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Turbulence modelling for flows with strong variations in thermo-physical properties

Gustavo J. Otero R., Ashish Patel, Rafael Diez S., Rene Pecnik∗

Process and Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, the Netherlands

Abstract

This paper presents a novel methodology for improving eddy viscosity models in predicting wall-bounded turbulent flows
with strong gradients in the thermo-physical properties. Common turbulence models for solving the Reynolds-averaged
Navier-Stokes equations do not correctly account for variations in transport properties, such as density and viscosity,
which can cause substantial inaccuracies in predicting important quantities of interest, for example, heat transfer and
drag. Based on the semi-locally scaled turbulent kinetic energy equation, introduced in [Pecnik and Patel, J. Fluid
Mech. (2017), vol. 823, R1], we analytically derive a modification of the diffusion term of turbulent scalar equations.
The modification has been applied to five common eddy viscosity turbulence models and tested for fully developed
turbulent channels with isothermal walls that are volumetrically heated, either by a uniform heat source or viscous
heating in supersonic flow conditions. The agreement with results obtained by direct numerical simulation shows that
the modification significantly improves results of eddy viscosity models for fluids with variable transport properties.

Keywords: RANS turbulence modelling, compressible flow, varying properties, semi-local scaling

1. Introduction

Turbulence plays a vital role in heat transfer and skin
friction across the boundary layer in wall bounded flows.
For engineers, it is therefore of paramount importance to
accurately model turbulence during the design process of
any flow guiding devices, such as heat exchangers with
strongly cooled or heated flows, rocket propulsion systems,
combustion chambers with chemically reacting flows, or
turbomachinery flows with unconventional working fluids.
In all these applications, strong heat transfer causes large
temperature gradients and consequently large variations
in density, viscosity, thermal conductivity, heat capacity,
etc., which alter the conventional behavior of turbulence.
Despite decades of research, turbulent flows with variable
thermophysical properties are still far from being under-
stood. Accordingly, turbulence models for engineering ap-
plications with large heat transfer rates are not able to pro-
vide accurate results for Nusselt numbers, pressure losses,
or any other quantities of interest.

In the past, experiments and direct numerical simu-
lations (DNS) have been performed to study turbulent
flows over a wide range of Reynolds numbers for bound-
ary layers, channel, pipes, among others [1, 2, 3, 4]. How-
ever, these detailed measurements and simulations are lim-
ited to simple geometries, and as the Reynolds number
increases, DNS become computationally more expensive.
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Because of this fact, turbulence models for simulations of
the Reynolds-averaged Navier-Stokes (RANS) equations
rely on a limited number of accurate data, and their de-
velopment is additionally hampered by the lack of knowl-
edge on how turbulence is affected by strong variations
of thermophysical properties. Since almost all turbulence
models have been developed for incompressible flows, sev-
eral extensions to include compressible effects have been
proposed in the past by [5, 6, 7]. For example, if the tur-
bulent kinetic energy (TKE) equation is derived on the
basis of the compressible Navier-Stokes equations, addi-
tional terms appear, i.e. pressure -work and -dilatation,
dilatational dissipation, and additional terms related to
fluctuations of density, velocity, pressure, etc. The mod-
ification of the TKE in flows with strong heat transfer
has been attributed to these terms and according models
have been proposed in the past [6, 7, 8]. Huang, Brad-
shaw, and Coakley [5], analyzed the log-layer behaviour
of a compressible boundary layer using turbulence models
and claimed that the model closure coefficients must be a
function of mean density gradients to satisfy the law-of-
the-wall obtained with the van Driest velocity transforma-
tion [9].

A different approach to sensitize turbulence models for
compressible flows with large density variations, was pro-
posed by Catris and Aupoix [10]. They used the formu-
lation developed by Huang et al. [5] for the closure co-
efficients, to modify the diffusion term of the turbulent
dissipation transport equation. Additionally, they argued
that the diffusion of TKE acts upon the energy per unit
volume [(kg m2/s2)/m3] of turbulent fluctuations, which
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Nomenclature

ν̌ Spalart-Allmaras eddy viscosity

δv Viscous length scale

δij Kronecker delta

γ Heat capacity ratio

κ Von Karman constant (= 0.41)

λ Thermal conductivity

µ Dynamic viscosity

µt Eddy viscosity

ω Specific turbulent dissipation

Φ Volumetric source term

ρ Density

σ Model constant

τ Shear stress

ε Turbulent dissipation

cp Isobaric heat capacity

Ecτ Friction based Eckert number (= u2
τ/(T̃wc̃p,w))

fx External body force

H Enthalpy

h Characteristic length, half channel height

k Turbulent kinetic energy (= u′′
i u

′′
i /2)

Mτ Friction based Mach number

p Pressure

Pk Production of turbulent kinetic energy

Pr Prandlt number (= cpµ/λ)

Prt Turbulent Prandlt number

R Specific gas constant

Reτ Friction Reynolds number (= uτρwh/µw)

Re⋆τ Semi-local Reynolds number

Reb Bulk Reynolds number (= ubhρb/µw)

T Temperature

t Time

u Velocity

u⋆ Universal velocity transformation

(=
∫ uvD

0 [1 + (y/Re⋆τ) ∂Re⋆τ/∂y]∂u
vD)

uvD Van Driest velocity transformation

(=
∫ (u/uτ )

0

√

ρ/ρw∂ (u/uτ))

uτ Friction velocity (=
√

τw/ρw)

u⋆
τ Semi-local friction velocity (=

√

τw/ 〈ρ〉)
x Length

y+ Locally scaled wall distance (= y Reτ/h)

y⋆ Semi-locally scaled wall distance (= y Re⋆τ/h)

