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Abstract
Alzheimer’s Disease is a complex
neurodegenerative disorder marked by the
abnormal build-up of proteins in the brain. As no
cure currently exists, understanding the disease’s
cellular mechanisms is essential for advancing
diagnostics and treatment. To this end, single-cell
RNA sequencing (scRNA-seq) is a method that
offers detailed information about the gene activity
of individual cells but lacks their spatial context.
Conversely, spatial transcriptomics technology
preserves the localization of the cells but provides
more limited transcriptomic information. To
resolve this, we provide a model that predicts
a cell’s distance to pathology from single-cell
RNA-sequencing data. Additionally, we identify
APOE, LYVE1, and SLC17A7 as genes potentially
associated with AD-related microglial clustering
around plaques.

1 Introduction
As individuals age, the risk of neurodegenerative diseases
increases, posing a serious challenge to today’s society [1,
2]. Among these conditions, Alzheimer’s disease (AD) is
emerging as one of the most lethal and impactful disorders,
affecting one in ten individuals aged 65 and older [2, 3].
Characterized by the gradual loss of neurons in the brain
and the accumulation of amyloid plaques1 and tau tangles2,
AD leads to cognitive decline and impairments in daily life
and social interactions [1]. Despite recent scientific advances
on the inner mechanisms of AD, no disease-modifying
treatments3 are currently available [4], thus further research
is required on the cellular level.

To provide more insight into biological systems, single-cell
technologies offer high-resolution analysis of individual cells
[5]. However, performing single-cell RNA sequencing4

(scRNA-seq) requires isolating individual cells through tissue
disassociation [6]. This process destroys the information
on the cells’ location within the tissue and their proximities
to each other, which limits our understanding of cell-cell
interactions [5, 7]. In contrast, spatial transcriptomics5

technologies, which offer less detailed information about
gene activity per individual cell, preserve the localization
of cells within the tissue, offering insights into the complex
interplay between cell types and their roles in AD pathology
[1, 5]. Thus, the integration of single-cell and spatial
transcriptomics could provide a more comprehensive view of
the inner workings of the disease.

In particular, the distance of a cell to pathology is a
biologically meaningful factor, as it may reflect a cell’s level
of exposure to the disease processes. The distance metric
could help the analysis of how molecular changes in cells,
e.g. inflammation, vary with proximity to pathology, offering
insights into disease progression and potential treatment
strategies.

While the integration of spatial transcriptomics and
scRNA-seq data has been extensively studied [1, 5, 7–10],

research focuses on broad-level cell mapping [1, 7] or
gene imputation6 [5, 9, 10], rather than on specific spatial
features relevant to disease pathology. A recent study
[1], for example, generated a spatial map of the prefrontal
cortex by integrating single-cell and spatial data. While
this provides a valuable insight into cell-type differences
between healthy and diseased individuals, it does not address
spatial proximity to pathology. Moreover, the study did
not use single-cell resolution spatial transcriptomic data, and
thus lacked precise location of individual cells. Another
approach to localizing scRNA-seq data is Seurat’s spatial
reconstruction algorithm [7], which infers spatial positions
of cells based on gene expression7 patterns. However, it
does not incorporate annotated histopathological8 features
which is of interest to our study. On the other hand, a
study [11] into the spatial organization within the amyloid
plaque niche9 analyzes cells’ distance to plaque but does
not integrate spatial transcriptomics with scRNA-seq data or
attempt to build predictive models. Thus, there is a need
to closely examine and predict distance to pathology for
single-cell data, particularly for applications in AD research.

Our work aims to help fill this gap by integrating
spatial histopathological context into scRNA-seq analysis by
developing a model that predicts individual cells’ distance
to nearest plaque. We chose to focus specifically on
microglia cells10, as their spatial behavior is closely tied to the
progression of AD [12] and they actively respond to amyloid
plaque formations, clustering around these pathological
structures [12]. This spatial behavior makes microglia
biologically meaningful for studying spatial proximity to AD
pathology.

Using spatial transcriptomics as ground truth, we create
the distance prediction model by exploring three different
approaches for improving its performance. Firstly, we built a
model that predicts the distance using genes shared between
scRNA-seq and spatial transcriptomics data. Then, we
compared the results with those of a second model that uses
the full gene set from scRNA-seq to predict the distance.
Lastly, to improve the distance predictions, we attempted to
classify a cell’s overlap with a plaque area.

Finally, we provide the model with the best performance
for predicting distance to pathology. Additionally, we
identified the genes contributing most strongly to the spatial
localization.

