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Propositions

In order to establish the equations of motion for a complex mechanical system or
for a multibody system, Newton-Euler methods are frequently better suited than the
procedure of the Lagrangian equations.

In the case that the non-linearities of a multibody system are merely contained in
the relations for the forces as a function of the co-ordinates and their derivatives, so
that the kinematics give rise to linear relations, a so-called linear multibody formalism
can be used more efficiently than a non-lincar formalism for establishing the
equations of motion by aid of a computer.

In order to investigate the dynamical behaviour of a technical system, the method
of modelling the system as a multibody system is most appropriate for those kinds
of systems which are composed of bodies with concentrated mass and concentrated
clasticity, interconnected by coupling elements (springs, dampers, hinges, actuators
ctc.) with negligible mass. Therefore, the multibody method is particularly suited for
applications in mechanical engineering as mechanisms and vehicles.

IV

The equations of motion represent the dynamical behaviour of the mechanical
model of a real technical system. In order to let the mechanical model become the best
approximation of the real system, general methods of modelling, in which exper-
imental investigations play a dominant role, should be developed (as the prediction
of real behaviour can be validated only through real-world experiments).

\'

Verified mathematical models for technical systems are not only useful for pre-
dicting the bechaviour via numbers or graphs but are also helpful for understanding
the basic properties of the systems. Moreover, simulations with verified models can
save lifes, energy, money et cetera.

Vi

Before treating a design problem, a more general consideration of such a task
taking also into account unconventional solutions which seem to be inappropriate at
a first glance, will often help to find the most suitcd design by a systematic evaluation
procedure. Frequently, studies with the aid of a computer program may be very
helpful to pass a decision.
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The measurement of forces by way of the strain of an elastic material with the aid
of strain gauges or piezo elements is highly developed. Nevertheless, the design of
specific force transducers requires the consideration of mechanical as well as elec-
tronical compensation methods, to keep the measurcment results free of undesired
side-effects.

ViI

In order to obtain Jacobians which contain all linear terms correctly, the con-
straint equations for the position variables of a holonomic mechanical system have to
be developed at least up to the quadratic terms; otherwise relevant terms may be
missing in the linearized equations of motion. For the example of the dicone or the
bogic model the gravitational stiffness terms would not occur in the equations of
motion if the quadratic terms of the relation between the vertical displacement, the
lateral displacement and the yaw angle were not taken into account.

IX

Mechanical similarity laws are not only suited for the transformation of exper-
imental results from a scaled model to a full scale model: those relations are also
applicable for the development of series of designs as for instance gears, motors and
plants, starting from a well-investigated prototype.

X

It has to be noticed that for some problems geometrical similarity cannot be
achieved when the material constants as for instance density, Young’s modulus, heat
transfer coefficients, etc. are assumed to be constant.

X1

Particularly scientists and engineers should take into account that by-products
and side-effects of a so-called economical solution may cause higher costs and in
addition non-repairable environmental destructions, from a global point of view, than
a more elaborate and to all appearences expensive solution.

X

Aspiring to the great things we shall lcss often find the truth than by investigating
the small things precisely. (Free translation of perceptions from Aristoteles, Lao Tse,
Leonardo da Vinci and Darwin).
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Summary

For a dicone moving on a pair of cylindrical rails the equations of motion are
established. The friction forces due to Kalker’s theory of rolling contact are approxi-
matcd by non-linear functions. For this non-linear system conditions for the dynam-
ical similarity of a scaled and the full scale model are derived.

The equations of motion are cxtended to a railway bogie model with two conical
wheelsets. Numerical simulation results for the dicone as well as for the bogie model
arc obtained with a particular software taking into account the structure of the
equations of motion in form of differential equations coupled with algebraic equations
for the constraints.

The simulation results are compared with cxperiments on a 1:5 scaled roller rig
where the bogie model has been designed with the aid of scaling factors for length,
mass, inertia and suspension stiffness due to the dynamical similarity laws. The
results indicate that the non-linear bechaviour of designs of railway running gears or
even complete vehicles can be investigated in a wide range on a scaled test rig, where
the design parameters can be changed more easily than on a full scale test bench.
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1. Introduction

During the last dccade various countries have spent much cffort in the develop-
ment of modern transportation systems. Particularly the well-established railways
based on profiled wheels guided on a track with profiled rails experienced a renais-
sance. Challenged through a broad interest in higher travel speeds as well as in
improved ride comfort and safety, engincers and scientists were involved in research
work for the conventional wheel rail system. The investigations have shown that this
transportation system posesses a lot of reserves allowing competition with other sys-
tems, seeming to be highly developed for the so-called modern transportation. This
progress of the whecl-rail system, demonstrated by several new designs as the Shin-
kansen Express in Japan, the TGV-Train in France and the recent West German
development, the ICE-Train, was achicved by theorctical as well as experimental
investigations. In some countries, so for instance in Japan [30], test benches were
built in order to study the dynamical behaviour of new railway designs independently
from the changing environmental conditions of the real track. Morcover, in Germany
a large and elaborate test bench was built in the form of a roller rig where a complete
four-axle passenger car or a locomotive can be tested, thus enabling improvement of
prototypes. However, full scale test facilities require a lot of effort when vehicle types
or paramcters of the vehicle have to be changed. Therefore, investigations have also
been performed on scaled test benches as for instance described in {10] and [25]. In
order to transform the experimental results, obtained from a scaled modcl, to the full
scale model, one must know the transformation laws. These laws are related with the
definition of dynamic similarity of a mechanical model.

In the present investigation the wheelsct with profiled wheels on profiled rails has
been replaced by the very fundamental systcm of the dicone on cylindrical rails.
Although it scems highly simplified, this system still contains most of the basic prop-
erties of the real wheelset on rails. Moreover, it allows a fundamental mechanical and
mathematical investigation. The results of thesc investigations also provide a lot of
insight and understanding of the behaviour of the non-simplified wheel-rail system.
The system of a dicone on cylindrical rails is represented by its equations of motion
which enable the derivation of the dynamical similarity laws, starting from the dif-
ferential equations as usually performed for the similarity laws of hydrodynamics,
heat transfer and chemical engincering, [52].

The following investigations also require the study of non-linear mechanical sys-
tems, particularly systems where bifurcation points in the solution can occur, yielding
periodic solutions, so-called limit-cycles. Thercfore, this thesis starts with some
remarks on non-linear mechanical systems. After that, the equations of motion of the
dicone on cylindrical rails and the equations of motion for a bogie having two conical
wheelsets are derived. Then the similarity laws for dynamic similarity are established,
followed by computer simulations for the dicone as well as for the complete bogie,
confirming the dynamic similarity between a scaled and a full scale model. The
numerical simulation results are comparcd with mcasurements, performed on a 1:5
scaled roller rig with a bogie model, which is partly similar to a real bogie of MAN,
designed for the ICE High Speed Train of West Germany.

The main target of these studies is to demonstrate the ability of dynamic design
experiments on scaled test rigs and to mark out the boundaries of the regions where
such experiments yield reliable results.
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Less attention is paid to the detailed description of the measurement device; this
will be done in a forthcoming publication.




I

2. Some Remarks on Nonlinear Vibrations and Limit-Cycles
2.1 General

Studies of the dynamical behaviour of railway vehicles have been performed by
many authors as for instance [63], [2], [20] and [1]. The results demonstrate both
the non-linear properties and the complexity of the system wheelset-rail. Even simple
systems admit an exact analytical solution only in exceptional cascs: usually we have
to apply approximate analytical or numerical methods for finding a practical solution.
Before treating a complex probiem it is helpful to consider more simple but well-in-
vestigated systems to discuss the differences between the well-acquainted behaviour
of linear systems and the behaviour of non-lincar ones. Therefore, some well-known
examples are considered in the following Section.

2.2 Well-Known Examples for Non-Linear Behaviour

Strictly specaking all mechanical systems behave in a non-linear way. However, the
restriction to small motions yields linear equations for which powerful methods of
solution are available. With the aid of the linear system analysis a lot of engineering
problems can be solved sufficiently. But when the restrictions for the linearization are
not valid, we have to pay attention to the fundamental differences between linear and
non-linear system behaviour. Some of these differences are:

e  The principle of superposition is not valid for non-linear systems.

e In free vibrations of non-linear systems generally the frequency depends on the
amplitude, whereas in linear systems the frequency is independent of the ampli-
tude.

e In forced vibrations of non-linear systems more than one solution is possible.

¢ In the motion of a number of non-linear systems solutions can bifurcate such
that isolated periodic solutions (limit-cycles) are possible within a certain
parameter range [23], [45], [78].

¢ Non-linear systems can show chaotic behaviour, i.e. the system response becomes
irregular [77], [72], [14]-

A typical system with a non-linear behaviour is that for which Rayleigh’s equation
it+oiu—c@—-1il) =0, (1

holds, where u is a function of the current in an electric circuit, consisting of two
dc-power sources, resistors, inductance coils, a capacitor and a triode as described in
[58]. Differentiating (1) with respect to time and transforming u by

y=3-a
yields the well-known form of van der Pol,

e -y)y+wgy =0, 2
with



£ = Cw?,, C apositive constant .

Considering the coefficient of y as a damping function, it is obvious that for small
amplitudes y the damping is negative, i.e. the energy of the system increases. When
the amplitudes are large, the damping is positive and the energy decreases. This
behaviour suggests that there exists a motion with a constant amplitude. Such
motions, corresponding with periodic solutions of the differential equations, are called
limit-cycles. Limit-cycles are typical for self-excited (also called self-sustained) sys-
tems, found in various electronic circuits [50], in musical instruments as for instance
the string of a violin, aerodynamic flutter of aeroplane wings [22] and last but not
least our system wheelset-rail, [67].

A complete analytical solution of (2) is not known, but van der Pol’s equation has
been investigated extensively by means of numecrical methods and also with the aid
of analytical approaches yielding approximate solutions [3], [58], [22]. For small
values of ¢ (¢ = 0.1 up to 1.0) and w, = 1, the solutions are nearly harmonic, i.e. the
phase diagrams are close to circles. For larger values of ¢ the solutions are non har-
monic, see [58], [12]. This behaviour is demonstrated in Figure 1 by some numerical
solutions of (2) performed with the numerical integration routine DASSL; see the
remarks in Chapter 7.1 and [5].

When the solutions behave nearly harmonically, approximate solutions can be
obtained by using averaging methods, the method of harmonic balance, the method
of multiple scale or the Lindstedt-Poincaré Method, see [22], [58]. In the nonhar-
monic region, particularly when we have to deal with systems having more than one
degree of freedom (this is the case for the wheelset-rail system), numerical methods
for the solution are required. Frequently these methods are based on Hopf’s bifurca-
tion theorem, see for instance [23], [12], [67] and [38]. A more recent developement
is the so-called cell mapping method of Hsu, see [29]. This method enables the
determination of the global behaviour of a deterministic or stochastic non-linear
dynamical system. The basic idea is that the statc space is not considered as a con-
tinuum but rather as a collection of a larger number of state cells. Each cell is being
taken as a state entity. For the very interesting results also obtained for (2) we refer
to [8].

Other non-linear phenomena, dealing with forced oscillations of non-linear systems
as for instance elastical structures or merely the simple pendulum for large ampli-
tudes, are described by Duffing’s differential equation:

ji+26y+w§y+,uy3= P cos Qt 3)

In (3) P is the amplitude of the exciting force and  the constant exciting circular
frequency. The parameters § and u are considered to be smail. When P =0 we can
expect a free vibration with higher harmonics in which the frequency depends on the
amplitude. For P =0, small amplitudes and positive values of é (positve damping)
the system response is a steady state response with the same frequency as the exciting
frequency. The phase of the steady state responsc is shifted for an amount, depending
on the damping and on w, and Q. For large values of P the motions become large and
the system response yields a non-linear effect, the jumps of the amplitudes, phases
and frequencies when the exciting frequency Q is varied [58]. The system response
can also have periodic solutions with subharmonic resonances. The most important
subharmonic resonance is given by Q/3, [22].
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Figure 1.  Solutions of van der Pol's Equation for Several Values of e.
(a)e=0.1,(b) £=1.0,(c) ¢ = 3.0
Note that in (b) and (c) the outer contour is the real solution: the straight lines within the
contour are a by-product of the plot routine
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Finally we mention a phenomenon which also occurs when equations related with
(2) or (3) are considered: the system’s response can be chaotic; see for instance [14],
[77]. Though the response sometimes seems to be stochastic, chaos is a behaviour of
deterministic physical systems where the solution changes drastically with the initial
conditions. Also the system wheelset-rail behaves in a chaotic way for a certain
parameter constellation. However, this phenomenon seems not to be of practical
interest for railway vehicles.

2.3 Qualitative Behaviour of Railway Vehicles

After this brief description of system behaviour which is typical for non-linear
systems we return to the solutions, expected for the system wheelset-rail. From several
computer simulations [31], [20] the following qualitative description of limit-cycles
is obtained. Figure 2 shows in broad outline a typical history of the limit-cycle lateral
amplitude of a wheelset versus the velocity V.

Wheelset Lateral Amplitude

Velacity V

Figure 2.  Qualitative Representation of the Amplitudes of Stable and Unstable Limit-
Cycles for a Railway Vehicle, Dependent on the Speed V

In Figure 2 the so-called critical speed V,, is represented by the speed of the linear
system where the real part of the so-called critical cigenvalues becomes zero. At this
speed the solution bifurcates and gives rise to a Hopf-bifurcation [23], [67]. The
dotted line, beginning at V_, represents the amplitudes of the unstable limit-cycles.
The speed Vy,, is defined as the speed where the first stable limit-cycle occurs.
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Four situations have to be distinguished in Figure 2 if only lateral displacements
are considered as disturbances:

V< Vim: every disturbance decays to zero.

Ve >V 2 Vims and an initial displacement which is smaller than the
amplitude of the unstable limit-cycle:
the displacement decays to zero.

Vo >V 2 Vims and an initial displacement which is equal to the amplitude
of the unstable limit-cycle or larger:
the disturbance yields a stable limit-cycle due to the solid
line of Figure 2.
V>V,: stable limit-cycles arc possible but the system can also

react in an unstable way so that derailment arises.

For velocities smaller than Vy,, all disturbances decay. Therefore, this point is also of
practical interest, whereas the velocity V,, is practically meaningless. In Section 7.2.2
the representation of Figure 2 is also used for the description of the numerical sol-
utions for the problems under consideration.



3. The System Wheelset-Rail
3.1 Phenomenological Description

A railway wheelset rolling on a pair of rails is a mechanical system characterized
by a typical behaviour of motion. As already shown by Klingel in 1883 [44], the path
of the centre of gravity of the slow running wheelset, approximated through a dicone,
can be described by a sinusoidal curve, where the period L is

_ QM
L =2n /tanéo . )]

The denotations of the quantities a,, r,, &, are given in Figure 4. The result of (4)
has been obtained under the condition of pure kinematical rolling. This assumption
is only true when the velocity of the dicone is small. At a certain value of the velocity
the rolling condition is violated and the relative motions in the contact region between
wheel and rail cannot be neglected. Therefore, the behaviour of motion becomes
non-linear. In order to analyze this behaviour and to give a mathematical description
of the mechanical system one has to distinguish between kinematical and physical
nonlinearities. The kinematical nonlinearities caused by the profiles of wheel and rail
will be simplified in this investigation. But this simplification, resulting in a dicone
rolling on cylindrical rails, as shown in Figure 3, does not influence the fundamental
mathematical problem. The system dicone on cylindrical rails still contains the phys-
ical nonlinearities of friction between wheel and rail. The study of this system also
gives a lot of insight into the general problem of mechanical systems with closed loops
where applied forces (in this example the friction forces between wheel and rail) are
related with constraint forces (here the normal forces in the contact region).

The friction laws have been investigated by many authors such as Carter [6] in
1926, Johnson [36], [79], Heinrich and Desoyer [24] and Kalker [39]. Kalker’s the-
ory of rolling contact with dry friction, one of the most comprehensive of these theo-
ries, has been applied also for computer simulations of wheel-rail systems. A detailed
description of this application is given in [33] where several computer codes have
been compared and a summary of the theory is given. In [15] and [31] the imple-
mentation of this theory in a multibody program is described applied to the simu-
lation of the passenger car of the German high speed train (ICE).

The non-linear behaviour of the wheel-rail system is characterized by limit-cycles
which are typical for self-sustained mechanical systems; see chapt. 2. For the sake of
a better understanding of the complex computer simulations and their results it is
useful to simplify the system wheel-rail as far as possible, in order to apply methods
of analytical mechanics for generating the equations of motion. Though the simplifi-
cation seems trivial, the resulting equations are not simple. In the following Section
of this Chapter the dicone running on cylindrical rails will be investigated. However,
this simplification does not influence the fundamental behaviour but enables a
mathematical representation of the problem. The actual wheel-rail profiles only lead
to an additional complication of the contact problem between wheel and rail [11],
[7]. The aim of the Chapter is to present the simplest set of equations of the dicone
allowing fundamental research of the limit cycle behaviour.
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3.2 The Equations of Motion of the Dicone
3.2.1 The Model

Figure 3. The Dicone with Gyrostat

In order to simplify the mathematical description of the fundamental phenomenon

the following assumptions are established:

1.

The longitudinal component of the velocity V of the centre of gravity of the
wheelset is assumed to be constant.

The angular velocity fl, given by the rotation about the body fixed axis y? (see
Figure 4) of the wheelset is not influenced by the kinematics and therefore it is
also assumed to be constant. The value is given by Q= V/r, with V as the

absolute value of the velocity V and #, the nominal rolling radius of the centred
wheelset.

The cone angle d, is related to the nominal contact angle of a typical wheel pro-
file with 1° < §p < 2°.

The rails are cylinders where the radius is also related to the radius of a realistic
rail in the nominal point of contact. For the UIC 60-rail this profile radius is
300 rmm.
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From experimental work as well as from computer simulations we know that the
velocity V is one of the dominant parameters influencing the limit cycle behaviour.
Only for a constant value of V a stable limit cycle is possible. Therefore assumption
1 is necessary for the investigation of periodic solutions of a non-linear mechanical
system.

Assumption 2 is an approximation that holds very well for small cone angles &,,
such as occur in the so-called tread region of a realistic wheelset. With the aid of this
assumption the gyroscopic effects in the equations of motion can be described by a
gyrostat as shown in Figure 3. In general this is not a limiting restriction, because the
gyro-effects yield considerable contributions to the equations of motion only for large
values of the velocity V. Modelling the cone as a gyrostat is not necessary but helpful
for the definition of the co-ordinate transformations because the rotation about the
y —axis does not influence the geometric relations but merely the relative velocities.

Compared with a realistic wheelset of a rail vehicle the assumptions 3 and 4 are
very rough. However, experiments have shown that the dicone has a typical limit-cy-
cle behaviour (see part I Experiments). Therefore, this simplification was made to
study the fundamental effects with the aid of equations which are not influenced by
additional boundary conditions such as arise in practice.

3.2.2 Co-ordinate Systems and Transformations

Referring to Figure 4, where a schematic front- and top-view of the dicone is

regarded, we have the following co-ordinate systems and denotations:

e The reference frame moving with the constant velocity ¥V
along the track centre line. Because the investigations are restricted
to a tangent track motion with constant velocity, the reference
frame is an inertial frame

er: The body-fixed frame

ek, e The frames fixed in the tangential planes between wheel and rail
at the right (R) and at the left (L) point of contact

y Lateral displacement of the wheelset centre of gravity

o Roll angle

/R Yaw angle

ry: Nominal rolling radius for the centred cone

rr, i Actual rolling radii at the right (R) and at the left (L)
point of contact

ay Half distance of the nominal rolling radii

a, a;’ Distance from the wheelset centre of gravity to the right and left
rolling radii

do: Cone angle

Ry: Radius of the rail cylinder
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13
6
° 8o-9
éR
Frontview

Topview

Figure 4. Schematic Representation of the Dicone on Cylindrical Rails with Co-ordinate
Systems and Denotations.
The contact point shift is not represented in this figure.

Now we can define the following transformation matrices by means of Cardan angles
[4], which are also called three axes Euler angles.

