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 A B S T R A C T

The increase in variable renewable energy sources has brought about significant changes in power system 
dynamics, mainly due to the widespread adoption of power electronics and nonlinear controllers. The resulting 
complex system dynamics and the unpredictable nature of disturbances pose substantial challenges for real-time 
dynamic security assessment (DSA). Machine learning (ML) methods offer advantages in terms of computational 
speed compared to numerical methods and simulators. Offline-trained ML models, however, are limited by 
their training domain; e.g., they cannot easily consider various grid topologies and data changes. Neural 
Ordinary Differential Equations (NODEs) leverage the integration of neural networks and ODE solvers to enable 
continuous-time dynamic trajectory predictions from time series data, resolving the limitation on topological 
and data changes. This paper introduces the Online Neural Dynamics Forecaster (ONDF) workflow, designed 
to monitor and assess system security in real-time using multiple NODEs trained solely with local post-fault 
measurements. Through several case studies, we compare the regression and DSA classification capabilities of 
ONDF with various ML models. Our findings demonstrate that ONDF provides a novel and scalable approach 
for system operators to make informed decisions and apply corrective control actions based on predicted 
dynamics.
1. Introduction

Ensuring the electricity supply is a vital and challenging task for sys-
tem operators. Although power systems are equipped with hierarchical 
protection and control systems, rare severe disturbances can disrupt the 
electricity supply. Any disruption has drastic consequences for society, 
the economy, and industry. To avoid such scenarios, system operators 
simulate the system’s response to severe disturbances using dynamic 
simulation models. Most of these simulations consider the security of 
the system losing only one component of the system (N-1); however, 
scenarios may cause changes in the network topology, and cascading 
failures are similarly dangerous. Further, the massive integration of 
inverter-based generation resources (IBRs) increases the complexity of 
the dynamics [1], and conventional methods require new dynamic 
models, stability theory, and controllers [2,3]. Large-scale realistic 
simulations take long and are not feasible to conduct in near real-time, 
as the number of dynamic states is enormous. However, decentralized 
equivalents of the main contributors to dynamics can also inform about 
dynamics [4].

Machine learning (ML) approaches can learn from data such as 
equivalent models (also called surrogates or proxies) relating the pre-
fault state of the power system to the post-fault security. The training 
data are often synthetically generated using dynamic simulations that 
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mathematically model the system response. Although the generated 
training data often considers a wide variety of operating conditions, 
the data are often limited in the variety of network topology and 
disturbances and do not consider distance- or system-level protection 
schemes and cascading failures. The curse of dimensionality ultimately 
limits the realism of the studies and generated data and, therefore, 
limits the generalization of these trained ML models. As demonstrated 
over the last decades [5], several models such as decision trees [6], ar-
tificial neural networks (ANN), and support vector machines (SVM) [7] 
can predict the dynamic post-fault security of a system using the two, 
pre-fault operating conditions and system measurements. However, ML 
models can only generalize a security boundary for the disturbances 
and conditions that are ‘similar’ to the ones in the training data, and, 
in response, recently, the challenge was mitigated to generate better 
and better training databases [8–10]. However, the severity, type, and 
location of a disturbance are highly unpredictable, and simultaneously 
sampling a large number of disturbances and operating conditions is 
not practical for large-scale systems.

Post-disturbance time series data contains valuable information for 
system operators to assess system security in near real time. System 
operators can assess transient stability by comparing the violations of 
predefined security limits using post-disturbance voltage signals [11]. 
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Alternative to security indices, models like extreme learning machines 
can predict the security label using the centralized post-disturbance 
data sampled from different time instances as separate features [12]. 
More advanced centralized machine learning models process the time 
sequence data collected from all dynamic elements to capture temporal 
relationships between features. For example, Gated Recurrent Units 
(GRUs) construct an information stream from past to future hidden 
states. GRUs use centralized measurements from fault clarification 
instances to asses first-swing transient stability [13]. Long short term 
memory (LSTM) model combined with the convolutional neural net-
work (CNN) model can accurately classify transient security using 
centralized sequential voltage, phase angle, power flow measurements, 
and static fault information as location, duration, and type [14]. Be-
sides security labels, LSTM models can also predict possible cascading 
failures in the system [15]. Although the temporal relationship is 
captured by preserving the sequence data, topological changes in the 
system alter the system’s dynamics, hence the change in the security 
boundary constructed by ML algorithms. Combining graph attention 
networks and GRUs provides high accuracy for voltage and transient 
stability [16] under changing system topology. The mentioned central-
ized solutions could face generalization problems following changes 
in the dynamic system model, such as unseen operating conditions, 
topologies, disturbances, and future system expansions. These com-
plex ML algorithms often require full system observability and large 
training datasets that are computationally expensive to generate using 
simulation tools. However, the computational requirements for gener-
ating such an extensive dataset and training large ML models remain 
challenging for system operators. The evolving nature of the system 
dynamics requires further methods like transfer learning [17] or an 
update (retraining) of the model [18] to preserve the quality of the 
prediction. Furthermore, system operators often receive security labels 
or indices from these ML algorithms where a change in security criteria 
requires the recomputation of labels and retraining of the model. Still, 
the information regarding the post-disturbance system states would be 
limited without dynamics forecasting.

An alternative approach takes the first part of a system’s post-
disturbance dynamics as input to the model to forecast the future 
dynamic system states as output, similar to time-series forecasting 
(e.g., autoregressive integrated moving averages). However, several 
challenges exist in the centralized forecast approach. This approach re-
quires very fast communication of the measured actual dynamics to the 
centralized control center, where the model can predict the dynamics 
further ahead. And, even if communications are fast, predicting the dy-
namics may be inaccurate as discrete system events may occur, which 
is notoriously difficult for ML models to learn. These discrete system 
events may involve multiple failures occurring in cascades and changes 
in the topology from the active protection systems. Nonetheless, this 
type of approach shows promising success. For example, the Koopman 
mode analysis forecasts the rotor angles and speed in the discrete form 
to detect transient instability [19]. Nonlinear autoregressive and LSTM 
models use sequential, discretized, previous measurements as input 
to predict post-fault states, such as the system frequency of the next 
time step [20–22]. However, these discretizations in time may miss 
fast-changing dynamics that occur in shorter time steps. Simulations 
consider these fast-changing dynamics through adaptive time steps. 
Considering these fast-changing dynamics becomes particularly impor-
tant with inverter-based grids. Beyond learning in the time domain, 
the multi-dimensional Fourier transformation trains in the frequency 
domain [23]. Graph Neural Networks (GNNs) consider sequential states 
and process topological and time-domain information [24]. However, 
as topological changes alter the system’s dynamic characteristics, they 
need to be sampled, ultimately addressing but not solving the curse of 
dimensionality. For example, the training dataset for the IEEE 39 bus 
system contains 20,000 samples [24]. This curse of dimensionality, re-
quiring explosive numbers of samples and more dimensions the model 
needs to generalize, challenges these centralized ML workflows, as all 
2 
measurements from all generation units in the system are needed to 
represent the dynamics accurately.

Recently, a new time domain model was proposed, the neural 
ordinary differential equation (NODE) model [25]. NODE can iden-
tify the unknown ODE system equations [26] and be used for the 
continuous-time reversible generative models [27]. NODEs construct an 
ODE system where a deep residual neural network (RNN) parameterizes 
the dynamics of the hidden state instead of actual states. Learning 
dynamics instead of states, the NODEs can forecast longer time horizons 
using a short duration of data [28]. Capability of learning dynamics 
for NODEs further expanded with combining linear and nonlinear 
neural network layers to accurately learn long-time trajectories from 
chaotic data [29]. The ordinary differential equation (ODE) solver 
with reverse mode automatic differentiation efficiently computes the 
scalar gradients of the loss relative to the model parameters. NODE 
model is a continuous function that represents dynamic systems while 
considering the underlying physical flows, unlike the discretized form 
in RNN [30]. The NODE formulation allows approximation of the dy-
namic simulation results of an ODE system purely from the simulation 
data [31]. The continuous function representation is also suitable for 
control tasks using the forecasted trajectories [32]. Having an ODE 
solver for learning and prediction provides additional flexibility against 
noisy or missing data. The noisy data could lead to false predictions 
in sequential models, especially when noise varies between sample 
points or features. However, NODE models can still identify underlying 
dynamics even if data is irregularly collected and contains a certain 
amount of noise [33]. That is why the application scope of the NODE 
has been expanded in recent years.

