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A B S T R A C T

In MJLS literature the separation principle between filtering and control has been established in
case the Markov mode switching process {θt} is fully observed, and the Euclidean state process
{xt}is partially observed. In case the exact {θt}remains hidden, the separation principle has only
been established under a linear filtering restriction. Since nonlinear filters can provide significant
better estimates, the desire to extend the separation principle to MJLS with hidden {θt}is a long-
standing challenge. The objective of this paper is to resolve this long-standing challenge in three
steps. The first step is to transform the MJLS stochastic control problem into control under a
quadratic performance criterion of a linear system driven by a martingale which is influenced by
the control. The certainty equivalence (CE) condition known in literature applies to stochastic
control of a linear system that is driven by a control independent martingale. Therefore, the
second step is to relax this known CE condition such that it allows this control influence on the
martingale. The third step is to prove that the relaxed CE condition is satisfied for the general
MJLS control problem considered. The overall achievement is a CE control law for a partially
observed MJLS, which assures the Separation Principle between filtering and control. The paper
also shows that for the case that {xt}is fully observed and the exact{θt}remains hidden, that the
novel CE control law differs significantly from the in literature well-developed Averaging MJLS
control policy.

1. Introduction

One of the fundamentals in feedback control theory for linear systems is that optimal control and optimal state estimation can be
resolved in a decoupled way; this is known as the Separation Principle. Stochastic control of partially observed continuous-time
Markov Jump Linear Systems (MJLS) constitutes a well-studied class of problems in filtering and control theory. Rich overviews of
the problems and achievements in this domain are given by Mariton [1], Elliott et al. [2], Mao and Yuan [3], Costa et al. [4]. Despite
these achievements, for MJLS the Separation Principle between filtering and control has only been established when the Markovian
switching parameters are fully observed [5]. However, if the Markov switching is hidden, then the existing theory on the separation
principle falls short. The latter even applies to the basic hidden Markov setting [6]. The lack of a general separation principle has
motivated the development of sub-optimal approaches for the integration of filtering and control for MJLS [7–11]. A popular approach
is to adopt the certainty equivalence (CE) control policy, which means that in the deterministic control policy the exact state is replaced
by the estimated state, e.g. [8]. Another popular approach is to approximate the exact nonlinear filter by the best linear filter, and
subsequently optimize the control for this linear system, e.g. [10]. The objective of this paper is to improve this situation
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fundamentally, by developing a general separation principle for stochastic control of a partially observed MJLS.
The MJLS considered is the Ito stochastic differential equation (SDE):

dxt = Aθt xtdt + Bθt utdt + Cθt dwt (1)

with Rn-valued process {xt}, feedback control {ut}, and Brownian motion {wt} which is independent of (θ0, x0). The coefficients Aθ,

Bθ,Cθ are switching according to a continuous-time Markov chain {θt} which is independent of {wt}, has cadlag paths and assumes
values in a finite set Θ = {e1, .., eN} of unity vectors ei ∈ RN, according to Markov transition rates λθη :

P{θt+Δ = η|θt = θ,(xs, θs; s< t)} =

{
λθηΔ + o(Δ), η ∕= θ

1 + λθθΔ + o(Δ), η = θ (2)

with limΔ→0o(Δ)/|Δ| = 0, and λθθ = − Σ
η∕=θ

λθη.

The hybrid process {θt , xt} is assumed to be partially observed through an m-dimensional process
{
yt
}
. The control problem is to

characterize the feedback law Ψ : y→u over a time window [0,T], i.e. to map the observation process
{
yt
}

to the control input {ut} in a
non-anticipatory manner, to minimize the value of the functional

J({ut}) = E

⎧
⎨

⎩
xʹ
TSθT xT +

∫T

0

xʹ
tQθt xtdt+

∫T

0

uʹ
tR=utdt

⎫
⎬

⎭
(3)

where, for all θ ∈ Θ, Sθ and Qθ are positive semi-definite and R= is positive definite.
The challenge is to develop for (1-3), given partial observations, a control law that assures the Separation Principle between

filtering and control to hold true.
Georgiou and Lindquist [12] extended the separation principle in stochastic control to a partially observed linear systems that is

driven by a martingale process instead of Brownian motion. To follow this approach, the above MJLS will be transformed to a linear
process with discontinuous martingale input. The resulting system raises two issues that are not addressed by [12]. Firstly, the
“Stochastic Open Loop” reasoning [13] does not apply for a system with Markov switching coefficients. Secondly, the resulting system
involves a discontinuous martingale that involves a multiplication with the process to be controlled. To overcome the first issue, the set
of admissible control policies is restricted to those defining a {ut}which is square integrable and pathwise unique. To address the
second issue, the derivations of [12] are extended in this paper. These derivations show that, in contrast to [12], the discontinuous
martingale plays a key role in the optimal control policy. The resulting optimal control policy is shown to add a novel coupling to the
known set of coupled Riccati differential equations for MJLS control, e.g. [4].

The research is organized as follows. Section 2 introduces a transformation of (1)-(3) to stochastic control of a linear system that is
driven by a discontinuous martingale. Section 3 derives the optimal control law for this transformed system given full observations of
the output of this linear system only, though not about {θt}.

Section 4 develops the extension of the separation principle for the transformed system from Section 2. Section 5 applies the
extended separation principle to the specific cases where the optimal estimator is the Kalman filter and the Wonham filter, respec-
tively. For the Kalman filter case, equivalence with the policy of Fragoso and Costa [5] is shown. For the Wonham filter case, it will be
shown that there is a significant difference with the certainty equivalent control policy [7,8]. Section 6 elaborates the extended
separation principle to the general case of linear Gaussian observations of {xt}only. Section 7 draws conclusions.

2. Transformation to stochastic control of a linear process

Throughout the paper all processes are defined on a complete probability space (Ω, F,P), with (Ω, F) a measurable space, and with P
a probability measure defined on the σ -algebra F. The σ -algebra F is equipped with a filtration {Ft}t∈[0,∞], of increasing right-
continuous sub- σ -algebra’s Ft of F, with F∞ = F.

Hence, in (1), the Brownian motion{wt}is an Rm-valued martingale relative to the filtration {Ft}. Moreover, SDE (1) is assumed to
have a pathwise unique {Ft}-adapted solution that evolves on Euclidean space Rn, xt : Ω→Rn, ut : Ω→Rl ; and for each θ ∈ Θ,Aθ is an n
×n matrix, Bθ is an n× l matrix, and Cθ is an n×m matrix.

Following [14] the Markov chain {θt} can be written as the solution of an SDE driven by N(N − 1) independent Poisson point
processes dpθη,t , η ∕= θ, with rates λθη:

dθt =
∑

θ,η∈Θ
η∕=θ

1{θt− = θ}(η − θ)dpθη,t (4)

where t − = lim
Δ↓0

(t − Δ), and the compensated processes
{
dpθη,t − λθηdt

}
are {Ft}-martingales.

To ensure that the SDE pair (1,4) has a pathwise unique and square-integrable solution, we assume the following:

i. The initial condition x0 is square integrable.
ii. All elements of Aθ,Bθ,Cθ are finite valued.

H.A.P. Blom
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iii. The transition rates λθηare finite, i.e. λθη < ∞, for all η ∕= θ.
iv. The control {ut} is in the set of Ft-adapted, pathwise unique, square integrable processes.

Following a well-known transformation from nonlinear filtering, e.g. Bjork [15], we define for each θ ∈ Θ, the indicator process χθ
t

satisfies:

χθ
t =

{
1, if θt = θ
0, if θt ∕= θ

Subsequently, we also define the process ξθ
t = χθ

t xt. Hence: xt = Σ
θ∈Θ

ξθ
t , and application of the differentiation rule for discontinuous

semi-martingales, (see Appendix A) yields:

dχθ
t =

∑

η∈Θ

[
χη
t− dpηθ,t

]
(5)

dξθ
t = Aθξθ

t dt + Bθχθ
t utdt + Cθχθ

t− dwt +
∑

η∈Θ

[
ξη
t− dpηθ,t

]
(6)

with dpθθ,t
Δ
=
−

∑
η∕=θdpθη,t. Martingale decomposition of (6) yields:

dξθ
t = Aθξθ

t dt + Bθχθ
t utdt +

∑

η∈Θ

[
ληθξη

t−
]
dt + dmθ

t (7)

with
{
mθ

t
}

satisfying:

dmθ
t = Cθχθ

t− dwt +
∑

η∈Θ

[
ξη
t− dp

m
θη,t

]
(8)

where dpmθη,t
Δ
=
dpθη,t − λθηdt, η ∕= θ. Hence

{
mθ

t
}

is an {Ft}-martingale since:

E
{
dmθ

t

⃒
⃒Ft−

}
= E

{
Cθχθ

t− dwt |Ft−
}
+ E

{
∑

η∈Θ

[
ξη
t− dp

m
θη,t

]
⃒
⃒
⃒
⃒
⃒
Ft−

}

=

= Cθχθ
t− E{dwt |Ft− } +

∑

η∈Θ

[
ξη
t− E

{
dpmθη,t

⃒
⃒
⃒Ft−

}]
= Cθχθ

t− ⋅ 0 +
∑

η∈Θ

[
ξη
t− ⋅ 0

]
= 0

where use has been made of: E
{
dpmθη,t

⃒
⃒
⃒Ft−

}
= E

{
dpθη,t − λθηdt

⃒
⃒Ft−

}
= [λθηdt − λθηdt] = 0

To apply the above transformation to eq. (3), the following equalities are of use:

xʹ
tSθt xt = Σ

η∈Θ
χη
t x

ʹ
tSηxt = Σ

η∈Θ
χη
t χη

t x
ʹ
tSηxt = Σ

η∈Θ
ξηʹ
t Sηξη

t

xʹ
tQθt xt = Σ

η∈Θ
χη
t x

ʹ
tQηxt = Σ

η∈Θ
χη
t χη

t x
ʹ
tQηxt = Σ

η∈Θ
ξηʹ
t Qηξη

t

By substituting these in (3), the optimization criterion becomes:

