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Abstract—Modern computer applications usually consist of a
variety of components that often require quite different com-
putational co-processors. Some examples of such co-processors
are TPUs, GPUs or FPGAs. A more recent and promising
technology that is being investigated is quantum co-processors.
In this paper, we present a modern computer architecture where
a quantum co-processor is included as an additional accelerator.
In such an environment, the idea is to execute the application
on a heterogeneous architecture where the classic processor will
execute the host part, but certain components will be mapped, in
our case, on the quantum accelerator. To this purpose, we define
the distinct layers for the quantum computer architecture where
there is a clear boundary between the host program and quantum
kernel(s). We also discuss the opportunities and challenges of
mapping hybrid algorithms to such a heterogeneous quantum
computer architecture.

I. INTRODUCTION

Quantum computing is an emerging technology that
promises to solve problems which are intractable by classic
computers by exploiting quantum phenomena. Much research
focuses on quantum devices in the effort of fabricating co-
herent qubits and having high fidelity gates and only limited
research effort has been spent on the programmability of a
quantum device and closing the gap between the programming
environment and the quantum devices. Therefore, full stack
research reaching from programming languages down to the
execution level on quantum devices is essential. To tightly
integrate all levels of such a system and to interface a
quantum device with existing computing infrastructure, many
challenges will arise in the field of computer science and
engineering. In the remainder of this paper, we will present
the layers and challenges of a full-stack quantum system
and discuss how to integrate such a quantum system as an
accelerator in the current computing infrastructure.

This paper is organized as follows: Section II provides
a brief background on the basics of quantum computing.
In Section III we present our vision on the system stack
and the integration with current computing infrastructure.
The engineering challenges are discussed in Section IV. We
conclude the paper in Section V.

II. BACKGROUND

While classic bits can only be in a 0 or 1 state at a certain
moment, qubits can be in a superposition of computational
basis states |0〉 and |1〉 which is mathematically described as:
|ψ〉 = α |0〉 + β |1〉, where α, β ∈ C and |α|2 + |β|2 = 1,

or as a unit vector |ψ〉 =
[
α β

]T
. Superposition can not be

measured and measurements in the computational basis are
projected into the |0〉 or |1〉 state with probabilities |α|2 or
|β|2, respectively. Multiple qubits can be combined to form a
vector with 2n states where n is the number of qubits. Qubits
can also be entangled, which means that the superposition
state of the entangled qubits cannot be represented as a tensor
product of individual qubit states.

A qubit state can be manipulated by applying quantum
gates which can be expressed as unitary matrices. Operations
are applied on the qubits that hold the state which makes it
an in-memory computing technology. Common single-qubit
gates are the X , Y , Z, H , S, and T gate while the most
common two-qubit gates are the controlled-NOT (CNOT)
and controlled-phase (CZ) gate. Quantum algorithms can be
described as quantum circuits consisting of qubits and gates
operating on them (circuit model of computation). For a more
exhaustive introduction into the basics of quantum computing,
we refer to [1].

Various physical implementations of qubits exist (e.g., ion-
traps, spin qubits, superconducting qubits), and all of them
suffer from decoherence, meaning that qubits lose their state
in a short period. For example, superconducting qubits can
lose their information in tens of microseconds [2], [3]. In
addition, quantum operations are not perfect and have error
rates of around 0.1% [4]. To enable meaningful quantum
computation with high fidelity, Quantum Error Correction
(QEC) was introduced [5]. By using QEC, a quantum state
can be encoded redundantly to form a logical qubit with lower
error rates than the underlying physical qubits. A popular QEC
code is the surface code [6]–[9]. The resource requirements
for QEC are high and Fault-Tolerant (FT) quantum computing
will not be possible in the next 5 to 10 years. Therefore, near-
term quantum computational devices will operate directly on a
relatively low number of noisy physical qubits, also known as
Noisy Intermediate-Scale Quantum (NISQ) technology [10].