NODEs were investigated for power systems (and power system 
dynamics). For example, continuous output can eliminate data incon-
sistencies between digital twins and measurements for forecasting in 
power systems [34]. NODE estimates the unknown parameters dynamic 
model of the generation units from simulations to improve mathemat-
ical models [35] and replace the analytical models of various system 
controllers [36] for power system identification. NODE can predict ro-
tor angles of synchronous machines even under noisy training data and 
makes NODE more suitable for grid applications where measurements 
could contain certain noise [37]. NODE’s learning capability of system 
dynamics is not limited to the transmission systems. The Bayesian 
inference model can provide microgrid dynamic model parameters’ 
probability distribution for NODE that predicts microgrid dynamics 
accurately [38]. The Latent NODE models can integrate and impute 
multi-time scale smart distribution grid measurements, which are irreg-
ularly sampled and contain measurement noise [39]. Inspired by these 
successes, this paper aims to address the dimensionality challenges in 
real-time, ML-based security assessments by proposing, for the first 
time, NODEs for post-fault prediction of dynamics.

This paper proposes the Online Neural Dynamics Forecaster (ONDF), 
a near-real-time decentralized workflow that forecasts the dynamics of 
the measured location to identify the system’s security. ONDF directly 
predicts the future dynamic time trajectory (model output) from the 
post-fault local power dynamics (model input). Meanwhile, the ONDF 
workflow adapts to ‘any’ system conditions and disturbances. Before the 
operation, the ONDF model considers multiple, pre-trained basis NODE 
models that maximize the diversity of the pre-trained conditions using 
approximate entropy. This approach is fault-agnostic and generalizes 
to many faults and operating conditions, marking a significant step for-
ward in addressing a long-existing limitation of ML-based approaches as 
the curse of dimensionality. The proposed real-time security evaluation 
combines decentralized NODE forecasts of available measurements at 
the control center. As this evaluation is decentralized, it scales to large 
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Fig. 1. Approximating power system (PS) dynamics in offline and online times using simulations (a), artificial neural networks (b), proposed NODEs (c).
power networks using only a few measurements at large generators. 
This paper contributes with

1. ONDF to forecast real-time local dynamics with NODE mod-
els. We propose using NODE models trained in near real-time 
with the moving window approach to approximate changing 
dynamics from cascading events. Our approach is a continuous-
time-domain formulation and efficiently trains with minimal 
measurements.

2. Decentralized approach predicts the dynamics for a centralized 
security assessment. Multiple NODEs learn the local dynamics 
of the selected measurements without requiring full system ob-
servability; hence, ONDF is scalable to larger networks. The 
approach is significantly faster than any centralized approach, 
as the number of dynamic states is significantly lower.

Our case studies consider the 400 kV Transmission example with 
46 buses in DigSilent PowerFactory to provide evidence of the benefits 
and limitations. Further case studies on the IEEE 9-bus and Texas 2000-
bus systems provide related evidence in terms of scalability. The case 
study model considered cascading failures, distance, and system protec-
tion systems such as under/over frequency/voltage protection. Studies 
demonstrate the proposed model outperforms conventional ML models 
and approximate ODE systems. Studies investigate the NODE model for 
estimating the post-fault dynamic security of the power system. Studies 
illustrate the functionality of the NODES, e.g., the approximation of 
multiple stages during training, the moving-window training workflow, 
and the benefits of decentralization. Finally, the computational studies 
verify the suitability of our proposed modifications of NODEs, making 
them suitable for near real-time training.

2. Online power system dynamics forecasting

𝑥∗(𝑡) are the complex, nonlinear dynamic states of the system dy-
namics  following a disturbance 𝜗 ∈ 𝛺𝜗. Fig.  1 shows three ap-
proaches for estimating dynamic security based on different models. 
The first approach simulates 𝑓 with the Root Mean Square (RMS) 
method to compute 𝑥(𝑡) as an initial value (𝑥0, 𝑦0) problem involving 
many differential–algebraic equations (DAE)s. The second approach 
relies on ML models (e.g., ANNs) where each 𝐴𝑁𝑁𝑧 model predicts 
the binary label 𝑧 for the contingency considered 𝑞 ∈ 𝜗𝐶 . Despite the 
progress in learning better models, there are several open challenges for 
using ANN online due to the unpredictable nature of the disturbance 
and the error between the simulation and measurements that can lead 
to inaccurate predictions. Updating the DAE system alters the 𝑥(𝑡) for 
the same (𝑥0, 𝑦0) and 𝑞. Therefore, corresponding 𝑧 changes and ANN 
requires another expensive offline data generation process.

This paper uses the measured system dynamics  to train NODE 
models sequentially, considering the evolving post-fault dynamics. The 
learned NODE has a continuous output 𝑥̂(𝑡𝑘, 𝑡𝑘 + 𝜏) from initial time 
𝑡𝑘 to 𝑡𝑘 + 𝜏 where 𝑘 corresponds to the investigated time window. 
Although NODE models are pre-trained with simulated dynamics 𝑓 , 
retraining with actual dynamics 𝑋𝑡𝑟𝑎𝑖𝑛 collected from the system 
reduces the impact of the model error. The proposed NODE moves the 
time windows for training; hence, for the first time, this model can 
consider the dynamics caused by cascading failures or control actions. 
Cascading and post-fault actions are typically not considered as they 
would require extremely many training samples from simulations.
3 
2.1. Neural networks to predict security

An ANN model transforms features [𝑥, 𝑦] from the input to output 
layer that contains estimated label 𝑧, for example, dynamic security 𝑧 =
0 or insecurity 𝑧 = 1. Transformations are ‘neuron’ functions aggregated 
in layers. Each neuron function with trainable parameters 𝜃 multiplies 
the output from the previous layer’s neurons. The gradient descent 
method fits the model parameters 𝜃 to extensive correct combinations 
([𝑥, 𝑦], 𝜈) as shown in Fig.  1(b). Using training data, the backward 
propagation computes the gradients of each neuron concerning the 
scalar-valued loss function 𝜕𝐿𝜕𝜃  following the chain rule. Then, gradient 
descent iteratively updates 𝜃 in the direction of the negative gradient.

2.2. Neural ordinary differential equations (NODEs)

Residual neural network models apply nonlinear sequential trans-
formations ℎ(𝑥(𝑡), 𝜃) to the 𝑑 dimensional hidden state 𝑥(𝑡) ∈ ℜ𝑑 where 
𝑡 ∈ [0, 1, 2,… , 𝜏]. 
𝑥(𝑡 + 1) = 𝑥(𝑡) + ℎ(𝑥(𝑡), 𝜃𝑡) (1)

is equivalent to Euler’s method when 𝑡 becomes small with an increas-
ing number of layers in the network.

The neural network ℎ(𝑥(𝑡), 𝜃, 𝑡) approximates the hidden state dy-
namics 𝑑𝑥

𝑑𝑡  instead of the state itself 𝑥𝑡. The ODE solver computes 

𝑥(𝑡0 + 𝜏) = 𝑥0 + ∫

𝑡0+𝜏

𝑡0
ℎ
(

𝑥(𝑡), 𝜃, 𝑡
)

𝑑𝑡

= ODESolve
(

𝑥0, ℎ, 𝑡, (𝑡0, 𝑡0 + 𝜏), 𝜃
)

(2)

from the ANN instead of the known DAE system. The NODE model 
learns the hidden dynamics and constructs a continuous function from 
the discrete data, shown in Fig.  1(c). However, applying the chain 
rule to an ODE solver is computationally resource-intensive and would 
not approach the speed for near real-time DSA; therefore, the NODE 
training uses the adjoint sensitivity method [25]. The adjoint states 𝑎(𝑡)
are equivalent to the derivative of loss to state 𝜕𝐿

𝜕𝑥(𝑡) . Another ODE can 
define the adjoint dynamics 
d𝑎(𝑡)
d𝑡

= −𝑎(𝑡)𝑇
𝜕ℎ(𝑥(𝑡), 𝑡, 𝜃)

𝜕𝑥
(3)

and the reverse mode automatic differentiation computes the associated 
vector Jacobian pairs. The loss gradient 
d𝐿
d𝜃

= −∫

𝑡0

𝑡0+𝜏
𝑎(𝑡)𝑇

𝜕ℎ(𝑥(𝑡), 𝑡, 𝜃)
𝜕𝜃

d𝑡 (4)

uses an integral reverse in time, and the ODE solver computes the 
model parameter updates from the adjoint system Eq. (3).

