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Abstract

Tomographic PIV is one of the most recent and advanced tools used in experimental
fluid dynamics. Low spatial resolution is currently a problem in large scale tomo-PIV as
well in conventional tomo-PIV experiments where certain flow regions have low seeding
concentration.

A novel technique is proposed which leverages the temporal information of full Lagrangian
particle tracks to improve the spatial resolution of tomo-PIV in low seeded flows. The
method produces dense Eulerian velocity field from sparse scattered particle tracks ob-
tained from state of the art particle tracking algorithms. The method is based on a
variational principle wherein iterative simulations of Vortex-in-Cell method (Schneiders
et al., 2014) are performed to minimise the norm of the difference between simulated
and measured velocity of scattered particles. The LBFGS method, which is a gradient
based numerical optimisation technique, is utilised to solve this optimisation problem.
Gradient of the cost function with respect to the system’s degree of freedom is computed
using the adjoint method. Initial and boundary conditions are taken from tomo-PIV
measurements.

A two dimensional analytical vortex blob is considered for the numerical validation of
the proposed method. Both qualitative and quantitative analysis are performed for its
detailed assessment. The method demonstrates significantly improved reconstructions
as compared to methods which rely on instantaneous information of the particles. It
is also revealed that utilising longer particle tracks within the methods framework fur-
ther improves the reconstruction quality and spatial resolution. The method even shows
significant noise reduction capability which enhances when using longer tracks.

The proposed method is also validated in an unsteady and evolving flow field by simulating
the Von-Karman shedding in the wake of a long cylinder. Even at very low seeding
densities the method successfully reconstructs the main structures of the flow. Providing
more temporal information again proves to augment the methods ability to produce more
accurate reconstructions.
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Chapter 1

Introduction

Richard Feynman said "Turbulence is the most important unsolved problem of classical
physics". It has been described as one of the six most difficult problems of the millennium
in mathematics. In order to understand the behaviour of turbulent fluid flow, many
experimental and computational methods have been devised over the years. Particle image
velocimetry emerged in the 1980s as a method of experimental fluid flow measurement
and visualisation. It has gained a lot of popularity because of its non intrusive nature
and the ability to measure instantaneous velocity over the entire cross-section of a fluid
flow region (Adrian, 1991).

Planar PIV provides accurate two dimensional flow information simultaneously at over
105 nodes (Westerweel et al., 2013). But two dimensional information is not sufficient to
gain the full understanding of the turbulent flows which evolve in the three dimensional
space. Only two velocities and four velocity gradients can be determined using the planar
PIV (Westerweel et al., 2013). To gain a more complete understanding of the complex
turbulent flows, a three dimensional flow measurement technique is required. One of the
most recent and advanced 3D PIV techniques is the tomographic PIV (tomo-PIV) (Elsinga
et al., 2006). The technique provides all the three components of velocity of the flow in
a measurement volume. The tracer particles in a flow are illuminated by a pulsed laser
in a control volume. The intensity of the light scattered from the particles are captured
by several cameras from different viewing angles simultaneously. Using the images 3D
reconstruction of the particles is done and the velocity components are obtained by 3D
cross correlation of two exposures.

The spatial resolution in tomo-PIV depends mainly on the concentration of the tracer
particles in the flow, or in other words the seeding concentration. For getting a high spa-
tial resolution a high seeding concentration is required, but it cannot be increased beyond
a certain limit. This is because too much seeding concentration restricts the transmission
of light in the seeded fluid causing the image contrast to go down, refer figure 1.1. Tomo-
graphic reconstruction in this case yields a lot of spurious reconstructions Elsinga et al.
(2006) which subsequently causes the reconstruction quality to deteriorate.
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2 Introduction

The limited measurement volume available in tomo-PIV has restricted the technique’s
application in industrial wind tunnels. Recently helium filled soap bubbles (HFSB) are
being used to perform large scale tomo-PIV experiments. Scarano et al. (2015) point out
that the spatial resolution for large scaled tomo-PIV experiments with HFSB is mainly
restricted by the limited HFSB production rate or seeding concentration in the control
volume. Furthermore the increase in measurement volume for tomo-PIV results in the
reduction of the maximum seeding concentration curbing its spatial resolution. Along
with the aforementioned aspects resulting in low spatial resolution another factor is the
existence of some portions of the flow such as vortices, flow near the walls of the test
object etc., where it is quite difficult to get the required seeding concentration.

Figure 1.1: Image strips of experiments at different seeding densities (reproduced from
Scarano (2013b))

Tomo-PIV requires on an average 5 to 10 particles in each interrogation box for good
cross correlation (Scarano, 2013b). From these particle only one vector at the center of
the interrogation box is generated causing spatial filtering. Flow Cases with low seeding
density require large interrogation boxes resulting in further reduction in spatial resolu-
tion. The spatial filtering based on interrogation box size can be avoided using particle
tracking velocimetry (PTV) which traces individual particles to form their Lagrangian
tracks. Considering this aspect, PTV provides better spatial resolution, but the problem
with it is that information is available only at positions where the tracer particles are
present. Many post processing techniques require the data to be on a Eulerian grid. In
order to extract the scattered information on a grid, interpolation techniques have to be
utilised. Methods such as linear interpolation, adaptive Gaussian windowing, radial basis
functions, splines etc. have been conventionally used for this purpose but they all suffer
from spatial filtering. Also, all these methods are mathematical tools and do not impose
any physics based constraints on the system.

One of the most recent and advanced method which increases the spatial resolution of
tomo-PIV in the cases having limited seeding densities was proposed by Schneiders et al.
(2015). The method provides physics based reconstruction of Eulerian velocity field using
instantaneous velocity and temporal information of the flow in the form of its material
derivative.



3

Although the material derivative does provide some temporal information, in no way it
can be considered to account for full information of the development of flow in time. The
present thesis explores the idea, whether providing more temporal information will help in
achieving even higher spatial resolution. Thus instead of just using the material derivative
the thesis involves devising a method that uses the full particle track information in the
VIC+ framework (Schneiders et al., 2015). The proposed method envisages to pour the
temporal information of PTV in the spatial domain of tomo-PIV.
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Chapter 2

Particle Image Velocimetry

This chapter first introduces the fundamental concepts and working principle of PIV.
The state of the art techniques evolved from PIV are discussed and their advantages and
limitations analysed.

2.1 Fundamentals of PIV

There has been tremendous development in the field of PIV in the last three decades
and over the years it has become one of the most used and researched measurement
technique in fluid mechanics. The other popular measurement techniques such as hot wire
anemometry and laser Doppler velocimetry have their own advantages such as the high
signal to noise ratio and high temporal resolution, which has not yet been surpassed by
PIV. But PIV has some major advantages of providing velocity vectors simultaneously at
around 103 to 105 points, visualisation of flow and direct computation of spatial gradients
(enabling calculation of vorticity).

The fundamental principle on which particle image velocimetry works is the computa-
tion of velocity of a moving particle by measuring its displacement and dividing by the
respective time taken. The dynamics of a fluid is studied by putting small particles in
the flow which represent the fluid itself and travel along with it without any significant
intrusion. Introduction of the particles facilitates the quantitative investigation as well
as provides means for qualitative flow visualisation. The movement of the particles is
either captured by using single or multiple CCD or CMOS cameras. In order to make the
particle visible, they are illuminated by a source of light usually in the form of a double
head pulsed laser. Two consecutive images captured within a very short amount of time
by the cameras are used to calculate the displacement of the particles, which further is
used to compute the velocity of the flow field. The schematic diagram of a PIV system is
presented in figure 2.1.

5



6 Particle Image Velocimetry

Figure 2.1: Schematic diagram of PIV system (reproduced from Scarano (2013a)).

PIV is essentially a non intrusive experimental technique and the overall experimental
setup does not alter the fluid flow. But it does require optical access for both the laser
to illuminate the measurement volume as well as the cameras to take images. Also as
the measurement is performed indirectly using the tracer particles, they are required
to be densely and evenly distributed throughout the domain, unlike some visualisation
techniques which seed particles intermittently at specific intervals of space and time.
Figure 2.2 (a) presents the inhomogeneous seeding used in a jet flow for visualisation while
homogeneous seeding in figure 2.2 (b) for a PIV measurement. For the flow visualisation,
the seeding is introduced at a particular location to view some specific structures in the
flow.

Figure 2.2: Jet Flow (a) Flow visualisation, inhomogeneous seeding (b) PIV, homogeneous
seeding (reproduced from Westerweel (1997)).
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2.2 Development of PIV

R J Adrian (1991) mentions that PIV is a subset of a general group called Pulsed Light
Velocimetry, where in markers in a fluid flow are lighted by a pulsed source of light
and captured on an "optical recording medium". The inception of modern PIV can be
traced back to the work of Meynart (1983). The early 1990s saw the introduction of
digital particle image velocimetry. High speed lasers and evolved imaging sensor such as
CMOS sensor technology lead to the development of time resolved PIV with acquisition
frequency reaching up to 10KHz. The early PIV experiments were performed in a planar
domain which was later extended to two dimensional three component system called
stereoscopic PIV (Willert, 1997)(Prasad, 2000). Further developments came in the form
of tomographic PIV (Elsinga et al., 2006) which is a three dimensional three component
system. Introduction of time resolved tomo-PIV added another dimension to to the
evolving method. For a detailed review the reader is referred to Raffel et al. (2007),
Westerweel et al. (2013), Adrian et al. (2005) among others.

2.3 Working of PIV

The two images taken between the time interval ∆t are divided into numerous sub-
domains. These sub-domains or sections are called interrogation windows. The division
is followed by a spatial cross-correlation analysis of the respective windows of each image.
The distance of the peak of the cross-correlation maps from the center of the interrogation
window gives the displacement of particles. The displacement evaluation principle can be
seen in figure 2.3.

Figure 2.3: Cross correlation of two images

As formulated by Westerweel(1997), the displacement of the tracer particles in the time
interval ∆t is given by

D (x, t1, t2) =
∫ t2

t1
v (x, t1, t2) dt (2.1)

where t2 − t1 = ∆t, v is the tracer particle velocity. For an ideal case the tracer velocity
is equal to the fluid velocity u(x,t). When the displacement D is known or in this case
measured, the tracer velocity can be calculated by equation (2.2). This velocity is not the
instantaneous velocity of the particle at t1 but rather the averaged velocity over t1 to t2.
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If ∆t is sufficiently small, or the fluid particle may be assumed to have zero acceleration
within this time frame, then it can be conveniently approximated as the instantaneous
velocity at t1(Sciacchitano, 2014)(Westerweel, 1997).

v (x, t1) ≈ D (x, t1, t2)
∆t (2.2)

Figure 2.4 (a) demonstrates the ideal case where in the tracer particle is perfectly following
the fluid while figure 2.4 (b) shows the practical case where there is some slip between the
particle and the fluid. The practical case is suitably represented by equation (2.3). The
existing error ε largely depends on the selection of the tracer particle. It can be negligible
or significant based on the tracer particle dynamics and the exposure time between the
two images compared to the temporal and spatial scales of the flow. More on this can be
read in the work by Adrian(1995).

||D − u∆t|| < ε (2.3)

Figure 2.4: Tracer particle displacement. (a) Ideal case with same fluid and tracer velo-
cities (b) Real case with some slip between tracer and fluid (reproduced from
Sciacchitano (2014))

2.4 Tracer Particles

The dependency of PIV on tracer particles to get measurements makes the choice of
right particles very important for a successful experiment. It is desired that the disparity
between motion of the fluid and tracer particle be kept to a minimum. Apart from the
required dynamics of tracers, its light scattering abilities are also equally important to
facilitate their detection through the cameras. Some of the other important properties
of a tracer particle is that it should not chemically react and alter the fluid properties in
any way as well as they should not interact among themselves. The following subsections
present a brief discussion on the mechanical and light scattering properties of the seeding
particles.
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2.4.1 Mechanical Properties and Flow Characteristics

Movement of small particle in a fluid is influenced by many forces such as quasi-steady
viscous force (stokes drag), gravitational force, electrostatic force etc. For a small particle
in a fluid, all forces except the quasi-steady viscous force are negligible. Melling (1997)
discusses that the particle dynamics is highly dominated by the stokes drag force and
there in the involved properties such as particle diameter dp, particle densityρp, fluid
density ρ and fluid dynamic viscosity µ. The difference in velocity of the fluid and tracer
in a continuously accelerating fluid can be modelled as equation (2.4).

us = v − u = d2
p

(ρp − ρ)
18µ

dv

dt
(2.4)

where us is called as the slip velocity. Ideally it is desired that the right hand side of
the equation (2.4) is zero so as to make the fluid and particle velocity same. In order to
do so or bring it close to zero, two conditions are possible, first the acceleration of the
particle is zero i.e. dv

dt ≈ 0. This means that the fluid velocity is steady and for turbulent
flows this is impossible, hence would not be discussed further. The second possibility
is that the particle is neutrally buoyant which means that (ρp−ρ)

ρ << 1. Satisfying the
neutrally buoyant condition would result into high fidelity fluid tracking by the tracer
particle.

