Gaussians as Supervision for Joint
Physical Parameter Estimation and
Appearance Reconstruction of Elastic

Objects

MSc. Computer Science
Pavlos Makridis

Delft University of Technology

GAUSSIANS AS SUPERVISION FOR JOINT PHYSICAL
PARAMETER ESTIMATION AND APPEARANCE
RECONSTRUCTION OF ELASTIC OBJECTS

A thesis submitted to the Delft University of Technology in partial fulfillment of the
requirements for the degree of

Master of Science in Computer Science

by
Pavlos Makridis
June 2024

g

Department of Computer Science
Faculty of EEMCS
Delft University of Technology

Pavlos Makridis: Gaussians as Supervision for Joint Physical Parameter
Estimation and Appearance Reconstruction of Elastic Objects, © June 2024
SUPERVISORS:

Lukas Uzolas

Dr. Petr Kellnhofer

Prof. dr. Elmar Eisemann

ABSTRACT

Recovering the appearance and physical parameters of elastic objects
from multi-view video is essential for many applications that require
simulation of the real world. Past methods for this task have provided
accurate results in recovering physical properties; however, their re-
liance on Neural Radiance Fields (NeRFs) for novel view synthesis
means they trade off visual quality for rendering speed. To address
this issue, we present a novel framework for the joint appearance
reconstruction and physical parameter estimation of elastic objects
relying on 3D Gaussian splatting. Our key insight is that dynamic
3D Gaussian kernels extracted from multi-view video can be used
to reconstruct the object’s geometry and supervise elastic parame-
ter fitting through a differentiable physics engine. Novel views and
object behaviours can then be constructed by forward simulating the
extracted mesh and using it to drive the Gaussian kernels. We demon-
strate that our method is competitive with the state of the art on phys-
ical parameter estimation while being better at reconstructing object
appearance. Additionally, our method can simulate novel views and
object interactions at near real-time rates that outperform past ap-
proaches.

ii

ACKNOWLEDGEMENTS

First, I would like to express my sincerest gratitude to my supervisors,
Lukas Uzolas and Dr. Petr Kellnhofer, for guiding me throughout this
work and always being available to help. In addition, I would like to
thank Professor Elmar Eisemann for his advice on this work and his
teachings throughout my journey in Computer Graphics. Further, I
must thank my friend Rodrigo Alvarez Lucendo for providing feed-
back and keeping me company in many late-night work sessions and
my friend Jorge Romeu Huidobro for the same reasons and for al-
ways being up to discuss radiance fields. Last but certainly not least,
I am forever grateful to my parents for their encouragement and sup-
port throughout my university years and to my friends back home
for reminding me that, from time to time, it is good to live real life
and not just simulate it.

So long, and thanks for all the kernels,
Pavlos Makridis
Delft, June 2024

CONTENTS

1 INTRODUCTION 1
1.1 Summary Of Contributions 2
1.2 Outline L 3
2 RELATED WORKS 5
2.1 Novel View Synthesis. 5
2.1.1 Dynamic Novel View Synthesis 6
2.2 Physical Characteristics Estimation 7
2.2.1 System Representation 8
2.2.2 Supervision 9
2.3 Joint Appearance and Physics Reconstruction 9
3 BACKGROUND 11
3.1 3D Gaussian Splatting for Novel View Synthesis 11
3.2 Modelling and Simulating Elastic Objects 14
3.2.1 Modelling Elastic Objects 14
3.2.2 Simulating Elastic Objects 17
4 METHOD 21
4.1 Setup and Assumptions 21
4.2 Overview 21
4.3 Dynamic Gaussian Optimization 22
4.4 Mesh Extraction 23
4.5 Physical Parameter Recovery 25
4.6 Generating Novel Views and Dynamics 26
5 EXPERIMENTS 29
5.1 Implementation Details 29
52 Baselines 30
53 Datasets 30
5.4 Physical Parameter Estimation 31
5.5 Appearance Reconstruction 31
56 Timings 33
5.7 Pipeline Stages Ablation for Physical Parameter Recovery 36
5.8 Mesh Impact on Dynamics 37
5.9 Understanding the Optimization Landscape 38
5.10 Importance of Mean Value Coordinates 40
5.11 Importance of Kernel Covariance Adjusting 42
6 DISCUSSION AND CONCLUSION 43
6.1 Results 43
6.2 Limitations and Future Work 43
6.2.1 Setup Assumptions. 43
6.22 Timings 44
6.2.3 Two-Stage Reconstruction Pipeline 44

6.2.4 Static Appearance Reconstruction and Deforma-
tion Transfer 44

vii

viii CONTENTS

6.25 Ambiguity oo Lo 45
6.2.6 Impact of Reconstructed Mesh 46
6.2.7 Biases and Lack of Real Datasets 46
6.3 Conclusions, 47

BIBLIOGRAPHY 49

LIST OF FIGURES

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

We present a novel framework for joint ap-
pearance reconstruction and physical param-
eter estimation of elastic objects. Our method
works on multi-view video and uses dynamic
3D Gaussian splatting and differentiable Neo-
Hookean simulation to reconstruct and simu-
late the recorded object. Overall, the resulting
technique can recover physical parameters at
the level of state-of-the-art methods while pro-

viding higher visual quality and inference speed.

High level overview of Novel View Synthesis
(NVS). Given a training set of images, NVS
algorithms aim to render previously unseen
views of thescene.
The general differentiable physics pipeline. Sys-
tem parameters are used to evolve the system

and the resulting states are compared with ground

truth observations through a loss function. Then,
since the process is differentiable, error gradi-
ents can propagate back and adjust the system
parameters.o
Overview of the Gaussian rasterization pro-
cess. Similar to triangle rasterization, the Gaus-
sians are converted from world space to view
space and the projected to the image plane.
The final pixel values are computed by blend-
ing the colors of each overlapping kernel. . . .
Adaptive Gaussian densification. The top row
demonstrates that Gaussian kernels will be du-
plicated when the underlying geometry (black
outline) is insufficiently covered. The bottom
row, demonstrates that Gaussian kernels will
be split in half to approximate finer geome-
try. Figure taken from the original 3DGS work
[KKLD23]. o oo
The Gaussian optimization pipeline. Differen-
tiable Gaussian rasterization and densification
is applied iteratively to convert an initial sparse
point cloud into a 3D Gaussian representation
of the underlying scene. Figure taken from the
original 3DGS work [KKLD23].

1

12

12

13

ix

List of Figures

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

Figure 15

Figure 16

Example Gaussian optimization process. Within

a few hundred steps the Gaussians can be op-
timized to represent the underlying object. . . 13
Reconstructed object point cloud. By optimiz-

ing the Gaussians in 3D, the geometry of the
scene is reconstruced. Here, we visualize the

centers of the Gaussian kernels as points. . . . 14
The components of first Green-Cauchy invari-
ant for an infinitesimal volumetric element. . . 16

Crossections of a triangular and tetrahedral mesh

of the same object. In the tetrahedral case, the
mesh has internal structure. 19
Overview of our appearance reconstruction and
elasticity parameter estimation pipeline. In the

first stage we optimize dynamic 3D Gaussian
kernels based on the given multi-view video.

In the second stage a tetrahedral mesh is ex-
tracted from the optimized kernels and we use

their trajectories as supervision to optimize the
elasticity parameters through a differentiable
physicsengine. 22
Extracted dynamic Gaussian kernels (visual-

ized as points) for an example scene. By over-
laying the Gaussians with the tracked object
(orange cow) we see that the kernels effectively

track the object throughout its deformation. . . 22
Impact of Poisson subsampling the Gaussian
cloud. Notice that without subsampling, on frame

8 the distribution of the Gaussians is uneven
inside the object, leading to noisy trajectories. 24
The stages of our mesh extraction process. We

rely on multiple methods from traditional ge-
ometry processing to reconstruct the object from

the Gaussians. 24
Explanation of J. Given a tetrahedron with ver-

tices a, b, ¢, d, we descibe its initial state as E =
[b—a,c—a,d— al] and its deformed state as

E (computed in a similar manner). With these,

we can now define J as the transformation from

E to B, or equivalently: E=JE. 26
Frame 5 from selected scenes of the Elasticity
dataset. Every scene consists of the same object

with different initial configuration and elastic-

ity parameters. Here we show the same time
moment from the same camera view for 4 dif-
ferent scenes (out of the total 10). 31

Figure 17

Figure 18

Figure 19

Figure 20

Figure 21

Figure 22

Figure 23

Figure 24

Figure 25

List of Figures

Our dataset. We use the Torus and Ball scene to
evaluate appearance reconstruction of complex
textures and the Cow scene to evaluate dy-
namic and appearance reconstruction of more
complex geometry. 31
Static reconstruction results. Our method can
accurately reconstruct uniform color objects and
objects with high frequency textures. 33
Dynamic reconstruction results. We demonstrate

our method’s ability to reconstruct observed
dynamics based on the estimated elasticity pa-
rameters. Lo oL 34
Qualititative evaluation on the Ball scene. Our
method can reconstruct complex textures and
maintain their quality under object deformation. 35
Perfomance in FPS of our method and PAC-
NeRF. On average, our method is 7x faster

than PAC-NeREF, although it displays variabil-

ity in the timings due to different mesh sizes

and required simulation substeps per scene. . 37
Example results for the ablation configurations
tested. Although minor differences exist, we

find that they are not immediately noticable. . 38
Mesh’s impact to reconstructed dynamics. Across

all images the orange border represents the ground
truth shape and position. Observe that the re-
constructed mesh, simulated with the correct
parameters ("Rec. Mesh - GT Param."), has a
bigger mismatch with the ground truth shape

than the ground truth mesh simulated with the
recovered parameters ("GT Mesh - Rec. Param."). 38
The optimization landscapes of the Ball scene

for different amount of supervision timesteps.

The top row shows the optimization landscapes

in 3D while the bottom row demonstrates a 2D

view of them from the top. Notice that as more
timesteps are used for supervision, the land-
scape changes to have a single well defined
minimum.o 39
The Beam setup and resulting sequence. We

let an elastic beam hang and set it in motion

by applying some initial velocity to its bottom. 40

X1

Xii

List of Figures

Figure 26

Figure 27

Figure 28

Figure 29

Figure 30

The optimization landscapes of the Beam scene
for different amount of supervision timesteps.
The top row shows the optimization landscapes
in 3D while the bottom row demonstrates a 2D
view of them from the top. Notice that as more
timesteps are used for supervision, the land-
scape changes to have a single well defined
minimum.,
Comparison between using barycentric (top)
and mean value (bottom) coordinates to drive

the kernels’ positions. In contrast to MVC, barycen-

tric coordinates can lead to kernels moving away
from the object.,
Cause of barycentric coordinate artifacts. In this
configuration a point d is defined in terms of
the triangle vertices a, b, c. Then, as ¢ deforms

to ¢, the point is pushed away from the triangle.

Impact of adjusting the kernel covariances based
on the underlying mesh deformation. The col-
ored boxes indicate areas where the difference
is most pronounced.
The different types of rendering artifacts pro-
duced by our method. We discuss potential so-
lutions in this section.

41

41

42

LIST OF TABLES

Table 1

Table 2
Table 3

Table 4

Table 5

Table 6

Summary of related methods. Our method is
the only one doing physically based parameter
estimation and Gaussian novel view synthesis.
Summary of learning rates used for our opti-
mizations. 0L
Parameter estimation results across all scenes.
Our method is competitive to PAC-NeRF. . . .
Static appearance reconstruction results. Our
method is consistently better than PAC-NeRF
on static reconstruction.
Dynamic appearance reconstruction results. Our
method is often better than PAC-NeRF. In Sec-
tion 5.8, we demonstrate that these errors arise
due to a mismatch in dynamics and not be-
cause of visual quality.
We ablate our method using the ground truth
(GT) mesh and GT trajectories to evaluate the
impact of each pipeline stage to the physical
parameter estimation. We find no configura-
tion that is universally better. Results are av-
eraged across all scenes of our dataset.

10

36

xiii

ACRONYMS

FEM Finite Element Method
MPM Material Point Method
MLP Multi-Layer Perceptron
MVS Multi-View Stereo

NeRF Neural Radiance Fields
NVS Novel View Synthesis
SfM Structure-from-Motion

3DGS 3D Gaussian Splatting

Xiv

INTRODUCTION

Ground Truth

© ¢eeo e ¢ ¢ &5
¢ ¢ ¢ ¢ ¢ e ¢ ¢ &8
¢ ¢ce¢coe ¢ &S

PAC-NeRF

Ours

Figure 1: We present a novel framework for joint appearance reconstruc-
tion and physical parameter estimation of elastic objects. Our
method works on multi-view video and uses dynamic 3D Gaus-
sian splatting and differentiable Neo-Hookean simulation to re-
construct and simulate the recorded object. Overall, the resulting
technique can recover physical parameters at the level of state-of-
the-art methods while providing higher visual quality and infer-
ence speed.

Elastic objects are common in everyday life and must, therefore, be
included in any applications that require real-world simulations, such
as movie and video game production, virtual reality and robotic con-
trol. For these tasks, it is often needed to render the object from any
viewpoint and simulate it in various scenarios. Thus, we require tech-
niques that can reconstruct elastic objects” appearance and behaviour
(dynamics). Nonetheless, achieving these goals is challenging due to
the complex dynamics elastic objects demonstrate.

Traditional approaches that have tackled the above problem have
relied on point cloud scanning and tracking [WWY*15], often in com-
bination with robotic actuators that are required to accurately de-
form the object being scanned [CZB23; SLK*20]. These techniques
have high accuracy but are largely inaccessible due to the required
equipment. Simultaneously, Neural Radiance Fields (NeRF) [MST*20]
and 3D Gaussian splatting (3DGS) [KKLD23] have demonstrated that
high-quality appearance and geometry reconstruction from multi-view
images can be achieved. However, most methods based on these new
techniques are unsuitable for our purpose since they focus on cap-
turing static scenes [BMT*21; BMV*22; KJJ*21] or reconstructing ob-
served dynamics [XHKK21; PCPMMNZ21; GSKH21] and cannot make
inferences about the reconstructed object’s behaviour under new con-
ditions.

INTRODUCTION

To be able to generalize to novel object behaviours, a few techniques
have attempted to jointly recover objects’ appearance and physical
elasticity parameters directly from multi-view video. The idea be-
hind those methods is to recover object representations that can be
rendered and simulated accurately using the recovered parameters.
The first to try this was Virtual Elastic Objects (VEO) [CTS*22], which
was later followed by PAC-NeRF [LQC*23]. Both of these techniques
are NeRF-based, and they entangle the physics and appearance rep-
resentation. As a result, they are prone to rendering artifacts due to
errors in the physical parameter estimation and, most importantly,
trade visual quality for rendering speed. More recently, Spring-Gaus
[ZYWL24] attempted to mitigate these issues by utilizing the explicit
radiance field representation used by 3DGS. Their method models ob-
jects as spring-mass networks of spatially varying spring stiffness and
drives the Gaussians based on how the masses move. Although this
approach is performant and can achieve excellent visual quality, its
reliance on a spring-mass network makes it unrealistic, thus making
the method unsuitable for physically accurate material characteriza-
tion.