3. Online neural dynamics forecaster (ONDF)

Our proposed ONDF workflows (Fig.  2) perform the dynamics fore-
casting in real-time against the experienced disturbance. The online 
workflow takes PMU measurements and pre-trained NODE models from 
the offline workflow as inputs and outputs of the forecasted dynamics.
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Fig. 2. ONDF workflows with RMS and the actual power system.
3.1. Offline centralized workflow

The offline workflow (details in Section 3.3) performs dynamic 
simulations to create the database 𝛺𝑋 for the NODE pretraining. Cre-
ating this database is a common computational challenge requiring 
representative sampling of many feasible operating conditions [40]. 
However, the proposed approach does not suffer from this challenge 
as the purpose of the database is to select a few selected samples for 
pre-training to accelerate the online training. The database 𝛺𝑋 has 
sets of dynamic states 𝑋𝐺

𝑗 ⊆ 𝑋 with 𝑋𝑠𝑦𝑛 from selected generators 
𝑗. The workflow selects generators with large power ratings in their 
region, as their dynamics represent the system’s security. This selection 
is similar to the limited available dynamic measurements in real-life 
power systems. Centralized data-driven approaches often rely on time-
series measurement from all (or many) buses in the system, which 
the simulation environment can satisfy, but not the online measure-
ments. The approximate entropy (ApEn) analyzes the complexity 𝑥(𝑡)
by quantifying the ’unpredictability of fluctuations’ [41]. Subsequently, 
the affinity propagation (AP) algorithm clusters the data based on 
ApEn. The workflow fits NODE models on the cluster centroids 𝜅 with 
𝑋𝜅 . Then, the workflow adds the model parameters 𝜃𝜅 → 𝛺𝜃 to the 
pre-trained models 𝛺𝜃 .

The dynamics database in Fig.  2 requires RMS simulations’ dynamic 
trajectories 𝑋𝐺

𝑗,𝑣 of scenario 𝑣. Each scenario 𝑣 combines different initial 
conditions [𝑥0, 𝑦0] ∈ 𝑜𝑐 and fault models 𝜗 ∈ 𝑓 . The set of 
operating conditions 𝑜𝑐 contains samples from historical generation 
and demand profiles to alter the initial conditions (𝑥0, 𝑦0). The fault 
model set 𝑓  includes faults with varying impedances and locations 𝐹

𝑖
to diversify the dynamics in the database 𝛺𝑋 . Historical recordings can 
supplement simulations 𝛺𝑋 in power systems that do not have accurate 
dynamic models. Inaccurate dynamic models can lead to centralized 
data-driven approaches becoming unreliable in real-life situations, but 
incorporating an online workflow helps bridge the gap between the 
mathematical model and reality.

3.2. Online decentralized workflow

The decentralized workflow, shown in Fig.  2, starts by detecting an 
event related to the change in the states of the monitored power system 
𝑋𝑀 . Event detection (𝑋𝑀 [𝑡], 𝑋𝑀 [𝑡−1]) activates the signal 𝛬 ∈ {0, 1}
after sudden changes in system dynamics, 

𝛬 =
{

1, if ‖

‖

𝑋𝑀 [𝑡] −𝑋𝑀 [𝑡 − 1]‖
‖

≥ 𝛾
0, otherwise. (5)

𝛬 might activate responding to simple dynamic events such as line 
switching; hence, the trigger threshold value 𝛾 needs attention.

Subsequently, the workflow selects the pre-trained model 𝑀0 with 
the lowest loss to post-fault system measurements 𝑋𝑀  during the 
4 
predefined protection delay 𝑡𝑓 . 𝑋𝑀  depends on the system loading, 
generation dispatch, topology, and dynamic event properties. There-
fore, any change in system topology from the base topology will 
be captured by retraining the 𝑀0. The protection system clears the 
disturbance during the delay, and the workflow computes the loss

min
𝜃𝜅∈𝛺𝜃

𝐿(𝑋̂,𝑋𝑀 [𝑡𝑀 ]) (6)

s.t. 𝑋̂ = ODESolve(𝑋𝑀0 ,𝑀0, 𝑡
𝑀 , 𝜃𝜅 ) (7)

𝑡𝑀 = [𝑡0 + 𝑡𝑓 , 𝑡1] (8)

using the initial condition 𝑋𝑀0  for all models 𝛺𝜃 in time span 𝑡𝑀 . 
The workflow selects the best model parameters 𝜃∗ for the initial 
model 𝑀0. Although the initial model’s accuracy will increase with 
training, system operators can already analyze this initial prediction 
𝑋̂ to understand the approximated system response.

In (near) real-time, the workflow’s Algorithm 1 starts real-time 
training of the workflow with the selected model 𝑀0 at 𝑡1 with initial 
parameters 𝜃∗ using the monitored states 𝑋𝑀 . A moving window 
replaces 𝑋𝑀  sequentially with the latest measurements to efficiently 
retrain for each time window 𝑘 until the system converges (𝛬 = 0). 
The Algorithm 1 collects data 𝑋𝑡𝑟𝑎𝑖𝑛 in batches (line 6) and trains 
consecutively a NODE model 𝑀𝑘 (line 7). The size of the training data 
|𝑋𝑡𝑟𝑎𝑖𝑛

| expands until the predefined training time span 𝑡𝑘 + 𝜏𝑡𝑟𝑎𝑖𝑛 is 
achieved. Training during the data collection increases the efficiency 
and feasibility of learning in near real-time. The Algorithm 1 continues 
training (line 11) while collecting the validation data 𝑋𝑣𝑎𝑙 (line 13). 
The final parameters 𝜃̂𝑘 corresponds to the minimum validation loss 
𝐿(𝑋̂1, 𝑋𝑣𝑎𝑙) (line 15). The algorithm shifts the time window 𝑘 (line 20) 
and starts training with the new data until 𝛬 = 0 (line 22), indicating 
the system dynamics converging to a steady state. Fig.  3 illustrates the 
algorithm by showing how time spans shift with the size of the training 
data.

In Fig.  4, the decentralized workflow trains three NODEs with 
corresponding monitored generators.TSO receives the final set of pa-
rameters and corresponding initial conditions [𝜃̂, 𝑋0] after each time 
window. Decentralized training of NODEs ensures capturing local dy-
namics against any topological changes in the system where each 
forecast approximates the dynamics under changed topology. This 
property enables the ONDF to generalize to unseen system dynamics as 
each NODE’s final parameters 𝜃̂ are unique to the measured dynamics 
𝑋𝑀 .TSO computes the forecasted trajectories 𝑋̂ and then conducts 
the custom real-time DSA function 𝛹 (𝑋̂) to activate the system-level 
corrective control actions. The possible control actions could include 
over/under frequency or voltage shedding schemes, but the properties 
and impacts of control actions are out of the scope of this paper.
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Fig. 3. ONDF online training illustration, the state variable trajectory following a disturbance (a), the size of the training data (b), model time spans in a moving window (c).
Fig. 4. Decentralized workflow and centralized security assessment.
3.3. Data analysis and selection of pretraining data

The analysis of the complexity of trajectories in Fig.  2 selects 
representative dynamic trajectories 𝑋𝜅 ∈ 𝛺𝑋 for model tuning and 
pretraining. The analysis scales the dynamic states based on their 
machine ratings and nominal operating values. The selection of pre-
training data aims to find simulation results with various regularity. 
The ApEn estimates this rate of regularity in time data series without 
prior knowledge about the source [42]. Each row vector 𝑥 of 𝑋𝐺

𝑗,𝑣
contains the equally spaced time sequence data of generator 𝑗 and 
scenario 𝑣. The subsequence 𝜁 [𝑒] = [𝑥[𝑒], 𝑥[𝑒+ 1],… , 𝑥[𝑒+𝑚− 1]] starts 
at time point 𝑒 with window size 𝑚 ∈ Z+ where 𝑚 ≤ 𝑁 . 

𝐶(𝑚, 𝑒, 𝜇) =
count(𝜚, 𝑑(𝜁 [𝑒], 𝜁 [𝜚]) ≤ 𝜇)

𝑁 − 𝑚 + 1
, (9)

counts instances where the maximum distance 

𝑑(𝜁 [𝑒], 𝜁 [𝜚]) = max
𝜌

(|𝑥[𝑒 + 𝜌 − 1] − 𝑥[𝜚 + 𝜌 − 1]|), (10)

between two subsequences 𝑒 and 𝜚 is lower than the threshold 𝜇 for 
each 𝜚, 𝜌 where 𝑒, 𝜚, 𝜌 = {1, 2,… , 𝑁 − 𝑚 + 1}. Then, 

ApEn(𝑚, 𝜇,𝑁, 𝑥𝐺) = 𝜙(𝑚, 𝜇) − 𝜙(𝑚 + 1, 𝜇) (11)
5 
uses the average of the logarithmic sum 

𝜙(𝑚, 𝜇) = 1
𝑁 − 𝑚 + 1

𝑁−𝑚+1
∑

𝑒=1
log𝐶(𝑚, 𝑒, 𝜇). (12)

The ApEn is a normalized quantity for samples in 𝛺𝑋 . The elements of 
the row vector 𝑣 contain summed ApEn values corresponding to the 
sample 𝑣 for the clustering algorithm.

