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ARTICLE INFO ABSTRACT
Keywords: In MJLS literature the separation principle between filtering and control has been established in
Hidden Markov model case the Markov mode switching process {6;} is fully observed, and the Euclidean state process

Nonlinear filtering
Partial observations
Poisson point processes

{x }is partially observed. In case the exact {6, }remains hidden, the separation principle has only
been established under a linear filtering restriction. Since nonlinear filters can provide significant
S . o better estimates, the desire to extend the separation principle to MJLS with hidden {6, }is a long-
eparation principle

Stochastic Control standing challenge. The objective of this paper is to resolve this long-standing challenge in three
Stochastic Differential Equations steps. The first step is to transform the MJLS stochastic control problem into control under a
quadratic performance criterion of a linear system driven by a martingale which is influenced by
the control. The certainty equivalence (CE) condition known in literature applies to stochastic
control of a linear system that is driven by a control independent martingale. Therefore, the
second step is to relax this known CE condition such that it allows this control influence on the
martingale. The third step is to prove that the relaxed CE condition is satisfied for the general
MJLS control problem considered. The overall achievement is a CE control law for a partially
observed MJLS, which assures the Separation Principle between filtering and control. The paper
also shows that for the case that {x,}is fully observed and the exact{¢; }remains hidden, that the
novel CE control law differs significantly from the in literature well-developed Averaging MJLS
control policy.

1. Introduction

One of the fundamentals in feedback control theory for linear systems is that optimal control and optimal state estimation can be
resolved in a decoupled way; this is known as the Separation Principle. Stochastic control of partially observed continuous-time
Markov Jump Linear Systems (MJLS) constitutes a well-studied class of problems in filtering and control theory. Rich overviews of
the problems and achievements in this domain are given by Mariton [1], Elliott et al. [2], Mao and Yuan [3], Costa et al. [4]. Despite
these achievements, for MJLS the Separation Principle between filtering and control has only been established when the Markovian
switching parameters are fully observed [5]. However, if the Markov switching is hidden, then the existing theory on the separation
principle falls short. The latter even applies to the basic hidden Markov setting [6]. The lack of a general separation principle has
motivated the development of sub-optimal approaches for the integration of filtering and control for MJLS [7-11]. A popular approach
is to adopt the certainty equivalence (CE) control policy, which means that in the deterministic control policy the exact state is replaced
by the estimated state, e.g. [8]. Another popular approach is to approximate the exact nonlinear filter by the best linear filter, and
subsequently optimize the control for this linear system, e.g. [10]. The objective of this paper is to improve this situation
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fundamentally, by developing a general separation principle for stochastic control of a partially observed MJLS.
The MJLS considered is the Ito stochastic differential equation (SDE):
dx; = Agx,dt + Byu,dt + Cy dw, (€8]
with R"-valued process {x,}, feedback control {u}, and Brownian motion {w;} which is independent of (6, xo). The coefficients Ay,

By, Cy are switching according to a continuous-time Markov chain {6} which is independent of {w;}, has cadlag paths and assumes
values in a finite set ® = {e;, ..,ey} of unity vectors ¢; € RY, according to Markov transition rates Agy

— — . _ l&ryA‘i'o(A)v n 7&0
P{0pa =1|0:=0,(x;, 0555 <t)} = {1 oA+ 0(A), =0 (2)
with hmAqoo(A)/|A| = 0, and /100 = — 50/10,7.
n

The hybrid process {6;,x.} is assumed to be partially observed through an m-dimensional process {y; }. The control problem is to
characterize the feedback law W : y—u over a time window [0,T], i.e. to map the observation process {y, } to the control input {u,} in a
non-anticipatory manner, to minimize the value of the functional

T

T
J({u}) = E{ x;:Sg,xr + /x’tQ/)txth- /u’tR:utdt 3
0

0

where, for all § € ©, Sy and Qy are positive semi-definite and R_ is positive definite.

The challenge is to develop for (1-3), given partial observations, a control law that assures the Separation Principle between
filtering and control to hold true.