When considering heavy particles in fluid, analogous to the particle immersion in gas flows
where particle density is almost two order of magnitude higher than the surrounding fluid,
it is evident that particles are far from neutrally buoyant. Hence it is necessary to further
look into the response of particle motion with respect to the fluid. For a heavy particle
if the fluid velocity suddenly rises to u from zero then the particle does not attain that
velocity immediately and for the step signal it has an exponential response with its velocity
varying according to equation (2.5) Raffel et al. (2007).

v(t) = u

(
1− exp

(
− t

τs

))
(2.5)

τs = d2
p

(ρp − ρ)
18µ (2.6)

where τs is the relaxation time and can be viewed as the ability of particle to track the
fluid. As the particle density is very large in comparison to that of the fluid, equation
(2.6) can be fairly approximated as

τs = d2
p

ρp
18µ (2.7)

The relaxation time τs is the time required by the particle to reach 63% of the change
in velocity of the fluid from u1 to u2. It is required to be kept as low as possible for
the high fidelity fluid tracking. It is evident from equation (2.7), that a particle with
small diameter has lower relaxation time and is able to follow the flow more faithfully
as compared to a particle with same density and higher diameter. The diameter of the
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tracer cannot be reduced too much as it would result in the reduction of light scattering
properties of the particle. A trade-off between the two aspects has to be made. For a more
detailed discussion the reader is referred to Melling and Whitelaw (1973), Humphreys et
al. (1993), Meinhart et al. (1993).

The condition of neutral buoyancy is comparatively easy to achieve in high density fluids
such as liquids while it is very difficult to achieve in case of gases. The typical range of
particles used in gases is 0.5µm to 5µm, while in liquids particles up to 500µm have been
used.

2.4.2 Light Scattering Properties

Tracer particles seeded in a flow can only be used to extract information from the fluid
flow if they are properly captured by the image acquiring system. A particle having very
small relaxation time and high tracking fidelity will be rendered useless if its not able to
sufficiently scatter the light it receives from the light source.

The contrast between the illuminated particles and the background is an important factor
in dictating the accuracy of PIV. The contrast of an image increases with rise in the
scattered light intensity. The scattering properties of a particle depends on a few factors
such as its size, shape, relative refractive index of particle to the fluid and the light source.
It is also heavily dependent on the direction of reception or observation of the scattered
light. Mie’s light scattering theory (Mie, 1908) is applicable for particles having diameter
larger than the wavelength of illuminating source. According to the findings of the theory
larger particle have better scattering properties and contribute to increase in scattered
light intensity. Also material having high relative refractive index with respect to the
fluid have increased scattering efficiency. The most favourable observation direction is
the forward direction of the incoming light source because its intensity is very high as
compared to the other direction. Limitations such as the inability to capture depth of
the measurement field and problems with optical access render the use of other directions
more feasible as compared to the forward direction.

2.5 Light Source

The most common illumination sources used in PIV are the double head pulsed laser
systems. The lasers provide high intensity, collimated, monochromatic light which can
be easily shaped to form sheets acting as the measurement domain. The pulse energy
provided by the laser must be such that the scattered light intensity captured by the
imaging systems provides sufficient particle to background contrast. The pulse duration
of the light source must be much smaller than the time taken by particle to be displaced by
a length equivalent to its diameter. This ensure that the particles are imaged as distinct
spots rather than streaks.

The Nd:YAG (Neodymium-doped yttrium aluminium garnet) laser is the commonly used
source of light for PIV experiments. It has a wavelength of 532nm and pulse energy
production lies in the range of 10mJ to 1J . The repetition rate of these lasers are
generally less than 50Hz, which is insufficient to perform time resolved PIV experiments.
The Nd:YLF (Neodymium-doped yttrium lithium fluoride) have been developed which
have very high repetition rate of up to 5KHz, at the cost of reduced pulse energy reaching
up to 30mJ .
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2.6 Stereoscopic PIV

The discussion in the above sections has made it clear that with planar PIV one can only
evaluate two components of the velocity field. Moving a step further from the 2D realm
of planar PIV, stereoscopic particle image velocimetry was developed (Arroyo & Greated,
1991)(Willert, 1997)(Prasad & Adrian, 1993). The method adds another dimension to
the information available on a plane. It is a direct extension of planar PIV obtained by
collaborating it with stereoscopy. Two cameras are used to capture images of laser sheet
from different viewing angles. By doing this the z velocity is extracted along with the
x and y velocity on the measurement plane. For a more detailed review and study on
the working principles of the method, reader is referred to Prasad (2000). The schematic
diagram of stereo PIV is shown in figure 2.5

Figure 2.5: Schematic diagram of stereoscopic PIV

Stereoscopic PIV enables the calculation of the velocity gradients in the x direction and
the y direction but as the z component of velocity is available on a plane, the gradient
along the z direction cannot be obtained. To cater to this issue multi plane sterescopic
PIV was developed (Kähler & Kompenhans, 2000). This method performs stereoscopic
PIV on two (Mullin & Dahm, 2005) or multiple parallel planes simultaneously, enabling
the computation of the velocity gradient in the out of plane direction.

2.6.1 Limitations of Steroscopic PIV

The limitation of this method is that even though all the components of velocity and
their gradients can be computed, they are still computed in a planar domain. For many
physical flows acquiring information on a plane is not sufficient to get full understanding
of its dynamics. For reconstruction of full 3D domain, Taylor’s frozen turbulence hypo-
thesis has to be made and it has to be assumed that the turbulent structures don’t vary
spatially between the two laser sheets. Scarano (2013) very nicely explains the problem of
high reliability of stereoscopic PIV on assumptions, by an analogy stating "The impaired
measurement may be compared to that of estimating the properties of a living animal
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from its footprints, hearing its voice or echo or watching its shadow projected on the wall".
Moreover, the optical arrangement in a multiple plane PIV is more complicated because of
the involvement of lasers with different polarisations, illuminating parallel planes.

2.7 Tomographic PIV

Tomographic PIV is a three dimensional measurement technique developed by Elsinga et
al. (2006), which essentially computes all the velocity components of a flow along with
the respective gradients by producing a three dimensional flow field.

The technique involves illumination of a seeded measurement volume with a pulsed laser
by increasing width of the laser sheet. The light scattered by the seeded particles are
captured using multiple cameras (generally 4) from different viewing angles. The image
pairs captured by each camera are utilised by the reconstruction algorithm to reconstruct
a virtual three dimensional volume with distributed light intensities. The physical and
image space require to be related in order to perform the three dimensional reconstruction.
For this a calibration procedure is adopted in line with that of the stereoscopic PIV but
requiring a higher precision (less than 0.1 pixels). The reconstructed volumes are then
divided into small interrogation volumes, analogous to the interrogation window in planar
PIV. The volume pairs are then cross-correlated leading to the computation of the three
dimensional velocity field. Figure 2.6 presents the schematic diagram of a typical tomo-
PIV system. Also can be seen is the flow chart of its fundamental working principle.

Figure 2.6: Working of tomo-PIV with images show sequence of the flow field reconstruction
(reproduced from Westerweel et al. (2013)).
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The main novelty of this measurement technique is the development of an algorithm to
reconstruct the 3D object space by optical tomography (Scarano, 2013b). Elsinga et al.
(2006) developed an iterative algorithm named multiplicative algebraic reconstruction
technique (MART) to solve the reconstruction problem at hand. This was followed by
the development of various modified versions of this method in the coming years. The
entire light intensity distribution in the 3D space is discretised and represented by voxels
which are synonymous to the pixels used in planar space. The particles constitute only
a fraction of the measurement volume and hence there are a very small number of voxels
which carry non zero intensity values, rendering more than 90% of the voxels having
zero intensity Westerweel et al. (2013). To take advantage of this phenomenon methods
like MFG (multiplicative first guess) (Worth & Nickels, 2008) and MLOS (multiplicative
line of sight) (Atkinson et al., 2008) were developed. These methods provide single step
solution with a lot of computational advantage over MART but the acceptable accuracy
is obtained for only low particle density. The low particle density invariably reduces the
spatial resolution of the results. These methods have been developed to be used along
with MART (MLOS-SMART) to enhance the computational speed considerably, keeping
the accuracy similar to the conventional MART algorithm.

Figure 2.7: Turbulent wake of a flow over a cylinder (reproduced from Scarano and Poelma
(2009)).

Figure 2.8: Transitional jet captured by time resolved (4D) tomo-PIV. (reproduced from
Scarano et al. (2010)).

Since its inception, the technique has been widely used in experimental fluid mechanics.
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High speed lasers and image capturing systems have made it possible to perform time-
resolved tomo-PIV experiments. Tomo-PIV has been used to perform wide range of
experiments such as flow over bluff bodies and study of their turbulent wakes(Scarano
and Poelma, 2009), (Heine et al., 2011), (David et al., 2011), turbulent boundary layers
(Gao et al., 2010), (Humble et al., 2009), (Amili et al., 2009), (Ghaemi et al., 2012),
transitional jets (Violato et al., 2011), (Scarano et al., 2010), (Schmid et al., 2012). For
a detailed review on the applications and development of the technique, the reader is
referred to Scarano (2013), Westerweel et al. (2013).

2.7.1 Limitations of Tomo-PIV

Some of the initial drawbacks of tomo-PIV were the requirement of a complicated and
highly precise calibration system and large processing time required for the image recon-
struction. Both these issues have received ample attention with the former being dealt
with the introduction of volume self calibrated technique by Wieneke (2007, 2008). In
order to reduce the computational cost, various adaptations of MART such as MLOS-
SMART were developed as discussed above. The reconstruction accuracy has also been
researched upon and many post-processing techniques have brought significant improve-
ment to it. More on this will be discussed in next chapter.

Even after the great development, tomo-PIV has not been used for industrial applications
yet, mainly due to availability of limited measurement volume. The typical measure-
ment volume used in tomo-PIV with high acquisition frequency (1 KHz) ranges below
100cm3(Scarano et al., 2015). This scale is mostly suitable for academic studies rather
than being used in the industry. Two main factors contributing to this limitations are the
image source density and laser pulse energy.

Image Source Density

The seeding density (particle per pixel) directly affects spatial resolution of a PIV exper-
iment. The spatial resolution of tomo-PIV is lower as compared to that of planar PIV
due to the limited number of tracer particles present in the domain. A more general
parameter compared to seeding density, which does not depend on particle size is image
source density (Ns). It is defined as the fraction of the image occupied by the particles.
For a four camera system, accurate reconstruction can be done for Ns < 0.5 as reported
by Novara et. al. (2010), Scarano (2013b). Beyond this limit transmission of light is
offered significant hindrance which leads to the reduction of image contrast and thus the
overall reconstruction accuracy.

The seeding concentration C (particles/mm3) relates to the image source density Ns, as
given in equation (2.8). When the measurement volume is increased getting the same
concentration

C = Ns ·D2
r

W

4
πd∗τ2 (2.8)

where W is the width of measurement volume, Dr is the digital image resolution and
d∗τ is the pixel normalised particle image diameter. For a particular type of seeding and
image condition, the seeding concentration is directly proportional to the image source
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density and inversely proportional to the measurement volume(for a particular length and
breadth of measurement). Because of the limit on the image source density, the seeding
concentration has to be reduced for an increasing measurement volume. This causes the
reduction of available spatial resolution.

Laser Pulse Energy

The laser pulse energy is also a major factor contributing to the restriction of measure-
ment volume of tomo-PIV. For a same source of illumination, its pulse energy decreases
with the increase in volume. Increasing the measurement volume by 100% decreases the
peak particle intensity by one order of magnitude (Scarano et al., 2015). The laser repeti-
tion rate is inversely proportional to the pulse energy, hence experiments performed with
larger measurement volume have lower temporal resolution. For conventional tomo-PIV
experiments a solution was developed in the form of application of multi-pass light amp-
lification system (Ghaemi & Scarano, 2010). Larger volume again pose problems for the
present laser systems available. One solution to the issue of low illumination intensity in
large volume is the introduction of particles having enhanced light scattering properties.
Helium filled soap bubbles is one such particle. More on this is described in the next
chapter.

2.8 Large Scale Tomo-PIV

Large scale tomo-PIV has been recently gaining a lot of attention from the scientific
community and its development mainly aim towards making the measurement technique
feasible for industrial use. Recently Helium filled soap bubbles (HFSB) have been pro-
posed (Scarano et al., 2015) to be used for large scale tomo-PIV experiments. Scarano
et al. (2015) performed time resolved tomo-PIV experiment (greater than 1KHz) for a
volume of 4800cm2, which is significantly higher compared to other time resolved exper-
iments done till date. They did this by devising a HFSB seeding device which produces
tracers at an increased seeding rate. Earlier Kühn et al. (2011) also used HFSB with very
large volume, but the experiment was performed in an enclosure. Large scale tomo-PIV is
also recently being utilised in the filed of sports aerodynamics Sciacchitano et al. (2015),
marking the bright future which lies ahead for the method.

Scarano et al.(2015) report that the reconstructed velocity field in the wake of cylinder
suffers from low spatial resolution. Although bigger turbulent structure are visible, the
smaller sub-structures are filtered out. The reason for this was concluded as low seeding
density (< 0.01ppp) achieved in the experiment. This can be viewed in the figure 2.9.
The magnified part of the figure specifically shows wake of the cylinder where hardly
any particles are seen. With very low seeding densities, larger interrogation windows are
required for the cross-correlation process, leading to the spatial filtering. In this study it
was shown that the limit on the seeding production rate is currently dictating increase in
the tomo-PIV measurement volume.
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Figure 2.9: Large Scale tomo-PIV setup. Magnified image shows very low seeding density
behind the cylinder (adapted from Sacrano et al. (2015)).

2.9 Particle Tracking Velocimetry

Particle tracking velocimetry is a measurement technique used to track individual particles
in a seeded flow and compute their velocities. It follows a Lagrangian approach while PIV
follows a Eulerian approach, by calculating velocities on a grid. Three dimensional PTV
was introduced in the early nineties (Malik et al., 1993). The method triangulates the po-
sition of the particle positions and between two consecutive images, matching occurrences
of the particles is formed, thus creating the Lagrangian tracks.