J({ut}) = E

⎧
⎨

⎩

∑

θ∈Θ
ξθʹ
T Sθξθ

T +

∫T

0

∑

θ∈Θ
ξθʹ
t Qθξθ

t dt+
∫T

0

uʹ
tR=utdt

⎫
⎬

⎭
(9)

The final transformation step is to collect all θt -dependent process components in vectors by defining: ξt = Col
{

ξe1t , ..,ξ
eN
t
}
, χt =

Col{χe1
t ,..,χeN

t }, (χtut) = Col{χe1
t ut ,..,χeN

t ut}, mt = Col{me1
t ,..,meN

t }, S = Diag{Se1 ,..,SeN}, Q = Diag
{
Qe1 ,..,QeN

}
, A = Diag{Ae1 ,..,AeN}, B =

Diag{Be1 , ..,BeN}, C = Diag{Ce1 , ..,CeN},

dpt =

⎡

⎢
⎢
⎢
⎢
⎣

dp11,t In dp12,t In ⋅ ⋅ dp1N,t In
dp21,t In dp22,t In ⋅ ⋅ dp2N,t In

⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅

dpN1,t In dpN2,t In ⋅ ⋅ dpNN,t In

⎤

⎥
⎥
⎥
⎥
⎦
, and Λ =

⎡

⎢
⎢
⎢
⎢
⎣

λ11In λ12In ⋅ ⋅ λ1NIn
λ21In λ22In ⋅ ⋅ λ2NIn

⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅

λN1In λN2In ⋅ ⋅ λNNIn

⎤

⎥
⎥
⎥
⎥
⎦

with In the nxn identity matrix.
System (7)-(9) can now be written as:

dξt = [A+Λʹ]ξtdt + B(χtut)dt + dmt (10)

H.A.P. Blom
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dmt = Cχt− dwt +
[
ξ́t− dp

m
t
]́

(11)

J({ut}) = E

⎧
⎨

⎩
ξ́TSξT +

∫T

0

ξ́tQξtdt+
∫T

0

uʹ
tR=utdt

⎫
⎬

⎭
(12)

with dχ t́ = χ t́− dpt and dpmt = dpt − Λdt.
Hence {mt} is an {Ft}-martingale.

Remark 2.1. The above transformation has been introduced by [9]. The resulting control problem (10-12) has the following
characteristics:

• {ξt} is the solution of an SDE that is linear in ξt , (χtut) and dmt;
• Initial condition is: ξ0 = Col

{
χe1

0 x0, ....,χeN0 x0
}
, with χθ

0 = 1{θ0 = θ};
• dmt is a sum of dwtmultiplied by χt− , and dpmt multiplied by ξt− ;
• Optimization criterion J({ut}) is quadratic in ξt and in ut.

The challenge is to develop a CE route in solving control problem (10-12) under partial observations of ξt . As has been well
explained by [12], the established CE route is to first characterize the optimal control policy given full observations of ξt , and sub-
sequently to prove optimality of replacing ξt by the partial observation based estimator ξ̂t . For system (10-12) there are two com-
plications in following this established route. One complication is that under the nominal initial conditions ξt = χtxt is sparse, i.e. ξθ

t

= 0 for all θ ∕= θt , while ξ̂tis not sparse. The other complication is that the established CE proof is to show that E{(ξt − ξ̂t)(ξt − ξ̂t )́ } is not
influenced by the control, which does not hold true in our case. Section 3 addresses the first complication by considering non-sparse
solutions of (10) by assuming a non-sparse initial condition for ξ0. Section 4 addresses the second complication by proving CE under

the condition that E
{(

ξθ
t − ξ̂

θ
t
)(

ξθ
t − ξ̂

θ
t
)́ }

, θ ∈ Θ, is not influenced by the control. Sections 5 and 6 show that this relaxed CE condition
of this novel control law hold true for specific and general MJLS cases respectively.

3. Control of system (10-12) given full observations of a non-sparse ξt

In this section, {Ft}-measurable partial observations are made of {χt} and full observations are made of the solution {ξt} of the
transformed system (10-12). At moment t, the sigma-algebra of continuous-time observations is Yt ⊇ σ{ξs; s ∈ [0, t]}. Since Yt is right-
continuous and increasing with time, it defines a filtration {Yt}⊂{Ft}. Rather than assuming for (10) the nominal initial condition, ξ0 =

Col
{

ξe1
0 , ...., ξeN0

}
, with χθ

0 = 1{θ0 = 1}, we assume that ξ0 is non-sparse and independent of χ0. The consequence of this non-sparse
initial condition is that ξt, t > 0, will also be non-sparse. Firstly Theorem 3.1 characterizes J({ut}) in terms of (χtut − Ktξt), where
Kt is the applicable gain matrix. Subsequently Theorem 3.2 characterizes the optimal control u∗t . Since the non-sparse initial condition
will not hold true for the original system, the resulting control law is referred to as the Non-sparse control law.

Theorem 3.1. Let assumptions i-iii be satisfied for system (10-12). Let ξ0 be independent of χ0, and let ξθ
0 ∕= 0, for all θ ∈ Θ. Let Yt cover

partial χt observations and full ξt observations, i.e. Yt ⊇ σ{ξs; s ≤ t}, and let a nonlinear filter produce a pathwise unique χ̂ t = E{χt |Yt}.

Then J({ut}) satisfies:

J({ut}) = E
{

ξ́0P(0)ξ0
}
+ E

⎧
⎨

⎩

∫T

0

[(χtut) − K(t)ξt ]́R[(χtut) − K(t)ξt ]dt

⎫
⎬

⎭
+

1
2
E
{
I∂∂
T
}

(13)

with I∂∂
T =

∫T

0

∑

θ

[
χθ
t C

ʹ
θPθθ(t)Cθ

]
dt and with gain matrix:

K(t) = − R− 1BʹP(t), (14)

where R = Diag{R=, ..,R=}, and P(t), t < T, is the backward solution of the equation:

Ṗ(t) = − [Aʹ+Λ]P(t) − P(t)[A+Λʹ] + P(t)BR− 1BʹP(t) − Q −
∑

θ,η∈Θ
η∕=θ

[
λθη

(
Yθη − Yθθ)P(t)

(
Yθη − Yθθ)ʹ], (15)

with P(T) = S, and Yθη is an Nl × Nl matrix, of which the N2 submatrices Yθη
ij satisfy:

Yθη
ij

Δ
=

{
Il ×l , if i = θ, j = η

∅l ×l , else . (16)

H.A.P. Blom
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Theorem 3.2. (Non-sparse control law)

Under the assumptions of Theorem 3.1, the control law to minimize J({ut}) satisfies:

u∗t =
[
χ̂ e1
t Il , ..., χ̂ eN

t Il
]
K(t)ξt (17)

where Il is the identity matrix of size l × l , and the gain matrix K(t) satisfies (14-16).
Proof of Theorem 3.1: Application of the differentiation rule for discontinuous semimartingales (see Appendix A1) to f(zt) = f(ξt ,

P(t)) = ξ
ʹ
tP(t)ξt , yields: ξ

ʹ
TP(T)ξT = ξ

ʹ
0P(0)ξ0 + I∂T + 1

2I
∂∂
T + ΣT , (*) with I∂T the contribution from the first integral in (A.1), I∂∂

T the
contribution from the second integral, and ΣT the contribution of the summation. The first integral in (A.1) yields:

I∂T =

∫T

0

ξ
ʹ
t− dP(t)ξt− +

∫T

0

ξ
ʹ
t− P(t − )dξt +

∫T

0

[
dξ

ʹ
tP(t − )ξt−

]
.

Since (16) implies P(t − ) = P(t), we get:

I∂T =

∫T

0

ξ́t− dP(t)ξt− +

∫T

0

ξ́t− P(t)dξt +
∫T

0

[
dξ́tP(t)ξt−

]
. Subsequent evaluation yields:

I∂T =

∫T

0

ξ́t− dP(t)ξt− +

∫T

0

ξʹ
t− P(t)(A+Λʹ)ξt− dt +

∫T

0

ξ́t− P(t)(B(χt− ut− )dt+ dmt)+

+

∫T

0

ξ́t− (A
ʹ+Λ)P(t)ξt− dt +

∫T

0

[(B(χt− ut− )dt + dmt )́ P(t)ξt− ]

Substitution of eq. (15) for Ṗ(t) yields:

I∂T =

∫T

0

ξ́t−
[
− [Aʹ+Λ]P(t) − P(t)[A+Λʹ] +P(t)BR− 1BʹP(t) − Q − Z(t)

]
ξt− dt +

∫T

0

ξ́t− P(t)(A+Λʹ)ξt− dt+

+

∫T

0

ξʹ
t− (A

ʹ+Λ)P(t)ξt− dt +
∫T

0

ξ́t− P(t)(B(χt− ut− )dt+ dmt) +

∫T

0

[(B(χt− ut− )dt + dmt )́ P(t)ξt− ]

with: Z(t) Δ
=

∑
θ,η∈Θ

η∕=θ

[
λθη

(
Yθη − Yθθ)P(t)

(
Yθη − Yθθ)

ʹ]
. Evaluation yields:

I∂T =

∫T

0

ξ́t−
[
P(t)BR− 1BʹP(t) − Q − Z(t)

