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Abstract
The advent of wireless networks such as con-
tent distribution networks and edge computing net-
works calls for more effective online caching poli-
cies. Traditional policies lose performance since
these new networks deal with highly non-stationary
requests and frequent popularity shifts. Conse-
quently, a new framework called Online Convex
Optimization (OCO), which does not assume the
request pattern, has recently been used to tackle the
online caching problem. Besides, in many practical
scenarios, a request prediction of unknown quality
is available. This paper will leverage that and pro-
poses a new online caching policy that uses these
predictions. This policy will use the Optimistic On-
line Mirror Descent (OOMD) algorithm to solve
the OCO problem. The policy will still obtain the
same regret bound as its non-optimistic counterpart
up to some constant even if the predictions are not
accurate. The performance of the proposed pol-
icy is evaluated and compared with previous OCO-
based policies with the use of trace-driven numeri-
cal tests.

1 Introduction
1.1 Background
The problem of caching is concerned with utilizing fast but
limited storage in the best possible way. Although caching
was first developed in the 1960s [4] [17] for local computer
systems, its use has been widely adopted after the explosion
of web traffic [5] and the arrival of Content Distribution Net-
works (CDN) and cloud services.

Since serving requests (i.e., fetching files) from the cache
is faster and more efficient, a caching optimization system or
caching policy aims to select a subset of files to be placed
in the cache to maximize the number of requests that can be
served from that cache. This reduces the load and latency on
and between servers and consequently increases the overall
performance of a system.

Different caching policies have been proposed throughout
the years [21], each trying to ensure that the necessary files
are in the cache storage when requested. An example of
such a policy is the Least-Recently-Used (LRU) policy which
evicts the file from the cache which has least recently been
used and inserts the newly requested file. Another such pol-
icy is the Least-Frequently-Used (LFU) policy which evicts
and places files not based on recency but frequency.

For different types of request patterns, different policies
excel [12]. A request pattern can be stationary, where it is
assumed that requests are generated as i.i.d samples from a
probability distribution with fixed parameters. Request pat-
terns can often in a realistic setting vary over time and be
non-stationary. The widely adopted policies such as LRU
and LFU lose performance under these time-varying traces
[8] [13] [14]. Knowing the optimal caching policy to use in
each specific situation requires knowing all future requests.
Unfortunately, in a practical setting, this is unknown. It is

thus more practical to have a policy which optimizes the hit
ratio of the system under any request trace.

An example of caches that receive time-varying and thus
highly non-stationary request traces are the emerging edge
caches [6] [16] [25]. These caches were designed with the
advent of wireless networks such as CDNs and cloud ser-
vices [7] and are located at the edge of the network. They will
relocate the services provided from centralized cloud services
to be closer to the users. This complex and dynamic comput-
ing architecture is therefore used to improve the responsive-
ness and reduce the backhaul in traffic for cloud services. A
model of such an architecture can be seen in figure 1.

Figure 1: Example model of an edge caching network 1

Caching policies that adapt under different and non-
stationary request patterns have consequently recently been
studied. In these studies, the caching problem is approached
as an online learning problem [9] [13]. With online learning,
a policy learns and alters its cache state after each request to
reach the optimal state as time progresses. An online learning
policy has no assumption of the request trace. This is opposed
to offline learning, which assumes that the request pattern has
an unknown distribution and tries to learn this distribution
before any request is revealed through pretraining. For the
caching problem, it is hence more favourable to use a form of
online learning since it places no statistical assumption on the
file request pattern and can thus handle non-stationary request
distributions. Furthermore, it does not require any pretraining
or training data and allows the algorithms to be more scalable.

1.2 Related work
More recently, research has used the mathematical framework
of (OCO) [11] to model the online caching problem [20]. The
theory of OCO is based on a learning algorithm that guesses
at each time slot t a decision vector xt from a convex set
X without knowing the performance of this vector. This
performance of xt is given by the time-slotted performance
or cost function ft(x) which is only revealed after select-
ing x. The algorithm’s goal is to minimize the rate of regret

1Modified Figure 1 from D. Liu, B. Chen, C. Yang and A.
F. Molisch, ”Caching at the wireless edge: design aspects, chal-
lenges, and future directions,” in IEEE Communications Mag-
azine, vol. 54, no. 9, pp. 22-28, September 2016, doi:
10.1109/MCOM.2016.7565183.