Accents and subscripts

φ̃ Dimensional quantity

φ Locally scaled quantity

φ̂ Semi-locally scaled quantity

φb Bulk quantity

φc Quantity at the channel center

φw Quantity at the wall

Averaging operators

〈·〉 Reynolds averaged φ = 〈φ〉+ φ′ with 〈φ′〉 = 0

{·} Favre averaged φ = {φ} + φ′′ with 〈ρ〉 {φ} =
〈ρφ〉, {φ′′} = 0 and 〈φ′′〉 6= 0

can be expressed as ρk. The diffusion of TKE is therefore
based on ρk, while the diffusion coefficient is divided by
the density on the basis of dimensional consistency. Their
approach improved eddy viscosity models for supersonic
adiabatic boundary layer flows, without including the ad-
ditional compressibility terms. However, these ad-hoc cor-
rections to the TKE equations need to be assessed for a
wide range of flows, including standard low-speed flows [11]
and free shear flows [12].

In this study, we analytically derive modifications of
eddy viscosity models for flows with strong property vari-
ations, which are based on the fact that the “leading-order
effect” of variable properties on wall bounded turbulence
can be characterized by the semi-local Reynolds number
only [13, 14]. The developed methodology is generic and
applicable to a wide range of eddy viscosity models. To

demonstrate the improvement, we have applied the mod-
ifications to five different EVM from literature [15, 16,
17, 18, 19] and compared the results to direct numeri-
cal simulations of heated fully developed turbulent chan-
nel flows with varying thermo-physical properties [14, 20].
Furthermore, the density corrections proposed by Catris
and Aupoix [10] has been considered as well. The matlab
source code used in this paper and the DNS data from [14]
are available on GitHub [21].

2. SLS turbulence modelling

The semi-local scaling (SLS) as proposed by Huang
et al. in 1995 [8], is based on the wall shear stress τ̃w
and on local mean (instead of wall) quantities of den-
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Table 1: Comparison of local, φ, and semi-local, φ̂, scaling for the
most relevant quantities. The dimensional quantities are expressed
as φ̃. The subscript w indicates the averaged wall value, which is
used in the present study as the reference condition for the local
scaling. The friction velocity is used for scaling the velocity. The
characteristic length, h̃, is the half channel height in our study.

Quantity Local
scaling

Semi-
local sc.

Length x̃i = xih̃ = x̂ih̃
Velocity ũ = uuτ = ûu⋆

τ

Pressure p̃ = pρ̃wu
2
τ = p̂ 〈ρ̃〉u⋆

τ
2

Density ρ̃ = ρρ̃w = ρ̂ 〈ρ̃〉
Dyn. viscosity µ̃ = µµ̃w = µ̂ 〈µ̃〉
Eddy viscosity µ̃t = µtρ̃wh̃uτ = µ̂t 〈ρ̃〉 h̃u⋆

τ

TKE k̃ = ku2
τ = k̂u⋆

τ
2

Turb. diss. ε̃ = εu3
τ/h̃ = ε̂u⋆

τ
3/h̃

Spec. turb. diss. ω̃ = ωuτ/h̃ = ω̂u⋆
τ/h̃

Wall distance ỹ = y+h̃/Reτ = y⋆h̃/Re⋆τ

sity and viscosity to account for changes in viscous scales
due to mean variations in the thermo-physical properties.
The aim of the SLS was to collapse turbulence statis-
tics for compressible flows at high Mach numbers with
those of incompressible flows. In the SLS framework, the
friction velocity and viscous length scale are defined as
u⋆
τ =

√

τ̃w/ 〈ρ̃〉 and δ⋆v = 〈µ̃〉 / 〈ρ̃〉u⋆
τ , respectively, where

〈·〉 indicates Reynolds averaging. Accordingly, the semi-
local wall distance can be defined as y∗ = ỹ/δ⋆v and the
semi-local Reynolds number as,

Re⋆τ =
u⋆
τ 〈ρ̃〉 h̃
〈µ̃〉 =

√

〈ρ̃〉
ρ̃w

µ̃w

〈µ̃〉Reτ , (1)

where Reτ = uτ ρ̃wh̃/µ̃w and uτ =
√

τ̃w/ρ̃w, are the con-
ventional friction Reynolds number and friction velocity
based on viscous wall units. In general, any flow vari-
able can be non-dimensionalized using wall based units
and semi-local units. This is outlined in more detail in
table 1. It is important to note, that the friction velocities
of both scaling are related through the wall shear stress by
τ̃w = ρ̃wu

2
τ = 〈ρ̃〉u⋆2

τ . This relation will be used frequently
throughout the paper.

Instead of exclusively using the semi-local scaling to
collapse turbulence statistics for compressible flows with
different Mach numbers, Pecnik and Patel [13] extended
the use of the scaling to derive an alternative form of the
TKE equation for wall-bounded flows with a strong wall-
normal variations of density and viscosity. Starting from
the semi-locally scaled non-conservative form of the mo-
mentum equations, and with the assumption that the wall
shear stress τ̃w changes slowly in the streamwise direction,
the SLS TKE equation reads,

t⋆τ
∂{k̂}
∂t̃

+
∂{k̂}{ûj}

∂x̂j
= P̂k − ε̂k + T̂k + Ĉk + D̂k, (2)

with production P̂k = −{û′′
i û

′′
j }∂{uvD

i }/∂x̂j, dissipation

per unit volume ε̂k =
〈

τ̂ ′ij∂û
′
i/∂x̂j

〉

, diffusion (containing
viscous diffusion, turbulent transport, and pressure diffu-
sion) T̂k = ∂(

〈

û′
iτ̂

′
ij

〉

−{û′′
j k̂}−

〈

p̂′û′
j

〉

)/∂x̂j , and compress-

ibility Ĉk =
〈

p̂′∂û′
j/∂x̂j

〉

−
〈

û′′
j

〉

∂〈p̂〉/∂x̂j+〈û′′
i 〉 ∂〈τ̂ij〉/∂x̂j .