The AP algorithm selects representative samples based on mes-
sage communications. The algorithm clusters the samples using the 
availability (𝛼, 𝛽) and responsibility 𝜂(𝛼, 𝛽),

(𝛼, 𝛽)𝛼≠𝛽 ← min{0, 𝜂(𝛽, 𝛽) +
∑

𝛼′≠𝛽,𝛼
max {0, 𝜂(𝛼, 𝛽)}} (13)

𝜂(𝛼, 𝛽) ← 𝑠(𝛼, 𝛽) − max
𝛽′ ,𝛽′≠𝛽

{

(𝛼, 𝛽′) + 𝑠(𝛼, 𝛽′)
}

(14)

messages between samples where 𝛼, 𝛽 ∈ {𝑣} [43]. The similarity, the 
negative Euclidean distance 𝑠(𝛼, 𝛽) = − ‖

‖

‖

𝛼 −𝛽
‖

‖

‖

2 computes these 
two messages. The responsibility 𝜂(𝛼, 𝛽) message from 𝛼 to 𝛽 shows the 
accumulated evidence of how well 𝛽 acts as an exemplar point for 𝛼. 
The availability 𝑎(𝛼, 𝛽) message from 𝛽 to 𝛼 shows the accumulated 
evidence of 𝛼 to choose sample 𝛽 as its exemplar. The algorithm 
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Algorithm 1: Real-time training of ONDF Workflow
Input: 𝑋, 𝑡, 𝛬, 𝑡1, 𝜃∗
Output: 𝑋̂𝑘, 𝜃̂𝑘

1 𝑘 = 1, 𝜃1 = 𝜃∗

2 while 𝛬 = 1 do
3 𝑋𝑀 ← 𝑋
4 𝑡𝑀 ← 𝑡
5 if 𝑡𝑘 < 𝑡 < 𝑡𝑘 + 𝜏𝑡𝑟𝑎𝑖𝑛 then
6 𝑋𝑡𝑟𝑎𝑖𝑛 = 𝑋𝑀 [𝑡𝑘 ∶ 𝑡]; 𝑡𝑡𝑟𝑎𝑖𝑛 = 𝑡𝑀 [𝑡𝑘 ∶ 𝑡]
7 𝜃𝑘 = Train(𝑀𝑘, 𝜃𝑘, 𝑋𝑡𝑟𝑎𝑖𝑛, 𝑡𝑡𝑟𝑎𝑖𝑛)
8 end 
9 else if 𝑡𝑘 + 𝜏𝑡𝑟𝑎𝑖𝑛 < 𝑡 < 𝑡𝑘 + 𝜏𝑣𝑎𝑙 then
10 𝑋̂𝑝𝑟𝑒𝑣

𝑘 = ODESolve(𝑋𝑀 [𝑡𝑘],𝑀𝑘, 𝜏𝑣𝑎𝑙 , 𝜃𝑘)
11 𝜃𝑘 = Train(𝑀𝑘, 𝜃𝑘, 𝑋𝑡𝑟𝑎𝑖𝑛, 𝑡𝑡𝑟𝑎𝑖𝑛)
12 𝑋̂𝑘 = ODESolve(𝑋𝑀 [𝑡𝑘],𝑀𝑘, 𝜏𝑣𝑎𝑙 , 𝜃𝑘)
13 𝑋𝑣𝑎𝑙 = 𝑋𝑀 [𝑡𝑘 ∶ 𝑡]; 𝑡𝑣𝑎𝑙 = 𝑡𝑀 [𝑡𝑘 ∶ 𝑡]
14 if 𝐿(𝑋̂𝑘, 𝑋𝑣𝑎𝑙) < 𝐿(𝑋̂𝑝𝑟𝑒𝑣

𝑘 , 𝑋𝑣𝑎𝑙) then
15 𝜃̂𝑘 = 𝜃𝑘
16 end 
17 end 
18 else if 𝑡𝑘 + 𝜏𝑣𝑎𝑙 ≤ 𝑡 then
19 𝑋̂𝑘 = ODESolve(𝑋𝑀 [𝑡𝑘],𝑀𝑘, 𝜏𝑝𝑟𝑒𝑑 , 𝜃̂𝑘)
20 𝜃𝑘+1 = 𝜃𝑘 𝑡𝑘+1 = 𝑡 , 𝑘 = 𝑘 + 1
21 end 
22 𝛬 = (𝑋𝑀

𝑡 , 𝑋𝑀
𝑡−1)

23 end 

initializes from zero 
(𝛽, 𝛽) ←

∑

𝛼′≠𝛽
max

{

0, 𝜂(𝛼′, 𝛽)
}

(15)

and iteratively updates the two messages
𝜂𝐼+1(𝛼, 𝛽) = 𝜆𝜂𝐼 (𝛼, 𝛽) + (1 − 𝜆)𝜂𝐼+1(𝛼, 𝛽) (16)

𝐼+1(𝛼, 𝛽) = 𝜆𝐼 (𝛼, 𝛽) + (1 − 𝜆)𝐼+1(𝛼, 𝛽) (17)

until identified exemplar points do not change for a predefined number 
of iterations. 𝜆 controls the damping of message updates at iteration 𝐼 .

As the number of clusters might be large, the centroids can be 
further clustered with AP repeatedly. The set 𝑋𝐺

𝜅  considers dynamic 
trajectories of centroid samples 𝜅 selected by AP to train NODEs.

3.4. NODE tuning and pretraining for online workflow

The NODE model hyper-parameter tuning and pretraining prepare 
the NODEs for the online workflow (see Fig.  2). Any subset of training 
data samples 𝑋𝐺

𝜅  can tune hyper-parameters of the NODE models 𝑀𝜅 ∈
𝛺𝜃 . Various algorithms can tune hyper-parameters [44]. Using a grid 
search approach, this paper tunes a single hyper-parameter from the 
initial base model at a time. Examples of hyperparameters are the 
ANN architecture (number of hidden layers, neurons, and activation 
functions) and the learning rate. The NODE pre-training considers data 
𝑋𝑡𝑟𝑎𝑖𝑛

𝜅 = 𝑋𝐺
𝜅 [𝑡

𝑡𝑟𝑎𝑖𝑛
𝜅 ] starting from the time point 𝑡1 with 𝜏𝑡𝑟𝑎𝑖𝑛 time span 

so that the temporal order is consistent. The function 
Train(𝑀𝜅 , 𝜃𝜅 , 𝑋

𝑡𝑟𝑎𝑖𝑛
𝜅 , 𝑡𝑡𝑟𝑎𝑖𝑛𝜅 ) (18)

trains one epoch of the NODE model 𝑀𝜅 considering ANN parameters 
𝜃𝜅 , the data 𝑋𝑡𝑟𝑎𝑖𝑛

𝜅  and the time instances 𝑡𝑡𝑟𝑎𝑖𝑛𝜅 . To learn the best 
hyper-parameters, the training approach repeats 𝑁𝑒𝑝𝑜𝑐ℎ times the Train
function. Subsequently, 
𝑋̂𝜅 = ODESolve

(

𝑋𝑡𝑟𝑎𝑖𝑛
𝜅 [𝑡1],𝑀𝜅 , 𝜏, 𝜃𝜅

)

(19)

computes the solution 𝑋̂ from the initial condition 𝑋𝑡𝑟𝑎𝑖𝑛
𝜅 [𝑡1] with 

the time span 𝜏. The ODE solvers’ computing time depends on the 
6 
size, stiffness, and complexity of the ODE problem. Tuning the error 
tolerance can shorten the solving time but may result in lower accuracy.

The initial model database 𝛺𝜃 contains model parameters 𝜃𝜅 with 
the lowest loss 𝐿(𝑋𝐺

𝜅 , 𝑋̂𝜅 ) for the prediction horizon 𝜏 that covers the 
entire trajectory. If there are results from a new disturbance or changed 
system conditions, the approach can train a new NODE model 𝑀𝜅+1 to 
update the database. Over time, the approach is adaptive, adding new 
system dynamics to the database with high variability.