RT =
∑T

t=1 ft(x
∗) −

∑T
t=1 ft(xt) up until time T . This

is calculated by the difference in performance between the
chosen x and the optimal solution x∗. The optimal solution
is the solution that would be chosen if the algorithm knows
the future and is defined as x∗ = arg minx∈X

∑T
t=1 ft(x).

This is hence a suitable framework for the caching problem,
where the learning algorithm is the policy and the decision
vector is the cache state. The cost function at time t is based
on the request received at time t and is thus unknown to the
policy before selecting a cache state for time t. An advan-
tage of the OCO framework is that the learning algorithm
performance is measured by any arbitrary performance func-
tion. The algorithm optimizes any cost function, this function
could focus on measuring storage efficiency and the ratio of
requested files that the cache can serve from its memory. It
could also model the energy efficiency of moving files around
in the cache network. This shows therefore the versatility of
how the OCO framework can be used to model the online
caching problem.

An online caching algorithm that used online gradient de-
scent (OGD) was proposed and proven that it has universally
optimal performance and attains a sub-linear regret with time
O(
√
T ) [20]. This is called a no-regret algorithm, as their

time-average regret becomes negligible when RT /T = 0 as
T →∞.

One later study showed that the generalization of the OGD
algorithm, called the online mirror descent (OMD) algorithm
could also maintain a sub-linear regret [24]. This OMD pol-
icy would still obtain a sub-linear regret when the requests
would come in batches. The OMD algorithm can be used to
come up with different OCO algorithms through different use
of mirror map functions2.

A new aspect that could improve the performance of these
learning-based cache policies is predictions about the forth-
coming request. For example, online content platforms such
as YouTube and Netflix [10] give users content recommenda-
tions. These recommendations could be leveraged in that they
can serve as predictions about future requests. This informa-
tion about future requests could, if properly applied, signifi-
cantly improve the optimally of the caching policy.

Optimistic OCO algorithms are algorithms that use these
predictions. These predictions are used to alter the decision
vector xt to decrease the cost before the performance function
is revealed. The algorithm is said to be “optimistic” about
the revealed prediction, considering it as if it were true. A
study has already shown that these optimistic algorithms have
a regret bound that is the same as the non-optimistic version
scaled to some constant depending on the quality of the pre-
dictions [22]. When all predictions are correct the average
regret drops to a constant. This research gave only generic
regret bounds but no algorithm or implementation was pro-
posed as of yet3.

2OMD makes use of an extra dual space in which the gradient
exists. The mirror map function links this extra space to the primal
space, in which the variables live.

3This research has also not given any optimal learning rate(s) that
could satisfy regret bounds. The learning rate(s) plays an essential
role in the devising and implementation of actual algorithms.

The most recent research on using optimism in the frame-
work of OCO is an optimistic version of the follow the reg-
ularized leader (FTRL) algorithm [19]. It showed that even
with faulty recommendations the policy could still maintain a
sub-linear regret. However, this study focused on a different
algorithmic framework than the one that will be considered in
this paper4.

This paper aims to propose a design of an online
caching policy which will be using the optimistic online
mirror descent (OOMD) algorithm

The performance of the policy will be benchmarked for dif-
ferent qualities of recommendations and compared to previ-
ous OCO policies, OGD and OMDne. The policy will be
tested to see if its performance improves as the quality of
predictions is higher. Furthermore, the policy should also
provide performance bounds depending on the quality of the
predictions. The performance of the policies will be charac-
terized by their average cost and regret over various request
models.

2 System description
Cache Scenario
The caching scenario that is considered is where a single user
makes file requests to a single cache. In this network, a user
can request any file from the set N with size N to the cache.
When a cache miss happens for a request then it has to be
retrieved from a remote server. The cost of requesting the files
is denoted by the vector w where wi ∈ R for file i ∈ N . The
cost of each file can vary since it may be stored on different
remote servers.

Requests
The system operates in discrete time slots, t = 1, 2, ...T .
Each request contains a single file after which the cache state
is updated. A request is represented by the vector rt of
length N where rt,n = 1 when file n ∈ N is requested
and rt,m = 0 where m ̸= n, m ∈ N . The request pat-
tern is not known to the system. It can follow different
types of request patterns, both fixed and time-varying and
can even be an adversary trace that tries to strategically break
down the caching operation. The set of all possible request
can be described by R and can be formally be described as
R = {r ∈ [0, 1]N :

∑N
i=1 ri = 1}.