2 Materials and Methods
This section describes the methodology employed throughout
the study. It covers materials and the key techniques used to
prepare and analyze the data, ensuring that each step is clearly
documented for reproducibility.

2.1 Datasets
For the experiments conducted in this study, we have utilized
the following datasets:
ROSMAP Microglia dataset [13] - a scRNA-seq dataset
from ten brain donors, the gene expression of a total of
86,612 cells from the prefrontal cortex is measured, for
19,183 genes. Study was provided by the Religious Orders
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Study and Rush Memory and Aging Project (ROSMAP
https://adknowledgeportal.org).
Xenium dataset - a single-cell spatial transcriptomics dataset
from one brain donor, the gene expressions of 93,258 cells,
for 266 genes. This dataset has been provided by Gonçalves
lab at TU Delft (https://goncalveslab.tudelft.nl/) and is not
publicly available.

2.2 Data Preprocessing
The Xenium dataset was provided as already preprocessed.
We further filtered it to include only microglia cells (2,160
cells), as they are of primary interest in this study. Then we
observed the distribution of cell distances (Figure 1), which
indicates that the vast majority of data points are close to
plaques. To focus the analysis on the relevant biological
range, we excluded distant outliers. Outlier detection was
performed using the interquartile range (IQR) method. We
computed the first quartile (Q1) and the third quartile (Q3) of
the distance to pathology values and IQR was then calculated
as the difference between these two values. We defined an
upper boundary beyond which data points were considered
outliers [14] as follows:

Upper Bound = Q3 + 1.5× IQR (1)

Cells with a distance to pathology value greater than this
upper bound were excluded from the analysis. The resulting
matrix has dimensions of 1,965 cells by 266 genes.

We log-normalized the ROSMAP Microglia dataset with
ScanPy.

Figure 1: Distribution of distances to plaque of the microglia
cells in the Xenium dataset. The red line annotates the upper
boundary at which the outliers were removed.

2.3 Distance Prediction using Shared Genes
We trained a weighted k-nearest neighbors (k-NN) model to
predict the distance to nearest plaque using the set of shared
genes between the scRNA-seq and spatial transcriptomics
datasets.

Aligning scRNA-seq and spatial transcriptomics data
Let R(n×g) denote the gene expression matrix of the
preporcessed scRNA-seq data, where n is the number of

cells and g the number of genes. Similarly, let Q(m×h)

denote the gene expression matrix of the preprocessed
spatial transcriptomics data, with m cells and h genes.
Using the set of shared genes p = g ∩ h, we subset
the spatial transcriptomics dataset to ensure compatibility
between modalities, resulting in a filtered gene expression
matrix: Q′

(m×p) ∈ Q(m×h). Since the number of shared
genes is large (265), we performed Principal Component
Analysis (PCA) on Q′ to reduce noise and capture the key
biological variation. Thus, we reduce the matrix to Q′′

(m×d),
where d is the number of principle components.

Weighted k-Nearest Neighbour (k-NN) Regression Model
We implemented a weighted k-nearest neighbour (kNN)
regression model that identifies the k-nearest neighbours for
each cell xi where i ∈ {1, . . . ,m}. Given a test point
xi, this returns a set of distances {di1, di2, . . . , dik} and
corresponding indices {j1, j2, . . . , jk}, where each distance
is defined as the Euclidean distance between the test point
and the given neighbour. If a neighbour is exactly identical
to the cell (distance = 0), it is assigned a full weight of 1, and
all other weights are set to 0 to avoid division by zero later.
Otherwise, for each neighbour j of a test cell i, the weight
wij is computed as the inverse of the distance:

wij =

{
1 if dij = 0
1
dij

otherwise (2)

All weights are then normalized to sum to 1:

w̃ij =
wij∑

k∈NN (i) wik
(3)

where NN (i) denotes the set of nearest neighbours for cell
xi.

Finally, the predicted distance ŷi for test cell xi is
computed as the weighted sum of the distances from its
k-nearest neighbours:

ŷi =
∑

j∈N (i)

w̃ij · dij (4)

2.4 Gene Imputation with SpaGE
To impute the expression of genes not in the Xenium
panel, SpaGE [5] was employed - a machine learning
method designed for the integration of scRNA-seq and spatial
transcriptomics data. The source code is available at https:
//github.com/tabdelaal/SpaGE. The version employed in this
study was retrieved on 5 May 2025.