3.5. Power system dynamics

The power system dynamics in DAE form are 

𝑥̇ = 𝑓 (𝑥, 𝑦, 𝑝, 𝑡), 𝑥(𝑡0) = 𝑥0 (20a)

0 = 𝑔(𝑥, 𝑦, 𝑝, 𝑡), 𝑦(𝑡0) = 𝑦0, (20b)

where 𝑓 (𝑥, 𝑦, 𝑝, 𝑡) are the ODEs and 𝑔(𝑥, 𝑦, 𝑝, 𝑡) the algebraic equations. 
The DAE is an initial value problem with dynamic 𝑥 and algebraic 𝑦
states initialized at time 𝑡0. 𝑝 are system parameters, e.g., inertia or con-
troller gains. The algebraic nonlinear power flow equations compute 
the net active 𝑃𝑖 and reactive power 𝑄𝑖 injections at each bus 𝑖 ∈  𝑏

using network conductance and susceptance matrices 𝐺,𝐵 ∈ ℜ 𝑏× 𝑏 .
The differential equations 𝑓 (𝑥, 𝑦, 𝑝, 𝑡) are ODEs with states 𝑥 and 

derivatives 𝑥̇ considering synchronous and converter-based generators’, 
each having internal and external states. The synchronous machines 
consider the states 𝑋𝑆𝑦𝑛 = [𝛿, 𝜔, 𝑃𝐸 , 𝑄𝐸 , |𝑉 |] where the states are 
rotor angle 𝛿, rotor speed 𝜔, active power injection 𝑃𝐸 , reactive power 
injection 𝑄𝐸 and terminal voltage 𝑉 . The equations are 

𝛿̇ = 𝜔𝐵(𝜔 − 𝜔𝑆 ) (21a)

𝜔̇ = 1
2𝐻

(

𝑇𝑀 − 𝑇𝐸 −𝐷(𝜔 − 𝜔𝑆 )
)

(21b)

𝑇𝐸 ≈ 𝑃𝐸 (21c)

𝑃𝐸 + 𝑗𝑄𝐸 = (𝑒𝑑 𝑖𝑑 + 𝑒𝑞𝑖𝑞) + 𝑗(𝑒𝑞𝑖𝑑 − 𝑒𝑑 𝑖𝑞) (21d)

𝑉 = 𝑒𝑑 + 𝑗𝑒𝑞 , (21e)

with the base synchronous frequency 𝜔𝐵 , and the synchronous refer-
ence speed 𝜔𝑆 . The deviation from the reference considers mechanical 
𝑇𝑀  and electrical 𝑇𝐸 torques. 𝐻 is the inertia constant. The stator 
voltages 𝑒𝑑 , 𝑒𝑞 , and currents 𝑖𝑑 , 𝑖𝑞 in the ‘‘dq’’ reference frame calcu-
late the rest of the states. Dynamic models have many more states 
and equations from machine regulators such as turbine governors, 
automatic voltage regulators, and power system stabilizers [45]. The 
ONDF workflow only learns the selected dynamic states 𝑋𝑆𝑦𝑛 from the 
full-order machine model instead of learning the large dimensionality 
of the actual physical model. The dimension of 𝑋𝑆𝑦𝑛 is constant for 
each NODE model. Although the reduction in the order is essential to 
achieve feasible training of NODEs during the post-fault, it introduces 
approximation errors. However, the produced error would not cause 
misclassification of the security label as forecasted dynamics exhibit 
lower complexity while capturing the trend of the observed dynamics.

The converter-based generation units have various dynamic models 
and controllers where various dynamic states contain security infor-
mation. Although some of the selected states are not measurable, 
NODE can learn from the output of the dynamic state estimation. 
The time scales of inverter-based generators are shorter than those of 
synchronous machines, so the NODE can train with shorter training 
data as dynamics will be observable.

The dynamic state estimation is out of the scope of this paper. Al-
ternatively, ONDF could learn PMUs from transmission lines to monitor 
voltage stability, thermal overloadings, or power oscillations.
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3.6. Simulating representative faults

Simulating the post-fault dynamics 𝜗 = [𝑃 𝐹
𝑖 , 𝑄𝐹

𝑖 , 𝑢(𝑡)] requires a fault 
model as 
𝑃 𝐹
𝑖 + 𝑗𝑄𝐹

𝑖 = −𝑢(𝑡)𝑔𝐹𝑖 𝑉
𝐹
𝑖

2 + 𝑗
(

−𝑢(𝑡)𝑏𝐹𝑖 𝑉
𝐹
𝑖

2) (22a)

𝑢(𝑡) =
{

1, 𝑡𝑓 ≤ 𝑡 ≤ 𝑡𝑐 + 𝑡𝑓
0, 𝑡 < 𝑡𝑓 , 𝑡 > 𝑡𝑐 + 𝑡𝑓 .

(22b)

 The three-phase fault with impedance 𝐹
𝑖 = 𝑔𝐹𝑖 + 𝑗𝑏𝐹𝑖  causes fault 

current that causes a power flow 𝑃 𝐹
𝑖  and 𝑄𝐹

𝑖  at voltage magnitude 𝑉 𝐹
𝑖 , 

at bus 𝑖. The simulation activates the fault 𝑢(𝑡) at time 𝑡 = 𝑡𝑓 , and the 
protection system clears the fault at 𝑡 = 𝑡𝑓 + 𝑡𝑐 . As the probability of 
simultaneous faults at different buses is extremely low, 𝑔𝐹  and 𝑏𝐹  are 
assumed to be zero except at the selected fault bus.

Simulating all possible fault models 𝜗 with varying parameters 
(𝑔𝐹𝑖 , 𝑏

𝐹
𝑖 ) is not practical. Therefore, the approach only simulates critical 

faults 𝜗𝐶 to compute representative dynamic system responses. Nu-
merical methods compute the dynamic trajectory 𝑥(𝑡) using the system 
Eq. (20) and disturbance Eq. (22). Euler method explicitly approximates 
with a non-infinitesimal time step 𝛥𝑡. 

𝑥̇ = 𝑑𝑥
𝑑𝑡

≈
𝑥(𝑡 + 𝛥𝑡) − 𝑥(𝑡)

𝛥𝑡
(23a)

𝑥(𝑡 + 𝛥𝑡) = 𝑥(𝑡) + 𝑓 (𝑥, 𝑦, 𝑝, 𝑡) (23b)

𝑦(𝑡 + 𝛥𝑡) = 𝑔(𝑥, 𝑦, 𝑝, 𝑡 + 𝛥𝑡) (23c)

3.7. ONDF application: Online security assessment

The TSO can assess the system’s dynamic security following a severe 
disturbance using ONDF forecast results with the selected generator’s 
measurements. The following function 
𝛹 (𝑋) = 𝛹 (𝛿, 𝜔, 𝑃𝐸 , 𝑄𝐸 , |𝑉 |) (24)

returns the binary security label 𝑧 = 0 (secure) or 𝑧 = 1 (insecure), 
based on the comparing forecast results with the corresponding security 
limits. The detailed definition of 𝛹 depends on the TSO preferences, 
and a generic function is assumed. For example, one way to assess 
static security is by computing the thermal limit violations of the 
machines based on the 𝑃𝐸 and 𝑄𝐸 forecasts. Voltage |𝑉 | and frequency 
𝜔 protection systems allow the operation for a limited time 𝛾 𝑡 [s] 
under emergency conditions for synchronous machines. The deviation 
of angles 𝛿𝑗 from the center of inertia (COI) rotor angle 𝛿𝐶𝑂𝐼  can detect 
out-of-synchronism conditions. More specifically, the security criteria is 
defined as |𝛿𝑗 − 𝛿𝐶𝑂𝐼

| ≥ 𝛿𝑚𝑎𝑥, where 𝛿𝑗 ∈ 𝑋̂.
If any predicted generator’s angle deviates more than the prede-

fined limit 𝛿𝑚𝑎𝑥 from the COI reference, the system becomes transient 
insecure. There, the COI is 𝛿𝐶𝑂𝐼 =

∑

𝑗 𝐻𝑗𝛿𝑗
∑

𝑗 𝐻𝑗
 is weighted by machines’ 

inertia constants 𝐻𝑗 . Unlike collecting each machine’s rotor angle, 
this paper computes the COI angle using only measured generators. 
Any deviation from the limited generation subset still reveals out-
of-synchronism conditions. Moreover, the NODE provides continuous 
predictions starting from initial conditions with the desired time points 
from the ODE solver. Therefore, any communication delays do not 
create any problems for the security assessments in the control center. 
Moreover, any function that takes time series data for the security 
assessment can use the ONDF workflow for predicted states. 𝛹 in-
cludes all security limits described above in this paper to assess online 
dynamic security.