The transformation from the body fixed system ” to the inertial system ¢ is per-
formed through a rotation about the x —axis with angle ¢ and afterwards through a
rotation about the z —axis with angle . This leads to
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-

1 0 0 cosy -singy O
Ajg=| 0 cosp -sing | . |siny cosy O
0 sing cose 0 0 I

_ 5
cosy -siny/ 0 ®

=| cosgsiny  cosgcosy  -sing

i singsing  singcosy  cosg

For the transformation from the right and left contact systems g8, g“ to the body
fixed system e” we first of all rotate about the x —axis with the small angle + J,,
which results in the transformation matrices 4’5, and A’

I 0 0 1 0 o0

Figure 5. Representation of the Contact Point Shift ¢
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The complete transformations require the consideration of the contact point shift ¢
as explained in appendix A and indicated in Figure 5. According to appendix A the
first order term of the contact point shift & for small angles d, and § can be repres-
ented by

R = Yroy sy .
Introducing the shift angle a, see Figure 5, we obtain
PR < FralR with ofR = + 8- ¥ -

Hence, we have to take into account the rotation about the y —axis with ¥ a for the
left and right contact point. This transformation results in

1 0 - 1 0 «
Agp =101 0 Agr =10 10
o 0 1 -« 0 1

for small values of a.
Now we can perform the complete transformations as follows:

[1 0 o][10-«] [ 1 0 ]
Ag = A'gp - A% =0 1 5 |lo1 of=]-a8, 1 -5
06 1]l 0O 1 o dg ld
[1 0 o[ 10 a} [ 1 0 o]
App = A'gp - Asp = [0 1 8 )] 01 0] =|-as, 1 &
0 -8 1 L-a 0 1] - =g |

For small values of o and §, the product ad, can be neglected, so we obtain

I 0 -« 1 0 «
Agy =10 1 -4y Agr =1 0 1 4y . (6)
a 6y 1 -a -6y 1

With the a1d of (5) and (6) we can perform the transformations from the contact
systems e” and " to the internal system through the products
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- 14 -

1 -y -a + ¥ 1 -y 0
Y—ap t—@d -af —dg—o | ¢ 1—@d -5—¢
o dg+ @ 1 — @dy a g+ 1 —pdy
)
Ajp = Ajp- Apr =
1 - o — So¥ 1 -y 0
Yt+ap 1+@dy av+d—¢ |m| ¥ 1+05 d—o
-0 @ —d 1+ pdy -« -dg+ o 1+ @

In (7) we assumed that ay = §, ¥ and a@ = g - @ are negligible for small values
of y and . The term a — oY vanishes per definition.

3.2.3 The Equations of Motion of the Free Running Dicone

Though the model of the dicone seems rather simple, most of the difficulties of
dynamics are contained in this model. One has to deal with constraints and closed
loops as well as one has to account for the special friction force laws, where the fric-
tion forces not only depend on the relative velocities but also on the constraint forces.
This relation is responsible for the fact that the constraint forces cannot be eliminated
implicitely from the equations of motion. As will be shown in the following the result
is a set of differential equations which is coupled with a set of algebraic equations
describing the constraint forces.

In order to treat this problem systematically we choose the method of Newton-
Euler as for instance presented by Schiehlen [73], generating the equations of motion
in a rather general and formal way. Considering a single body, the six co-ordinates
of which are subjected to constraints, Newton’s and Euler’s laws can be represented
by the following equation:

MJIw+q =q"+0g (1) 8)

The quantities in (8) have the following denotation: w is the generalized co-ordinate
vector,

M =diag(mE, D,
is the generalized mass matrix. For a single body we have e.g.
M = diag (m, m, m, I;, by, L)

where m is the mass of the body and the I; arc the inertias with respect to the main
axes.
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_ [,
J= "
[JRDI]

is the so-called global Jacobian matrix with J;, as the Jacobian of translation and
Jro the Jacobian of rotation,

g° is the vector of the generalized forces containing gyroscopic-, Coriolis- and centri-
fugal forces,

g° is the vector of the generalized applicd forces as e.g. the spring forces,
Q is the distribution matrix of the constraints and
g (¢} is the vector of the constraint forces.

Now we start providing these terms of (8) for the model of the non-suspended
dicone (see Figurc 3 and Figure 4). The vector of position variables is

r=0xy 20 9% 9", ®
where ¢, 3, ¢ are Cardan angles. Then we have
P=(h 5 2 0 9 0 (10)

In order to obtain the generalized co-ordinate vector w we have to account for the
constraints of our model. Thercforc we make the following assumptions:

Al.
$=0 (11)

where Q is the angular velocity of the rolling cone as defined in the modelling

assumptions.
Q= w, + Aw (12)
with wg = — (V/ry) and Aw = 0, since we assume that the angular velocity Q

is not influenced by the kinematics.

A2. The reference frame, which is the inertial frame €', moves with the constant
velocity V along the track centre line. We assume that the centre of gravity of
the cone moves with the same velocity, i.e. we necglect the displacement in
the x-direction. Then we have x = 0 and x = 0 (sec Figure 6).

The constraint problem for the wheel-rail contact has been treated by several
authors as Wickens [80], Knothe [46], de Pater [65], and Joly [37]. Because of two
contact points we have two constraints, which mcans that two co-ordinates are
dependent. In wheel-rail dynamics it is usual to choose the roll angle ¢ and the ver-
tical co-ordinate z as dependent co-ordinates. For the problem under consideration,
the dicone on cylindrical rails, we have to specify the resulting equations with respect
to small cone angles 8, and small yaw angles . Starting from the equations of [65],
this process results in:



- 16 -

P an arbitrary point
of the body

Figure 6. Relations Between the Reference FFrames ¢” and &’

p=-Iy (13)
1 2 i 2 0%
2
z=-7y(2F+l"(RR+r0)) + SV = (19
with
s
M=—9 (15)
a9 —ry Oy

The fact that (13), (14) and (15) have already been lincarized with respect to d, and
Y (see Appendix Al) has to be taken into account later on for the calculation of the
constraint forces. With the aid of further kinematical considcrations (see Appendix
A2) one also obtains equations for the gcometrical quantities of Figure 4 which will
be needed later on:

al

aL=00+ y+RRry
50
aq
ap = dg — 5 Yy — Ry (16)

re=rtp—qly — RpoyTy
rR=rtaqly + Rpé Ty .

Referring to Al, A2 and the constraint cquations (13) to ( 15) we obtain the following
generalized co-ordinate vector
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T
w= [V, lp]
and , an-
ﬁ = [J".a ‘/f] .
The Jacobians are defined as, [4],
orF
K
OF, o,
Y ~
- or ar (18)
where —?I— d=ef = X .
ow ay o
oF, ar,
)Y
ow
Trot = (19)

where @ is the angular velocity vector, which is defined in Appendix C.
Calculation of Jr,:

In the inertial frame ¢’ the velocity vector with respect to the centre of gravity of the
dicone is

il = [Oy )}’ é]T s (20)

with the constraint equation (14) we obtain

1 1,2
z=-3-y2b0+ —2-|//c0

I iooqT 2 5% @b
=10, 9, why + ¥¥ql , h=2+T"(Rg + 15} , ¢ = T -
The transformation into the body fixed frame ¢” results in
Y (cosgsiny — byy singsinyg)  + v ¢y Sing siny
i = Apy i = Y (cos@cosy — byy sinpcosyy)  + x// Y ¢ysinpcosy | . (22)
v (-sing — byy cosp) + Y €y COSQ
With Ag, = Aj,
. dw . .|y
Z_F__—'at =Jp, -w and y—[w] (23)

we obtain from (22)
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(cosgsiny — byy singsiny) ¢ ¥ sing siny
J1, = (cospcosy — byy sinpcosy) ¢ ¥ sinp cosyy | . (24)
(-sing — byy cose) c i cosg

Calculation of J,.

In order to calculate the Jacobian Jp, we can omit the gyroscopic property of the
cone, i.e. wy, the angular rolling velocity. Then the angular velocity with respect to the
inertial frame is represented by
. . T
' = [, -sing, ycosp] (see Appendix C) .

The transformation to the body fixed frame ¢” results in
Qcosy — u]/COS(psin(psim// + Jsinpcosgsing

@ = Ap o = -@siny — Yrcos@sincosy + Jsineosecosy (25)
v (sinztp + COSZ(p)

. T
@” = Licosy , -gsiny, ¥1° . (26)
Substituting ¢ from (13) results in
B . .. s 4T .
@ = ['ryCOSl/’ ’ rysm'l’ ’ ’»b] = JR(,’ W (27)
Then we have
-I'cosyy 0
Jpoe=| Tsing 0| . (28)
0 i

Now we obtain for the Jacobian
[~ 7

cospsiny — byysingsiny ¢ Y sing siny

cospcosy -- byysingcosy G ¥ sing cosy

_ -sing — bygycose ¢ ¥ cosgp
J = . (29)
-I"cosyr 0
[siny 0

[ © ! |

The lincarizing process with respect to the kinematics results in
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_ . . _
1 0

- y (' —by) Q¥

T = (30)
- 0
ry 0
0 1

Continuing with the generation of (8) we have to calculate the gyroscopic forces ¢°
and the forces g°. For the determination of ¢° the dicone is considered as a gyrostat
with a large angular velocity w, about the y —axis and small angular velocities ¢ and
Y. As for instance Magnus [51] has indicated, a gencral equation for this problem in
the body-fixed frame & is given by

L L+ L+ LN =0 . (1)
The denotations are:

L? the angular momentum of the body
L® the angular momentum of the rotor

0 -3 Wy
o= w3 0 -o (32)
-w, w; 0

as the tilde operator of @® = [w,, @,, @]’
The angular momentum is defined by
_L = 1 @, (33)

for our example we have with I, =1, =1

I 00 000
I2=10 0 0 =0 1, of, G4
00 I 0 0 0
® = [-Tycosy , Tysiny, ¥1" , (33)
w® = [0, wy, 0]T . (36)

Then (31) yields
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-ITcosy 0 v Lysind 10 jricosy
0= Aa |1 on + |p 0 Cycosy [ywﬂ N
-Cysiny -Tycosy 0O
0 = -ITjcosy + 2T yysing — yLw,
0=0
0 = I + M sinycosy — Lawglycosy .
We linearize with respect to the kinematics and obtain
0
0
HIT V1w, 0
. =1 =q'=] . . (37
'z YLy W10,
0
L STARN

Now we determine the forces g°. At the unsuspended dicone only the weight force
mg and the creep forces T are applied (see Figure 7). In the inertial frame the weight
force is defined by

0
E=[0]. (38)
mg

We now consider the lefthand side of Newtons law:
Regarding Figurc 6 Newtons law for the centre of gravity of the wheelset can be
written as

mth=Z£

with
L] . 4T . . .
=00,y 21, s=-yby + ¥ ¥

. T
ig =10, y, yyby + V¥ 1 .



- 21 -

The transformation into the body fixed frame yields as shown in (22) and (23)

fOB=JTr‘w =

EOB=‘ITr 'E+JTr'—VI—’ ’

Jrp+w=0 owing to the linearization,

Jr, -w already contained in (8).

mg

z
—
-4
-
10
-

Figure 7. Weight and Contact Forces at the Dicone.
The contact point shift is not represented in this figure.



- 22 -

Therefore we have only to consider the righthand side of Newtons law, i.e. the weight
and creep forces. In the contact frame we have the creep forces and the constraint
forces given by

Tf T}
E=| 17| EF=| TF|. (39)
-Nt -NR

Transformation of the forces to the body-fixed frame &%

1 0 - Tk
BL L L
E"=Ap Fr=]0 1 -5 |,
a & 1 -NL
- - (40)
1 0 « TR
FR=AgeFE=| 0 1 5 || 7],
-« -8y | -NR®
BL L L oL L L 97
5 =LT +aN", T, + 5Ny, a T + 85T, — N1, (a1)
T
FPR=[Tf —a N®, TF — 6,Np, -« TR - 8, TR - NRT
for the weight forces we obtain
B I
Ey = Ap/F,
T
F2= ingsiny, mgsingpcosy, mgcos
_g[mgswlllr;gswtlfgcw] 2)
= [0, mgo, mg]
TE + TR 4 a(VE - NR)
B+ FP + FPR=| T+ TR 4 6(N" — N®y —mg Ty . (43)

a(TE =T + §o(TF =T = (N + N® + mg

For the righthand side of Euler’s law we need the moments. Both the moments and
the forces form the generalizing force vector q°. Accounting for the spin-moment of
Kalker’s creep force law, see [33], the moments are

M" + MR = rPExFBE + ML+ PReEPR 4+ MR with
BL T
7 =Lrp 0, -ap, r ]
T
BR
r"=[rpa, ag, rgl
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Performing the vector products we obtain (see Appendix B1)

_ML+MR=

-0 (TxL a; + Tf ag) — TyL (ap 8o +r7) — TyR (ap 6g +rp)

TXL rp+ Tf rp + a dy (TyL r+ TyR rg)

L R L R
T a - T, aR—a(ij rL_?:v ’R)

N™ (ay —r 85) — N® (ag —rg 8y) — o (ML — MF)

-8y (M} — MF)

az(NLaL+NRaR)—Olao(NLrL+NR”R)JFMZL'FMZR

because of the geometric relations (16) the moments result in

ME+ MR =

-ady (T + T3) — (ro + ado) (T + T,

N

ro (T + TN — Ty (ag + 3 Re) (Ty — T + a 8o 1o (T + T)

T
o0 (T = T +55 @+ 5y R (TE + Tf) — ey (T = T3

-8g (M) — M)

o (a9 — 1o 8) (NE + N®y + ML+ MF

(@ — 15 89) (N" = N®y 4y (x + TRR) (NF + N®) — o (ML — MF)

(49

Now we form (8) putting together (30), (37), (43), and (44). This process results in the
following equations:
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—m ] ] 0
m 1 0
m YT —by) ¥ || J
U
1 -r 0 v
I Ty 0
I 0 1
L + TR}

TyL+TyR—Fymg

a(TE - TR + ==

a
T +yx + yI'Rg

0

o @) — 19 99)

Comparing (45) with (8) we easily find the expressions for g°,

o (TF = T + 6o(T) — Ty + mg
-aaq (TE + TR) — (rg + agdo) (T} + T — o (M} -
ro(Ty + T — aory(TL — T + adgry (T} + T,) — 8o (M} — M)

Fy(TL +TH — oy (T} -

-0

-50

-1
-%ﬂ'x +yI'Rp
0

o (ag — rodo)

(=T =

- y‘//wo

- yywo

M)

R L R
TR + M} + M]

45)

g° and Q. Now we can

simplify (45) by two steps. In the first step we premultlply w;th the transposed global
Jacobian J7 then the product J'Q vanishes because J7” and Q are orthogonal matrices.

With w, = -V/r, and x due to (169) the resuit is, see Appendix B2 up to B4:
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- Véy .
m 0
EE | KA N O
.|t =
" V.
| 0 ! +1yl“70—

(46)
[ b
(TE + Tf)l/J+T;,L+7}R—mgyT0

a(TE = T + xy(Th + T — arg(TyF — TR + ME + MF + ¥ mg

(46) contains no constraint forces N* and N®. However, these forces influence the
creep forces 7, and T, as known from Kalker’s theory. Therefore we premultiply (45)
with Q7 M~' and we obtain an equation for the constraint forces because

"M MI=0"T=0

Together with (46) we obtain a set of differential equations which is coupled with the
constraint equations. For detailed computations see Appendix BS5. Equations of
motion for the dicone have also been derived by de Pater [64], [66]. Except of the
representation in form of a differential-algebraic system (DAE, see Section 7.1) the
equations coincide in the relevant terms after performing several transformations.
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Vé, b
m KR bGre Y m8Y %
x rv
— 2
L~ xv mg  x mg
I N Y 2ray v+ 2 2aq
1 LNR xV . mg x2mg
B b VP S

V(T +TH+ T+ TF
a (TE —TR)+xy(TL+ TR)—arU(TL—TR)+ML+MR

Xh
2ay

50x 1 60 1 Xh 60x 1 50 R
zagm +T(x+l) Ty+ 2%—2‘13’" +T(x—l) Ty

2 2
X 601 1 50 L Xt 50X 1 ‘60 R
L( 2‘104—2‘1‘%”' > -0 )7, + -2‘10+2a3m ——-2—(x+l) T,

47
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Now let us consider the creep forces T, and T, in order to complete the equations
of motion (47) for the dicone. As already mentioned in the beginning of this Section,
Kalker’s “Theory of Rolling Contact” [39], [40], [41] will be preferred for the com-
putation of the creep forces because this theory yields one of the most comprehensive
and general descriptions for the contact of elastic bodies. It has already been vali-
dated by experiments [47], [18], [60] and it is proved to be profitable in several
computer simulations of wheel-rail dynamics [15], [31], [28]. A detailed description
of Kalker’s theory with respect to applications on wheel-rail contact problems is given
in [33] where also useful approximations are considered. A modification of such
approximations will be treated later on.  Starting from Kalker’s theory we have to
notice that the creep forces of (47), T, and T, are non-linear functions of the so-called
creep vector p. In [39] the creep vector is defined by

UX fo
1
p=1o = 3 Vo | - (48)
P, ,;

In (48) V.. and V,, are the longltudmal and lateral components of the relative velocity
¥, in the contact frames L and g (see Figure 7), whereas w,, denotes the vertical
component of the relative angular velocity w,, also in the left and right contact frame.
Due to this interconnection we have to determine the relative velocity ¥, and the rel-
ative angular velocity w,. For the left and right contact point the relative velocities
are:

v = ALV + A (@™
49)
VR = Ag V' + Agp (@x™)
with
r 4
v,y =1V _ (50)
“byyy + ¥y

as the velocity of the centre of gravity of the dicone in the mertlal frame €. A;; and
Ag, are the transformatlon matrices from the inertial frame &' to the left and right
contact frames &" and &*, as defined in (7). w is the total angular velocity of the dicone
in the body fixed frame €® where the angular velocity of the rotor is taken into
account. We have:

W = QB + QJ_R
From (35) and (36) we obtain
-y cosy
U
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%" and PR are the radius vectors from the centre of gravity to the left and right con-
tact point, as already used in (44):
T
!BL = [0, -ay, "L]
T
r®® = [0, ag, gl

for a = dq - = 0, because the contribution of the contact point shift on the relative
velocities is negligible.

The quantity w,, of (48) will be obtained from the z-components of the angular
velocities in the left and right contact frames:

L
@ = ALBQ

0)R=ARBQ2.

The calculation of the relative velocities ¥* and ¥* and of the relative angular veloc-
ities w” and w® is performed in Appendix C, see (190)-(195) . The result with respect
to the linearization of the kinematics is:

L aqly .

Vix = To V+ya

Vi =-yV+yy "

R oy ; 52)
er=' o V_‘l’“o

VE =y V+yy

d .

wf;= r—:: V+III

R 99 g 3
cu,z=--;6- V+y .

To end up with the creepages as defined in (48) we have to divide the x — and
y —components (52) and the z —components (53) by V. Making use of (16) and
linearizing results in the creepages for the left and right contact point:
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: . (54)
[ .

Now Kalker’s theory of rolling contact offers two possibilities:
®  Linear creep-force laws valid for very small values of the creepage vector v

® A non-linear numerical description of the crecp forces depending on v. Approxi-
mated formulas that take into account the most important non-linear effect of
the creep force saturation can be taken from [33]

First of all we will consider the linear casc. From [39] we obtain the relation
between the creep forces and the creepages

Tx Cll 0 0 Uy

2
T, | =-Gc 0 Cyy  cCy v, |- (55)
M, 0 ¢Cy, *Cyl | oo,

The linear description (55) also allows the computation of the moment about the
vertical axis in the contact point which is principally caused by the spin crecpage o,.
Generally, the moment M, is very small compared with the moments acting on the
dicone caused by T, and T,. Therefore M, can be neglected in most of the cases.
However, in the linear equations of motion we will take into account this small con-
tribution.

The remaining quantities of (55) have the following denotations:
G is the shear modulus of the contacting material.
¢ is the average radius of the contact ellipse, when Hertzian contact is assumed. This
radius principally depends on the constraint forces N, Poisson’s number ¢ and the
radii of curvature of the contacting bodies in the neighbourhood of the kinematic
point of contact [26], [49].

