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Optimized Signal Constellations for 
Trellis-Coded Modulation on AWGN Channels 

Rene J. van der Vleuten and Jos H. Weber 

Abstruct- In earlier publications, performance gains over 
Ungerboeck type trellis-coded modulation schemes were obtained 
by optimizing (by hand) the signal constellation. Using genetic 
algorithms and simulated annealing, we have found additional 
cases with performance gains over the Ungerboeck type schemes. 

I. INTRODUCTION 

NGERBOECK’S trellis-coded modulation (TCM) 
schemes [1]-[3] use the symmetries of rate n/ (n  + 1) 

binary convolutional codes to map the channel symbols 
onto the trellis. The channel symbols are selected from 
the pulse amplitude modulation (PAM), phase shift keying 
(PSK), or quadrature amplitude modulation (QAM) signal 
constellations that are also used for uncoded modulation. 
In [4] and [SI, however, it was shown that a gain over 
the Ungerboeck type TCM schemes can be obtained, in 
several cases, by optimizing the signal constellation. The 
optimization of the signal constellation was carried out by 
hand and only for small trellises (up to 16 states). Here, we 
report on additional cases in which there is an asymptotic 
performance gain over the Ungerboeck type TCM schemes, 
which we obtained by an automatic optimization method 
based on genetic algorithms and simulated annealing. We 
applied those techniques, because, contrary to traditional 
optimization methods, they continue to search for a better 
solution, after a locally optimal solution has been found. 
Therefore, in the presence of many local optima, genetic 
algorithms and simulated annealing often produce better 
solutions than the traditional methods, although there is no 
guarantee that the global optimum is found. More information 
about simulated annealing and genetic algorithms can be 
found in [6] and [7] ,  respectively. The convolutional codes 
and signal constellations are simultaneously optimized, Le., a 
full search of the parity check polynomials is performed and 
for each individual code the signal constellation is optimized. 

The figure of merit for a TCM scheme, in the presence 
of additive white Gaussian noise (AWGN), is the normalized 

Paper approved by S. Benedetto, the Editor for Signal Design, Modulation, 
and Detection of the IEEE Communications Society. Manuscript received 
September 1, 1994; revised August 15, 1995. This paper was presented in part 
at the first IEEE Symposium on Communications and Vehicular Technology 
in the Benelux, Delft, The Netherlands, October 27-28, 1993. 

R. J. van der Vleuten was with Delft University of Technology, Department 
of’ Electrical Engineering, The Netherlands. He is now with Philips Research 
Laboratories, 5656 AA Eindhoven, The Netherlands. 

J. H. Weber is with Delft University of Technology, Department of 
Electrical Engineering, 2600 GA Delft, The Netherlands. 

Publisher Item Identifier S 0090-6778(96)03359-4. 

squared minimum distance, pLin, given by [5] and [XI  

where dfree is the minimum Euclidean distance occurring 
between any two sequences of constellation points, R is the 
rate (in bits per dimension) and S is the signal energy (per 
dimension). To compute d:ree, we used the algorithm proposed 
in [9]; a new algorithm was recently proposed in [lo]. Ideally, 
the optimization would also include other parameters that are 
important for the performance of the TCM scheme, such as 
the number of nearest neighbors or the distance spectrum (see, 
e.g., [lo]). Because of the associated additional complexity 
(CPU-time), however, this is not feasible, in our case. 

Sections 11-IV report on optimized PAM, PSK, and QAM- 
constellation-based TCM schemes, respectively. Section V 
concludes the paper. 

11. PAM CONSTELLATIONS 
For transmitting at rate R = 1 , 2 ,  . . . , using PAM signal 

points and a rate 1/2 convolutional code, there are four 
different sets of signal points, A, -A, B,  and -B where 
A = {ul ) . . . , a2R- l} ,  B = {b1, . . . ,b2~-1} ,  and -A and 
-B, respectively denote the sets {--al,. . . , -a2~-1} and 

Given u l , u 2  = a1 - ( i  - 1)s and bi = a; - 6/2, for 
{ - b l ;  . . -b2R-I}. 

1 5 i 5 2R-1, the normalization of 
2R-1 

s = 2-R (a? + b?) = 1 
i = l  

results in 

6 = 2 .  (1 - 3 .  2R + 22R+1)-1 . [ 3 .  a1(2R - 1) 

+ d3 . 4 2  - 3 .2R+1 + 22R+2 + a! (1 - 2’91. (3) 

The constellation (the same as proposed in [4] and [5]) is, 
thus, specified by a single parameter, al .  