4. Case study

The studies considered the 400 kV Transmission System (TS) exam-
ple of [46], the Texas 2000-bus grid, and the IEEE 9- and 39-bus systems. 
The TS system has 46 buses and nine transmission lines. The system 
is divided into four zones with 13 static loads (PQ), 18 synchronous, 
7 
and seven inverter-based generators (onshore wind) with their dynamic 
models and controllers. TS system includes distance protection for fault 
clearing, under/over frequency, and voltage protection for cascading 
events. Three-phase faults with impedances 𝑍𝑓 = {0 + 𝑗0, 1 + 𝑗0.1, 10 +
𝑗1, 10 + 𝑗10} were applied to four transmission lines and two high-
voltage buses separately where 𝑓 = 24. Hourly dispatch profiles 
of five days were randomly selected as initial conditions 𝑜𝑐 = 120
for each fault, resulting in the database size as |𝛺𝑋

| = 2880. The 
dynamics of five synchronous machines (NE-G2, NW-G5, SE-G6, SW-
G1, SW-G8) were selected for 𝛺𝑋 based on their geographical zones 
and machine ratings. The inverter-based generators can be used as 
a measurement point, but in this test network, their contribution to 
system dynamics was smaller than that of the selected generators due to 
their capacities. Moreover, the simulation environment provides noise-
free data, but PMU measurements can contain a certain error. Having 
noisy measurements is not a challenge for the NODE that searches 
for the best ODE representation, where additional noise could increase 
training error but does not affect the mean approximated dynamics.

The AP clustering algorithm selected the representative simulation 
results for pretraining with the damping 𝜆 = 0.5. The standard deviation 
 of the sequence 𝑥𝐺 was used for ApEn threshold 𝜇 = 0.2×, and the 
window size was set to 𝑚 = 2 as a typical selection [47]. The initial 
model database 𝛺𝜃 stored the pretrained model parameters 𝜃𝜅 . The 
training time for each window was 𝜏𝑡𝑟𝑎𝑖𝑛 = 3.45 s, and the prediction 
horizon was 𝜏𝑝𝑟𝑒𝑑 = 16.15 s. The sampling period was 50 ms (equivalent 
to 69 time points for training). The delay time 𝑡𝑑 = 50 ms avoided 
learning transient currents. The training was limited to only 40 epochs 
to test the convergence limit of the model. In a practical setup, the 
number of epochs could be increased to improve forecast accuracy 
and avoid convergence problems. The first 20 training epochs were 
during data collection. The last 20 epochs were considered for the entire 
training data. The following were regression baseline models: linear 
regression, support vector machines (SVM) with three kernels (linear, 
RBF, polynomial), and feedforward ANN. The ANN used 80% of the 𝛺𝑋

data as training for the classification task. The ANN had three hidden 
layers (100, 100, 50 neurons) and used the cross-entropy loss with the 
ADAM solver. The performance metrics were the mean square error 
(MSE), the 𝑅2 score, the Discrete Fréchet distance (DFD) for regression, 
and F1 score, accuracy, and confusion matrix rates (TPR, TNR, FPR, 
FNR) for classification of the security criterion 𝑧. The DFD computes 
the similarity between two curves considering the minimum required 
separation distance 𝑑 to preserve geometric similarity [48]. The DFD is 
an upper bound for the Fréchet distance computed based on the longest 
discretized coupling links. Computing the DFD is computationally less 
demanding than Fréchet distance [49], and acknowledging the upper 
bound is sufficient for the ONDF. DigSilent Power Factory 2022 sim-
ulated the dynamic trajectories for TS and Texas 2000-bus systems. 
The NODEs were implemented using DiffEqFlux.jl in Julia v1.7 [50]. 
The library BenchmarkTools.jl measured the computational time of 
the NODE training. PowerSimulationsDynamics.jl [51] simulated the 
inverter dynamics in the modified 9-bus system. The experiments were 
conducted on a virtual machine with ‘‘Intel(R) Xeon(R) Gold 6148 CPU 
@ 2.4 GHz’’ and 16 Gb RAM.

4.1. NODE performance to forecast power system dynamics

This case study investigated the performance of the NODE model 
compared to other ML baselines using 50 random samples correspond-
ing to five generators from TS with ten scenarios (five different fault 
locations) in 𝛺𝑋 .

Fig.  5 showed the predictions of four dynamic states from 𝑋 by 
three models, the ANN, NODE, and SVM (RBF) and RMS simulation 
results for generator ‘‘NE-G2’’. NODE had the best dynamics fore-
cast with minimal error. SVM overfitted as forecast results replicated 
the observed training data. ANN forecasts quickly reached the wrong 
steady-state values. Table  1 showed the mean and standard deviation of 
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Fig. 5. Four RMS results ( ) as the ground truth of TS for rotor angle difference (a), frequency (b), voltage magnitude (c), active power generation (d) and corresponding 
forecast results of three models NODE ( ), ANN ( ), and RBF SVM ( ). The dashed line ( ) shows the end of the training data.
Table 1
Mean performance when predicting the dynamics with NODE and with baseline ML models for training and full trajectories (Fig.  5).
 Training Full Conv 
 Model MSE [ ] DFD [ ] 𝑅2 [ ] MSE [ ] DFD [ ] 𝑅2 [ ] [%]  
 NODE 3.8 0.3 0.86 5.6 0.4 0.81 100  
 Linear 1.2 0.4 0.99 2×109 12000 0.57 76  
 SVM (Lin) 1.5 0.5 0.98 1×109 900 0.68 92  
 SVM (Pol) 1.5 0.4 0.99 NaN NaN NaN 48  
 SVM (RBF) 1.4 0.4 0.99 12 4.0 0.79 100  
 ANN 2.1 0.7 0.96 68 9.8 0.41 100  
 Considering only samples that have a loss ≤ 1000

 Linear 1.6 0.5 0.98 30 6.2 0.75 100  
 SVM (Lin) 1.0 0.4 0.98 44 5.8 0.74 100  
 SVM (Pol) 2.9 0.7 0.98 6.5 2.9 0.80 100  
the performance metrics for the training and full trajectories. The pre-
dictions with MSE less than 1000 were considered converged. Baseline 
models could make long forecasts using previous predictions as new 
inputs that caused error accumulation and convergence issues. Long 
forecast horizons and changing dynamics caused large MSE differences 
between training and full trajectories in all baseline models besides the 
NODE. NODE showed the smallest DFD, indicating that the maximum 
deviation of the ground truth forecasts was minimal. Large DFD in 
forecasts could lead to false security assessments. 𝑅2 scores showed 
baseline models fit well with the training data; however, forecast results 
did not match the system response.

The box plot of MSE in Fig.  6 for the three best-performing models 
showed the NODE forecasts had the minimum error with the smallest 
distribution. The ANN forecasts resulted in major errors and were 
unreliable. RBF SVM forecasts also had a small mean error; however, 
the forecast error increased parallel to the unstable system response. 
Compared to trajectory plots in Fig.  5, the boxplot shows a lower MSE 
distribution. Simulation with simpler dynamics would cause lower MSE 
values; that is why the overfitted SVM model also has a smaller mean 
MSE. However, when system dynamics are more severe, SVM cannot 
forecast the trend that can be observed from the Tukey whiskers.
8 
Fig. 6. MSE boxplot of NODE, ANN, and RBF SVM models. The box plots show mean, 
standard deviations and Tukey whiskers.

Fig.  7 showed the NODE’s training performance starting from ran-
dom parameters 𝜃 and also contained the final performance of ANN and 
RBF-SVM models for the training data in Fig.  5. Random initialization 
of 𝜃 caused high MSE and DFD in the underfitting region. NODE had 
a good fit between 100 and 400 epochs, preventing possible overfitting 
during the real-time training. Training the initial model from 𝛺𝜃 de-
scribed in Section 4.3 would reduce the number of training epochs to 
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Fig. 7. Offline NODEs training performance with metrics MSE (a) and the DFD (b). The metrics are for training data ( ) and for the full data ( ). ANN ( ), and RBF SVM 
( ) results are for full trajectory only.
Fig. 8. Voltage magnitude forecasts from underfitting ( ), overfitting ( ), final ( ) NODE models and RMS results ( ) as ground truth.
reach a good fit for dynamics approximation. Fig.  8 showed the model 
forecasts from underfitting and overfitting regions, the final forecast, 
and the simulation output for the voltage magnitude. Underfitting fore-
cast quickly reached a steady state while omitting voltage dynamics, 
while overfitting forecast periodically copied the training data similar 
to SVM (RBF) in Fig.  5.

4.2. Moving window NODE training for cascading events

This study investigated NODE forecasts for three different simula-
tions to observe the impact of the moving window approach on NODE 
forecasts. Possible cascading events and changing dynamics due to 
controller actions altered the system response drastically. In order to 
trigger the cascading failures, we have further degraded the system 
security by increasing the system load and disconnecting one or two 
transmission lines (N-1, N-2) before applying the fault.