The coefficients C;, have been computed and tabulated by Kalker [39] as a func-
tion of the semi-axis ratio a/b of the contact cllipse and Poisson’s number ¢. More
detailed informations about the computation of ¢ and the so-called Kalker Coeffi-
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cients C, can be obtained from [39] and [33] (sce also Appendix D). In order to
insert the creep forces into (47) we define the following abbreviations:
fi=G6cy
fn =G Cy
S3 =S = Gc Cys
fis =Gt Gy,

Now we assume that the difference of the size of the right and left contact ellipse can
be neglected, i.e. ¢ = c® (see Appendix D). Then we have:

To+ T = iy o +03) =
TE =T = iy 0F = od) = 21 (5= Ty +% )

T+ T = foa O+ 00) = s (0 + 00) = 2+ )= 20, 4 (56)

26
L R 0
Ty —_— :ry _ _f2 3 T

. . X . ¥
M7+ MY = foa (0 +0)) = fi3 (03 + @F) = 2o (¥ + 57 §) = 233 7
With the aid of (56) and the abbreviation

2
r oox’I &
Xy oX o

24, 2a3 m 2

(67

the linearization of (47), where a = &, ¥ could be neglected, yields the following set
of linear differential equations supplemented by algebraic equations for the constraint
forces N* and N*®:

m o X Vi ‘50 2f23
o Y o -l ao"u v
+
. V f ;
! 4 Iy - 2f23 V qu 7 33 v
(58)
"y M y
+ 2 = 0 >

r
2Mm %‘ -mg ¢y + 2f; v
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L [ X XV 23 .
N “2sh v Y 2nay TV Y
r| X XV 25h3 ;
F (59)

x mg mg

- 200 2Sf22 y )
+| , + ,

X mg mg

200 '2‘9f22 'l’ D)

The linear set of differential equations (58) cnables the stability analysis in the
neighbourhood of the nominal state of equilibrium of the dicone. If one has obtained
a solution of (58), then also a solution for the constraint forces (59) is available. The
stability analysis will be discussed later on. Here the constraint forces do not influence
the solution of the dynamic equation. This will change if a non-lincar approximation
for the friction forces is made that accounts for the saturation effects as described in
[33].
The following approximation is valid:

2
T = '#Ntaﬂh(#—N C“ x) for l)y=0 and (pz=0 N

(60)

3
T-—-uNtanh(u C220+G C23(p2) for v, =0,

N

with u as the coefficient of friction.

To explain the approximation formulas (60) we consider two characteristic numer-
ical results of Kalker’s theory, which are shown in Figure 8(a). Here the normalized
creep forces

t, = —= and t=i
* uN Y uN

are given as a function of the normalized crecpages and the normalized spin

_ Uy p _ vy'p _ PP
”x_ u-c ’ ”y"‘ nec ’ Xz— I
where p [33] for the dicone is given by
4 _ L, 1.
p =7t Rp ’

r is the actual rolling radius of the dicone at the contact point. The quantities a/b and
the normalized spin y, are treated as parameters. In Figure 8(a) we have x, = 0.6 and
alb = 4.77. Further, we have to notice that Figure 8(a) indicates the negative values
of ¢ and ¢, where ¢, is drawn versus the longitudinal normalized creepage 7. and the
lateral normalized creepage 1,. Notice, these variables have been interchanged for the
representation of the lateral normalized forces ¢,. Returning to the equations (60) it
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Figure 8.  An Example for the Numerical Results of the Theory of Rolling Contact Gen-
crated with the Aid of the Computer Code SIMCONA [33]

is easy to see that the first equation (60) is a good approximation of the so-called
backbone curve of Figure 8(a) which represents the line where v, = 0 is valid and
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x. remains small. The second equation (60) represents an approximation of the back-
bone curve of Figure 8(b), where v, = 0 is valid.

The investigations of [33] indicate that thc influence of @, on the longitudinal
forces T, can be neglected for a/b < 2.0 (which is the case for the dicone under con-
sideration). Therefore we can omit the assumption ¢, = 0 in (60). If we also omit the
restrictions v, = 0 and v, = 0 in (60) we have approximations which do not account
for the decay of the longltudmal forces T, with the lateral creepage v, and the decay
of the lateral forces T, with the kmgltudma] creepage v,, (see Figure 8(a)) However,
the formulas (60) represent an acceptable description of the non-linear friction laws
in rolling contact if one additionally takes into account the saturation condition, i.e.
the absolute value of the friction forces is limited by Coulombs law. This leads to the
result that the equations (60) describe approximately friction laws under the following
assumptions:

a
—<2
p =

g+g<t,

With the aid of the abbreviations already used for the linear forces (55), the equations
(60) read:

i
T, = -uN tanh (u_N v,

féZ -63
7} -uN tanh (,U_N ,IIN v, ).

Now the assumption ¢* = ¢® is no longer true because the influence of ¢ = ¢ (N) can-
not be neglected for larger values of the lateral displacement y. The coefficients Cj
do not change with N since they merely depend on the shape, characterized by a/b,
and on ¢. Therefore we have for instance

fif = 6"y = G (e (W™ Cy for i=k=1and i=k=2 (62)

(61)

I

with ¢“* according to Appendix D, (213),

/ 20 R
AR~ 19.027.10° 3 NLR Z08R
r0+RR

This leads to:

AR r
-~ ‘% (%] -
T;"R = -uNL'R tanh ( 1l (+_ y* N7 !/l>>

uNER "o
. (63)
5 A" S , ¥
TER — _uNPRtanh l/l+— + <:t __Q_+_) ,
¥ uNTR - 9 uNTR V

where the indices L,R stand for left, L and right, R respectively, also the sign .

If we neglect the very small creep moments M% and MX, we obtain the complete set
of non-linear differential-algebraic equations from (47):
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B - ) Y 2y ¢+T+ 2 ay Y
Ty + T+ ¢ (TE+ TN
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where the relations 7)', T, Tt and TF have to be computed according to (63).

2

: 1 x! .ma,
+ oy (TF +Tf)<7—— o )+a(TxL—Tf)<%_ 2,0
)
2
. 1 x! 1 m
+ay (T +T5)(7— - >+a(Tf—Tf)(7—2—‘;"
(]

)
)
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The Dicone Suspended on a Moving [Frame

Cy

Cx

Top View

The frame is fixed to the inertial system e/, which moves with the constant speed V.
Because of the assumption that also the centre of gravity of the cone moves with V, the
state space co-ordinates are p and . This assumption appears with a constraint condition

for the centre of gravity (x = 0).

3.3 The Equations of Motion of the Suspended Dicone

For later discussions we also need the equations of the suspended wheelset. Therefore,
as indicated in Figure 9 we define a frame which is fixed to the inertial system ¢’,
moving with the straight and constant speed V. The cone is longitudinally, laterally
and vertically suspended on this frame by springs with the stiffnesses ¢, ¢, and c,.
Then we have the suspension forces between frame and cone acting at the cone:

L =

FsR

X

For the moments and the total forces acting at the cone we obtain:

-Lyc,

c
¢, z—L-¢) = =+ (yzbo—llxzcg)—Ll"yczz-Ll"ycz
2

-, (z+L-o)

& b —yPe)+ LTye~ LT
2 0 ‘h) ye, = ye, .

(65)
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MS =2LTyc,

M =0
2
M= 2L%cy
(66)

FLyFR — o

L R

R"+F" = -2¢y

FEryFR =0 .

With the aid of (66) an additional vector of applied forces for the suspension can be
defined as

T
g =[0,-2,-5 0, 2L Tyc, 0, 2L% ¢,y | . (67)

Now we premultiply (67) with J” to obtain the additional suspension terms for (64),
respectively for the linear equations (58)

g& (W) = jTgSe
B 7
0
-2¢,y
v, 1, y(TC—5), -, Ty, 0 0
- 2
0, 0, &V, 0, 0, 1 2L°Tygc, (68)
0
2L%c ¢
2¢,y — 20212 Gy -2¢,y
W = ~|
2L ¢, ¥ 2L%c ¢

To obtain the contributions of the suspensions on the constraint forces N and N®
we have to premultiply (67) with Q" M"' and with P'(w), where P(w) is defined as
shown in Appendix B. The result of this process is an additional vector of constraint
forces, see Appendix Bé6:
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sL Sox’l, L’re,
N — A y
_ aym ] (69)
NSR 60 X2 I cy L2 rz Cz y
aZm do

Adding (68) and (69) to (64) or to (58) and (59), respectively and accounting for the
factor x leads to the complete equations of the inertially suspended dicone. The linear

equations are:

m . X Véy  2f3
3 V¥ b o Y
¥ N
V X 33 i
U] | B o i
70
Bo G (70)
mg T +2 5 ~2f5, y
¥ T 2 =0
2fi1 7 -mg cy+ 2¢, L + 2fy3 v
ty | X XV 2y
N 2y b 2rpag  V
Rl X XV 25 ;
N 2oy h gt | LY
] (1)

1P mg Sox’1 mL* &, mg
- - +c 25f5y y —_—

24, Y atm 21 2
X2 mg ‘e oo x° 1 e mL* d, 2 " mg

2@ Y Z2m ¢ U 2 2

The non-linear equations are:
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m [ 5
X y
1 v
i Nt
1 || N7
ry . by 26
L, Xn 4 MY~ x Y
v . 2
-IyTy+mg\//c0—2ch ']
j 44 J B__xzmg (50)(21 3 mL250
Y 2rgag 2 2 q y aﬁm 21
v ll,_'_mg xzmg B 50)(21 mL260
Y 2nyag 2 2q Y agm S
L R L, R
’—7} + T+ (T, + 1)
ay (T = T + 1y (Tf + )
* S
S(TS’L_'_T}R)_*__?O_(]}L_]}R)
L Ry, %0 1 R
-s(Ty+Ty)+—2—(Ty—Ty)
0
-ary (Ty - T,)
+ / 2
I. R 1 X LR 1 My
+ax(Tx+TX)<2 2mag)+a(rx T,c)(2 ———2,)
2
1 x . m
+ax(TxL+Tf)(;———;)M(Tf—Tf)(%—Z—‘;")
2may

(72)

where s is defined according to (57) and the creep forces 7, and T, have to be deter-

mined by means of (63).
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4. The Equations of Motion of 2 Bogie with two Conical Wheelsets.
4.1 Description of the Mechanical Model

In this Section a simple model of a railway bogic will be defined consisting of a rigid
bogie frame with two dicones as wheelsets. The model is represented in Figure 10
where the following co-ordinate systems are introduced:

>F

e is the body fixed system in the centre of gravity of the bogie
frame

e and e? are the body fixed systems in the centre of gravity of the
front and rear wheelset.

e is the inertial system moving with the constant velocity ¥ along

the track centre line. Because the wheelsets are modelled as the
dicone in Chapter 3, see Figure 9, the longitudinal distance from
the inertial system to each wheelset has the constant value D.

The bogie frame can freely translate and rotate and thus it has six degrees of freedom.
It is interconnected to the wheelsets by longitudinal, lateral and vertical springs with
the stiffnesses ¢,, ¢, and c,. Additionally, the bogic frame is inertially suspended
through two longitudinal springs with the stiffness ¢”.
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2L
2B

e——2a,——>

Figure 10. Mechanical Model of a Bogie with two Conical Wheelsets
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4.2 The Global Structure of the Equations of Motion.

Because we have already done the main work which is the generation of the equations
of motion for a single dicone and there are no constraints between the bogic frame
and the wheelsets we can build the equations of motion for the bogie rather easily:
due to the latter assumption the Jacobian of the bogie frame is the unit matrix E.
Therefore, we can use the single result of Chapfer 3 and the equations of the bogie
frame like the elements of a box of children’s bricks. Regarding equation (7), we have
the following structure of the equations of motion for the complete bogie model:

—_ - . c e =
Mg 0 J ] wel |9¢ q Q] 0
f f
— |9f|
w, |l
— n f——t ) — |9|
M, J . + qc =1q |+{0 Ql’ = (73)
r B =-r -r
wel 4
0 FAF 0 E (s} q°
~F

The indices f and r in (73) are standing for front and rear wheelset whereas the index
F marks the quantities of the bogie frame.

4.3 Construction of the Additional Terms

In order to obtain the differential equations for the bogie model according to (47) we
have to perform the same procedure as described in Chapter 3. However, the same
work should not be done once again. Because of the structure of (73) the process of
eliminating the constraint forces as well as the determination of the constraint forces
result only in the determination of additional terms in the equations for the front and
rear wheelset caused by the interconnection with the bogie frame. Further on we have
to write down the simple equations of the bogic frame where only the vector of the
generalized applied forces must be determined.

Starting with the elimination of the constraint forces according to (167) in Appendix
B we have:

T 7 e . T 5T
Ip My 3 G+ Jpgf = ;g5

' T % +7 g =7"q (74)

r r 1r r ir

Mg wrp = gr -
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Because the front and rear wheelset are identical we have for the generalized mass
matrices:

M;=M,=M (75)
The Jacobians we obtain from (29)
) 1 _ .
s 0 v, 0
i 0 1 0
_ Yr (T — bg) Q ‘l’f _ Yy QV,
T = , I = . (76)
-r 0 -r 0
ry, 0 Ty, 0
0 | 0 i

The Coriolis matrices can immediately be taken from (37):

- N
0 0
0 0
c O c 0
ag=| . as=1 . an
"l’flywﬂ ",’rlywﬂ
0 0
L ‘yllyrwo ‘yrlyrwo
d L .
For the generalized co-ordinate vectors and the constraint vector we can write;
Vr Vr
- ve . - . 3 pod a ° T
Wf = » w, = y Wp = [xFa Vi Zpy Op ‘9Fs ‘//F] ’
& T
= [Nf, NS NENRT
5

where @, 9r and Y are the roll-, pitch-, and yaw angles of the bogie frame. To
determine the remaining matrices of applied forces ¢f, ¢¢ and g; we also can make
use of the results for ¢° in Appendix B but we have to account for some additional
terms regarding the load and the suspension forces of the bogie frame. Finally we
have to determine gf with respect to the forces and moments acting on the bogie
frame.



.43 -

Isolating for instance the front wheelset from the bogie frame in Figure 10 leads
to the situation as shown in Figure 11 where only the additional forces are regarded,
caused by the bogie frame and the springs. Assuming small diplacements between
wheelset and bogie frame we have for the weight forces acting in the inertial frame:

é

Figure 11.  Additional Forces Acting on the Front Wheelset Caused by the Load of the
Bogie Frame and the Spring Forces Assuming Small Relative Displacements
Between Wheelset and Bogie Frame

0 0
= o0 =1 o |. (79)
mpg mpg
| 4 ] | 4 |

The transformation to the body fixed frame of the wheelset results in:
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FBL

IL
a4 Apy Fs

1 1 r
[0, T UmE g mfg]
BR IR (80)
F'% = Ap, F
a4 Bl "¢

1 1 T
[0, T Ormess Tmfg] .

The spring forces are defined by the stiffness multiplied by the negative relative dis-
placements between the wheelsets and the bogie frame given in the body fixed co-or-
dinate system. The relative displacements will be determined later on. According to
(65) and (66) where we already have solved a part of this problem, we can write down
the additional parts contributing to the vector of the applied forces. So we have for
the x, y and z components of the load and coupling forces F, (see Figure 11),

F, = F'+Ff
F = F'+ R~ yTmg @1

F{ = F{L+FfR+% meg .
For the additional parts M’ of the moments we obtain:
ML= (F*-F)L

M =0 (82)
M = (FF - )L

From (81) and (82) we obtain the additional vectors of the applied forces g7 and g*
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- 2 (83)

se

These vectors g and g;° have to be added to the vector g° of equation (48) for the
front and the rear wheelset, to obtain the complete vectors of the applied forces g7 and
q¢ of the system (73). Moreover, we can proceed with transforming (83) to obtain the
additional terms of the applied forces of the equations of motion according to the
system (46) which does not explicitely contain the constraint forces. The transforma-
tion of (83) with 7}’ or J7, respectively, yields according to (68),
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F}{L+F}{R—%}'fbumFg—rL(F{R“szL)
7w =
Co'/’f%mrg‘F(F{L—FfR)L
I‘;L+F;R_Lybompg—rL(F'R—F'L) e
2 r z z
4 (w) = )
a¥, 3 mpg+ (FE-FRL

where we already have linearized regarding that the spring forces are the product of
the stiffness and the relative displacements which is assumed to be small.

In the next step we premultiply (83) with Q7 M"' and with P"'(w) to determine the
contributions of the frame load and the spring forces to the constraint forces accord-
ing to the process as described previously in Chapter 3 for the suspended single
wheelset. The calculations are performed in Appendix B7 and result in

2 1, R
mpg  YiX mMpg A+ F x 2715
il :‘ _ ; 4oz - z 0 ( FL Pfk) ( szL _ FfR)
! % 2maﬂ
= 2 L, R
A mpg X Mr& A+ X 150 (P + ) + Ly (FE — FR)
174 4a, 2 2q, V2 Tz

(85)
which are the constraint force parts for the front wheelset. The same result is
obtained for the rear wheelset. These parts of constraint forces have to be added to
the constraint forces for the single dicone (64) to obtain the constraint forces for the
front and rear wheelset.

We end up with the determination of the vector of the applied forces g of the bogie
frame. The forces acting on the bogie frame are shown in Figure 12. Here the spring
forces F are defined in the body fixed frame in order to simplify Newton’s and Euler’s
equations. Note that we have to take into account later on this assumption when the
relative displacements between the bogie frame and the wheelsets are calculated. The
weight force of the bogie frame and the resulting reaction forces on the springs are in
the state of equilibrium and therefore they do not contribute to the vector of applied
forces. The terms which contribute to the constraint forces, have already been taken
into account in (85). Regarding Figure 12 the applied forces can be written as:
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Figure 12.  Schematical Representation of the Tforces Acting on the Bogic IFrrame
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(86)

Now we have detcrmined all the quantities required to fill the structure given in
(73), and we also have all the quantities necessary to writc down the complete differ-
ential algebraic system for the bogie according to (47) for a single dicone. Neglecting
the influence of the creep moments M, in (47) we take (64) for the front and rear
wheelsct respectively and add the additional terms (84), (85) and (86), so the complete

equations for the bogie model are:
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X X (F" = F")
(R -FL
Fly FR
y : y FXL (F;R_Fzrl)
(F;L—F;R)L
N (87)

Al PRl Ry pl pR
_F;{l,_l;i{R_ F;,'*“P;R

A"~ PRl R

LA =R+ =P+ H(F" + Ff + B+ )

D (P + FR — F— FR) - H(F+ PRy Py )

L(FR 4 F;R_F{L__F;L)+D(F;L+F;R_F}fl,_F}{R)_'_B(FL_FR)

with the constraint equations



2
xV .  mg xmg
Vet ——— Yy i 7
F Y 2ayry T2 20y ' 5
L fL | /R 0 (L _ R
S N N R N
R -1 U+ —+ ¥, fL /R 0 (ofL /R
N[ 2mn 2 2 T (T +Ty)+57(Ty -1)
I PR S T N R O S )
R Y 2anp T 2 2q9 77 7L o Ry 4 20 (L _ geR
N, 2 'S(y"'.v)"'_z—(y_y)
E R4 lj/_{_ﬂ_’_xmg i |
Y a9y 772 2qy 7
Voo (TE+ PR LX) Ly s (2 — TR 1 W
fOX(x x) ) 2ma& /0(" ") 2 2]
- 2
s, Ry 1 b L AR 1 My
‘pf60X(Tx +Tx)(7‘2mag)+'/’f50(Tx —Tx) T_ 21
" L Ry 1 x! L N (88)
.
o 12+ (4 -2 v 12t - (-5
2
L R [ 1 x! L R( 1 M
4,501 (T, +7z)(—2-—2m3)+w,ao(r; -1 (+-52)
2 fL | R 2
yxi’meg P4 F Iz L
R o (B ) =g (P = L)
4 4a, 2 2mag 24y
2 L, R 2
meg X mpg  FF+ F X 1éy o ry, LY o1 R
. 4 4a 2 2mak " +]})+2"0 (R £
2 L, wR 2
m m F,"+F, 16 L
rg§ WX Fg+ 2 2 X 20 (F;L+F;R)_ X (Fer_ ZR)
2 L, R 2
mpg  Yex mpg  FUAFT X718 o omy, LA en R
oy it SR XIN (gag)e  (-Y

The creep forces T, TR, Ti*, T*, TP, TR, T;" and T} have to be computed
according to (63), replacing N* and N* through N}, N}, N¥ and N¥ respectively in
the equations for the coefficients f; (N>F) in (62).

The only unknowns left in (87) and (88) arc thc suspension forces F, which are
defined as the product of the relative displacement and the stiffness. The relative
displacements have been determined in Appendix C2. With the aid of these results
we obtain the following suspension forces.
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Front wheelset, left:

Ff = c¢,SpH+LWr—¥p)+xp)
Fl = ¢, (0prD— o H+yp—y) (89)
F' = ¢,(:8:D — L(pp+yT)+zp)

Front wheelset, right:

FR = ¢ OpH—LWp—vp+xp)
Ff = ¢,(bpD—opH+yp—y) (90)

FR = ¢,(-9: D+ L(@p+y1) +zp)
Rear wheelset, left:
x = @rH+LWp—¥,)+xp)
Yy =6 (¥rD—orH+yp—y,) €29

z = Cz(‘gFD_L((pF+yrr)+zF)

G R
-~~~
[

Rear wheelset, right:
R = c.OpH—LWr—¥,)+xp

¥y Cy(-'/’FD_(pFH+yF_yr) (92)
FR = ¢, 8D+ L(op+y,T)+2zp)

ol
£
il

Inertial suspension of the bogie frame:

left:

Fr = e (cp+ BY)) 93)
right:

F* = -c" (xp— BWp) (94

With (87) up to (94) we have the complete equations describing the dynamic behav-
iour of a bogic modcl with two conical wheelsets. The data have been provided for full
scale models as well as for 1:5 scaled models for the single dicone and the bogie. Sol-
utions for these systems will be performed in Chapter 7.
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S. Mechanical Similarity Laws

Similarity laws are of particular interest for the transformation of experimental
results to the engineer’s full scale designs when the experiments have been performed
on a scaled testing-stand. The fundamental ideas trace back to the work of O. Rey-
nolds in 1883, [68] and 1895, [69], when the basic principles of hydrodynamics were
discovered. One of the results of Reynold’s research is that the state of a hydrody-
namic flow can be characterized by the ratio of the inertia forces and the friction
forces of the flowing fluid. This ratio is known as the Reynold Number Re and results
from

V.l

v k4

Re =

(95

with the velocity V, the kinematical viscosity v and a characteristical length /, as for
instance the diameter of a pipe where the fluid is flowing through. For the example
of the pipe flow, laminar flow is indicated by

Re < 2000
The change from laminar flow to turbulence happens at
Re > 2300

However, similarity of a flow’s state in general cannot only be characterized by the
Re-Number but additionally the following similarity numbers must be considered:

V2

Fr = 7o

(96)
which is known as the Froude Number and is defined as the ratio of the inertia forces
and the gravity forces.

