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Price's Theorem for Complex Variates 

A. van den Bos 

Abstract-Price's theorem is derived for complex valued variates. The 
derivation differs from the existing derivation in two respects. First, the 
normal variates are not assumed to be circularly complex. Thus the 
result is more general. Second, the characteristic function of the complex 
variates is not used. 

Index Terms-Nonlinear transformations, normal distribution, complex 
stochastic variables. 

I. INTRODUCTION 

Nearly all theoretical results concerning normally distributed com- 
plex valued variates have been derived for a special class: circularly 
complex normal variates [1]-[4]. The complex Price theorem pre- 
sented in [2] is no exception. Since Price's theorem is a key result in 
normal distribution theory, it is worthwhile to derive it for the general 
complex normal distribution [5] .  This derivation is the purpose of 
this correspondence. 

The complex Price theorem may be used for applications similar to 
those of its real counterpart. An example is the proof of Bussgang's 
theorem [6]. A further example is the computation of moments illus- 
trated in Section IV of this correspondence. Examples of normally 
distributed complex valued variates that are not circularly complex are 
samples of a carrier amplitude modulated with normally distributed 
noise [3]. 

The proof of Price's theorem presented in [2] uses the characteristic 
function of circularly complex variates and proceeds analogously to 
the proof of the original, real Price theorem [6], [7]. The latter proof 
involves a number of real integrations by parts. For complex variates 
these change into integrations by parts of functions of complex 
variables over their real and imaginary parts. This complicates the 
proof. 

In this correspondence, a derivation of the complex Price theorem 
is presented that avoids both the restriction to circularly complex 
variates and the complications associated with the use of the charac- 
teristic function. This is achieved by expressing the derivatives with 
respect to complex variables appearing in the complex Price theorem 
as derivatives with respect to the real-valued real and imaginary 
parts. Applying the usual, real Price theorem to these real derivatives 
completes the proof. 

In Section I1 derivatives with respect to complex vector variables 
are introduced. A proof of the general complex Price theorem based 
on these derivatives is given in Section 111. In Section IV an example 
of the application of this theorem is given. 

11. COMPLEX DERIVATIVES 

In this section, partial derivatives of complex functions with respect 
to vector valued complex variables are introduced. They are used in 
the next section for the derivation of the complex Price theorem. 

Suppose that 4: R Z N X  ' + C is a function of the elements of the 
vector w E R Z N X 1  defined as 
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where the superscript T denotes transposition. Furthermore, suppose 
that the vector v CZNX1 is defined as 

(cl c: ' . '  cN cL)T (2) 

where Cn = En +jqn ,  the superscript * denotes complex conjugation 
and = a. Then 

v = A w  (3) 

where A E C2"x2" is ' the block diagonal matrix 

A = d i a g ( J . . . J )  ' (4) 

with blocks J E CZx2 defined as 

(5 )  

Notice that 

where the superscript H denotes complex conjugate transposition. 
Let dJ : ~ ~ 2 % ~ ~ '  + C be the function of the complex variables v 
obtained by substituting the solution of (3) for w in the function 4. 
Then the complex partial derivatives of 1c, with respect to C, and 
are defined by 

/ a  \ 
(7) 

This definition, which originated from complex function theory [S, 
pp. 49-50], was applied to optimization problems in array theory 
by Brandwood [9] and later to complex valued nonlinear numerical 
minimization by van den Bos [lo]. Notice that in (7) Cn and (: 
are considered to be separate variables as usual in complex function 
theory. 

Next define the vector U E C Z N X 1  of arbitrary complex variables 
as (VI . . . ~ 2 . v ) ~ .  Then, by combining definition (7) with standard 
real differential calculus, the following relation between complex 
differential operators with respect to the elements of U may be 
established: 

Therefore 

(9) 

In this expression and in what follows, partial derivatives with respect 
to a row or column vector are defined as the row or column vector 
of partial derivatives with respect to the elements of the vector. 
Furthermore, since by (7) the derivative with respect to a complex 
variable is the conjugate of the derivative with respect to the conjugate 
of that variable, it follows from the transpose of (9) that 

Equations (9) and (10) will be the main tools in the derivation of 
Price's theorem for complex variates described in Section 111. 
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ID. DERIVATION OF PRICE’S THEOREM FOR COMPLEX VARIATES 
Suppose that the elements of the vector w E R2NX1 defined as 

w = (21 Y l  . . ’  X N  Y N I T  (11) 

are jointly normally distributed and that their expectation is equal 
to zero. Let g: R2NX1 -+ C be a function of these elements. Then 
Price’s theorem for real normal variates is described by 

d 
dCww 

where E[ ] is the expectation operator and 

C,, = E[wwT] E R2NX2N 

is the covariance matrix of the vector w [6], [7] .  The ( I C ,  Z)th element 
of the operator d/aC,, is defined as d /dcwkWl  and the corre- 
sponding element of the operator a /dw(a /awT)  as d2/dwkdwr.  
Sufficient conditions to be met by the real and imaginary part of the 
function g are described by Papoulis [ll]. Next, define the vector 
v E CZNX1 by 