The main advantage with this technique is that it avoids any interrogation based spatial
filtering observed in PIV. As the principle of the computation of velocity in PTV does
not use cross correlation, the spatial smoothing is prevented. The existence of spurious
particles in the reconstruction is largely limited by the method.

2.9.1 Limitations of PTV

The Lagrangian nature of the method allows it to provide information only at the particle
locations. Thus data cannot be produced directly on a grid, but is done through an inter-
polation technique. This results in the reduction of spatial resolution. Malik et al. (1993)
note that low particle spacing to displacement hinders the particle identification and
tracking capability of PTV. This means that large spacing between particles is required
which means that the allowable seeding density remains to be very low (< 0.005ppp). The
maximum seeding density is almost one order of magnitude lower than tomo-PIV. This
results in low resolution as well. Currently some postprocessing techniques have been
developed which have increased the capability of PTV to handle larger seeding densities.
More on this is discussed in the chapter to follow.



Chapter 3

State of the Art of Processing
Techniques

The current chapter deals with state of the art processing techniques for both PIV and
PTV. The concept of combining the two methods to achieve higher spatial resolution
is discussed in section 3.4. This is followed by a brief discussion on the application of
numerical techniques such as CFD and variational methods in the realm of PIV. The
numerical optimisation methods relevant to this thesis are also pondered over in the last
section of this chapter.

3.1 PIV Processing

A novel technique of utilising the information contained in multiple images at various
times to improve the reconstruction of intensities was introduced in the form of MTE-
MART(motion tracking enhancement-MART) by Novara et al. (2010). SMTE(sequential
motion tracking enhancement)(Lynch & Scarano, 2015) was later proposed to make MTE
computationally efficient. Improvement in the correlation of time resolved tomo-PIV was
shown by methods like FTC (fluid trajectory correlation) (Lynch & Scarano, 2012).

Conventional PIV methods use rectangular interrogation windows for cross-correlation.
Some methods differed from the regular rectangular window size and adopted its elongated
version to increase the spatial resolution in one direction (Scarano, 2003), (Theunissen
et al., 2007). Wieneke and Pfeiffer (2010) developed the concept further and introduced
the idea of window shape and size variation based on the quality of the image and the
local velocity gradient in order to enhance the spatial resolution of reconstructed flow
field.

3.2 PTV Processing

As discussed in section 2.9, the main problem with PTV has been its inability to handle
large seeding concentrations. This has been convincingly dealt with in the recent advance-
ments in the field. Schanz et al. (2014) developed a novel method named 'Shake the box'

17
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which utilizes the temporal information of time resolved PTV to produce highly accurate
particle tracks. It does not reconstruct the Lagrangian tracks from scratch but rather
uses the 'Iterative particle reconstruction' method proposed by Wieneke (2012) as initial
condition. The method produces accurate tracks for high seeding densities of the order
that is used in tomo-PIV. The methods seems to fail above very high seeding densities of
0.125ppp. The method is reliable and does well as compared to the MLOS-SMART.

3.3 Scattered Measurement to Grid Data

The data from Particle Tracking Velocimetry is obtained at the particle locations. As
the particles are randomly distributed throughout the measurement domain, the data
obtained is also scattered. Now, many post processing softwares and tools require the data
to be gridded. Data on a grid helps in better visualisation, ease of gradient calculation as
well as facilitates simplification of other post-processing measures. Over the years many
methods have been developed for the reconstruction of measured scattered data on a
uniform gird. One of the most simplistic and trivial of them is the linear interpolation.
A bit more advanced are the higher order polynomial interpolation schemes.

Adaptive Gaussian windowing was proposed by Agüí and Jiménez (1987). The method
is quite popular and involves weighted averaging over all the vectors in the observation
volume. The method has a disadvantage of smoothing or low pass filtering of the velocity
field which in turn reduces the spatial resolution. Other interpolation schemes such as
radial basis function interpolation (Casa & Krueger, 2013), splines also suffers from a
similar problem of smoothing.

3.4 PIV with PTV

An important question which arises when studying PIV and PTV is: can their advant-
ages be utilised together to negate their respective disadvantages? Meaning, whether the
tracks produced by PTV can be utilised to increase spatial resolution of particle image
velocimetry. This realm was first explored and the concept of super resolution was intro-
duced by Keane et al. (1995), who used the combination of PIV and PTV in order to
utilise the advantages of both the methods. This concept was further developed by Sitou
and Riethmuller (2011) who proposed a 'hybrid PIV-PTV' method to address the issue
of low spatial resolution in PIV. Recently Schneiders et al. (2015) utilised the temporal
information available in time resolved tomo-PTV to increase the spatial resolution of data
on grid. This method is discussed in more detail in chapter 4.

3.5 Solenoidal Flow

Tomo-PIV being a three dimensional measurement technique provides all the nine com-
ponents of the velocity gradient. Incompressible flows are divergence free by the virtue
of mass conservation and the physical constraint can only be applied in cases where all
the velocity gradients are available. For planar PIV, the divergence free constraint is
not always applicable as information on the out of plane component of velocity is not
available.

There have been many advanced numerical techniques which leverage the property of
solenoidal velocity flow field to reduce noise and enhance the reconstruction quality.
Vedula et al. (2005) discuss an interpolation method working on a variational principle to
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get a Eulerian flow field. They impose a regularisation term which ensures divergence free
flow field. Azijli et al. (2014,2015) also device a statistical regression method in order to
analytically make the flow solenoidal and show results with better accuracy for methods
with enforced divergence free constraint than without it.

3.6 Navier-Stokes to Fill Gaps in PIV Data

Sciachhitano et al. (2012) demonstrated a technique to fill the voids in PIV measurements
by the use of full incompressible Navier-Stokes solver. The regions of the measurement
gaps are selected and the information on the nodes computed through the Navier-Stokes
solver. Figure 3.1 (left) shows an aerofoil with measurement gap created due to shadow of
the object while the right figure shows the reconstructed field. It has been demonstrated
by the author that the significant improvement over the conventional interpolation tech-
nique is provided by the method. As the finite volume Navier-Stokes solver required very
small integration time steps, the boundary condition of the reconstruction domain have
to be created by the advection model. The method will work well only in flow conditions
where the model holds true.

Figure 3.1: (Left) Identifying gappy region of a PIV experiment performed to investigate an
aerofoil. (Right) Filled data with incompressible Navier stokes solver (reproduced
from Sciachhitano et al. (2012))

3.7 Variational Methods and PIV

Variational methods are used to improve a noisy data by dynamically modifying it to
minimise a cost function based on certain parameters. The field of computer vision has
been using the phenomenon and in the past decade it has been adopted in PIV. Corpetti
et al. (2005) utilised the continuity equation to enhance the paticle motion estimation.
More flow physics was utilised by Ruhnau et al. (2007) by utilising the full incompressible
Navier-Stokes equation to improve the particle motion estimation. Recently Vlasenko et
al. (2008,2010) used the variational methods for denoising the corrupted vector field using
the vorticity transport equation and physically consistent regularisation. This concept was
further developed into by Vlasenko et al. (2015) to restore flow field data corrupted by
noise and gaps.

Lemke and Sesterhenn (2013) discuss a variational method which uses the full compress-
ible Navier-Stokes equation in an adjoint based optimisation process. It minimises the
squared difference between the PIV velocities obtained from measurements and numerical
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simulations. Although the method aims to find pressure field from velocity data, consid-
ering the path of this review, the variational approach is to be focused on. Gronskis
et al. (2013) use the adjoint based variational method to improve the output of direct
numerical simulation using measurement data.

Figure 3.2: Lower error at initial time instant when assimilating longer measurements (re-
produced from Yegavian et al. (2015))

A similar approach is adopted by Yegavian et al. (2015) to assess the performance of
adjoint based data assimilation on the improvement of quality. They specifically point
out that when the spatial density of the measurement increases, the quality of results en-
hances but the measurements temporal density does not play an as effective role. Another
important observation is made that when considering measurement over a larger period
of time the quality significantly improves. When assimilating longer measurements, the
instantaneous error at the initial time instances decrease as shown in figure 3.2.

3.8 Numerical Optimisation Methods

Now all the variational methods minimise the cost function using some kind of numer-
ical optimisation scheme.The BFGS (Broyden–Fletcher–Goldfarb–Shanno) method is one
of the most popular Quasi-Newton numerical optimisation techniques. The main disad-
vantage of using the BFGS technique when handing very large amount of data is that it
stores a dense inverse Hessian matrix and the methods becomes computationally ineffi-
cient. The LBFGS method was developed by Liu and Nocedal (1989) to approximate
the BFGS method with a limited computer memory. As it consumes less memory it is
computationally quite efficient as well.

The BFGS is a gradient based method. The gradient can be calculated using finite differ-
ence method but it faces the issue of being highly computationally expensive. Automatic
differentiation (AD) methods have been developed to tackle the problem. The tangent
linear method and adjoint method are the forward and reverse AD methods respectively.
Their computational expense depends on the number of inputs and outputs of the system.
If there are less input and more output parameter then the tangent linear is more efficient
while for the other way round the adjoint method is superior.



Chapter 4

Vortex-in-Cell

The present chapter begins with an overview of the vortex methods and the theoretical
concepts involved. This is followed by a discussion on the Vortex-in-Cell method in
section 4.2. Hereafter the applications of the VIC method are presented, with two of the
applications relevant to this thesis examined in more detail. At last a brief summary of
the literature review is incorporated.

4.1 Vortex Methods

The Vortex methods are basically particle methods which have been formulated on the
principle of approximation of the continuous vorticity field into discrete particles. Each
vortex particle has certain strength and influences the velocity field in the domain. Particle
methods in general have a Lagrangian form and same goes for the vortex methods. One
of the advantages of the vortex methods is the exclusion of the pressure term which makes
it of simplistic nature as compared to the full Navier-Stokes equations and reduces the
complexity involved in solving them. Cottet et al. (2000) mention that the issue which
arise due to the discretisation of the convective terms in the Navier-Stokes equations as
well as their stability constraints, can be eliminated due to the Lagrangian form used by
the methods. Furthermore the numerical representation of vortex dynamics of the fluid
flow is done in a better way by using the vortex methods (Kudela, 1999)(Schneiders et
al., 2014). They also provide direct and computationally efficient method for analysis of
vortical features present in a flow thus making them a very useful tool to analyse the
turbulent flows.

The vortex methods use the discrete version of the vorticity transport equation which
is obtained by taking the curl of the Navier-Stokes momentum equation. The vorticity
transport equation for an incompressible viscous flow is given by equation (4.1).

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u+ ν∆ω +∇× f (4.1)

In the absence of body force f, equation (4.1) reduces to
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∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u+ ν∆ω (4.2)

As the vorticity transport equation is derived for incompressible Navier-Stokes momentum
equation, the velocity field is divergence free as shown in equation (4.3).

∇ · u = 0 (4.3)

The left hand side of equation (4.2) represents the rate of change of vorticity while the
first term on the right represents the vortex stretching term and denotes the deformation
of the vortices in three dimensional flows. The second term on the right hand side of
equation (4.2) is the viscous term and represents the viscous diffusion of vorticity. When
considering a simplified two dimensional inviscid problem the vortex stretching term in
the vorticity transport equation drops out and it further reduces to equation (4.4).

∂ω

∂t
+ (u · ∇)ω = ν∆ω (4.4)

Further assumption of the flow being inviscid renders the right hand side of the equation
to be 0. Hence for an incompressible, inviscid and two dimensional flow, the vorticity
transport equation is given by (4.5). This assumption will be used for one of the test
cases to be presented in the later chapters.

∂ω

∂t
+ (u · ∇)ω = 0 (4.5)

4.1.1 Point Vortex

As discussed in the above sections, vortex methods deal with the distretisation of the
continuous vortex field into discrete elements. Now these elements can take various forms
such as small filaments, blobs (Chorin, 1973)(Chorin & Bernard, 1973), point vortices.
The origin of the vortex methods can be traced back to the early part of the twentieth
century where Rosenhead (1931) discretized the vortex field into elements represented by
point vortices. Birkhoff and Fisher (1959) attempted the same approach with higher num-
ber of point vortices and better computational techniques. Some of the other literature
about the development of the vortex can be found in Leonnard (1980,1985).

ω (x, t) =
Np∑
j=1

Γjδ [x− xj (t)] (4.6)

where δ is the Dirac delta function while xj represents the position of point vortices at
time t. The variable Γj is the vectorial circulation of the point vortices or vortex particles.
For a region S in a domain, Γ is given by equation (4.7).

ΓS =
∫
S
ωdx (4.7)
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The point vortices or the vortex particles can be viewed as fluid particles and are as-
sumed to have displacement according to the magnitude and direction of velocity at their
respective positions. The relation between the position and the velocity is given by the
ordinary differential equation (4.8).

dxp
dt

= u (xp (t) , t) (4.8)

In order to compute the displacement of the particles, the velocity field needs to be
evaluated. The Poisson equation gives the relation between the velocity and vorticity
field. The solution of the Poisson equation gives the velocity field.

∆u = −∇× ω (4.9)

The solution of the Poisson equation (4.9) can be obtained using various methods. One
of the ways is with the mesh free methods which provide an advantage of reducing the
numerical dissipation or the smoothing observed in the conventional grid based solvers.
The classical vortex methods use this mesh free approach as well. They have a form of
a N body problem and each particle interacts with every other particle in the domain.
This causes the computational cost to steeply rises with the increase in the resolution
of the system (Morgenthal & Walther, 2007). In order to improve on this disadvantage,
Greengard and Rokhlin (1987) introduced the Fast Multipole Methods which treats a
group of vortex particles close to each other as a single source or entity. The computational
expense for the mesh free method is of the order of O(N2

p ) while that for the FMM
technique is O(N)(Morgenthal & Walther, 2007)(Greengard & Rokhlin, 1987) . For
inspecting some of the implementations of FMM, the reader can refer to Strain (2996,1997)
(Ploumhans, Winckelmans & Salmon, 1999) for two dimensional flows and (Bernard,
1999)(Najm et al., 1999) for three dimensional flows.