τ̂ij = µ̂/Re⋆τ [(∂ûi/∂x̂j + ∂ûj/∂x̂i)− 2/3(∂ûk/∂x̂k)δij ] is
the shear stress tensor.

Due to the semi-local scaling, additional terms appear
in equation (2), which are lumped in D̂k = ({ûj}{k̂} +

{û′′
j k̂})dj − 〈û′′

i ∂D̂ij/∂x̂j 〉, with

D̂ij =
µ̂

Re⋆τ

[

(ûidj + ûjdi)−
2

3
ûkdkδij

]

,

di = 1/2 〈ρ〉−1∂ 〈ρ〉/∂x̂i and δij the Kronecker delta. The
mean density gradient appears since the turbulent kinetic
energy (and/or the velocity) within the derivatives is scaled
by the semi-local friction velocity u⋆

τ . For example, tak-
ing the derivative of u⋆

τ , one can write (assuming that the
averaged wall shear stress is constant),

∂u⋆
τ

∂x̂i
=

√
τw

∂
√

1/ 〈ρ〉
∂x̂i

=
√
τw

∂
√

1/ 〈ρ〉
∂ 〈ρ〉

∂ 〈ρ〉
∂x̂i

= −1

2

u⋆
τ

〈ρ〉
∂ 〈ρ〉
∂x̂i

= −u⋆
τdi.

The curly brackets {·} indicate Favre averaging and
t⋆τ = h̃/u⋆

τ . It is important to mention that the Favre

averaged TKE is defined as {k̂} =
〈

ρ̂k̂
〉

/ 〈ρ̂〉, which, with
the Reynolds decomposition of the locally scaled density
as 〈ρ̂〉 = 〈ρ̃〉 / 〈ρ̃〉 + 〈ρ̃′〉 / 〈ρ̃〉 = 1, can also be expressed

as {k̂} =
〈

ρ̂k̂
〉

= 〈ρ̂û′′
i û

′′
i 〉 /2. This relation {φ} = 〈ρ̂φ〉

will be used frequently in this paper as well. The reader is
referred to Pecnik and Patel [13] for more details on eq. (2)
and its derivation.

The most important findings in Pecnik and Patel [13]
are that effects of property variations on turbulence can be
characterized by gradients of the semi-local Reynolds num-
ber Re⋆τ , and that the turbulent production is governed by
the gradient of the van Driest velocity increment, defined
as ∂{uvD} =

√

〈ρ̃〉 /ρ̃w∂ ({ũ}/uτ). Moreover, for the cases
investigated in [13], it appears that the terms related to
compressible effects and mean density gradients, Ĉk and
D̂k, respectively, have a minor effect on the evolution of
the SLS TKE.

In the present study, we intend to leverage the knowl-
edge gained from the SLS TKE equation to improve turbu-
lence models predictions of wall-bounded turbulent flows
with strong gradients in the thermo-physical properties.
As such, we first obtain a closed form of the exact SLS
TKE equation, eq. (2), which is then scaled back to con-
ventional (wall based) scales.

For the purpose of obtaining a closed form of the SLS
TKE equation, the following assumptions are applied. The
production of TKE is estimated using the Boussinesq ap-
proximation by modelling the turbulent shear stress. Ad-
ditionally, it is assumed that the total diffusion T̂k can
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be modelled using the gradient diffusion hypothesis [22],
and that the dynamic viscosity fluctuations are negligi-
ble compared to its averaged counterpart (µ̃′ ≪ 〈µ̃〉). As
such, the semi-locally scaled dynamic viscosity is equal to
〈µ̂〉 = 〈µ̃/ 〈µ̃〉〉 = 1. Finally, neglecting Ĉk and D̂k, as they
have a minor effect, the SLS TKE equation can then be
written as

t⋆τ
∂{k̂}
∂t̃

+
∂{k̂}{ûj}

∂x̂j
= P̂k − ε̂

+
∂

∂x̂j

[

(

1

Re⋆τ
+

µ̂t

σk

)

∂{k̂}
∂x̂j

]

.

(3)

If this form of the TKE equation is used in conjunction
with an eddy viscosity turbulence model, the results for
turbulent flows with large thermophysical property varia-
tions significantly improve [13]. However, for general in-
dustrial applications with complex geometries, it is not
feasible to solve the semi-locally scaled equations. The
reason is that all turbulence variables would need to be
rescaled every iteration step by quantities that depend on
the wall friction at the closest wall and by local quantities
of density and viscosity.

To overcome this, the focus of the derivation in this
paper is to transform equation (3) back to conventional
scales, in particular viscous wall units. The scaling trans-
formations outlined in table 1 will be used for each term
in (3). Starting with the turbulent kinetic energy,

{k̂} = 〈ρ̂û′′
i û

′′
i 〉 /2 =

〈

ρ
ρ̃w
〈ρ̃〉u

′′
i

uτ

u⋆
τ

u′′
i

uτ

u⋆
τ

〉

/2

=

〈

ρ
ρ̃w
〈ρ̃〉u

′′
i

√

〈ρ̃〉
ρ̃w

u′′
i

√

〈ρ̃〉
ρ̃w

〉

/2 = 〈ρu′′
i u

′′
i 〉 /2

= 〈ρk〉 = 〈ρ〉 {k}.

Then, we obtain for the time derivative the following:

t⋆τ
∂{k̂}
∂t̃

= t⋆τ
∂ 〈ρ〉 {k}

∂t̃
.