III. SYSTEM STACK

To enable a fully programmable quantum processor based
on the circuit model [1], a full-stack system approach is
required going from programming languages to the quantum
devices. Various high-level overviews for instruction based
quantum processors have been proposed so far [11]–[13]
based on similarities and differences with classic processors.
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There are two apparent differences between classic and quan-
tum processors. First, due to error-prone qubits, large-scale
quantum processors require QEC to enable FT computing.
QEC becomes the major source of computational activity
[6], [11] and therefore plays an important role in the system
stack. Second, qubits require interaction to perform two-qubit
operations, and quantum devices have limited connectivity,
which requires routing [14]–[16] and adds extra constraints
to the execution scheme.

As proposed in [13], [15], [17], we suggest a system stack as
shown in Figure 1. The two top levels are the application layers
where users describe the desired algorithm embracing the cir-
cuit model [18] with programming languages such as Q# [19],
Scaffold [20], Quipper [21], QCL [22], ProjectQ [23], and
OpenQL [24]. Such languages can be embedded or domain-
specific and should be high-level, expressive, and support
libraries. Quantum programs can combine quantum gates and
classic constructs. Hence, the programming language should
support quantum computations, classic computations, and their
interaction.

Compiler infrastructure compatible with the programming
language of choice will compile the algorithm descriptions
into a stream of instructions of the Quantum Instruction Set
Architecture (QISA) as represented by the third and fourth
level of the stack. Such cross-compilers will run on a classic
computer and are responsible for optimizing the executable
taking into account various parameters such as QEC code,
reversible circuit design, gate decomposition, scheduling of
operations, circuit mapping, and routing. Compilers often
allow output to intermediate, not directly executable, formats
such as QASM-HL [25], OpenQASM [26], f-QASM [27], Quil
[28], or cQASM [29].

The QISA exposes the abstracted functionality of the
microarchitecture to the compiler and divides the software
and hardware layers. Various executable QISAs have been
proposed [30], [31], for example eQASM. The microarchi-
tecture executes the instructions of the binary executable
and orchestrates the control over the quantum processor at
runtime including flow control, feedback based on quantum
measurement results, and potentially error correction. The
bottom two layers cover the boundary between the classic
digital electronics and the analog quantum device which could
be based on technologies such as ion-traps, spin qubits, or
superconducting qubits.

In the near future, quantum devices with tens to hundreds
of qubits will be available. Due to the high error-rates and the
limited amount of qubits in such systems it is not reasonable
to talk about universal quantum Turing machines [18] yet.
Recent insights led to the introduction of NISQ technology
as described in [10]. In the near future, a few hundred noisy
qubits could accelerate specific useful applications; hence we
aim for a quantum accelerator. Modern computer architec-
tures are often heterogeneous, and therefore we envision a
heterogeneous computer architecture with a host processor
based on existing technologies combined with co-processors
such as Tensor Processing Units (TPUs), Graphical Processing

Fig. 1. System stack of a quantum processor from [13].
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Fig. 2. A heterogeneous computer architecture with quantum accelerator.

Units (GPUs), Field- Programmable Gate Arrays (FPGAs),
and, in our case, a quantum co-processor as shown in Figure
2. Specific components of applications can be mapped to the
appropriate co-processors while other parts run on the host
processor. The application components for the host processor
will be written in existing languages as C++ while quantum
kernels will exploit the features of the quantum system stack.
For such an offload structure, clear boundaries have to be
defined between the host program and the quantum kernels
with preferably a low amount of communication required to
keep the overhead minimal. The compiler infrastructure for
such a heterogeneous system will consist of a classic host
compiler combined with a quantum compiler as shown in
Figure 3. The host program and the quantum kernel will be
separately compiled and linked together in the end.