]
ξt− dt +

∫T

0

ξ́t− P(t)(B(χt− ut− )dt+ dmt) +

∫T

0

[(B(χt− ut− )dt + dmt )́ P(t)ξt− ]

Substitution of eq. (14), and subsequent evaluation yields:

I∂T =

∫T

0

ξ́t− [K(t)́RK(t)]ξt− dt −
∫T

0

ξ́t− K(t)́R(χt− ut− )dt −
∫T

0

(χt− ut− )́RK(t)ξt− dt+

−

∫T

0

ξʹ
t− [Q+Z(t)]ξt− dt +

∫T

0

ξ́t− P(t)dmt +

∫T

0

[
dmʹ

tP(t)ξt−
]

By completing the squares for the terms in the first three integrals, this becomes:

I∂T =

∫T

0

[
(χt− ut− )́ − ξ́t− K(t)́

]
R[(χt− ut− ) − K(t)ξt− ]dt −

∫T

0

(χt− ut− )́Rχt− ut− dt+

−

∫T

0

ξʹ
t− [Q+Z(t)]ξt− dt +

∫T

0

ξ́t− P(t)dmt +

∫T

0

[
dmʹ

tP(t)ξt−
]

Substituting this in eq. (*) for ξ
ʹ
TP(T)ξT, and using (χt− ut− )

ʹ
R(χt− ut− ) = ut−

ʹR=ut− ,yields:

H.A.P. Blom
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ξ
ʹ
TP(T)ξT = ξ

ʹ
0P(0)ξ0 +

∫T

0

[
(χt− ut− )

ʹ
− ξ

ʹ
t− K(t)

ʹ]
R[(χt− ut− ) − K(t)ξt− ]dt −

∫T

0

ut−
ʹR=ut− dt+

−

∫T

0

ξ
ʹ
t− Qξt− dt −

∫T

0

ξ
ʹ
t− Z(t)ξt− dt +

∫T

0

ξ
ʹ
t− P(t)dmt +

∫T

0

[
dmʹ

tP(t)ξt−
]
+

1
2
I∂∂
T + ΣT

For the integral involving Z(t), by using Z(t) = Z(t − ) we get:

∫T

0

ξ́t− Z(t)ξt− dt =
∫T

0

ξ́t− Z(t − )ξt− dt =
∫T−

0−

ξ́tZ(t)ξtdt =
∫T

0

ξ́tZ(t)ξtdt

Similar rewriting applies to the integral terms involving K(t), R and Q. Hence:

ξ́TP(T)ξT = ξʹ
0P(0)ξ0 +

∫T

0

[
(χtut )́ − ξ́tK(t)́

]
R[(χtut) − K(t)ξt ]dt −

∫T

0

utʹR=utdt+

−

∫T

0

ξʹ
tQξtdt −

∫T

0

ξ́tZ(t)ξtdt +
∫T

0

ξ́t− P(t)dmt +

∫T

0

[
dmʹ

tP(t)ξt−
]
+

1
2
I∂∂
T + ΣT

Taking expectation, and rearranging terms, yields:

E
{

ξ
ʹ
TP(T)ξT

}
+ E

⎧
⎨

⎩

∫T

0

ut
ʹR=utdt

⎫
⎬

⎭
+ E

⎧
⎨

⎩

∫T

0

ξ
ʹ
tQξtdt

⎫
⎬

⎭
=

= E
{

ξ
ʹ
0P(0)ξ0

}
+ E

⎧
⎨

⎩

∫T

0

[
(χtut)

ʹ
− ξ

ʹ
tK(t)

ʹ]
R[(χtut) − K(t)ξt ]dt

⎫
⎬

⎭
+

− E

⎧
⎨

⎩

∫T

0

ξ
ʹ
tZ(t)ξtdt

⎫
⎬

⎭
+ E

⎧
⎨

⎩

∫T

0

ξ
ʹ
t− P(t)dmt

⎫
⎬

⎭
+ E

⎧
⎨

⎩

∫T

0

[
dmʹ

tP(t)ξt−
]

⎫
⎬

⎭
+

1
2
E
{
I∂∂
T
}
+ E{ΣT}

Evaluation of the term involving the {Ft}-martingale {mt}, yields:

E

⎧
⎨

⎩

∫T

0

ξ́t− P(t)dmt

⎫
⎬

⎭
=E

⎧
⎨

⎩

∫T

0

E{ξ́t− P(t)dmt |Ft−

⎫
⎬

⎭

⎫
⎬

⎭
= E

⎧
⎨

⎩

∫T

0

ξ́t− P(t)E{dmt |Ft− }

⎫
⎬

⎭
= E

⎧
⎨

⎩

∫T

0

ξ́t− P(t) ⋅ 0 ⋅ dt

⎫
⎬

⎭
= 0

Hence:

E
{

ξ
ʹ
TP(T)ξT

}
+ E

{∫T

0

ut
ʹR=utdt

}

+ E
{∫T

0

ξ
ʹ
tQξtdt

}

=

= E
{

ξ
ʹ
0P(0)ξ0

}
+ E

{∫T

0

[
(χtut)

ʹ
− ξ

ʹ
tK(t)

ʹ]
R[(χtut) − K(t)ξt ]dt

}

− E
{∫T

0

ξ
ʹ
tZ(t)ξtdt

}

+
1
2
E
{
I∂∂
T
}
+ E{ΣT}

Using P(T) = S, and subsequent substitution in (12) yields: J({ut}) =

= E
{

ξ
ʹ
0P(0)ξ0

}
+ E

⎧
⎨

⎩

∫T

0

[
(χtut)

ʹ
− ξ

ʹ
tK(t)

ʹ]
R[(χtut) − K(t)ξt ]dt

⎫
⎬

⎭
− E

⎧
⎨

⎩

∫T

0

ξ
ʹ
tZ(T)ξtdt

⎫
⎬

⎭
+

1
2
E
{
I∂∂
T
}
+ E{Σt}.

Evaluation of I∂∂
T , using (A1), yields:

I∂∂
T =

∫T

0

∑

θ,η

∑n

i,j=1

[
Pθη,ij(t)d<Cθ,iχθ

t wt ,Cη,jχη
t wt>t

]
=

∫T

0

∑

θ

∑n

i,j=1

[
Pθθ,ij(t)d<Cθ,iχθ

t wt ,Cθ,jχθ
t wt>t

]
=

=

∫T

0

∑

θ

∑n

i,j=1

[
Pθθ,ij(t)Cθ,iχθ

t Cθ,jdt
]
=

∫T

0

∑

θ

[
χθ
t C

ʹ
θPθθ(t)Cθ

]
dt.
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To evaluate E{Σt}, we start with the summation term in (A.1) for f(ξt ,P(t)) = ξ́tP(t)ξt:

ΣT =
∑

0<t≤T

[
ξ́tP(t)ξt − ξ́t− P(t − )ξt− − ξ́t− [P(t) − P(t − )]ξt− − ξ́t− P(t − )Δξ

t − Δξ
t
ʹ
P(t − )ξt−

]
, with Δξ

t = ξt − ξt− . Using P(t) =

P(t − ), the squares are completed as follows:

ΣT =
∑

0<t≤T

[
ξ́tP(t)ξt − ξ́t− P(t)ξt− − ξ́t− P(t)Δ

ξ
t − Δξ

t
ʹP(t)ξt−

]

=
∑

0<t≤T

[
ξ́tP(t)ξt − ξʹ

t− P(t)ξt − Δξ
t
ʹP(t)ξt−

]
=

=
∑

0<t≤T

[
Δξ

t
ʹP(t)ξt − Δξ

t
ʹP(t)ξt−

]
=

∑

0<t≤T

[
Δξ

t
ʹP(t)Δξ

t

]

Hence E{ΣT} = E
{∑

0<t≤T[(ξt − ξt− )́ P(t)(ξt − ξt− )]
}
. (**)

From (10) and (11) we know:

dξt = [A+Λʹ]ξtdt + B(χtut)dt + Cχt− dwt +
[
ξ́tdp

m
t
]́
= Aξtdt + B(χtut)dt + Cχt− dwt +

[
ξ́t− dpt

]́

Since all terms in this SDE are square-integrable, the last term only may generate discontinuities in {ξt}. Hence: (ξt − ξt− )
ʹ
=

[
ξ

ʹ
t− dpt

]ʹ
= ξ

ʹ
t− (pt − pt− ).

Substituting this in eq. (**) for E{ΣT}yields:

E{ΣT} = E

{
∑

0<t≤T

[
ξ́t− (pt − pt− )P(t)(pt − pt− )́ ξt−

)]
}

=

= E

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

0<t≤T

[
ξ́t−

∑

θ,η∈Θ
η∕=θ

[
1
{
pθη,t ∕= pθη,t−

}
(pt − pt− )P(t)(pt − pt− )́

]
ξt− ]

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

By the definition of Yθη in (16) we have:

1
{
pθη,t ∕= pθη,t−

}
(pt − pt− )P(t)(pt − pt− )́ = 1

{
pθη,t ∕= pθη,t−

}(
Yθη − Yθθ)P(t)

(
Yθη − Yθθ)ʹ.

Substitution in eq. (**) for E{Σt}, and subsequent evaluation yields:

E{Σt} = E

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

0<t≤T

[
ξ́t−

∑

θ,η∈Θ
η∕=θ

[
1
{
pθη,t ∕= pθη,t−

}(
Yθη − Yθθ)P(t)

(
Yθη − Yθθ)ʹ]ξt− ]

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

=

= E

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

θ,η∈Θ
η∕=θ

⎡

⎣
∫T

0

ξ́t−
(
Yθη − Yθθ)P(t)

(
Yθη − Yθθ )́ ξt− dpθη,t

⎤

⎦

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

=

= E

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

θ,η∈Θ
η∕=θ

⎡

⎣
∫T

0

ξ́t
(
Yθη − Yθθ)P(t)

(
Yθη − Yθθ)ʹξtλθηdt

⎤

⎦

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

Hence: E{Σt} = E
{∫T

0

ξ
ʹ
tZ(t)ξtdt

}

, which simplifies the characterization of J({ut}) to:

J({ut}) = E
{

ξ́0P(0)ξ0
}
+ E

{∫T

0

[(χtut) − K(t)ξt ]R[(χtut) − K(t)ξt ]dt
}
+ 1

2 E
{
I∂∂
T
}

Q.E.D.