Fig.  9 showed the NODE forecasts of two generators for three 
consecutive time snapshots (windows) where all dynamic states were 
scaled and shifted for illustration purposes. The selected dynamics 
states had been minimally impacted by the initial event at 𝑡 = 0. 
Although the dynamic impact of the fault was minimal, the only 
remaining line between South East to South West became overloaded. 
The protection system isolated the South West region, where system 
frequency and voltage rapidly increased due to an imbalance between 
active and reactive power demand and generation, around 𝑡 = 7. The 
system split after the first training time window, causing the oscillations 
in SE-G6 dynamics and increased frequency and voltage in SW-G1. 
In the second snapshot, NODE forecasted stable steady-state voltage 
and frequency values as the new training data captured the following 
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system dynamics. Although the frequency is a global variable, unlike 
the voltage magnitude, the South West region’s frequency response is 
directly correlated to the controllers of SW-G1. In the third snapshot, 
NODE forecasts detected damped oscillations. The forecasted oscilla-
tions had a smaller amplitude than the simulation results, which would 
have been improved in the next snapshot.

Similarly, the main disturbance cannot be observed following a sys-
tem disturbance in Fig.  10. Without dynamic characteristics, the NODE 
forecast cannot anticipate the cascading event. The forecast captured 
the frequency drop and estimated the frequency nadir correctly after 
the window shift. The under-frequency protection system disconnected 
loads from the system, which started the frequency restoration in 
around 12 seconds. Hence, the training data dynamics did not include 
the restoration, so the NODE forecast on the active power generation 
was settled at the nadir.

In Fig.  11, the system operated under N−1 conditions and expe-
rienced multiple cascading events during the simulation, leading to 
highly nonlinear and complex trajectories. From the limited training 
data, the NODE estimated rough trajectories and final steady-state 
values of NE-G2 that can be critical for assessing the system’s security.

Figs.  9, 10, and 11 present highly nonlinear, complex dynamic 
trajectories from cascading simulations. Low dimensional decentralized 
approximation under limited training could not reproduce the same 
trajectory, but the trend and steady-state values are captured using only 
local measurements. The fitting towards to trend also shows that the 
NODE is insensitive against the noise or small oscillations in simulation 
results. Centralized higher dimensional models aided with physical 
knowledge of the system could produce more complex dynamic tra-
jectories in the first window. However, any discrete events that alter 
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Fig. 9. RMS simulation results for generators SE-G6 (left) and SW-G1 (right) for scaled dynamic states: rotor angle difference ( ), voltage magnitude ( ), frequency ( ) and 
corresponding NODE predictions ( ) under three consecutive time windows following a disturbance. The line ( ) shows the end of the training.
Fig. 10. RMS simulation results and NODE forecasts for generator NW-G5 in two consecutive time snapshots. Frequency ( ) and active power generation ( ) are illustrated 
with the corresponding NODE forecasts ( ). The line ( ) shows the end of the training.
Fig. 11. RMS simulation results of the voltage magnitude ( ) (left) and active power generation ( ) (right) for NE-G2 for the time window II and corresponding NODE forecast 
( ). The dashed line ( ) shows the end of the training.
the physics of the system would cause the loss of generalization of the 
forecaster model.

4.3. Offline NODE preparation

This study investigated the selection of pretraining data and NODE 
tuning for online forecasting. The AP algorithm identified 106 clusters 
from the dynamics database. A small set of cluster centroids was suffi-
cient as the pre-trained models are warm starts for real-time training. 
The AP clustered centroids to identify the final 20 centroids. The 
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computed centroids only represent a small portion of the dataset where 
the main goal is achieving a small initial forecast error rather than 
generalizing to system dynamics.

The parameter tuning started from the initial model and changed 
one hyperparameter at a time. Table  2 showed the initial and the tuned 
model parameters. Table  3 showed their performance after training 
250 epochs with random samples from the dynamics database. NN 
parameters affected the complexity of the constructed ODE system. 
More layers and neurons in the initial model caused more complex NN, 
hence longer training times. Wrong ODE solver and tolerance selection 
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Table 2
Parameter of the initial and final (tuned) NODE models.
 Model NN ODE Solver Optimizer  
 Initial 3 Hidden Layers 

100 Neurons/layer
Sigmoid activation

RK4a
Absolute tolerance = 1e−3
Relative tolerance = 1e-5

ADAM
Learning rate = 0.01

 

 Tuned 2 Hidden Layers 
50 Neurons/layer
Tanh activation

Tsit5b
Absolute tolerance = 1e−5
Relative tolerance = 1e-7

NADAM
Learning rate = 0.01

 

a The canonical Runge–Kutta Order 4 method.
b Tsitouras 5/4 Runge–Kutta method.
Table 3
Tuning NODE models (mean (standard deviation)).
 Model Time [s] MSE [ ] R2 [ ] DFD [ ] 
 Initial 84(19) 468(1069) 0.19(0.92) 2.6(2.5)  
 Tuned 13(1.6) 45(253) 0.83(0.36) 0.7(1.2)  

Table 4
ONDF based security assessment classification performance compared to ANN classifier 
with values in [%].
 Model Insecure share TPR TNR FPR FNR F1 Accuracy 
 Truth 61.3 100 100 0 0 100 100  
 ANN 68.0 82.9 55.5 44.4 17.1 78.6 72.3  
 NODE-1 65.6 98.8 87.1 12.9 1.6 95.5 94.3  
 NODE-2 61.1 99.0 99.0 1.0 1 99.1 99.0  
 NODE-3 60.9 99.0 99.5 0.5 1 99.3 99.2  

could lead to poor generalization and longer training times. The higher 
error between timesteps requires the computation of more time-step 
points during the ODE solution.

The unmentioned design parameters are training and prediction 
times 𝜏𝑡𝑟𝑎𝑖𝑛, 𝜏𝑝𝑟𝑒𝑑 . Values of these parameters are highly dependent on 
system dynamics. Systems with higher inertia will likely experience 
slower dynamics, hence longer prediction and training times. In this 
case study, we tried to minimize 𝜏𝑡𝑟𝑎𝑖𝑛 to test the NODE limits without 
sacrificing the prediction capability. Longer 𝜏𝑝𝑟𝑒𝑑 values cause growing 
errors in forecasts as system dynamics change, but solving the ODE 
system instead of autoregressive prediction limits the growing errors. 
Sensitivity analysis on the prediction error and prediction times could 
help to tune the parameter.

4.4. ONDF application for online security assessment

This study investigated the performance and adaptability of the 
ONDF for the system security classification. The study used 1000 sam-
ples from 𝛺𝑋 with 𝛾 𝑡 = 0.5 s. The NODE-𝑘 considered the time-window 
𝑘 that shifted in every 𝜏𝑣𝑎𝑙 = 3.85 s.

The comparison of several classification metrics for three moving 
windows (NODE-1,2,3), ANN, and actual system security (ground truth) 
showed the NODE had high performance. Even in the first measurement 
window, the NODE reached 94.3% accuracy in Table  4. Most errors 
were false alarms, as the model had a higher TPR than TNR. In the first 
window, the actions from frequency and damping controllers are less 
observable due to delays and the model’s time constants. For example, 
in Fig.  10, NODE-1 assessed the system security incorrectly using the 
first window’s measurement. Because the event caused low frequency 
occurred outside of the first window. Using the new data from the 
second window allowed NODE-2 forecasts for accurate assessment. The 
NODE did not learn this control action. Hence, the NODE-1 predictions 
had more false alarms than other time windows. NODE-2 and 3 showed 
lower false alarms and improved overall accuracy and F1 score by 3.5% 
compared to the NODE-1. The NODE outperformed the ANN in all 
metrics as the decentralized approach limited the number of features 
for the ANN. Moreover, the training data of ANN contained various 
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Table 5
The ONDF performance in large power grids (mean (standard deviation)).
 System Baseline NODE

 model RMS time [s] Train time [s] MSE [ ] DFD [ ]  
 IEEE (9) 0.84 (0.16) 3.2 (0.8) 8.4 (14) 0.8 (0.2) 
 TS (46) 11.8 (4.8) 2.4 (0.4) 9.8 (43) 0.8 (1.3) 
 Texas (2000) 69.1 (19.7) 2.1 (0.8) 18 (117) 0.6 (2.6) 

disturbance cases that might require a larger training database for the 
ANN. Even with a larger dataset, the centralized ANN classifier might 
suffer from generalization problems. More advanced models (LSTM, 
GRU, CNN) would potentially provide higher accuracy, but training 
and data generation become infeasible for practical networks. When 
the performance of centralized and decentralized are comparable, the 
decentralized method is more applicable for large power systems.

The ONDF workflow can be used for any system security limits 𝛾 𝑡
as protection limits are not identical. The sensitivity analysis in Fig. 
12 shows the drop in TNR as the number of secure cases increases, 
however, the TPR remained constant. Overall, change in classification 
is limited and depends on the distance between the forecast results and 
security limits, where system operators can evaluate the event based 
on advanced monitoring collected from all forecasters to avoid false 
classification. Unfortunately, applying this sensitivity analysis to the 
centralized ANN model requires the computation of security labels for 
each security limit 𝛾 𝑡 and retraining the model parameters. Centralized 
methods are less adaptive to changes in security boundaries because of 
the fixed security boundary.