Georgiou and Lindquist [12] extended the separation principle in stochastic control to a partially observed linear systems that is
driven by a martingale process instead of Brownian motion. To follow this approach, the above MJLS will be transformed to a linear
process with discontinuous martingale input. The resulting system raises two issues that are not addressed by [12]. Firstly, the
“Stochastic Open Loop” reasoning [13] does not apply for a system with Markov switching coefficients. Secondly, the resulting system
involves a discontinuous martingale that involves a multiplication with the process to be controlled. To overcome the first issue, the set
of admissible control policies is restricted to those defining a {1 }which is square integrable and pathwise unique. To address the
second issue, the derivations of [12] are extended in this paper. These derivations show that, in contrast to [12], the discontinuous
martingale plays a key role in the optimal control policy. The resulting optimal control policy is shown to add a novel coupling to the
known set of coupled Riccati differential equations for MJLS control, e.g. [4].

The research is organized as follows. Section 2 introduces a transformation of (1)-(3) to stochastic control of a linear system that is
driven by a discontinuous martingale. Section 3 derives the optimal control law for this transformed system given full observations of
the output of this linear system only, though not about {6,}.

Section 4 develops the extension of the separation principle for the transformed system from Section 2. Section 5 applies the
extended separation principle to the specific cases where the optimal estimator is the Kalman filter and the Wonham filter, respec-
tively. For the Kalman filter case, equivalence with the policy of Fragoso and Costa [5] is shown. For the Wonham filter case, it will be
shown that there is a significant difference with the certainty equivalent control policy [7,8]. Section 6 elaborates the extended
separation principle to the general case of linear Gaussian observations of {x;}only. Section 7 draws conclusions.

2. Transformation to stochastic control of a linear process

Throughout the paper all processes are defined on a complete probability space (Q, F,P), with (Q, F) a measurable space, and with P
a probability measure defined on the ¢ -algebra F. The ¢ -algebra F is equipped with a filtration {F;} ), of increasing right-
continuous sub- ¢ -algebra’s F; of F, with F,, =F.

Hence, in (1), the Brownian motion{w, }is an R™-valued martingale relative to the filtration {F,}. Moreover, SDE (1) is assumed to
have a pathwise unique {F; }-adapted solution that evolves on Euclidean space R", x; : Q—R", 1, : Q—R”;and foreach§ € ®,Agisann
xn matrix, By is an n x / matrix, and Cy is an n x m matrix.

Following [14] the Markov chain {6;} can be written as the solution of an SDE driven by N(N —1) independent Poisson point
processes dpgy, 1 # 6, with rates 1g,:

o, = > 1{0_ =0} (n — 0)dpo. “
One®
n40
where t — = lAi?(}(t — A), and the compensated processes {dpo,,vt 7ﬂgy,dt} are {F;}-martingales.

To ensure that the SDE pair (1,4) has a pathwise unique and square-integrable solution, we assume the following:

i. The initial condition xo is square integrable.
ii. All elements of Ay, By, Cy are finite valued.
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iii. The transition rates Ag,are finite, i.e. 1y, < oo, for all 5 # 6.
iv. The control {u.} is in the set of F,-adapted, pathwise unique, square integrable processes.

Following a well-known transformation from nonlinear filtering, e.g. Bjork [15], we define for each 6 € ©, the indicator process y/

satisfies:

s [1,if6,=0
L=V o0, if 6, #6

Subsequently, we also define the process & = y’x.. Hence: x, = 62@5‘3 , and application of the differentiation rule for discontinuous
€

semi-martingales, (see Appendix A) yields:

a7 =[x dpc] (5)
nee
&) = Ap&ldt + Byy{udt + Cox_dw,+ > _[£] dpyo.] (6)
neoe

with dpgg 2 — Zn #,dpg,”. Martingale decomposition of (6) yields:

) = Apeldt + Byyludt + 3 (4,08 ]dt + dm! @

neo
with {m!} satisfying:

dm = Cotdwe+ > &l dpf, | ®

neo

where dpjj, 2 dpg, . — dg,dt, n # 6. Hence {m{} is an {F,}-martingale since:

F} -

= Corl_ E{dwilFi -} + Y |&LE{dpf, [Fi }| = Corl_ -0+ Y [g-0] =0

nee PEC)

E{dm{|F,_} = E{Cyy!_dwi|F._} + E{Z XN

nee

where use has been made of: E{ .t

Ft_} - E{dpg,,,t - zgﬂdqpt_} = [doydt — Agydt] =0
To apply the above transformation to eq. (3), the following equalities are of use:

! — Ny — N5 _ i1 Qg g
X So. X = ,E@thtsnxt = qge)(t)(rxrsnxt = nz:@ét Siéi

! _ ! _ ! _ n/ 1
XQoxe = Zrx Qe = % Qe = T8 Q)