In this work, we address the limitations of the current techniques
for jointly recovering the appearance and physical parameter estima-
tion of elastic objects by combining 3DGS with differentiable Neo-
Hookean elasticity simulation. Our key insight is that optimizing the
Gaussians across time can create a dynamic point cloud represen-
tation of the observed deformation. This point cloud can be used
directly as 3D supervision in a differentiable physics pipeline and
for object reconstruction. As a result, our pipeline can produce novel
views and simulate novel interactions with observed objects at near
real-time rates.

1.1 SUMMARY OF CONTRIBUTIONS

We present a method combining 3D Gaussian splatting and inverse
physics to achieve novel view and object interaction synthesis. We
find that our method can generally estimate physical parameters at
the same level of precision as state-of-the-art approaches, while being
better at reconstructing object appearance. Moreover, our method can
produce novel simulations and renders of the observed object faster
than previous approaches, achieving near real-time rates. In summary
we make the following contributions:

1. We propose a pipeline that combines 3D Gaussian splatting
with Neo-Hookean differentiable simulation for appearance re-
construction and physical parameter estimation.

2. We achieve competitive results with other state-of-the-art tech-
niques on physical parameter estimation.

1.2 OUTLINE

3. We accomplish better appearance reconstruction results than
other methods, maintaining details such as high-frequency tex-
tures even under strong object deformations.

4. We reach near real-time inference rates, outperforming past meth-
ods.

1.2 OUTLINE

This report is structured in six chapters. We start by giving an overview
of related works and the theoretical background required in Chap-
ter 2 and Chapter 3, respectively. Afterwards, we present our pro-
posed method in Chapter 4. We then evaluate our method in Chap-
ter 5 and present our conclusions in Chapter 6.

3

RELATED WORKS

This chapter provides an overview of the relevant literature for this
work. Namely, we will be covering the three focus areas of our work:
(dynamic and controllable) novel view synthesis, physical character-
istics estimation and their combination. Note that this chapter aims
to survey the different subfields and highlight the relevant literature.
Later, in Chapter 3, we dive deeper into the theory behind the tech-
niques presented here.

2.1 NOVEL VIEW SYNTHESIS

Novel View Synthesis (NVS) refers to synthesising images from arbi-
trary viewpoints of an object or scene given a set of observed im-
ages of the same object or scene [ZTS*16] (Figure 2). Early work
on NVS was based on dense light fields [GGSC23], a requirement
which was later relaxed with the introduction of methods based on
Structure-from-Motion (SfM) [SF16] and multi-view stereo [SCD*06]
which were able to reconstruct scenes from sparse sets of images.
These methods, however, require blending and reprojection of the in-
put images, which leads to high memory consumption since all input
images must be stored in GPU memory and can produce blending
artifacts [TFT*20; KKLD23]

CAN NS Yae—.

Training Set Images Novel View

Figure 2: High level overview of Novel View Synthesis (NVS). Given a train-
ing set of images, NVS algorithms aim to render previously unseen
views of the scene.

More recently, NVS has benefitted from the introduction of deep
learning-based methods. Initially, deep learning was used to enhance
the existing approaches, for instance, by estimating blending weights
[HPP*18] or directly predicting pixel values [FNPS16]. However, these
approaches still require high-quality scene modelling whose auto-
mated acquisition remains an open research problem [TFT*20]. To
address this, neural rendering methods have arisen as a promising
alternative.

Neural rendering methods extract an implicit representation of the
underlying scene from the input data, which can be rendered. Specif-

RELATED WORKS

ically, the advent of Neural Radiance Fields (NeRF) [MST*20] demon-
strated that Multi-Layer Perceptrons (MLPs) combined with volumet-
ric ray-marching could effectively be used for NVS. Many publica-
tions followed after NeRF trying to improve the visual quality of
the outputs [BMT*21; BMV*22] and its rendering speed [WSND*23;
MESK22; KJJ*21]. Although impressive steps have been taken to im-
prove NeRFs, the inherent reliance on large MLPs and volumetric ray
marching causes such techniques to have a substantial tradeoff be-
tween visual quality and rendering times, making them unsuitable
for interactive applications.

To create a method that can achieve state-of-the-art visual quality
at interactive frame rates, Kerbl and colleagues [KKLD23] proposed
to use 3D Gaussian Splatting (3DGS). Their method relies on differ-
entiable rasterisation in combination with traditional Gaussian kernel
splatting [ZPVBGoz]. In this way, no expensive ray-marching or large
MPL is required, making this method train and render significantly
faster than NeRF-based approaches. Additionally, the explicit repre-
sentation used by 3DGS lends itself nicely to various downstream
tasks, like colour editing or object moving, which are otherwise diffi-
cult in methods based on implicit representations.

Following the success of 3DGS, many papers have aimed to im-
prove it by reducing the amount of memory required [PKK*24], re-
moving rendering artifacts [RSP*24; FCC*24] or improving the abil-
ity to extract high-quality meshes from the Gaussians [GL23]. In our
work, we benefit from using 3DGS since it provides high-quality ap-
pearance reconstruction and an explicit representation that can be
combined with physical simulation.

2.1.1 Dynamic Novel View Synthesis

Dynamic NVS adds a temporal dimension to the traditional NVS
problem so that dynamic scenes can be reconstructed and rendered
across time. NeRFs can be adjusted for dynamic capture and gen-
eration by directly adding a temporal dimension and treating radi-
ance over space and time [XHKK21; LNSW21]. Alternatively, other
methods learn deformations of a canonical static NeRF [PCPMMN21;
PSB*21; FYW*22; PSH*21] or the flow of the representation from one
frame to the next [GSKH21; WELG21].

Many methods have emerged with the recent introduction of 3DGS,
aiming to use this representation for dynamic NVS. Here, some ap-
proaches rely on deep learning methods to learn the observed de-
formation model and then use that to drive the Gaussians [DMY*23;
DWY*23; WYF*23; KLD23]. Contrary to those, other methods rely
only on optimizing Gaussians by either reformulating them in four di-
mensions [YYPZ23] or optimizing their positions and rotations across
time [LKLR24]. The latter method - Dynamic 3D Gaussians - is most

2.2 PHYSICAL CHARACTERISTICS ESTIMATION

relevant to our work. Using physically inspired regularisation func-
tions, they propose an elegant approach for optimizing the positions
and rotations of 3D Gaussian kernels created from the first frame. As
a result, they can densely track objects and reconstruct their dynamic
appearance. We are building on this method by utilizing it in the first
stage of our pipeline, as it is simple and very effective in our setting.

The methods above can give great results in motion reconstruction
and novel viewpoint rendering. However, they have limited to no un-
derstanding of the underlying scene dynamics and thus cannot be
used to extend the observed motions. To generate novel dynamics
techniques like Pie-NeRF [FSL*23] and PhysGaussian [XZQ*23], di-
rectly integrate physics-based simulations with NeRF and Gaussian
splatting, respectively. In contrast, other techniques aim to use prox-
ies from which the deformation can be transferred to the radiance
representation. Such proxies can be parametric models of humans
[LMR*23; PCG*19], articulated skeletons [UEK24; YHL*22] and (cage)
meshes [YSL*22; PYL*22; JKK*23; BKY*22b]. The same (cage) mesh-
based deformation can be easily adapted to work on 3D Gaussians
as demonstrated in [GYZ*24; WBT*24; JYX*24; ZBS*23]. Inspired by
classical work on simulation, which simulates deformation on tetra-
hedral meshes and then uses them as cages to deform a triangular
mesh [MMC16], we simulate the deformation of a tetrahedral cage
and similar to the techniques mentioned above, we then transfer the
deformation to the Gaussians.

2.2 PHYSICAL CHARACTERISTICS ESTIMATION

System identification aims to learn mathematical descriptions of dy-
namic systems from input data to predict new data points from previ-
ous observations [PAG*23]. A plethora of different approaches have
been developed from this, ranging from classical (statistical) kernel
fitting-based methods [SL19] to those that rely on physics-informed
neural networks [W]X*22]. Inverse simulation is closely related to sys-
tem identification. Here, the goal is to recover the initial conditions of
a system, given the evolution of this system across time [MSoo]. We
recognise two ways in which methods that tackle the above can be
classified: based on their representation of the system and based on
the supervision they require.

RELATED WORKS

2.2.1 System Representation

We separate approaches for physical characteristics estimation de-
pending on whether they use an implicit or an explicit system rep-
resentation’.

Implicit approaches to inverse physics aim to learn an embedding
of the system’s states that can be used to infer system parameters or
future system states. A line of work approaches this by by learning
Hamiltonian [GDY19; TRJ*19], Lagrangian [CGH*20] or more gen-
eral non-linear operators [LJP*21] that can explain the dynamic be-
haviours of the observed system. Specifically for the case of deformable
objects some approaches propose using graph and dynamic interac-
tion neural networks for learning the system’s dynamics [SGGP*20;
PFSGB20o; LWT*18], while other methods [XWZ*19] encodes objects
in a dense latent space that allows for direct extraction of physical
properties. Such methods require few prior assumptions about the
physical system they model and thus they generalize to a wide variety
of different systems. However, since they rely on complex neural net-
works they can lack interpretability, have limited predictive horizons
and require large amounts of data for training. Explicit approaches
address these limitations.

Explicit approaches to inverse physics tackle the problem by as-
suming a parameterisable physical model that describes the observed
system and fitting the parameters that minimise the error between
the predictions and the observations. This minimisation can be done
with gradient-free iterative methods [WWY*15; SLK*20], or as is now
more prevalent, by utilising differentiable physics engines. Starting
with an initial (potentially random) estimate of the relevant parame-
ters, the physics engine evolves the system through time. The result-
ing states are then compared with the observed ones, and the error
is backpropagated through the engine to adjust the initial parame-
ters (see Figure 3 for a high-level overview of this process). Through
the recent advancements in autodifferentiation frameworks, differen-
tiable engines have been made for a diverse set of dynamic models,
like extended position-based and projective dynamics [MMC16; SC23;
BML*23;, DWM*21] or the Material Point Method (MPM) [HFG*18;
HLS*19]. Based on these, further methods have been developed that
incorporate physics engines into Deep-Learning pipelines to act as
strong inductive priors [J[BH19] or to be combined with inverse ren-
dering [MMG*20]. Such explicit approaches reduce the space of learn-
able parameters and provide interpretable results.

In our work, we will be using the differentiable physics engine
DiffSim [MMG*20], which provides a fully explicit FEM-based model

In the literature of physical simulation, one often encounters the terms implicit and
explicit when referring to time-integration schemes. That is not their use here as we
focus solely on how the system is modelled.

2.3 JOINT APPEARANCE AND PHYSICS RECONSTRUCTION

for simulating deformable solids based on the Neo-Hookean elasticity
laws.

System Parameters D > @} D > System States D gl Loss

—> Forward flow
e Gradients

Figure 3: The general differentiable physics pipeline. System parameters are
used to evolve the system and the resulting states are compared
with ground truth observations through a loss function. Then,
since the process is differentiable, error gradients can propagate
back and adjust the system parameters.

2.2.2 Supervision

Another criterion for separating physical characteristics estimation
techniques is the type of supervision they require. The form of super-
vision can vary greatly depending on the modelled system. For this
work, we focus on the case of deformable solids, where there are two
main approaches to supervision.

In the most straightforward case, 3D state supervision can be pro-
vided, for example, as an animated 3D mesh or point cloud. This
approach was taken by many of the earlier methods in the field of
physical parameter estimation [DHD*19; SC23; DWM*21; HLS*19],
since it can provide an easy-to-use, strong and stable learning signal
which eliminates the ambiguities that arise during image formation,
however, as [MMG*20] points out, getting those 3D labels has tradi-
tionally been labour-intensive and sometimes even infeasible.

To overcome the issues associated with acquiring 3D labels, more
recently, the focus has been on using 2D supervision by combining
inverse physics with either neural image synthesis [JBH19] or inverse
rendering [MMG*20]. Such methods have the advantage of working
on video, which is often easy to acquire. This property makes such
methods more practical, however, their performance can suffer com-
pared to methods that use full 3D supervision [MMG*20].

Our approach combines the merits of both types by utilising the 3D
Gaussians to automatically extract 3D states from images and then
use those to optimise the physical parameters. We explain these fur-
ther in Chapter 4.

2.3 JOINT APPEARANCE AND PHYSICS RECONSTRUCTION

Few approaches attempt to unify the appearance and physical char-
acteristics estimation problem. To the best of our knowledge, the
first to attempt this was [CTS*22], which combined the non-rigid

10

RELATED WORKS

NeRF from [TTG*21] with a differentiable mesh-free forward simu-
lator for Neo-Hookean dynamics, for which they sampled particles
directly from the reconstructed NeRF volume. Similar to this, PAC-
NeRF [LQC*23] reconstructs a static representation of the object using
the voxel NeRF presented in [SSC22] from which particles can be sam-
pled and evolved through a differentiable MPM simulator, managing
to reduce inference timings. In both cases, the renderings produced
during the optimization of the physics are compared with the ground
truth for supervision. These methods provide an end-to-end pipeline
for the task, but their reliance on implicit scene representations forces
them to trade rendering speed for visual quality and to errors from
the physical parameter estimation to appear as rendering artifacts
(e.g. as gaps in the object).

Contemporaneous to our work is that of Spring-Gaus [ZYWL24].
Instead of NeRF, they utilize 3D Gaussian splatting [KKLD23] for
appearance reconstruction and then sample the density field created
by the Gaussian to get anchor points that can form a spring-mass
system. This spring-mass system is then simulated using a differen-
tiable engine that fits parameters such as the spring stiffness to match
the images of the training set. This method is efficient in producing
plausible-looking results; however, since their model is not physically
grounded, the recovered parameters cannot be used to characterize
the object’s material.

Our method combines the explicit Gaussian splatting representa-
tion with physically based Neo-Hookean FEM simulation. In that
way we combine the advantages of using an explicit representation
for rendering while also being able to characterize accurately object
materials. We summarize where we stand in relation to other meth-
ods in Table 1.

Physically
Method Based Forwaljd Gaussian NVS
Parameter Simulation
Estimation
PAC-NeRF v’ v’
VEO v’ v’
Spring-Gaus v’ v’
PhysGaussian v’ v’
Ours v’ v’ v’

Table 1: Summary of related methods. Our method is the only one doing
physically based parameter estimation and Gaussian novel view
synthesis.

BACKGROUND

This chapter explores the fundamental theoretical and technical back-
ground required to understand the domain of our work. We start by
explaining 3D Gaussian splatting and how it can be used for novel
view synthesis. We then provide some background on how elastic ob-
jects can be represented and simulated digitally and define our exact
physical model.

3.1 3D GAUSSIAN SPLATTING FOR NOVEL VIEW SYNTHESIS

Gaussian splatting was initially introduced in [ZPVBGoz] as a method
for antialiased rendering of volumetric data. It works by using dis-
crete 3D Gaussian kernels as rendering primitives to approximate
the value of the continuous volumetric signal at every point in space.
The advantage is that since the Gaussian kernels are discrete, they
can be projected onto the image plane and then alpha-blended to get
the final pixel values which is faster than the traditional ray marching
approaches usually required for volume rendering.