Caching
The cache can store at most a total of k files. The cache state
is represented by the vector xt of length N belonging to the
set X = {x ∈ [0, 1]N |

∑N
i=1 xt,n ≤ k} for a time slot t.

Here xt,n constitutes the proportion of file n stored in the
cache state at time t and is capped by the capacity constraint
k.

Recommendations
A recommender system gives at the beginning of every time
slot t a file request recommendation to the cache. The recom-
mendation is given the same way as a request by the vector r̄t

4A survey has given a detailed discussion and comparison of the
advantages and disadvantages of different families of adaptive learn-
ing methods [18]



and also exists in the set R. It is assumed that r̄t is revealed
at the end of time slot t − 1. The quality of the recommen-
dation or percentage of the time that the recommendation is
correct is given by σ ∈ [0, 1]. Where σ = 1.0 always gives
a perfect recommendation and σ = 0.0 always gives a faulty
recommendation.

Cost Objective Function
When a request rt arrives at the cache, then the cache mea-
sures its current performance of this request through the fol-
lowing function:

frt(xt) =

N∑
i=1

wirt,i(1− xt,i) (1)

This formula thus incurs a cost for the fraction of the re-
quested file, rt,i, missing from its cache state, (1−xt,i). This
cost is proportional to the file cost wi. This objective function
(1) can be motivated by several real-life use-cases. Firstly this
equation captures the delay that is incurred by the cost of re-
trieving a file that harms the users’ experience. Consequently,
this does not only model the users’ cost but also the cost on
the server or the entire network. Furthermore, this function
handles the adaption of the system when it is decided to ag-
gregate requests into batches (e.g. where a file might be re-
quested multiple times or multiple files are requested at once).
This is useful since requests are not always handled file by file
in real-life applications.

Regret
The caching policy that knows all future requests is called the
optimal caching policy and is used to benchmark an online
learning policy. Since the optimal policy which has a dy-
namic cache state has too high of a performance, an optimal
policy is used with a static cache state. This cache state x∗ is
defined by:

x∗ = arg minx∈X

T∑
t=1

frt(x) (2)

To benchmark an online learning policy π with other poli-
cies the regret of each policy needs to be calculated. This is
measured by taking the difference between the static optimal
policy and the policy π. This is given in the equation below:

RT (π) = sup
{ft}T

t=1

[
T∑

t=1

frt(xt)−
T∑

t=1

frt(x
∗)

]
(3)

3 OCO based Policies
First the existing OGD and OMDne caching policies are high-
lighted. Then the implementation of the optimistic online
caching policy is given.

Notation Description
N Set of the file catalogue
N Size of the set N
R Set of all possible requests
rt Vector representing request at time t
r̄t Vector representing recommendation at time t
σ Quality of recommendation
T Time horizon
X Set of all possible cache states
xt Vector representing cache state at time t
x∗ Vector representing the optimal static cache state
k Cache capacity
η Learning rate
w Vector representing file cost
frt Cost function for request rt
π Online cache policy
RT (π) Regret of the cache policy π

Table 1: Table containing all important notation

Online Gradient Descent (OGD)
The OGD algorithm works as a caching policy as follows.
The cache is initialized with a feasible state x1 ∈ X and is
updated after every request rt. A cost is derived from the
current cache state frt(xt) and the cache state is updated to
xt+1 as such:

xt+1 = ΠX (xt − η∇frt(xt)), for all t ∈ [T − 1] (4)
Where ΠX (·) is a Euclidean projection back onto X since

after an update the cache state might exceed the capacity con-
straint. The learning rate is η ∈ R which scales the step-size
of the OGD algorithm. Recent studies have shown that OGD
is an effective caching policy [20].

Online Mirror Descentne (OMDne)
The Online Mirror Descent (OMD) algorithm [11] is the on-
line version of the mirror descent (MD) algorithm [3]. Fur-
thermore, OMD is the abstract version, or generalization, of
the OGD algorithm. The difference between the two is that
the cache state lives in the primal space and the gradients in
the dual space. The spaces are connected by a differentiable
mirror map Φ(x), a function that inverts the update from the
dual space onto a change on the primal space. This mirror
map function allows the OMD algorithm to recover to its
derivations such as the OGD algorithm.