By substituting these in (3), the optimization criterion becomes:

0cO 0c® 0

T T
J{u}) _E{ngsnf{;-‘r /Zéf@;éfdw /u;Rutdt} (9)
0

The final transformation step is to collect all ¢, -dependent process components in vectors by defining: & = Col{&, ...}, v, =

Col{yt' o xt™ }, (xete) = Col{y{ e, ..yt ur}, me = Col{my*,...m{"}, S = Diag{Se,,-,Sey }, Q = Diag{Qe,,--,Qey }, A = Diag{A,,...,Ae,}, B =
Diag{361 ) “aBeN}, C = Diag{cel PRXS) CeN};

dpiid, dpiadn - - dpiven Al Awln - - Janln

dpoidn dpaaedn - - dpowen Andy  Asoly - - Aonly
dpt — . . .. . ,and A= . . .. .
dpnieln dpneddn - - dpwen niln Aneln - o AnnIn
with I, the nxn identity matrix.
System (7)-(9) can now be written as:
dé, = [A+ N dt + B(yu,)dt + dm, (10)
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dm, = Cy,_dw, + [£,_dp}"] an
T T

J({u}) —E{6T86T+ / &Qede+ / uLRu[dt} 12)
0 0

with dy, = y,_dp, and dp* = dp, — Adt.
Hence {m,} is an {F,}-martingale.

Remark 2.1. The above transformation has been introduced by [9]. The resulting control problem (10-12) has the following
characteristics:

e {¢,} is the solution of an SDE that is linear in &, (y,u;) and dmy;

e Initial condition is: & = Col{y{Xo, ..., x"xo }, with y§ = 1{6y = 6};
e dm, is a sum of dw,multiplied by y, , and dp{* multiplied by &,_;

e Optimization criterion J({1,}) is quadratic in &, and in u;.

The challenge is to develop a CE route in solving control problem (10-12) under partial observations of &,. As has been well
explained by [12], the established CE route is to first characterize the optimal control policy given full observations of ¢, and sub-
sequently to prove optimality of replacing &, by the partial observation based estimator . For system (10-12) there are two com-
plications in following this established route. One complication is that under the nominal initial conditions &, = y,x, is sparse, i.e. &
= O forall 0 # 6;, while Zdsnot sparse. The other complication is that the established CE proof is to show that E{(¢&, —Et)(ét — Et)'} is not
influenced by the control, which does not hold true in our case. Section 3 addresses the first complication by considering non-sparse
solutions of (10) by assuming a non-sparse initial condition for &,. Section 4 addresses the second complication by proving CE under

the condition that E{ (& — Ef) (& - Ef) }, 0 € ©, is not influenced by the control. Sections 5 and 6 show that this relaxed CE condition
of this novel control law hold true for specific and general MJLS cases respectively.

3. Control of system (10-12) given full observations of a non-sparse &,

In this section, {F;}-measurable partial observations are made of {y,} and full observations are made of the solution {¢,} of the
transformed system (10-12). At moment t, the sigma-algebra of continuous-time observations is Y; D ¢{&;s € [0,t]}. Since Y, is right-
continuous and increasing with time, it defines a filtration {Y;}c{F,}. Rather than assuming for (10) the nominal initial condition, &, =
Col{&y, ..., e }, with y§ = 1{6 = 1}, we assume that &, is non-sparse and independent of y,. The consequence of this non-sparse
initial condition is that &, t > 0, will also be non-sparse. Firstly Theorem 3.1 characterizes J({u}) in terms of (y,u; — K;{,), where
K, is the applicable gain matrix. Subsequently Theorem 3.2 characterizes the optimal control u;. Since the non-sparse initial condition
will not hold true for the original system, the resulting control law is referred to as the Non-sparse control law.

Theorem 3.1. Let assumptions i-iii be satisfied for system (10-12). Let &, be independent of y,, and let & # 0, for all € ©. Let Y, cover
partial y, observations and full &, observations, i.e. Y; 2 o{&;;s < t}, and let a nonlinear filter produce a pathwise unique y: = E{y,|Y:}.