Ap
p-V?

Eu = , (C2))

which is known as the Euler Number and is defined as the ratio of the pressure forces
and the inertia forces. Here Ap is the pressure difference and p the density of the
fluid. Taking into account the length scaling factor

— 1_1 (98)
¢ = 4)

with L: characteristical length of the full scale model,
by characteristical length of the scaled model,
we find that the flow of the scaled model is similar to the flow of the full scale model
when a function ¢ can be found with
¢ (Re, Fr, Eu, @) = const .
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This very brief and simplified introduction to the similarity laws of hydrodynamics
may be sufficient for our purpose, establishing the similarity laws of mechanical sys-
tems. More detailed information is for instance given in [52], [42], [55] and [76].

To find similarity numbers responsible for dynamical similarity of a mechanical
scaled and full scale model, the approach as for instance presented in [76], deriving
the Re-Number from the Navier-Stokes Equations, is also useful for the dicone under
consideration. Before writing down the equation of motion of the dicone for the full
scaled and the scaled model we define the following scaling factors in addition to

(98):
Q4 = (p,2, scaling factor of cross section

Qg = (p,a, scaling factor of volumina

t
Q, = —tl- , scaling factor of time
0

oy = b , scaling factor of velocity

Py
?y . .

0y = —5 scaling factor of acceleration
(7]

= 2L caling factor of densit

P, = o’ scaling factor of density
my a P Bya 4 fp}‘

Pr = m:,a:, = pl Bla:, = (’;,2 , scaling factor of inertial force

0 o t ;

Om = @,- qo? , scaling factor of mass

@7 = @p- 0}, scaling factor of inertia .

For further discussions we need

Pes scaling factor of spring stiffness
1y scaling factor of creep forces
¢,  scaling factor of friction coefficient

Pes scaling factor of size of contact ellipse due to the quantity
¢ = (ab)'"?

Pn,y scaling factor of constraint forces .

99)
(100)

(101)

(102)

(103)

(104)

(105)

(106)

(107)

In order to obtain similarity laws providing dynamic similarity of the scaled and the
full scale dicone, we use the fact that the differential equations of both models have
to coincide. With the aid of the previously defined scaling factors the lateral compo-

nent of (72) for the scaled dicone becomes:
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2
m --_‘Pm‘l’l - Ier s P, P Py
x 7 o X To ©; 0,9,
4
mgby  @n0 26

+ T, 00+ Ty op

This results in

my _ ler ._mgboyﬁ_Zny (pc(ptz
- ¥
X X' )g b X Pm (108)
P P:
+ (Tx + T:v) DPm Pt

Equation (108) is identical with (72) when the following conditions are fulfilled:

2
'Y = @Oy =y
I o =l=0=0=0=9 ’

g Lo L ool Pe -1 = ,

Pm (pp.go}.(pf, (pp.(p,.gog, (Pc—(Pp‘PI(PV

2 _ 3

m M=l=>-%=] = Or= 0, ¢
Om Pr @, 01 - OF

The same procedure is applied on the first constraint equation of (72); then we obtain

LyV 2
Q7@ X . m, m,

o, o R
0. 010,  Sxl  0,0,0

" c21 /-Cy o2 y— P Om / y (109)
(Pl(pm aﬂm (pl

+or((TF + TH+ v (TE+ TH).

From (109) the following conditions appear:

D _ =>¢N=(pm
v e =!

Pr = @1 = @n-
A\ O =1

The remaining coefficients yield no new conditions; this is shown subsequently:
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2 2

Pr- Py Pm P1 * Py Pm Pv
2 = 2 = Toyor T ! N = Pm >

P PPN P ¢ ON

see condition V.

Qe Pr- Py _ O O O =1 = @, = ﬂ —_ (p_m=>(p = ¢ (p2
2 - N ‘< h < o

Pi Pm PN Om ON o Y ’

see condition /1.
3 3
e Om O PeOm®P _ PPt _ L Pmo o2
= = = = c — 1 .

PPN (pm(pN(p? Pm ¢ @1 ?

Thus we have five different conditions, / to ¥, which determine the relations between -
the scaling factors in order to obtain dynamic similarity of the scaled and the full
scale model.

From conditions /I and III we can also find similarity numbers playing a dominant
role for the definition of dynamic similarity. Condition /7 can be written as follows:

PPy PPy D Py Pspring Force
I=—53 = T = 0.0 = Prear (110)
(pp wl (pV (pm (pV m2 nertal orce
P Dt
From condition 77/ we obtain:
2
1= Pr P - Pr - DFriction Force (l 1 1)
Pm Pt Pm Ot Pinertial Force
D2

So we can define two similarity numbers

{ c
Ne, = —%_ = , (112)
Y % plV?
T
Nep = —i—— . (113)
A p12 p2

In accordance with [62], where the Newton Number Ne is generally defined as the
ratio of the applied forces F and the inertial forces, so that
Ne= —£ | (114)
pL°V

we call Ne, the Newton Number of spring forces, represented by the ratio of spring
forces over inertial forces and Ne, the Newton Number of friction forces due to
Kalker’s theory of rolling contact. Ne; is represented by the ratio of friction forces
over inertial forces.

For the presence of dynamic similarity we have the following condition:
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Ne;, = C; and Ne = G,
(115)
Cy, C, constant values.

That means, if (115) yields the same constant values for the scaled dicone as well as
for the full scale dicone or a bogie model at a certain dynamical state, respectively,
then the states of the full scale model and the scaled model are dynamically similar.
And then the quantities of both models are interconnected by the scaling factors ¢
as defined previously.

Before defining the characteristical quantities in (112) and (113) for the computa-
tion of the Newton Numbers we will complete the set of scaling factors. The scaling
factor of the coefficient of friction results immediately from condition V:

Or = @, 0N,
see (61), yields with

@r = @y from condition V:
o, =1. (116)

For this result we assumed Kalker’s non-linear theory with saturation ending up with
Coulomb'’s law of friction.

However, we have to notice that for the linear theory of rolling and for the non-li-
near region, where the saturation is not complete, dynamic similarity yields a very
incisive condition for the density scaling which will be shown subsequently.

From equation (55), describing the linear creep force relations, we obtain
or = @. a17)

since the scaling factors for the coefficients Cj, for the creepages V; and for the shape
g of the contact ellipse have to be 1.0, see Appendix D. Also from Appendix D we
obtain for the scaling factor of the size of the contact ellipse

0. = Jor o1 = 0. (118)
Then (117) results in

or = 0f - (119)
Compared with the conditions /¥ and V this is equivalent to a condition for the
density scaling

Or = O = 0, 0]
and with (119) we obtain

1

P = o - (120)

However, (120) can not be realized in the experiments under consideration, where the
geometrical scaling factor is
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o =5. (121)

Therefore, we have to violate condition (120), i.c. in the linear region of the creep
forces dynamic similarity is impossible. This compromise is not as incisive as it seems,
because the limit cycle behaviour is predominantely influenced by the saturation of
the creep forces. For this region the density scaling can be chosen arbitrarily, as
indicated in (116) where ¢, is independent from ¢,; see also Section 5.2.2.

Now we return to the Newton Numbers (112) and (113) to define the character-
istical quantities for the dicone and the bogie repectively. The characteristical length
I shall be represented through the nominal rolling radius r,, whereas the character-
istical stiffness can be represented by the lateral suspension stiffness c,. For the
characteristical creep force T we choose

R L
=T, +T7, . (122)
Then we obtain for the Newton Numbers

C,

Ne, = 2 (123)
2
prgV
TR+ T
Ne; = —yz—sz . (124)
P

Since both equations (123) and (124) have to be fulfilled, a new similarity number can
be defined; for instance by the ratio of Ne, and Ne,. For our purpose we define the
ratio of the spring forces and the lateral creep forces

K. Ne _ S (125)
Ny = e

Equation (125) corresponds with

(pc * O
o = | (126)

and replaces the conditions /I and /11

Now the results of this Chapter can be summarized as follows:

Dynamic similarity of the scaled and the full scale model is given when the ratio K
yields the same results for a certain state of both models. Additionally, condition /
requires for the scaling of the velocity:

oy = 0. (127)

If also similarity for Kalker’s linear creep force laws is required, then (117) and (118)
together with condition V result in

wp = ?’ . (128)
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The remaining scaling factors are obtained from the conditions I~ III and from
(128):

Pe = Pt
2 (129)

or = Q1
from the condition /¥, (106) and (128):

PN = Om = @, ‘P?
viz

oy = @ (130)

P = 07 (131)
from (106), (107) and (128):

o = 0f; (132)
and finally from condition V:

0= oL =1, (133)

see (116). These are the scaling factors when the conditions / up to V are exactly ful-
filled and additionally the similarity of the contact ellipse, i.e. Kalker’s linear theory
of rolling contact, is valid. However, (128) and also (130) - (133) are very incisive for
the design of a scaled bogie model with a geometric scaling factor of ¢, = 5.

Therefore, the similarity of the contact ellipse is violated resulting in a density
scaling factor ¢, which can be choosen arbitrarily, because only the similarity of the
contact region yields a condition for the density scaling. Under this assumption the
scaling factors become (see conditions / to V), (106) and (107):

‘PVZ\/—‘I;I—

@ =0, 0

Pr = (P,,"P13

on = 0, 0] (134)
O = @, P}

o1 = 0,0

o, =1

With the aid of these scaling factors the bogie model is designed as described in
Chapter 6.



6. The Experimental Equipment

6.1 General

In Chapter 7 we will discuss computer simulation results obtained from the
equations of motion of a single dicone and a bogie with two conical wheelsets. How-
ever, the equations of motion have been derived with the aid of several simplifying
assumptions to limit the theoretical work or at least to make the theoretical treatment
of the problem possible.

These assumptions, first of all are concerned with modelling problems between
technical realizations and mechanical models described mathematically. In the math-
ematical analysis of complex technical problems one has to live with compromises and
approximations; otherwise in most of the cases the simulation of technical problems
may become prohibitive.

For that reason experiments are exceptionally important for the validation of
modelling and prediction of the dynamical behaviour. Particularly in wheel-rail
dynamics, the non-linear contact force laws between wheel and rail play a dominant
role for the limit cycle behaviour. Therefore, an experimental equipment has been
developed in order to perform measurements to validate the modelling assumptions
entering the mathematical description. However, the emphasis of this investigation is
to obtain fundamental knowledge about modclling and experimental methods in
wheel-rail dynamics. Therefore, it seemed not implicitely necessary to build a full
scaled test-bench. For the problem under consideration a lot of advantages arise in
case of a scaled equipment, as:

®  Production causes rather low expense
e  Handling becomes easier
¢  Modelling parameters can be changed easily

But there are also inconveniences and disadvantages, since the physical behaviour of
a scaled mechanical model is generally not the same as that of the full scale model.
Similarity of the physical behaviour can only be reached if similarity laws can be
applied. In fact of the advantages of a scaled test equipment it seemed to be an
interesting investigation under which kind of conditions similarity laws can be applied
in wheel-rail dynamics. Some of these problems have been treated in Chapter 5. In
the following the 1:5-scaled test-bench is described and after that we will discuss the
similarity laws, in connection with the bogie model.

A photograph of the complete equipment is shown in Figure 13 where the two
main parts can be recognized:

¢  The roller rig
®  The bogie model

6.2 The Roller Rig

The principle of this part of the test bench can be recognized from Figure 13, from



Figure 13. The Complete Test Equipment
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the top view of the technical design in Figure 14 and from the front view of
Figure 5. Before entering the design phase, the roller rig of the Laboratory for
Engineering Mechanics of Delft University of Technology was placed at our disposal
for about six months and served as a forerunncr in order to test the bogie model. The
design problem was part of a term study performed at TU-Munich, Lehrstuhl fiir
Konstruktion, and at DLR, Institutc for Flight Systems Dynamics [74]. Therefore,
the following description can be restricted to the general specifications and features
of the roller rig. The main dimensions are correlated with the bogie model scaled 1:5.
The roller rig is composed of two rollers of 360 mm diameter. Each roller is equipped
with two profiled rings where the distance of the rings corresponds to the scaled track
width of the rails and the profile of the rings is conform to the UIC 60 rail profile.
The distance of the two rollers corrcsponds to the wheel base of the bogie model. This
distance can be varied continuously between 400mm and 560 mm, which corresponds
to wheelbases of the full scale bogie between 2000 mm and 2800 mm. This variation
is provided through a parallel crank-mechanism, a so-called Schmidt-Coupling, see
No. 68 and 69 of Figure 14. The principle of this design element is shown in
Figure 16.

Figure 16.  Principal Representation of a Schmidt-Coupling, quoted from Schmidt-Kup-
plung Gmbll, Wolfenbiittel.

The rollers are interconnected by a toothed belt of specified longitudinal stiffness and
are driven by a DC-controlled disc motor. Therefore, the speed of rotation of the
rollers can be varied continuously from zero up to 1100 min™. This corresponds to a
speed of the scaled bogie model of

0.36-n- 3,6

Vo max = <0 = 74.6 km/h .

As shown in Chapter 6, the scaling factor for the velocity is
Oy = x/5_,

and therefore, the maximum speed of the full scale bogic results in
Vi max = Py Vo max = 1668 kmfh .

As can be seen from the intersection of Figure 14, the rollers are axially fixed in cones
which allows dismounting the rollers for changing profiles or track gauge.
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6.3 The Bogie Model

The bogie model consists of a bogic frame and two conical wheelsets as assumed for
the generation of the equations of motion in Chapter 4 and indicated in Figure 10.
The design of this 1:5-scaled model was performed with the aid of the scaling factors
derived in Chapter 5 and was part of a term study at TU-Munich and DLR [34]. In
this connection, the scaling of the mass arised as a problem:

Assuming ¢, = 1, the scaling factor of the mass is ¢, = ¢} = 125. Considering a
real bogie with a mass of for instance 5000 kg, the mass of the scaled bogic would be
40 kg. This scemed to be too light for our bogic model, since additional moveable
masses are required to fit the inertias as close as possible on the demanded valucs.
So we decided to design a bogie model of about 80 kg (¢, = 0.5) where also the
restrictions for the design (for instance diameters of bearings etc.) were less signif-
icant. Then we receive the following scaling factors from (134) with ¢, = 5 and
o, = 0.5:

Mass: Om = @, @] = 62.5

Inertia: @ = ¢, 0 = 1562.5

Stiffness: Q.= @, 0] = 12.5 (135)
Creep Force: ¢or = @, ¢ = 62.5

Constraint Force: On = Qm = 62.5

Coefficient of Friction: o, =10

The result of the design with these scaling factors is shown in Figure 17 and
Figure 18. Some additional features of this design have to be mentioned. First of all,
there is a mechanism coupling both wheclsets as shown in Figure 18. This mechanism
was intentionally built in to simulate an elastic frame designed by MAN for a high
speed bogie [54]. This elastic frame can be approximated by a shear spring with
stiffness ¢, and a bending spring with stiffness ¢; interconnecting both wheelsets, see
Figure 19. In the scaled model the shear stiffness is represented by a leaf spring
(position 27 Figure 18) and the bending stiffness is replaced through a torsional rod
(position 26 Figure 18). Both elements can casily be changed for variation of these
stiffness parameters. Another feature of the bogie model is provided by the turnable
coupling element (position 21, Figure 18) shown in intersection C-D of Figure 18.
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Figure 17.  Side and Top View of the Scaled Bogic Model
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Figure 19, Mechanical Model of a Bogie with Wheelsets Coupled by an Elastic Frame
with Shear-Stiffnes ¢, and Bending Stiffnes ¢,

If this clement is turned for 90° the interconnection between the wheelsets becomes a
planar hinge in order to simulate bogies as for instance suggested by Scheffel [71],
so-called self steering bogies. Hence, the coupling mechanism enables the simulation
of the following two-axle railway bogie types:

¢ Conventional bogies
¢  Bogies with more or less elastic connections between the wheelsets

For the investigations under consideration we restrict ourselves to conventional
bogies, i.e. the leaf spring (Position 27) and the torsional rod are dismounted and the
turnable coupling element (Position 21) is in a position where the wheelsets are not
interconnected.

Since the coupling mechanism between the wheelsets is connected with the hollow
axles containing the axle bearings as shown in Figure 20, the mechanism has to be
kept in a horizontal position. This is provided through a flexible wire, mounted on top
of the test bench’s frame (see Figure 13). The wire is connected with hinges at the
ends and therefore this compliance yields merely a small lateral stiffness term addi-
tionally to the bogie frame’s suspension.

The suspension between wheelset and bogie frame is realized through two beams
for each suspension, which are fixed on both sides (see Figure 21). These double
beam elements provide a parallel motion between wheelset axle and bogie frame and
are widely known for the good linearity between displacement and bending strain.
The latter plays a dominant role for the manufacture of force transducers with strain
gauges [43] and therefore it proved also profitable for our purposes, since the sus-
pension forces are measured with the aid of strain gauges as described later on.

After the bogie had been completely manufactured and tested on the roller rig it
was dismounted in order to determine the masses and inertias through weighing and
through pendulum tests [17]. Figure 22 shows the bogie frame during a pendulum
test for the determination of I, and the centre of gravity. From Figure 22 one can
also recognize two cylinders. These cylinders are filled with lead elements, which can
be fixed in two different lateral positions in order to influence the inertias I, and Ip,.
There are also steel plates mounted, which can be displaced in the longitudinal
direction in order to influence the inertias /5, and /. The inertias have been measured
for the two positions of the lead weights in the cylinders and for three different posi-
tions of the steel plates. In Figure 22 the steel plates are shown on the outer position.
The measurements yielded the following results.

Data of the 1:5-scaled model:
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Figure 20. Design of the Wheelset Bearing

Masses:

Bogie Frame
Wheelset
Complete Bogie

my = 42.82 kg (including all additional weights)

m

= 16.08 kg

me+2m = 7498 kg

Inertias with possible variations:

Bogie Frame

Wheelset

-
Il

>~
1l

0.703 kg m?, 0.769 kg m* -

0.796 kg m?, 0.822 kg m?, 0.921 kg m?
1.143 kg m?, 1.213 kg m?, 1.313 kg m*
1.373 kg m?, 1.493 kgm?, 1.573 kg m*

I, = 0.366 kg m*
0.0605 kg m?
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Figure 21. The Scaled Bogie Model

After transforming these data with ¢, = 62,5 and ¢; = 1562,5, a configuration of
the scaled model was found whose data are close to that of a real bogie. This bogie
has already been studied on several computer simulations [31].

The data of the scaled and the full scale model are:

Scaled Model Full Scale Model
my = 4282 kg mp = 2676 kg
m = 16.08 kg m = 1005 kg

mp+2m = 7498 kg mp 4+ 2m = 4686 kg
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Figure 22. Pendulum Test for the Determination of the Bogie Frame’s Inertias and the
Centre of Gravity

Inertias of the Bogie Frame

I, = 0.769 kg m* I, = 1202 kg m?
Iy, = 0921 kgm? I, = 1439 kg m’
Ip, = 1.573 kg m? I, = 2458 kg m*
Inertias of the Wheelset
I, = I, =0.366 kg m* I, =1, =572 kgm?
I, = 0.0605 kg m* I, = 95 kgm?
Stiffuness of the Primary Suspension
first set of springs
¢ = 6.4.10*N/m ¢, = 8.0-10°N/m
¢, = 6.4.10*N/m ¢, = 8.0.10°N/m
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¢, = 50.10° N/m ¢, = 6.25.10°N/m
second set of springs

¢ = 2.6-10° N/m ¢ = 3.25-10°N/m

¢, =26 10° N/m ¢ = 3.25. 106 N/m

¢, = 50-10°N/m ¢, = 6.25.10° N/m

The stiffness of the vertical suspension c, is predominantly influenced by the warp
stiffness of the bogie frame which was approximately determined during the exper-
iments. These data are the basis for the experimental investigations, the examination
of the similarity laws and the computer simulations in Chapter 7.