The velocity field in a mesh free system is usually calculated using the Bio-Savart law.
If the assumption is made that the fluid is at rest at an infinite distance from the vortex
particle and the flow is two dimensional then equation (4.10) gives the solution of the
Poisson equation (4.9). This solution is obtained from the influence of one vortex particle,
similarly the resultant velocity field has contributions from all the vortex particles in the
domain.

u (x, t) = − 1
2π

∫ (x− x′)× êzω (x′, t) dx′

|x− x′|2
(4.10)

The hybrid methods are the other class of methods and feature the usage of the Eulerian
grid for solving the Poisson equation while retaining the benefits of Lagrangian form of the
mesh free methods. They have been developed to essentially reduce the computational
cost involved in evaluating the velocity by the Bio-Savart integration when involving high
density system with large number of vortex particles (Leonard, 1980). The Vortex-in-Cell
methods belongs to the family of the hybrid methods and is discussed in detail in the
next chapter.
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4.2 Vortex-in-Cell

The Vortex-in-Cell method was first introduced by Christiansen (1973) in order to solve
the two dimensional incompressible inviscid flows. He adopted a hybrid approach where
in the Poisson equation is solved on a regular computational grid. The vortex particles
are advected in a similar fashion as done in equation (4.8) for the classical vortex methods
but the difference is that they are interpolated back to a grid after each time step. This
phenomenon is nicely depicted in figure 4.1(left) where the black dots represent the ad-
vected vortex particles while the white one represent the grid nodes. Once the calculation
of the velocity field is done, it is interpolated to the particle locations in order to find the
local velocities. Based on the local velocities, the particles are again advected and this
process is repeated for all the time instances. For the conservation of moment, interpol-
ation kernels of higher order (Monaghan, 1985)(Cottet & Koumoutsakos, 2000)(Kudela,
1999) are used in order to project the vorticity field on to the grid as well as find the
velocity at the particle locations, so that the method is more accurate (Morgenthal &
Walther, 2007).

Figure 4.1: vortex particle advection (left), Initialisation of particle at each time step with
shaded area assigned to the black particle (right) (reproduced from Schneiders
et al. (2014)).

In Christiansen’s approach the Posisson equation is written in terms of the stream func-
tion (4.11). Wherein for a two dimensional flow the vorticity and stream function are
considered as scalars ω = (0, 0, ω), Ψ = (0, 0,Ψ). The Poisson equation can be solved
using multiple techniques available for solving differential equations on a Eulerian grid.
For simple geometries the usage of Fast Fourier Transform provides accurate solution with
low computational expense (Hockney, 1970)(Burridge & Temperton, 1979). The compu-
taional cost involved is of the order of O(Np) (Morgenthal & Walther, 2007), which is one
order of magnitude lower than that of the mesh free method.

∇2Ψ = −ω (4.11)

where,
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ω = ∇× u, u = ∇×Ψ (4.12)

Schneiders (2014) points out that the advantage of using the stream function is more
profound in case of two dimensional flows where it reduces the number of equations to be
solved for getting the velocity field. But when considering 3D flows equation (4.11) and
(4.9) need similar computational effort to get the solution. For PIV experiments as the
velocity field is readily available, it is better to use the formulation of Poisson equation
which uses velocity directly rather than the stream function. For the present thesis, this
phenomenon has been taken into consideration.

4.2.1 Applications of VIC

The vortex in cell method has been extensively used in the field of computational fluid dy-
namics offering a wide range of applications. VIC has been used to study problems such as
two dimensional Kelvin-Helmholtz instability (Tryggvason, 1989)(Ribeiro & Kroo, 1995),
turbulent flows (Abdolhosseini & Milane, 1996)(Cottet et al., 2002), two dimensional
step (Savoie et al., 1996), vortex rings(Kudela & Kosior, 2011)(Couet et al., 1981)(Couet,
Buneman & Leonard, 1981), flows near wall (Liu, 2001). Mohammadian and Marshall
(2010) presented its application for the modelling of oceanic and atmospheric flows. It has
been recently utilised for the direct numerical simulations of turbulent flows (Uchiyama
et al., 2014)(Uchiyama & Yoshii, 2015).

VIC found its way into PIV applications when Schneiders et al. (2014) used it for increas-
ing the temporal resolution of time resolved tomo-PIV. The method was further utilised
to increase the spatial resolution of tomo-PIV data (Schneiders et al., 2015) with the use
of adjoint based data assimilation. Schneiders et al. (2016) also devised a method to
use the VIC framework to calculate the pressure measurement from instantaneous single
snapshots of tomo-PIV. Some of the other possible applications (suggested by Schneiders
et al. (2014)) of the VIC method for PIV are noise reduction of the PIV measurements
and computation of material derivative from single snapshots or instantaneous velocity
fields.

The proposed technique in this thesis will be developed from the VIC+ technique, which
again utilises the time integration proposed in the time super-sampling method. Hence,
it is relevant to discuss both the methods in greater detail.

4.2.2 Time Super-Sampling (Pouring Space in Time)

Time super-sampling method was introduced by Schneiders et al. (2014) to improve
the temporal resolution of time resolved PIV data. The method is based on the VIC
method and utilises the spatial information available to increase temporal information of
the flow provided by PIV. The method is essentially applicable to incompressible flows
and provides accurate time slices between two measurements sampled at a frequency lower
than that defined by the Nyquist criterion.

The method solves the unsteady Navier-Stokes equation using the Vortex-in-Cell method,
with the PIV measurement providing the initial conditions of the simulation. It assumes
the viscous dissipation in a flow to be negligible considering the short integration time.
This allows for the backward integration to be possible, enabling computation of the flow
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field going back in time. When flow measurements at two time instances T1 and T2 are
available then it performs forward time integration from T1 to T2 as well as backward
time integration from T2 to T1. The super-sampled time slices are a weighted average of
both the integration, thus enforcing temporal continuity of the solution. This working
principle is very well depicted in figure 4.2.

Figure 4.2: Working principle of time super-sampling. (Top) Using measurements at two
time instances to produce time slices between them. (Bottom) Time series cre-
ation from instantaneous flow field (reproduced from Schneiders et al. (2014)).

Temporal reconstruction of fields from instantaneous snapshots can also be done, but
the possible constraint being that the reconstructed field is only as apart in time till the
assumption of neglecting the viscous dissipation holds. An experimental assessment of
a sub-sampled measurement of a transitional jet (Schneiders et al., 2014) demonstrated
that the method perform highly accurate reconstruction as compared to the advection
model proposed by Scarano and Moore (2011).

4.3 VIC+ (Pouring Time in Space)

The VIC+ method was introduced by Schneiders et al. (2015) to use the temporal
information available in time resolved tomo-PTV data to increase the spatial resolution
of instantaneous Eulerian flow field.

This method adopts an iterative gradient based numerical optimisation technique to min-
imise a cost function J consisting of terms containing instantaneous spatial data and tem-
poral information of the fluid. The temporal information is provided in the form of the
material derivative of velocity, which in turn is made available from the particle tracking
algorithm (tomo-PTV). The initial field is obtained from the measurement values while
the velocity field for subsequent time instances after the initiation of the optimisation
process are computed from time super-sampling technique Schneiders et al. (2014).
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Figure 4.3: Isosurfaces of Q-Criterion reconstructed using various methods for different seed-
ing concentrations C (particles/δ3

99); (a) DNS reference, (b) PIV, (c) Linear
interpolation, (d) AGW, (e) Divergence free regression, (f) VIC+ (reproduced
from Schneiders et al. (2015)).

The ability of the method to increase spatial resolution was demonstrated by Schneiders
et al. (2015) through numerical assessment of a turbulent boundary layer produced by
direct numerical simulation. VIC+ was found to produce higher resolution velocity fields
as compared to trilinear interpolation, AGW and solenoidal filtering. An experimental
analysis (Schneiders et al., (2016a)) on the turbulent boundary layer concluded similar
outcomes with the method producing accurate vorticity dynamics in the boundary layer.
A recent comparative study of different pressure computing techniques in PIV (Blinde
et al., 2016), depicted that the VIC+ method produced highly accurate instantaneous
pressure fields as compared to the cross correlation based methods.

4.4 Literature Survey Conclusion

Firstly it would be important to discuss the findings of Yegavian et al. (2015), who
show that increase in the length of the time series obtained from experiments enhanced
the quality of the results obtained by numerical simulation. This is a good basis to
hypothesize that the proposed method would prove out to produce positive results.

It was pointed out in chapter 2 that PTV does not suffer from interrogation window
based filtering as opposed to PIV. On the other hand PTV does not directly evaluates
gridded information. The advantages of both the methods can be combined to negate their
disadvantages. Due to the recent advancements in the field of Lagrangian particle tracking
algorithms (Schanz et al., 2014), creation of long and accurate particle tracks in densely
seeded flows has become feasible. The accurate temporal information available from these
tracks can be leveraged and 'poured into space' to increase the spatial resolution of the
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tomo-PIV data on a grid. A variational framework along with a flow solving technique is
required to take advantage of the temporal information available through PTV.

The Vortex-in-Cell method provides a computationally efficient and robust way of com-
puting the velocity field on a grid as compared to the conventional Navier-Stokes solvers.
These methods can help overcome the limited use of the iterative data assimilation meth-
ods on real three dimensional measurement data. The solenoidal flow field is enforced by
solving the Poisson equation in this method. This as discussed in section 3.5, also helps
to reduce noise and improve the overall quality of the reconstructed flow field.

In order to solve a variational problem, choice of right numerical optimisation method is
essential. The disadvantages of the BFGS method are discussed in section 3.7. As tomo-
PIV generates huge amount of data LBFGS numerical optimisation method would be
the logical choice. Also a method involving a long time series would be computationally
expensive so the choice of numerical optimisation has to be taken keeping the same into
consideration. At last the different gradient finding methods have also been discussed.
The adjoint method would be most appropriate for the present case primarily because
the number of inputs in the optimisation would be very large while the output is just
the cost function. As said in the previous section, with more inputs and less outputs the
adjoint method is superior when computational expense is concerned.



Chapter 5

Proposed Method

Part of the work published in the 8th International Symposium on the Application of
Laser and Imaging Techniques of Fluid Mechanics, Lisbon, Portugal (Schneiders et al.,
2016b).

This chapter describes the theoretical aspects about the proposed method. It is followed
by the discussion on the working principle of the method and its numerical implement-
ation. The algorithm of the method is also presented and the chapter is culminated by
a brief discussion on the gradient calculation using the adjoint code and it’s comparison
with the finite difference method from the perspective of the proposed method.

5.1 Theoretical Background

The ability of the VIC+ method to improve the spatial resolution of the tomo-PTV data
interpolated on a grid was discussed in the previous chapter. Information of the flow
in the form of the instantaneous velocity and it’s material derivative is utilised by the
method. For the present work it is proposed to utilise full particle tracks obtained from
tomo-PTV in the VIC+ framework. The rational behind this proposal is that when full
tracks are used, the flow information at all the time instances is to be leveraged which in
turn should result in the better reconstruction of the instantaneous Eulerian flow field.
The proposed method is an extension of the VIC+ method and for convenience will also
be named as 'VIC++' method along with the already mentioned term 'proposed method'
in the rest of the document.

A schematic diagram to show the information used by different methods including the
proposed method is presented in figure 5.1. The grey lines depict the particle tracks
found from PTV while the blue dots represent the particle positions at different time
instances. The red dots represent the particles and the vectors indicate the information
used for the reconstruction of the velocity field. The linear interpolation just uses the
instantaneous velocity measurements at the particle location. It linearly fits a curve which
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passes through these points. The VIC+ method on the other hand uses the instantaneous
velocity as well as the material derivative to produce the velocity on a fine Eulerian grid
(represented by the yellow lines). The VIC++ method however leverages the velocity
information of the full particle tracks and is expected to reconstruct data with even
higher spatial resolution.

Figure 5.1: Schematic diagram of an PTV Lagrangian track and the information used (red)
by different methods for reconstruction reconstruction. (a) Linear interpolation
(b) VIC+ (c)VIC++ (reproduced from Schneiders et al. (2016)).

5.2 Working Principle and Numerical Implementation

The method is based on the iterative gradient based numerical optimisation technique
and involves the VIC time integration, applied to the PIV measurement data in a similar
fashion as is done in Schneiders et al. (2014). Figure 5.2 presents a coarse flow chart
on the working of the method. The detailed algorithm is presented in the chapters to
follow.
The method requires the tomo-PIV data as an input to the system. The data is used
for the initial guess for the method, but more importantly for the boundary conditions
at all the time instances during the time integration. As the method involves numerical
optimisation, a good initial guess will result into faster convergence of results. The method
primarily needs the Lagrangian tracks obtained directly from tomo-PTV which involves
voxel based approach to find the particle trajectories and the particles corresponding
velocity information. The tracks used can also be obtained using the advanced particle
tracking algorithms such as IPR (Wieneke, 2012) and STB (Schanz et al., 2014).

Figure 5.2: Flowchart of the proposed method (reproduced from Schneiders et al. (2016)).

The Lagrangian data of the particle tracks act as a reference in the optimisation procedure.
This has a serious implication that the method at best can only be as good as the PTV



5.2 Working Principle and Numerical Implementation 31

data. If there are some inherent errors in the PTV data then are directly transferred to
the reconstructed flow field.