A current study has also already shown the effectiveness of
the OMD algorithm as a caching policy [24]. This research
showed that when OMD is used with the negative entropy
mirror map, Φ(x) =

∑N
i=1 xilog(xi), the algorithm has only

two steps and will be denoted as OMDne. Where the first
step does an update on the current cache state using the cost
function frt(xt) and a set learning rate η. This first step is
shown in 5 where it can be seen that this cache state updates
via a multiplicative rule as opposed to an additive rule for
OGD.

x̂t+1,i = xt,ie
−η

∂frt (xt)

∂xi (5)



The second step, is projecting this updated cache state yt+1

back by using a Bregman divergence [15] associated with the
negative entropy mirror map and is given by ΠΦ

X (·). This is
different to the orthogonal projection used in OGD. The full
OMDne cache update looks as such:

xt+1 = ΠΦ
X (xte

η∇frt (xt)), for all t ∈ [T − 1] (6)

Optimistic OMDne (OOMDne)
The implementation of the OOMDne algorithm [22] policy
proceeds in two steps, using the negative entropy mirror map.
One step for the revealed request rt and one for the given rec-
ommendation r̄t+1. The first step is similar to the OMDne
policy cache state update. The actual request is given to the
policy and a proxy cache state is updated to yt+1 using the
multiplicative rule and the negative entropy Bregman projec-
tion. This first update is scaled by the static learning rate η1.
This step is given below:

yt+1 = ΠΦ
X (yte

η1∇frt (xt)) (7)

In the second step, a recommendation of unknown quality
σ is revealed and this leads to another multiplicative update
on the new proxy cache state yt+1. This new cache state
x̂

t+1
is then projected back to the final cache state xt+1. This

update is scaled by the learning rate η2 which is recalculated
at every time step t by the algorithm. The policy tracks the
ratio of correct recommendations, σ̂, given up to time t. This
estimation is then used to find η2 by the following equation5:

η2 =
η1

(1− σ̂)
(8)

The learning rate, η2, is increased based on the quality of
the recommendations. The higher the quality of recommen-
dations, the higher the learning rate would be. If the algorithm
can trust the predictions it can thus more confidently update
the cache state using the larger learning rate.

Convergence to a faulty cache state by wrong predictions
is mitigated since the first update always occurs on the proxy
cache state and not on the actual cache state. A previous
wrong prediction at time t− 1 will thus only affect the cache
state at time t and not at time t+ 1

The full algorithm for OOMDne as a caching policy is
shown in algorithm 1 and a visual representation is shown
in figure 2

4 Results
4.1 Experimental Setup
A modular caching simulator is built in Python 3. This simu-
lator can receive two different types of input. The first is the
option which indicates which policies should be tested in the
simulator, OGD, OMDne and OOMDne. Each policy is imple-
mented as a separate class and each is extended from an ab-
stract cache class. The second input can receive either a syn-
thetic request trace that is either randomly generated or a real

5In the experimental setup a small constant is added to prevent
dividing by zero

Algorithm 1 Optimistic Online Mirror Descentne

Require: x1 = arg min
x∈X

Φ(x), η1 ∈ R+

1: for t← 1, 2, ...T do
2: ŷt+1 ← yt · eη1rtw ▷ Update proxy state based on the request

3: yt+1 ← ΠΦ
X (ŷt+1) ▷ Project proxy state back to feasible region X

4: x̂t+1 ← yt+1 · eη2r̄tw ▷ Update cache state based on recom. and proxy state

5: xt+1 ← ΠΦ
X (x̂t+1) ▷ Project cache state back to feasible region X

6: end for

Figure 2: Visual representation of how at each time slot the request
and recommendation is processed

trace taken from a dataset. These synthetic traces can mimic
real-life traces such as shifting popularity traces, Poisson-shot
model traces and adversarial traces amongst other types of
distributions [23]. The real trace is taken from a MovieLens
dataset [1]. Each trace is defined as a N × T matrix where
each row represents a time slot where the requested file is
one-hot encoded. As an output, the simulator gives the re-
sults of each policy in the given scenario. These results on
which the policies are benchmarked are the cost acquired for
each time step and its regret.