Each 3D Gaussian kernel can be described by a set of parameters.
Every kernel has a center position ¢ *, and a scale and rotation which
can be jointly expressed in the Gaussian covariance matrix X. Specifi-
cally if a kernel’s scale is given by the scale matrix S and its rotation
by the rotation matrix R, then £ = RSSTR'. Knowing these param-
eters, we can then evaluate the density of the kernel at any point x
using the formula

G(x) = e—%(x—c)TZ*](x—c).
In addition, every kernel can be given a colour, or as later proposed
by Kerbl et al. [KKLD23], spherical harmonic coefficients that allow
for expressing view-dependent appearance effects. With every kernel
described like this we can now denote any scene as a collection of
Gaussian kernels P, that combined with a view matrix V be used to
render image I using a rendering function R.

The rendering function R can be implemented through a rasteri-
zation pipeline similar to the one used for traditional triangle-based
surface rendering. As Zwicker et. al. [ZPVBGoz] showed, we can de-
fine a view transformation matrix M that transforms the covariance
matrix £ from world space to view space (£'). Once in view space,

Typically the symbol u is used to denote the center of a Gaussian kernel. Here, we
deviate from the standard notation to avoid confusion with the Lamé parameter ,
which we introduce later.

11

12

BACKGROUND

the third dimension of each Gaussian is dropped so that the kernels
are projected on the image plane. Then, the colour of each pixel is
calculated by alpha blending the colours of all kernels that affect it,
using the kernel densities as blending weights. The whole process is
summarized in Figure 4.

}W Y — MsmT Projection

World Space View Space Ie Space

Figure 4: Overview of the Gaussian rasterization process. Similar to trian-
gle rasterization, the Gaussians are converted from world space to
view space and the projected to the image plane. The final pixel
values are computed by blending the colors of each overlapping
kernel.

To utilize this representation for novel view synthesis, Kerbl and
colleagues [KKLD23] propose using an inverse rendering pipeline
to fit the Gaussian kernels to the underlying continuous signal of
the scene’s radiance. The process begins by receiving a sparse point
cloud along with the images of the scene and the corresponding cam-
era poses. This initial point cloud can be randomly initialized or ex-
tracted using Structure from Motion (SfM) [SF16]. On these points,
the algorithm initializes the original set of Gaussian kernels, whose
position, scale, rotation, color and opacity are then optimized to fit
the underlying scene.

—> By

Clone Optimization

Continues

‘Spt’ ﬁptmzaton (
Continues

Figure 5: Adaptive Gaussian densification. The top row demonstrates that
Gaussian kernels will be duplicated when the underlying ge-
ometry (black outline) is insufficiently covered. The bottom row,
demonstrates that Gaussian kernels will be split in half to approx-
imate finer geometry. Figure taken from the original 3DGS work
[KKLD23]

Under:
Reconstruction

Over:
Reconstruction

A combination of heuristics and gradient-based optimization is
used to optimize the kernels. First, the kernels are rendered using
a differentiable tile-based rasterizer from all training viewpoints V;.
The resulting image is then compared with the corresponding train-
ing set image I; using an image loss function. Typically, this loss func-

3.1 3D GAUSSIAN SPLATTING FOR NOVEL VIEW SYNTHESIS

tion is a combination of the L1 norm and structural similarity index
(D-SSIM), weighted with a scalar 1:

Lim=(1-1) IR(P, Vi) = Lilh + Lp_ssim- (1)

1

Since the process is differentiable, the error gradients can be back-
propagated to the Gaussian parameters, adjusting them to match in-
put images better. On top of that, to give the algorithm the ability
to create or remove Gaussians from specific parts of a scene, during
the optimization step, Gaussian kernels can be split or merged de-
pending on the error gradients to match finer geometric details (see
Figure 5). The above process is repeated until the optimization con-
verges. The entire pipeline is demonstrated in Figure 6 while Figure 7
shows the evolution of optimization for a simple scene.

(o] —
/ Projection ‘\

- g h
- ’/ \

.. . .
T Differentiable | —
* — | Initializati — Image
. Diazation / Tile Rasterizer +— 8
. Adaptive «
SfM Points 3D Gaussians Densi PC |
SpsityiContro ‘ —> Operation Flow ~ —» Gradient Flow

Figure 6: The Gaussian optimization pipeline. Differentiable Gaussian ras-
terization and densification is applied iteratively to convert an
initial sparse point cloud into a 3D Gaussian representation of
the underlying scene. Figure taken from the original 3DGS work
[KKLD23].

Figure 7: Example Gaussian optimization process. Within a few hundred
steps the Gaussians can be optimized to represent the underlying
object.

The optimization process described above can achieve excellent vi-
sual quality even in large environment scenes. Concurrently, because
of using rasterization (contrary to ray-marching used by NeRF-based
approaches), novel views can be generated in real-time, making Gaus-
sian splatting a good fit for interactive applications.

As a last note, we emphasize that since the Gaussian kernels are
optimized in 3D space at the end of the optimization, the kernels have
adapted to match the appearance and geometry of the underlying
scene. Thus, if we ignore the kernels’ covariance, we are left with a
point cloud representation of the scene. Examples of this are shown
in Figure 8.

13

14

BACKGROUND

Figure 8: Reconstructed object point cloud. By optimizing the Gaussians in
3D, the geometry of the scene is reconstruced. Here, we visualize
the centers of the Gaussian kernels as points.

3.2 MODELLING AND SIMULATING ELASTIC OBJECTS

Simulating elastic objects has been an important problem in Com-
puter Graphics since the seminal work by Terzopoulos et. al. [TPBE87].
As a result there exists a vast array of methods for this goal. In this
section we try we give the minimal necessary background required
to understand our work as well as the competing methods. For an in
depth view of the topic we recommend the works of Kim et al. [KE20]
and Nealen et al. [NMK*06].

3.2.1 Modelling Elastic Objects

We start by covering the basic notions of elasticity theory required for
this work.

Formalizing Elasticity

In this work, we deal with hyperelastic solids that return to their orig-
inal shape once all external forces are removed. This original shape is
referred to as the rest shape of the object, and we can think of it as a
connected continuum of points X.

When the object moves and deforms, the positions of each point
changes based on an affine map ¢, resulting in a new set of points X.
Note that ¢ is unique per point, so even though each point undergoes

3.2 MODELLING AND SIMULATING ELASTIC OBJECTS

a linear transformation, globally the object can change in a non-affine
manner. For each point x € X and X X, we then have

x = ¢(x),
which, because ¢ is an affine mapping, can be written as:
d(R) =FR +t,

where t € R3 is the translation vector and F € R3*3 is the matrix
that encodes any potential rotation, scaling and reflection. The matrix
F is referred to as the deformation gradient since it can be obtained
by differentiating the previous expression:
a‘g;") - % (Fx + 1)
=F

Now that we have a way to describe the deformation that occurred,
we need to define a measure of how deformed the object is. For this
purpose, we use an energy function V. The energy function allows us
to define the "distance" of the deformed shape from the rest shape
and thus can be used to determine how the object should push back
against external forces to return to its rest shape.

Selecting the proper energy function is important as it affects how
realistic and numerically stable the simulation will be. There are many
options in the literature [KE20], but since we are building on top of
DiffSim [MMG*20], we are using the Neo-Hookean energy described
in [SGK18], which offers stability against element inversions and re-
flections, as well as maintaining the object’s shape at rest and recov-
ering from extreme compressions (e.g projecting all vertices on one
line). The energy is given by the formula:

Wia mA) = 2iie ~3)+ 50— @~ Ploglic +1), @)

where (is the state vector of the object®, u, A are the Lamé parame-
ters3, a is the rest stability term, I¢ is the first Green-Cauchy invariant
and] = detF. We explain these terms in more detail in the following
paragraphs.

The first Green-Cauchy invariant, Ic, measures the deformation
of an infinitesimal volumetric element of the solid. Concretely, Ic =
cr,% + Gﬁ + cr%, where oy, 0y, 0, are amount of stretching of the volu-
metric element across each of its axis (see Figure 9). In practice I¢ can
be computed directly from F using the Frobenius norm:

Ic = ||F|I

For example, in the case of a tetrahedral element, this state vector would be the
collection of the tetrahedron’s vertices

Technically, 1 and A as they appear in Equation 2 are shifted versions of the actual
Lamé parameters. Per [SGK18] we have p = %HLamé and A = A qme + %u]_amé. This
remapping does not affect our discussion, but it is important to remember when
comparing ours with other simulation techniques.

15

16

BACKGROUND

Intuitively, it measures deformation invariant to rotation (since the
norm of F is invariant under rotation).

Figure 9: The components of first Green-Cauchy invariant for an infinitesi-
mal volumetric element.

In the second term of the sum, we encounter | and «. Starting
with J, we have | = detF, which describes how much the volume
of the element has changed. It is thus essential for ensuring that the
volume of the element is preserved. Additionally, we want the object
to have rest stability to preserve the volume, meaning it does not
collapse when it is not under any deformation. This is achieved by
the o term, which is a constant set to o« = 14 & — /5 (see [SGK18] for
the derivation).

The last remaining terms in Equation 2 are p and A, which appear
as scalar factors. These are the Lamé parameters and they define how
much edge length and volume preservation we require for each vol-
umetric element making up the object. Specifically, the parameter p
(also known as shear modulus) controls the length preservation while
the parameter A controls volume preservation. The two parameters
form a trade-off with each other, where if we want to preserve vol-
ume, we have to set A to be larger than p and conversely for stronger
length conservation. Last, the Lamé parameters are tightly coupled
with two popular parameters describing elastic materials: Young'’s
modulus (E) and the Poisson ratio (v). The relations connecting them
are given by:

- (3A + 2p)
At
A

20+)

The E, v pair is quite popular in literature, and thus, even though our
model is parameterized directly with u, A, we use E and v for our
evaluations in Chapter 5.

3.2 MODELLING AND SIMULATING ELASTIC OBJECTS

Assumed Material Model

With the mathematical model established above, we can now describe
non-linear isotropic materials. For clarity, we explain each term sepa-
rately below:

* Non-Linear: Contrary to the well-known Hooke’s law, we as-
sume that the relationship between force and object displace-
ment is not linear.

¢ Isotropic: We assume that the object will deform the same re-
gardless of the direction of the force causing the deformation.

¢ Spatially Invariant / Homogenous: The elasticity parameter p, A
(or equivalently E,v) are the same across the object’s surface.
Note that our model does allows for varying materials, but we
found the elasticity parameter optimization process to be unsta-
ble when dealing with this case, so we impose it as an extra
constraint.

This material model is practical due to its simple formulation (Equa-
tion 2), while it accurately captures the behaviour of many real-life
materials like rubber or numerous types of plastic [CTS*22].

3.2.2 Simulating Elastic Objects

In Section 3.2.1, we explain that deforming objects tend to stay as
close to their best shape as possible. Further, we established how Neo-
Hookean energy (see Equation 2) can measure the distance between
the deformed and rest shapes. What remains is how the energy func-
tion can be used to alter the object’s state such that the deformation
conforms to the assumed material model.

We start this part with a general overview of time integration for
simulating meshes to explain how deformation occurs in the simula-
tion. Later, we discuss three different approaches to discretizing the
simulation domain, which is essential in understanding how the ma-
terial model is enforced. Specifically, we discuss the finite element
method (FEM), which is the one used by our simulator, as well as two
alternative approaches; the material point method and mass-spring
systems.

Making Objects Move and Deform

We start with the view that objects at their rest shape can be described
by a set of points X. Using the semi-implicit (symplectic) Euler inte-
gration, we can calculate how each point x € X will move under the

17

18

BACKGROUND

influence of a gravitational acceleration vector g between two discrete
time steps t and t 4 1 with At being the size of the time step:

Ugy1] = Ug + gAt

Xt41 = X¢ +Up 1At

where u denotes the velocity vector.
External forces can be added into this formuation using Newton’s
second law of motion:

Ft = Mmay,

where F; is the total force applied to the object’s point at time t, m is
the point’s mass, and a is the point’s acceleration. This equation can
be rewritten to solve for acceleration:

=

23

Furthermore, this acceleration can be inserted into the symplectic Eu-
ler equation for velocity in the place of g:

Upy1] = Ut + aiAt
F F
=ug+ —At (from a; = —). (3)
m m
The velocity can then be used to compute the new positions as:
Xt41 = X¢ + U 1At (4)

This formulation allows us to displace the object’s points based on
arbitrary external forces, such such as collision and elastic forces. In
turn, we can deform the object based on the Neo-Hookean energy
¥ from Equation 2. Since objects deforming tend to stay as close as
possible to their rest shape, we can compute the elastic force as the
vector that moves the points in the direction that minimizes ¥, which
mathematically is the negative gradient of the energy function*:

oy

Felastic = Ox
t

7

and can be analytically derived from Equation 2 (see [SGK18]).

So far, in this analysis, we have abstractly referred to points from
the object. However, in practice, we need a way to sample those points
and connect them to define a continuous volume. There are multiple
ways this can be done, and it depends on the way of discretizing
the simulation domain. The following paragraphs discuss the three
popular alternatives for simulating deformable objects.

Technically the gradient should also be scaled depending on the volumetric element
used (e.g. inverse tetrahedron volume), but since this depends on the discretization
of the simulation domain we overlook it for now.

3.2 MODELLING AND SIMULATING ELASTIC OBJECTS

(a) Surface triangular mesh (b) Volume tetrahedral mesh

Figure 10: Crossections of a triangular and tetrahedral mesh of the same
object. In the tetrahedral case, the mesh has internal structure.

The finite element method

The finite element method (FEM) is one of the most popular ap-
proaches for simulating deformable objects. Broadly, FEM belongs
to a family of simulation techniques characterized as mesh-based La-
grangian, meaning that they use connectivity information between
the participating particles to do their computations. Specifically, in
FEM-based simulations, the object is viewed as a continuous con-
nected volume, which is then discretized into an irregular mesh. The
specific way this discretization is done is important since it defines
how the deformation gradient F is computed and how well the simu-
lation mesh matches the underlying object.

In our case, we use tetrahedral meshes. Contrary to the typical
triangle surface meshes used often in Computer Graphics, tetrahedral
meshes are composed of tetrahedra and, as shown in Figure 10, have
internal structure.

Tetrahedral-based FEM offers a simple and effective way to sim-
ulate elastic deformation since the topology of the object does not
change during deforming. Additionally, simulated tetrahedral meshes
can easily be used to drive the deformation of triangle meshes and
(the more relevant for our case) Gaussian kernels.

The material point method

An alternative to FEM is the material point method (MPM), which
has been used for our task by PAC-NeRF [LQC*23]. MPM belongs to
a family of simulation techniques characterized as hybrid Eulerian-
Lagrangian. This means that their computations happen both in a
background grid (Eulerian) and in particles that exist and interact

19

20

BACKGROUND

with that grid (Lagrangian). Notice that no mesh is involved here,
meaning no direct connectivity information exists. This lack of re-
liance on meshes makes MPM a good fit for simulating objects with-
out fixed topology, such as sand or fluids. However, it can also be
used for simulating hyperelastic objects by calculating the energy
function (for example, the Neo-Hookean energy) on the grid and us-
ing that connectivity information to derive the forces, which can be
applied to the particles. For a complete overview of MPM and its
applications, we refer to [JST*16].