5.2.1 One Time Step

For the detailed discussion on the steps involved in the VIC++ method, it would be
better to start with a simpler algorithm and then extend it to achieve the desired goal.
Firstly an algorithm which involves leveraging information at two time instances or one
time step is presented in figure 5.4. This algorithm is expanded to include more time
steps and form the VIC++ method.

The method starts with the input of the tomo-PIV velocity vectors at time instant ti.
This velocity field is available on a regular grid and is named as Ugi , where the subscript
i denotes the velocity at the time instant ti. This velocity field is used to calculate the
vorticity field ωgi by simply taking its curl. The vorticity field instead of the velocity
field is used further in the numerical optimisation process because it assists in the auto-
matic dampening of the peaks in the output field which emerge due to the unconstrained
optimisation used in the method.

The VIC forward time integration is applied on the vorticity field to obtain the field
corresponding to the next available time slice of the particle tracks. It is important to
note that the time integration is only performed at the grid nodes inside the domain and
not at the boundary. The boundary conditions are taken from the tomo-PIV data. Also
the integration time step is much smaller than the time between adjacent tomo-PTV time
slices (ti and ti+1) and is decided based on the criteria mentioned by Schneiders et al.
(2014), as discussed in chapter 4. The vorticity field found as an output of the VIC time
integration will be referred to as ωV IC . The VIC time integration performed on ωgi gives
the vorticity field at the next time instant ie. ωV ICi+1 . This corresponding velocity field
UV ICi+1 at ti+1 is calculated by solving the Poisson equation (4.9).

Now in order to compare this gridded velocity field to the reference velocity of the particles,
it is linearly interpolated to the particle locations to compute UV ICsi+1

. Figure 5.3
presents the schematic diagram representing the grid nodes (blue dots) and the particle
positions (red dots). A bi-linear interpolation is performed and the value of velocity at
the particle location is computed based on the contribution from the velocity at the nodes
surrounding the particle. The contribution of a velocity at a grid node depends on and
is inversely proportional to the distance of the particle from the node. For example the
contribution of node (x3, y3) in figure 5.3 linearly depends on lx and ly. Smaller the value
of lx and ly higher is the velocity contribution of (x3, y3) at (xp, yp).
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Figure 5.3: Schematic diagram of the grid nodes (blue) and the particle positions (red).
Contribution of the node (x3, y3) depends on lx and ly

A non linear optimisation problem is formed to compare the particle velocities UPTV to
that with the one found from the linear interpolation of UV IC to the respective particle
position Xptv. In this regard a cost function is developed with its value being equal to
the norm of the difference of the velocities at the time instant ti+1. The cost function
is the linear combination of the individual cost functions of all the Np particles. The
optimisation problem deals with the minimisation of the cost function by varying the
vorticity field at time ti.

J =
Np∑
j=1

(
U
j
V ICsi+1 − U

j
PTVi+1

)2
(5.1)

In order to regularise the optimisation problem the velocity field at time ti is also interpol-
ated to XPTVi and compared with UPTVi . This enforces the regularisation of the initial
condition of the problem. After every iteration when ωgi is varied, the corresponding
velocity field is computed by solving the Poisson equation (4.9). The introduction of the
term corresponding to the initial condition in the cost function modifies it to equation
(5.2).

J =
Np∑
j=1

(
U
j
V ICsi+1 − U

j
PTVi+1

)2
+

Np∑
j=1

(
U
j
gi − U

j
PTVi

)2
(5.2)

In order to solve the non linear optimisation problem posed to minimise the cost function
in equation (5.2), a gradient based optimisation method is utilised. From the myriads
of techniques the LBFGS method proposed by Liu and Ncedal (1989) is used for the
problem. A discussion on the choice of the technique is presented in chapter 3. A gradient
based method requires the calculation of the gradient of the cost function with respect
to the degree of freedom in every iteration. The degree of freedom of the optimisation
problem are the variables which are iteratively varied by the method to minimise the
cost function and are stored in a vector ζ. The gradient dJ

dζ can be calculated by finite
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differences but the computational cost involved rises exponentially with the number of
degree of freedom involved in the system. The degree of freedom corresponds to the
number of grid nodes in the computational domain and for a three dimensional domain
has the size of (Nx ×Ny ×Nz). The optimisation problem performs the time integration
as many times to find the gradient with respect to each degree of freedom in the vector ζ.
In order to solve this issue in a computationally efficient way, automatic differentiation
methods have been looked upon. The adjoint method is used in the present algorithm
to compute the gradient and results in a hugely reduced computational effort with just
one time integration required for the calculation. This is really important with respect
to the computational feasibility of the proposed method. The advantage of the reduced
computational cost is accompanied with the issue large usage of memory for the adjoint
code. When the time integration considered is longer, this constraint becomes more
significant. For the present method, time sequences of the order of 40 snapshots are used
and the memory related drawback has a limited impact.

In the entire optimisation process, finding the gradient through the adjoint method is one
of the most difficult parts to execute. Hence a detailed discussion of the process will be
presented in the section to follow.

The termination of the iterative process of optimisation is done on reaching a specified
tolerance level either based on the value of the cost function J or the change in the degree
of freedom ∆ζ. For the present scenario the second option is chosen and the iteration
stops when the change in the degree of freedom is less than the tolerance of ζcon.

5.2.2 Multiple Time Step (VIC++)

The full VIC++ method is an extension of the one time step algorithm discussed in the
previous sub section. Detailed algorithm of the VIC++ method is presented in figure 5.5.
The time resolved tomo-PTV data to be used has a time length of Nt snapshots. The
nomenclature followed in this case is same as for the one step method.

The algorithm starts similarly with the tomo-PIV gridded data and particle tracks as
inputs. The cost function J1 is found in the same manner as done in equation (5.1) but
is not the final cost function to be used for the numerical optimisation. It rather is a
contributor to the main cost function and represents the infusion of flow information at
time ti+1. The velocity field found at time ti+1 is further used as an initial condition
for the VIC time integration and the Eulerian field is computed at time ti+2. Again
using this velocity and the tomo-PTV particle velocities at ti+2 a partial cost function
J2 is computed. This procedure is repeated till the partial cost function JNt−1 has been
calculated. The main cost function J is then computed as the linear combination of all
the partial cost functions.

J =
Nt−1∑
k=1

Jk +
Np∑
j=1

(
U
j
gi − U

j
PTVi

)2
(5.3)

where,

Jk =
Np∑
j=1

(
U
j
V ICsi+1 − U

j
PTVi+1

)2
(5.4)
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Again the initial condition regularization term is included in the cost function as shown
in equation (5.3). The vorticity field at time ti is updated after every iteration with a
goal of reducing the cost function. Ultimately when the change in the vorticity field is
less than a specified tolerance level, the program is terminated. The output of the entire
optimisation process is a vorticity field on a regular grid at time ti which in turn is used
to compute the velocity field at that time instant.
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VIC Forward code

UV ICgi+1

Grid to particle location

UV ICsi+1
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Adjoint Method

∂J
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, J
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∆ωgi < ∆ωcon Stop
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Figure 5.4: Algorithm of proposed method involving one time step
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Figure 5.5: Algorithm of the full VIC++ method
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5.3 Adjoint Method

The adjoint method is a numerical approach which is used for the efficient evaluation of
gradient of a cost function in an optmisation problem. The advantage of using adjoint
method over the conventional finite difference method is twofolds, one being the exact
computation of gradient devoid of the presence of any truncation error in contrast to the
finite differences. The other benifit being large reduction in the computational cost. The
gradient of the cost function with respect to the input variables represents the sensitivity
of the system to the change in its input. This is why gradient computation is also termed
in the literature as sensitivity analysis.
Adopting the formulation presented by Marta et al. (2007), a general representation
of the adjoint method is discussed. Cost function J is a function of the output of the
governing equations and the input variables ζ. The input variables are also referred to as
the degree of freedom of the system. The governing equations are denoted by equation
(5.6). For the present case it is the vorticity transport equation.

J = J (u (ζ) , ζ) (5.5)

R = R (ζ, u (ζ)) = 0 (5.6)

Now using the chain rule, gradient of the cost function can be written as equation (5.7).
The most expensive term of the equation is ∂u

∂ζ (Marta et al., 2007).

dJ

dζ
= ∂J

∂ζ
+ ∂J

∂u

∂u

∂ζ
(5.7)

The governing equation can also be written in a similar form. As the input variables satisfy
the equations, the gradient of R with respect to ζ should also be equal to zero.

dR

dζ
= ∂R

∂ζ
+ ∂R

∂u

∂u

∂ζ
= 0 (5.8)

Using equation (5.8), The cost function gradient can be written as

dJ

dζ
= ∂J

∂ζ
− ∂J

∂u

[
∂R

∂w

]−1 ∂R

∂ζ
(5.9)

Defining an adjoint vector λT = ∂J
∂u

[
∂R
∂u

]−1
. Thus the gradient of the cost function J can

be defined by

dJ

dζ
= ∂J

∂ζ
− λT ∂R

∂ζ
(5.10)

With,

[
∂R

∂u

]T
λ =

[
∂J

∂u

]T
(5.11)
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This adjoint formulation enables the computation of gradient using NJ linear system of
equations. As for the present case the cost function results in only one numerical value,
hence requiring only one set of equations to be solved. The partial derivative involved in
the equation are obtained by the reverse automatic differentiation method.

5.3.1 Adjoint Method vs Finite Diffference Method

Inspection of the advantage provided by the adjoint code in the view of the VIC++
method can be done by comparing its computational cost with its conventional counter-
part. For this the VIC++ method with 2 snapshots is considered with varying grid size.
The gradient of the cost function J with respect to the degree of freedom ζ is computed
by both the methods. The variation of the time taken by the two methods with respect
to the grid size is shown in figure 5.6. It can be seen that the computational time of finite
difference method rises steeply and goes to around 350 seconds for a 30× 30 grid, on the
other hand the adjoint code for the same grid size requires approximately 0.5 seconds.
The finite difference curve has a higher slope as compared to the adjoint method meaning
that the expense rises more rapidly in the former case.

Figure 5.6: Variation of gradient computation time for VIC++ (2 snapshots) using finite
difference method(green), adjoint code(red) with respect to the grid size
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Figure 5.7: Ratio of gradient computation time using finite differences to that using adjoint
code for VIC++ (2 snapshots), varying with respect to the grid size

To put things into better perspective, the ratio of time consumed by the two methods, i.e.
Tfd
Tadj

is plotted with different grid sizes. For a 30× 30 grid, the adjoint code is almost 700
times faster. A polynomial is fitted to relate the increasing trend of ratio of computational
time of the two methods. It is observed that Tfd

Tadj
vs grid size follows a quadratic trend

shown by equation (5.12).

Tfd
Tadj

= p1N
2 + p2N + p3 (5.12)

Where p1, p2, p3 are the coefficients of the quadratic equation and N is the grid size. For
the present case the coefficients were found out to be p1 = 0.61, p2 = 3.57, p3 = −6.48.
The important thing to observed is that Tfd

Tadj
scales with O(N2). Thus proving that it

is tremendously cost effective to use the adjoint code for the computation of the cost
function gradient at the expense of increased memory usage.



Chapter 6

Numerical Assessment

The detailed numerical validation of the proposed method is presented through a synthetic
test case of a two dimensional vortex blob. Various aspects of the method are analysed to
asses its working and robustness under a range of conditions. The method is compared
with some conventional interpolation methods as well as introspected on qualitative and
quantitative scales.

6.1 Analytical Vortex Blob

A translating 2D vortex blob is being considered for the synthetic test case. This test case
have been previously used by de Kat R and van Oudheusden (2014), Lynch and Scarano
(2014), Schneiders et al. (2016a). As the translating vortex blob does not feature any
viscous dissipation, the viscosity term in the vorticity transport equation is neglected. The
flow field defined in this synthetic test case is a linear combination of uniform advecting
velocity and a Gaussian vortex blob. Both the components of translating velocity can be
modified to control the movement of the blob in the computational domain. The vortex
core radius rc is defined as the distance from the core center where the tangential velocity
achieves its peak. Figure 1.1 presents the distribution of the two components of tangential
velocity. The rotational velocity of the particles is given by equation (6.1).

Vrot = Γ
2πr

(
1− e

−r2
cθ

)
(6.1)

cθ = r2
c

γ
(6.2)

where Γ is the circulation, r is the distance of a particle from the center of the vortex
blob. cθ is a factor of scaling and contant γ is chosen such that the peak velocity of the
flow is at a distance of rc from the vortex core center. The total velocity of a particle is
given by the summation of the rotational as well as translational velocities.

39
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Vparticle = Vrot + Vtranslational (6.3)

Figure 6.1: Profile of the v component of velocity along the x-axis (left), Profile of the u
component of velocity along the y-axis (right)

Figure 6.2: Vorticity distribution along the x-axis

As mentioned before the vorticity distribution for the vortex blob is of the Gaussian form.
Figure 6.3 presents the vorticity distribution of the blob along the normalised x-axis. As
observed from the figure 6.3 the vorticity reaches its maximum value at the central point
of the vortex core. It reduces as one moves away from the core center ultimately attaining
a zero value. This means that when the vorticity becomes zero the vortex blob does not
have any effect on the particles i.e. they don’t have any rotational velocity and their
movement becomes purely translational.
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Figure 6.3: Reference velocity vector field (left), Analytical Vorticity (right)

Figure 6.4: u component of velocity (left) , v component of velocity (right)

The contour plot of the vortex field is shown in figure 6.3 (right). It shows concentric
vortex rings around the centre of the vortex. This means that the vorticity of any point
equidistant from the vortex center is the same which in turn says that the rotational
velocity of any point equidistant from the vortex center is same. The respective vector
field of velocity can also be observed in figure 6.3. Figure 6.4 presents the contour plot of
the u and v components of velocity. The rotational velocity at the center of the core is
zero, attains a peak at rc then again goes back to zero.