U = (21 ZT ” ’  ZN Zh)T (13) 

where zn = xn + jy,. Then 

u = A w  (14) 

where A is defined by (4) and (5). Furthermore, the complex 
autocovariance matrix C,, E C 2 N X 2 N  of v is defined as 

c,, = E [ V U H ] .  (15) 

Notice that the (b ,  l)th element of Cv, is c,kul = E[vr, U;]. 
Therefore, by (14) 

c,, = AC,,A~. (16) 

This result will now be used to transform the real Price’s theorem (12) 
into a complex counterpart. For that purpose, (12) is premultiplied 
by $A* and postmultiplied by $AT, respectively 

- A * a A ’ . E [ g ]  1 = E 
4 dCww 

Then, applying (9) and (10) to both members of this expression yields 

Combining this with (14) and (16) yields Price’s theorem for complex 
normal variates 

with elements 

where ctJkU1 = E [ v ~ v ~ * ]  and h: C 2 N X 1  -+ C is the function of the 
elements of v obtained by substituting Aplu for w in the function g. 
Equations (19) and (20) are the main result of this correspondence. 

The Price theorem described by (19) and (20) has been derived 
without assumptions with respect to the covariances of the elements 
of U or, equivalently, with respect to those of the elements of w. It 
is therefore not restricted to circularly complex variates such as the 
complex Price theorem described in [2]. A further difference of the 
derivation of the Price theorem (1 9) and (20) from the derivation in 
[2] is that no use has been made of the characteristic function of the 
complex variates. 

IV. AN EXAMPLE 
If the matrices in (19) are partitioned in 2 x 2 blocks, corresponding 

blocks in the left-hand and the right-hand member are described by 

This result will now be used to compute, as an example, the fourth- 
order moments 

E[z; zq*zrzs]. (22) 

From (21) it follows directly that (22) is a function of c z l z  , c.;.~, 
c,;~;, c ~ ; ~ ; ,  c Z * p ,  and czTz;. The partial derivatives with respect 
to these covariances are er+;, c ~ ; ~ ; ,  c ~ ; ~ : ,  c~;~:, e+;, and c ~ ; ~ ~ ,  
respectively. Using these results in successive integration steps, and 
observing the condition that (22) is equal to zero if the covariances 
are, yields 

9 4  
4 s  

The expressions for the remaining 15 possible fourth-order moments 
are analogous. If (23) would be a fourth-order moment of a circularly 
complex normal process, the first term would be absent since, by 
definition, and c + ~ ;  would be equal to zero. This result then 
agrees with that of McGee [3]. 

REFERENCES 

K. S. Miller, Complex Stochastic Processes. Reading, MA: Addison- 
Wesley, 1974. 
W. F. McGee, “Circularly complex Gaussian noise-A Price theorem 
and a Mehler expansion,” IEEE Trans. Inform. Theory, vol. IT-15, pp. 
317-319, 1969. 
__, “Complex Gaussian noise moments,” IEEE Trans. Inform. Theory, 

G. Jacovitti and A. Neri, “Estimation of the antocorrelation function of 
complex Gaussian stationary processes by amplitude clipped signals,” 
IEEE Trans. Inform. Theory, vol. 40, pp. 239-245, 1994. 
A. van den Bos, “The multivariate complex normal distribution-A 
generalization” IEEE Trans. Inform. Theory, vol. 41, pp. 537-539, 1995. 
R. Price, “A useful theorem for nonlinear devices having Gaussian 
inputs;” IRE Trans. Inform. Theory, vol. IT-4, pp. 69-12, 1958. 
E. L. McMahon, “An extension of Price’s theorem,” IEEE Trans. Inform. 
Theory, vol. IT-10, p. 168, 1964. 
R. Remmert, Funktionentheorie I .  Berlin: Springer-Verlag, 1984. 
D. H. Brandwood, “A complex gradient operator and its application in 
adaptive array theory,” Proc. Inst. Elec. Eng.1, pt< F and H, vol. 130, 
pp. 11-16, 1983. 
A. van den Bos, “Complex gradient and Hessian,” Proc. Inst. Elec. Eng., 
Vision, Image, Signal Process., vol. 141, pp. 38@382, 1995. 
A. Papoulis, “Comment on ‘An extension of Price’s theorem’,” IEEE 
Trans. Inform. Theory, vol. IT-11, p. 154, 1965. 

vol. IT-17, pp. 149-157, 1971. 