The convective term transforms into,

∂{k̂}{ûj}
∂x̂j

=
h̃

h̃

∂

∂xj

[

〈ρ〉 {k}{uj}
√

〈ρ̃〉
ρ̃w

]

=
∂

∂xj

[

〈ρ〉1.5{k}{uj}
]

=
∂
√

〈ρ〉 〈ρ〉 {k}{uj}
∂xj

=
√

〈ρ〉
(

∂ 〈ρ〉 {k}{uj}
∂xj

+
〈ρ〉 {k}{uj}

2 〈ρ〉
∂ 〈ρ〉
∂xj

)

.

As it can be seen, the convection now consists of two
terms. However, the second term is a mathematical arte-
fact, which can be canceled by one of the terms in D̂k. The
production of TKE transformed back to a scaling based on

wall units, results in

P̂k = −{û′′
i û

′′
j }

∂{uvD}
∂x̂j

= −
〈

ρ̂û′′
i û

′′
j

〉 ∂{uvD}
∂xj

= −
〈

ρ
ρ̃w
〈ρ̃〉u

′′
i

√

〈ρ̃〉
ρ̃w

u′′
j

√

〈ρ̃〉
ρ̃w

〉

√

〈ρ̃〉
ρ̃w

∂{u}
∂xj

=
√

〈ρ〉
(

−
〈

ρu′′
i u

′′
j

〉 ∂{u}
∂xj

)

=
√

〈ρ〉Pk.

(4)

The transformation applied for the turbulent dissipation
gives,

ε̂ = ε

(

uτ/h̃

u⋆
τ/h̃

)3

= ε

(〈ρ̃〉
ρ̃w

)1.5

=
√

〈ρ〉 〈ρ〉 ε.

The semi-locally scaled dynamic viscosity and eddy vis-
cosity can also be written as,

1

Re⋆τ
=

1

Reτ

√

ρ̃w
〈ρ̃〉

〈µ̃〉
µ̃w

=
1

√

〈ρ〉
〈µ〉
Reτ

,

and,

µ̂t

σk
=

µt

σk

ρ̃wh̃uτ

〈ρ̃〉 h̃u⋆
τ

=
µt

σk

ρ̃w
〈ρ̃〉

√

〈ρ̃〉
ρ̃w

=
1

√

〈ρ〉
µt

σk
,

respectively, such that the overall diffusion results in,

∂

∂x̂j

[

(

1

Re⋆τ
+

µ̂t

σk

)

∂{k̂}
∂x̂j

]

=

∂

∂xj

[

1
√

〈ρ〉

( 〈µ〉
Reτ

+
µt

σk

)

∂ 〈ρ〉 {k}
∂xj

]

.

Substituting the newly obtained terms into (3), and divid-
ing them by

√

〈ρ〉 to convert t⋆τ into tτ = h̃/uτ , we end up
with,

tτ
∂ 〈ρ〉 {k}

∂t̃
+

∂ 〈ρ〉 {k}{uj}
∂xj

= Pk − 〈ρ〉 ε

+
1

√

〈ρ〉
∂

∂xj

[

1
√

〈ρ〉

( 〈µ〉
Reτ

+
µt

σk

)

∂ 〈ρ〉 {k}
∂xj

]

.

(5)

If compared to the conventional model for the TKE, the
newly derived equation shows only one major difference
that lies in the diffusion term. The diffusion term that
emerges from the semi-local scaling methodology is a func-
tion of 〈ρk〉 (instead of 〈k〉), while the diffusion coefficient
and the overall diffusion term are divided by

√

〈ρ〉. This is
similar to the density corrections proposed by [10], except
that in [10], only the diffusion coefficient is divided by 〈ρ〉.

3. Compressible / variable density
turbulence models

The derivations described in section 2, can now be ap-
plied to various EVMs. In this work, we chose five different
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Table 2: Diffusion term, normalized by viscous wall units, for the turbulent scalar equations: k, ε, ω and ν̌ (Spalart-Allmaras variable). The
differences with respect to the original model are highlight in red. σk, σε, σω , cb2 and cb3 are model constants. More details of turbulence
models are shown in appendix A. †Catris and Aupoix [10] actually use the turbulent dissipation per unit volume as the conserved variable:
Dρε/Dt.

Material derivative Conventional Catris & Aupoix (C&A) [10] Present study

ρDk
Dt = ... ∂

∂xj

[(

µ
Reτ

+ µt

σk

)

∂k
∂xj

]

∂
∂xj

[

1
ρ

(

µ
Reτ

+ µt

σk

)

∂ρk
∂xj

]

1√
ρ

∂
∂xj

[

1√
ρ

(

µ
Reτ

+ µt

σk

)

∂ρk
∂xj

]

†ρDε
Dt = ... ∂

∂xj

[(

µ
Reτ

+ µt

σε

)

∂ε
∂xj

]

1
ρ

∂
∂xj

[

1√
ρ

(

µ
Reτ

+ µt

σε

)

∂ρ1.5ε
∂xj

]

1
ρ

∂
∂xj

[

1√
ρ

(

µ
Reτ

+ µt

σε

)

∂ρ1.5ε
∂xj

]

ρDω
Dt = ... ∂

∂xj

[(

µ
Reτ

+ µt

σω

)

∂ω
∂xj

]

∂
∂xj

[

1√
ρ

(

µ
Reτ

+ µt

σω

)

∂
√
ρω

∂xj

]

∂
∂xj

[

1√
ρ

(

µ
Reτ

+ µt

σω

)

∂
√
ρω

∂xj

]

Dν̌
Dt = ...