We applied SpaGE using the following parameters: the
spatial transcriptomics dataset was set to the gene expression
matrix of the preporcessed Xenium dataset Q(m×h), with
m cells and h genes. The scRNA-seq data was the gene
expression matrix of the preprocessed ROSMAP Microglia
data R(n×g), where n is the number of cells and g the number
of genes. The number of principal components was set to
n pv = 30, following the original implementation in SpaGE.
The set of genes to impute was defined as imp = h−g. After
constructing the imputed gene expression matrix I(m×imp)

we filtered out NaN genes (in our case only one) which left
18,917 genes.

2

https://adknowledgeportal.org
https://goncalveslab.tudelft.nl/
https://github.com/tabdelaal/SpaGE
https://github.com/tabdelaal/SpaGE


2.5 Predicting distance with scRNA-seq Genes
We first performed gene imputation on the spatial
transcriptomics data and then trained a model to predict the
distance to plaque using the complete set of genes expressed
in the scRNA-seq data.

Using the set of shared genes p = g ∩ h, we subset
the spatial transcriptomics dataset, resulting in the gene
expression matrix: Q′

(m×p) ∈ Q(m×h). To construct
the input for the actual prediction model, we concatenated
I(m×imp), obtained from the Gene Imputation with SpaGE,
with Q′

(m×p). This operation is expressed as:

C(m×(imp+p)) = [IQ′] (5)

where C denotes the combined matrix formed by
concatenating I and Q′ along the gene (column) axis. The
complete number of genes is 19,182.

We perform PCA on C(m×(imp+p)) to reduce the matrix
to C′

(m×d), where d is the number of principal components.
Then we used C′

(m×d) as input for the model, proceeding
with the steps described in Weighted k-Nearest Neighbour
(k-NN) Regression Model.

2.6 Gene Identification
We identified the key genes that contributed to the model’s
predictions to later analyze their potential association with
AD. We first extracted the PCA loadings, which represent the
weights of each gene in each principal component. Since
each principal component explains a different amount of
variance in the data, we weighted the absolute loadings by
the proportion of variance explained by each component.
Next, we summed these weighted loadings across all
considered components for each gene to obtain an overall
gene importance score. This score reflects how strongly each
gene influences the patterns observed in the data. Finally, we
ranked the genes based on their scores.

2.7 Plaque Area Overlap Classification
We trained a model to classify whether a cell overlaps
with pathology, using only the genes shared between the
scRNA-seq and spatial transcriptomics datasets. For this, we
employed the procedure described in Aligning scRNA-seq
and spatial transcriptomics data. Then, as the cells
within the plaque area are still substantially less than those
outside of it (310 positive class, 1,655 negative class), we
performed oversampling with SMOTE [15]. Additionally,
we manually adjusted the classification probability threshold
for positive predictions to 0.4. We chose to train a Random
Forest Classifier as it accounts for non-linear relations and
imbalanced data.

2.8 Cross Validation
We split the data into 80% train and 20% test set, partitioning
Q′′ from Aligning scRNA-seq and spatial transcriptomics
data into Xtrain full, ytrain full and Xtest final, ytest final, where
X is the input gene expression matrix and y is the target
feature - distance to pathology. To perform hyperparameter
tuning, we employed 10-fold cross-validation only on the
training data (Xtrain full, ytrain full). In each iteration, one fold

was held out as the evaluation set while the model was trained
on the remaining of the training set. Formally, for each fold
i ∈ {1, . . . , k}, we partitioned Xtrain full into Xtrain(i) and
Xval(i), and ytrain full into ytrain(i) and yval(i). After each split,
we evaluated the model on the evaluation set.

2.9 QuPath
We used QuPath [16], an open-source software for
digital pathology image analysis, to process a pathological
image from the prefrontal cortex of the Xenium patient
and determine amyloid plaque areas relevant for our
predictions. The image and the staining were provided by
the Gonçalves lab at TU Delft. We set the radius around
the plaque as follows: Objects > Annotations... >
Expand annotations.

2.10 Implementation details
We used the following Python Packages for this study:
ScanPy version 1.11.1 [17], AnnData version 0.11.4 [18],
Pandas version 2.2.3 [19], Scikit-learn version 1.5.2 [20],
SciPy version 1.15.2 [21], NumPy version 2.2.5 [22],
Seaborn version 0.13.2 [23], Matplotlib version 3.10.1 [24],
Imbalanced-learn version 0.13.0 [15].

3 Results
In this study, we investigated whether a cell’s spatial
proximity to the nearest plaque could be accurately predicted
from scRNA-seq data. To evaluate this, we trained and
tested models using Xenium spatial transcriptomics data and
ROSMAP scRNA-seq data.