6.2 Particle Tracks

The creation of flow field is followed by the introduction of radom particles in the domain
and creating the tracks. The tracks are analogous to the Lagrangian tracks obtained
through tomo-PTV. The velocity of the particles are calculated from analytical equation
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(6.1) and (6.3). The advancement of the particles in time can be found out by many
methods. The two dimensional explicit Runge-Kutta fourth order time integration scheme
is used for the current case.

xn+1 = xn + 1
2 (k1 + 2k2 + 2k3 + k4) δt

yn+1 = yn + 1
2 (m1 + 2m2 + 2m3 +m4) δt

(6.4)

where,

k1 = u (xn, yn, tn) , m1 = v (xn, yn, tn)

k2 = u

(
xn + 1

2k1δt, yn + 1
2m1δt, tn

)
, m2 = v

(
xn + 1

2k1δt, yn + 1
2m1δt, tn

)
k3 = u

(
xn + 1

2k2δt, yn + 1
2m2δt, tn

)
, m3 = v

(
xn + 1

2k2δt, yn + 1
2m2δt, tn

)
k4 = u

(
xn + 1

2k3δt, yn + 1
2m3δt, tn

)
, m4 = v

(
xn + 1

2k3δt, yn + 1
2m3δt, tn

)

The Lagrangian tracks of 5 particles with only rotational velocity and with both rotational
as well as translational velocity shown in figure 6.5. Two movement of the vortex core
can be distinctly noticed in both the figures.

Figure 6.5: Particle tracks with only rotational velocity (left), Particle tracks with rotational
and translational velocity (right).

6.3 Reconstruction and Error Determination

The infusion of particles and creation of their tracks is followed by the reconstruction of
the velocity and vorticity fields using various methods. The fields need to be reconstructed
from the scattered particle tracks to a uniform grid. The methods which are used in the
present test case to be compared to the VIC++ method are listed below:
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• Linear Interpolation

• Adaptive Gaussian Windowing

• Particle Image Velocimetry

The reconstruction quality of each method is inspected by using qualitative as well as
quantitative analysis techniques. Qualitative analysis is done by the inspection of velocity
and vorticity contour plots while the quantitative analysis is done by computing the error
of the reconstructed velocity field with respect to the analytical velocity field. The error
is calculated by the L2 norm of the difference between reconstructed and analytical fields
as demonstrated in equation (6.5).

εrms =

√√√√(∑N
i=1 (|uRi − uAi |)

2

N

)
(6.5)

where uA, uR are the analytical velocity field and the reconstructed velocity field respect-
ively with N being the number of computational grid nodes.

6.4 Linear Interpolation, AGW and PIV

Linear interpolation is one of the most trivial methods to get gridded data from scattered
data. The method fits a linear curve with values passing though the scattered points to
find the values on the grid. The main issue with the method is that it does not perform
any kind of noise filtering in the data. So if the data is noisy then it is not expected to
reconstruct with good quality. As currently exact data is being used for scattered values,
its reconstruction quality is expected to be fine.

The AGW method is a bit more advanced as compared to the linear interpolation. This
method applies a Gaussian filter and can handle noisy data to some level. According to the
original method proposed by Agüí and Jiménez (1987) AGW method involves weighted
averaging over all the vectors in the observation volume with the weight depending on
the distance of the particle from the local origin. A slightly modified AGW method is
used in the present work on lines of the method suggested by Stuer and Blaser (2000) and
uses particles in an interpolation window for getting the interpolated value on each node
of the grid. The interpolation window was chosen to have on an average 10 particles in
it. The velocity at the ith node is given by equation (6.6).

ui (xc) =
∑Nv
n=1 α

nuni∑Nv
n=1 α

n
(6.6)

αn = exp
(
− (xc − xn)2

H2

)
(6.7)

where αn is the weight applied on the vector based on the distance from the position of
the center of the window i.e. xc. According to Agüí and Jiménez (1987) the Gaussian
window width H has an optimum value of 1.24δV with a mention that it can be adjusted
according to the flow field. In the current case H = 1.24δ is chosen where δ is the mean
distance between particles and is defined as equation (6.8). Where AI is the area of the
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interpolation window and N is the number of velocity vectors ie. the number of particles
in the window.

δ =

√
AI
N

(6.8)

For the PIV method an approximate approach has been adopted in which the velocity
vectors in an interrogation window are averaged and the value allotted to the center of the
window. The size of the interrogation window has been chosen such that on an average
8 particles are present in each interrogation window. Also in order to keep the grid size
same in all the methods, an overlap is set such that the center of each window is on the
node prescribed grid size.

6.5 Grid Size Selection

Considering the computational expense involved in numerical problems, deciding a grid
size is an important step. The gid size decides the number of variables in the system and
the number of nodes where the solution has to be computed. It must be such that the
desired spatial structures are not filtered out while not being too large to unnecessarily
increase the computational expense. In short its size has to be a compromise on the
spatial resolution and computational budget. In order to decide on the grid to be used,
a parameter is defined which represents spatial resolution achieved in the reconstruct
field. It is called as the damping of the reconstructed field and is defined as the ratio
of the reconstructed vorticity peak to that of the analytical vorticity peak, as shown in
equation (6.9). D is always less than 1 because a numerical method always provides an
approximate solution of the analytical flow.

D = ωRpeak
ωApeak

(6.9)

Figure 6.6 presents the variation of the damping with respect to the number of particle in
the measurement domain. The damping has been calculated based on the reconstructions
of the linear interpolation method. It has been plotted for grid sizes of 100× 100, 20× 20
and 10 × 10. The grid size of 100 × 100 is a very fine mesh containing 10000 nodes in
the computational domain. As the number of infused particles in domain increase, the
reconstruction quality improves there by increasing D. The curve rises steeply for low
number of particles but flatten out for large seeding densities. For the 100× 100 grid, the
curve flattens and reaches D ≈ 1 for more than 1000 particles. This indicates that the
linear interpolation reconstruction almost fully resolves spatial structures for more than
1000 particles when computed on a 100 × 100 grid. For smaller grid sizes the maximum
value of D attained is smaller indicating smaller resolution capacity. For a 20× 20 grid,
maximum D is approximately 0.9 while for 10×10 grid the maximum reaches at D ≈ 0.7.
This can also be interpreted as, at high seeding densities the 20 × 20 grid provides a
resolving capacity of 90% while the 10× 10 resolves 70% of the peak vorticity.

The computational expense generally increases with N (number of grid point) at an order
of O(2). This essentially means that the 100× 100 grid is more than 25 times expensive
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as compared to the 20 × 20. Hence, the 20 × 20 grid size is chosen which provides large
computational benefits compared with a loss of not so significant spatial resolution. It
should also be noted that the present study will be more focused towards the lower seeding
densities where the disparity in resolution capacity between 20×20 and 100×100 is even
less.

Figure 6.6: Damping on various grid size of 10,20 and 100

6.6 Boundary Conditions

The discussion on the boundary condition in chapter 4 clearly points out that the pro-
posed method does not take the domain boundary into consideration and computes the
optimised field only at the inner nodes. It has also been proposed that the boundary
conditions at all time instances are to be taken from the input tomo-PIV flow fields at
the respective times. For the present synthetic test case, no such measurement exist and
the input of the analytical boundary condition would be too trivial and would unfairly
play an enhancing role in the flow field optimisation.

An alternate solution to the issue of the domain boundary conditions can be solved by
increasing the computational domain so that the boundary of the measurement domain is
inside the computational one. For the present study, homogeneous padding type boundary
conditions are applied with a padding of 30% of the side of the domain. The imposed
boundary condition is similar to that used by Schneiders et al. (2016a) shown in figure
6.7.
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Figure 6.7: Padded Boundary Conditions (reproduced from Schneiders et al. (2016a))

The velocity boundary conditions for the computational domain is a simple Dirichlet
boundary condition with the velocity components being equal to that of the free stream.
This is shown in figure 6.8 where the red area is the measurement domain while the blue
one is the padded region.

Figure 6.8: Dirichlet Boundary Conditions

6.7 Numerical Assessment

The parameters used for the numerical assessment of the synthetic vortex blob are presen-
ted in table 6.1. A detailed parametric study is done in the following chapters and some
of the parameters presented here may be altered as required. The measurement domain is
chosen to be a square with each side having length L. The size of the vortex blob is selec-
ted such that the side of domain is 5rc and at the initial time the blob is centrally located
in the domain. The size of the vortex blob is intentionally kept significantly large, in or-
der to facilitate the visual inspection of the different contours of the theoretical as well as
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reconstructed fields. Also for simplicity, no translational velocity is considered. A number
of synthetic snapshots are generated by calculating the scattered velocity measurements
at particle locations from the analytical flow field. The time separation between two snap-
shots is dt = 0.2s and the total time used for the measurement is T = 20s, amounting to
Nt = 40 snapshots. For the present assessment 10 tracer particle have been introduced in
the flow field. A grid size of 20×20 is used for reconstruction using all the methods.

Table 6.1: Vortex blob test case simulation parameters

Parameter Value Unit
Γ 100 cm2/s
γ 1.256 -
dt 0.2 s
T 20 s
ut 0 cm/s
vt 0 cm/s
L 20 cm
rc 4 cm
Padding 30 %

The investigation is done to compare linear interpolation, AGW and PIV with the VIC++
method with respect to the reconstruction quality of the respective methods. Initially a
qualitative assessment is done by comparing the contour plots of the instantaneous ve-
locity fields. The contours of u component of velocity is shown in figure 6.9. The red
dots represent the particle tracks used for reconstruction of a particular method. The
linear interpolation AGW and PIV method use just instantaneous data, hence instead of
tracks just the particle locations are shown. The reconstruction using linear interpolation
produces exact values at the particle locations but between the locations the reconstruc-
tion quality is highly influenced by the low seeding concentration. The two distinct peaks
visible in the analytical case are not reproduced by the linear interpolation and even the
overall contour shape is also distorted. The approximate PIV method adopted in here
filters most of the contours. The interrogation window in this case is quite large due
to the presence of very small number of particles, which in turn results in this spatial
filtering effect. This is in accordance to the discussion in the preceding section. Similar
output is expected of the AGW and although it is a bit better than the PIV, visually it
seems worse than the linear interpolation.

The instantaneous reconstruction of the Eulerian flow using the VIC++ method has
been done using particle tracks of varying time length, ranging from Nt = 2 to Nt = 40
snapshots. The case with Nt = 2, involves integration over just one time step which
means that still not much of flow information is provided to the method. In this case
the method largely enforces and produces a divergence free flow field. As the VIC++
method is based on a physics based reconstruction, much better and accurate results are
expected on the nodes between the particle locations. This is quite evident from figure
6.9(d), where the contours are much more regularised as compared to the other methods.
When more information about the flow field is provided to the method in the form of
more snapshots or longer time lengths, even further improvement in the accuracy and
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shape regularization is expected. This can be observed in the contour plot of VIC++
with Nt = 5 to Nt = 40 as shown in figure 6.9(e) to (h).

Figure 6.9: u component of velocity contours for 10 particles. (a) Analytical (b) Linear
Interpolation (c) PIV (d) AGW and (e) to (i) VIC++ for Nt = 2, 10, 20, 30, 40
respectively

For Nt = 40 the velocity contours are almost symmetric about the centre line, which
is the case in the analytical flow. The flow velocity around the edges of the domain
have lower velocity as compared to the reference case, this is because of the absence of
particles around these locations. Also the boundary conditions applied are approximate
which causes the accuracy to drop near the boundary edges. A more closer analysis
will be presented in chapter 7. A similar trend to the u contour plots is also observed
for the contour plots of the v component of velocity presented in figure 6.10 with the
quality of VIC++ being higher than the other methods and producing more accurate and
regularised results with increasing time lengths.
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Figure 6.10: v component of velocity contours for 10 particles. (a) Analytical (b) Linear
Interpolation (c) PIV (d) AGW and (e) to (i) VIC++ for Nt = 2, 10, 20, 30, 40
respectively

The vorticity contour plots are shown in figure 6.11. Again the AGW and approximate
PIV method perform not so well and filter out almost all the contour lines. The linear
interpolation as well fails miserably to reconstruct the blob. When the VIC++ method
for Nt = 2 is used, some contours of the blob are visible, still the reconstruction is not so
regular. The main reason behind this improvement as compared to linear interpolation,
AGW and PIV is because the method uses vortex methods which enable it to recon-
struct the vortical structures. Similar to the velocity contours, the vorticity contours also
regularises and become more accurate for VIC++ method with larger values of Nt and
becomes almost synonymous for Nt = 40. Some negative vorticity can be observed around
the boundary in the VIC++ reconstructions which mainly arise due to homogeneous fixed
boundary conditions.
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Figure 6.11: Vorticity contours for 10 particles. (a) Analytical (b) Linear Interpolation (c)
PIV (d) AGW and (e) to (i) VIC++ for Nt = 2, 10, 20, 30, 40 respectively
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6.8 Comparision of Velocity Profiles

It is important to note that the comparison done above are for one realisation or sample,
i.e. one set of particle tracks. Thus it is not fair to completely judge the methods based
on one case. A more closer comparison is done by plotting the profiles of u, v velocity
and the vorticity along the central lines of the domain as shown in figure 6.13. In order
to plot these profiles 100 random samples have been considered with 10 tracer particles.
Firstly the profiles of linear interpolation method and the VIC++ methods with Nt = 2
are compared. Linear interpolation is chosen over AGW and PIV for the comparison
because it fares well in the analytical case over the other two methods. The profiles for
this comparision is plotted in figure 6.14. Next the VIC++ method with shorter tracks
(Nt = 2) is compared to the one using long tracks (Nt = 40) in figure 6.13. In all the three
subfigures (a),(b) and (c) of figures 6.13 and 6.14 the black line represents the profile of
the analytical or reference case. The line represents the mean profile of the reconstructed
field over 100 samples while the shaded area shows the standard deviation of the results
from their respective mean profiles.