Mass-Spring Systems

Mass-spring systems are another instance of a mesh-based Lagrangian
method for simulating deformable objects. It is a simple and intuitive
approach in which any mesh can be simulated by assigning a mass
at each vertex and treating each edge as a spring with stiffness k.

Due to their simplicity, mass-spring systems are easy to implement
and computationally efficient. However, their simplicity comes at the
cost of physical accuracy [NMK*06]. Specifically, the results of most
such models depend on the mesh resolution and topology while in-
creasing the mesh resolution does not necesserily lead to convergence
to the true deformation state. Furthermore, the spring coefficients
used are typically arbitrary and have no direct equivalency to ma-
terial properties. The above makes mass-spring systems a poor fit for
our purpose since our ultimate goal is to extract meaningful material
properties from real-life objects and create accurate novel-interactions
with them.

[

METHOD

From the related works presented in Chapter 2 and the background
in Chapter 3, we recognise that there is no solution that combines
physically accurate system identification with the advantages Gaus-
sian splatting brings to novel view synthesis. Our method aims to
unite these two to enable the joint optimization of appearance and
physical properties with a single technique.

In the following sections, we start with an overview of the assump-
tions under which our method works and then proceed to explain its
exact workings.

4.1 SETUP AND ASSUMPTIONS

The input to our method is multi-view video. Since we focus on sin-
gle object reconstruction we require masks to be available to isolate
the object. Note that those can be automatically generated through
background matting [LRS*21] or semantic segmentation [KMR*23].
Moreover, we assume that on the first frame the object is fully visi-
ble and that any external forces are known. Specifically, we deal only
with the case of objects free-falling under the influence of gravity and
ignore air resistance’. We assume a non-linear isotropic and homoge-
nous material model as explained in Section 3.2.1.

4.2 OVERVIEW

Our method consists of a two-stage reconstruction pipeline. In the
first stage (left part of Figure 11), we utilize the multi-view video
of the object deforming to track its deformation through an adapted
version of dynamic Gaussian optimization [LKLR24]. In the second
stage (right part of Figure 11), we reconstruct the object and employ
a differentiable physics engine to recover the elasticity parameters,
using our extracted 3D Gaussians trajectories as supervision. With
this process, we can fit the parameters of our elasticity model. With
the fitted parameters and the recovered mesh we can then simulate
realistic novel object behaviour while also rendering the object using
the Gaussians.

We have chosen this for simplicity, but our method can function for any known
external forces.

21

22

METHOD

JAIl Frames

Dynamic Gaussian
Optimization 3D Supervision
L

Multi-View Video Dynamic Gaussians Predicted Animated
Tetrahedral Mesh

K
-
|

,_____
I
h
l.
I
[[p—
:
:
:
:
:
E oy
g
=
<
-
e
|
-

-
~
-

4

l4~‘1
\p .3.‘

First Stage Second Stage
——— Forward flow
S amamanna e Gradient flow

Figure 11: Overview of our appearance reconstruction and elasticity param-
eter estimation pipeline. In the first stage we optimize dynamic
3D Gaussian kernels based on the given multi-view video. In the
second stage a tetrahedral mesh is extracted from the optimized
kernels and we use their trajectories as supervision to optimize
the elasticity parameters through a differentiable physics engine.

4.3 DYNAMIC GAUSSIAN OPTIMIZATION

To recover the physical parameters of the observed system, we require
a form of ground truth state that the differentiable physics engine can
use as supervision. We propose optimizing dynamic 3D Gaussian ker-
nels to track how the object deforms by adapting the technique pro-
posed in Dynamic 3D Gaussians [LKLR24]. We use the first frame
frame to initialize the set of Gaussians that will be used to track the
object deformations. Then, we fix the amount of Gaussians and opti-
mize their position and size across frames. In the end we acquire a
time-coherent point cloud like the one shown in Figure 12.

Initial Gaussian Cloud|

Figure 12: Extracted dynamic Gaussian kernels (visualized as points) for an
example scene. By overlaying the Gaussians with the tracked ob-
ject (orange cow) we see that the kernels effectively track the ob-
ject throughout its deformation.

Using only the image loss £ from Equation 1 for optimizing the
positions can cause the Gaussians to move in their local neighbour-
hood, resulting in noisy trajectories with the Gaussians changing their
position relative to the underlying object’s surface. For this reason,
the authors of Dynamic 3D Gaussians propose to use a local rigidity
loss, which enforces rigid transformations of local Gaussian neigh-

4.4 MESH EXTRACTION

bourhoods between consecutive frames and an isometry loss which
maintains the Gaussian relative distances across all frames.
Specifically, for two Gaussians i, j with centers ¢; and c¢; and
rotation matrices Ri; and R; at time t, we define the rigidity loss
between them to be
rigid -1 2
ﬁif =wijll(¢jt—1 —Cit—1) —Rit—1R (€50 —cid)ll
where wj ; is the isotropic Gaussian weighting factor:

—Awlleso—cioll3
Wi.,j —=e wll j,0 1.,0”2,

with A, = 2000 to give a standard deviation of 2.2cm. This loss is
calculated in neighbourhoods of k Gaussians (determined by the knn
function) and summed for the entire Gaussian cloud G:

- 1 L
rigid __ rigid
£ "~ KI|G] Z Z Li,j
1€G jeknn(, k)

In all our experiments we use k = 20. Similarly the isometry loss can
be calculated as:

. 1
Liso — TG Z Z wij |llcjo — cio0

i€G jeknn(i, k)

3 —lleje — il
We can now combine the different loss functions with weights w to
get the total loss as:

Ltrajectories = woLim + w1 Lrigid + w2 Liso (5)

Throughout our experiments we use w = {500, 1000, 700}. Lastly, note
that contrary to the original Dynamic 3D Gaussians technique, we do
not regularize the rotation of the Gaussians across frames, since in
our case we care only for the quality of the resulting trajectories and
not for rendering each observed frame.

Additionally, depending on the views and the object’s shape, the
Gaussian cloud created by optimizing the first frame can have non-
uniform density, with specific areas having more Gaussians than oth-
ers. Although this does not affect the reconstructed appearance, it can
lead to noise arising in the optimized trajectories, as those extra Gaus-
sians tend to cluster and move randomly inside the object. Therefore
we apply Poisson subsampling to the initial Gaussian centers to en-
force a blue noise distribution of the kernels. Figure 13 demonstrates
the effect of this choice. Note that we still use the complete set of
Gaussians for the appearance reconstruction.

4.4 MESH EXTRACTION

Concurrently, with optimizing the dynamic Gaussians, we reconstruct
the object as seen in the first frame. We use the first frame Gaus-
sian positions from the dynamic Gaussian optimization and apply

23

24

METHOD

Without Poisson Subsampling

With Poisson Subsampling

Figure 13: Impact of Poisson subsampling the Gaussian cloud. Notice that
without subsampling, on frame 8 the distribution of the Gaus-
sians is uneven inside the object, leading to noisy trajectories.

screened Poisson surface reconstruction [KH13]. Since the Gaussian
cloud is not perfectly aligned with the surface and can have internal
points the resulting mesh is often of low-quality and thus it is ill-
suited for simulation (see Poisson reconstructed mesh in Figure 14).
To mitigate this issue, we apply alpha wrapping [PRLH*22] which

Gaussian centers Poisson reconstructed Alpha wrapped Tetrahedralized
point cloud mesh mesh mesh

Figure 14: The stages of our mesh extraction process. We rely on multiple
methods from traditional geometry processing to reconstruct the
object from the Gaussians.

computes a new enclosing mesh of higher quality (see alpha wrapped
mesh in Figure 14). At this point we have recovered a surface mesh,
but as explained in Section 3.2 we require the mesh to have internal
structure so that it can be simulated. To obtain the internal struc-
ture we tetrahedralize the results of alpha wrapping using Delaunay
tetrahedralization. Delaunay tetrahedralization populates the inside
volume by placing points inside the surface, and connects them in a
way that avoids creating slim or degenerate tetrahedra and maintains

4.5 PHYSICAL PARAMETER RECOVERY

their uniformity. As a result, the output tetrahedral mesh is suitable
for FEM based simulations. In the end we obtain the final simulatable
mesh (Xp, A), where Xy is the set of vertices and A is the set of edges
(adjacencies).

4.5 PHYSICAL PARAMETER RECOVERY

Once we have both the tetrahedral mesh and the dynamic Gaussian
cloud, we can recover the initial velocity of the object and the elasticity
parameters describing its material. As a reminder, we are following
the Neo-Hookean elasticity model (Equation 2) for homogenous ma-
terials presented in Section 3.2.1, and thus we need to optimize two
parameters; Young’s modulus E and the Poisson ratio v.

To recover the initial velocity 1t and the optimal elasticity parame-

ters £, ¥, we employ the differentiable physics engine DiffSim [MMG#*20].

The physics engine can produce the deformed mesh vertex positions
Xt for every moment t based on a given initial velocity uy and elas-
ticity parameters E, v. Formally, we denote the engine as a function

S: (uO/ EIVIXOIAIt) — th

that evolves the system state using the rules of Equation 3 and Equa-
tion 4.

We can now use this formulation to define a loss term that can
be used to perform gradient-based optimization on the parameters.
Since we have no reliable way to get exact correspondences between
the mesh’s vertices and the dynamic Gaussians, we use the Chamfer
distance between the Gaussian centers and the vertices:

Ccnamier(Xe, Go) = 3 min x—ell3+ > minx—ecl,
x€X¢ ceGy
where Gy is the set of dynamic Gaussian centers at time moment t.
To make the optimization more robust, we follow a scheme similar
to that described in PAC-NeRF [LQC*23]. We initialize the elasticity
parameters at values Ep, vo and use the states observed during free-
fall to optimize only the velocity. This approach is effective because
those states provide a clear learning signal for the velocity. This way,
we also ensure that the elasticity parameters are not adjusted to fix
mismatches in velocity. Formally, if contact with the ground occurs at
time moment N., we have:
A Cq Neod
U= argminu - > Lchamer(S(u, Eo, Vo, X0, A, 1), Gy).
t=0
After the velocity is optimized, we fix it and proceed to fit E and v,
which are optimized using the entire sequence of N observed states:

A

N-—1
. . 1 .
E V= argming v E Lchamfer(S(TL E, v, Xo, A, t), Gt).
t=0

25

26

METHOD

In the end, the above optimization process allows us to recover the
set of parameters 11, £ and ¥, that explain the observed dynamics.

46 GENERATING NOVEL VIEWS AND DYNAMICS

Given new positions for the vertices of the mesh X and a new initial
velocity u’, we simulate novel dynamics using S(u’, £, %, X4, A, t). We
propagate the resulting mesh motion to our original Gaussian repre-
sentation by updating the kernel positions, scales and rotations.

To change the kernels’ positions, we use Mean Value Coordinates
(MVC) [JSW23]. This is different to previous approaches that have
used barycentric coordinates for the same purpose [ZBS*23; JYX*24],
and we evaluate our choice in Section 5.10.

For adjusting the scale and rotation we assign each Gaussian to the
closest tetrahedron and apply deformation transfer [SPos; ZBS*23].
Concretely, for a tetrahedron i we define the deformation matrix J;
as:

JiE; = E;
Ji=EE T,

where E; € R3%3 and E; € R3*3 contain the edge vectors of tetra-
hedron i in the canonical and deformed states. We provide a visual
explanation of this formula in Figure 15. The deformation matrix is

TN

wsld

Figure 15: Explanation of J. Given a tetrahedron with vertices a, b, c, d, we
descibe its initial state as E = [b—a,c—a,d—a] and its de-
formed state as E (computed in a similar manner). With these,
we can now define J as the transformation from E to E, or equiv-
alently: E =JE.

then applied directly to adjust the Gaussian covariance matrix:
o/
L =LIl

As with MVC, we demonstrate the importance of this in our ablations
in Section 5.11.

46 GENERATING NOVEL VIEWS AND DYNAMICS

With MVC and the tetrahedral deformation transfer, we are able to
use the simulated mesh to guide the Gaussian kernels. In this way our

method allows for rendering novel views of novel object interactions.

27

EXPERIMENTS

In this chapter, we evaluate our method through a series of experi-
ments. We start by providing some implementation details about our
method and describing the baselines and datasets we used. We then
examine our method’s physical parameter estimation and appearance
reconstruction capabilities and provide timings for our method’s in-
ference pass. We then ablate the different steps of our reconstruc-
tion pipeline and examine the impact of the mesh reconstruction on
our dynamics reconstruction. From there, we conduct experiments
to chart the optimization landscape of our method. Last, we experi-
mentally demonstrate the importance of using MVC and tetrahedral
deformation transfer to adjust the Gaussian kernels.

5.1 IMPLEMENTATION DETAILS

We implement our method in PyTorch [PGC*17] using the custom
CUDA backends for differentiable Gaussian rasterization [KKLD23]
and differentiable physics simulation [MMG*20]. For the mesh pro-
cessing used in our mesh extraction step, we use the corresponding
MeshLab [CCC*08] filters with their default parameters. Simultane-
ously, we rely on TetGen [Han15] for the Delaunay tetrahedralization.
Last, we use the MVC implementation of Bergman [BKY*22a].

We initialize the Gaussians with a random point cloud and use
10,000 iterations to optimize the initial frame and then subsample the
cloud to 12000 Gaussians. After, we use 3500 iterations to optimize
the dynamics. For simplicity, we optimize colour and not spherical
harmonics throughout the Gaussian optimization. In the image loss
(Equation 1) we use | = 0.2. Regarding inverse physics, we use 12,000
simulation substeps in our dataset and 10,000 for the Elasticity one
with 100 iterations to optimize the velocity and 120 iterations to op-
timize the elasticity parameters. Across the board, we use the Adam
optimizer [KB15]. The learning rates for each parameter are shown in
Table 2 and are consistent across scenes. We use a machine with an
NVIDIA GeForce RTX 4070 Ti SUPER with 16GB of GPU memory for
Gaussian and inverse physics optimization. For training PAC-NeRF,
we use a single Tesla Vioo GPU with 32GB of memory offered by
the DelftBlue HPC cluster [DHP24] since PAC-NeRF’s training has
higher GPU memory requirements. We time the inference passes of
both techniques in the machine with the RTX 4070.

29

30

EXPERIMENTS

Parameter Learning Rate
Gaussian Centers 0.0005
Gaussian Colors 0.0025
Gaussian Rotations 0.001
Gaussian (logit) Opacity 0.05
Gaussian (log) Scales 0.001

u 0.001
(log) E 0.1

v 0.001

Table 2: Summary of learning rates used for our optimizations.

5.2 BASELINES

To the best of our knowledge the only other techniques that do joint
physical parameter estimation and novel view synthesis are VEO
[CTS*22] and PAC-NeRF [LQC*23] (see Table 1). However, VEO does
not openly provide an implementation, making it difficult to compare
against them in this work’s timeframe. For this reason, we evaluate
our method only against PAC-NeRF. Note that the authors of PAC-
NeRF compared their technique against VEO by re-implementing the
latter and found that their approach outperformed VEO significantly
in all aspects. Thus we assume that it is sufficient to compare only
with PAC-NeRF.