3.1 Predicting Distance with Shared Genes
We began by aligning the two datasets based on shared genes.
Dimensionality reduction was then performed using PCA
to reduce noise and simplify the input space. Finally, we
employed a weighted k-nearest neighbors (k-NN) algorithm
to predict distance to pathology. We chose to implement
a weighted k-NN model, inspired by the approach used
in SpaGE, but with some modifications. This choice was
motivated by the algorithm’s computational efficiency, which
removed the need for high-performance computing resources.
Additionally, several state-of-the-art integration methods,
such as Seurat [7] and StPlus [9], also utilize k-NN models.

We measure the performance of the model by calculating
the mean absolute error (MAE) in microns, reflecting the
difference between predicted and true distances. We first
considered Spearman correlation, as it is commonly used
to assess the performance of integration methods in spatial
transcriptomics. However, those methods aim to reconstruct
the entire spatial organization of cells, whereas our approach
is specifically designed to predict distance to pathology.
Therefore, Spearman correlation would not have provided
a directly comparable measure of performance. MAE, by
contrast, offers a simple and interpretable measure in physical
units that allows us to place the results in a biologically
relevant context.

For this implementation we had two hyperparameters -
the number of neighbours and the number of principal
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components. We tuned our model as described in Cross
Validation by comparing the average MAE of different values
for the hyperparameters. Thus, we selected 10 principal
components and 40 neighbours (Figure 2a).

After training the model, we evaluated its performance on
the test set by calculating MAE of the predicted distances.
As MAE provides a physical unit of the error, to interpret
it we need to place this number in its biological context.
We established a biologically meaningful threshold to define
when the predictions are considered too far from the true
values. We set this threshold at 200 µm, as paracrine
signaling11 between cells typically occurs within a spatial
range of up to 200 µm [25], making this distance biologically
meaningful for understanding intercellular communication.
Therefore, we considered an average prediction error below
200 µm acceptable for the purposes of this study, as it would
imply that the predicted cell location remains within the
original signaling environment defined by this radius.

We then defined the following hypothesis to assess our
model:

H1: A cell’s distance to pathology can be predicted using
only genes shared between the single-cell and spatial
transcriptomics datasets, with an average absolute error
less than 200 µm.

We computed the MAE of the model’s predictions, which
yielded a value of 118.98 µm. While this error falls far
below the threshold of 200 µm, and is thus considered
small, we performed a permutation test to determine the
statistical significance of this result. By randomly shuffling
the predicted values 10,000 times, we created a distribution of
MAEs expected by chance. The p-value was then calculated
as the proportion of shuffled MAEs that were less than or
equal to the observed MAE. The test yielded a p-value of
0.0001. Given that p < 0.05, we conclude that the model
predicts the distance to pathology with a MAE significantly

below 200 µm. This demonstrates that the model can predict a
cell’s distance to pathology based on shared gene expression
patterns between single-cell and spatial transcriptomics data,
with sufficient accuracy for the goals of this study.

To further analyze the model’s predictions, Figure 3
presents the distributions of the predicted and the true values.
The model’s predictions exhibit a narrower range, struggling
to capture distances that are either very close to or far from
pathology. This limitation stems from the nature of the k-NN
algorithm, which averages the distances of nearby cells. As
a result, predictions are biased towards the center, with fewer
values near the extremes.

Figure 3: Distribution of actual vs. predicted distances to
plaque. The range of predictions is smaller and mainly
captures mid-distance values.

However, to take a closer look, we visualized the test
cells in their original spatial coordinates, colored by both
the actual (Figure 4a) and predicted (Figure 4b) distances
to nearest plaque. To enable a direct comparison of spatial
patterns, we applied a log-transformation to the distances
and we scaled them independently to a [0, 1] range. This

(a) (b) (c)

Figure 2: Hyperparameter tuning of the three models through 10-fold cross-validation. The dark colours present better
performance. (a) The average Mean Absolute Error of predicting distance based on shared genes for different numbers of
neighbours and principal components. (b) The average Mean Absolute Error of predicting distance based on imputed and
shared genes for different number of neighbours and principal components. (c) The average accuracy of predicting overlap
with pathological region for different number of estimators and principal components.
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normalization ensures the reflection of relative distances
within each distribution, to abstract away from the differing
value ranges of actual and predicted distances. Although
the predicted distances cover a narrower range, we can
observe that the model retains the overall spatial pattern -
cells predicted to be closer or farther from plaques keep their
relative positions.