Then J({u.}) satisfies:

J({w}) = E{&P(0)é } +E{ / [(rewe) = K(OE] RI(rwe) —K(t)cft]dt} + %E{Ii"} (13)

0

T
with 12 = / Z [X2C,Puo (t)Cy) dt and with gain matrix:
0
0

K(t) = —-R"'BP(t), 14
where R = Diag{R_, ..,R_}, and P(t), t < T, is the backward solution of the equation:

P(t) = —[A'+ AJP(t) — P(t)[A+A] + P(t)BR'BP(t) - Q — Z [0y (Y = Y*)P(t) (Y — Y], (15)

Kz
with P(T) = S, and Y? is an N/ x N/ matrix, of which the N> submatrices Yg.” satisfy:
AL, ifi=0,j=
on = /X0 5] n
Yij :{ B, €lse ' (e
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Theorem 3.2. (Non-sparse control law)

Under the assumptions of Theorem 3.1, the control law to minimize J({u,}) satisfies:
a7

= [)A(?I/v ~--;)A(iNI/}K(t)§t

where I, is the identity matrix of size / x /, and the gain matrix K(t) satisfies (14-16).
Proof of Theorem 3.1: Application of the differentiation rule for discontinuous semimartingales (see Appendix A1) to f(z;) = f(&,

() = EP()E, yields: £P(T)ép = EgP(0)E + I+ ¥ + Sr, (*) with I} the contribution from the first integral in (A.1), I§ the
contribution from the second integral, and X the contribution of the summation. The first integral in (A.1) yields:

- /T £ dP(DE,_ + /T £ P(t—)ds + /T [deP(e—)e |-

Since (16) implies P(t — ) = P(t), we get:
T

T T
L= / & _dP(t)é,_ + / & _P(t)dé, + / [d&P(t)&,_]. Subsequent evaluation yields:
0 0 0

I?f/éi,dP )ée + /ét, WA+ N)E dt+/§t )(B(y,_u,_)dt +dm,)+

T

+ [ & (A +A)Pt)E dt+ | [(By,_u.)dt+ dme) P(t)é,]
Jewsnmsa |

0

Substitution of eq. (15) for P(t) yields:

/ &_[—[A+AJP(t) — P(t)[A+ A') + P(t)BR 'BP(t) — Q- Z(1)|&,_dt + / & P(t)(A+ N)¢,_dt+

b G nP©Os et [ & POBU, uoderdm) + [ (Bl u)de+ dm) PG

0

with: Z(6) 2 3,00 [ (Y — Y?)P(t) (Y — Y*) ]. Evaluation yields:

n#0
T

/5 t)BR'BP(t) — Q- Z(t) gt,dw/{ t)(B(y,_u,)dt +dm,) + /[(B()([fut,)dt+dmt)'P(t)nft,]

0

Substitution of eq. (14), and subsequent evaluation yields:
L
= [ K RK(0)G, de - / & K(O/R(y,_u )de ~ / (e ) RK(0)2,_di+
0

T T

- / & [Q+Z(t)g, dt + / &_P(t)dm, + / [dmP(t)¢,]

0 0

By completing the squares for the terms in the first three integrals, this becomes:

= [ 0w~ & KORIG, w) - K0 e [ 7 ue YRy, ucder

0

T

- / & [Q+Z(t)e _dt+ 0/ &_P(t)dm, + 0/ [dm,P(t

0

Substituting this in eq. (*) for &.P(T)&;, and using (y,_ ut,)/R(;(Fut,) =u,_'R_u,_,yields:
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EP(TIEr = (OG0 + [ (U1 ) — & K(O Rl ue) K9G e~ [(u Rou-der

T T T T
- / & Qg dt— / & Z(t)E, dt+ / & P(t)dm, + / [dmP(t)é, ] +%1;" +3r
0 0 0 0

For the integral involving Z(t), by using Z(t) = Z(t —) we get:

Gz dt= [ & Z(t—)é dt= | §Z(D&dt= [ §Z(t)édt
e [encas s |

Similar rewriting applies to the integral terms involving K(t), R and Q. Hence:

T

&P(T)ér = £,P(0)g, +/[(){tur)'*5{K( )IRI(rue) — K(t)&dt — /ut/R:u[dt+

T T T T
- / £Qedi — / £Z(0)E,dt + / £ _P(tydm, + [ [dm Pz, | +%I§”+ZT
0 0 0 0

Taking expectation, and rearranging terms, yields:

E{&,P(T)ér} +E{ / ut’Rutdt} +E{ / §;Q§[dt} =

0

= E{&,P(0)5,} + E{ / () — EK() JR[(zu) —K(t):t]dr}+

0

E{ / gﬂZ(t);dt} +E{ / E;P(t)dmt} +E{ [ lampoe, ] } LB} + ()

0

Evaluation of the term involving the {F,}-martingale {m.}, yields:

{/é’ dmt} —E{ /TE{EtP(t)dmAF[}} _E{ /Tf'[P(t)E{dm[Ft}} _E{ /Tgtfp(t) , O,dt} —0
E{&P(T)é; } +E{ /Tut/Rutdt} +E{ /T‘g’[Qgtdt} _

Hence: r
: oy ' : 1
= E{£,P(0)} +E{ / [(rewe) — EK(t) |R[Crue) — K(t)ﬁt]dt} - E{ / §[Z(t)§[dt} + EE{@} +E{Z¢}
0 0
Using P(T) = S, and subsequent substitution in (12) yields: J({u;}) =
T

~ B{&,P(0)60} +E{ [ o) - 6k (©)RlG) —K(t):t]dt} —E{ / z:;z<T):[dt} + S E{} 4 B(%).

0
Evaluation of I?, using (A1), yields:

T T
n

Iy = / ZZ Py (t)d < Coipiwe, Ciwi>] = / [Pon (t)d < Coix{we, Cojpriwi>] =
0y ij=1 ij=1
0 0

0 1]1

P(),qu Cngthjdt / }{[C Pg(; g dt.
0
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To evaluate E{X,}, we start with the summation term in (A.1) for f(&,P(t)) = &P(t)&.:
=1 = Voceer [EPO& — & P(t = )& — & [P~ Pt = )& — &Pt — )A] — A{P(t — )& |, with A] = & — &_. Using P(t) =
P(t — ), the squares are completed as follows:

s, S [EPOG —& PO~ & POA] - ATP(0E ]

0<t<T

= Y [EP(t)E — & _P(t)E — AFP(t)E, ] =

0<t<T

= Z [AE/P(t)ft*Af,P(t)fti} = Z [Af/P(t)Af]

0<t<T 0<t<T

Hence E{ZT} = E{EO<t§T[(§t - 5[—)/P(t)(§t - ft—)]} **)
From (10) and (11) we know:

dé, = [A+ N dt + B(yw)dt + Cy_dw, + [£,dp™] = A& dt + B(y,u,)dt + Cy,_dw, + [, dp.]’

Since all terms in this SDE are square-integrable, the last term only may generate discontinuities in {&,}. Hence: (&, — 5[,)/ =

[5;,(11’[} = ft, (Pe — Pe-)-
Substituting this in eq. (**) for E{Zr}yields:

E{Zr} = E{ Z [f,[, (P — P )P()(p: _pt)/ft)]} =

0<t<T

=E Z [5’[7 Z [1 {Pen,t b p.‘)rl.t—}(pt — P )P(t) (p: *pt—),} ft—]

0<t<T 0.7€0
n#0

By the definition of Y in (16) we have:

1{poye # Pone— } (e — P )P(O)(Pe — Pe-) = 1{Poye # Pone— } (Y — Y*)P(t) (Y — Y*)".

Substitution in eq. (**) for E{%,}, and subsequent evaluation yields:

E{Z} =EQ Y [£. " [1{pone # pone } (Y = Y?)P(t) (Y = Y*)]& ] p =

0<t<T 070
n#o

-5 >\ awﬂﬂwﬂ)mt)(wvY%)/adpg,,l} -

e -0

T
=EC Y| [ & (Y= YP)P(t) (Y — Y £ dgdt
‘i Lo

T
Hence: E{X%,} = E{ / é;Z(t)étdt}, which simplifies the characterization of J({u,}) to:
0

() = E{EP(O)20} + B{ [ [lr) K0 IR{lrw) K0 )dc} + JE{1} QE.D.
0

Proof of Theorem 3.2: Since E{I%} is not influenced by {u.}, minimization of J({u.}) is achieved for
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u; = ArgzninE{[UKIU) — K& R(ru) —K(0)&]} =
= ArgminE{[(y,u) + R'BP(t)¢ ] [(r:u) +R'BP(0)&] }

Using R = Diag{R_,..,R_}, B = Diag{B,,,..,B.,}, §t7Col{£[ s &t }7 and subsequent evaluation yields: R 'BP(t)¢, =
COZ{R;IB;I S (Py(El). . RB, SN, (Puy(t) ff)}.