5.3 DATASETS

For our evaluation, we rely on two synthetic datasets. The first one is
the Elasticity dataset, created by the authors of PAC-NeRF using their
simulator. It consists of 10 scenes of the same object falling with dif-
ferent elasticity parameters and initial configurations. Although the
Elasticity dataset is sufficient to evaluate physical parameter recovery,
it relies only on one simple monochrome object. Thus, it is not well
suited for evaluating the performance of the appearance reconstruc-
tion. For this reason, we also create our own dataset of three scenes,
each with a different object and simulation parameters. We simulate
the objects using DiffSim and render the results in Blender [Com18].
To avoid any biases caused by the camera views used, we use the
same ones as in the Elasticity dataset. Overviews of the two datasets
are shown in Figure 16 and in Figure 17.

5.4 PHYSICAL PARAMETER ESTIMATION

-

Figure 16: Frame 5 from selected scenes of the Elasticity dataset. Every scene
consists of the same object with different initial configuration and
elasticity parameters. Here we show the same time moment from
the same camera view for 4 different scenes (out of the total 10).

B

Figure 17: Our dataset. We use the Torus and Ball scene to evaluate appear-
ance reconstruction of complex textures and the Cow scene to
evaluate dynamic and appearance reconstruction of more com-
plex geometry.

5.4 PHYSICAL PARAMETER ESTIMATION

We compare our method to PAC-NeRF [LQC*23] across physical pa-
rameter estimation performance. Both techniques recover the initial
velocity with high accuracy (= 1% average error), so we do not re-
port the detailed results, while Table 3 show the elasticity parameter
estimation results for each scene.

Across both datasets, the performance of our technique is often
better than that of PAC-NeRF. However, we note that each technique
performs better than the other on the dataset created with the same
physics simulator. This discrepancy implies that both techniques are
biased to perform better on data that matches their physical model.
Nonetheless, our method can produce accurate predictions for both
datasets, often outperforming PAC-NeRF in one or both parameter
estimates. This is not true of PAC-NeRF, which consistently exhibits
worse performance in our dataset.

Interestingly, we note that for both techniques, there are scenes for
which performance drops significantly in one or both parameter es-
timates. We examine possible explanations of this behaviour in Sec-
tion 5.9.

5.5 APPEARANCE RECONSTRUCTION

We now evaluate the performance of our method in appearance re-
construction. As a reminder, we perform 3D Gaussian optimization
only on the first frame and use the underlying reconstructed dynam-
ics to move, scale and rotate the Gaussians accordingly. We use the

31

32

EXPERIMENTS

logio(E) (1) v
PAC-NeRF Ours PAC-NeRF Ours
Elastic o 0.02 0.262 <0.001 0.038
Elastic 1 0.04 0.06 0.03 0.014
Elastic 2 0.008 0.185 0.069 0.1
Elastic 3 0.019 0.049 0.04 0.01
Elastic 4 0.002 0.213 0.017 0.067

FElastic 5 0.088 0.043 0.075 0.118
Elastic 6 0.031 0.167 <0.001 0.060

Elastic 7 0.149 0.028 0.077 0.140

Elastic 8 0.113 0.288 0.261 0.135
Elastic 9 0.031 0.195 0.055 0.130
Ball 0.154 0.03 0.2789 0.039
Cow 0.150 0.011 0.0581 0.026
Torus 1.036 0.062 0.0833 0.005
Mean 0.141 0.122 0.080 0.068
STD 0.274 0.098 0.088 0.050

Table 3: Parameter estimation results across all scenes. Our method is com-
petitive to PAC-NeRF.

PSNR, SSIM and LPIPS [ZIE*18] image metrics and evaluate the per-
formance of our method in the first frame (Table 4) and across the
entire sequence (Table 5) for both datasets. Figure 18 and Figure 19
show some example results.

Table 4 shows that our method consistently achieves better visual
quality than PAC-NeRF in static scene reconstruction. We demonstate
this qualitatively in Figure 18. However, in Table 5 we see that this is
not always the case when reconstructing the entire sequence. Specif-
ically, we observe that PAC-NeRF often achieves better scores in the
PSNR and SSIM metrics, even in scenes where our method has per-
formed better in the parameter recovery (e.g. in the Ball scene). Upon
inspecting the results, we find that this is because of mismatches in
the reconstructed object’s position and exact deformed shape. We
analyse this further in Section 5.8, where we show that these mis-
matches arise due to the quality of the reconstructed mesh. Last, ob-
serve that even for these cases, our LPIPS score is often better than
PAC-NeRF’s, indicating that the mismatches are less perceivable than
PAC-NeRF’s rendering artifacts.

As shown in Figure 18 and Figure 20, our method can reconstruct
complex textures and maintain their quality under deformation ac-

5.6 TIMINGS

.

¥

'S ‘ “
w
PSNR 41.86 PSNR 42.42

Elastic 4

Elastic 7

.|

PSNR 41.74 PSNR 42.46

G
L0,

~.
>
J

/.

PSNR 41.41

' m | wm | e

o

&)

A A X

PSNR 36.66 PSNR 39.24

"

2

ﬁ “
[PSNR 32.19 IS PSNR 39.05

Ground Truth PAC-NeRF Ours

Figure 18: Static reconstruction results. Our method can accurately recon-
struct uniform color objects and objects with high frequency tex-
tures.

curately. Simultaneously, we find that PAC-NeRF suffers from dis-
cretization artifacts due to the discrete voxel NeRF it uses. Our method
does not have this problem since it relies on Gaussian splatting. Note
that we do observe certain artifacts in our method, which we discuss
in Section 6.2.4.

5.6 TIMINGS

We now discuss the performance of our method in terms of speed.
Overall, our backwards pass requires 2.1 hours on average, with the
main bottleneck being the inverse physics optimization (~ 1.5 hours)
and the rest being required for the trajectories optimization. In the in-
ferences, our method required on average 3.3 seconds per scene, with
96% of that allocated to the physics simulation. We summarize our
method’s inference performance in Figure 21. Notice that our method
performs at near real-time rates and outperforms PAC-NeRF by 7x
on average. In addition, according to the timings reported in VEO
[CTS*22], our method is 700x faster than theirs. Last, our method

33

34

EXPERIMENTS

€ & & & @« ¢ ¢ @

%
$
K &
& ¢

PAC-NeRF Ground Truth

&

Oul

h

®

®x & &

®x & &®
&
®
.

&
.
®
.

th

PAC-NeRF Ground Tru

% % (e o o

3 3
2 € 2(e® © ©f* * *

PAC-NeRF Ground Truth

o oll>
QO Q™ & 5| e @ o v &

QO O OQ|™» & a%ile o o

Q O Q™ » a%|e o o
QO 0D 0|& & &je o o
%
A

;O
3

Figure 19: Dynamic reconstruction results. We demonstrate our method’s
ability to reconstruct observed dynamics based on the estimated
elasticity parameters.

5.6 TIMINGS 35

PSNR (1)

SSIM (1)

LPIPS (1)

PAC-NeRF Ours

PAC-NeRF Ours

PAC-NeRF Ours

Elastic o
Elastic 1
Elastic 2
Elastic 3
Elastic 4
Elastic 5
Elastic 6
Elastic 7
Elastic 8
Elastic 9
Ball
Cow

Torus

40.89
41.63
41.33
40.77
41.86
41.69
41.86
41.74
41.86
41.34
37.50
36.66
32.19

42.28
42.19
42.22
42.10
42.42
42.39
42.40
42.46
42.28
42.2

41.41
39-24
39-05

0.994
0.9944
0.994
0.9938
0.9943
0.9941
0.9943
0.9944
0.9945
0.9941
0.9931
0.9904
0.9754

0.9945
0.9945
0.9944
0.9946
0.9946
0.9945
0.9945
0.9945
0.9946
0.9945
0.9967
0.9934
0.9964

0.0053
0.0046
0.0056
0.006
0.0051
0.0052
0.0051
0.0051
0.0048
0.0051
0.0057
0.0031
0.0082

0.004
0.0035
0.0042
0.0043
0.0039
0.0041
0.0039
0.0039
0.0038
0.0038
0.0039
0.0018

0.0056

Table 4: Static appearance reconstruction results. Our method is consistently
better than PAC-NeRF on static reconstruction.

Frame 0

Frame 5

(S

Ground Truth

Ours

PAC-NeRF

Figure 20: Qualititative evaluation on the Ball scene. Our method can recon-

struct complex textures and maintain their quality under object
deformation.

can be easily adjusted to use a faster physics engine if one becomes
available, potentially reducing simulation times significantly.

Note that we observe differences in the simulation time of the
same amount of frames. The cause for this is, first, the differences
in the number of vertices and tetrahedra on the reconstructed meshes
across different scenes and, second, the fact a different number of sim-
ulation substeps is required per scene. This is a consequence of the

36

EXPERIMENTS

PSNR (1)

SSIM (1)

LPIPS (1)

PAC-NeRF Ours

PAC-NeRF Ours

PAC-NeRF Ours

Elastic o 34.96 28.29 0.9862 0.9728 0.0111 0.0191
Elastic 1 35.11 32.59 0.9862 0.9804 0.0106 0.0121
Elastic 2 35.99 34.46 0.9888 0.9851 0.0086 0.0085
Elastic 3 33.80 24.47 0.983 0.9617 0.014 0.0424
Elastic 4 34-39 34.70 0.9849 0.9859 0.0125 0.0089
Elastic 5 35.82 33.50 0.9878 0.9829 0.0108 0.0111
Elastic 6 34.91 35.50 0.9855 0.9867 0.0118 0.008
Elastic 7 33.58 33.72 0.9825 0.9826 0.0137 0.0111
Elastic 8 34.44 31.29 0.9841 0.9764 0.0125 0.0218
Elastic 9 34.10 34.07 0.9826 0.9829 0.0137 0.0105
Ball 33.15 30.55 0.9872 0.9822 0.0057 0.0039
Cow 32.44 32.42 0.9808 0.9797 0.0076 0.0073
Torus 25.13 25.17 0.9558 0.9564 0.0219 0.0156

Table 5: Dynamic appearance reconstruction results. Our method is often
better than PAC-NeRF. In Section 5.8, we demonstrate that these er-
rors arise due to a mismatch in dynamics and not because of visual
quality.

Neo-Hookean FEM model we use, in which the mesh and the exact
parameters used affect the number of simulation substeps required
for the symplectic Euler integration to remain stable.

5.7 PIPELINE STAGES ABLATION FOR PHYSICAL PARAMETER RE-
COVERY

We now ablate the different parts of our pipeline. To do this, we per-
form three experiments. First, we replace the extracted Gaussian tra-
jectories with the ground truth vertex positions that generated the
dataset. Second, we again use the Gaussian trajectories but replace
the reconstructed mesh with the ground truth one. Last, we use both
the ground truth mesh and trajectories to get a baseline on the phys-
ical parameter estimation. We conduct these experiment only on our
dataset, since it is the only one for which we have access to the ground
truths. The results of our experiments are shown in Table 6 and Fig-
ure 22.

Across our ablations and the results of Section 5.4, we see no signif-
icant difference in parameter performance and find that no version
is universally better. Interestingly, we observe that in certain cases
using the ground truth trajectories or mesh does not lead to better re-

58 MESH IMPACT ON DYNAMICS

EPS ()

Ours PAC-NeRF

Figure 21: Perfomance in FPS of our method and PAC-NeRF. On average,
our method is 7x faster than PAC-NeRF, although it displays
variability in the timings due to different mesh sizes and required
simulation substeps per scene.

sults. We therefore reason that the trajectories extracted and the mesh
reconstruction are not the main causes of errors in the parameter es-
timation. We further explore this idea Section 5.9.

58 MESH IMPACT ON DYNAMICS

In Section 5.5, we showed examples of scenes where our method out-
performed PAC-NeRF in parameter estimation but was still unable to
reproduce the exact observed deformation. We now demonstrate that
the root of this problem is the reconstructed mesh. For this purpose,

logio(B) (}) v ()

Full Method 0.0346 0.0239
GT Mesh 0.2208 0.0020
GT Traj. 0.6755 0.0090

GT Mesh and Traj. 0.3248 0.0413

Table 6: We ablate our method using the ground truth (GT) mesh and GT tra-
jectories to evaluate the impact of each pipeline stage to the physical
parameter estimation. We find no configuration that is universally
better. Results are averaged across all scenes of our dataset.

37

38

EXPERIMENTS

GT Trajectories

Figure 22: Example results for the ablation configurations tested. Although
minor differences exist, we find that they are not immediately
noticable.

we simulate the Ball scene using the exact ground truth physical pa-
rameters with the reconstructed mesh and render the deformation
like before. Additionally, we use the ground truth mesh and simulate
it with the recovered parameters. The results can be seen in Figure 23.
We see that in the case of our method, there is a shape mismatch
when using the reconstructed mesh, even though we have used the
correct parameters for the simulation. We discuss this issue more and
propose potential solutions in Section 6.2.6.

Figure 23: Mesh’s impact to reconstructed dynamics. Across all images the
orange border represents the ground truth shape and position.
Observe that the reconstructed mesh, simulated with the correct
parameters ("Rec. Mesh - GT Param."), has a bigger mismatch
with the ground truth shape than the ground truth mesh simu-
lated with the recovered parameters ("GT Mesh - Rec. Param.").

Last, we emphasize that although the mesh impacts the simulated
dynamics, the ablation in Section 5.7 showed that it does not signifi-
cantly affect the estimation of the physical parameter values.

5.0 UNDERSTANDING THE OPTIMIZATION LANDSCAPE

In Section 5.4, we observed outliers in the performance of the phys-
ical parameter estimation. Moreover, in Section 5.7, we showed that
the errors in parameter estimation persist when we remove any noise
incurred by the extracted Gaussian trajectories and mesh reconstruc-
tion. We now explore and justify these observations through experi-
ments that map our method’s optimization landscape. To do so, we
perform a grid search over the parameter space and plot the result-
ing loss landscape. We evaluate only the differentiable physics engine
here, so we use the ground truth mesh and the ground truth deform-
ing vertices as supervision. We demonstrate the results for the Ball

5.0 UNDERSTANDING THE OPTIMIZATION LANDSCAPE

scene in Figure 24, but the observed behaviours were similar to those
in the other scenes of our dataset.

Interestingly, the first column of Figure 24 demonstrates that there
is no single unique minimum but rather a region over p and A* for
which the loss function has low values. This explains why, even in
the presence of errors in the value of the elasticity parameters, the ob-
served dynamics are still matched. This implies that the problem is
under-constrained for the given training sequences. Or equivalently,
the correct values of the elasticity parameters are ambiguous from
the given training sequence. To further test this, we increase the num-
ber of frames used for training. The results are shown in the second
and third parts of Figure 24. Observe that adding frames makes the
optimization landscape less smooth and steeper, meaning that gradi-
ent descent optimization will more quickly be guided towards low
loss value regions. Simultaneously, as more timesteps are used for
supervision a unique minimum seems to arise. We conclude that ob-
serving more interactions is crucial for recovering the correct values
of the elasticity parameters.