(a) Normalized actual distances to plaque.

(b) Normalized predicted distances to plaque.

Figure 4: Spatial distribution of test cells shown in their
original coordinate space, colored by (a) actual and (b)
predicted distances to the nearest plaque. Distances were
log-transformed and min-max normalized to enable direct
visual comparison. Colored rectangles highlight regions
dominated by cells at similar distances - blue indicates closer
to plaques, while pink denotes more distant cells. The close
correspondence in spatial gradients between the two plots
illustrates that the model preserves spatial patterns, despite
compressing the range of predicted values.

We further investigated the most contributing genes to the
model’s predictions to determine what their relevance to AD
is. This was done following the procedure described in Gene
Identification. In Figure 5, we present the most prominent
genes ordered according to their importance score. Notably,

the genes APOE, LYVE1, and SLC17A7 stand out as the
biggest contributors.

Figure 5: Most contributing genes to shared gene the
predictions, ordered according to their importance score.

3.2 Predictions with Shared Genes vs All
ScRNA-seq Genes

After implementing the above-mentioned model, we explored
alternative ways to improve predictions. Instead of relying
solely on shared genes, we proposed imputing the missing
genes from the spatial transcriptomics data and combining
them with the shared ones to train the k-NN model. We
explored the idea that additional gene expression information,
particularly from scRNA-seq specific genes, might carry
spatial signals relevant to a cell’s proximity to pathology.

Therefore, we first performed gene imputation with
SpaGE. The choice of this method is based on a
recent literature review [8], which offers a comprehensive
comparison of state-of-the-art techniques for integrating
scRNA-seq and spatial transcriptomics. We selected only
methods compatible with our study, resulting in Table 1.
From those methods, Seurat [7] was deemed unsuitable as
it does not perform gene imputation, while GimVI [10] is too
computationally expensive. Ultimately, we chose to utilize
SpaGE for its simplicity, accuracy, and greater computational
efficiency. Then, we combined the imputed and the shared
genes to use as input for the weighted k-NN regressor. After
performing Cross Validation, we set the number of neighbors
to 40 and the number of principal components to 30 (Figure
2b). To evaluate whether this new model performs better than
the previous one, we formulated the following hypothesis:

H2: Distance predictions based on imputed and shared gene
expression data have a lower average absolute error than
when using only shared genes.

H2 : MAEH2 < MAEH1

We calculated a MAE of of 125 µm, which, while still below
the 200 µm threshold and thus considered a small error,
indicates worse performance compared to the first model.
To assess the significance of this observation, we performed
a permutation test, which gave a p-value of 0.99. Since
p > 0.05, we cannot conclude that using the full gene set
improves prediction accuracy compared to using only shared
genes. The p-value even suggests that the opposite of H2
might be true - including imputed genes could degrade model
performance rather than improve it. Analyzing the boxplots
of the predictions from the models (Figure 6), we notice
that the first model captures more variance, which might
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Table 1: Comparison of Integration Methods for scRNA-seq and Spatial Transcriptomics (extracted from [8])

Method Description Limitations / Notes
Seurat [7] Comprehensive data analysis pipeline with integrated

algorithms
Only available for certain types of ST platforms

SpaGE [5] Domain adaptation model aligning ST and scRNA-seq
to a common space; efficient for large datasets

Only includes genes shared by both datasets

StPlus [9] Reference-sequence-based; improved accuracy and
reduced resource usage

Applied only to image-based sequencing data

GimVI [10] Uses variational autoencoders to improve biological
interpretation with platform-specific patterns

Slower than benchmarked tools

Figure 6: Comparison of the distributions of the predictions
from the two models. Observed wider range of variance for
the first model which uses only shared genes.

account for the slightly better results. We further derived
the primary genes contributing to the predictions of this
model (see Gene Identification) and thus identified FCN1,
VCAN-AS1, and CD300E (Figure 7). Notably, all of those
genes are exclusively found in the scRNA-seq data.

Figure 7: Most contributing genes to the predictions of the
second model chosen from the full gene set in the scRNA-seq
dataset. The genes are not shared between the scRNA-seq
and the spatial transcriptomic data set.

Classification of Plaque Area Overlap
As shown in Figure 6, both distance prediction models
struggle to accurately estimate values for cells located close
to plaques. To address this limitation, we attempted to build
a classifier for a cell’s overlap with a pathological region.
We reasoned that if overlap can be reliably predicted, this
information could be fed back into the original distance
prediction model and help refine close-range predictions.