6.4 The Measurement Device

In order to examine the similarity laws of Chapter 5 and also the modelling of the
contact mechanics, measurements are required. These measurements essentially deal
with the creep forces, the limit-cycle amplitudes and the determination of the coeffi-
cient of friction u. The latter is again strongly connected with the determination of the
creep forces during saturation. Since it seems nearly impossible to measure creep
forces directly in the contact patch, a compromise has to be found. This appears in
connection with a quasi-static consideration of the equations of motion of the bogie
(87) and (88). If we assume

J=3=0
l.,;f = ‘.I;r = 0
}}f = J;r =0
bp=1, =0 (136)
',/f = ‘/’r =0 . .
parallel shift of the bogie
yf = yr
V#0.

then we obtain from the first and third equation of (87), when the small contribution
l;—L (FR — F) is neglected:

by g F 1
T+ = 2= (m+m—)y“7 (F" + A%
{ (137)
Fa

i+ TR = 28 (m+'"—F)y- (" + ERy
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Inserting the data of the dicone and the bogie from Chapter 7 respectively Section 6.3

8y = 0.0262
by = 0.359 1/m
x = 10177
r=0.177

m = 16.08 kg
my = 42.82kg

(44) becomes

T+ TR = 129.8y — 0983 (FL + FF)

, (138)
T+ TR = 1298y — 0983 (F- + B

where the displacement y has to be inserted in [m]. Actually, the assumption
'/’f = ‘/’r = 0

in (136) is not true, since the wheelsets are elastically suspended to the bogie frame
and the longitudinal creep forces T- and TX cause a yaw angle of the wheelset axle.
However, due to the suspension stiffness ¢, the yaw angles y; and y, are small and the
contribution to (137) is small too, because the angles are multiplied by the small value
¢, see (87). Therefore, assuming zero yaw angles in (137) yields a good approximation
in order to obtain relations between suspension forces and creep forces. Hence,
equation (138) represents approximately the interconnection of the total lateral creep
forces and the total lateral suspension forces at the front (f) and rear (r) wheelset for
the following experiment: The complete bogie is shifted for a certain amount y at the
front and rear wheelset while the speed V is kept constant. Then, after the bogie has
reached the equilibrium position where (136) is fulfilled, the lateral creep forces can
be determined by measuring the lateral suspension forces FI¥, F¥, F*, I} and eval-
uating (138). In a similar way we receive equations for the longitudinal creep forces
from the second and fourth equation of (87):

“a (T =T —xy (T + 1) = (FE - A L

139)
ay (T = TR =y y (T + T = (R~ F)L (%
With 7% = -TR and TF = -T2, see (63) with (136), this results in
L AR
7L — .7R _ _M
X X 200
I R (140)
7L — TR _ _(f"‘___F_;_)_L
x x 2a0

Finally we obtain relations between the constraint forces and the suspension forces
from the constraint equations (88) for this quasi-static experiment. For instance we
have:
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N = 8, mgg ¥ mg _ x2mpg
5T 4 2q9 0 4a,
8
+s(Th + T;’R)+—2°— (1" — 1iF (141
2
x 1 i L
+ o (F+ BN+ B BN (R
2may %
This is approximately
2
L., mg mpg x (mg mpg fL , —fR
Nf~——2 +-——4 Y % (—-2 + 2 )+s(T}, +T;7) (142)

because 77 = -TI% for = 0, see (63), and the remaining terms of the coupling forces
are nearly zero for this initial condition. Inserting the bogie data yields

Nf ~ 184 — 12654y [N].
In the same manner we obtain (143)
Nf =184+ 12654y [N].

The equations (142) and (143) are also valid for the rear axle, i.e. the constraint forces
N! and NE. So the previous considerations indicate that quasi-static measurement of
creep forces can be done by measuring the suspension forces and evaluation of
(138), (140), (142) and (143). Then measurement of the following quantities is
required:

¢  The suspension forces in the primary suspensions (the double beams between
wheelsets and bogie frame due to Figure 21) at front (f) and rear (r) in
longitudinal direction FF, FF, F, F,’R,R
lateral direction FL + FR, F* 4 FR,
vertical direction F’j’, FZ"{ F;Lf F;R,y

¢ The lateral displacements of the wheelsets y; y,.

These are in total 10 forces and two displacements. For the force measurements we
decided to apply strain gauge techniques, whereas the displacements were measured
with the aid of inductive displacement transducers. The design of the measurement
device is described in [61], a term study performed at TU-Munich and DLR
Oberpfaffenhofen. Therefore, we can restrict ourselves to a brief description of the
main problems and their solutions.

For the measurement of the longitudinal and lateral suspension forces F, and F, it
had to be noticed that the strain signals in the strain gauges are composed of bending
strain due to F, and F, and of normal strain due to F,. The situation is indicated in
Figure 23 for F, and F, where the location of the strain gauges on the beam elements
(see Figure 21) is schematically shown. This is the solution where the measurement
signals of the normal force F, are completely eliminated and the remaining signals are
proportional to F;, if the strain gauges are interconnected to a complete Wheatstone
bridge as shown in Figure 24. For this connection the following relation between the
potentials Uyyr and U, is valid [27], [59]:
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Uour
U;

where &, are the strains due to bending and &, is the normal strains due to F,. The
factor k is the charcteristical constant of the strain gauge. With respect to the sym-
metry of Figure 23 we have

= -I;— C(ept) — (-ep + en) + (843 + Ex3) — (844 + Eng)] (144)

Ep = Ep2 = Ep3 = Epg = Ep

Nl = EN2 = EN3 = ENg T &y

Figure 23. Location of the Strain Gauges for the Mcasurement of the Longitudinal Sus-
pension Forces

Figure 24. Wheatstone Circuit for the Strain Gauges of Figure 23
and (144) becomes

U,

our  _ kel (145)
Uin
In a similar way the influence of the normal force F, was eliminated for the meas-
urement of the total lateral suspension forces F-+ Fr at each wheelset [61]. The
complete Wheatstone circuit also provides the compensation of the temperature
influence. The normal forces F- and FF on each wheelset are measured with two
active strain gauges, located in the middle of thc beam (since this is a neutral point
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where the beam is not bended) and two passive strain gauges in order to complete the
Wheatstone circuit for temperature compensation. The passive strain gauges are
located near the active ones at an unstrained place.

Since the theoretically complete compensation of the influence of the normal forces
F, on the lateral forces F, and F, and vice versa may differ in practice, a calibration
device was built. This calibration device allows to mount the beam elements in the
same location to each other as they are located in the bogie model, see Figure 25.

Figure 25.  The Calibration Device for the Suspension Forces

The forces F,, F, and F, can be applied with the aid of weights. Thus the quality of
the compensation techniques described previously could be examined and the
remaining influences for instance of F, on F, were represented as correcting factors,

[61].
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Figure 26. The Measurement Device

Concluding this Section, we show in Figure 26 the mcasurement device with carrier
frequency amplifiers, 6-channel plotter and a view of the inductive displacement
transducers for the measurement of the wheelset lateral displacements.
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7. Numerical Solutions for the Single Dicone and the Bogie Model

7.1 General

In this Section we have to deal with two kinds of numerical problems: the calcu-
lation of the eigenvalues for the linear model and the determination of limit-cycles via
numerical integration of the equations of motion as mentioned in Chapter 2, for the
non-linear model. The eigenvalue problem can easily be solved with standard soft-
ware, available from numerous libraries. For this purpose, the linear equations (58)
and (70), which are given as

Mp+Dw+Kw=0, (146)

where M, D, K represent the mass, damping and stiffness matrices, have to be
transformed to the first order form

u=Au . (147)
Then the eigenvalues A can be found from the non-trivial solutions of
AE-Au =0, (148)

with E as the unit matrix and u, as the eigenvector of the corresponding eigenvalue
A. Detailed representations of these very fundamentals of linear system analysis can
for instance be found in [13], [57] and [56].

The second problem, the determination of the periodic solutions of the equations
of motion (limit-cycles) of the dicone and the bogie model requires a more recent
software, particulary developed for the problems under consideration.

The non-linear equations of the free dicone, (64), the suspended dicone, (72), and
the bogie model (87) and (88) interconnected with the creep force equations (63) can
generally be written in the first-order form

u
g =5 u®, @) (149)

For the equations (64) and (72) respectively, the quantities of (149) are for instance
defined as follows:

u=@ v 59"

g = (N", NHT (150)
L R L RqT

= [Tx, Txy 7}! T:v] ’

where T (g) is defined by (63). As already mentioned in Chapter 3, the equations
(149) represent a system of differential equations, coupled with a system of algebraic
equations, which are in our case the equations for the constraint forces g. Those dif-
ferential-algebraic systems (DAE’s) have been mathematically investigated since the
late 1960’s. However, first practical numerical methods for certain classes of DAE's
were the so-called backward differentiation formulas (BDF) of [21] and [75]. Up to
the early 1980s most of the problems connected with DAE’s in engineering sciences
were solved approximately with the aid of well established Runge-Kutta methods. So
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for instance in the multibody simulation code MEDYNA [32], the DAE’s of whecl
rail dynamics are solved, applying a Runge-Kutta-Bettis method or a Gear-Stiff
method by taking the solutions of the constraint equations from the previous inte-
gration step. For situations in which the constraint forces change drastically from one
integration step to another step, an iteration loop provides a more accurate solution
of the constraint equations. It seems that a lot of enginecr’s problems can be solved
sufficiently with the aid of those approximative methods. However, it is an open
problem whether thesc methods are efficient.

For the problem under consideration we decided to take advantage of a recent
development in DAE software, the differential-algebraic system solver DASSL, [5].
This method provides the solution of the diffcrential equations and the constraint
equations of (149) simultaneously.

As already mentioned in Chapter 2, also other methods for the solution of DAE's
exist, based on Hopf's bifurcation thcorecm. Because the emphasis of the problem
under consideration is laid on the application of similarity laws, the application of
only one method for the determination of limit cycles seemed to be sufficient. How-
ever, with repect to the efficient treatment of simulation problems in connection with
DAE'’s, a comparison of the various methods within due time would bc worthwile.

7.2 The Single Dicone
7.2.1 Eigenvalues

In the following we consider the eigenvalues which become positive in the real part
at a certain speed, responsible for the so-called hunting mode of the dicone [9],
[48]. The eigenvalues have been computed for the frec running dicone and the sus-
pended dicone at time for the scaled and the full scale model. Figure 27 shows the
eigenvalues of the frce running dicone with the velocity V' as parameter. The repre-
sentation is restricted to the complex domain with positive imaginary parts. The crit-
ical velocities, where the real parts become positive and the solution of the linear
system is unstable are about

Voo~ 1.09m/s
for the 1:5 scaled dicone and
Vo ~243mfs

for the full scale dicone. Then the scaling factor for the velocity results in

Vert 2.43
Py = VC,O —W~2.23——\/5_—ﬂ(p, ’

which indicates dynamic similarity for the linear system, see (132). The same result
is obtained from Figure 28 where the eigenvalues of the suspended dicone are
represented. Here we have :

Voo =252 m/s

Ve = 56.3 mfs
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Figure 27.  Ligenvalues of the Free Running Dicone

Since the real parts of the eigenvalues for the free running dicone are very low as
compared with those of the suspended dicone, the determination of limit cycles with
the aid of a numerical integration will be prohibitive, as already indicated in [35].
However, wheel-rail dynamics generally deal with suspended wheelsets and therefore,
the limit cycle behaviour of the free running wheelsct is not relevant in practice.

7.2.2 Limit Cycles

In order to solve the initial-value problem for the suspended dicone, i.e. equations
(72), a FORTRAN code was written containing DASSL [5] as a subroutine. Addi-
tionally, in this program we account for the global saturation of creep forces as men-
tioned in Chapter 3, before (61). That means we account for

|T| = JT:+ T} <u-N. (151)

If (151) is not true, new values 7", and T, arc defined in such a way that
|| = uN,
so that
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Figure 28. Eigenvalues of the Suspended Dicone

-N
T.= Loy

" (152)
o= T 2
Y YT

In addition we have to notice for the application of DASSL that the initial conditions
are consistent, before starting the integration routine. For the dicone we decided to
start with a lateral displacement, i.e.

y(e=0) =y,

where y, is a certain displacement in [m]. Then we have for the remaining state
variables of (72):

v =0
y(0) =0
Y0 =0

However, the initial values of

NL(0) and NR(0)
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cannot be determined immediately. Thercfore, a fix-point iteration is applied to the
constraint cquation (149), starting with

L _ R _ Mg
N* =N = =

and evaluating the creep forces with (63) in each iteration step. The iteration stops
when

gv.fl(l"" u, i(g)) <e,

with ¢ = 10%. Generally the number of iteration steps was smaller than 10 for all
simulations. The iteration process results in thc consistent initial values of the con-
straint forces

NE©) = N,
NR©) = N, .
After that, the subroutine DASSL can be started.

From the numerous computations some selected examples are shown and dis-
cussed. First of all the validity of the similarity laws is demonstrated in Figure 29.
The upper diagrams show the dicone lateral displacement history for the scaled and
full scale model, whereas the lower figures represent the phase diagrams y (y). These
simulations of the dicone’s limit-cycle behaviour are confirming our presumption of
Chapter 5 that the neglect of the similarity of the contact ellipse has no significant
influence on the dynamic similarity of thc periodic solutions. Here we can notice the
exact validity of the scaling factors of (134). The similarity number K, see (125) for
the simulations of Figure 29 results in

K = Cy L) _ Cy R0
~ R L~ umg
I +T,

when the characteristical creep forces are replaced by the maximum value
L R L R
(T + Tax = 20 (N + N®) = g .
Then we have for instance for the scaled dicone

6400 - 0.1
0.12-16.08 - 9.81

which yields the same for the full scale model.

K =

= 338,

The result of numerous limit-cycle simulations are contained in Figure 30, showing
the stable and unstable limit cycle amplitudes as a function of the velocity ¥ for
several stiffnesses and coefficients of friction; the unstable limit-cycles are drawn in
dotted lines. This diagram also allows the comparison of the scaled and the full scale
model for 4 = 0.12 and ¢, = ¢, = 6400 N/m or 80000 N/m, respectively, in order to
demonstrate the validity of the similarity laws in the whole parameter region. The
bifurcation points, represented by the velocitics where the amplitudes become zero,
coincide with the critical speeds V,, and V,,, rcsulting from the eigenvalue calcu-
lations of Section 7.2.1. The limit-cycle diagrams of Figure 30 point out decreasing
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amplitudes with increasing velocity of the dicone. However, this ends at a certain
velocity of the dicone, when the contact between dicone and cylindrical rails is lost,
indicated through negative values of the constraint forces N* and N®. At this point
the equations of motion of our model are no longer valid, since an additional degree
of freedom has to appear, for instance the roll angle ¢, which is not included in the
gencralized co-ordinate vector of (64). Therefore, the limit-cycle curves of Figure 30
end up with dashed lines when the constraint forces tend to become negative. As an
example we show a limit-cycle of the dicone in Figure 31 for

= 0.12, ¢, = ¢, = 3200 N/m at a speed of V = 36 m/s and the constraint force
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history for the two velocities of ¥ = 35m/s and VV = 36 m/s. At the early beginning
of the simulation the constraint forces N* and N*® become negative and this tendency
increases with the velocity. This behaviour, the loss of contact at a certain speed
seems also physically plausible. However, our mechanical model of the dicone does
not enable simulations when the constraint forces become zero.

For that reason no stable limit-cycle appeared for pu = 0.36, as shown in
Figure 30. Up to now we have seen solutions, symmetric to the centred position of
the dicone. But when the stiffness ratio ¢,/c, is below a certain value there exist also
asymmetric solutions. One example for this behaviour is shown in Figure 32 with
¢, = 4000 N/m, ¢, = 300 N/m and V = 20m/s for p = 0.12. We will come back
to this phenomenon when the simulations of the bogie are discussed.

Another interesting result appears when the lateral stiffness ¢, is omitted. For this
parameter constellation (¢, = 6400 N/m, ¢, =0, u = 0.12) no stable limit-cycle was
found. At speeds below 19 m/s the dicone behaves like a linear stable system, i.e. the

*
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amplitudes decay, see Figure 33. At higher velocities the dicone shows chaotic
behaviour, demonstrated at a speed of ¥ = 20 m/s for two different initial lateral
diplacements, see Figure 34 (a), (b). Figure 35 represents the phase diagram of Fig-
ure 34(b). As can be seen from Figure 34 the response of the dicone is quite different
for the different initial conditions y (0) = 10mm,(a) and y (0) = Smm,(b), i.e. the
system reacts irregular.
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7.3 The Bogie Model

The bogie model, actually existing as described in Chapter 6 and represented by the
equations of motion (87) together with the equations of the constraint forces (88), was
also simulated with the aid of the differential-algebraic system solver DASSL [5].
With respect to the suspension between roller rig and bogie frame an additional lat-
eral stiffness and damping had to be considered, accounting for the pendulum stiff-
ness and the compliance of the roller rig’s auxiliary frame (see Figure 13). These
values had been estimated to

Stiffness cyF =~ 1500 N/m

Damping dyp ~ 20 Ns/m

The stiffness ¢” of the longitudinal suspension of the bogie frame has been determined
to

cF = 7500 N/m

The contribution of this stiffness is already contained in (87) and (88). So we have to
account for a lateral coupling force

Fj = -¢ -yp~df 5 (153)

in the equations of motion (87). This force Ff is assumed to be acting on the centre
of the bogie frame but displaced by H in the z — direction, see Figure 12. Then we
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have to add FI to the sixth component of (87), representing the lateral motion of the
bogie frame. Additionally the moment

F
-HF,
occurs in the eighth component of (87), representing the moment about the x-axis of

the bogie frame. Writing these completed equations in the form of (149) as required
for DASSL, we end up with a vector ¥ having 20 components,

U= (154)

(Vﬁ ‘/’f» Yp ‘I/ﬁ Yo ¥ Yoo Yo Xpy VB 25 @5 Oy Ui Xps Vs ip O Sp VR
the vector g having four components,

g = (N, NR, NF BT (155)
Then the differential-algebraic system due to (149) has a total dimension of 24. In
order to find limit-cycles of this system, an initial condition has to be defined. For
that purpose the parallel displacement of the complete bogie model proved profitable.

Other initial conditions needed more integration time before reaching the periodic
solution. This initial condition for the parallel displacement of the bogie is defined as

yr(0) =y
Y7 (0) = y,(0) = ll'lf(O) =0

% 0) =y

¥, 0) = 5,00) = ¢, (0) = 0

xp(0) =0

y@ =y —-THy (156)
zp(0) = 0

@r(0) = -Ty,

97(0) = ¢y (0) =0
xp(0) = yp(0) = 2:(0) = 0

Pr(0) = 95(0) = ¥£(0) = 0,

where y, is a certain displacement in [m]. It is obvious that also here the previously
mentioned fix-point iteration has to be applied in order to start the integration pro-
cedure with consistent initial conditions. One typical result of a limit-cycle for
u = 0.12 and V = 12 m/s is presented in Figure 36. All solutions of the bogie model
indicate asymmetric behaviour as resulted for the single dicone with a low value of

300

6le = 2005 = 0075
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representing the ratio of lateral over longitudinal suspension stiffness. For the bogie
this ratio is given by

F
S 1500
X = 7500 ~ 02

The asymmetric behaviour has also been observed during the experiments, described
in Chapter 8. In Figure 37 the limit-cycle amplitudes of the front and rear wheelset
are shown as a function of the velocity ¥ for various values of the coefficient of fric-
tion u. These diagrams indicate slightly decreasing amplitudes of the front wheelset
and slightly increasing amplitudes of the rear wheelset with the velocity V. The lower
dashed line in Figure 37 represents the parallel initial displacement of the bogie
which is necessary for the excitation of the stable limit-cycle. For a displacement
below this line the disturbance decays. At a velocity of about 25 m/s the normal
forces N* and NR are near zero, this is indicated by elongations of the curves in
Figure 37 with dashed lines too. In Chapter 8 these results will be compared with
experiments on the roller rig. Concluding the simulation results we show some inter-
esting phase diagrams in Figure 38, indicating the presence of higher harmonics
caused by non-linear behaviour due to the friction law.