IV. CHALLENGES

Building a NISQ accelerator based on a full system stack
requires many challenges to be overcome. Based on our
offload programming model we have to define a clear bound-
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Fig. 3. Compiler infrastructure.

ary between the host program and the quantum kernel. To
minimize communication overhead and to make the quantum
kernel as self-contained as possible, simple classic arithmetic,
flow control, and feedback based on quantum measurement
results should be supported by the quantum co-processor.
Preferably the quantum kernel can run independently until
the final binary measurement results are returned to ensure
fast execution times, minimize decoherence, and minimize the
impact of communication latency between the host proces-
sor and the quantum co-processor. Despite not being NISQ
suitable, Shor’s factoring algorithm [32] maps very well on
a heterogeneous computer architecture since it has clear pro-
gram components: classic pre-processing, a quantum kernel,
and classic post-processing. Proposed implementations of the
factoring quantum kernel [33] raise the need for classic arith-
metic, flow control, and comprehensive feedback on quantum
measurement results as part of the quantum kernel and such
features should, therefore, be supported by the quantum co-
processor.

On the level of NISQ compilers, most challenges are
found in optimizing the execution schedule. Algorithms have
to be mapped and routed on the topology of the quantum
device while overhead should be minimized. When taking into
account device dependent gate error rates and qubit fidelity,
compilers can optimize execution schedules to minimize the
impact of decoherence and yield better results. Also techniques
as randomized compiling [34] will contribute to enabling
useful quantum computations.

For NISQ accelerator applications, the QISA should be
simple concerning the classic operations and flexible concern-
ing the quantum operations. Simple classic operations allow

easy implementations while the flexibility of the quantum
operations can be exploited to optimize the gate set for a
specific application. Exposing low-level functionality enables
the compiler to make optimal use of the hardware capabilities.
As a consequence, programmable microcode will be required,
and binary portability should not be aimed for during the NISQ
era.

When the number of qubits scales up, an increasing number
of quantum operations will have to be fetched from memory
introducing a challenge on the instruction issue rate, also
described as the quantum operation issue rate problem [17],
[30], [35]. Various classic solutions such as VLIW architec-
tures [30], [35] and SIMD like instructions [30], [36] were
proposed to cope with the issue rate challenge, and other
existing techniques such as caches and branch prediction can
potentially contribute to the solution too. Support for classic
arithmetic and flow control by the quantum co-processor will
probably play an important role especially in the context of
feedback based on quantum measurement results.

When scaling up the number of qubits, the interface between
the control electronics and the qubits also becomes more
challenging. Cryogenic control electronics [37], [38] have been
proposed as a solution. Tighter integration of digital control
with the quantum devices will enable further up-scaling.

Finally, major challenges for the qubits in the quantum
device will be the up-scaling, coherence, and error rates. Only
when the quantum physics community can overcome these,
a quantum accelerator can be a meaningful component of a
heterogeneous computer architecture.

V. CONCLUSION

In this paper, we presented a full system stack for a quantum
computer architecture and mapped it onto a heterogeneous
system architecture with a quantum co-processor. Our system
stack defines distinct layers and reaches from algorithms and
programming languages down to quantum devices. With NISQ
technology and heterogeneous computer architectures in mind,
we discussed the opportunities and challenges of mapping
hybrid algorithms to the layers of our system stack. At the
level of programming languages, clear boundaries have to be
defined between the host program and the quantum kernel such
that efficient offloading of workload is possible. The compiler
will play a key role in transforming quantum algorithms
into an efficiently scheduled program for the target quantum
processor taking into account all its features and constraints, as
already the case in our current experimental setups. Choosing
a QISA that is expressive and allows low-level control is
essential. At the level of the microarchitecture, the quantum
operation issue rate will be the primary challenge when the
number of qubits scale. Finally at the level of the quantum
device, improving qubit fidelity and scaling up the number of
qubits are key issues.

The full-stack approach and tight integration of system
layers is the key to the near future development of quantum
co-processors. Exposing low-level features to upper layers
instead of creating strict abstraction boundaries will create



many opportunities for the compiler and allows faster devel-
opment of quantum accelerators in a heterogeneous computer
architecture.
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