Since the first distance prediction model demonstrated overall
better performance, we focused on improving that approach
and accordingly based the classifier on the set of shared
genes.

Given the limited number of cells directly overlapping with
pathology (Figure 1), we also included cells closely clustered
around plaques in the positive class. Therefore, we defined a
radius for the plaque area. Initially, we considered a radius
of 10 µm, as microglial cells are highly overrepresented
within this distance from plaques [11]. However, to select a
radius more appropriate for our specific study, we analyzed
an image of the patient’s prefrontal cortex using QuPath
(Figure 8). Thus, we determined that a radius of 20 µm
best captures the clustering of cells around plaques. We

Figure 8: Image of the prefrontal cortex from the patient,
displaying individual cells in blue, amyloid plaques in bright
yellow, and a 20-micron radius around each plaque indicating
the extended pathological region considered in the analysis.

evaluated performance of this model by measuring the
prediction accuracy, expressed as the percentage of correctly
classified cells. Furthermore, we performed hyperparameter
tuning for the number of estimators and number of principal
components in the Random Forest Classifier and the PCA
respectively. We averaged the accuracies across all folds
in the Cross Validation and selected 500 estimators and 30
principal components (Figure 2c).

The model achieved an overall accuracy of 79.13%. As
illustrated by the confusion matrix (Figure 9), it performs
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well in predicting non-overlapping cells, but struggles to
correctly identify overlapping ones. Specifically, the recall
is 88% for the negative class and only 37% for the positive
class. This imbalance in performance is likely due to the
skewed distribution of training labels, with False instances
significantly outnumbering True ones. As a result, the
predictions are biased and not reliable for further use.

Figure 9: Confusion matrix showing the classification results
for predicting cell overlap with a 20-micron dilated area
around the plaque. High misclassification for the True class
(overlap).

4 Discussion
In this study, we investigated whether the distance to
pathology for cells in scRNA-seq data can be predicted. To
answer this question, we built and evaluated two distance
prediction models, comparing their MAEs to identify the
better approach. Furthermore, we attempted to classify
cells’ overlap with a pathological region to improve the
aforementioned distance predictions.

4.1 Predicting Distance to Nearest Plaque
The two distance prediction models differed solely in the
gene sets used for training - one was trained using genes
shared between the spatial transcriptomics and scRNA-seq
datasets, while the other used shared genes and imputed
genes in the spatial transcriptomics data. After analyzing
the results, we concluded that the model relying solely
on shared genes has better performance. Since the key
difference between the two models was the gene sets used,
we investigated the most influential genes in each model’s
predictions to determine their relevance to AD. In the first
model, we identified the genes APOE, LYVE1, and SLC17A7
as the biggest contributors.

APOE is a gene involved in cholesterol transport within the
bloodstream and is widely recognized as a major genetic risk
factor for AD [26]. Its expression in microglia, along with its
direct interaction with amyloid β plaques [27], likely explains
its prominent influence on our model’s predictions.

LYVE1, a gene responsible for lymphatic drainage, has
no direct link to AD. However, dysfunction in the brain’s
lymphatic drainage has been shown to accelerate amyloid

plaque accumulation [28]. Moreover, research suggests
that regions enriched with plaques often exhibit reduced
LYVE1 expression [29], hinting that LYVE1 may be a
significant factor in determining a cell’s proximity to plaque.
The Spearman correlation we observed between LYVE1
expression and the predicted distances was -0.38, indicating
that our model tends to predict shorter distances to plaque
for cells with lower LYVE1 expression, aligning with the
above-mentioned research.

Lastly, SLC17A7 is a gene involved in neurotransmission
in the brain. It encodes VGLUT1, a protein whose expression
is reduced in the presence of amyloid β plaques [30].
The Spearman correlation between SLC17A7 expression and
the predicted distances is -0.24, confirming this theory.
Furthermore, this gene is considered a potential marker for
early subtypes of AD [31].

On the other hand, the primary genes in the predictions
of the second model are FCN1, VCAN-AS1, and CD300E.
These genes are part of the imputed set, originally present
only in the scRNA-seq data. Current research does not
indicate an association between them and AD. This could
explain the decreased performance of the second model, as its
most influential features are not directly linked to the spatial
context of amyloid plaques or AD pathology. Nevertheless,
these genes play a role in inflammatory responses, which may
account for the model’s prediction error still falling below the
200 µm threshold.