At last a comparison between the scaled and the full scale bogie model is given in
Figure 39 for ¥V = 12m/sand u = 0.12, just as we have done so for the single
wheelset in Figure 29. This example demonstrates the validity of the similarity laws,
established in Chapter 5, also for the bogie model. The similarity laws enable the
simulation of the scaled model and the transformation of these results on the full scale
model without new simulations. However, the advantages of this method will become
still more significant when the experimental results agree with the simulations of the
scaled bogie model. This problem will be mentioned in Chapter 9.
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8. Experimental Results
8.1 Determination of the Coefficient of Friction

The cxact measurement of the friction cocfficient u requires a partlcular test rig
[47] with much more effort in measurement device than our roller rig built for
dynamical experiments. Thercfore, the following method to determine the coefficient
of friction can only be rcgarded as a good estimation. Friction causes wear and wear
is indicated by a thin contamination layer on thc surfaces of the rollers and the
whecls. This layer leads to a considerable decrease of the coefficient of friction . In
order to keep the cocfficient  as constant as possible, the surfaces have to be cleaned
intcrmediately between the experiments, The time intervals for measurements have
to be very short, otherwise u will change considerably during the measurement phase.
Pure alcohol and cotton tissues have proved profitable for the cleaning procedure.

As already mentioned in Chapter 6, the coefficient u is determined with a quasi-
static approach: The bogic frame is displaced laterally from the centred position up
to 10mm in steps of onec mm. At each displacement step the suspension forces are
measured. The parallel displacements of the bogie frame, measured with the inductive
displacement transducers, cause a small yaw angle at the wheelsets due to the elastic
suspension and the longitudinal creep forces T* and TX at each wheelset. The wheelset
yaw angle gives rise to lateral creep forces T and 77 at cach wheelset, as can be seen
from equations (63). The yaw angle varics bctwccn 2.0-10* rad and 1.0 107 rad.
With respect to these small values the contribution of the yaw angle ¥, and y, was
neglected for the derivation of the equations (138) and (140), glvmg the intercon-
nection between suspension forces and creep forces for this experiment. However, this
small yaw angle contributes to the sum of the lateral forces

TJ{" + T}{R and T;I‘—I- T;R ,
whereas the contribution of
3
i]
falls out.

The measurement resuits for the suspension forces are given in Figure 40 as a
function of the lateral displacement. The diagram contains the longitudinal forces (a)
at the front wheelset

1 /R
F* ana -FR |
as well as the sum of the lateral suspension forces (b) at the front and rear wheelset,
L, /R L R
FJ{ +F" and F"+F" .
These results have been obtained at a speed of 5 /m/s. Higher velocities were not
qualificd for this quasistatic experiments.

In Figure 41 the corresponding creep forces at the front axle are represented,
evaluated with (138) and (140) from the measurements of Figure 40. For the com-
parison also the results of the computation with the approximation formulas (63) are
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given in this diagram. The results indicate poor agrcement of the approximations with
measurements for small displacements up to 3mm. The reason for this error is the
linear behaviour in connection with the large slope in the neighbourhood of the origin
of the approximation formulas (60) as comparcd with the behaviour of 7, in
Figure 8(b). For small crecepages these formulas yicld nearly the same results as the
linear equations (55). In the region where saturation plays the dominant role, we
obtain sufficient agreement between computations and measurements. As indicated
in the simulation results, the limit-cycle amplitudes arc mostly larger than 10mm and
therefore the influence of the saturation effect dominates.

From Figure 41 the friction cocfficient 4 can be cstimated easily. Assuming
fL . /R
T, =T, (157

we obtain for instance at the left contact point of the front axle for a lateral dis-
placement of 10mm thc average values:
" = -145N

J. 233
T -5 N .
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Then the absolute value of the creep force vector is

I T) = /1452411652 = 186N .

Because of assumption (157), we take the average value of the constraint forces

N =

N+ NR
2 b

which results from (143) in
Ny = 184N .
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Finally the estimation yields for u

T
u = ND ~0.1 .
This very low value for u causes disadvantages for the test rig under consideration.
From field tests it is known that u varies between 0.15 and 0.4. More useful values
of u can only be reached by combining different materials for wheels and rails. This
should be possible, because the elastic similarity is not necessary as demonstrated by
the simulation results.

8.2 Limit-Cycle Experiments

Numerous experiments have been carried out. We present here some selected
examples; in a forthcoming publication the results will be shown more completely.
First of all the velocity Vj,, the velocity where the first stable limit-cycle begins, was
determined. This velocity is about 11 m/s for the bogie model with the first set of
springs, see Section 6.3 and about 11.5 m/s for the set of stiffer springs. From simu-
lations we obtained 10 m/s, independently of the friction coefficient u (see
Figure 37), for the first set of springs and also 10 m/s for the second set of springs.

In Figure 42 the decay of the lateral displacement is demonstrated for
V = 10mfs < Vy, First limit-cycles were obtained at ¥V = llm/s up to
V = 14 m/s. Higher speeds were not possible, because the lateral diplacement of the
model has been limited to 20mm, due to the width of the wheels which is only 40mm
(see Figure 17). As an example the measured limit-cycle amplitudes of the front and
rear wheelset are shown for a velocity of 13 m/s, Figure 43(a). The measurement
results can be compared with simulations (b). Both, measurements and simulations
indicate the asymmetric behaviour of the bogie model, depending on the low ratio of

F
&

CL'R

=02,

as already mentioned in Chapter 7. Due to this asymmetry the positive displacements
attain the boundary of 20mm when the velocity is larger than 14 m/s.

Figure 43 also indicates good agreement between the measured (11.5mm) and
computed (11mm) amplitudes of the front wheelset. For the rear wheelset amplitudes
of about 16mm are obtained from the simulation, whereas the measurement yields
smaller values of about 13mm. The stiffer suspensions merely yield slightly smaller
amplitudes in the mentioned velocity range. The asymmetric shift of the bogie is
about 3mm, obtained from measurement as well as from simulations. The shift
enlarges with the speed. A discrepancy between measurements and simulations is
indicated by the limit-cycle frequency, which is 1.55 Hz for the simulated bogie and
1.15 Hz resulting from measurements, also to be seen from Figure 43,

Because we did not account for the particular kinematics of the roller rig in the
equations of motion (87) and (88), differences between measurement results and
simulations could have been expected. Especially the axle load distribution at front
and rear wheelset differs for the bogie on the roller rig from that on a straight track.
Investigating the particular kinematics of the roller rig and transforming the
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Figure 42. Decay of Disturbances at V < ¥, for ¥V = 10 m/s

equations of motion will be a future task. However, most of the results are sufficient
for design studies judging the dynamic behaviour of the scaled and full scale bogie.

Concluding this Section we show the results of limit-cycle measurements compared
with simulations in Figure 44, where the limit-cycle amplitudes are shown as a func-
tion of the velocity V. This figure once more demonstrates the good agreement
between measurements and simulations for the front wheelset over the velocity range
from V = 11 m/s up to 14 m/s. Also the velocity V., coincides very well with the
value of the numerical simulations.
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9. Conclusions and Open Problems

A main goal of the investigations was the derivation and application of similarity
laws that enable experimental studies on scaled railway models. Comparisons with
measurements resulted in good agreement for the representation of the velocity Vi,
see Figure 2 and the amplitude history of the front wheelset, see Figure 44. The dif-
ferences between measured and computed amplitudes of the rear wheelset presuma-
bly deal with the roller rig’s kinematics which was not taken into account for the
simulations. Implementing this kinematics in the equations of motion will be a future
task. For this purpose the constraint equations (13) and (14) have to be changed
resulting in a changed Jacobian matrix J.

However, simulation results and experimental work should represent the tangent
track behaviour and therefore, the roller rig’s particular dynamical behaviour is only
of interest for the judgement of the differences between simulation and experiments.
It can also be presumed that the influence of the roller rig’s kinematics is merely
dominant for large amplitudes as occuring for the dicone. Experiments with profiled
wheels will cause much more smaller amplitudes for the lateral displacements as well
as for the yaw angles and thus, the influence of the roller’s curvature will decrease.

The theoretical investigations in Chapter 5 resulted in specific conditions for the
dynamic similarity of scaled and full-scaled railway models. These conditions lead to
scaling factors which can be put into practice when the similarity of the contact ellipse
between wheel and rail is neglected. The investigations have shown that this violation
of the elastic similarity has no perceptible influence on the linear as well as on the
non-linear dynamic similarity. Certainly, this assertion is not valid for investigations
dealing with wear problems.

Further investigations with the roller rig under consideration should take into
account experiments where the friction coefficient can be fixed on more useful values
between 0.2 and 0.4. This should be possible by using different materials for wheel
and rail as for instance synthetic materials for the wheel surface and steel for the rail,
because the elastic similarity is negligible as mentioned previously. Since the roller rig
proved profitable for investigations on a conventional bogie model, a future task
should also be the experimental test of new bogic concepts with independent wheels
and others as for instance proposed by Frederich [19]. Combining these tests with
computer simulations as performed in Chapter 7 will yield useful results before
designing a full-scale prototype.

Another point of view for future work is concerned with a more theoretical and
general investigation of the dicone’s equations of motion. This can be done numer-
ically as well as with the aid of analytical methods suited for higher-dimensional
problems as for instance averaging methods described in [70]. Since in the framework
of the theory of non-linear vibrations the solution for the motion of the dicone on
cylindrical rails has not been mathematically investigated up to now, except in [67],
a more general treatment of this non-linear vibrating system can also be worthwile for
engineering applications.

The equations of motion (64) or (72) also enable investigations which are of general
interest for the simulation of dynamical systems, where the constraint forces influence
the applied forces. It is not clear up to now whether the formulation of the equations
of motion in state variables is numerically less or more efficient for computer simu-
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lations than the unreduced equations in the overdetermined form. The dicone prob-
lem is very well suited as a test example to answer this question.



- 106 -

10. Appendix A. Geometrical Relations
10.1 Appendix Al. The Geometry of the Dicone on Cylindrical Rails:

First approximations of the relations

o=0W ¥
z=z(y, '/’)

can be found by simple geometrical considerations. First of all let us treat the two
dimensional problem for yaw angle = 0 as shown in Figure 45. We have to con-
sider the roll angle ¢ as a function of the displacement y. Therefore we consider the
triangle MCS. Here we have:

= % ne = 2
tan §, = d+r and -sing = T
Then we obtain for tan §;:
tan 50 = ao y
o — =
sin ¢

from which we can solve for ¢:

ytan g

singp = - ————«x-—
¢ ag — rptan g,

For small values of ¢ and §, we can write approximately:
9
% —rgdy

Also from Figure 45 we obtain a first approximation for the displacement z of the
centre of gravity of the dicone. We have:

@ =-Ty with T = (158)

-tan ¢ = -%

or approximately
z=y-9
for small values of ¢. With (158) we obtain
z =T . (159)

Now let us correct (158) and (159) for the case ¢ # 0. It is easy to find from
Figure 45 that the yaw motion does not influence the lateral displacement y. How-
ever, for the correction of z we consider Figure 46 where a simplified representation
is given for ¢ =0 and Rz = 0. We have:

z(Y) = rp—r=Aatan g,

. a .
with cos § = —- we obtain
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a4 —

20,

o R
\ [ éo“p

/ AN

Figure 45. Geometrical Representation of the Dicone Kinematics ¢ (y) and z (y), ¢ =0

Ag = o ay (1 —cos )
= sy N7 cos ¥

so we have
ay (1 —cos )
(W) = — = v

which yields approximately for small angles y and J,

tan g,
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z(y) = (160)

Top View

View A

Figure 46.  Approximative Representation of z () for ¢ = 0 and R, =0

The yaw motion with angle ¥ also yields a so-called contact point shift ¢ out of the
centre line. A simple representation of ¢ for ¢ =0 and Rg=0 is given in figure
Figure 47. From the figure we can read:

¢ER = Triany - tan 5,
which is approximately for small § and &,

R = Trysy . 161)
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gR=r-tany- tand,

Figure 47. Simple Representation of the First Order Term of the Contact Point Shift £ for
@=0and R,=0.

A more general treatment of the geometry between wheel and rail has recently becn
performed by de Pater [65] where also formulas for the double cone on cylinders are
given. From [65] we obtain

¥ = =by @;cot y,

w, = -+ 2 by cot +L +4- by ¥ tan
i 2 @\ POt Yo T oog Yo Sin yy 2 0 Yo (162)
g; = xr-ytanyy—(r+btany) -y
with
=y
w, =z
& =¢
Yo = &g

b(] = ao—rotan(sozaﬂ—roéo
by = a0+RRSin50NaO+RR50 ’

(i = rail co-ordinates ; j = wheel co-ordinates ) formulas (162) become in our nomen-
clature:
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= -0 L
y=-0F

5 163
2= -0y QM+ Re+ ) + 5 v+ (163)

E= +rydyg—(r+(ag+ Rgdp)dg) -y

The first equation of (163) coincides with (158). In the right hand member of the
second equation of (163) the first part of the first term is identic with (159). The sec-
ond part of the first term corrects the influence of R and r, which could not be
obtained by simple consnderauons of (159). The second term of the right hand side
we can write:

&

1,2 % 1 L2
SV T =3 U2 8y (@ — rg 8g) = > ¥V da
which coincides with the correction of z in (160).

The first term of the right hand member of the third equation of (163) coincides
with (161). The following terms are neglegible for small values of ¢ and . However,
for small values of é, also

& =ryd

merely yields a small contribution but there is an essential influence on the direction
of the constraint forces N* and N® which contributes to the distribution matrix Q. If
the contact point shift is neglected, the matrices @ and J are not mutually orthogonal.
This is shown in Appendix B4.

10.2 Appendix A2. The Contact Point Distances and the Rolling Radii for the Dicone
on Cylindrical Rails.

For the contact point distances ¢, and a; (see Figure 4) and for the rolling radii we
obtain from [37]:

I}
a1
0 (164)
rp=rg—Ay
rp=r+ Ay
with
1= Ry 4o 9 + Rg 3y

R,—Ry ~ “a—ryd,

adopted from [53], where R, and Ry are the profilc radii of the wheel and rail in the
neighbourhood of the contact point. For the dicone we have to perform



_ 3o ay + Ry 5
Rp = oo a — 1o Oy
See (158). Then (164) becomes,

r
ay = a0+-a%—y+RRFy
0

r
ag = ao—ag—oJ’—RRry

rp =rn—qly—Rgé Ty
r

=ay-T+Rpd,T :

rnt+aly+RgdyTy .

(165)
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11. Appendix B. Detailed Calculations for the Equations of Metion

1.1 Appendix Bl. Calculation of the Moments, the Matrices of Applied Forces and

We have:
M = Zanfan+MZL

wit

K

h

BL

I~

BR

I~

R

Constraint Forces.

BR_, -BR R
=r xF, +M,

T

= [-rp o -a;, 1]
T

Lrpa, ag, rg]l" .

So we obtain for the vector products

I~

i~

BLFBL — Det

-

€, ey e,
-rp -a 143

Tf +aN" T +8,N" o« TF 45, TF - N*

-ap (o Ty + 8y Ty = NY) — ry (T} + 8y N")

rpo(e TE + 6, TyL Ny 4 r (TF + o N

-rp o (T + 8o NY) + g, (T! + o« N7

'T;‘a a; — T:vL (aL 50 + "L) + N" ((IL — 60)
T_f‘rL'*' 7}1"'1'(160

Tf‘aL‘“' Y}LarL—le‘a(a,'—r,_(so)

[ e, e, e,
TR ap rr

TS —aN® TR 3o N® -a TR~ 55 TR - NR

F

-ag (@ T + 8o T, + N®) — rp (T — 5, NP
R R R R R

rro(@ Ty + 09 T, + NT) + rp (Ty —a NT)

rro (T = 69 N®) — ap (TR — o NF)

-Toag— T (ag 8y + rg) = N™ (ag — rg &)

Ter+TerRa50

-TfaR+ T;RarR+ Nan(aR—rkén)



- 113 -

for small values of «. We have also to consider the so-called creep moments [40] M*
and MR

Transforming to the body fixed frame yiclds:

[ 0 -« 0 -0 MZI‘
M= A M7 =0 1 by | 0| = |5 M
« & 1 ||Mf M)
(1 0 o]0 a MR
MR = apgpMF =0 1 5|0 |=[sM
R R
-2 -5 1 || M M!
« (M — M)
BL BR R Ly
Mz +Mz = 5U(Mz—Mz)
M} + M)

With these results the total moments M"* + M* are

M+ MR =
- (T ap + T ag) - Tyl (ard9+ 1) — TyR (ag 8o + rg) — & (My — MJ)
TXL rp+ Tf rr — 0y (MZL— MZR) + a dy (TyI’ rp + TyR rg)
Ti‘aL — Tf ap— o (T}‘,"‘rL — TyR rp) + MZL + MZR
N (a, — 1y, 8) — N® (ag — rg d9)
0

_|..
+o(Na, + NRag) —a by (N"r) + NRrp)

Now we make use of (15) and we obtain for small values of « and y
TEr, + TRrg = rg (TF + TN =Ty (a9 + 5o Re) (T4 — T})
L @
Tya =T ag = a(Te = TH+ Ty (5h+ Rp) (TS + )
(
a(Ty 1y, — TR rg) = arg(Ty = T))
w by (TL rp + T rg) = adgry (Ty + T,)
o (N* a; + NR ag) = o a (NL + NR)
aéo(NLrL+NRrR) = aéorO(NL+NR) .
Then we have for M- + M~



Mp+ MR =
- ay (TE + TR — (rg + a9 80) (T + TN — a (M} — MF)

R (TE+ TR — Ty (@ +5 R (TF ~ TR + a 5y 1y (T;’ " TyR) — 5o (M- — MF)

Iy ] :
aﬂ(Ti‘_Tf)—{-ﬁ_U (a0+50RR)(T:+75)_0!"()(7}1 —TyR)+MZI'+M2R
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(o — 7 8) (N" = N*) +y (x + T Re) (N" + NF)

+

0

o (ag — 1o 8g) (N + N

So we obtain for the vector of the appliced forces 4,

-
T4+ T8
T;’ + TyR — Tymg
e TE =T+ 8T — T +mg
g' =
-udq (T + TR — (ro + agbo) (T + TF) — o (M} — MF)
ro(TE + TR — agU(TE — TR + adyry (TJ’ + ’{;R) — 5o (ME — MFy
a
a(Ty ~ T + ';59‘ Ty + Tf) — oy (7_‘:‘ - T;‘) + M+ MR
0
and for 0
o -0
50 -(50
— -1 -1
Q =
ay—rgbg+yx+yU Ry -ay+rydg+yx+yIT Ry
0 0
x g — rp & Jy o dg — ry & Og
with
r ag a a
i e

we obtain for Q:

(166)
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o -0
8o -9y

_ -1 -1

Q= ag a
T+yx+yl"RR -T+yx+yl“RR
0 0
o (dg — ro 9) o (@ — rodo)

11.2 Appendix B2. Elimination of the Constraint Forces

To climinate the constraint forces in (8), respectively (45), we have to premultiply
with the transposed global Jacobian J7. Then (8) yields:

T'MIw+T"¢ =T ¢+770g() . (167)
Because the matrices 77 Q have to be orthogonal, which means
g =0, (168)

the constraint vector

=[]

does not appear explicitely in the equations of motion. Hence, we have to prove
(168):
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g =

o -0

60 -60
‘/”]’(r‘_bﬂ)y"ryr‘ll,09 -1 -1

ao ao =
0,0, C(,lll, 0, 0, 1, —-x—+yx+yl"RR -T+yx+yl"RR

0 0

a (ag — 1y &p) o (ag — rodg)

I"ay I g
a¢+(5g—y(r—b0)—-x——l"yx 'a!//—éo—y(r—bo)+——x—-—l"yx
-yrzRRs —yrzRR

¥ +a(a—rydy) , -Co W + o (ag — rg Op)

For the first term of the first line of the above matrix we can write

Ia 2
oull+60—y(l"—b0)—-T——Fyx——l‘ y Ry

r2
=50l//2+60——y(-r~F2(RR+ru))—(50—y5000-—FzyRR
2
=yF+yF2r0—Z————ag-
dp
9
—yr(1+0p——2
Y < ¢ ‘10—’050)
-yl a —rg by + rgdp— g _0.
@ — 1y 9o

The same result is obtained for the second term. For the second line we have:
~co ¥ + o (a5 — rg 8g)
=¥ +oay—aryd
8 2
T Y+ dgay—rp ¥ g
= -dg ¥ (ay—ro Bg) + Y dga — rg ¥ 85 = 0.
This leads to
.7TQ =7 QT =0.