15 Supervision Timesteps 25 Supervision Timesteps 35 Supervision Timesteps

1.00
0.75
0.50
0.25

6

5
D 0.8
ST RS
“M0y " 5 A

3

4 4
‘fuu«, 5 “ (109 5

15 Supervision Timesteps - Top View i 35 Supervision Timesteps - Top View

A(10%
10987654321

0.2

m
<
n
©
~
@
B
2

12 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 12 3 4 5 6 7 8 9 10
1 (10%) u(10%) 1 (10%)

Figure 24: The optimization landscapes of the Ball scene for different
amount of supervision timesteps. The top row shows the opti-
mization landscapes in 3D while the bottom row demonstrates a
2D view of them from the top. Notice that as more timesteps are
used for supervision, the landscape changes to have a single well
defined minimum.

To explore this phenomenon further, we construct a scenario where
the ambiguity about the parameter values should be minimal using
the setup shown in Figure 25. We reason that ambiguity in this setup
will be minimal because it directly corresponds with the definition of
the elasticity parameters. We let an elastic beam hang and apply an
initial velocity to the vertices of its bottom.

1 As areminder p and A are related to E and v (see Section 3.2.1). We use @ and A here
since DiffSim is directly parameterized with those.

39

40

EXPERIMENTS

t=0 t=5 t=10 l t=15 t=20 t=25

Figure 25: The Beam setup and resulting sequence. We let an elastic beam
hang and set it in motion by applying some initial velocity to its
bottom.

Like before, we plot the optimization landscapes using different
numbers of frames for supervision. Figure 26 demonstrates the re-
sults. In this case, we observe similar behaviour to before, only now
the difference is less pronounced between supervising with 25 and 35
frames. These observations imply that depending on the interactions
that are being reconstructed, a different amount of training data is
required for good results.

15 Supervision Timesteps 25 Supervision Timesteps 35 Supervision Timesteps

20
15 40 40
10 20 20 3
5
3 3 3
2 2 40
0 » 0 o 0 ™
1 1S 1 1 1 18

S
> 2 o 2 0o
“ (204 3 “ (204 3

=

2
“(105 3 0

15 Supervision Timesteps - Top View 25 Supervision Timesteps - Top View 35 Supervision Timesteps - Top View

12 3 4 5 6 7 8 9 10 12 3 4 5 6 7 8 9 10 12 3 4 5 6 7 8 9 10
u(10%) 1 (10% 1 (10%)

Loss (1073)

A(10%
10987654321
A(10%
10987654321

-
<
n
©
~
Y
e
o
a

Figure 26: The optimization landscapes of the Beam scene for different
amount of supervision timesteps. The top row shows the opti-
mization landscapes in 3D while the bottom row demonstrates a
2D view of them from the top. Notice that as more timesteps are
used for supervision, the landscape changes to have a single well
defined minimum.

Overall, the above analysis indicates that the errors in physical pa-
rameter estimation reported in Section 5.4 can be attributed to the
training set’s ambiguity and not on the method.

5.10 IMPORTANCE OF MEAN VALUE COORDINATES

We now evaluate our choice of using Mean Value Coordinates (MVC)
for controlling the Gaussians’ positions in Section 4.6. There, we men-
tioned that a popular alternative is using barycentric coordinates for
the same goal. In Figure 27, we demonstrate why barycentric coordi-
nates are problematic in our case.

5.10 IMPORTANCE OF MEAN VALUE COORDINATES

Barycentric

B w
had_4

Frame 5 Frame 8 Frame 9

Mean Value

’[]

Figure 27: Comparison between using barycentric (top) and mean value
(bottom) coordinates to drive the kernels’ positions. In contrast
to MVC, barycentric coordinates can lead to kernels moving away
from the object.

In the case of barycentric coordinates, some kernels move away
from the object when it undergoes extreme deformation. This hap-
pens because the mesh extracted with the Poisson reconstruction is
not guaranteed to enclose all kernels. These kernels will then have
negative barycentric coordinates, meaning that if the tetrahedron they
belong to expands, their distance from it grows, creating the observed
artifacts. This effect is demonstrated for the 2D case in Figure 28.

S
o
o

Figure 28: Cause of barycentric coordinate artifacts. In this configuration a
point d is defined in terms of the triangle vertices a, b, c. Then,
as ¢ deforms to ¢, the point is pushed away from the triangle.

In contrast, the behaviour of MVC for kernels outside of the cage is
smoother because the MVC coordinates depend on all of the surface
vertices. As a result, even if some parts of the mesh deform highly,
they have a limited impact on the kernels” positions, effectively re-
solving the artifacts observed in the case of barycentric coordinates.

41

42

EXPERIMENTS

5.11 IMPORTANCE OF KERNEL COVARIANCE ADJUSTING

In Section 4.6, we demonstrated how the deformation of the cage can
be used to adjust the scale and rotation (covariance) of the Gaussian
kernels. We now demonstrate the effectiveness of this approach in
Figure 29.

Without Cov. Adjusting

With Cov. Adjusting

Frame 8 Frame 10

Figure 29: Impact of adjusting the kernel covariances based on the under-
lying mesh deformation. The colored boxes indicate areas where
the difference is most pronounced.

In the top row of Figure 29, we disable adjusting the covariances
and only change the positions of the kernels using MVC. Here, ker-
nels can be observed as spiking artifacts that appear almost perpen-
dicular to the underlying surface. These artifacts arise because the
rotation of the kernels has been optimized only on the first frame,
but throughout the deformation, the relative rotation of the underly-
ing surface changes. In contrast, the bottom row of Figure 29 shows
that this issue is significantly reduced when we adjust the kernels’
covariance matrix based on the cage’s deformation.

DISCUSSION AND CONCLUSION

We now discuss the results obtained in Chapter 5 and derive conclu-
sions about our work. We further give recommendations for future
work.

6.1 RESULTS
We summarise the results presented in Chapter 5.

PHYSICAL PARAMETER ESTIMATION. Our method can estimate
physical parameters with precision competitive to the state-of-the-art.
However, we find discrepancies in the performance of the tested meth-
ods across different datasets and thus believe their generalizability to
real-world data should be studied further.

APPEARANCE RECONSTRUCTION. We find that our method suc-
cessfully reconstructs object appearance, even in cases of objects with
complicated textures.

TIMINGS. Our method can produce novel views and interactions
at near real-time rates (=~ 6 FPS on average). This is a 7x increase in
the speed of the primary competing method.

6.2 LIMITATIONS AND FUTURE WORK

We now underline the limitations of our method and indicate direc-
tions for future research to address them.

6.2.1 Setup Assumptions

Our method assumes non-linear isotropic and homogeneous materi-
als. As a result, it cannot reconstruct objects whose material proper-
ties change across their surface. A naive solution to this would be to
optimize elasticity parameters per vertex of the mesh; however, some
early experiments we conducted indicated that this makes the opti-
mization process unstable because the recovered materials can vary
between neighbouring vertices. Therefore, we suggest exploring reg-
ularization methods to constrain the variability of the material across
the surface to the minimum required.

Moreover, our method assumes that multi-view video is available,
which can often be challenging to acquire. Exploring the applicability

43

44

DISCUSSION AND CONCLUSION

of monocular reconstruction methods [TKB*23] can provide ways to
remove this requirement.

Additionally, our method requires object masks to be available for
every frame in the input. Although, high quality masks can be gen-
erated automatically [LRS*21; KMR*23], our method can potentially
be adapted to work without them by performing dynamic Gaussian
reconstruction for the entire scene while predicting which Gaussians
should move.

6.2.2 Timings

Although our method’s inference is faster than competing methods,
it is still not interactive due to the physics engine’s speed. However,
the modularity of our approach allows for the physics engine to be re-
placed by newer and faster alternatives, so advancements in physical
simulation methods can be easily incorporated into our pipeline.

6.2.3 Two-Stage Reconstruction Pipeline

Our method relies on a two-stage pipeline for parameter recovery
and reconstruction. This approach leads to the problems outlined in
Section 6.2.6 since it is impossible to determine whether the recon-
structed mesh has the required quality and resolution without incor-
porating the observed deformations in the mesh creation. However,
note that this approach increases the robustness of our optimization,
as optimizing both dynamics and topology simultaneously is difficult
due to the many degrees of freedom involved. Furthermore, utilizing
different stages makes our method modular, meaning that individ-
ual components can be replaced with better alternatives in the future.
For instance, we have relied on traditional geometry processing tech-
niques for mesh reconstruction, which could be replaced by recent
alternatives targeted at mesh reconstruction from Gaussian splatting
kernels [GL23].

6.2.4 Static Appearance Reconstruction and Deformation Transfer

We observe three types of limitations in our appearance reconstruc-
tion. First, since our method optimizes appearance only for the first
frame, areas of the object that become visible later are poorly recon-
structed. Moreover, because of the deformation transfer, the relative
order of the Gaussian kernels with regard to a viewpoint can change
during the dynamic sequence, causing small colour changes to ap-
pear. Last, even though we rotate and scale the Gaussians based on
the underlying deforming mesh, we see that sometimes small gaps
between kernels can appear on the edges of objects. We demonstate
the above types of artifacts in Figure 30.

6.2 LIMITATIONS AND FUTURE WORK

Frame 0 Frame 14

(a) Unseen area artifacts.

Lodl ™

Frame 0 Frame 10 Inset

- i

(b) Relative order change artifacts.

(c) Kernel gap artifacts.

Figure 30: The different types of rendering artifacts produced by our
method. We discuss potential solutions in this section.

All of the above limitations result from our method relying only on
the first frame for appearance optimization. Therefore, a potential so-
lution would be to use an extra pass over the multi-view video train-
ing sequence to fine-tune the deformation transfer. This fine tuning
can include learning weights that associate each kernel to a tetrahe-
dron, instead of relying solely on MVC, and further optimizing the
kernels’ colors based on the entire sequence.

6.2.5 Ambiguity

Although not directly an issue with our method, we observe that
the training set significantly impacts the optimization landscape and,
therefore, the physical parameter recovery. In Section 5.9, we demon-
strated that the optimization landscape varies between scenes and
provided supervision and specifically showed that for the datasets
used, it does not exhibit a unique minimum, implying that the in-
stances of physical parameter estimation problem we deal with are
under-constrained. Since the analysis in Section 5.7 did not find any
other significant source of error in our method, this ambiguity likely
is the primary cause of errors in the physical parameter estimation.

45

46

DISCUSSION AND CONCLUSION

The simplest solution to this is increasing the amount of training data
used, while it is also interesting to investigate potential regulariza-
tion approaches for the recovered parameter values. Furthermore, it
is worth conducting more experiments to understand better how each
observed deformation state affects the optimization landscape and at-
tempt to quantify the uncertainty of the parameter values. The latter
part has been recently done for the analogous problem in novel view
synthesis [GRS*24], but to the best of our knowledge, it has yet to be
explored in the inverse physics context. By quantifying the ambigu-
ity, we reason that it will be possible to develop techniques to guide
the data capturing process of real objects, making methods like ours
more robust.

6.2.6 Impact of Reconstructed Mesh

As shown in Section 5.8, the quality of the reconstructed mesh may
lead to dynamics different than those observed, even with the correct
physical parameters. This issue is fundamental to using FEM-based
simulations and, in principle, could be reduced by increasing the res-
olution of the mesh. Unfortunately, increasing the mesh’s resolution
imposes a significant increase in the GPU memory required to per-
form the inverse physics optimization. Last, as noted in Section 5.8,
the mesh impacts the simulated dynamics but does not significantly
affect the estimation of the physical parameter values.

One potential solution is adapting our technique to work with a
meshless simulator, like the one used in PAC-NeRF. For this purpose,
instead of reconstructing the mesh, particles can be sampled from the
density field defined by the Gaussian kernels. In addition, this change
would require adjusting the deformation transfer method so that the
simulated particles can be used to guide the Gaussians.

A different solution to the limitations imposed by FEM is to inves-
tigate the inclusion of implicit approaches for learning dynamics that
can predict corrective vectors for the mesh’s vertices or directly dy-
namically remesh when needed (as done by Pfaff and colleagues in
[PESGB20]).

Last, we emphasize that our method allows for the mesh recon-
struction step to be skipped if an alternative mesh can be provided.
This can be beneficial in cases where a high quality 3D model of the
object already exists or can be acquired through different means.

6.2.7 Biases and Lack of Real Datasets

In Section 5.4, we observed that our method and PAC-NeRF show-
cased better parameter estimation performance on data generated
with their simulation. From this, we concluded that both techniques
are biased in performing better on data that matches their physical

6.3 CONCLUSIONS

model. Experiments should be conducted with real data to address
this and better understand our method’s generalizability. Such an
evaluation is currently challenging due to the lack of high-quality
real datasets in this space. We reason these datasets do not exist be-
cause it is difficult to determine accurate elasticity parameters exper-
imentally. However, we stress that effort should be put into creating
such datasets since they offer the only way to understand the real-
world generalizability of the physical models assumed by methods
like ours.

6.3 CONCLUSIONS

We have presented a novel framework for joint appearance recon-
struction and physical parameter estimation of elastic objects. Our
method works on multi-view video input by utilizing dynamic 3D
Gaussian splatting and differentiable Neo-Hookean simulation. We
have demonstrated the ability of our method to estimate elasticity
parameter values at the level of current state-of-the-art approaches
while providing better visual quality and faster inference times. Our
method represents a significant step forward in elastic object recon-
struction, paving the way for accessible, realistic digital asset creation
and we hope that it will inspire future research in this field.

47

BIBLIOGRAPHY

[BMT*21] BARRON, JONATHAN T, MILDENHALL, BEN, TANCIK, MATTHEW, HEDMAN, PETER, MARTIN-
BruALLA, RICARDO, and SRINIVASAN, PRATUL P. “Mip-nerf: A multiscale representation
for anti-aliasing neural radiance fields.” Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision. 2021, 5855-5864.

[BMV*22] BARRON, JONATHAN T, MILDENHALL, BEN, VERBIN, DOR, SRINTIVASAN, PRATUL P, and
HEDMAN, PETER. “Mip-nerf 360: Unbounded anti-aliased neural radiance fields.” Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022, 5470—

5479-

[BKY*22a] BERGMAN, ALEXANDER W., KELLNHOFER, PETR, YIFAN, WANG, CHAN, Eric R., LINDELL,
Davip B., and WETzsTEIN, GORDON. “Generative Neural Articulated Radiance Fields.”
NeurIPS. 2022.

[BKY*22b] BERGMAN, ALEXANDER, KELLNHOFER, PETR, YIFAN, WANG, CHAN, ERrIC, LINDELL, DAVID,
and WETZSTEIN, GORDON. “Generative neural articulated radiance fields.” Advances in
Neural Information Processing Systems 35 (2022), 19900-19916.

[BML*23] Bouaziz, SOFIEN, MARTIN, SEBASTIAN, L1u, TianTIaN, Kavan, Lapistav, and Paury,
MARK. “Projective dynamics: Fusing constraint projections for fast simulation.” Seminal
Graphics Papers: Pushing the Boundaries, Volume 2. 2023, 787-797.

[CTS*22] CHEN, Hs1ao-Yu, TRETSCHK, EDITH, STUYCK, TUUR, KADLECEK, PETR, KAVAN, LADISLAV,
Vouca, ETIENNE, and LAssNER, CHRISTOPH. “Virtual elastic objects.” Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022, 15827-15837.