Our study suggests a relationship between the expression
of APOE, LYVE1 and SLC17A7 and the proximity to AD
pathology. These findings offer evidence for the genes’
potential roles in disease progression and can serve as a
foundation for future research focused on these genes.

Additionally, we implemented a classifier to predict
whether a cell overlaps with a 20-micron plaque area.
However, this model often misclassified overlapping cells,
which is due to the imbalance in the training data. Despite
efforts to address this during model tuning, the imbalance
persisted and negatively impacted the model’s performance.
This issue is particularly concerning as the goal of the
experiment was to enhance the prediction of cells’ proximity
to plaque, especially at close-range distances. Therefore, the
low sensitivity to True labels limits the usefulness of this
approach, and currently, it cannot be used to improve distance
predictions.

As the distance prediction model based on shared genes
demonstrated better performance, we selected it as our
final approach. We provide it as a method that predicts
a cell’s distance to the nearest plaque by taking as input
two single-cell datasets in AnnData format - one containing
ground truth distances to pathology and another without
such annotations, along with parameters for the number of
principal components and neighbors. Notably, this method
can be used to predict distance to pathology not only for
scRNA-seq data, but also for other single-cell datasets.
Furthermore, the overall approach for predicting distance
to pathology could, in principle, be adapted to estimate
other spatial features. However, we cannot guarantee its
performance in those contexts without further validation.

Finally, we applied the method to the Xenium and
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ROSMAP Microglia datasets using 40 neighbors and 10
principal components. The resulted prediction distribution
can be seen in Figure 10.

Figure 10: Distribution of predicted distances for the
ROSMAP Microglia dataset.

4.2 Limitations
During the course of this research, we have encountered
various issues that may limit the validity and accuracy of our
results. Those factors are discussed in the following section.

Xenium dataset Limitations
This study relies on the Xenium dataset for both training
and evaluation. We acknowledge that the dataset represents
tissue from a single patient, which limits the generalization
of our findings to the broader population. Additionally, our
focus on microglia cells significantly reduces the number of
available samples, which may have constrained the model’s
performance. With access to a larger and more diverse
dataset, the predictive accuracy could potentially improve.
Finally, the donor, whose data we train our models on,
has Cerebral Amyloid Angiopathy, a condition related to
amyloid deposits in the blood vessels, commonly found in
AD patients. This may have influenced the identified spatial
patterns and gene expressions, thereby affecting the results.

K-Nearest-Neighbour Regressor
For the distance prediction models we use a k-Nearest
Neighbors regressor. Due to its nature, the predicted values
are based on averaging the outcomes of the k nearest
neighbors, which limits the range of predicted distances. As
a result, the model struggles to capture the extremes. This
averaging behavior reduces prediction variance and makes
it difficult for the model to accurately identify cells that are
either very close to or very far from pathological regions.
We had also tried an MLP and a Random Forest Regressor,
however, they did not perform better. Thus, we would suggest
possibly trying another type of neural network model with
more data to train on.

Imbalance in data
We aimed to classify cells based on whether they fall within
a 20-micron radius of the nearest plaque or not. However,
the number of cells located within this defined region is

significantly smaller than the number outside of it, resulting
in a tangible imbalance between the positive and negative
labels. Despite applying various strategies to mitigate this
issue, the skewed distribution continues to heavily impact
the model’s performance. Consequently, the classifier fails
to accurately predict the cells that overlap, thus reducing the
overall reliability of the results.

Dependency on SpaGE
We used SpaGE to perform gene imputation to prepare the
inputs for our distance prediction model. Since SpaGE
does not achieve perfect accuracy in its predictions, we
acknowledge that the performance of our model is dependent
on the quality of SpaGE’s imputations. Consequently, any
inaccuracies in SpaGE’s predictions may directly impact the
results and interpretations of our model.

Stratification
It must be noted that we did not apply stratification during
cross-validation. This decision was based on the nature of our
models: for the regression models, stratification is generally
less applicable, as it is primarily used for maintaining class
distributions in classification problems. Moreover, since the
k-NN algorithm is highly sensitive to the distribution of
training data, using stratification could potentially introduce
more bias. For the classification model, we also opted
not to use stratification, as we addressed class imbalance
through oversampling techniques. While oversampling can
help mitigate imbalance during training, the absence of
stratification may still influence model evaluation. Due to
time constraints, we were unable to explore how stratification
might impact model predictions.