Substituting the latter together with (y,u;) = Col{y{'u, .., y{"u;} yields:

N N N
y —ArgminE{ > ngiumlB;,. > (R0 | R |+ RB, Y (Pif(t)ff’)H } =

i1 =1 =1

’

’

YEuR_yfu+ yiuB, (Plj(t)ffj) +

B, (Py(0&) | 2

u+fl)([7ét }

xiu+fi(xf, &H

w5 e | -

e

+ B>, (Pij(oé?)

;(t‘uB (Pij(t)gff) +

’

xiu+fi(re, &)

at
_ A,gmmE{

pos i

{

,ArgmmE uR_ u+E{ [)(i’u'B;i ,-111(Pil'(t)§?)+

B> (Py(0E)

’

B> (Py(t)E )} Ziu+ fi(rs 75[)]}

= ArgmmE{uR u+ Z

7iuB, Z

where f;(y', &) collects the u -invariant terms. To characterize the minimum u;, we can assume a zero value for the partial derivative of

the u -invariant terms at moment t:
. /
B, Ziu =0
D (Py -

uR_u Z Ae'llB Z lj ft - :
=

Jdu

This yields: u; R- + Rou; + S0, [70B, X (Py(0&?) + [B, T (Pu(00)| 78] =0

Hence: uf = RZ' Y21 [76B, S (Py(0&)] = (77 L . ZEL KD QED.
Remark 3.3. An important part of the proof of Theorem 3.1 involves the characterization of the novel terms
Aoy (YO —Y?)P(t) (YO — YHG), in eq. (15) for P(t). These terms cover interaction between N(N —1) off-diagonal matrices in P(t). To verify

that these novel terms are due to the multiplication of dp,with &,_ in the martingale term of egs. (10-11), let’s see what happens if £, —
dp,is replaced by ¢,_dp;, with {¢,} a process that is not influenced by {u}.

Following similar steps as in the proof of Theorem 3.1, then eq. (**) would yield:

E{Z} = E{ > e — ¢ )P(O)(g — gt)]} =

0<t<T

= E{ Z [é',tf (p: — e )P(t)(p: _pt)/g[)]} =

= Z |: /g;— (Y = Y*)P(t) (Y - YHH)/g[ﬂgﬂdt}

Kz
Hence E{X,} would no longer be influenced by {u.}, and the Y -involving summation in eq. (15) would disappear. Hence the off-

diagonal sub-matrices of P(t) would be zero.

Remark 3.4. A relevant question is if the Non-sparse control law of Theorem 3.2 also holds true if & is sparse. It can easily be verified
that nowhere in the derivation of Theorems 3.1 and 3.2 use is made of non-sparse &,. This means that egs. (13)-(17) also hold true if &,
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is sparse. The only consequence of a sparse & is that & and ¥, will be sparse, as result of which the off-diagonal matrices of P(t) do not
play a role in solving eq. (14).

4. Separation of control and estimation for (10-12) given partial observations

In this section, {F,}-measurable partial observations {y,} are made of {y,, &} of the transformed system (10-12). At moment ¢, the
sigma-algebra of continuous-time observations is Y = o{ys;s € [0,t]}. Since Y, is right-continuous and increasing with time, it defines

another filtration {¥;} c{F,}. Throughout this section we assume that there is a nonlinear filter for the estimators 7, = E{y,|Y;} and & =
E{&,|Y:}, which have pathwise unique and square integrable solutions.

For the setting of (10) and (12), though with an {m,} that is not influenced by {¢&,}, [12] has proven that, under certain assumptions,
the separation principle between control and nonlinear filtering applies under the following CE condition:

CO. E{(¢,—&/)(&, — &)’} is not influenced by {u}.
To cover the more demanding setting of (10)-(12), we will extend the proof of [12] under the following relaxed CE condition CO*,

where Ef =E{&|Y.}:

CO*. For each 6 € ©, E{ (&’ *Ef) (& - Ef) } is not influenced by {u}.

First Theorem 4.1 characterizes J({u}) in terms of (y,u; — K.&;). Subsequently Theorem 4.2 characterizes the optimal control uy.