1
cb3

∂
∂xj

[(

ν
Reτ

+ ν̌
)

∂ν̌
∂xj

]

1
ρcb3

∂
∂xj

[

ρ
(

ν
Reτ

+ ν̌
)

∂ν̌
∂xj

1
ρcb3

∂
∂xj

[

ρ
(

ν
Reτ

+ ν̌
)

∂ν̌
∂xj

+ cb2
cb3

(

∂ν̌
∂xj

)2

+ ν̌2

2
∂ρ
∂xj

]

+ cb2
ρcb3

(

∂
√
ρν̌

∂xj

)2

+
(

ν
Reτ

+ ν̌
)

ν̌
2

∂ρ
∂xj

]

+ cb2
ρcb3

(

∂
√
ρν̌

∂xj

)2

Table 3: Channel flows investigated: CRe⋆τ - refers to a variable property case, whose density, ρ and dynamic viscosity, µ are proportional

to 1/T and
√

1/T , respectively, such that Re⋆τ maintains constant across the channel; GL - refers to a variable property case with a gas-like
density and viscosity distribution; LL - variable property case with a liquid-like viscosity distribution (density is constant); and a supersonic
cases with a bulk Mach number equal to 4 from [20]. The data of the low-Mach number test cases were taken from [13]. λ is the thermal
conductivity, Re⋆τ,c the value of the semi-local Reynolds number at the center of the channel, Prw is the Prandtl number at the wall, and Φ
refers to the volumetric heat source.
Channel flow ρ/ρw µ/µw λ/λw Re⋆τ,w Re⋆τ,c Prw Φ

Constant Re⋆τ (CRe⋆τ ) (T/Tw)
−1

(T/Tw)
−0.5

1 395 395 1.0 95/(Re Prw)

Gas-Like (GL) (T/Tw)
−1

(T/Tw)
0.7

1 950 137 1.0 75/(Re Prw)

Liquid-Like (LL) 1 (T/Tw)
−1

1 150 945 1.0 62/(Re Prw)

Supersonic (SS) ∝ (T/Tw)
−1 (T/Tw)

−3/4 (T/Tw)
−3/4 1017 203 0.7 Ecτ

(

〈µ〉
Reτ

+ µt

)(

∂{u}
∂y

)2

models (the model equations are given in Appendix A for
completeness):

• the eddy viscosity correlation of Cess [15],

• the one-equation model of Spalart-Allmaras (SA) [16],

• the k-ε model of Myong and Kasagi (MK) [17],

• Menter’s shear stress transport model (SST) [18],

• and the four-equations v
′2 − f model (V2F) [19].

The resulting compressible / variable density modifica-
tions from the SLS approach and the density corrections
proposed by [10] are indicated in red in table 2, which are
mainly related to the diffusion term of the respective trans-
port equations, the averaged operators have been omitted
for brevity. Interestingly, the proposed form by [10] and
the result from the SLS approach are equivalent for ε and
ω, although both derivations follow alternative routes. For
the SA variable, ν̌, the only difference between our formu-
lation and the one derived by [10] is that we include the
kinematic viscosity in the density gradient term. However,
this distinction is negligible, as it will be seen later. It is
important to remark that the density corrections by [10]
were developed following a more heuristic method than
the one presented in this work. For the additional equa-
tions of the V2F model, the auxiliary transport for v

′2

has the same modifications as the modified TKE diffusion
term, and the elliptic relaxation equation f does not need

any modification. An additional modification we have in-
troduced is to replace y+ and Reτ , e.g. within the eddy
viscosity correlation of Cess and for the damping function
of the MK turbulence model, by their semi-local counter-
parts, namely y⋆ andRe⋆τ [13]. The compressible / variable
density modification can also be applied to wall-modeled
LES [23].

4. Fully developed channel flow

In order to test the proposed compressible / variable
density modifications of the EVMs, fully developed turbu-
lent flows in volumetrically heated channels with isother-
mal walls are investigated, outlined in table 3. The results
are compared to direct numerical simulations performed
by Patel et al. [14], and Trettel and Larsson [20]. For the
first three cases, the density, the viscosity, and the thermal
conductivity are a function of temperature only. Different
constitutive relations are used that resemble behaviours of
liquids, gases and fluids close to the vapour-critical point,
where the case CRe⋆τ corresponds to a fluid whose den-
sity and viscosity decrease with increasing temperature
(similar to supercritical fluids), such that the semi-local
Reynolds remains constant. The other cases resemble a
liquid-like (LL) and gas-like (GL) behaviour, such that
Re⋆τ increases away from the wall for the liquid-like case,
and Re⋆τ decreases for the gas-like case, respectively. Due
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to the uniform thermal conductivity chosen in the DNS,
the Prandtl number decreases away from the wall for the
cases CRe⋆τ and LL, while it increases for the GL case. The
fourth case corresponds to a supersonic air flow at a bulk
Mach number of Mb = 4 with decreasing Re⋆τ towards the
channel center and with uniform Prandtl number across
the channel.

In order to model these cases, the Favre-averagedNavier-
Stokes equations in Cartesian coordinates are solved in
convenctional viscous wall units for the streamwise mo-
mentum and energy equations, for a fully developed flow
given as

∂

∂y

[( 〈µ〉
Reτ

+ µt

)

∂{u}
∂y

]

= −〈ρfx〉 , (6)

∂

∂y

[( 〈λ〉
ReτPrw

+
cpµt

Prt

)

∂{T }
∂y

]

= −Φ, (7)

with T and λ as temperature and thermal conductivity, re-
spectively. The flows are driven by an external body force,
〈ρfx〉, which for all cases is equal to τw/h. Moreover, the
flow is heated by a volumetric source term Φ, summarized
in table 3. For the supersonic case, Φ corresponds to the
viscous heating, which is scaled by the Eckert number,
defined as Ecτ = u2