The optimized convolutional codes and constellation param- 
eters a1 and 6 [the latter added for the reader’s convenience, 
since it can be computed from (3)], as well as the resulting 
pLin (in dB) and the corresponding pLin for the Ungerboeck 
type TCM schemes, have been listed in Table I for R = 
1, 2, 3, and 4, for 2”-state trellises, where 2 5 z/ 5 8. 
As in [3] ,  the convolutional codes are specified by their 
parity-check polynomials h1 = (h:, ht- ,  , . . . , h;) and ho = 
(h:, hz-l, . . . , h!), given in octal form. For example, ho = 
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TABLE I 
NORMALIZED SQUARED MINIMUM DISTANCES, (IN dB), FOR 

THE OPTIMIZED PAM-CONSTELLATION-BASED TCM SCHEMES 
(OPT), COMPARED TO THE UNGERBOECK TYPE SCHEMES (c') [3] 

~ 

Gain 

[dBl 
0.46; 

0.59' 

0.73 

0.47 

0.49 

0.30 

0.37 

0.24. 

0.38' 

0.49 

0.14 

0.18 

0.00 

0.15 

0.19' 

0.32' 

0.42 

0.07 

0.14 

0.00 

0.03 

0.16 

0.29 

0.39 

0.05 

0.14 

0.00 

0.01 

- 

- 

__ 

Code A 
OPT 
9.03 

9.62 

10.17 

10.64 

10.98 

11.37 

11.71 

5.59 

6.19 

6.71 

7.09 

7.45 

7.84 

7.99 

- 

- 

:dB1 

U 
8.57 

9.03 

9.44 

10.17 

10.49 

11.07 

11.34 

5.35 

5.81 

6.22 

6.95 

7.27 

7.84 

7.84 

- 

- 

- 
ho 2' h' 6 

3.88 

3.69 

3.78 

3.78 

3.82 

3.90 

3.84 

1.76 

1.76 

1.76 

1.76 

1.75 

1.75 

1.77 

- a1 

1.21 

1.31 

1.27 

1.27 

1.25 

1.20 

1.24 

4 

8 

16 

32 

64 

128 

256 

2 

04 

10 

12 

010 

136 
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7 

13  

23 

45 

107 

267 

433 

4 

8 
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32 

64 
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2 
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10 

12 

032 
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13 

23 

45 
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235 

433 

1.50 

1.50 

1.50 

1.49 

1.51 

1.53 

1.46 

I D 
I 

Fig. 1. 
scheme. 

Optimized QAM signal constellation [I41 for the eight-state TCM 

as well as in [12] and [13]; they are therefore not discussed 
here. In this section, additional TCM schemes based on the 
nonequally spaced eight-PSK constellations proposed in [4] 
and [5] are presented. These constellations are used with rate 
2/3 convolutional codes to transmit R = 1 bit per dimension. 
The eight signal points are A,-A,B, -B ,C, -C,D,  and 
- D ,  where 

A = (&cos(4/2), &sin(q5/2)) 

B = (-JZsin(4/2), &cos(4/2)) 

c = (JZsin(4/2),  &cos(4/2)) 

D = (-JZcos(4/2), &sin(4/2)). 

For the equally spaced constellation, 4 = 7r/4. 
The optimized convolutional codes and constellation 

parameter 4/2 as well as the resulting pLin (in dB) 
and the corresponding p:rlin for the Ungerboeck type 
TCM schemes, have been listed in Table I1 for R = 1. 
To further facilitate the comparison between the newly 
found and the Ungerboeck type TCM schemes, the diree 
values have been listed as well. The mapping function 
is f(,z2z1z0) = (000,001, 010,011,100,101, 110,111) + 

Whereas, there is no gain for eight states, there is a small 
( A ,  -A, B ,  -B; C, -C, D ;  -D).  

increasing gain for 16, 32, and 64 states. 