[CZB23] CuEN, HuaNYU, ZHAO, DANYONG, and BARBIC, JERNE]. “Capturing Animation-Ready
Isotropic Materials Using Systematic Poking.” ACM Trans. Graph. 42.6 (2023). ISSN: 0730-
0301. DOIL: 10.1145/3618406. URL: https://doi.org/10.1145/3618406

[CCC*08] Cignoni, PAorLo, CALLIERI, MARCO, CORSINI, MASSIMILIANO, DELLEPIANE, MATTEO,
GaNoveLLl, Fasro, and RanzucLia, Guipo. “MeshLab: an Open-Source Mesh Process-
ing Tool.” Eurographics Italian Chapter Conference. Ed. by SCARANO, VITTORIO, CHIARA,
Rosario Dg, and Erra, Uco. The Eurographics Association, 2008. 1SBN: 978-3-905673-68-
5. DOL: 10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136.

[Com18] CoMMUNITY, BLENDER ONLINE. Blender - a 3D modelling and rendering package. Blender
Foundation. Stichting Blender Foundation, Amsterdam, 2018. URL: http://www.blender.
org.

[CGH*20] CRANMER, MILES, GREYDANUS, SAM, HOYER, STEPHAN, BATTAGLIA, PETER, SPERGEL,
Davip, and Ho, SHIRLEY. “Lagrangian neural networks.” arXiv preprint arXiv:2003.04630
(2020).

[DHP24] DHPC, DELFT HiGH PERFORMANCE COMPUTING CENTRE. DelftBlue Supercomputer (Phase
2). https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2. 2024.

[DWY*23] Das, DEvikaLyaAN, WEWER, CHRISTOPHER, YUNUS, RAzA, ILG, EDDY, and LENSSEN, JAN
Eric. “Neural parametric gaussians for monocular non-rigid object reconstruction.” arXiv
preprint arXiv:2312.01196 (2023).

[DHD*19] DEGRAVE, JoNas, HERMANS, MicHIEL, DAMBRE, JoNI, et al. “A differentiable physics
engine for deep learning in robotics.” Frontiers in neurorobotics 13 (2019), 406386.

[DWM*21] Du, Tao, Wu, Kui, MA, PINGCHUAN, WAH, SEBASTIEN, SPIELBERG, ANDREW, Rus,
DanieLA, and Marusik, Wojciech. “Diffpd: Differentiable projective dynamics.” ACM
Transactions on Graphics (TOG) 41.2 (2021), 1-21.

[DMY*23] DuisTERHOF, BARDIENUS P, MANDI, ZHAO, YAO, YUNCHAO, L1U, J1Ao-WEI, SHOU, MIKE
ZHENG, SONG, SHURAN, and IcHNOWsKI, JEFFREY. “Md-splatting: Learning metric defor-
mation from 4d gaussians in highly deformable scenes.” arXiv preprint arXiv:2312.00583
(2023).

[FYW*22] FANG, JIEMIN, Y1, TAORAN, WANG, XINGGANG, XIE, LINGXI, ZHANG, XIAOPENG, LIU,
WENYU, NIESSNER, MATTHIAS, and TiaN, Q1. “Fast dynamic radiance fields with time-
aware neural voxels.” SIGGRAPH Asia 2022 Conference Papers. 2022, 1-9.

49

https://doi.org/10.1145/3618406
https://doi.org/10.1145/3618406
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
http://www.blender.org
http://www.blender.org
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2

50

BIBLIOGRAPHY

[FCC*24] Feng, Qryuan, Cao, GENGCHEN, CHEN, Haox1iaNG, Mu, TAI-J1ANG, MARTIN, RALPH R,
and Hu, SHI-MIN. “A New Split Algorithm for 3D Gaussian Splatting.” arXiv preprint
arXiv:2403.09143 (2024).

[FSL*23] FENG, YUTAO, SHANG, YINTONG, L1, XUAN, SHAO, T1ANJIA, JTANG, CHENFANFU, and YANG,
YIN. “PIE-NeRF: Physics-based Interactive Elastodynamics with NeRFE.” arXiv preprint
arXiv:2311.13099 (2023).

[FNPS16] FLYNN, JoHN, NEULANDER, IvAN, PHILBIN, JaMEs, and SNAVELY, NoAH. “Deepstereo:
Learning to predict new views from the world’s imagery.” Proceedings of the IEEE confer-
ence on computer vision and pattern recognition. 2016, 5515-5524.

[GSKH21] Gao, CHEN, SARAF, AyusH, KorF, JoHANNES, and HUANG, J1a-BIN. “Dynamic view
synthesis from dynamic monocular video.” Proceedings of the IEEE/CVF International Con-
ference on Computer Vision. 2021, 5712-5721.

[GYZ*24] Gao, LIN, YANG, JiE, ZHANG, Bo-Tao, SuN, J1a-Mu, Yuan, Yu-Jig, Fu, HoNnGBoO, and
Lar1, Yu-Kun. “Mesh-based Gaussian Splatting for Real-time Large-scale Deformation.”
arXiv preprint arXiv:2402.04796 (2024).

[GRS*24] Gout, Liry, READING, CODY, SELLAN, SILVIA, JACOBSON, ALEC, and TAGLIASACCHI, AN-
DREA. “Bayes’ Rays: Uncertainty Quantification in Neural Radiance Fields.” CVPR (2024).

[GGSC23] GORTLER, STEVEN J, GRZESZCZUK, RADEK, SZELISKI, RICHARD, and COHEN, MICHAEL F.
“The lumigraph.” Seminal Graphics Papers: Pushing the Boundaries, Volume 2. 2023, 453—464.

[GDY19] GREYDANUS, SAMUEL, DzaMBA, Misko, and YOSINSKI, JasoN. “Hamiltonian neural net-
works.” Advances in neural information processing systems 32 (2019).

[GL23] GufpoN, ANTOINE and LEPETIT, VINCENT. “Sugar: Surface-aligned gaussian splatting
for efficient 3d mesh reconstruction and high-quality mesh rendering.” arXiv preprint
arXiv:2311.12775 (2023).

[Han15] HANG, S1. “TetGen, a Delaunay-based quality tetrahedral mesh generator.” ACM Trans.
Math. Softw 41.2 (2015), 11.

[HPP*18] HEDMAN, PETER, PHILIP, JULIEN, PRICE, TRUE, FRAHM, JAN-MICHAEL, DRETTAKIS, GEORGE,
and Brostow, GABRIEL. “Deep blending for free-viewpoint image-based rendering.” ACM
Transactions on Graphics (ToG) 37.6 (2018), 1-15.

[HFG*18] Hu, YUANMING, FANG, Yu, GE, ZIHENG, QU, Z1YIN, ZHU, YIXIN, PRADHANA, ANDRE, and
JiaNG, CHENFANFU. “A moving least squares material point method with displacement
discontinuity and two-way rigid body coupling.” ACM Transactions on Graphics (TOG)
37.4 (2018), 1-14.

[HLS*19] Hu, YUANMING, L1U, JIANCHENG, SPIELBERG, ANDREW, TENENBAUM, JosHUA B, FREE-
MAN, WiLriam T, Wu, JiaJuN, Rus, DaNTELA, and MATUSIK, WOJCIECH. ”Chainqueen: A
real-time differentiable physical simulator for soft robotics.” 2019 International conference
on robotics and automation (ICRA). IEEE. 2019, 6265-6271.

[JKK*23] JamBon, CLEMENT, KErRBL, BERNHARD, KoPaNAS, GEORGIOS, D10LATZIS, STAVROS, LEIMKUH-
LER, THOMAS, and DRETTAKIS, GEORGE. “Nerfshop: Interactive editing of neural radiance
fields.” Proceedings of the ACM on Computer Graphics and Interactive Techniques 6.1 (2023).

[JBH19] JaQuES, MIGUEL, BURKE, MiCHAEL, and HOSPEDALES, TiMOTHY. “Physics-as-inverse-graphics:
Unsupervised physical parameter estimation from video.” arXiv preprint arXiv:1905.11169
(2019).

[JST*16] J1iaNG, CHENFANFU, SCHROEDER, CRATG, TERAN, JOSEPH, STOMAKHIN, ALEXEY, and SELLE,
ANDREW. “The material point method for simulating continuum materials.” Acm siggraph
2016 courses. 2016, 1-52.

[JYX*24] J1ang, YinG, Yu, CHANG, XIE, T1aNnyi, L1, XvaN, FEng, Yutao, WanG, Huamin, Li,
MincHEN, Lau, HENRY, Gao, FENG, YANG, YIN, et al. “VR-GS: A Physical Dynamics-
Aware Interactive Gaussian Splatting System in Virtual Reality.” arXiv preprint arXiv:2401.16663
(2024).

[JISW23] Ju, Tao, SCHAEFER, ScotT, and WARREN, JOE. “Mean value coordinates for closed trian-
gular meshes.” Seminal Graphics Papers: Pushing the Boundaries, Volume 2. 2023, 223-228.

[KH13] KazupAN, MicHAEL and Horpe, HUGUES. “Screened poisson surface reconstruction.”
ACM Transactions on Graphics (ToG) 32.3 (2013), 1-13.

BIBLIOGRAPHY

[KJJ*21] KELLNHOFER, PETR, JEBE, LARS C, JONES, ANDREW, SPICER, RYAN, PurL1, Kart, and WET-
zsTEIN, GORDON. “Neural lumigraph rendering.” Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2021, 4287-4297.

[KKLD23] KersL, BERNHARD, KoPANAS, GEORGIOS, LEIMKUHLER, THOMAS, and DRETTAKIS, GEORGE.
“3d gaussian splatting for real-time radiance field rendering.” ACM Transactions on Graph-
ics 42.4 (2023), 1-14.

[KE20] Kim, THEODORE and EBERLE, Davip. “Dynamic deformables: implementation and pro-
duction practicalities.” ACM SIGGRAPH 2020 Courses. 2020, 1-182.

[KB15] KinGMa, DIEDERIK and Ba, JiMmy. “Adam: A Method for Stochastic Optimization.” In-
ternational Conference on Learning Representations (ICLR). San Diega, CA, USA, 2015.

[KMR*23] KIRILLOV, ALEXANDER, MINTUN, ER1iC, RAVI, NIKHILA, MAO, HANZI, RoLLAND, CHLOE,
GUSTAFSON, LAURA, X140, TETE, WHITEHEAD, SPENCER, BERG, ALEXANDER C, Lo, WAN-
YEN, et al. “Segment anything.” Proceedings of the IEEE/CVF International Conference on
Computer Vision. 2023, 4015—4026.

[KLD23] KrATIMENOS, AGELOS, LEI, J1aHUI, and DaniiLipis, Kostas. “Dynmf: Neural motion
factorization for real-time dynamic view synthesis with 3d gaussian splatting.” arXiv
preprint arXiv:2312.00112 (2023).

[LQC*23] L1, XuaN, Qrao, Y1-LiNG, CHEN, PETER YICHEN, JATAVALLABHULA, KRISHNA MURTHY,
LiN, MING, J1aANG, CHENFANFU, and GAN, CHUANG. “Pac-nerf: Physics augmented contin-
uum neural radiance fields for geometry-agnostic system identification.” arXiv preprint
arXiv:2303.05512 (2023).

[LWT*18] Li, YuNzHU, WU, J1AJUN, TEDRAKE, RUss, TENENBAUM, JosHUA B, and TORRALBA, AN-
TONIO. “Learning particle dynamics for manipulating rigid bodies, deformable objects,
and fluids.” arXiv preprint arXiv:1810.01566 (2018).

[LNSW21] LI, ZHENGQI, NIKLAUS, SIMON, SNAVELY, NoAH, and WANG, OLIVER. “Neural scene
flow fields for space-time view synthesis of dynamic scenes.” Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2021, 6498-6508.

[LRS*21] LIN, SHANCHUAN, RYABTSEV, ANDREY, SENGUPTA, SOUMYADIP, CURLESS, BRIAN L, SEITZ,
STEVEN M, and KEMELMACHER-SHLIZERMAN, IRA. “Real-time high-resolution background
matting.” Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2021, 8762-8771.

[LMR*23] LOPER, MATTHEW, MAHMOOD, NAUREEN, ROMERO, JAVIER, PONs-MoLL, GERARD, and
3
Brack, MicHAEL . “SMPL: A skinned multi-person linear model.” Seminal Graphics Pa-
pers: Pushing the Boundaries, Volume 2. 2023, 851-866.

[LJP*21] Lu, Lu, JIN, PENGZHAN, PANG, GUOFEI, ZHANG, ZHONGQIANG, and KARNIADAKIS, GEORGE
EM. “Learning nonlinear operators via DeepONet based on the universal approximation
theorem of operators.” Nature machine intelligence 3.3 (2021), 218-229.

[LKLR24] LurteN, JoNaTHON, KOoPANAS, GEORGIOS, LEIBE, BAsTIAN, and RAMANAN, DEva. “Dy-
namic 3D Gaussians: Tracking by Persistent Dynamic View Synthesis.” 3DV. 2024.

[MMC16] MACKLIN, MILES, MULLER, MATTHIAS, and CHENTANEZ, NUTTAPONG. “XPBD: position-
based simulation of compliant constrained dynamics.” Proceedings of the gth International
Conference on Motion in Games. 2016, 49-54.

[MST*20] MILDENHALL, B, SRINTIVASAN, PP, TANCIK, M, BARRON, JT, RAMAMOORTHI, R, and NG,
R. “Nerf: Representing scenes as neural radiance fields for view synthesis.” European
conference on computer vision. 2020.

[MESK22] MULLER, THOMAS, EvANS, ALEX, ScHIED, CHRISTOPH, and KELLER, ALEXANDER. “In-
stant neural graphics primitives with a multiresolution hash encoding.” ACM transactions
on graphics (TOG) 41.4 (2022), 1-15.

[MSoo] MURRAY-SMITH, DJ. “The inverse simulation approach: a focused review of methods and
applications.” Mathematics and computers in simulation 53.4-6 (2000), 239-247.

[MMG*20] MuURTHY,] KRISHNA, MACKLIN, MILES, GOLEMO, FLORIAN, VOLETI, VIKRAM, PETRINT,
LinpA, WEIss, MARTIN, CONSIDINE, BREANDAN, PARENT-LEVESQUE, JEROME, XIE, KEVIN,
ErRLEBEN, KENNY, et al. “gradsim: Differentiable simulation for system identification and
visuomotor control.” International conference on learning representations. 2020.

52

BIBLIOGRAPHY

[NMK*06] NEALEN, ANDREW, MULLER, MATTHIAS, KEISER, RICHARD, BOXERMAN, EDDY, and CARL-
SON, MARrk. “Physically based deformable models in computer graphics.” Computer graph-
ics forum. Vol. 25. 4. Wiley Online Library. 2006, 809-836.

[PKK*24] ParanToNAKIs, PANAGIOTIS, KOPANAS, GEORGIOS, KERBL, BERNHARD, LANVIN, ALEXAN-
DRE, and DRETTAKIS, GEORGE. “Reducing the Memory Footprint of 3D Gaussian Splat-
ting.” Proceedings of the ACM on Computer Graphics and Interactive Techniques. Vol. 7. 1.
2024.