6.8.1 Linear Interpolation vs VIC++

The blue colour represents the VIC++ method with Nt = 2 snapshots while the profiles
liner interpolation methods is displayed in yellow. When inspecting the u velocity and
v velocity profiles, it is observed that the linear interpolation method hardly captures
the velocity peaks. In both the sub-figures the linear interpolation profiles are almost a
straight line. On the other hand, the velocity profiles of the VIC++ method with Nt = 2,
represent the analytical case in much improved way. Even though the peak velocity is
still not fully captured, it follows the curvature of the analytical case much more faithfully
than the linear interpolation case. The standard deviation (shaded ares) associated with
the linear interpolation is larger for both the velocity profiles, indicating more robustness
and lower sensitivity to particle location for the VIC++ method with Nt = 2. The
vorticity profile compared in figure 6.14(c) reveals that the spatial resolution achieved in
the VIC++ method is higher than what achieved through the linear interpolation.

Figure 6.12: Comparison of linear interpolation (yellow) and VIC++ Nt = 2 (blue). Mean
profile (line) along the central y-axis with standard deviation (shaded area) for
(a) u velocity (b) v velocity (c) vorticity
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6.8.2 Short vs Long Tracks

VIC++ method with Nt = 2 is again represented by blue colour while VIC++ with
Nt = 40 is represented by red. It can be clearly be observed that the red line closely
follows the reference black line as compared to the blue one which means that VIC++
with longer particle track is able to reconstruct more accurate velocity as well as vorticity
field. Another notable point is the higher peak values observed for the red curve which
emphasizes on higher resolution attained by the method using longer tracks. Even the
standard deviation for Nt = 40 case is much lower and shows that the methods accuracy
is less particle position dependent and the robustness of the method increases when using
longer tracks.

Figure 6.13: Comparison of VIC++ Nt = 2 (blue) and VIC++ Nt = 40 (red). Mean profile
(line) along the central y-axis with standard deviation (shaded area) for (a) u
velocity (b) v velocity (c) vorticity

6.9 Tracer Concentration

When using higher seeding concentration, the root mean square (RMS) error shows a
declining trend, which is expected because more data is available for the reconstruction
on the same grid. The VIC++ method fares much better compared to the linear in-
terpolation, AGW and PIV. The RMS error for the VIC++ method with Nt = 2 is
approximately 25% lower than the linear interpolation method when using 10 particles
in the measurement volume. The VIC++ with larger Nt produces reconstructions with
reduced error. The relative error between the reconstruction of the VIC++ method using
different time lengths decreases with increasing number of particles, meaning that the
relative advantage of using the method with longer tracks diminishes with the increase in
the particle densities.
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Figure 6.14: RMS error (normalised with peak velocity) with varying number of particles
for different Nt.

6.10 Time Length

Figure 6.15: RMS error (normalised with peak velocity) with varying Nt for different particle
densities.

In figure 6.16 the RMS error is shown with the increasing snapshots provided to and
utilised by the VIC++ method for the instantaneous flow field reconstruction. This plot
is made for different particle densities. It is observed that the RMS error decreases when
using longer particle tracks as an input to the proposed method. Another interesting
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aspect which is observed is that the slope of the curve is high in the low Nt region while
it gradually starts to show a flattening behavior when considering large time lengths.
This behavior becomes more pronounced when considering the case with higher seeding
concentration. This signifies that even though increasing time length decreases the error,
the benefit gradually reduces with the addition of more snapshots as an input to the
method. Also when higher values of Nt are considered the computational cost rises
significantly. Thus the ultimate result will be a trade-off between the accuracy desired
and the computational expense budget. The flattering effect can also be attributed to the
finite grid size opted for the computations.

6.10.1 Time Length with Different Grid Size

The RMS error with increasing time lengths is presented in figure 6.16 for two grid sizes,
namely a grid of 15(left) and 25(left). As compared to the previous section (grid size of
20× 20) all the parameters involved in the numerical simulation except the grid size are
same. The most important thing to be observed is the slope of the curve for larger grid
is more i.e. the flattening effect observed for large values of Nt is more prominent in case
of the smaller grid. For the same seeding density the relative gain in the reconstruction
quality for longer tracks is higher.

Figure 6.16: RMS error (normalised with peak velocity) with varying Nt calculated on a
Grid of 15 (left), 25 (right).

6.11 Initial Conditions

The initial condition of an optimisation problem is extremely important for the output as
well as the computational cost involved. A good initial condition can greatly reduce the
computational expense required and produce better results while a bad initial condition
does the opposite. As stated in earlier sections the VIC++ method intends to use the
gridded tomo-PIV data as the initial condition. For the present case with very low
particle densities and synthetically produced data it is not available. Also as mentioned
earlier the linear interpolation produces better results as compared to other conventional
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methods for the analytical case and its reconstructed flow field can be used as the initial
condition.

Figure 6.17 shows the VIC++ reconstructions with the initial condition taken from the
linear interpolation data. It is observed that even though the reconstructions improve
with the increasing time lengths, they are highly influenced by the initial condition which
in this case is provided by linear interpolation. As the velocity field predicted by the
linear interpolation is poor, the VIC++ optimisation process start with the poor and
erratic field and changes it.

The optimisation problem at hand is an ill posed problem, meaning that the solution
sensitivity to the changes on the initial conditions is very high. This further means that
a bad initial guess may deem the solution to be erratic as well. Instead of going for the
poor linear interpolation initial condition, it was decided to use the initial filed of all zeros
i.e. zero initial condition. It is expected that optimisation results will be devoid of the
local erratic peaks present in the linear interpolation velocity field at time t0. To validate
this the VIC++ velocity fields were again computed using the same particle tracks and
tolerance but with zero initial condition, as shown in figure 6.18. It can be observed that
the reconstructed fields computed by the VIC++ using zero initial condition is much
more regularised in the overall shape of the contours as compared to when using linear
interpolation initial conditions. It is also free of the local peaks observed in the former
case. All the optimisation process in the document follow the zero initial conditions.

Figure 6.17: u velocity contours with initial condition computed using linear interpolation.
(a) analytical (b) Linear interpolation (c) VIC++ with Nt = 2 (d) VIC++
with Nt = 10 (5 particles).
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Figure 6.18: u velocity contours with zero initial condition. (a) analytical (b) Linear inter-
polation (c) VIC++ with Nt = 2 (d) VIC++ with Nt = 10 (5 particles).
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6.12 Analysis with Noisy data

The assessment done above is without consideration of any noise in the input velocity of
the particle tracks. This section focuses on the scrutiny of the performance of different
methods (especially the VIC++) under the presence of noise in the input reference field.
For this a white Gaussian noise is added to the particle velocity. Around 1000 particles
are introduced in the flow and reconstruction of the velocity and vorticity fields is done
by different methods. Such a high seeding density is purposefully considered so that the
effect of noise is prominently visible in the contours. In the absence of noise, at such
seeding density, all the methods produce highly accurate fields. It is interesting to gauge
their ability for a noisy data set.

Figure 6.19: Vorticity contours with white Gaussian noise.(a) analytical (b) Linear interpol-
ation (c) PIV (d) AGW (e) VIC++ with Nt = 2 (f) VIC++ with Nt = 10
(1000 particles).

The vorticity field contours for linear interpolation, PIV, AGW and VIC++ reconstruc-
tions with Nt = 2 and 10 are plotted in figure 6.19. The linear interpolation produces
worst results in this case with very noisy reconstruction. This is consistent with the dis-
cussion made in the previous section 6.4 regarding the inability of linear interpolation to
handle noisy data because it just fits data through the points and does not apply any
filtering technique. The PIV does comparatively better and filters out some noise. Its
reconstruction quality is excelled by the AGW method which produces more regularised
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field. The weighted averaging involved in the method provides further filtering. Still a lot
of aberrations is seen in the reconstructed field of both the methods. This is essentially
because the aforesaid methods are mathematical tool and do not consider the flow physics
involved.

The VIC++ method is a flow physics based technique, which enforces the divergence free
criteria in each integration time step. It filters out almost all the noise present in the
input velocity and reconstructs highly regular vorticity contours. The reconstruction is
further improved when long tracks are considered and the resultant vorticity contours
almost exactly match with the analytical case. A similar observation is followed in the
reconstruction of u velocity contours as shown in figure 6.20. This test case proves the
noise reduction ability of the VIC++ method

.

Figure 6.20: u velocity contours with white Gaussian noise.(a) analytical (b) Linear inter-
polation (c) PIV (d) AGW (e) VIC++ with Nt = 2 (f) VIC++ with Nt = 10
(1000 particles).



Chapter 7

Unsteady Flow Regime

The numerical assessment in the previous sections is performed on the vortex blob which
is representative of steady flow case because of the unvarying shape of the blob. This
chapter presents an implementation of the proposed method in the unsteady flow regime.
As the 3D extension of the method could not be done in the available time frame, this case
is also concerned with a two dimensional flow. For this purpose a laminar Von-Karman
shedding resulting due to the flow over a long cylinder is investigated. The study does not
intend to look upon the physics involved in the flow itself but rather study the application
of the method to reconstruct the instantaneous data. This would give a more thorough
test to the method, as it would deal with flow with evolving vortexes.

7.1 Two Dimensional Cylinder Vortex Shedding

Flow over a cylinder has been extensively studied from the early part of the twentieth
century. A detailed overview of most of the experimental as well as numerical analysis of
different forms of the case is presented in Zdravkovich (1997). These type of flows can
be characterised into various regimes as presented in figure 7.1. For flows in the range
of Re 40 to 200, laminar and periodic vortex shedding is observed. Flow in this region
essentially behaves like a two dimensional flow with no variation in the span-wise direction,
as pointed out by Williamson (1989) amongst others (Sumer & Fredsøe, 1997)(Rajani et
al., 1997). Beyond this regime, primary instabilities are induced in the cylinder’s wake,
which cause the span-wise component of flow to amplify. Due to the evolution of this
component, the over all structures of the flow are altered which renders the flow to be not
accurately represented by the solution provided from two dimensional flow solvers.

The present work will be focusing in the laminar regime where the flow can be represen-
ted faithfully using a two dimensional model. The specific details of the computational
simulation is discussed in the following section.

59
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Figure 7.1: Flow regimes in a flow around a circular cylinder in a steady flow (reproduced
from Sumer and Fredsøe (1997))
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7.2 Computational Simulation

The experiment was performed in a numerical domain using the incompressible Navier-
Stokes solver provided by OpenFOAM. The inlet flow to the domain is laminar with the
free stream velocity as 3×D m/s, where D is the diameter of the cylinder. The geometry
of the test case along with the boundary conditions is presented in figure 7.2. All the
dimensions in the figure are expressed in term of the cylinder diameter. The parameters
of the numerical simulation are shown in table 7.1. The flow Reynolds number of the flow
was chosen to be 150 in order to induce the laminar and periodic Von-Karman vortex
shedding as discussed in the prevous section. The computational mesh used is displayed
in figure 7.3 and a zoomed in version of the mesh around the cylinder is also shown.

Figure 7.2: Geometry used for the numerical computation

Figure 7.3: Mesh used for the numerical computation
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Table 7.1: Von-Karman shedding test case simulation parameters

Parameter Value Unit
Re 150 -
D 0.1 m
U∞ 0.3 m/s
V∞ 0 m/s
ν 2× 10−4 m2/s
No of nodes 30840 -

Figure 7.4: Vortex contours of Von-Karman Vortex shedding. Also shown is the section of
the flow to be used for the analysis.

The reference velocity fields are available at very high temporal resolution, but for the
present case, a sub-sampled data at time spacing of 0.02s is extracted. At very high
temporal resolution, representation of a substantial movement of particles would require
large number of time slices. Considering the computational costs involved in the proposed
method, approximately 50 time slices are taken into account. This temporal resolution is
chosen such that the displacement of particles during the total time interval is around 3
to 4 times the cylinder diameter.

The flow is allowed to be fully developed and the periodic oscillations of the wake to
be established. A fully developed oscillatory flow is considered as the initial condition
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of the flow for the reconstruction. The vorticity contours of the computed flow at time
t0 is shown in figure 7.4. The region of interest for the current work is in the wake of
the cylindrical structure and thus it is unnecessary to consider the entire domain for
further analysis. A square domain of dimension 7D × 7D at a distance of 1D behind
the cylinder is considered. This would enable the analysis of smaller scales of the wake.
The domain is not chosen to be very close to the cylinder in order to avoid any influence
of the fluid structure interaction and focus only on the evolution of the vortexes in the
wake. The velocity field in this domain is considered as the reference velocity field for the
investigation of application of the proposed method to the unsteady flow test case.

7.3 Analysis

The analysis pattern remains same as done for the 2D vortex blob. Certain number of
particle are introduced in the flow and the Lagrangian tracks computed. As the present
case does not involve any analytical solution, the velocities at the particle locations are
found from the velocities available at the fine mesh nodes using linear interpolation. These
data sets at particle positions are synonymous to the PTV measurements.