Now we can perform the other matrix products of (167).
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11.3 Appendix B3. The Mass Matrix
M=JT"MT =
my 0

m 0

[.p,l,(r—bo)y,-r,rw,o,} my (T —by) meyy

0,0, v, 0, 0,1, AT 0
LTy 0
0 I

my?+m+my® (C—bp) + 1T~ [,T?¢* , megyy (T — by)
mcy Wy y (' — by) ,mq?l//2+1

m 0

M = [ ] with respect to the linear kinematics .
0 7

If we drop the assumption of small J,, then we have

m+IT? 0
TJ'MT =
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11.4 Appendix B4. The Coriolis and Applied Forces

‘p’l’(r—bo)y9'r9rll’,0’

I \
0,0, gy, 0, 0,1, "r%“V'/’

. -T e \I/,],(r_bo)y,'r,r‘//y(),
)=J ¢ = .
0,0, ¢y, 0, 0,1,

Th 4+ TR

T;“ + TyR ~Tymg

o (TF = TR + 8y(Ty — ) + mg

-adg (TE + TR — (g + agd) (T} + T) — o (M} — M)

ro(TE + TR — agTy(TE — TRy + abory (T + T — 89 (M — M)
a(TE - TR + —(;“’; Fy(TE + TR — arg (T — TRy + ME+ M}
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q(w,w) =
U (TE+ TR+ TE+ TR~ Tymg+mgy (U — bg) + T (rg + @ 8) (T + T)
+T YR (Tl+ T

Gy
8o

o ¥ mg +ay (TF — TR + (TE+ TR —ary (TF — TR + MF + M)

With respect to the linear kinematics we have neglected the products y 63, ¢ y, ya
and doo = 83 ¢. With (166)

) 9y 4 I"a
x = - = (169)
ay — 1y 9o (a9 — r0 89) 8o dp
and taking into account that
d
14T = 14— = —2

ay — ry 6y 0 ay ~ 19 6y

we can write:

q(w, w) =
W A(TE+ TR+ 1 (TF + T)) — mgy by
a (TE— TR+ y x (TE+ TR + ¢ ¥ mg — ary (TF — T)) + M] + Mf

Inserting these results into (167) leads to the equations of motion (46) which do not
explicitely contain the constraint forces:

o (| |-E vivmay
[w(Tf+Tf)+TyL+7‘yR ]
@ (TE TR 4y x (TE+ TR —ary (T = T + M + M

11.5 Appendix B5. Determination of the Constraint Forces
The process of premultiplying (8) with J yields
Mg+ T g° =T g° = Mib = q(w, %) — k (w, W) . (170)

In this equation the constraint force vector
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has only been explicitely eliminated, since the creep forces T, and T, in the vector ¢°
depend on the normal forces N* and N*. Therefore we have to derive an equation for
the determination of g (£). We once more make use of the orthogonality of O andJ

and premultiply (8) with Q7 M™:
QTM-I A_ljﬁ — Q‘TM-I (ge_ge)+QTM—l Qg(t)
Q'Tw=0"M"(¢-g)Pg() ,

First of all we build the product

o, 601 -1, %+J’X+_VFRR, O,a(aﬂ_r()é())

_Q_TA_/II —
'ay'(s(],'l ‘%+yx+yrRR,0 a(ao—roéo)
1 1 1 1 1 1
d‘ag[_”T, me Tm> 7: —"y_9 —l—]
« % 1 @ yx TR & (dy — 1 do)
m m m xI I 7 ’ ’ I
- . _iﬂ_ -L _&_}_;y_x__’_yrRR “(ao_’o‘so)
m?> m*® m?> XI J I sV, 1
Omitting o ry 8, = ro Y 83 leads to
e b1 (& ”n yrRR) “ %
oTH — mo T T m o\ ] I o
YX

Then we form the matrix P according to (171)

(171)

(172)
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o -
50 -60
IR -1
P=Q"0 =" 4 a
—x—+yx+yI‘RR -T+yx+yl"RR
0 0
aao aaﬂ
}_9=
2 52 o2 g 2 52 2 2
o 1 ) o 0 1 x
mtmtm T F momtmt—
2
L[ % o yx  YIRg
—1—( ¥ +xy+yFRR) ) (— T i >(+ X +xy+yFRR)
2 2 2 2 52 2 2
o 0, 1, %4 x 0, 1, %4
m T m tm mtmtmt Tt
%  yx YT Re ) 1 (% )2
(— T )(+ : +xy+yl"RR), ! ( 2+ +yT Ry
The linearization of P leads to
2 2
1, % 24y 1 4%
m 2 Ji > om 2
P= x] xt (173)
1 _ % 1, % 24y
mn 121 Tom le !
for P"' we have:
P2

1

-1 _
P Det P

[ 'Plz]
P21 P

Det P can be determined easily as:

.



jay
2
2
(L_ %
m x21
5 \2 2
(1, ¥ o (1 &
mrry 1z mor
dag
lem

The terms p, can be written as:

x2l+ma§+2aoymx2

P =

lem
Cl+ma;—2aymy’
P = 2
X' Im
C1-may
P2 =Py = ———
12 21 lem

So we obtain for P!

x2l+ma§—2ya0mx2 s maﬂz—le
P L (174)
% ma&—x2l , x21+ma§+2yaﬂmx2

In order to continue with the procedure defined by (171) we build the difference of

q° (37) and g¢° (45) and here we also linearize with respect to small values of &, y, ¥
and «.

c e

4-19 =

(T + T

Ty + Ty +mgTy

- (Ty = T3 = 8o (T, — T,}) —mg

aay (TE + TR + (rg + ag 80) (T + TN + a (MF — M)+ 1§ %
o (Ty + T + @ Ty (Ty — TR) — o 8g 1o (T} + T, + 85 (M) — M)

.V
“a (Ty = T = 0y (TL + T + oy (T =T3) + M7 + M+ Ly 5
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Then we have to build
QTH-I (gc _ge) _ Qm(gc_qe —

x !

2 2
(Tf+T5)(-%+ =7 )+(TL—T")( T

6 ag Iy é 17}
L R 0 b To Xyn 9 99 L Ry %0
+(T, +Ty)<'7+ T 7 7 >+(Ty—Ty)7
R aao aollj/V
FHM) ST e
L R o o aag
(Tx+Tx)(7,,—— : )+(T —T) - )
o o é
L R v % Xy ao 0 L Ry Y0
+(Ty+Ty)( 'Y 7 x 1 )+(7;_Ty)7
o a aOIIIIV
-(ME MR)——+(M + M aa" - ——tg
X

(175)

where linearization was applied too. Following (171) we have finally to multiply (175)

by P'. This process results in:
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402 N* =
2
o
(Tf‘+ Tf)(——,%—-l— a;, )(x21+mag—2a{,ymx2)

X

2
o
+ (1t —T")(%——}i)(x’1+ma3—2aoymx2)

é ¥, 7 25

L R o, %%  XYNh 49 2 2 2

+(Ty+Ty)(-—,7+ o1 + 7+ o1 )(xl+mao—200ymx)
8

(T = T 5 1+ mad —2a5y my?)

o
+(ME— MPB 4‘“— 21+ mad — 2ayy m 1Y)

+(M +M) ()(21+ma0 2aoymx2)
aﬂ[y‘p 2 2 2
+—rox—1()( I+ may —2ayymy”)
2 2 2 L R o ‘“’5 2 2
+gx 1+mao—Zaoymx)+(Tx+Tx)(—m—— 7 )(mao—x )

+(Ty —T")<%—+‘°)(ma§—x21)

4 o XY
+(T,,L+Ty’*)(7° 2 “‘)’(,")(mao *D

é o
I =T 5 (nag —p* D - (M= M) =2 (ma} - i)
« alyV
+ M+ M) 7 (ma — 2 ) - =L (mad — )
+g(may—x*1)

and
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4a3 N® =

2
L R o o 2 2
(T, +Tx)(-7+ oy )(-x I + may)

2
o
+(TE- TR ( - _110_) X1 + mal)

2
9 1y Xyrn . a9 2 2
+(T +T)< + T + 7t 7 )(—xl+maﬂ)

é
+(Ty - T) ,,;’ ( 11 + mag)
+ (ME = MB 22 (21 4 mad)
+ (M + M) "‘T (-1 + mad)

by v R (176)
Tl (-x"1 + may)

o

+ g (-1 +mad) +(TE + T,{‘)(+%— 7

2
)(mau+x l+2a0ymx)

o
+(Tf—Tf)(%—— 0>(ma0+x 1+2a0ymx)

d ay 1, XY a s
L R 0 0 fo 0 0 9
+ (T +Ty)(+_m“ L iy )(mao K1+ 2a0y my’)

x1

d
+(7}L—-TyR) 70 (ma02+x21+2a0ym12)—(MZI‘—MZR)

a L,y vV

_VO—JEI_— (m ag + 12 I4+2ayym xz)

o
+(ME+MBy 22 a4 P 1+ 28y m )~
+g(ma02+x21+2a0ymx2) .

The result (176) can be linearized and simplified further. Finally we obtain

o
aIU (mag+x21+2(10ymx2)



- 126 -

LAY me X’ mg
[N;] | 7 24 2 2q
N o, mg  img
Do VT2 T2
Xhe  Sx’l 4y L Xhe Sox"l b R
(2% 202 + ) (x+l) Ty+ 2‘10* 2002 +—2—(x—l) T
+
xr | Sox’ 1 4 L X Sx 1§ R
(- 2a0 242 2 kD)L 29 242 —2 W T
@ i ay’l  oma o 2 L A amay TR
R e S R EEA N s ST A R
+
2 2 2 2
o _ax I umg L o o ooyl amay R
[ [ ay  aayn L ay  aaym R
N (2a0+ 21 )MZ‘L(' 2a, 2l )MZ (77
' oy | adyn\ ;[ ox  oayn \ . g
(—2%+ 57 )Mz+<2a0+———~2, )M,

Combining these equations with the differential equations (46) results in the complete
differential algebraic system (47) describing the dynamic behaviour of the dicone on
cylindrical rails.

11.6 Appendix B6. Determination of the Parts of Constraint Forces Caused by the
Suspension Forces.

We have to build
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T
2¢,y
. 0
QTA’Il (-¢*) = Q" _2L21"ycz =
0
2L% ¢ ¢
204y (@ oy YTRRY ppap . %% 2,
m T 7 YT x
268gc,y R
v (% o Yx VAR 2 “d 2
- m < X1+ 7t )-2L Cye, + 7 2L ¢, ¥
205y a4 o,
T a— 2L°Tyec,

with respect to linearization .

The premultiplication with P! yields

— sL
P'l QTM 1 _gSE — []/zsk] —

2 60 Cc,y
(__my_ - % 21Ty cz) 1 + mn,f — mag + %D
1
— -
4a} 206y @ o, 2 2 2 .2
% (—..Tn._—? 2L°Tyec, ) (-x“I + may — may — x°I)
do nyle L’r?y c,
NSL-‘ _ agm 60
N Socyx*l  L*T2ye,
- - 5
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12. Appendix C. Relative Quantities

12.1 Appendix Cl1. Determination of the Relative Velocities in the Contact Points

Figure 48.  Principal Problem for the Determination of the Relative Velocities ¥* and ¥*

Kalker’s theory of rolling contact requires the relative velocities in the left and right
contact point ¥* and ¥*. The principal situation is indicated in Figure 48. Then the
following cquations hold for the centre of gravity

ByI. B
YV, = "+ wxR,

7
PR Py e (178)
In (178) 2V* and 2¥R, ¥® and w arc described in co-ordinates of the body fixed frame
e". We need V! and IR in co-ordinates of the contact frames ¢~ and e®. Therefore we
have to transform with the matrices 4,, and A, Because V%, the velocity of the
centre of gravity, is already known in co-ordinates of the inertial frame &', we can
write for the velocity in the body fixed frame e™:

VP = 4, v? with WP = [v, p, 5] . (179)

Then we obtain the relative velocitics ¥ and J°¥ in the co-ordinates of the contact
frames e* and e?

L ByL
V=AY
R ByR
Y, = Agp 'V, ,

this leads from (178) to
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vl = A VP + A5 (@XR))
R B
YV, = App V" + A g (@XRp) ,

with (179) the velocities read

VI = 4,545 V" + 4,5 @xR))
VE = Appdp VP + A pp (WxRp) ,

so we have finally

Vi = 4,,°vP + 4,5 (0xR;)
VE = Ap, VP + A gy (@xRp)

(180)

The matrices A5 and Az, are already given in (5) whereas A;; and A can be
obtained from (7) by ncglecting §, . Notice that also the contribution of the shift

angle o can be neglected here, so we obtain:

[ 1 ¥ 0 i
A=V I-=40¢ o+d | =V
_50|// p~08g 1 =6y 0
[ v 0o | I
Apr=| ¥ 1+d50 ©0—8; | = |-¥
oV -+ 1+ 0
Now we can calculate the terms of (180)
' o |[¥]
ag'vt =1 1 e+g|ly] =
| 0 -p—4y 1 It Z |
R o |fv]
AP =4 1 e-4|]y]| =
0 -p+4 1 | Z |

1 0

1 ([)+50

-p+6y 1

[+

‘l// ,/+y+(Pé+6oé
05— 85+

[V +yy
W V+y+ei—4yz

@y +ogy+i

For w we have to take into account the constant angular velocity w,
fixed axis y. In the body fixed frame ¢” the angular velocity reads:

W =W +wk

(181)

(182)

(183)

(184)

about the body

where w? is the vector of the angular velocity due to the angles ¢ and ¥ in the body
fixed frame, whereas w® denotes the angular velocity caused by rotation about the
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body fixed axis y with w, = const. To calculate @® we start with the angular velocity
in the inertial frame. For w’ we obtain ¢.g. from [4]

1 0 0 1)
g_)l = |0 cosp -sinpl|O
0 sing cose |/1

The transformation to the body fixed frame yiclds

w® = Am(_ill
cosp cossing singsing |1 0 0 ¢
= | -sinyy cosp cosy singcosy |10 cosp -sing || 0
0 -sin cosQ 0 sing cose lp
w® = [joosp, -gsing, V1 .
With

T
af [o, g, 0}

we obtain for w in the body fixed frame:

@ cos
-@siny + g

¥

Implementing the constraint equation (12) and lincarizing leads to

(S
Il

L

Iy
w =% (185)
]
Then we obtain for the cross products
_ 0 ,
-Iy] rpwg+ya;
xRy = |0 |xf-a [ =|Tyr
v Fya
) B L
o 0 .
-y rrwy + Y ap
@xRp = | D0 |x|ag] = |Tyrg
v -T'y ap
i -

The transformation into the contact frames (for o = 0) leads to
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[1 0 o

rLa)0+|/'/a,’
ApplwxR) =10 1 6g||Tyr,
Fya
[0 -5 ! - (186)
r,wo+Vay

= l_'er-F(SOr)}aL
bgTyr +Tya;

rpwo — ¥ ag
App(@xRg) = |Tyrp+ 6T yag . (187)
+oglyrp—~Tyag

Now we put together (183), (184), (186) and (186) to obtain the relative velocities in
the contact frames due to (180)

_V+J3l/'+'1.w0+‘.PaL

Ve |y Vv+y+0i+802+Tyr, +8,Tya
-y =gy +i—9gUyr, +ya;

I _ J (188)
V+_)}l/l+er0—|//aR

VE = |-y Vay+0i—8y2+Tyrg+8,Tyag

Further on, in Kalker’s thcory we also need the vector @ in co-ordinates of the con-
tact frames. The transformation of w yields:

10 0], - e
Iy -y
o = Appo =10 1 || @ | =g+ ¥
0 -6 1" V1 [ewotd
F o o (189)
0], o .
-T'y -ry
of = A0 =10 1 5[] @ | =]wy—d¥
0 50 1 Llll _J _.60 (U(]+‘lb

As defined in (46) for the crcepagc vector v we need the components
VE, VE wh, VR, VE and w® which have to be devided by the constant velocity V.
We take advantage of the geometric relations (16) and lincarize; then we obtain, with

Wy = 'V/r():
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. , r
VL = V+yw+(ro—aory)wo+w(ao+"°5—y)
0
. ryv . r .
= Vg - v+ 22 g By
0 dg
L aqly :
V=2l viia . (190)
In the same way we obtain
qly .
Vie = -—— V=i a (191)

Vg =¥ V+5+Tjrg+8gTyay = -4 ¥4yl +Trg+ 3T a)

VE = 4 V+yx (192)
VE =W v+yx (193)
L 50 7
w,z = —ro—' V+|/I (194)
R 60 .
wp =g Vi (195)
where

1+ +6,Tay = (1+8)x~yx

is easy to find: see Appendix B4, equations (169). If we take (190) up to (195), divide
by V and form the vector v according to (48) we obtain (54).
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12.2 Appendix C2. Determination of the Relative Displacements Between Wheelsets
and Bogie Frame

Nominal
Position

Actual
Position

Figure 49. Displacement of a Point P of a Rigid Body for Parallel Systems ¢’ and g5

For the determination of the suspension forces F with

:

the relative displacements x, of the attachement points between wheelsets and bogie
frame are required. The fundamental relation for the displacement vector x of a point
P of a rigid body can be scen from Figure 49. Here we have for the displacement 'x
in the inertial frame & when the directions of & and e} coincide for the nominal
position:

x = Ix + 4ge® - 1", (197

5

¢
S

] Xrel > (196)

O

where 'x, is the displacement vector of the centre of gravity of the body. Since relation
(197) holds for every body of a multibody system, we have for the relative displace-
ments between the bogie frame (index F) and the front or rear wheelset,respectively
(index f, r respectively):
I I I
Xl = XF— Xp,»

: 198
Iy s = IXF—lch',+A]p£F_AIB!j’r_(lr_’j',) . 9

=rel 2¢ r
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The direction of the relative displacements ‘x,, in (198) has been chosen with respect
to the direction of the suspension forces F and F' acting on the dicone in the same
direction as the relative displacement vector ‘x,,. So we have for instance

I_.KF—IleO$_F_fZO,

where F' is the suspension force acting on the dicone as defined in Figure 11. The
force F’ acting on the bogie frame has the opposite direction, see Figure 12. For the
displacements of the centres of gravity we have:

llcF = (Xp, Vp ZF)T
Ilf’ r = (Os ,Vf' r zj; y)Tz (0) yf' r 0) ’
see (14). Therefore (198) becomes
xp

"% = Y=Yy ] + At A (" =) (199)
F

with the transformation matrices as for instance given in [4]
[ 1y, 0
Aig = | ¥y, 1 07,
0 o, 1
L -yp 9

Aip=|¥r | -op

_"9F Pr 1

With the aid of (199) we determine the relative displacements between bogie frame
and wheelset in the following way; regarding Figure 10.

Front wheelset, left:
T T T
!];'i = [D, 'L, H:' * sz = [09 'L, OJ ? ZIE_ZIB = [D’ 0’ H]

REE7E

D D+ypL+3-H
App-tp =¥ 1 -op [L] =|¥sD—-L—opH
H 8D — oL+ H
_"917 Pr
(1 -y, 0

= -L = -L

0
e [ [OL
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‘9FH+L('I’F—|IIf)+xF
Ifh — | YpD = opH+yp—ys : (200)
-\9FD—‘L((P,:+ ryf)+2r

Front wheelset, right:
T T T
I[e = [D; Lv H} 3 !fB = [01 L) OJ L) L‘g—!fl’ = [D, O) H:]

\91711'— L(illp— 'Ill)"‘XF
IR ~ \WpD—opH +yp—yf : (201)
9D+ L(pp+T y)+zp

Rear wheelset, left:

= -0, -L, H1', 2 =0, -L, 01", 1B~1* = [-D, 0, HY
‘9FH+L(‘/’F_‘,’r)+XF
Wk =\ D—orH+yp—y |. (202)

9D~ L(op+Ty)+zp

Rear wheelset, right :

T
oL, H], 2 =10, L 01", BB—1" = [-D, 0, H]
SFH—L('/’F_‘/’r)+xF
Il = |- vpD—opH+yp—y, |. (203)

9rD+L((Pr+ry)+ZF

Attachment points of the bogie frame:

Because the bogie frame is only longitudinally suspended to the inertial system, the
relative diplacements are,

left: ’xrd = Xxp+ By,
right: ’xrel = xp— Byp.

The formulas (200) to (204) represent the relative displacements given in the inertial
system ¢'. Exactly we need the relative displacements in the body fixed system of the
bogie frame. Therefore, we have to transform

F

X = Apy Teer - (205)

“rel

(204)

However, with respect to the linearization, the transformation (205) does not change
the results and (200) up to (204) also represent the relative displacements in the body
fixed frame " for small values of xp, yr, zp, @p, 9pand Yp.
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13. Appendix D. Contact Problems

According to the theory of Hertz [26] two elastic bodies in deformed contact have a
common contact patch in form of an ellipse if the surfaces of the contacting bodies
can be approximated by surfaces of second order. In this connection, some general
remarks about the correct orientation of the contact ellipse and the directions of the
creep forces have to be mentioned. Kalker [39] has assumed the longitudinal axis of
the contact ellipse coinciding with the direction of the rolling velocity V. The creep
forces T, and T, are acting in the directions of the axes a and b, as shown in
Figure 50. However, due to Hertz’ theory this is only an approximation as already
assumed in [39]. Actually, the direction of the contact ellipse is not fixed. Following
Hertz’ theory [26], the orientation of the contact ellipse changes depending on the
direction of the main axes of curvature of the contacting bodies. Applying Hertz’
theory on the wheel rail problem, Duffek [16] obtained the following result:

by,
,/;

Figure 50.  Principal Contact Ellipse.
In Kalker’s theory it is defined that a points in the direction of V

sin 2
tan 20 = Pri ¢ s (206)
Pwi— Pw3+ PR €02

where o is the angle between the rolling direction and the semi-axis a of the contact
ellipse, { is the angle between the axes of curvature and pg,, py; and py;, denote the
principal curvatures of the rail- and wheel profiles. The situation is represented in
Figure 51 quoted from [16].