4.5. Real-time training of neural ODEs

This study investigates the computational requirements of the NODE 
training. The box plot in Fig.  13 shows the DFD and the required train-
ing time of the same samples in Section 4.1 after 25 epochs for three 
variations of using NODEs. The first variation is the NODE (baseline) 
using the direct raw measurements 𝑋𝑀  as input without preprocessing. 
This baseline had poor performance in DFD and times as the loss values 
largely varied. The NODE with preprocessed input data reduced the 
required training time. The proposed ONDF considers the NODE with 
preprocessing, model selection, and growing function. The proposed 
approach has the lowest DFD and fastest training. The decentralized 
nature of the ONDF workflow allows system operators to conduct 
training with moderate computational power near the measurement 
locations. Further optimization in software development and specific 
hardware for the task can reduce the required training times.

4.6. The ONDF performance in larger power grids

This study investigates the performance of ONDF to a larger grid, 
the Texas grid with 2000 buses. Table  5 shows the mean and standard 
deviation of the NODE models’ performance and training time for 50
different training data from the three systems. All three power systems 
had similar training times as expected and slight differences in the 
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Fig. 12. Sensitivity of NODE-1 to the security threshold 𝛾 𝑡: Left is the TPR ( ), TNR ( ), accuracy ( ) and F1 ( ). Right is the share of insecure cases ( ) in the ground truth.
Fig. 13. DFD performance on left and the required computational training times on right for three variations of using NODEs: either with raw input data ( ), with pre-processing 
( ) and the proposed ONDF workflow ( ). The box plots show mean, standard deviations, and Tukey whiskers.
system responses to similar events. Higher mean and standard devia-
tion in MSE for Texas and TS systems results from simulations with 
more complex behavior derived from the higher number of controllers, 
compared to IEEE 9. The low DFD in all three systems indicates the 
ONDF workflow scales to larger systems and is much faster than RMS 
simulations as the system size increases, which is a key finding of this 
work. Compared to our decentralized approach, the centralized RMS 
simulations accurately represent system dynamics. However, uncer-
tainty in fault models and long solver times, approximately 30–40 times 
longer than online training, make this method infeasible for online 
operations.

4.7. Discussion of practical setup plan

The practical setup plan starts with the hardware requirements for 
the workflow. Due to its decentralized nature and efficient training 
strategies, the workflow requires low computational power for train-
ing NODEs. Furthermore, specific hardware components like an FPGA 
might be designed to lower the cost and optimize the algorithm’s per-
formance. The provided workflow is a low-cost solution with minimal 
effort compared to other centralized solutions requiring fast communi-
cation networks, big data management, and large computational power 
for data generation and model training.

The practical setup plan envisions local computers or processing 
devices integrated with the existing monitoring solutions. The com-
puters are located in substations to avoid communication delays and 
are directly interlinked with the Supervisory Control and Data Acquisi-
tion (SCADA) system through energy or outage management systems. 
SCADA systems enable a channel for efficient data transfer. In this 
setup, we need further data processing to collect and convert analog 
data from the transformers to digital data. The recent trends in power 
system security include more PMU devices and wide area monitoring, 
protection, and control (WAMPAC) applications. WAMPAC systems are 
suitable for integrating machine learning tools for early warning and 
mitigating system instabilities [52]. In the case of existing WAMPAC, 
the NODE can be easily integrated as the data is already ready for 
computation in a phasor form. The efficient part of the model is 
that NODE does not have to send the computed trajectories but only 
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model parameters, independent of the data length or event duration. 
Parameter sharing allows system operators to generate forecast results 
in the control room without additional challenges.

The practical setup plan also considers the possible issues regarding 
measurement data quantity and quality. Although PMU devices are 
highly precise, there could be timesteps where samples are missed. 
Missing samples endanger the integrity of the sequential data and con-
vergence of the model. The NODE model forecasts the future dynamics 
using only the initial condition, not the sequential data. Since training 
loss can be computed for any time point, the workflow will be impacted 
minimally compared to other sequential machine learning models in 
the case of missing data. Moreover, irregularly sampled data due to 
unwanted delays do not affect the training because of the flexibility of 
the adjoint sensitivity method. The impact of noisy data is also limited 
for NODEs during the training since noisy forecasts are hard to obtain 
from solving ODEs; therefore, forecasted dynamics would be noise-
free in the control room. The models’ convergence capability could 
be verified by computing performance indices during the validation 
period. Models with high errors could alert system operators against 
data quality or model learning.

The last part of the practical setup investigates necessary adapta-
tions for system operators. Although NODEs are complicated models, 
the required adaptation for system operators might be limited to the 
initial deployment, where system operators should get familiar with 
ODE systems and solvers. Operators can obtain NODE forecast results 
during the operation without analyzing the model architecture or fea-
ture space by solving ODE systems parametrized by the decentralized 
models. Online training also provides no maintenance requirements for 
the training database, whereas centralized data-driven solutions often 
require updates after system conditions and security labels change. To 
avoid performance drops in these centralized solutions, system opera-
tors should learn the properties of high-quality training data and model 
training. Moreover, the training data generation is hard for system 
operators due to the problem’s dimensionality while maintaining a rep-
resentative distribution of possible contingency and operating condition 
space [53]. Modifications in the dynamic model and its parameters 
could alter the security boundary, hence the original training data 
labels. The problem of maintaining the model and dataset consumes 
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much more time and computational resources for system operators than 
the ONDF workflow.

4.8. Discussion

The ONDF workflows showed various benefits for the power system 
dynamics forecasting problem. As observed in Section 4.1, ML models 
with discrete regression output are more vulnerable to divergence as 
error grows with longer prediction horizons. The NODE model outper-
formed all discrete models and did not suffer from divergent forecasts 
when stable system response was the training data. The NODE forecasts 
obey ODE system properties. The fitting characteristics in Section 4.1 
show us NODE starts from a simple dynamic system and approximates 
more complex trajectories without producing large forecast errors as 
other models. The training with the moving window enables NODE to 
replace the learned dynamics to capture changing dynamics from con-
trol actions or cascades in the system, illustrated with several examples 
in Section 4.2. However, NODE contains approximation errors because 
of lower dimensional representation, discrete events occurring in the 
forecast horizon, and limited training time. The approximation errors 
were still in acceptable margins when we observed corresponding DFD 
values for security analysis tasks. The preprocessing and tuning are es-
sential for real-time operation as the mean training time is significantly 
reduced compared to the base model. Depending on the computational 
power, the number of epochs can be increased to improve the qual-
ity of predictions. ONDF utilizes local dynamics, so the scale of the 
system does not impact the training of a single model, as observed in 
Section 4.6. Still, ONDF requires more NODEs to assess the security 
successfully, and future work can focus on the number and location 
of NODEs for practical power system sizes. Security assessments in 
Section 4.4 show NODE forecasts can provide accurate estimations 
under changing security limits. Unlike data-driven classifiers, ONDF 
is adaptive to the security limits and does not require retraining as 
ONDF has no bias towards the security limits. Moreover, NODEs do not 
require new training database generation after system dynamics and 
network topology changes.

The main limitation of NODE comes from the cases where the grid 
experiences a devastating disturbance that causes system blackouts or 
cascades to happen faster than the required training time. In such 
a case, the system’s survival chance becomes minimal due to a lack 
of time for any corrective actions. Another possible limitation might 
occur when high-frequency oscillations are present in the system, which 
causes a stiff ODE system that is hard to solve and learn in real time.

The proposed workflow would be applicable in the future energy 
transition while a higher share of IBRs will be present in the energy 
system. However, during this transition, power system dynamics will 
change, and so will the parameters of the workflow as well. The first 
impact on system dynamics will be faster dynamics due to the power 
electronic converter’s controller dynamics being significantly faster 
than conventional electro-mechanical synchronous machine dynamics. 
Faster dynamics would cause a shorter training time span 𝜏𝑡𝑟𝑎𝑖𝑛. In this 
work, we have used a larger timestep 𝛥𝑡 = 50 ms, whereas PMU devices 
have a sampling rate of around tens of samples per second [54]. In-
creasing rate compensates for the faster dynamics, but further research 
could investigate the impact of the high IBR share and possible control 
actions for future power systems.

5. Conclusion

Power system dynamics after unpredictable events will become 
more challenging to model, simulate, and learn from as the number 
of distributed IBRs grows. Our proposed approach, training multiple 
NODE models using only local dynamics measurements, showed to 
approximate the event-specific dynamics. Our approach moves the 
training window to learn and assess the system’s security in real time; 
therefore can consider cascading failures and other discrete events in 
real time. Future research will focus on developing this workflow for 
advanced monitoring and possible control actions.
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