Policies
The policies that are benchmarked against each other are the
OGD policy, the OMDne, two different OOMDne policies, and
the static Optimal policy. The OGD and OMDne policies are
used as a base to compare the OOMDne policies. The differ-
ence between the OOMDne policies is the rate at which cor-
rect recommendations are given. One OOMDne policy has
a rate of 20% correct predictions. This is to show the per-
formance of the policy in a situation with mostly bad predic-
tions. Contrary to a mostly faulty recommendations policy is
the OOMDne with 80% correct predictions, which shows the
performance of the policy in a more ideal scenario. The Opti-
mal Policy is the static cache state that is selected to minimize
the total cost over the whole request trace.

Traces
The policies will be tested over stationary request traces, non-
stationary request traces, adversarial traces and a MovieLens
trace. Each entry wi will be equal to 1 for the file cost vector
w on each experiment.

There will be two experiments done on the stationary re-
quest traces. The first will be according to a Zipf distri-
bution with exponents α = 0.6 and has a cache configura-
tion that has a catalogue size of N = 1000, a cache size of
k = 100 and a time slot size of T = 5000. For this experi-
ment, policies with different learning rates will be compared.



The second experiment will be according to different station-
ary requests that follow a Zipf distribution with exponents
α ∈ {0.2, 0.7, 1.2} but will maintain the same cache con-
figuration. The exponent α will manage the diversity of file
requests over the trace. An α = 0 will correspond to each
file being requested with an equal chance. The higher the ex-
ponent value becomes the higher the probability will be for
certain file requests, leading to more popularity in a trace.

One experiment will be done for a non-stationary request
trace which will have a catalog of N = 2000 from which
request will be sampled according to a Zipf distribution with
exponent a = 0.8. At every 1500 request will a shift in file
popularity occur where file i ∈ {1, ...N} assumes the pop-
ularity of file j = (1 + (i + N/5) mod N). The total time
window would thus be T = 7500 and the cache will be set to
k = 150.

The adversarial trace is a trace that is sampled to work
against the cache state and has no set popularity making it
a highly non-stationary trace. The trace slides over the cata-
logue, starting with a random file i ∈ {1, ...N}. Then at the
next time slot, the next file i+ 1 is requested. This continues
for every time slot until file N is reached, after which this pat-
tern recommences from file 1 until the end of the trace. The
cache configuration has a catalog size of N = 1000, a cache
size of k = 100 and a time slot size of T = 5000.

Lastly, the performance will be measured on a real-life
MovieLens trace. It is obtained from a dataset which includes
time-stamped movie reviews. These reviews follow certain
different movie popularity’s and can hence be used as a real-
istic non-stationary request trace.

Performance metrics
To measure the performance of each policy three different
metrics are used. The first is the average cost at time t
which is calculated as 1

t

∑t
s=1 frs(xs). Another performance

metric is the moving average cost and is obtained as fol-
lows: 1

min(τ,t)

∑t
s=t−min(τ,t) frs(xs). In these experiments is

τ = 500. Lastly, the performance of a policy π is also mea-
sured in terms of the average regret, 1

tRt(π). For each of
these metrics holds that the lower the score the better.

4.2 Performance
Stationary request traces
In figure 3 (a)-(c) can the effect of different learning rates
be seen on the performance of the online policies over sta-
tionary request traces. In each figure is the optimal learn-
ing rate denoted by η∗. This learning rate is set so that over
any request trace the performance of the policy will still ob-
tain a sub-linear regret. When an online learning policy has
a higher learning rate then it assumes that the past requests
are a good indication for the future and will eagerly converge
to a cache state that suits these past requests. Consequently,
a higher learning rate works well for stationary requests. A
lower learning rate is more distrusting and will move slowly
towards a cache state that suits the past requests, this is hence
better for more non-stationary requests.

In sub-figure (a) is the optimal learning rate on this cache
configuration for OGD η∗ = ||w||∞

√
2k/T = 0.2 [20]. It

can be seen that this learning rate even works optimally over a

stationary request. Of all the learning rates does it converge to
the lowest average cost at the end of the trace. Additionally,
it can be seen from the annotations that as T gets larger the
difference for average cost compared to the optimal policy
becomes lower. The percentage difference compared to the
optimal policy moves from 26.26% to 14.62%, thus showing
that over time it can still attain a sub-linear regret.