τ/(T̃wc̃p,w). For an ideal gas, Ecτ is
related to the friction Mach number as Ecτ = (γ − 1)M2

τ ,
with γ as the ratio of specific heats (for air γ = 1.4). In the
low-Mach number limit, the viscous heating is negligible.
Therefore, for the cases CRe⋆τ , LL, and GL, Φ is chosen as a
uniform volumetric heat source, with arbitrary values such
that a desired temperature difference between the channel
center and the channel walls is achieved, see [14]. The
reference Prandtl number is defined as Prw = µ̃w c̃p,w/λ̃w.
For the low-Mach number cases, the isobaric heat capacity
is taken as cp = c̃p/c̃p,w = 1, while for the supersonic case,

cp = γR/(γ − 1) with R = R̃/(u2
τ/T̃w), where R̃ is the

specific gas constant of air. In equations (6) and (7), the
Reynolds shear stress and turbulent heat flux were mod-
elled using the Boussinesq approximation and the gradient
diffusion hypothesis, respectively. In [24], it was seen that
the turbulent Prandtl number, Prt, varies around unity
for the low-Mach number cases, implying that there is a
strong analogy between the momentum and scalar trans-
port. Therefore, we have approximated Prt = 1 also for
the high-Mach number case.

A no-slip condition for the velocity and equal temper-
atures at both channel walls are applied as boundary con-
ditions, resulting in symmetric velocity and temperature
profiles. A second order central difference scheme is used
to calculate the gradients on a non-uniform mesh using
exact analytic metric transformations of a hyperbolic tan-
gent function that clusters the mesh points near the wall
to ensure y+ ≤ 1. Mesh independent solutions were ob-
tained for all cases on a mesh with 100 grid points. The
system of equations is solved in Matlab. For more insights
on the numerical solver, please refer to the source code

available on Github [21] with the data for the low-Mach
number cases from [14].

5. Results

The results for all EVMs are now compared with data
from DNS. The velocity profiles are reported in figure 1
using the universal velocity transformation, defined in Pa-

tel et al. [14] as u⋆ =
∫ {uvD}
0

[1 + (y/Re⋆τ) ∂Re⋆τ/∂y]∂{uvD}.
A more quantitative comparison with DNS is given by bar
graphs in figure 2, showing the relative error of the calcu-
lated bulk Reynolds number, defined as Reb = ubρbh/µw,
where the subscript b stands for bulk. Note, the simula-
tions are performed by setting the friction Reynolds num-
ber. Also the temperature profiles for all cases are com-
pared with DNS in figure 3, and the error of the Nusslet
number is shown in bar graphs in figure 4. The Nusselt
number is defined asNu = (∂T/∂y)w/[(Tw−Tc)/h], where
Tc is the temperature at the center of the channel.

In general, the compressibility / variable property mod-
ifications clearly improve the results for the velocity and
temperature profiles that have been obtained by the EVMs
for the cases investigated herein. The model modifications
also improve the prediction of the Reynolds and Nusselt
numbers for most of the cases. As can be seen, the results
for the Reynolds and Nusselt number are correlated, since
both the Reynolds shear stress and the turbulent heat flux
have been approximated by the eddy viscosity. However,
the Nusselt number estimation also depends on the choice
of the turbulent Prandlt number, which has been assumed
constant in this study. Because of this, the error on the
Nusselt number is larger than the error on the Reynolds
number for almost all investigated configurations. To ver-
ify this, closure models for the turbulent heat flux can be
used to improve model results for flows with strong heat
transfer [25]. As expected, figures 2 and 4 depict that for
the liquid-like case (LL), for which the density is constant,
the compressibility / variable property modifications do
not influence the results of the SA, V2F, and SST model.

The results of each turbulence model are now analyzed
individually.

• Cess: This eddy viscosity correlation has originally
been developed by fitting experimental data of tur-
bulent flows in pipes and is simply a function of
non-dimensional wall distance and friction Reynolds
number (see appendix A). Therefore, the results ob-
tained with the unmodified Cess eddy viscosity cor-
relation show large errors for the variable property
cases. For example, the error on the Reynolds num-
ber is approximately 30% for GL, 1200% for LL,
and 90% for case SS, see figure 2. However, for
the variable property case with constant semi-local
Reynolds number (case CRe⋆τ ) the errors are only
≈2%, which confirms the fact that turbulence statis-
tics are mainly modified by gradients in Re⋆τ only [14].
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Figure 1: Turbulence model and DNS results for the velocity transformation u⋆ as a function of y⋆ for all channel flows. The grey dashed
lines represent u⋆ = y⋆ and u⋆ = 1/κ ln(y⋆) + C, the viscous sublayer and log-law region, respectively, where C = 5.5.

Figure 2: Relative error of the bulk Reynolds number (Reb) calculated by models with respect to DNS data.
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Figure 3: Turbulence model and DNS results for the scaled temperature T as a function of y/h for all channel flows.

Figure 4: Relative error of the Nusselt number calculated by the models with respect to DNS data.
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By simply replacing the model parameters Reτ and
y+, by their semi-local counterparts Re⋆τ and y⋆, the
results for GL, LL and SS can be considerably im-
proved (figures 1-4), again confirming that the tur-
bulence statistics can be characterized by semi-local
wall units.

• SA: Interestingly, the SA model accurately repro-
duces the velocity and temperature profiles for all
variable property flows without applying any modifi-
cations, see figures 1 and 3. A further improvement,
using the compressible / variable property modifi-
cations, can only be achieved for the case CRe⋆τ .
For example, our proposed modification slightly im-
proves the results for the Reynolds number (figure 2)
and considerably improves the result for the Nusselt
number, where the error decreases from 4% to below
0.2% (figure 4). The reason for this improvement is
due to a more accurate approximation of the turbu-
lent heat flux with the modified model. Overall, the
two corrections, the one developed by [10] and the
one from the SLS approach, give essentially equiva-
lent results for the cases tested herein, see figures 1-4.