Proof of Theorem 3.2: Since E
{
I∂∂
T
}
is not influenced by {ut}, minimization of J({ut}) is achieved for
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u∗t = Argmin
u

E{[(χtu) − K(t)ξt ]́ R[(χtu) − K(t)ξt ]} =

= Argmin
u

E
{[
(χtu) + R− 1BʹP(t)ξt

]́
R
[
(χtu)+R− 1BʹP(t)ξt

]}

Using R = Diag{R=, ..,R=}, B = Diag{Be1 , ..,BeN}, ξt = Col
{

ξe1t , .., ξ
eN
t
}
, and subsequent evaluation yields: R− 1BʹP(t)ξt =

Col
{
R− 1
= Bʹ

e1

∑N
j=1

(
P1j(t)ξ

ej
t
)
, ..,R− 1

= Bʹ
eN

∑N
j=1

(
PNj(t)ξ

ej
t
)}

.

Substituting the latter together with (χtut) = Col{χe1
t ut , .., χeNt ut} yields:

u∗t = Argmin
u

E

{
∑N

i=1

[[

χei
t u+ R− 1

= Bʹ
ei

∑N

j=1

(
Pij(t)ξ

ej
t
)
]ʹ
R=

[

χei
t u+R− 1

= Bʹ
ei

∑N

j=1

(
Pij(t)ξ

ej
t
)
]]}

=

= ArgminE
u

{
∑N

i=1

[

χei
t u

ʹR=χei
t u+ χei

t u
ʹBʹ

ei

∑N

j=1

(
Pij(t)ξ

ej
t
)
+

[

Bʹ
ei

∑N

j=1

(
Pij(t)ξ

ej
t
)
]ʹ

χei
t u+ fi

(
χei
t , ξt

)
]}

=

= Argmin
u

E

{
∑N

i=1

[

χei
t u

ʹR=u+ χei
t u

ʹBʹ
ei

∑N

j=1

(
Pij(t)ξ

ej
t
)
+

[

Bʹ
ei

∑N

j=1

(
Pij(t)ξ

ej
t
)
]ʹ

χeit u+ fi
(
χeit , ξt

)
]}

=

= Argmin
u

E

{

uʹR=u+
∑N

i=1

[

χei
t u

ʹBʹ
ei

∑N

j=1

(
Pij(t)ξ

ej
t
)
+

[

Bʹ
ei

∑N

j=1

(
Pij(t)ξ

ej
t
)
]ʹ

χei
t u+ fi

(
χei
t , ξt

)
]}

=

= Argmin
u

E

{

uʹR=u+ E

{
∑N

i=1

[

χeit uʹBʹ
ei

∑N

j=1

(
Pij(t)ξ

ej
t
)
+

[

Bʹ
ei

∑N

j=1

(
Pij(t)ξ

ej
t
)
]ʹ

χei
t u+ fi

(
χei
t , ξt

)
]

|Yt

}}

=

= Argmin
u

E

{

uʹR=u+
∑N

i=1

[

χ̂ ei
t u

ʹBʹ
ei

∑N

j=1

(
Pij(t)ξ

ej
t
)
+

[

Bʹ
ei

∑N

j=1

(
Pij(t)ξ

ej
t
)
]ʹ

χ̂ ei
t u+ f̂ i

(
χei
t , ξt

)
]}

where fi(χeit , ξt) collects the u -invariant terms. To characterize the minimum u∗t , we can assume a zero value for the partial derivative of
the u -invariant terms at moment t:

∂
∂u

[

uʹR=u+
∑N

i=1

[

χ̂ ei
t u

ʹBʹ
ei

∑N

j=1

(
Pij(t)ξ

ej
t
)
+

[

Bʹ
ei

∑N

j=1

(
Pij(t)ξ

ej
t
)
]ʹ

χ̂ ei
t u

]]

⃒
⃒u = u∗t

= 0

This yields: u∗t
ʹR= + R=u∗t +

∑N
i=1

[
χ̂ ei
t B

ʹ
ei

∑N
j=1

(
Pij(t)ξ

ej
t
)
+

[
Bʹ
ei

∑N
j=1

(
Pij(t)ξ

ej
t
)]ʹ

χ̂ ei
t

]
= 0

Hence: u∗t = R− 1
=

∑N
i=1

[
χ̂ei
t B

ʹ
ei
∑N

j=1
(
Pij(t)ξ

ej
t
)]

= [χ̂e1
t Il , ..., χ̂eN

t Il ]K(t)ξt .. Q.E.D.

Remark 3.3. An important part of the proof of Theorem 3.1 involves the characterization of the novel terms
λθη

(
Yθη − Yθθ)P(t)

(
Yθη − Yθθ )́ in eq. (15) for P(t). These terms cover interaction betweenN(N − 1) off-diagonal matrices in P(t). To verify

that these novel terms are due to the multiplication of dptwith ξt− in the martingale term of eqs. (10-11), let’s see what happens if ξ́t −
dptis replaced by ς́t− dpt , with {ςt} a process that is not influenced by {ut}.

Following similar steps as in the proof of Theorem 3.1, then eq. (**) would yield:

E{Σt} = E

{
∑

0<t≤T
[(ςt − ςt− )́ P(t)(ςt − ςt− )]

}

=

= E

{
∑

0<t≤T

[
ςʹ
t− (pt − pt− )P(t)(pt − pt− )́ ςt−

)]
}

=

= E

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

θ,η∈Θ
η∕=θ

⎡

⎣
∫T

0

ς́t−
(
Yθη − Yθθ)P(t)

(
Yθη − Yθθ )́ ςt− λθηdt

⎤

⎦

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

Hence E{Σt} would no longer be influenced by {ut}, and the Y -involving summation in eq. (15) would disappear. Hence the off-
diagonal sub-matrices of P(t) would be zero.

Remark 3.4. A relevant question is if the Non-sparse control law of Theorem 3.2 also holds true if ξ0 is sparse. It can easily be verified
that nowhere in the derivation of Theorems 3.1 and 3.2 use is made of non-sparse ξ0. This means that eqs. (13)-(17) also hold true if ξ0

H.A.P. Blom



Nonlinear Analysis: Hybrid Systems 59 (2026) 101644

9

is sparse. The only consequence of a sparse ξ0 is that ξt and χ̂ t will be sparse, as result of which the off-diagonal matrices of P(t) do not
play a role in solving eq. (14).

4. Separation of control and estimation for (10-12) given partial observations

In this section, {Ft}-measurable partial observations
{
yt
}

are made of {χt , ξt} of the transformed system (10-12). At moment t, the
sigma-algebra of continuous-time observations is Yt = σ

{
ys; s ∈ [0,t]

}
. Since Yt is right-continuous and increasing with time, it defines

another filtration {Yt}⊂{Ft}. Throughout this section we assume that there is a nonlinear filter for the estimators χ̂ t = E{χt |Yt} and ξ̂t =
E{ξt |Yt}, which have pathwise unique and square integrable solutions.

For the setting of (10) and (12), though with an {mt} that is not influenced by {ξt}, [12] has proven that, under certain assumptions,
the separation principle between control and nonlinear filtering applies under the following CE condition:

C0. E{(ξt − ξ̂t)(ξt − ξ̂t )́ } is not influenced by {ut}.
To cover the more demanding setting of (10)-(12), we will extend the proof of [12] under the following relaxed CE condition C0*,

where ξ̂
θ
t = E

{
ξθ
t |Yt

}
:

C0*. For each θ ∈ Θ, E
{(

ξθ
t − ξ̂

θ
t
)(

ξθ
t − ξ̂

θ
t
)ʹ}

is not influenced by {ut}.
First Theorem 4.1 characterizes J({ut}) in terms of (χtut − Kt ξ̂t). Subsequently Theorem 4.2 characterizes the optimal control u∗t .

Theorem 4.1. Let assumptions i-iii be satisfied for system (10-12). Let Yt cover partial observations of (χt ,ξt), and a nonlinear filter produces
pathwise unique χ̂ t = E{χt |Yt} and ξ̂t = E{ξt |Yt}.

Then J({ut}) satisfies:

J({ut}) = E
{

ξ́0P(0)ξ0
}
+ E

⎧
⎨

⎩

∫T

0

[(χtut) − K(t)ξ̂t ]́R[(χtut) − K(t)ξ̂t ]dt

⎫
⎬

⎭
+

1
2
E
{
I∂∂
T
}
+ tr{K(t)RK(t)́Qt}

with the K(t) of eqs. (14-16), Qt
Δ
=
E{(ξt − ξ̂t)(ξt − ξ̂t)

ʹ
}, and where neither I∂∂

T nor Qt are influenced by ut .

Theorem 4.2. Given the assumptions of Theorem 4.1. If condition C0* holds true, then the optimal control law to minimize J({ut}), satisfies:

u∗t =
[
χ̂ e1
t Il , ..., χ̂ eN

t Il
]
K(t)ξ̂t . (18)

Proof of Theorem 4.1: By defining ξ̃t = ξt − ξ̂t we have E
{
[(χtut) − K(t)ξ̂t ]̃ξ

ʹ

t
}

= 0. Hence:

E
{∫T

0

[(χtut) − K(t)ξt ]́ R[(χtut) − K(t)ξt ]dt
}

=

= E
{∫T

0

[(χtut) − K(t)ξ̂t ]́ R[(χtut) − K(t)ξ̂]dt
}
+ tr{K(t)RK(t)́Qt}.