(a) Average Cost of OGD

(b) Average Cost of OMD

(c) Average Cost of OOMD

Figure 3: Average cost of the different policies for different learning
rates over a stationary trace. Each figure shows that a lower learning
rate converges slower while a large learning rate converges faster. A
fast convergence is not always ideal as seen in sub-figure (a) where a
too high of a learning rate does not always reach the lowest average
cost. In each sub-figure is the optimal learning rate denoted as η∗

Sub-figure (b) and (c) shows the average cost of the OMDne
policy and the OOMDne with σ = 0.8 policy using different
learning rates. The optimal learning rate for both policies is

η∗ =
√

2∗log(N/k)
||w||∞T = 0.0303 [24]. Even though the optimal



learning rates do not obtain the lowest average cost at the end
of the trace, they still have an average cost that is decreasing
with time. In sub-figure (b) has OMDne a small cost reduction
from 31.00% to 29.45% and in sub-figure (c) has OOMDne
with σ = 0.8 a reduction from 32.83% to 27.92%. What can
be concluded from sub-figure (c) is that for this trace a learn-
ing rate of 0.2 quickly converges to an average cost equivalent
to the optimal cache policy. Furthermore, a learning rate of
0.5 has an average cost which is lower than the optimal policy
over the whole trace and thus has a negative regret over this
trace.

(a) Moving Average Cost with α = 0.2

(b) Moving Average Cost with α = 0.7

(c) Moving Average Cost with α = 1.2

Figure 4: The moving average cost of the policies over traces that
follow a Zipf distributions with exponents α ∈ {0.2, 0.7, 1.2}. The
higher the value of the exponent α the lower the diversity of re-
quest. It can be seen that OGD obtains a lower moving average
cost over the lower diversity traces than OMDne and OOMDne with
σ = 0.2 and 0.8

In figure 4 is the performance given over stationary request
traces with different levels of diversity. Sub-figure (a) shows
that over a trace with low diversity that all online learning
policies but the optimal policy have a similar performance.
At certain time intervals does OOMDne with σ = 0.8 outper-
form the other policies and at other intervals does OGD have
the better performance. A slow convergence for all policies
towards the optimal cache state can be seen over the duration
of the whole trace. The percentage difference in moving av-
erage cost between OOMDne with σ = 0.2 and the optimal
lowers from 12.57% to 7.89%.

For the sub-figure with a lower diversity (b) and (c) can it
be seen that the policies converge to an optimal cache state
quicker. The percentages that are shown in these sub-figures
show again the percentage difference between OOMDne with
σ = 0.2 and the optimal policy. It can be found that the
lower the diversity the greater the decrease in percentage dif-
ference. Furthermore, what is notable is that for these sub-
figures the OOMDne with σ = 0.2 and OMDne have a sim-
ilar performance. This is expected since the predicted file
requests only update the proxy state and not the cache state
allowing the policy to recover from bad recommendations.
Their equal performance shows thus that even with mostly
faulty predictions an optimistic policy still has a similar re-
gret bound as its non-optimistic counterpart. When the op-
timistic policy receives mostly correct predictions, OOMDne
with σ = 0.8, then it converges faster than OMDne towards
the optimal cache state. What is unexpected is that a greater
increase in performance was expected with a higher quality of
recommendations. This loss in performance can be because
the second learning rate η2 is not increased enough to make a
large difference.

The sub-figures (b) and (c) also show that the OGD policy
has a very strong performance compared to the other learn-
ing policies as it has lower average moving costs. From sub-
figure (c) can it be concluded that a lower diversity in file
requests makes OGD quickly converge to the static optimal
cache state.

Figure 5: The average regret over a non-stationary request trace.

Non-stationary request trace
The figure 5 shows the performance over a non-stationary
trace. It is again noticeable that the OMDne policy and the
OMDne policies have again a similar performance. At two



time-slots has the average regret for OOMDne with σ = 0.8
been highlighted. It can be seen that its average regret is de-
creasing over time from 0.31 to 0.25. The OGD policy per-
forms quite well and gets already close to zero regret at the
end of the trace. The increase in the average regret for online
learning policies can be seen in the first shift in popularity. At
T = 1500 the average regret increases slightly but eventually
falls again. The other shifts have decreasingly less impact on
the average regret as t increases.