5 Conclusions and Future Work
In this study, we investigated whether the distance of a cell to
nearby plaque, learned from spatial transcriptomics data, can
be predicted in single-cell RNA-seq data. To address this, we
developed a predictive model focused on microglia cells, that
uses only genes shared between the spatial and single-cell
datasets for its predictions. Our model achieves sufficient
accuracy to support the hypothesis that spatial proximity to
pathology can be inferred from single-cell data. Furthermore,
we investigated the genes contributing most significantly
to spatial localization and identified APOE, LYVE1, and
SLC17A7 as potentially associated with Alzheimer’s Disease
and microglial clustering around plaque.

Building upon the findings of this work, future research
could focus on improving the classification of overlap with
plaque areas, as the model currently has poor performance.
In particular, using a larger and more balanced dataset could
help address the bias the model currently exhibits toward
the negative class. Additionally, exploring other models -
such as a neural network - could possibly give better results.
Ideally, the improved classification could help refine the
distance prediction model, particularly enhancing accuracy
for cells closer to plaque. This feedback loop could help
resolve current limitations in close-range predictions and lead
to more accurate results.
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Lastly, evaluating the model on larger datasets that include
more patients could uncover additional important genes and
spatial patterns that may not have been detected in the single
patient data we used.

6 Responsible Research
Ensuring responsible research practices is essential in
studies involving human data, especially when working with
sensitive clinical and genomic information. Ethical integrity
not only protects the rights and privacy of individuals
but also reinforces the credibility, reproducibility, and
long-term impact of scientific research. In biomedical fields,
mishandling data can have serious ethical, legal, and clinical
consequences.

This study was conducted with adherence to ethical
research standards and transparency of the methods used.

Data privacy concerns
This study utilized the Xenium spatial transcriptomics dataset
to train and evaluate the proposed model. As this dataset
contains patient data that is not publicly available and is
intended solely for research purposes, it is used exclusively
within the scope of this Bachelor’s Research Project. To
ensure compliance with patient privacy regulations, no data
is shared or distributed. All data remnants will be securely
deleted from local machines upon completion of the project.

Additionally, the ROSMAP dataset was employed, which
is publicly accessible under a Controlled Access agreement.
This access model ensures that sensitive human data is
used under ethical guidelines to protect the rights of human
subjects [13].

Future Intended Use
The results of this research are intended to contribute to
the growing understanding of single-cell gene expression
in Alzheimer’s disease; however, they are not clinically
validated. These results must not be adopted in other studies
or used for diagnosing patients without thorough validation
and confirmation by qualified professionals. Further analysis
and replication are necessary before these findings can be
generalized or integrated into future research.

Furthermore, the findings of this study are preliminary
and may be subject to bias. For example, the training data
originates from a specific population and therefore may not
be generalizable to broader or more diverse demographic
groups.

Reproducibility
All datasets (where permissible), methods, and model
parameters used in this study have been carefully documented
to ensure transparency and reproducibility of the analysis.
However, as stated in Data privacy concerns, access to the
Xenium dataset is restricted. Thus, the reproducibility of the
study depends on other researchers first obtaining access to
the dataset through the appropriate data request procedures.

As this is a Bachelor’s Research Project, the source
code for this study is available on the GitLab repository
https://gitlab.ewi.tudelft.nl/goncalveslab/bachelor-projects/
bsc-rp-2425-galya-vergieva and accessible only to users

authorized by TU Delft. The ROSMAP dataset can be
downloaded from the AD Knowledge Portal.
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Appendix
Glossary of Terms

1. Amyloid plaques – harmful proteins that build up around neurons, thus disrupting normal neuron functions.
2. Tau tangles – abnormal clumps of proteins that build up inside neurons and interfere with normal neuron functions.
3. Disease modifying treatment (DMT) – Therapy that targets the root cause of a disease to slow, stop, or reverse its

progression, unlike symptom treatments that only manage effects.
4. Single-cell RNA sequencing (scRNA-seq) – a technique that measures gene expression in individual cells. It enables

the identification of rare cell types and the detailed study of specific cells.
5. Spatial transcriptomics – A method that measures and maps gene expression in its spatial tissue context.
6. Gene imputation – a technique used to infer missing genetic information.
7. Gene expression – the process by which information from a gene is used to make a product, like a protein, that

performs functions in a cell.
8. Histopathological – related to the study of diseases of the tissues with a microscope.
9. Amyloid plaque niche – the immediate environment around the amyloid plaque.

10. Microglia cells – specialized immune cells in the central nervous system.
11. Paracrine signaling - a form of cell-to-cell communication where a cell releases signals that affect nearby cells.
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