Substituting this in eq. (13) yields:

J({ut}) = E
{

ξ́0P(0)ξ0
}
+ E

⎧
⎨

⎩

∫T

0

[(χtut) − K(t)ξ̂t ]́R[(χtut) − K(t)ξ̂t ]dt

⎫
⎬

⎭
+

1
2
E
{
I∂∂
T
}
+ tr{K(t)RK(t)́Qt}

The proof of Theorem 3.1 showed that utdoes not influenceE
{
I∂∂
T
}
. Evaluation of Qt yields:

Ξt = E{(ξt − ξ̂t)(ξt − ξ̂t)
ʹ
} =

∑

θ
P{θt = θ}E{(ξt − ξ̂t)(ξt − ξ̂t)

ʹ
|θt = θ} =

=
∑

θ
P{θt = θ}E

{
χθ
t (ξt − ξ̂t)(ξt − ξ̂t)

ʹ⃒
⃒θt = θ

}
=

=
∑

θ
P{θt = θ}E

{
Diag

{
0, ..,0,χθ

t
(
ξθ
t − ξ̂

θ
t
)(

ξθ
t − ξ̂

θ
t )

ʹ

,0, ..,0}|θt = θ
}}

=

= E
{
Diag

{
χe1
t
(
ξe1
t − ξ̂

e1

t
)(

ξe1
t − ξ̂

e1

t
)ʹ
, ..,χeNt

(
ξeNt − ξ̂

eN
t
)(

ξeNt − ξ̂
eN
t
)ʹ}}

This means that condition C0* assures that Qt is neither influenced by ut. Q.E.D.
Proof of Theorem 4.2: Since ut only influences the integral term in the J({ut}) characterization of Theorem 4.1:
u∗t = Argmin

u
{E{[(χtu) − K(t)ξ̂t ]́ R[(χtu) − K(t)ξ̂t ]}}.

To resolve this optimization, we follow the steps in the proof of Theorem 3.2.
Substitution of eq. (14) yields:
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u∗t = Argmin
u

{
E
{[

(χtu) + R− 1BʹP(t)ξ̂t
]́
R
[
(χtu)+R− 1BʹP(t)ξ̂t

]}}

Using R = Diag{R=, ..,R=}, B = Diag{Be1 , ..,BeN}, ξt = Col
{

ξe1t , .., ξ
eN
t
}
, and subsequent evaluation yields: R− 1BʹP(t)ξ̂t =

Col
{
R− 1
= Bʹ

e1

∑

θ

[
P1θ(t)ξ̂

θ
t
]
, ..,R− 1

= Bʹ
eN

∑

θ

[
PNθ(t)ξ̂

θ
t
]}

.

Substituting the latter together with (χtut) = Col{χe1
t ut , .., χeNt ut} yields:

u∗t = Argmin
u

E
{∑N

i=1
[[

χeit ut + R− 1
= Bei

∑
θ
(
Peiθ(t)ξ̂

θ
t
)]́

R=

[
χeit ut + R− 1

= Bei
∑

θ
(
Peiθ(t)ξ̂

θ
t
)]]}

=

= Argmin
u

E
{∑N

i=1
[
χeit u

ʹ
tR=χeit ut + χeit u

ʹ
tBei

∑
θ
(
Peiθ(t)ξ̂

θ
t
)
+

[
Bei

∑
θ
(
Peiθ(t)ξ̂

θ
t
)]ʹ

χeit ut + fi(χeit , ξ̂)
]}

=

= Argmin
u

E
{
uʹ
tR=ut +

∑N
i=1

[
χeit u

ʹ
tBei

∑
θ
(
Peiθ(t)ξ̂

θ
t
)
+

[
Bei

∑
θ
(
Peiθ(t)ξ̂

θ
t
)]ʹ

χeit ut + fi(χeit , ξ̂)
]}

=

= Argmin
u

E
{
uʹ
tR=ut + E

{∑N
i=1

[
χeit u

ʹ
tBei

∑
θ
(
Peiθ(t)ξ̂

θ
t
)
+

[
Bei

∑
θ
(
Peiθ(t)ξ̂

θ
t
)]ʹ

χeit ut + fi(χeit , ξ̂)
]⃒
⃒Yt

}}
=

= Argmin
u

E
{
uʹ
tRut +

∑N
i=1

[
χ̂ei
t u

ʹ
tBei

∑
θ
(
Peiθ(t)ξ̂

θ
t
)
+

[
Bei

∑
θ
(
Peiθ(t)ξ̂

θ
t
)]ʹ

χ̂ei
t ut + f̂ i(χeit , ξ̂)

]}

To characterize the minimum u∗t , we can assume zero value for the partial derivative of the u -variant terms at moment t:

∂
∂u

[

uʹR=u+
∑N

i=1

[

χ̂ ei
t u

ʹBei

∑

θ

(
Peiθ(t)ξ̂

θ
t
)
+

[

Bei

∑

θ

(
Peiθ(t)ξ̂

θ
t
)
]ʹ

χ̂ ei
t u

]]

⃒
⃒u = u∗t

= 0

This yields: R=u∗t =
∑N

i=1
[
χ̂ ei
t Bei

∑

θ

(
Peiθ(t)ξ̂

θ
t
)]

Hence: u∗t =
∑N

i=1
[
χ̂ei
t R− 1

= Bei
∑

θ

(
Peiθ(t)ξ̂

θ
t
)]

= [χ̂e1
t Il , ..., χ̂eN

t Il ]K(t)ξ̂t.Q.E.D.

5. MJLS cases of Kalman and Wonham filter based estimation of ξ̂t

This section elaborates the findings of Section 4 for two specific MJLS cases:

- Full observations of {θt}, and linear Gaussian observations of {xt}; and
- Hidden {θt}, and full observations of {xt}.

For these cases, estimation is accomplished by Kalman and Wonham filters respectively. For these two cases, it will be shown that
CE condition C0 is satisfied. These two cases and the relation with existing results, are addressed in the next two subsections.

5.1. Full observations of θt and linear Gaussian observations of xt

This subsection addresses the situation Yt = σ
{

θs, ys; s ∈ [0, t]
}
, where

{
yt
}

satisfies:

dyt = Hθt xtdt + Gdbt (19)

with {dbt} a standard Brownian which is independent of {dwt},{dpt}and (θ0, x0). For this case, the optimal control solution is well
known, e.g. [Costa, Fragoso and Todorov, 2013, Theorem 4.9]. The filtering part consists of estimating x̂t by a Kalman filter, the
coefficients of follow the switching θt. The optimal control law is:

u∗t = KM
θt (t)x̂t (20)

where the gain matricesKM
θ (t), θ ∈ Θ, satisfy:

KM
θ (t) = − R− 1

= Bθ
ʹPM

θ (t) (21)

with PMθ (T) = Sθ, and for t < T, PMθ (t) is the solution of the coupled set of ODE’s:

ṖM
θ (t) = − Aθ

ʹPM
θ (t) − PM

θ (t)Aθ + PM
θ (t)BθR− 1

= Bθ
ʹPM

θ (t) −
∑

η∈Θ
λθηPM

θ (t) − Qθ. (22)

Next we show that under full observability of {θt} the Non-sparse control policy of Theorem 4.1 yields the same u∗t as control policy
(20-22).

Theorem 5.1. In case of full {θt}and partial {xt} observations, i.e. Yt = σ
{

θs, ys; s ∈ [0, t]
}
, with

{
yt
}
satisfying (19), the control policy of

Theorem 4.2 yields the same pathwise unique
{
u∗t
}
as control policy (20-22).
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Proof. Estimation of x̂t by a Kalman filter, the coefficients of which follow the switching θt , also implies that E{(xt − x̂t)(xt − x̂t )́ |Yt}

is not influenced by {ut}; hence condition C0 is satisfied. Because {θt} is observed, χ̂ θ
t = χθ

t assumes values from {0,1} only, which
implies that from the solution P(t) of eq. (15) only the diagonal sub-matrices play a role in the optimal control policy. Hence it remains
to be shown that the Pθθ(t) solutions of (15) are the same as the PMθ (t) solutions of (22). Evaluation of the last summation in eq. (15)
yields:

∑
θ,η∈Θ

[
λθη

(
Yθη − Yθθ)P(t)

(
Yθη − Yθθ )́ ] =

=
∑

θ,η∈Θ
λθη

[
YθηP(t)Yθηʹ − YθηP(t)Yθθʹ − YθθP(t)Yθηʹ+YθθP(t)Yθθʹ] =

=
∑

θ,η∈Θ
λθη

[
YθηP(t)Yθηʹ − YθηP(t)Yθθʹ − YθθP(t)Yθηʹ+YθθP(t)Yθθʹ]

Using this, and eq. (15), we get for the submatrix Pθθ(t) on the diagonal of P(t):

˙Pθθ(t) = − Aθ
ʹPθθ(t) − Pθθ(t)Aθ − 2

∑

η
λθηPθη(t) + Pθθ(t)BθR− 1

= Bθ
ʹPθθ(t) − Qθ

−
∑

η∕=θ

[λθη[Pηη(t) − Pηθ(t) − Pθη(t)+Pθθ(t)]] =

= − Aθ
ʹPθθ(t) − Pθθ(t)Aθ + Pθθ(t)BθR− 1

= Bθ
ʹPθθ(t) − Qθ − 2

∑

η∕=θ

λθηPθη(t) − 2λθθPθθ(t)+

−
∑

η∕=θ

[λθη[Pηη(t) − Pηθ(t) − Pθη(t)+Pθθ(t)]]

= − Aθ
ʹPθθ(t) − Pθθ(t)Aθ + Pθθ(t)BθR− 1

= Bθ
ʹPθθ(t) − Qθ − 2λθθPθθ(t) −

∑

η∕=θ

[λθη[Pηη(t)+Pθθ(t)]]

= − Aθ
ʹ
Pθθ(t) − Pθθ(t)Aθ + Pθθ(t)BθR− 1

= Bθ
ʹPθθ(t) − Qθ − 2λθθPθθ(t) −

∑

η∕=θ

[λθηPηη(t)] + λθθPθθ(t)

= − Aθ
ʹPθθ(t) − Pθθ(t)Aθ + Pθθ(t)BθR− 1

= Bθ
ʹPθθ(t) − Qθ − λθθPθθ(t) −

∑

η∕=θ

[λθηPηη(t)]

= − Aθ
ʹPθθ(t) − Pθθ(t)Aθ + Pθθ(t)BθR− 1

= Bθ
ʹPθθ(t) − Qθ −

∑

η
[λθηPηη(t)]

The latter is equal to eq. (22) for PM
θ (t). Q.E.D.