Theorem 4.1. Let assumptions i-iii be satisfied for system (10-12). Let Y, cover partial observations of (y,.,), and a nonlinear filter produces
pathwise unique 7. = E{y,|Y:} and &, = E{£,|Y;}.
Then J({u.}) satisfies:

T

Jiu)) = B{EPO)&)} + E{ [ ) xRz —Kma]dt} + 2B} + r{KORKO'Q)

0
with the K(t) of eqs. (14-16), Q2E{(& — &)(& — Et)/}, and where neither I3 nor Q; are influenced by u,.
Theorem 4.2. Given the assumptions of Theorem 4.1. If condition CO* holds true, then the optimal control law to minimize J({u;}), satisfies:
w = [0, 2L KO8 18

Proof of Theorem 4.1: By defining & = & — & we have E{[(y,u) — K(t)E[]E;} = 0. Hence:

T
B [ traw) ~ K(O&J Rltzaw) ~ K0g)de} =
0

T
= B{ [ [0 - KORIRIGrw) - K(Ode} + rKORKOQ,)
0

Substituting this in eq. (13) yields:

T

Jiue)) = E{&P(0)} + E{ [ o - xR K<t>24dt} + B} + o {KORK( Q)

0

The proof of Theorem 3.1 showed that u,does not influenceE{I?’ }. Evaluation of Q; yields:

B =E{(& - &)&—E)} = ;P{Ht = O)E{(& — E)(& — &) [0, = 0} =
%:P{af = H}E{Z?(ft - Et)(ét - Et)’!gt = 9} =

SP{6, = 0)E{Diag{0,..0.7!(&! - V(& -2).,0,.,0}0 =0}} =

i 1 (£ Zé €1 sey N ( £eN 2N eN sy’
= E{Diag{y (&8 — & ) (&0 =& ) vd™ (& — &) (& — &) )
This means that condition CO* assures that Q, is neither influenced by u,. Q.E.D.
Proof of Theorem 4.2: Since u, only influences the integral term in the J({u}) characterization of Theorem 4.1:
u; = Argmin{E{[(r,u) — K(t) & R[(rew) — K(O)&]}}-
u

To resolve this optimization, we follow the steps in the proof of Theorem 3.2.
Substitution of eq. (14) yields:
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u; = Argmin{E{ [(x,u) + R'BP(t)&,| R[(y,u) + R'BP(t)é ]} }
u
Using R =Diag{R_,..,R_}, B =Diag{B,,,..,B,,}, & = Col{rffl s &N }7 and subsequent evaluation yields: R*lB'P(t)Et =

Col{R;lB;l > [Pr(t)E,], ,,,R;lB;N; Pro(D)E)] }
Substituting the latter together with (y,u;) = Col{y{'u, .., ¥ u;} yields:
u; = Argming{ S, [ {75 + R B o (Pao(0E)] R [ + BBy (Peo(0Z)]] | =
— ArgninE{ 1 [ R + B Y Peo0F0) + (B (Peol0F)] 7+ 8B} =
= ArgminE{uR -, + 1 [10Ba S (Peo(®F,) + [By S (Peo(®©F)] rfue + i D]} =

~0
St

= argmin E{uR_u; + E{ SV, 76180 (Pao(0F)) + [Bo Xy (Pao(t12)] e + filri B)] Y2} | =

= Arg;r‘ninE{u;Rut + vazl [)?:l u;Bei Do (Peio(t)gf) + [Bei 26 (Peio(t)gf)}/j(\?ut + ?i ()(flvg)} }

To characterize the minimum u;, we can assume zero value for the partial derivative of the u -variant terms at moment t:

3] [, o

o

N

uUR_u+ Z

i=1

~ei s ~0
ou t UBex (Pelﬁ(t)gt) +

4

This yields: R-u; = S, [77Bo - (Peo 0]

—~e; ~0 ~ ~ -~
Hence: 4 = Y, (7R Bo X (Puo(©2)] = (701 7L K(0)EQED.
0

5. MJLS cases of Kalman and Wonham filter based estimation of E[
This section elaborates the findings of Section 4 for two specific MJLS cases:

- Full observations of {6,}, and linear Gaussian observations of {x,}; and
- Hidden {6,}, and full observations of {x;}.

For these cases, estimation is accomplished by Kalman and Wonham filters respectively. For these two cases, it will be shown that
CE condition CO is satisfied. These two cases and the relation with existing results, are addressed in the next two subsections.

