follows. Let the DFT of the sequences x ( n ) ,  n = 0, . . . , N - 
1 and y(n) ,  n = 0, . . . , N - 1 be X ( k ) ,  k = 0, . . . , N - 1 
and Y ( k ) ,  k = 0, . . . N - 1, respectively. Then 

, N - l  

Proof: 
N -  1 c x ( n ) y ( n ) W $  = 
n = O  

X ( l ) Y ( ( k  - 1 )  modulo N ) .  (8)  
/ = 0  

N -  I 

n=O 

N - l  

N / = o  n = O  

X ( l ) Y ( ( k  - I )  modulo N ) .  (9) N I = O  

This completes the proof. Note that the circularity of the convo- 
lution in (8) is a consequence of the circularity of W$-"". The dual 
time-convolution theorem is proved analogously. It is given by 

N-1  

x(Z)y((n - 1) modulo N )  * X ( k ) Y ( k ) .  (10) 

For the proof of this theorem neither x ( n  ) nor y ( n  ) need be cir- 
cular. From (8) and (IO) follow the dual, generalized forms of Par- 
seval's theorem: 

/ = 0  

1 N-' N -  I 

n=O N I = O  
x ( n ) y ( n )  = - c X ( l ) Y ( ( N  - 1 )  modulo N )  (11) 

and 
1 N - l  

N -  1 

/ = 0  N 1 = 0  
x ( Z ) y ( ( N  - I )  modulo N )  = - X ( k ) Y ( k ) .  (12) 

With respect to the above results the following observations can 
be made. In the first place, the results can easily be extended to 
include all further conventional DFT theorems. Furthermore, the 
circularity of the shift and convolution operations arises in a natural 
way, not as a consequence of assumptions. The corresponding 

theorems describe what the results would be of a computing device 
knowing the definitions of the DFT and the IDFT, but not aware 
of any assumptions concerning the data sequence. Finally, the DFT 
X ( k )  in ( I )  is defined fork = 0, . . . , N - 1 only. However, no 
serious objection can be made to assuming X (  k )  periodic with pe- 
riod N .  The motivation for the definition chosen in this paper is 
that thus the number of complex entities concerned remains the 
same in both domains. Moreover, this definition preserves the sym- 
metry of the dual theorems. 

111. CONCLUSIONS 
It has been shown that the familiar DFT theorems can be proved 

without the usual assumption that the data sequence is circular. 
Circularity of DFT shift and convolution is a consequence of the 
DFT properties, not necessarily of those of the data sequence. The 
advantage of this alternative viewpoint is that puzzling circularity 
assumptions with respect to nonperiodic data sequences are 
avoided. 
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The Square Matrix Rule of the Convolution Integral 

ZHANG ZUHAO 

Abstract-This paper presents a square matrix rule, which can easily 
determine the limit and domain of the convolution integral. The rule 
is demonstrated theoretically. Some examples are given to explain its 
application. 

The convolution integral of two functions can be expressed as 

D ( t )  * S ( t )  = jm  -m D(r - 4 ) S ( € )  d4. 

In the graphical approach, the mirror-image of D ( t )  about the Y 
axis is translated, while the graph of S ( t )  is at rest. For conve- 
nience of description, we call D ( t )  the dynamic function and S ( t )  
the static function. 

Two functions with step continuity are often encountered in 
electrical engineering, and when we are integrating, the problem 
is: How do we determine the limit and the domain of the convo- 
lution integral? This problem is usually solved graphically. In this 
paper, a square matrix rule is presented as an alternate way of find- 
ing this domain. It is rather simple and can be derived as follows: 
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