5.2. Hidden θt , and full observations of xt

This subsection addresses the situation Yt = σ{xs; s ∈ [0, t]}, under the restriction Cθ is θ -invariant. For this control problem, the
optimal solution is not known in literature. A well known approximation is the Averaging MJLS control policy [Fragoso, 1988]:

uAt = Σ
θ∈Θ

[
χ̂ θ
t K

M
θ (t)

]
xt , (23)

with KM
θ (t) the solution of (21-22), and χ̂ θ

t the solution of the Wonham filter.

Proposition 5.2. (Wonham filter)

Let Cθ = C for all θ. The estimator χ̂ θ
t = P{θt = θ|Yt}, given Yt = σ{xs; s ∈ [0, t]}, satisfies:

dχ̂ θ
t = Σ

η∈Θ

[
ληθ χ̂η

t

]
dt + χ̂ θ

t

[
Aθxt + Bθut − Σ

η∈Θ

[
χ̂ η
t (Aηxt + Bηut)

]]ʹ
[CCʹ]− 1dvt (24)

with dνt = dxt − Σ
η∈Θ

[
χ̂ η
t (Aηxt + Bηut)

]
dt.

Thanks to Theorem 4.1 we are now able to characterize the optimal control policy and compare this to the Averaging MJLS control
policy (23).

Theorem 5.3. let Cθ = C for all θ. Given Yt = σ{xs; s ∈ [0, t]}, the optimal control satisfies:

u∗t =
∑

θ

[
χ̂ θ
t Kθ(t)

]
xt (25)
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with : Kθ(t) = −
∑

η

[
χ̂ η
t R

− 1
= Bʹ

ηPηθ(t)
]
, (26)

where χ̂ θ
t is the Wonham filter solution (24), and P(t) is the solution of (15).

Proof. To verify that Condition C0 is satisfied, we verify that {ut} does not influence E
{

ξ̃t ξ̃́t
}
:

E
{

ξ̃t
̃ξʹ
t |Yt

}
= E

{
xt ⋅ χ̃t χ̃

ʹ
t ⋅ xt

ʹ
|Yt

}
= xt ⋅ E

{
χ̃t χ̃

ʹ
t |Yt

}
⋅ xt

ʹ
=

= xt ⋅
∑

θ

[
χ̂ θ
t ⋅ E

{
χ̃t χ̃

ʹ
t |Yt , χθ

t =1
}]

⋅ xt
ʹ
= xt ⋅

∑

θ

[
χ̂ θ
t ⋅ E

{(
ιθ − χ̂ t

)(
ιθ − χ̂ t

)ʹ
|Yt , χθ

t =1
}]

⋅ xt
ʹ

= xt ⋅
∑

θ

[
χ̂ θ
t ⋅

(
ιθ − χ̂ t

)(
ιθ − χ̂ t

)ʹ] ⋅ xt
ʹ

where ιθ is a column vector of length N satisfying ιθ
θʹ = 1 for θʹ = θ, and ιθθʹ = 0 for θʹ ∕= θ.

This shows that {ut}does not influenceE
{

ξ̃t ξ̃́t |Yt
}
. Hence, {ut}neither influences E

{
ξ̃t ξ̃́t

}
. Moreover, the Wonham filter shows that

{ut} does not influence {χ̂ t}. This means that CE condition C0 is satisfied, and (14-18) hold true.
Substituting eq. (14) in eq. (18), and subsequent evaluation yields:

u∗t = −
[
χ̂ e1
t Il ⋅ ⋅ χ̂ eN

t Il
]
R− 1BʹP(t)ξ̂t = −

∑

η

[

χ̂ η
t R

− 1
= Bη

ʹ∑

θ

[
Pηθ(t)ξ̂

θ
t
]
]

=

= −
∑

η

[

χ̂ η
t R

− 1
= Bη

ʹ∑

θ

[
χ̂ θ
t Pηθ(t)xt

]
]

= −
∑

θ
[χ̂ θ

t

[
∑

η
χ̂ η
t R

− 1
= Bη

ʹPηθ(t)

]

xt

]

=
∑

θ
[χ̂ θ

t Kθ(t)xt

]

Q.E.D.

Remark 5.4. The difference between (25) and the Averaging MJLS feedback (23) lies in the mode-dependent feedback gains Kθ(t)
and KM

θ (t) respectively. In contrast to KM
θ (t), Kθ(t) takes χ̂ t and the off-diagonal sub-matrices of P(t) into account. These off-diagonal

sub-matrices play an important role when χ̂ t has multiple non-zero χ̂ θ
t components.

6. General MJLS control problem

This section addresses the more general MJLS control under partial observations Yt = σ
{
ys; s ∈ [0, t]

}
, where the linear Gaussian

observation process
{
yt
}

satisfies (19).
By defining H = Row{He1 , ..,HeM}, (19) can be written as:

dyt = Hξtdt + Gdbt . (27)

The objective is to elaborate the control policy of Theorem 4.1 for this general MJLS stochastic control problem. This elaboration
involves three steps. The first step is to develop the nonlinear filtering equations for the estimation of ξ̂t = Col

{
ξ̂
e1
t , ..., ξ̂

eN
t
}

in eq. (17).

The second step is to prove that relaxed CE condition C0* is satisfied, i.e. E
{(

ξθ
t − ξ̂

θ
t
)(

ξθ
t − ξ̂

θ
t
)́ }

,θ ∈ Θ, is not influenced by {ut}. The
third step is to picture how the various developments in this paper define the optimal feedback controlled system.

Proposition 6.1. Let assumptions i-iii be satisfied for system (10-12), and H,G have finite-valued components.

The process
{

ξ̂
θ
t
}
, defined by ξ̂

θ
t = E

{
ξθ
t |Yt

}
, satisfies:

dξ̂
θ
t = Aθ ξ̂

θ
t dt + Bθ χ̂ θ

t utdt +
∑

η∈Θ

[
ληθ ξ̂

η
t
]
dt +

[
q̂θ
t Hθ

ʹ − ξ̂
θ
t ξ̂

ʹ
tH

ʹ](GGʹ)− 1dvt (28)

with dνt = dyt − Hξ̂tdt, ξ̂t = Col
{

ξ̂
e1

t , ..., ξ̂
eN
t
}
, and where χ̂ θ

t satisfies:

dχ̂ θ
t = Σ

η∈Θ

[
ληθ χ̂η

t
]
dt +

[
Aθ ξ̂

θ
t + χ̂ θ

t Bθut − Σ
η∈Θ

[(
Aη ξ̂

η
t + χ̂ η

t Bηut
)]]ʹ

[CCʹ]− 1dvt (29)

and the matrix process
{
q̂θ
t
}
, defined by q̂θ

t = E
{

ξθ
t ξθ

t
ʹ
|Yt

}
, satisfies:

dq̂θ
t =

[
Aθ q̂

θ
t + q̂θ

t Aθ
ʹ + Bθut ξ̂

θʹ

t + ξ̂
θ
t (Bθut )́ + Cθ χ̂ θ

t Cθ
ʹ]dt +

∑

η∈Θ

[
ληθ q̂

η
t
]
dt

+
[(

qθ
t ξ

θ
t
ʹ∧ )
Hʹ

θ − q̂θ
t ξ̂t

ʹ
Hʹ
]
(GGʹ)− 1dνt

(30)
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Proof. Application of the fundamental filtering theorem [Elliott [16], Th. 18.11] to eq. (7) yields:

dξ̂
θ
t = Aθ ξ̂

θ
t dt + Bθ χ̂ θ

t utdt +
∑

η∈Θ

[
ληθ ξ̂

η
t
]
dt +

[(
ξθ
t ξt

ʹHʹ
∧ )

− ξ̂
θ
t ξ̂

ʹ

tH
ʹ
]
(GGʹ)− 1dvt .

Since for all η ∕= θ, ξθ
t ξη

t
ʹ
= 0, the latter implies (28).