[PSB*21] PARK, KEUNHONG, SINHA, UTKARSH, BARRON, JONATHAN T, Bouaziz, SOFIEN, GOLDMAN,
DAN B, Serrz, STEVEN M, and MARTIN-BRUALLA, RicarRDO. “Nerfies: Deformable neural
radiance fields.” Proceedings of the IEEE/CVF International Conference on Computer Vision.
2021, 5865-5874.

[PSH*21] ParRk, KEUNHONG, SINHA, UTKARSH, HEDMAN, PETER, BARRON, JONATHAN T, Bouaziz,
SOFIEN, GOLDMAN, DAN B, MARTIN-BRUALLA, RiCARDO, and SEkrtz, STEVEN M. “Hyper-
NeRF: a higher-dimensional representation for topologically varying neural radiance
fields.” ACM Transactions on Graphics (TOG) 40.6 (2021), 1-12.

[PGC*17] Paszkg, ApaM, GROsS, SAM, CHINTALA, SOUMITH, CHANAN, GREGORY, YANG, EDWARD,
DEVITO, ZACHARY, LIN, ZEMING, DESMAISON, ALBAN, ANTIGA, Luca, and LERER, ADAM.
“Automatic differentiation in PyTorch.” (2017).

[PCG*19] Paviakos, GEORGIOS, CHOUTAS, VASILEIOS, GHORBANI, N1MA, BOLKART, TiMO, OSMAN,
AHMED AA, TzioNnas, DiMmiTRIOS, and BLACK, MICHAEL]. “Expressive body capture: 3d
hands, face, and body from a single image.” Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 2019, 10975-10985.

[PYL*22] PENG, YICONG, YAN, YicHAO, Liu, SHENGQI, CHENG, YUHAO, GUAN, SHANYAN, PAN,
BoweN, ZHAI, GUANGTAO, and YANG, XIAOKANG. “Cagenerf: Cage-based neural radiance
field for generalized 3d deformation and animation.” Advances in Neural Information Pro-
cessing Systems 35 (2022), 31402-31415.

[PFSGB20] Prarr, ToBiAs, FORTUNATO, MEIRE, SANCHEZ-GONZALEZ, ALVARO, and BATTAGLIA, PE-
TER. “Learning Mesh-Based Simulation with Graph Networks.” International Conference on
Learning Representations. 2020.

[PAG*23] PiLLONETTO, GIANLUIGI, ARAVKIN, ALEKSANDR, GEDON, DANIEL, LJUNG, LENNART, RIBEIRO,
ANTONIO H, and ScuHON, THOMAS B. “Deep networks for system identification: a survey.”
arXiv preprint arXiv:2301.12832 (2023).

[PRLH*22] PORTANERI, CEDRIC, ROUXEL-LABBE, MAEL, HEMMER, MICHAEL, COHEN-STEINER, DAVID,
and ALLIEZ, PIERRE. “Alpha wrapping with an offset.” ACM Transactions on Graphics
(TOG) 41.4 (2022), 1—22.

[PCPMMN21] PumaRrorA, ALBERT, CORONA, ENRIC, PONS-MoOLL, GERARD, and MORENO-NOGUER,
FraNncesc. “D-nerf: Neural radiance fields for dynamic scenes.” Proceedings of the IEEE/CVFE
Conference on Computer Vision and Pattern Recognition. 2021, 10318-10327.

RSP*24] RapL, LUKAS, STEINER, MICHAEL, PARGER, MATHIAS, WEINRAUCH, ALEXANDER, KERBL,
4
BERNHARD, and STEINBERGER, MARKUS. “StopThePop: Sorted Gaussian Splatting for View-
Consistent Real-time Rendering.” arXiv preprint arXiv:2402.00525 (2024).

[SGGP*20] SANCHEZ-GONZALEZ, ALVARO, GODWIN, JONATHAN, PFAFF, TOBIAS, YING, REX, LESKOVEC,
JUrg, and BATTAGLIA, PETER. “Learning to simulate complex physics with graph net-
works.” International conference on machine learning. PMLR. 2020, 8459-8468.

[SF16] SCHONBERGER, JOHANNES L and FRAHM, JAN-MICHAEL. “Structure-from-motion revisited.”
Proceedings of the IEEE conference on computer vision and pattern recognition. 2016, 4104—4113.

[SL19] ScHOUKENS, JoHAN and LjuNG, LENNART. “Nonlinear system identification: A user-oriented
road map.” IEEE Control Systems Magazine 39.6 (2019), 28-99.

[SCD*06] SkrTz, STEVEN M, CURLESS, BRIAN, DIEBEL, JAMES, SCHARSTEIN, DANIEL, and SZELISKI,
RicHARD. “A comparison and evaluation of multi-view stereo reconstruction algorithms.”
2006 IEEE computer society conference on computer vision and pattern recognition (CVPR 06).
Vol. 1. IEEE. 2006, 519-528.

[SLK*20] SENGUPTA, AGNIVA, LAGNEAU, ROMAIN, KRUPA, ALEXANDRE, MARCHAND, ERIC, and
MARCHAL, MAUD. “Simultaneous tracking and elasticity parameter estimation of deformable
objects.” 2020 ieee international conference on robotics and automation (icra). IEEE. 2020, 10038—
10044.

BIBLIOGRAPHY

[SGK18] SmitH, BREANNAN, GOEs, FERNANDO DE, and KiMm, THEODORE. “Stable neo-hookean
flesh simulation.” ACM Transactions on Graphics (TOG) 37.2 (2018), 1-15.

[SC23] StuYck, Tuur and CHEN, Hsiao-yu. “Diffxpbd: Differentiable position-based simulation
of compliant constraint dynamics.” Proceedings of the ACM on Computer Graphics and Inter-
active Techniques 6.3 (2023), 1-14.

[SPo4] SuMNER, RoBERT W and Porovi¢, Jovan. “Deformation transfer for triangle meshes.”
ACM Transactions on graphics (TOG) 23.3 (2004), 399—405.

[SSC22] Sun, CHENG, SUN, MIN, and CHEN, HWANN-TzoNG. “Direct voxel grid optimization:
Super-fast convergence for radiance fields reconstruction.” Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2022, 5459-5469.

[TPBF87] TErRzOPOULOS, DEMETRI, PLATT, JOHN, BARR, ALAN, and FLEISCHER, KURT. “Elastically
deformable models.” Proceedings of the 14th annual conference on Computer graphics and
interactive techniques. 1987, 205-214.

[TFT*20] TEwWARI, AYUsH, FR1ED, OHAD, THIES, JUSTUS, SITZMANN, VINCENT, LOMBARDI, STEPHEN,
SUNKAVALLI, KALYAN, MARTIN-BRUALLA, RICARDO, SIMON, TOMAS, SARAGIH, JASON, NIESSNER,
MATTHIAS, et al. “State of the art on neural rendering.” Computer Graphics Forum. Vol. 39.

2. Wiley Online Library. 2020, 701-727.

[TRJ*19] TotH, PETER, REZENDE, DANILO JIMENEZ, JAEGLE, ANDREW, RACANIERE, SEBASTIEN, BOTEV,
ALEKSANDAR, and HIGGINS, IRINA. “Hamiltonian generative networks.” arXiv preprint
arXiv:1909.13789 (2019).

[TTG*21] TRETSCHK, EDGAR, TEWARI, AYUSH, GOLYANIK, VLADISLAV, ZOLLHOFER, MICHAEL, LASS-
NER, CHRISTOPH, and THEOBALT, CHRISTIAN. “Non-rigid neural radiance fields: Recon-
struction and novel view synthesis of a dynamic scene from monocular video.” Proceed-
ings of the IEEE/CVF International Conference on Computer Vision. 2021, 12959—12970.

[TKB*23] TreTscHK, EDITH, KAIRANDA, NAavaMI, BR, MALLIKARJUN, DABRAL, R1sHABH, KORTYLEWSKI,
ApaM, EGGER, BERNHARD, HABERMANN, MARC, Fua, PascaL, THEOBALT, CHRISTIAN, and
GoOLYANIK, VLADISLAV. “State of the Art in Dense Monocular Non-Rigid 3D Reconstruc-
tion.” Computer Graphics Forum. Vol. 42. 2. Wiley Online Library. 2023, 485-520.

[UEK24] Uzoiras, Lukas, EiseMANN, ELMAR, and KELLNHOFER, PETR. “Template-free Articulated
Neural Point Clouds for Reposable View Synthesis.” Advances in Neural Information Pro-
cessing Systems 36 (2024).

[WBT*24] WAaczyNska, JoANNA, Borycki, PIOTR, TADEJA, SEAWOMIR, TABOR, JACEK, and SPUREK,
Przemystaw. “GaMeS: Mesh-Based Adapting and Modification of Gaussian Splatting.”
arXiv preprint arXiv:2402.01459 (2024).

[WWY*15] WaNG, BiN, Wu, LoNGHUA, YIN, KANGKANG, AscHER, Urt M, L1u, LiBIN, and HuaNg,
Hur. “Deformation capture and modeling of soft objects.” ACM Trans. Graph. 34.4 (2015), 94—
1.

[WELG21] WANG, CHAOYANG, ECKART, BEN, LUCEY, SIMON, and GALLo, Orazio. “Neural trajec-
tory fields for dynamic novel view synthesis.” arXiv preprint arXiv:2105.05994 (2021).

[WSND*23] WANG, Z1aN, SHEN, TIANCHANG, NIMIER-DAVID, MERLIN, SHARP, NicHOLAS, GAO,
JuN, KELLER, ALEXANDER, FIDLER, SANJA, MULLER, THOMAS, and Gojcic, ZAN. “Adaptive
shells for efficient neural radiance field rendering.” arXiv preprint arXiv:2311.10091 (2023).

[WJX*22] WILLARD, JARED, J1A, XTIAOWEI, XU, SHAOMING, STEINBACH, MICHAEL, and KUMAR,
VIriN. “Integrating scientific knowledge with machine learning for engineering and envi-
ronmental systems.” ACM Computing Surveys 55.4 (2022), 1-37.

[WYF*23] Wu, GuanjuN, Y1, TAORAN, FANG, JIEMIN, X1E, LINGXI, ZHANG, XIAOPENG, WEI, WEI,
Liu, WENYy, T1aN, Q1, and WANG, XINGGANG. “4d gaussian splatting for real-time dy-
namic scene rendering.” arXiv preprint arXiv:2310.08528 (2023).

[XHKK21] X1an, WENQI, HuaNg, Jia-BiN, KorF, JoHANNES, and KiMm, CHANGIL. “Space-time
neural irradiance fields for free-viewpoint video.” Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2021, 9421-9431.

[XZQ*23] Xig, TianY1, ZOoNG, ZESHUN, Qru, YuxiN, L1, XuaN, FENG, YuTAO, YANG, YIN, and JIANG,
CHENFANFU. “Physgaussian: Physics-integrated 3d gaussians for generative dynamics.”
arXiv preprint arXiv:2311.12198 (2023).

54

BIBLIOGRAPHY

[XWZ*19] Xu, ZrENJIA, WU, J1AJUN, ZENG, ANDY, TENENBAUM, JOSHUA B, and SONG, SHURAN.
“Densephysnet: Learning dense physical object representations via multi-step dynamic
interactions.” arXiv preprint arXiv:1906.03853 (2019).

[YYPZ23] Yang, Zeyu, YanG, HONGYE, PAN, ZijiE, and ZHANG, L1. “Real-time Photorealistic
Dynamic Scene Representation and Rendering with 4D Gaussian Splatting.” The Twelfth
International Conference on Learning Representations. 2023.

[YHL*22] Yao, CHUN-HAN, HUNG, WEI-CHIH, L1, YUANZHEN, RUBINSTEIN, MICHAEL, YANG, MING-
Hsuan, and JamPANI, VARUN. “Lassie: Learning articulated shapes from sparse image
ensemble via 3d part discovery.” Advances in Neural Information Processing Systems 35
(2022), 15296-15308.

[YSL*22] Yuan, YU-JiE, SUN, YANG-T1AN, LA, YU-KUN, MA, YUEWEN, J1A, RONGFEI, and GAo, LIN.
“Nerf-editing: geometry editing of neural radiance fields.” Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2022, 18353-18364.

[ZIE*18] ZHANG, RICHARD, IsoLA, PHILLIP, EFROS, ALEXEI A, SHECHTMAN, ELI, and WANG, OLIVER.
“The Unreasonable Effectiveness of Deep Features as a Perceptual Metric.” CVPR. 2018.

[ZYWL24] ZnonNgG, LicHENG, Yu, HONG-XING, WUy, J1AJUN, and L1, YunzHU. “Reconstruction and
Simulation of Elastic Objects with Spring-Mass 3D Gaussians.” arXiv preprint arXiv:2403.09434
(2024).

[ZTS*16] Znuou, TINGHUI, TULSIANI, SHUBHAM, SUN, WEILUN, MALIK, JITENDRA, and EFROS, ALEXET
A. “View synthesis by appearance flow.” Computer Vision—-ECCV 2016: 14th European Con-
ference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part IV 14. Springer.
2016, 286—301.

[ZBS*23] ZieLonka, WojctEcH, BAGauTDINOV, TIMUR, SAITO, SHUNSUKE, ZOLLHOFER, MICHAEL,
THiEs, JusTUs, and ROMERO, JAVIER. “Drivable 3d gaussian avatars.” arXiv preprint arXiv:2311.08581
(2023).

[ZPVBGo2] ZWICKER, MATTHIAS, PFISTER, HANSPETER, VAN BAAR, JEROEN, and GROSS, MARKUS.
“EWA splatting.” IEEE Transactions on Visualization and Computer Graphics 8.3 (2002), 223~
238.

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Summary Of Contributions
	1.2 Outline

	2 Related Works
	2.1 Novel View Synthesis
	2.1.1 Dynamic Novel View Synthesis

	2.2 Physical Characteristics Estimation
	2.2.1 System Representation
	2.2.2 Supervision

	2.3 Joint Appearance and Physics Reconstruction

	3 Background
	3.1 3D Gaussian Splatting for Novel View Synthesis
	3.2 Modelling and Simulating Elastic Objects
	3.2.1 Modelling Elastic Objects
	3.2.2 Simulating Elastic Objects

	4 Method
	4.1 Setup and Assumptions
	4.2 Overview
	4.3 Dynamic Gaussian Optimization
	4.4 Mesh Extraction
	4.5 Physical Parameter Recovery
	4.6 Generating Novel Views and Dynamics

	5 Experiments
	5.1 Implementation Details
	5.2 Baselines
	5.3 Datasets
	5.4 Physical Parameter Estimation
	5.5 Appearance Reconstruction
	5.6 Timings
	5.7 Pipeline Stages Ablation for Physical Parameter Recovery
	5.8 Mesh Impact on Dynamics
	5.9 Understanding the Optimization Landscape
	5.10 Importance of Mean Value Coordinates
	5.11 Importance of Kernel Covariance Adjusting

	6 Discussion And Conclusion
	6.1 Results
	6.2 Limitations and Future Work
	6.2.1 Setup Assumptions
	6.2.2 Timings
	6.2.3 Two-Stage Reconstruction Pipeline
	6.2.4 Static Appearance Reconstruction and Deformation Transfer
	6.2.5 Ambiguity
	6.2.6 Impact of Reconstructed Mesh
	6.2.7 Biases and Lack of Real Datasets

	6.3 Conclusions

	Bibliography