(a) The average cost over an adversarial request trace

(b) The average regret over an adversarial request
trace

Figure 6: The performance of the online policies over an adversarial
request trace. The optimistic policy with a high quality of recom-
mendations performs better than the optimal cache state while the
OGD policy has very poor performance

Adversarial trace
The strength of the OOMDne can be seen in Figure 6. The
optimistic policy with 80% correct predictions has a lower
average cost than optimal as seen in sub-figure (a) and hence
has a negative regret as seen in sub-figure (b). This is not sur-
prising because for this trace the optimal static cache state has
and the starting cache state has an even distribution over all
files, every value of xi has the same value of k/N . For each
recommendation of file i, the cache state slightly increases
the proportion of file i. Thus if OOMDne receives a correct
prediction for file i then its proportion of that file is larger
than k/N . This will hence result in a lower cost than the op-
timal. Then because for the next time step the proxy state and
not the cache state is used will this correction not affect the
next request. It can be seen from both sub-figures 6 (a) and
(b) that a lower quality of recommendations is not enough to

obtain a negative regret for this trace. Both the OMDne and
the OOMDne with σ = 0.2 have a similar performance as the
optimal static cache policy.

What is unforeseen from figure 6 is that the optimal learn-
ing rate for the OGD policy is too high since its average cost
and regret seem to first increase and then plateau.

MovieLens trace
The performance over the non-stationary MovieLens trace in
figure 7 eyes similar as to the figure in 5. It can be seen that
for this MovieLens trace the optimistic and non-optimistic
OMDne perform alike. Their average regret seems to slowly
decrease to the optimal level. The OGD policy again has a
better performance in terms of average regret. It quickly con-
verges down before T = 10000 and then converges more
slowly to a lower average regret.

Figure 7: The average regret over the MovieLens request trace.

5 Responsible Research
Since caching is concerned with the moving and storing of
data it is wise to handle this data correctly. This data can
contain personal or secretive information and should thus be
handled accordingly. It is of high importance that one should
look at what to and what not to cache as well as how the
data is stored. Furthermore, in networks where data is moved
around to different servers and caches, it is also crucial that
no personal or secretive data is stored at vulnerable locations.
One way of making sure no significant accidents occur is to
label data based on its risk level. This could then be taken into
account in the cost function of OCO policies. What should be
done as well is to regularly oversee for example the allocation
of data to not overly rely on the learning-based policies.

The reproducibility of this research and the implementation
of its algorithm can be low given the complexity of the prob-
lem and the solution. All the code with the implementation
and experiments can be found on GitHub [2]. This combined
with the explanation and notation given in this paper should
be sufficient into grasping the problem and solution.

6 Discussion
From each figure can it be seen that an optimistic policy with
a high amount of correct recommendations performs only



slightly better than the OMDne policy but is not as signifi-
cant as hoped. Significant changes in performance might be
discovered when the policies are run in more different cache
setups. A lot of parameters such as the catalogue size, cache
size, learning rate and percentage of correct recommenda-
tions can be tweaked. Moreover, more types of traces can
be used to see how that will impact the results. An interesting
trace could be a real data set of users interacting with an edge
cache.

What is very noticeable over almost all traces is that OGD
performs better than OMDne and OOMDne. This could be due
to the significant difference in optimal learning rates. From
figure 3 (b) and (c) can the impact of a higher learning rate
be seen for these policies. Even though large performance
differences can be seen with these higher learning rates it was
chosen to go forward with the optimal learning rate because
it had been proven to always have a sub-linear regret. More
tests for these learning rates could be done under different
traces, to see if this significant change in performance would
persist.

7 Conclusions and Future Work

An optimistic online caching policy is designed using a nega-
tive entropy optimistic online mirror descent algorithm. From
the obtained results can it be concluded that the optimistic
policy with mostly wrong recommendations has an equal per-
formance in terms of regret as its non-optimistic counterpart.
When the policy receives a high percentage of correct predic-
tions then the policy has a lower regret that its non-optimistic
counterpart.

Some possible extensions that could be experimented with
in future works would be to see how the policy will perform
under batch file requests instead of single file requests. The
optimality of the proposed optimistic online caching policy
could also be tested in a more complex cache network in-
stead of a single cache scenario. Furthermore, in this research
were correct and faulty predictions generated according to the
quality parameter σ. It can be interesting to see how the in-
tegration of the optimistic policy will work with an actual
recommender system under real data sets. Lastly, theoretical
research could be done to find the optimal learning rates for
the two learning rates of the OOMDne policy since no proofs
have been given as of yet for their regrets bounds.
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