Application of the fundamental filtering theorem to eq. (5) yields (29). Application of the differentiation rule for discontinuous
semimartingales to qθ

t = ξθ
t ξθ

t
ʹ, using eq. (6), yields:

dqθ
t = d

(
ξθ
t ξ

θ
t

ʹ)
= dξθc

t ξθ
t

ʹ
+ ξθ

t dξθc
t

ʹ
+ Cθχθ

t Cθ
ʹdt +

[
ξθ
t ξ

θ
t

ʹ
− ξθ

t− ξθ
t−

ʹ]
=

=
[
Aθξθ

t dt + Bθχθ
t utdt + Cθχθ

t dwt
]
ξθ
t

ʹ
+ ξθ

t
[
Aθξθ

t dt + Bθχθ
t utdt + Cθχθ

t dwt
]ʹ
+ Cθχθ

t Cθ
ʹdt +

∑

η∈Θ

[
ξη
t− ξη

t−
ʹ
dpηθ,t

]

= Aθqθ
t dt + qθ

t A
ʹdt + Bθχθ

t utξ
θʹ
t dt + ξθ

t
(
Bθχθ

t ut
)́
dt + Cθχθ

t dwtξθ
t
ʹ
+ ξθ

t
(
Cθχθ

t dwt
)́
+ Cθχθ

t Cθ
ʹdt +

∑

η∈Θ

[
ξη
t− ξη

t−
ʹdpηθ,t

]

=
[
Aθqθ

t + qθ
t Aθ

ʹ + Bθχθ
t utξ

θ
t
ʹ
+ ξθ

t
(
Bθχθ

t ut
)ʹ
+ Cθχθ

t Cθ
ʹ]dt + Cθχθ

t dwtξθ
t
ʹ
+ ξθ

t
(
Cθχθ

t dwt
)ʹ
+
∑

η∈Θ

[
qη
t− dpηθ,t

]

Application of the fundamental filtering theorem yields:

dq̂θ
t = γ̂ θ

t dt +
[(

qθ
t ξt

ʹHʹ
∧ )

− q̂θ
t ξ̂t

ʹ
Hʹ
]
(GGʹ)− 1dνt

with γ̂θ
t = Aθ q̂

θ
t + q̂θ

t Aθ
ʹ
+ Bθut ξ̂θ

t
ʹ
+ ξ̂

θ
t (Bθut)

ʹ
+ Cθ χ̂θ

t Cθ
ʹ
+

∑
η∈Θ

[
q̂η
t− ληθ

]

This, and using qθ
t ξηʹ

t = 0, ∀η ∕= θ, yields (30). Q.E.D.
Because the innovation term for q̂θ

t , in eq. (29), involves a third order moment, a full solution of q̂θ
t is complemented by a char-

acterization of the joint conditional density of {θt ,xt}, e.g. [17,18].

Proposition 6.2. Let the conditional probability mass-density ρ̂θt ,xt (θ, x) be in the domain of Lθ, then:

dρ̂θt ,xt (θ, x) =
[
Lθ + J

]
ρ̂θt ,xt (θ, x)dt + ρ̂θt ,xt (θ, x)(Hθx − Hξ̂t )́ (GGʹ)− 1dvt (31)

where dvt = dzt − ξ̂tHʹdt; J is the Kolmogorov operator:

Jf(θ, x) =
∑

η∕=θ

[ληθf(η, x)] (32)

and Lθ is the mode-conditional Fokker-Planck operator:

Lθf(θ,x) = −
∑n

i=1
∂

∂xi
[(
Ai

θx + Bi
θut

)
f(θ,x)

]
+ 1

2
∑n

i,j=1
∂2

∂xi∂xj

[
Ci

θC
j
θ

ʹ
f(θ,x)

]
=

= −
∑n

i=1
[
Aii

θ f(θ,x)
]
−

∑n
i=1 [

(
Ai

θx + Bi
θut

) ∂
∂xi f(θ,x)] +

1
2
∑n

i,j=1

[

Ci
θC

j
θ

ʹ
∂2

∂xi∂xj f(θ,x)
]

(33)

Having characterized the exact nonlinear estimator of ξ̂
θ
t , the crucial step is to prove that relaxed CE condition C0* is satisfied, i.e.

E
{(

ξθ
t − ξ̂

θ
t
)(

ξθ
t − ξ̂

θ
t
)́ }

,θ ∈ Θ, is not influenced by {ut}.

Theorem 6.3. Define ̃ξθ
t = ξθ

t − ξ̂
θ
t . Given eq. (27) observations

{
yt
}
of the solution {ξt} of (10), then

E
{

ξ̃θ
t
̃ξθʹ
t
}
= E

{
ξ̃θ

0
̃ξθʹ

0
}
+

∫t

0

[AθE
{

ξ̃θ
s
̃ξθʹ
s
}
+ E

{
ξ̃θ
s
̃ξθʹ
s
}
Aʹ

θ +
∑

η∈Θ

[
ληθE

{
ξ̃η
s
̃ξηʹ
s
}]
ds (34)

which assures C0*, i.e. that the evolution of E
{̃ξθ

t
̃ξθʹ
t
}
is not influenced by {ut}, and that the optimal control policy of Theorem 4.1 holds true,

with
{

ξ̂
θ
t
}
satisfying (29). Proof.

E
{

ξ̃θ
t
̃ξθʹ
t

}
= E

{(
ξθ
t − ξ̂

θ
t

)(
ξθ
t − ξ̂

θ
t

)ʹ}
= E

{
ξθ
t ξ

θ
t

ʹ
+ ξ̂

θ
t ξ̂θ

t

ʹ
− ξθ

t ξ̂θ
t

ʹ
− ξ̂

θ
t ξ

θ
t

ʹ}
=

= E
{

ξθ
t ξ

θ
t

ʹ
+ ξ̂

θ
t ξ̂θ

t

ʹ
− E

{
ξθ
t ξ̂θ

t

ʹ
+ ξ̂

θ
t ξ

θ
t

ʹ
|Yt

}}
= E

{
ξθ
t ξ

θ
t

ʹ
+ ξ̂

θ
t ξ̂θ

t

ʹ
− ξ̂

θ
t ξ̂θ

t

ʹ
+ ξ̂

θ
t ξ̂θ

t

ʹ}
=

= E
{

ξθ
t ξ

θ
t

ʹ
− ξ̂

θ
t ξ̂θ

t

ʹ}
= E

{
ξθ
t ξ

θ
t

ʹ
− q̂θ

t
}
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Hence E
{
d
(
ξ̃θ
t
̃ξθʹ
t
)}

= E{d
(
ξθ
t ξ

θ
t

ʹ
− q̂θ

t
)
= E

{
d
(
ξθ
t ξ

θ
t

ʹ)}
− E

{
dq̂θ

t
}

Application of differentiation rule for discontinuous semimartingales to (6) yields:

d
(
ξθ
t ξ

θ
t

ʹ)
= ξθ

t− dξθ
t

ʹ
+ dξθ

t ξ
θ
t−

ʹ
+ Cθχθ

t− χθ
t− C

ʹ
θdt +

[
ξθ
t ξ

θ
t

ʹ
− ξθ

t− ξθ
t−

ʹ
− ξθ

t− Δξθ

t

ʹ
− Δξθ

t ξθ
t−

ʹ]
= ξθ

t− dξθ
t
cʹ
+ dξcθt ξθ

t−

ʹ
+ Cθχθ

t− C
ʹ
θdt

+
∑

η

[
ξη
t− ξη

t−
ʹ
dpηθ,t

]
=

= ξθ
t
[
Aθξθ

t dt + Bθχθ
t utdt + Cθχθ

t dwt
]́
+
[
Aθξθ

t dt + Bθχθ
t utdt + Cθχθ

t dwt
]
ξθʹ
t + Cθχθ

t C
ʹ
θdt +

∑

η

[
ξη
t ξ

ηʹ
t dpηθ,t

]

where ξθ
t
c is the continuous part of ξθ

t . Together with eq. (30), this yields: E
{
d
( ̃ξθ

t
̃ξθʹ
t
)}

= E
{
d
(
ξθ
t ξθ

t
ʹ)}

− E
{
dq̂θ

t
}

=

= E
{

ξθ
t
[
Aθξθ

t dt + Bθχθ
t utdt

]ʹ}
+ E

{[
Aθξθ

t dt+Bθχθ
t utdt

]
ξθ
t

ʹ}
+ E

{
Cθχθ

t C
ʹ
θ

}
dt + E

{
∑

η∈Θ

[
ληθξη

t ξ
η
t
ʹ]
}

dt+

− E
{[
Aθ q̂

θ
t + q̂θ

t Aθ
ʹ
+Bθχθ

t ut ξ̂
θʹ

t + ξ̂
θ
t
(
Bθχθ

t ut
)́
+Cθ χ̂ θ

t Cθ
ʹ]dt

}
− E

{
∑

η∈Θ

[
ληθ q̂

η
t
]
dt

}

=

= E
{

ξθ
t
[
Aθξθ

t
]ʹ
dt
}
+ E

{
Aθξθ

t ξ
θ
t

ʹ
dt
}
+ E

{
Cθχθ

t C
ʹ
θ

}
dt +

∑

η∈Θ

[
ληθE

{
ξη
t ξ

η
t
ʹ}]

dt+

− E
{[
Aθ q̂

θ
t + q̂θ

t Aθ
ʹ
+Cθ χ̂ θ

t Cθ
ʹ]dt

}
−
∑

η∈Θ

[
ληθE

{
q̂η
t
}]
dt}+

+E
{(

ξθ
t − ξ̂

θ
t
)(
Bθχθ

t ut
)ʹ}

dt + E
{
Bθχθ

t ut
(
ξθ
t − ξ̂

θ
t
)ʹ}

dt =

=
(c)E

{
Aθ

(
ξθ
t ξ

θ
t
ʹ
− q̂θ

t
)
+
(
ξθ
t ξ

θ
t
ʹ
− q̂θ

t
)
Aθ

ʹ+Cθ
(
χθ
t − χ̂ θ

t
)
Cθ

ʹ}dt +
∑

η∈Θ

[
ληθE

{
ξη
t ξ

η
t
ʹ
− q̂η

t
}]
dt =

= E
{
Aθ

(
ξθ
t ξ

θ
t
ʹ
− q̂θ

t
)
+
(
ξθ
t ξ

θ
t
ʹ
− q̂θ

t
)
Aθ

ʹ}dt +
∑

η∈Θ

[
ληθE

{
ξη
t ξ

η
t
ʹ
− q̂η

t
}]
dt =

Figure 1. The optimal control loop for MJLS (1-3) given partial observations (19), where feedback gain K(t) is the solution of eqs. (14-16) in the
J{(ut)} characterization of Theorem 3.1.
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= AθE
{