The reason why the SA model without modifications
gives more accurate results than the other models,
can be explained as follows. Based on refs. [8, 14],
it is apparent that the turbulent shear stress pro-
files collapse for turbulent flows with large varia-
tions of density and viscosity, if they are plotted
as a function of y⋆. Using the stress balance equa-
tion, we can then also state that the viscous stresses,
µ du/dy, must collapse for variable property flows
(the universal velocity transformation u⋆ has been
derived based on this fact). Introducing the Boussi-
nesq approximation to model the Reynolds shear
stress, we can further write the stress balance as
(1+µt/µ)µ du/dy = (1− y/h), which indicates that
also the ratio of µt/µ must collapse for flows with
variable properties. The SA model makes use of this
ratio in χ = ν̌/ν (density cancels), which explains
why the model performs well for all cases considered
herein.

• MK: The largest improvements using the compress-
ible / variable property modifications are obtained
with the MK model. The effect of modifying the dif-
fusion term and replacing y+ with y⋆ in the damping
function can be independently analyzed by inspect-
ing the velocity profiles in figure 1. For case CRe⋆τ ,
for which y+ = y⋆, the inclusion of the density in
the diffusion term clearly improves the model re-
sult. On the other hand, the density correction alone
does not improve the results for the other cases. For
these cases, it is necessary to replace y+ with y⋆ in
the damping function, which can be seen by compar-
ing the result from C&A (which still uses y+ in the
damping function) with our approach for the cases

GL, LL, and SS.

• SST: Contrary to the other models, the SST model
results do not improve substantially if used with the
compressible / variable property modifications. Ex-
cept for the case LL, the original model gives unsat-
isfactory performance with respect to the universal
law of the wall, see figure 1. The modifications only
slightly improve the results for the velocity profiles,
as well as, reduce the errors for the Reynolds num-
ber and Nusselt number. The only case that shows
an improvement is the CRe⋆τ , see figures 1 and 3.
By further investigating the results, it can be seen
that the blending function of this model is equal to
1 across the channel height, since the test cases sim-
ulated herein have a low Reynolds number. There-
fore, the model essentially solves the standard k-ω
model [26]. It was also seen by [10], that the density
correction of the diffusion term has little effect on
the flow field predictions for the k-ω model.

• V2F: This model with the compressible / variable
property modifications improves the collapse with
the DNS data if compared to the conventional form
for cases CRe⋆τ , GL, and SS. These results are consis-
tent with the ones presented in Pecnik and Patel [13],
who solved the V2F model in semi-locally scaled
form. In contrast, the present study also solved the
energy equation.

6. Conclusion

Based on the semi-locally scaled TKE equation, we
have derived a novel methodology to improve eddy vis-
cosity models for predicting wall-bounded turbulent flows
with strong variations in thermo-physical properties. The
major difference of the new methodology is the formulation
of the diffusion term in the turbulence scalar equations.
For example, the modified diffusion term of the turbulent

kinetic energy equation reads, ρ̃−0.5∂x̃

[

ρ̃−0.5 (µ̃+ µ̃t)
(

∂x̃ρ̃k̃
)]

(averaging operators omitted). Common compressibility
terms, such as; dilatation diffusion, pressure work, and
pressure dilation, are not taken into account in the mod-
ified TKE equation. This derived methodology is generic
and applicable to several turbulent scalars and it can also
be applied to wall-modeled LES. In general, the modified
EVMs result in a better agreement with the DNS data in
terms of velocity profiles and heat transfer of fully devel-
oped turbulent channel flows with variable property fluids.
Interestingly, the standard Spalart-Allmaras model, orig-
inally developed for external flow, gives the most reliable
results, with respect to other conventional EVM, for the
variable property cases investigated herein.

Future studies will include the implementation of the
modified turbulence models to more complex flow config-
urations, e.g. turbulent pipe flow with a fluid undergoing
heat transfer at supercritical pressure.
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Appendix A: Eddy viscosity models

Cess’ eddy viscosity correlation

In 1958, Cess [15] developed a correlation for the ef-
fective viscosity (µ+ µt) in fully developed turbulent pipe
flows. It combines a van Driest [27] type damping func-
tion for the laminar sublayer with the outer layer solution
proposed by Reichardt [28]. The correlation was later ex-
tended for channel flows by Hussain and Reynolds [29],
which reads for a channel whose walls are located at yw = 0
and yw = 2, as

µt

µ
=

1

2

[

1 +
κ2Re2τ

9

(

2yw − y2w
)2 (

3− 4yw − y2w
)2

(

1 + e−y+/A+
)2
]1/2

+
1

2
,

with the normalized wall distance yw = ỹw/h̃, A
+ = 25.4,

and κ = 0.41 the von Karman constant.

Spalart-Allmaras turbulence model

The Spalart-Allmaras (SA) model is a one equation
turbulence model, derived on the basis of dimensional anal-
ysis, Galilean invariance and empiricism [16]. The stan-
dard form of the SA model reads

∂ν̌

∂t
+ uj

∂ν̌

∂xj
= cb1Šν̌ − cw1fw

(

ν̌

yw

)2

+
cb2
cb3

(

∂ν̌

∂xj

)2

+
1

cb3

∂

∂xj

[(

ν

Reτ
+ ν̌

)

∂ν̌

∂xj

]

.