The instantaneous velocity and vorticity field are reconstructed by linear interpolation,
PIV, AGW and the VIC++ with different track lengths. The reconstruction is compared
by first investigating the velocity and vorticity contours of various reconstructions, fol-
lowed by the computation of the root mean square error of the respective reconstructed
velocity fields with respect to the reference velocity field. For all the cases, a computa-
tional grid of 30× 30 is considered.

7.3.1 Numerical Assessment with VIC++

The assessment is performed at very low seeding densities, where the currently available
methods struggle to reconstruct at the required spatial resolution. For the first test case
only 10 particles are infused in the flow and their information at all the time instances
is computed. The instantaneous Eulerian flow field at time t0 for all the aforementioned
methods have been computed.

A qualitative analysis is presented. Figure 7.8 presents the contour plots of the u com-
ponent of velocity. The contours of the reference velocity field are shown in figure 7.8 (a)
depicting the blobs of high velocity concentration alternately distributed around the low
velocity central contours representing the vortex shedding. The reconstructed velocity
field from the linear interpolation, PIV and AGW shown in figure 7.8 (b),(c) and (d)
respectively, entirely fail to capture the reference velocity contours and the field is highly
dominated by the free stream velocity, filtering almost entirely the velocity contours. This
is expected because of the immensely low seeding concentration. The reconstruction of
the VIC++ method utilising information provided by 2,5,10 and 20 snapshots are re-
spectively shown in figure 7.8 (e),(f),(g) and (h). When looking at the VIC++ method
with 2 snapshots, a significant improvement can be noticed as compared to its conven-
tional counterparts. Some contours along the stream-wise direction of the cylinder can
be observed to be reconstructed. Further regularisation is observed when adding more
snapshots for the method, with the contours looking visually more similar to the reference
field.



64 Unsteady Flow Regime

When observing the v velocity contours in figure 7.6, a similar trend as the u velocity
is observed in accordance to the expectations. Three distinct structures are observed in
the reference field which are only observable in the VIC++ reconstruction. The number
of contour levels increase with leveraging of longer time series data, thus proving the
better reconstruction ability of the VIC++ method with more flow information at its
disposal.

The vorticity of field of a Von-Karman shedding comprises of alternate blobs of negative
and positive vorticity being translated in the flow. The comparison of the respective
vorticity field contours are presented in the figure 7.7. The linear interpolation method
reconstructs a very small region of positive vorticity while totally ignoring the presence of
any positive vorticity structures. These is highly influenced by the position of the particles
in the domain. The AGW and PIV completely miss out every vortex and produce a highly
filetered reconstruction. The VIC++ with short time lengths produce multiple small blobs
of negative and positive vorticity and also some unwanted vorticity peaks. These become
more and more regularised with the inclusion of longer tracks and only the required blobs
are enlarged eliminating the local peaks.

Figure 7.5: u velocity contours for 10 particles. (a) Numerical (b) Linear Interpolation (c)
PIV (d) AGW and (e) to (h) VIC++ for Nt = 2, 5, 10, 20 respectively
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Figure 7.6: v velocity contours for 10 particles. (a) Numerical (b) Linear Interpolation (c)
PIV (d) AGW and (e) to (h) VIC++ for Nt = 2, 5, 10, 20 respectively

Figure 7.7: vorticity contours for 10 particles. (a) Numerical (b) Linear Interpolation (c)
PIV (d) AGW and (e) to (h) VIC++ for Nt = 2, 5, 10, 20 respectively

The qualitative inspection is again performed, with a test case having higher seeding
density. In this case around 25 particles are introduced in the flow and the particle
track data computed. Again the contours of the u, v velocity fields and vorticity field
are plotted, as shown in figures 7.8,7.9 and 7.10 respectively. As the particle density is
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higher, information at more points are available hence all the methods are expected to
have better reconstructions as compared to the 10 particle test case.

Figure 7.8: u velocity contours for 25 particles. (a) Numerical (b) Linear Interpolation (c)
PIV (d) AGW and (e) to (h) VIC++ for Nt = 2, 5, 10, 20 respectively

Figure 7.9: v velocity contours for 25 particles. (a) Numerical (b) Linear Interpolation (c)
PIV (d) AGW and (e) to (h) VIC++ for Nt = 2, 5, 10, 20 respectively

Looking at the u velocity contours the AGW method does the best amongst linear in-
terpolation and PIV, but still is only able to capture half of the central low velocity
contours. The VIC++ method with one time step (2 snapshots) reconstruct some high
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velocity blobs along with the central low velocity structures. The contours again visually
tend to improve with repect to the over all shape and resolution, with increasing time
lengths. Again the similar trend is observed for the v velocity. There seems to be a
slight overshoot of the velocity predictions in figure 7.9 (h), which can be attributed to
the number of iterations allowed for the computation. When concerning the vorticity
contours, more regularised blobs devoid of the local peaks is observed with VIC++ with
long tracks.

Figure 7.10: vorticity contours for 25 particles.. (a) Numerical (b) Linear Interpolation (c)
PIV (d) AGW and (e) to (h) VIC++ for Nt = 2, 5, 10, 20 respectively

For the quantitative analysis of the methods for the unsteady flow, the root means square
(RMS) error of the velocity fields with respect to the reference velocity field is compute for
25 particles seeded in the flow. Table 7.2 presents the RMS error of the reconstructions
of respective methods. It is observed that the RMS error of the linear interpolation
method is highest followed by PIV, AGW and VIC++ method. For a better perspective
all the methods are compared with the linear interpolation method. The error of PIV
is around 7% lower than the linear interpolation while the AGW is 12% lower. On
the other hand the VIC++ method with 2 snapshots displays significantly lower error,
amounting to around 25% reduction with respect to the linear interpolation. VIC++
method incorporating longer tracks show further reduction of the error and hence the
improvement of the reconstruction quality. VIC++ with 20 snapshots has almost 50%
lower error than the linear interpolation.



68 Unsteady Flow Regime

Table 7.2: RMS error of different methods for 25 particles

Method εrms

Linear Interpolation 0.91
PIV 0.084
AGW 0.078
VIC++ Nt = 2 0.068
VIC++ Nt = 10 0.0572
VIC++ Nt = 20 0.0463

A comparison of the u velocity profiles along the the central x-axis (y=0), for reconstruc-
tion of AGW method and VIC++ method is presented in figure 7.11. The black line
represents the reference u velocity profile computed from the OpenFOAM simulations.
The profile generated by the AGW method is shown in red colour while the VIC++ with
Nt = 2 and Nt = 20 by green and blue respectively. The AGW method has been chosen
for the comparison with VIC++ method in this case because it has the lowest error of
the three conventional methods discussed above. It is observed that the velocity profile
computed through AGW method hardly follows the reference velocity profile justifying
the large RMS eror observed above. The VIC++ method with 2 snapshots, follows the
reference curve quite nicely in the first half of the domain but for later part deviates from
the solution. The longer tracks used in the VIC++ with Nt = 20, enforces comparatively
accurate profile throughout the domain. Still significant deviation is observed throught
the domain. This can be mainly attributed to very low particle density(25 particle)
utilised for the reconstruction.

Figure 7.11: Mean u velocity profile along the x-axis (at y=0) of AGW(red), VIC++
Nt=2(green), VIC++ Nt=20(blue) compared with the numerical solu-
tion(black). For 25 particles.



Chapter 8

Conclusions and Recommendations

A method has been proposed to increase spatial resolution of tomo-PIV in low seeding
flows by incorporating full particle tracks using Vortex in Cell simulation. The proposed
method is numerically implemented and validated using two synthetic test cases. The
present section summarises the conclusion of the work done in this thesis. It is followed
by the recommendations for future development of the method.

8.1 Conclusions

To understand the problem at hand the basic concepts of PIV are reviewed followed by the
development of different methods, their limitations and the causes of those limitations. A
literature survey on the state of the art processing techniques in PIV and PTV is done.
Even though there exist some methods to increase spatial resolution of PIV and some on
utilising the PTV tracks for getting super resolution in PIV, VIC+ method by Schneiders
et al. (2015) is the only existing method specifically dealing with spatial resolution issues
in low density experiments. VIC+ is a physics based method but does not incorporate
the full temporal information available in the flow. It uses temporal information in the
form of material derivative of velocity field. The present thesis investigates the idea that
whether including more information by providing a velocity time series of the particles
increases the spatial resolution of PIV generated flow field. It also investigates the effect of
incorporating longer time horizon on the reconstruction of instantaneous flow field.
The VIC++ method is proposed which leverages the temporal information available in
the Lagrangian particle tracks to increase the spatial resolution of Eulerian flow field.
It uses full particle tracks available through the particle tracking algorithms (eg. 'shake
the box' or tomo-PTV as reference. The PIV measurement data provides the initial
condition to the problem as well as boundary conditions at all time instances. A gradient
based optimisation problem is solved to minimise a cost function, ultimately resulting in
computation of an optimised instantaneous flow field. The computation of gradient is
done through the adjoint method
Validation of the method is done by creating a two dimensional synthetic test case of a
translating vortex blob. Synthetic tracks are created acting as the reference velocity time
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series. Velocity and vorticity fields are reconstructed from the particle distribution by
using methods such as linear interpolation, AGW and approximate PIV. For the VIC++
method homogeneous padding type boundary conditions are used for the simulation. The
reconstructed fields are highly sensitive to erroneous initial conditions. Hence zero initial
conditions are used for the proposed method. The VIC++ with varying length of particle
tracks (Nt = 2 snapshots to 40 snapshots) are used for reconstructing the velocity and
vorticity fields. All the methods are compared using qualitative as well as quantitative
analyses. The qualitative investigation is done by comparing contour plots of instantan-
eous velocity and vorticity fields. This investigation is performed for very low seeding
concentration by introducing only 10 particles in the flow. Inspecting the contour plots
reveals that linear interpolation AGW and PIV completely fail to reconstruct any con-
tours while the VIC++ method with 2 snapshots fares much better by reconstructing
some contours with a regular shape, though some local peak do appear in the optimised
field. Further contours appear and flow field becomes more regularised when using longer
tracks. The mean u velocity profiles over 100 samples are compared for the linear inter-
polation and VIC++ with Nt = 2. It is observed that the VIC++ follows the analytical
profile much better with low standard deviation indicating lower dependence on particle
position. VIC++ also provides higher vorticity peak indicating that higher resolution is
achieved. The profile introspection of the VIC++ short track and long tracks is also done
which reveals that longer tracks produce much more accurate fields.

The quantitative analysis is performed by computing the root mean square error of the
velocity fields with respect to the analytical case. The error is investigated for increasing
particle densities. It is observed that the linear interpolation has lower error compared to
AGW and PIV, which can be explained by the fact that the reference data is exact without
any noise, also as the later two methods are based on averaging principles, for very low
seeding they display large spatial filtering. The VIC++ method demonstrates lower error
compared to the other methods. Increasing track lengths results in lower error values. For
large seeding densities a flattening effect is observed which can be attributed to the finite
grid size being used. This is proved by using larger and smaller grid size. For smaller
grid size the flattening effect is more predominant. Another important observation is
that the relative advantage gained with using longer tracks reduces over the time lengths.
The computational cost increases with the longer time lengths which indicates that the
selection of the length of time series to be used should be based on the accuracy desired,
computational budget and the grid size.

Effect of noisy data on the reconstruction abilities of different methods is also invest-
igated. It is found that even for very high seeding densities while other methods fail
to significantly remove the noise, the physic-based approach of VIC++ method applying
solenoidal filtering removes almost all the noise. With longer tracks the results are further
enhanced.

An unsteady test case with evolving vortices is also used for validation of the method.
Laminar Von-Karman vortex shedding (Re= 150) due to flow over a long cylinder is in-
vestigated. The laminar case is specifically taken because it can be accurately represented
by a two dimensional model. The analysis follows the same pattern as in the vortex blob
case. The qualitative analysis clearly displays the superiority of the proposed method
over the other methods by producing much better and regularised contours for even very
low number of tracers (10 and 25). Longer tracks as in the previous case produce better
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results. The RMS error for 25 particles is in accordance with the findings from the con-
tour plots with the VIC++ using Nt = 2 snapshots having 25% while Nt = 20 having
50% lower error compared to linear interpolation .

Over all it can be concluded that the hypothesis concerning the improvement in in-
stantaneous reconstruction by providing more temporal flow information is proven to be
valid.

8.2 Recommendations for Future Work

The development of the technique has many aspects which can be explored in the future.
Some of the recommendations for taking this work forward are discussed below.

The present work only explores the two dimensional realm due to the constraint on the
thesis duration. The true application of the developed method is intended for the three
dimensional domain and its extension to 3D is primarily recommended. This would
enable experimental validation of the method using actual tomo-PIV and 3D PTV data.
It should not be out of place to mention that when extending to 3D, a less expensive
interpolation technique (such as CIC) is recommended to be used for the VIC simulations
instead of the presently implemented M ′

4 interpolation technique.

The currently proposed method only uses the VIC time integration to march forward in
time. Backward time integration can also be utilised to provide more robust solution by
maintaining the temporal continuity between snapshots.

The viscous term was not incorporated in the present implementation due to the small
time integrations considered. For temporally longer tracks the viscous dissipation can
become more significant and hence assumption of inviscid flow may not be valid. It is thus
advised to include the viscous term during the implementation of the VIC method.

The boundary conditions have not been sufficiently explored in the proposed method,
rendering the reconstructions at the boundaries to largely rely on the information provided
by tomo-PIV data. This aspect of the method can be studied in more detail for its
potential improvement.
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