4 

8 

16 

32 

64 

128 

256 

2 

04 

10 

12 

032 

126 

302 

7 

13  

23 

45 

107 

235 

433 

1.61 

1.61 

1.61 

1.61 

1.62 

1.63 

1.59 

0.87 

0.87 

0.87 

0.87 

0.87 

0.87 

0.87 

1.23 

1.82 

2.33 

2.71 

3.10 

3.54 

3.57 

1.04 

1.50 

1.91 

2.64 

2.96 

3.54 

3.54 

-3.74 

-3.29 

-2.87 

- 

-2.15 

-1.83 

-1.25 

-1.25 

4 

8 

16 

32 

64 

128 

256 - 

2 

02 

02 

12 

032 

126 

302 - 

5 

17 

33 

45 

135 

235 

433 - 

1.69 

1.69 

1.69 

1.67 

1.68 

1.68 

1.66 - 

0.43 

0.43 

0.43 

0.43 

0.43 

0.43 

0.43 - 

-3.58 

-3.00 

-2.48 

-2.10 

-1.69 

-1.25 

-1.24 

* Same gain previously reported in [4], [5]. 

(1 ,0 ,0 ,1 ,1)  is written as ho = 23. By definition, h: = h: = 1 
and hi = h; = 0. In all cases, the mapping function is 
f (z lzo)  = (00,01,10,11) + (A ,  -B, B ,  -A),  where z1 and 
zo are the output bits of the encoder, acted upon by h1 and 
ho, respectively. 

It can be observed from Table I that, generally, as the 
rate and complexity (Le., the number of states) increase, 
the gains of the optimized TCM schemes over those based 
on the traditional equally spaced signal constellations slowly 
decrease. It can also be observed from Table I that there is no 
gain for 128 states, for R > 1; the code and signal constellation 
found are exactly those of [3]. 

IV. QAM CONSTELLATIONS 

For transmitting at R = 1, using a rate 2/3 convolutional 
code, a QAM signal constellation may outperform a PSK 
constellation. Although this is not the case for the Ungerboeck 
type schemes, for which the eight-PSK constellation outper- 
forms the eight-QAM constellation, we have found eight- 
and 16-state TCM schemes with an optimized eight-QAM 
constellation that results in a performance gain over the equally 
or nonequally spaced eight-PSK constellations. 

As illustrated in Fig. 1, the eight signal points, 
A,-A,B, -B ,C, -C,D;  and -D ,  are specified by four 

111. PSK CONSTELLATIONS 
Codes for the nonequally spaced four-point PSK constella- 

tions proposed in [4], [5] ,  for R = 1/2, were published in [I 11, 
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Code p k i n  [dB] Gain dtree (S = 0.5) 

2” h2 h’ ho 4 /2  OPT U [dB] OPT U 

8 04 02 11 0.393 9.62 9.62 0.00’ 4.586 4.586 

16 10 02 23 0.464 10.17 10.15 0.02’ 5.200 5.172 

32 24 14 67 0.503 10.69 10.61 0.08 5.861 5.758 

64 012 074 147 0.503 11.13 11 .03  0.10 6.481 6.343 

2” 

8 

TABLE 111 
NORMALIZED SQUARED MINIMUM DISTANCES, pLln (IY dB). A\D SQLARED MIMMUM DISTANCES, dZrce, FOR THt. OPTIMIZED 

QAM-CONSTELLATION-BASED TCM SCHEMES (OPT), COMPARED TO THE U~GERBOECK-TYPE PSK SCHEMES (u) OF [3] 

Code Constellation p k i n  [dB] Gain dlree ( S  = 0.5) 

h2 hl h0 x I-L a OPT U [dB] OPT U 

04 02 11 0.798 0.401 1.000 9.68 9.62 0.06 4.648 4.586 

R 

16 

1 

- 16 04 23 0.774 0.373 1.012 10.37 10.15 0.22 5.442 5.172 

positive parameters A, p, a ,  and /3 
A = ( A  - p , x  + p)  

B = ( a  + p, --Q + p)  
c = ( A  + p, x - p) 

D = (-Q - p, -0 - p).  
Normalizing to S 1 leaves only three parameters, A, p, 

and a, to be optimized, with /3 = d2 - A2 - p2 - cu2. 
The optimized convolutional codes and constellation param- 

eters as well as the resulting pkin (in dB) and the correspond- 
ing p:in for the Ungerboeck type PSK-constellation-based 
TCM schemes, are listed in Table 111. The mapping function 
is f (z2z ’z0)  = (OOO,OOI,  OIO,OII,IOO, 1O1,11O.111) + 

(A ,  -D ,B ,C ,  -A, D ,  -B, -C) .  

V. CONCLUSION 

We have presented additional TCM schemes, based on 
nonequally spaced signal constellations, that have a larger 
squared minimum distance than the Ungerboeck type TCM 
schemes based on equally spaced signal constellations. 
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