The model functions are:

Š = S +
ν̌

κ2yw2
fv2, fv2 = 1− χ

1 + χfv1
, fv1 =

χ3

χ3 + c3v1
,

χ =
ν̌

ν
, fw = g

[

1 + c6w3

g6 + c6w3

]1/6

, g = r + cw2(r
6 − r),

r =
ν̌

Šκ2yw2
.

where the modulus of the strain rate tensor is S =
√

2SijSij ,

with Sij = 1
2 (∂ui/∂xj + ∂uj/∂xi). The eddy viscosity is

modelled as
µt = ρν̌fv1.

The model coefficient are: cb1 = 0.1355, cb2 = 0.622, cb3 =
2/3, cv1 = 7.1, cw1 = cb1/κ

2 + (1 + cb2)/cb3, cw2 = 0.3,
cw3 = 2 and the von Karman constant κ = 0.41. The wall
boundary condition is ν̌w = 0.

Myong and Kasagi model

Myong and Kasagi (MK) model [17] is a low-Reynolds
k-ǫ model, given as

∂ρk

∂t
+

∂ρkuj

∂xj
= Pk − ρε

+
∂

∂xj

[(

µ

Reτ
+

µt

σk

)

∂k

∂xj

]

,

∂ρε

∂t
+

∂ρεuj

∂xj
= Cε1Pk

ε

k
− Cε2fερ

ε2

k

+
∂

∂xj

[(

µ

Reτ
+

µt

σε

)

∂ε

∂xj

]

,

where, Pk is the production of TKE using the Boussinesq
approximation. The functions and the eddy viscosity are
given as:

fε =

[

1− 2

9
e[−(

Ret
6

)2]

] [

1− e(−
y+

5
)

]2

,

fµ =

[

1− e(−
y+

70
)

] [

1 +
3.45√
Ret

]

,

µt = Cµfµρ
k2

ε
,

with Ret = ρk2/µε and y+ = yReτ . The model constants
are: Cε1 = 1.4, Cε2 = 1.8, Cµ = 1.4, σk = 1.4, and
σε = 1.3. Finally, the wall boundary conditions for the
scalars are

kw = 0, εw =
µw

ρw

∂2k

∂y2

∣

∣

∣

∣

w

≈ 2µwk1
ρwy21

.

Menter Shear Stress Transport (SST) model

Menter’s SST model [18] is given as

∂ρk

∂t
+

∂ρkuj

∂xj
= P lim

k − β⋆ρkω

+
∂

∂xj

[(

µ

Reτ
+ σkµt

)

∂k

∂xj

]

,

∂ρω

∂t
+

∂ρωuj

∂xj
=

αρ

µt
Pk − βρω2 + (1− F1)CDkω

+
∂

∂xj

[(

µ

Reτ
+ σωµt

)

∂ω

∂xj

]

,

with P lim
k = min (Pk, 20β

⋆ρωk), and

CDkω = 2
ρσω2

ω

∂k

∂xj

∂ω

∂xj
.
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The blending functions and the eddy viscosity are given
by:

F1 = tanh
[

(min [max (γ1, γ2) , γ3])
4
]

,

F2 = tanh
[

(max (2 γ1, γ2))
2
]

,

γ1 =

√
k

β⋆ωy
, γ2 =

500µ

ρy2wω
, γ3 =

4ρσφ2k

y2w max (CDkω , 10−20)
,

µt =
ρCµk

max (Cµω,ΩF2)
,

with Ω the vorticity magnitude. The model coefficient are
β⋆ = 0.09, Cµ = 0.31. The other model coefficient are cal-
culated with the blending function F1 using the relation
C = F1C1 + (1 − F1)C2, with β1 = 0.075, β2 = 0.0828,
σk1 = 0.85, σk2 = 0.5, σω1 = 1.0, σω2 = 0.856, α1 =
β1/β

⋆ − σω1κ
2/
√
β⋆, and α2 = β2/β

⋆ − σω2κ
2/
√
β⋆. Fi-

nally, the wall boundary condition are

kw = 0, ωw =
60µw

ρwβ1yw2
.

Durbin’s v
′2-f model

Durbin’s v
′2-f model [19] is a k-ǫ model with an ad-

ditional transport equation for the wall-normal velocity
fluctuation v

′2, and an elliptic relaxation equation f that
models the pressure strain correlation for v

′2. The model
equations are given as:

∂ρk

∂t
+

∂ρkuj

∂xj
= Pk − ρε

+
∂

∂xj

[(

µ

Reτ
+

µt

σk

)

∂k

∂xj

]

,

∂ρε

∂t
+

∂ρεuj

∂xj
=

1

Tt

[

Cε1

(

1 + 0.045

√

k

v′2

)

Pk

− Cε2ρε

]

+
∂

∂xj

[(

µ

Reτ
+

µt

σε

)

∂ε

∂xj

]

,

∂ρv
′2

∂t
+

∂ρv
′2uj

∂xj
= ρkf −N

ρv
′2

k
ε

+
∂

∂xj

[

(

µ

Reτ
+ µt

)

∂v
′2

∂xj

]

,

f − L2
t∆f = (Cf1 − 1)

2/3− v
′2/k

Tt

− Cf2
Pk

ρk
+ (N − 1)

v
′2

kTt
.

The turbulent time and length scale, and the eddy viscos-
ity are modelled as,

Tt = max

(

k

ε
, 6

√

µ

ρε

)

,

Lt = 0.23 max

(

k3/2

ε
, 70

(

µ3

ρ3ε

)1/4
)

,

µt = Cµρv
′2Tt.

The model closure coefficient are Cε1 = 1.4, Cε2 = 1.9,
Cµ = 0.22, Cf1 = 1.4, Cf2 = 0.3 and N = 6. Finally, the
wall boundary conditions are

kw = 0, εw =
µw

ρw

∂2k

∂y2

∣

∣

∣

∣

w

, v
′2
w = 0, fw = 0.
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