As can be seen from (206) for vanishing denominator the anglc @ becomes 45°.
However, the investigations in [16] yield an a/b-ratio for this case which is nearly 1.0.
More generally, for afb-ratios larger than 1.0 only small angles w occur for wheel-rail
profile combinations. As a global result we can conclude for wheel-rail problems that
the direction of the contact ellipse is close to the rolling direction if a/b> 1.0. For
smaller values of a/b there can be a remarkable difference. Many authors, for
instance [64] decide to take the direction of the rail centre line as the direction of the
contact ellipse which is a good approximation in most of the cases. Since one has to
deal with small yaw angles ¥ only, there is a slight difference between the rolling
direction and the direction of the rail centre line. Therefore our decision, fixing the
orientation of the contact ellipse on the rolling direction (true for larger values of
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Figure 51. Orientation of the Contact Ellipse due to [16]

alb), is also an acceptable approximation of the actual situation of the dicone on cyl-
indrical rails.

In [39] and [33] it is shown how the shape and the size of the contact ellipse can
be computed with the aid of elliptical integrals. We take the results from the refer-
ences mentioned previously. Then the shape of the contact ellipse is characterized by
the ratio

g:= min (a/b, bla) (207)
whereas the size is given by
¢ = Jab = 3/N('—")3E(g) (208)
2n(A+B)G Jz

The quantitics of (207) have the following denotations:
N, Normal Load (Constraint Force)
o, Poisson’s Ratio

A
2r

t
2Rp

z
2
E(g) = Jl/cos%p +g° sinz(p do

0
G, Shear Modulus

A:

(209)
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r, actual rolling radius of the wheel normal to the contact plane.

First of all we will show that E(g) and g do not change very much with the lateral
diplacements y if d, is assumed to be small. The general proof of this assertion is very
difficult because of the rather complex and trancendent interconnections of Hertz’
theory. Therefore we compute E(g), g and c using the data of our model as described
in Chapter 6. For the model of the dicone we have the following data:

m = 16.08 kg
I, =L = I =0366kgm?
I, = 0.0605 kg m?

y
8y = 0.0262 rad
a = 0.1506 m
rp=01lm
Rg = 0.06m
Then wce obtain:
r=01771m!
y = 1.0177
Material and physical constants are
o = 0.28
G = 8-10'""N/m?
g = 9.81 m/s®
As described in [33] g and E(g) are functions of cos r, where cos 7 is defined as
cost = JA=BI
T A+B

If cos 1 is known the values for g and E(g) can be taken from a table which is given
in [33]. In the following we compute cos  for the nominal position and for an
extreme lateral displacement of y = 0.05m of the dicone. For 4 we obtain from
(209)

.
2r

But for the displaced dicone we have to distinguish (see (16)):

A =

qLl- - __ 1
2 =
;'L 2(rp lao I'y) 210)
) L S E—
2rR 2(r0+a0ry)
For y = 0, (210) yields:
L_4qr_ L _ L _ 1
A" = A" = 2 = 2.0 50m

For y = 0.05 we have:
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A" (0.05) = 5.0676 m
AR (0.05) = 49342 m™

Then we obtain the following values for cos 7:

oy L 83333-50 _
cost(y=0) = 3533750 ~ 0%

8.3333 — 5.0676

L _ —
cos Ty =005) = ¥5333 7 5.0676

0.2437

R, _ _ 8.3333-49342 _
cost (y=0.05) = 33333749342 0.2562

Finally we obtain from the table of [33]:
gy =0) = 0.7116 E(g) = 1.3506

gi(y=005) = 0718  E(g) = 1.3575 @211

gR(y =005 = 0.705  E(g) = 1.3504

Because there are only slight changes of g and E we can take the values for the
nominal position of the dicone for future computations

g = 0.71
with a>b since B> A4 (212)
E(g) = 1.35

With the aid of this result the size of the contact ellipse characterized by ¢ can be
represented as a function of N and the radii of curvature; inserting the values into
(208) yields:

0.72.3.1.35

c=3N .3
\/6.28-(A + B)-8-10" 071

2r R
MR = 19.027.10° 3[NLR ZOTR (213)
r0+RR

For the nominal position of the dicone we have

N=NL=NR__.Ln;g_=_L6_-_M_'_93_l:73.87N,

Then we obtain for ¢
c(y=0) = @78.87 .8.024.10° = 0.344I m . (214)

If we assume y # O then N* and N¥ are generally different. First of all we show that
these differences have not much influence on the values of ¢* and ¢® if Kalker’s linear
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theory is valid. Kalker’s linear theory of rolling contact holds for small values of the
longitudinal and lateral creepages and the spin where the resulting forces 7, and T,
remain far below the saturation which is defined by - N. Let us assume here that

T,=T,=T and |T| <03u-Ny. (215)

In this range the linear theory yields approximately good results and for the absolute
value of the creep force we also remain far below saturation:

IT| = /0324032 .uN = 042N .

In order to obtain a good estimation of the influence of 7, on the constraint forces
N* and N® we use (64) and neglect the terms with y, ¥ and a; then we have

V- %+S(7}{“+7}R)+%(7}L—ER) (216)
NR = _”;i_s(TyL_FTyR)+% (TyL_TyR) )

In general the difference between T, and T} remains small because of vt = vX and
o —of = 2r—i° (see (54)), so that we can estimate

Ty =T, = sy ~v) ~ s (0} — 0f), i Ji = 1k,

26

L R o

Ty =T = S35

so the third term of (216) can be neglected and we can assume for our estimation
L o~ R =

I,=T, =T,.

Then (216) yields

NE= D8 Lot

)
NR = 8 ot .

We also can simplify s by neglecting the gyroscopic term. From (57) we then obtain:
" d
X . %

24, 2
This leads to a simple approximation of N* and N* as a function of 7,

¥
Nt = i"i+r(°—x+xao)

I

2 Y\ %
(219)
mg o X
NR = T—]},(?T-i-xéo) .

This formula can also be obtained from a simple consideration without using (64).
Let us assume a configuration as shown in Figure 52, where a quasistatic configura-
tion for y = 0 is considered by neglecting all the velocity and acceleration terms. Using
Euler’s law for the centre of gravity we obtain
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mg

L = R =
Ty Ty T,

Figure 52.  Quasistatic Configuration of the Dicone for y =0
0 = ry (T} + TRy cos 8 + a (TF + T,) sin 8y + ag (N — NF) cos &
+ 1y (NE = N®ysin 6

which leads to

NR_ N = 2T (220)

for T = T¥ and &, small. With the aid of Newtons law we obtain

mg — N* cos 85 — N® cos 8g + T)f‘ sin dg — Tfsin 8y =0

which leads to

N+ NR = mg. (221)
From (221) and (220) we obtain finally

NL = me o fotad
2 Y oay—rydy

s (222)
NR = T8 rg +ag 9

b

2 ay — 1y 0y

(222) is identical with (219) because we can write
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ntddy o Qo O] @ dy
= + = +
ag — 19 &g ag—rgdy  ag—rydy la—rndgday ay—rydy
o X

so we can conclude from the results (219) respectively (222) that for small values of
y and ¥, besides the weight the creep forces T, yicld the most important contribution
on the constraint forces N and N®. Implementing the data for our dicone model we
obtain from (219)

N" = 7887 +0.7024 T,
N = 788707024 T,

I

Inserting (215) yields for u = 0.4:

N = 78.87 +0.7024 . 0.3 0.4 . 78.87 = 78.87 + 6.65
N® = 7887 -0.7024.0.3.0.4 - 78.87 = 78.87 — 6.65
N = 222N
NR —~ 8552 N

And with (213) ¢* and ¢® become:

el =03344.10°m
c® =0.3538.10%°m .

This result indicates that a good approximation for ¢ is given by ¢ (y = 0), see (214),
if Kalker’s linear creep force theory is valid, as assumed in (58) and (59). For larger
creepages, when 7, and T, reach the saturation limit

Tl = T2+ T} <p-N

the normal forces N and N¥® described in (63) can become much more different,
especially when y and ¢ become larger and these terms cannot be neglected in (63).
As we see in Chapter 7, the most important contribution to the constraint forces N*
and N® is caused by the lateral creep forces T- and T7. Therefore, in the non-linear
case we have to account for c* # ¢®, which is equivalent to f;f # ff as assumed in
(62).
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14. Appendix E. Measurements of Body Data

The following lists have been recorded in May 1986 in order to detcrmine the body
data. From the numecrous cxperiments we give only some examples for the determi-
nation of I and I, from pendulum tests.

Bestimmung der Massentrdgheitsmomente des Modell-Drehgestelles
(Drehgestell: x-Achse, Bleigewichte innen + Schiebegewichte)

Draht Nr.: 1 (Kontrollausdruck: Federkonst. = 3,25E+00 * 2.1E-02 Nm/rad)
Versuch Gesamt- Anzahl an Zeit fiir eine Schwingung
Nr. Schwingungszeit Schwingungen (Kontrollausdruck)

1 28.0 s 10 2.80 s
2 43.0 s s 2.87 s
s 2.5 s o 2.85 s
. 2.5 s TR 2.85 s
s 2.4 s T 2.86 s
s :---- s ----:---- - s
7 - s
s - s

(Kontrollausdruck: Mittelwert
Massentraegheitsmoment

2.84 £ 0.009 s,
6.66E-01 + B8.7E-03 kg m¥¥2)
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Bestimmung der Massentréghecitsmomente des Modell-Drehgestelles
(Drehgestell: x-Achse, Bleigewichte auBen + Schiebegewichte)

Draht Nr.: 1 (Kontrollausdruck: Federkonst. = 3,25E+00 +* 2.1E-02 Nm/rad)
Versuch Gesamt - Anzahl an Zeit fiir eine Schwingung
Nr. Schwingungszeit Schwingungen (Kontrollausdruck)

1 30.0 s 10 3.00 s
2 5.0 s s 3.00 s
s 29.7 s o 2.97 s
oo 29.6 s BTN 2.96 s
s W6 s s 2.97 s
e :---- s _--_:---- - s
A - S
s - s - s
(Kontrol1;;;;;;;;:-&ittelwert --------- = 2.98 + 0.006 s,
Massentraegheitsmoment = 7.32E-01 * 7.9E-03 kg m#*2)

Bestimmung der Massentrdgheitsmomente des Modell-Drehgestelles
(Drehgestell: z-Achse, Bleigewichte aufen + Schiebegew., Stellung: 0 mm)

Draht Nr.: 1 (Kontrollausdruck: Federkonst. = 3.25E+00 + 2.1E-02 Nm/rad)

Versuch Gesamt - Anzahl an Zeit fiir eine Schwingung

Nr. Schwingungszeit Schwingungen (Kontrollausdruck)

1 56.0 s 15 3.73 s

2 7.7 s o 3.77 s
s s6.4 s s 3.76 s
s 374 s T 374 s

s ;;TB-- s ----;;_—- 3.73 s

s s - s

; :---_ s ----:---_ - s

s R - s

(Kontrollausdruck: Mittelwert
Massentraegheitsmoment

3.75 + 0.005 s,
1.16E+00 * 1.1E-02 kg m**2)
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Bestimmung der Massentrédgheitsmomente des Modell-Drehgestelles
(Drehgestell: z-Achse, Bleigewichte auBen + Schiebegew., Stellung: 76 mm)

Draht Nr.: 1 (Kontrollausdruck: Federkonst. = 3.25E+00 * 2.1E-02 Nm/rad)
Versuch Gesamt - Anzahl an Zeit fiir eine Schwingung
Nr. Schwingungszeit Schwingungen (Kontrollausdruck)

1 64.4 s 15 4.29 s
2 3.0 s T 430 s
s 6h2 s s w28 s
.« B2 s BT 432 s
s 2.9 s BT 429 s
s S - s
;T :_—-- s _---:---- - s
s - - s
(Kontroll;;;;;;;;:-éittelwert --------- = 4.30 + 0.005 s,
Massentraegheitsmoment = 1.52E+00 * 1.4E-02 kg m¥*¥*2)

Bestimmung der Massentrigheitsmomente des Modell-Drehgestelles
(Schaltmechanik: z-Achse)

Draht Nr.: 2 (Kontrollausdruck: Federkonst. = 6.02E-02 * 4.6E-04 Nm/rad)
Versuch Gesamt -~ Anzahl an Zeit fir eine Schwingung
Nr. Schwingungszeit Schwingungen (Kontrollausdruck)

1 59.0 s 10 5.90 s
: 9.0 s o 5.90
s 9.0 s o 5.90 s
s 59.0 s T 5.90 s
s 9.0 s T 5.90 s
s - - s
;T S - s
(Kontroll;;;;;;;;:-gittelwert ————————— = 5.90 + 0.000 s,
Massentraegheitsmoment = 5.31E-02 * 4.0E-04 kg m**2)
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Bestimmung der Massentrigheitsmomente des Modell-Drehgestelles

(Radsatz: y-Achse)

Draht Nr.: 2

Versuch Gesamt-
Nr. Schwingungszeit
1 63.1 s
7 62.8 s
s T 63.2 s
s T 62.8 s
s 62.5 s
s R
A S
s S

(Kontrollausdruck: Mittelwert

(Kontrollausdruck: Federkonst.

Anzahl an

Massentraegheitsmoment

Schwingungen

6.02E-02 * 4.6E-04 Nm/rad)

Zeit fiir eine Schwingung

(Kontrollausdruck)
6.31 s
6.28 s
6.32 s
6.28 s
6.28 s
- s
- s
- s
6.29 + 0.007 s,
6.05E-02 = 6.0E-04 kg m**2)

Bestimmung der Massentrigheitsmomente des Modell-Drehgestelles

(Radsatz: z-Achse)

Draht Nr.: 1

Versuch Gesamt -
Nr. Schwingungszeit
1 31.7 s
2 3.7 s
s 210 s
o 210 s
s S
;T S

(Kontrollausdruck: Mittelwert

(Kontrollausdruck: Federkonst.

Anzahl an

Schwingungen

Massentraegheitsmoment

3.25E400 + 2.1E-02 Nm/rad)

Zeit fiir eine Schwingung

(Kontrollausdruck)
2.1 s
2.11 s
2.10 s
2.10 s
- s
- s
- s
- s
2.11 + 0.003 s,
3.66E-01 + 3.4E-03 kg m#*¥*2)
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15. Appendix F. Data of the Scaled Dicone and the Bogie Model
15.1 The Dicone

Geometrical Quantities: (see Figure 4)

rp=01m

Rp = 0.06m

ay = 0.1506 m

L =0.19m

dp = 0.0262 rad
Physical Quantities

m = 16.08 kg

I = 0.366 kg m?

1, = 0.0605 kg m’
G = 792 10" N/m?
o = 0.28

15.2 The Bogie

Geometrical Quantities: (see Figure 10)

B =0225m

H = -0.0158 m

D =02m
Physical Quantities:

mp = 42.82 kg

I, = 0.769 kg m*

I, = 0921 kgm®

1.573 kg m*

Sy
3
Il
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16. Appendix G. Notations

Matrices are represented by capitals, whereas for vectors underlined letters are used.
In the following list numbers refer to the equation where the symbol is defined or used
the first time.

Denotation of indices (except of Chapter 5):

B wheelset body

c Coriolis (except of the contact force vectorF)

e applied (see ¢°)

F bogie frame

fir front, rear

g weight

1 inertial

L, R left, right (except of the rotor angular velocity w®)
r relative

s suspension

transposed (matrix)

X, ¥, 2 translational co-ordinates
Scalars:
a see Section 3.2.2, Figure 4 (16)
azg, a;, see Section 3.2.2, Figure 4 (16)
B gauge, see Figure 10 (93)
by constant 21)
G constant 21
c . average radius of the contact ellipse (55)
€ Gy €, spring stiffnesses (65)
Cy, Cyy Cy, Gy Kalker coefficients (55)
D gauge, see Figure 10 (86)
F, F', F®, etc. components of (65),
suspension forces (81)
Sis foas fo3, Si3 constants (56)

G shear modulus (55)



H
I=L=1, I, etc.

K

L

m

M., etc.
NE, N®, N, N7R
etc.

Yo, T, Ir
Re

K

T,, T, etc.
b by

|14

x’y’ z

o 9, ¥
P

Xz

Mx Ny
&, LR
Wq

u

Matrices:

Ap = A;-l
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gauge, see Figure 10

inertia of the dicone or the bogie frame,
respectively

similarity number
gauge, see Figure 9 (except of equ. (4))
mass

components of moments of suspension
forces

constraint forces,
normal to the contact plane

rolling radii, see Section 3.2.2 and Figure 4
radius of the rail cylinder, see Figure 4
constant

components of creep forces

normalized creep forces, see Figure 8
constant velocity for straight motion
translational co-ordinates

angle of contact point shift, see Figure 5
constant

cone angle, see Figure 4

angular co-ordinates

length scaling factor, other scaling factors
see Chapter 5

constant

normalized spin, see Figure 8
normalized creepages, see Figure 8
contact point shift, see Figure 5

constant angular velocity of the dicone
about the y-axis

coefficient of friction

transformation from the body-fixed system
of the dicone to the inertial system

(86)
(34

(125)
(65)

(82)

(39,
(78)

(16)
(16)
(57)
(39

(12)
®
6
(15)
(6
®
(98

(169)

(12)

&)
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Vectors:
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«

e

o R I~

e

g =
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T
A LB

ARB

T
ALT,,
Ar
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transformation from the left or right con-
tact system to the dicone’s body-fixed sys-
tem

transformation from the left or right con-
tact system to the inertial system

unit matrix

generalized mass matrix
mass matrix

diagonal matrices of inertias
global Jacobian

Jacobian of translation
Jacobian of rotation

distribution matrix of the constraint forces

Cartesian vector triad, see Section 3.2.2
vector of contact forces

vector of weight forces

vector of constraint forces

vector of generalized Coriolis forces
vector of generalized applied forces
position vector

generalized vector of creep forces

state vector

displacement vector of an arbitrary point
in the inertial frame

displacement vector of the centre of gravity
in the inertial frame

vector of relative displacements
vector of creepages
angular velocity vector

angular velocity vector of the rotor part of
the dicone

(6

M

(73)
®

(349
(30)
(13)
(13)
®

(39)
(38)
®
®)
®
)
(150)
(147)
(197)

197)

(199)
(48)
(25)
(36)

For additionally occuring indices the previously defined denotations are valid.
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18. Samenvatting

Voor een dubbelkegel die zich over een paar cilindervormige spoorstaven beweegt,
worden de bewegingsvergelijkingen afgeleid. De wrijvingskrachten die uit Kalker’s
theorie voor het rollend contact voortvioeien, worden benaderd door niet-lineaire
functies. Voor het aldus verkregen niet-lineaire systeem worden de voorwaarden voor
de dynamische gelijkwaardigheid van een schaalmodel en het model op ware grootte
afgeleid.

De bewegingsvergelijkingen worden uitgebreid tot vergelijkingen die gelden voor en
model van een onder een spoorwegvoertuig geplaatst tweeassig draaistel met zuiver
conische wielen. Zowel voor de dubbelkegel als voor het draaistelmodel worden de
resultaten van een numerieke simulatie verkregen met behulp van speciale program-
matuur die rekening houdt met de opbouw van de bewegingsvergelijkingen: differen-
tiaalvergelijkingen van de tweede orde, gekoppeld met algebraische vergelijkingen
voor de verbindingskrachten.

De resultaten van de numerieke simulatic worden vergeleken met die van experi-
menten op een rolproefstand schaal 1:5 waarbij het draaistelmodel ontworpen is met
behulp van de schaalfactoren voor lengte, massa, traagheid en draagveerstijfheid die
volgen uit de wetten voor de dynamische gelijkwaardigheid. De resultaten laten zien
dat het niet-lineaire gedrag van ontworpen loopwerken of zelfs volledige spoor-
wegvoertuigen binnen ruime grenzen onderzocht kan worden op een rolproefstand op
verkleinde schaal, waarbij de ontwerpparameters gemakkelijker gevarieerd kunnen
worden dan op een bank op ware grootte,
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