ξ̃θ
t
̃ξθʹ
t
}
dt + E

{
ξ̃θ
t
̃ξθʹ
t
}
Aθ

ʹdt +
∑

η∈Θ

[
ληθE

{
ξ̃η
t
̃ξηʹ
t
}]
dt

where for equality =
(c) use is made of:

E
{
Bθχθ

t ut
(
ξθ
t − ξ̂

θ
t
)ʹ}

= BθE
{

χθ
t ut

(
ξθ
t − ξ̂

θ
t
)ʹ}

= BθE
{
E
{

χθ
t ut

(
ξθ
t − ξ̂

θ
t
)ʹ

|Yt
}}

=

= BθE
{
P{θt = θ|Yt}E

{
χθ
t ut

(
ξθ
t − ξ̂

θ
t
)ʹ

|θt = θ,Yt
}}

= BθE
{

χ̂ θ
t E
{
ut
(
ξθ
t − ξ̂

θ
t
)ʹ

|θt = θ,Yt
}}

=

= BθE
{

χ̂ θ
t utE

{(
ξθ
t − ξ̂

θ
t
)ʹ

|θt = θ,Yt
}}

= BθE
{

χ̂ θ
t ut ⋅ 0

}
= 0

Writing (b) in integral form yields (34). Q.E.D.
The final step is to picture the resulting optimal feedback control loop for MJLS (1-3) under partial observation (19) in Figure 1.

Remark 6.4. If the CE version of the Averaging MJLS control is adopted, then in the left block in Figure 1, the optimal control u∗t =

[χ̂e1
t Il , .., χ̂eN

t Il ]K(t)ξ̂thas to be replaced by uAt = Σ
θ∈Θ

KM
θ (t)ξ̂

θ
t with KM

θ (t) the solution of eqs. (21-22).

Remark 6.5. For the MJLS control problem addressed by Theorem 6.3, [Everdij and Blom, 1996] have developed the Open Loop
Optimal Feedback (OLOF) control uOLOFt under the OLOF assumption that observations beyond moment t are ignored during the control
optimization. Thanks to Theorem 6.3 we now know that this OLOF assumption is correct, which means uOLOFt = u∗t . For a simple MJLS
example, [Everdij and Blom, 1996] have also conducted simulations to compare the use of uOLOFt versus the use of the CE version of the

Averaging MJLS control uAt = Σ
θ∈Θ

KM
θ (t)ξ̂

θ
t . This comparison showed the important role played by non-sparse χ̂ t in uOLOFt = u∗t . Although

uOLOFt = u∗t , it is relevant to be aware that the control law equations for uOLOFt are much more complicated than eq. (18) for u∗t .

Remark 6.6. It can be noticed that there is a partial form of duality only between the P(t) solution of eq. (15), and the covariance

[Diag(q̂e1
t , ..., q̂

eN
t ) − ξ̂t ξ̂t

ʹ
] from the nonlinear filter. There is a coupled Riccati type of duality between the N = |Θ| diagonal matrix

components of P(t) and Diag(q̂e1
t ,..., q̂

eN
t ). However, such type of duality does not apply to theN(N − 1) off-diagonal matrices of P(t) and

[Diag(q̂e1
t , ..., q̂

eN
t ) − ξ̂t ξ̂t

ʹ
] respectively.

Remark 6.7. The innovation term in eq. (30) causes the nonlinear filter of Proposition 6.1 to be infinite-dimensional. Hence, in
literature, finite-dimensional numerical approximation methods have been developed. The main methods are:

• Continuous-time Interacting Multiple Model (IMM) estimator [19–21]
• IMM Particle Filter [21]
• IMM Feedback Particle Filter [22]
• Grid-based numerical integration of eq. (31) for ρ̂θt ,xt (., .) [23]

Each of these methods can be used to numerically estimate ξ̂t. IMM has the lowest computational load, at the cost of assuming
second order density approximations. The computational load of the grid-based approach grows linearly with the number of grid
points used. For many practical problems this is impractically large. The IMM Particle Filter approach makes use of a flexible grid
which adapts to the evolution of the joint conditional density of (θt , xt). The adaptation of this grid is further improved by the IMM
Feedback Particle Filter.

7. Conclusions

This paper has derived a general separation principle for optimal control of partially observed MJLS with n-dimensional Euclidean
state process {xt} and a finite state Markov process {θt}. To accomplish this, in section 2, the MJLS system has been transformed to
optimal control of an Nn-dimensional process {ξt} that is a solution of a martingale driven linear system. Section 3 has derived a Non-
sparse optimal control law given full observations of a non-sparse {ξt} solution of the transformed system of section 2. In Section 4, for
partial observations of the process {ξt} a generally applicable Separation Principle has been derived, under a relaxed CE condition C0*.
In section 5, two partially observed MJLS cases have been considered. The first case has full observations of {θt} and a Kalman
estimator of x̂t; it has been shown that the optimal control solution of section 4 is equal to the known solution [4]. The second case has
full observations of {xt} and a Wonham filter to estimate {θt}; it has been shown that the optimal control of section 4 significantly
enriches the averaging MJLS control policy of Fragoso [7]. Section 6 considers the general MJLS case of partial observations of {xt}
only; it has been proven that CE condition C0* of section 4 holds true. Subsequently, for this general MJLS case the optimal
feedback-control law has been depicted in Figure 1.

There are interesting directions for follow-on research. One direction is to investigate if and how the obtained separation principle
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can be extended to discrete time setting of a partially observed MJLS, e.g. Costa et al. [24]. A complementary direction is to investigate
if and how this separation principle can be extended to a MJLS that is enriched with hybrid jumps [25–28], i.e. jumps in the
Euclidean-valued process {xt} that occur simultaneous with a {θt}switching, and the jump size may depend on the mode values before
and after the switching.
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Appendix A

A1. Differentiation rule for discontinuous semimartingales
The differentiation rule for discontinuous semimartingales as well as the relation to other differentiation rules are well explained by

[Protter [29], Chapter II].
Let {zt} be an L-vector semimartingale, and let f be a twice continuously differentiable mapping of zt into R. Then f(zt) is a

semimartingale satisfying up to indistinguishability:

f(zt) = f(z0) +
∑L

i=1

∫t

0

∂
∂zi f(zs− )dz

i
s +

1
2
∑L

i,j=1

∫t

0

∂2

∂zi∂zj f(zs− )d < mzi
c ,m

zj
c >s+

+
∑

0<s≤t

[

f(zs) − f(zs− ) −
∑L

i=1

[
∂

∂zi f(zs− )Δ
zi
s

]]

(A.1)

wheremzi
c is the i-th component of the continuous martingale part of zt , d < mzi

c ,mzj
c >s is the quadratic co-variation of

(
mzi

c,t ,mzj
c,t

)
, Δzi

s
Δ
=
zis

− zis− ,and the summation in the last term is over all time moments s ∈ (0, t] at which zis ∕= zis− for some i ∈ [1,L].
A2. Derivation of eq. (5)
Because {θt} is purely discontinuous, we have: dθt = Δθ

t .

By defining the mapping fθ(θt) = 1(θt = θ) = χθ
t , the differentiation rule yields:

dχθ
t = df θ(θt) = fθ(θt) − f θ(θt− ) = χθ

t − χθ
t− =

∑

η∕=θ

χη
t− dpηθ,t −

∑

η∕=θ

χθ
t− dpθη,t

where the first sum covers all possible jumps from θt− ∕= θ to θt = θ, and the second sum covers all possible jumps from θt− = θ to
θt ∕= θ. Using dpθθ,t

Δ
=
−

∑
η∕=θdpθη,t , yields:

dχθ
t =

∑
η∕=θχη

t− dpηθ,t − χθ
t− dpθθ,t =

∑
η∈Θχη

t− dpηθ,t Q.E.D.
A3. Derivation of eq. (6)
Because {xt} has no discontinuities, we have Δx

t = 0.
By defining the mapping Fθ(θt ,xt) = fθ(θt)xt = χθ

t xt = ξθ
t , we get: ∂2

∂xi∂xjF
θ(θ,x) = 0.

Together with dθt = Δθ
t , application of the differentiation rule yields:

dξθ
t =

∑n

i=1

[
∂

∂xiF
θ(xt− , θt− )dxit

]

+
[
Fθ(xt , θt) − Fθ(xt− , θt− )

]
=

= χθ
t− dxt +

[
χθ
t xt − χθ

t− xt−
]
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For the terms within brackets, we sum over all possible jumps from θt− ∕= θ to θt = θ, and distract the sum over all possible jumps
from θt− = θ to θt ∕= θ, which yields

dξθ
t = χθ

t− dxt +
∑

η∕=θ

[
χη
t− xt− dpηθ,t

]
−
∑

η∕=θ

[
χθ
t− xt− dpθη,t

]

Using dpθθ,t
Δ
=
−

∑
η∕=θdpθη,t, yields: dξθ

t = χθ
t− dxt +

∑
η∈Θ

[
χη
t− xt− dpηθ,t

]
= χθ

t− dxt +
∑

η∈Θ

[
ξη
t− dpηθ,t

]
.

Substitution of (1), and subsequent evaluation yields (6). Q.E.D.
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