5.1. Full observations of 6, and linear Gaussian observations of x;

This subsection addresses the situation Y, = 6{6;,ys;s € [0,t]}, where {y,} satisfies:
dy; = Hyx,dt + Gdb, 19)
with {db,} a standard Brownian which is independent of {dw,},{dp,}and (6o, xo). For this case, the optimal control solution is well

known, e.g. [Costa, Fragoso and Todorov, 2013, Theorem 4.9]. The filtering part consists of estimating X, by a Kalman filter, the
coefficients of follow the switching 6,. The optimal control law is:

uw = KY(O%, (20)

where the gain matricesk}(t), 0 € ©, satisfy:

Kj'(t) = —RZ'By P}/ (1) 1)
with PY(T) = Sy, and for t < T, P(t) is the solution of the coupled set of ODE’s:

By (t) = —A)PY(t) — P¥(t)Ag + PY(0)BRB/PY(t) — > 20, PY(1) — Q. (22)

nee

Next we show that under full observability of {6;} the Non-sparse control policy of Theorem 4.1 yields the same u; as control policy
(20-22).

Theorem 5.1. In case of full {6, }and partial {x,} observations, i.e. Y. = o{6;,ys;s € [0,t]}, with {y,} satisfying (19), the control policy of
Theorem 4.2 yields the same pathwise unique {u; } as control policy (20-22).

10
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Proof. Estimation of X, by a Kalman filter, the coefficients of which follow the switching 6;, also implies that E{(x, —X;)(x; — X;)'|Y:}

is not influenced by {u,}; hence condition CO is satisfied. Because {6,} is observed, )?t” =y assumes values from {0,1} only, which
implies that from the solution P(t) of eq. (15) only the diagonal sub-matrices play a role in the optimal control policy. Hence it remains
to be shown that the Pgy(t) solutions of (15) are the same as the P¥(t) solutions of (22). Evaluation of the last summation in eq. (15)

yields: Yy, ce [Aoy (Y — Y?)P(t) (Y — Y?)] =
= Z o [Y()" P(t)YH”' _yo P(t)Y“H/ _y%p (t)Y""/ +Y0()P(t)Y99’} _

CNIEC)

_ Z /19’7 [Y"” P(t)Y”", _y” P(t)YW _y% P(t)Y()q' + Yo P(t)YW’}

0.nc®

Using this, and eq. (15), we get for the submatrix Py(t) on the diagonal of P(t):

Piy(t) = —AgPog (t) — Pao(t)Ag — 2 _40yPay(t) + Pag (t)BoRZ"By'Poy () — Qo

n

= [0y [Py (£) — Py (£) — Py (t) + Poy(t)]] =
n#6

= —Ay'Puy(t) — Poo(t)Ag + Poy ()BoR_"By'Pag(t) — Qo — 2 APy (£) — 2Aa0Pao () +
n#0

_ZMHW [Prm(t) - Prlﬁ(t) - Pﬂﬂ(t) +P09(t)”
n#0

= —Ay'Pag(t) — Pag(t)Ag + Poy(t)ByR_'By'Pay (t) — Qg — 240Pao(t) — > _ [y [Py (£) + Py (0)]]
n#0

= —Ay Py(t) — Pyy(t)Ag + Pos(t)ByR="By Pyy(t) — Qp — 2209Pu(t) — Z[/‘L()VPW (6)] + AgoPoo(t)
n#6

= —Ay Pyy(t) — Pop(t)Ag + Poo(t)BoRZ" By Poy(t) — Qo — AaoPao(t) — D _ [AenPy (8]
n#0

= *Asypea(t) — Pgo(t)Ag + Pea(f)BeR;lBelpae(f) —Q— Z[ﬂaqu(f)]
il

The latter is equal to eq. (22) for P¥(t). Q.E.D.

5.2. Hidden 6,, and full observations of x;

This subsection addresses the situation Y; = o{x;;s € [0,t]}, under the restriction Cy is 6 -invariant. For this control problem, the
optimal solution is not known in literature. A well known approximation is the Averaging MJLS control policy [Fragoso, 1988]:

= (7R 0] 2

with K¥(t) the solution of (21-22), and )?f the solution of the Wonham filter.
Proposition 5.2. (Wonham filter)

Let Cy = C for all 6. The estimator ;?f = P{6, = 0|Y.}, given Y; = o{x;;s € [0, ]}, satisfies:

a7, = X [h7!]dt + 7/ [Axc + B — X [71(Ax + Byu)] | [CC) ' dv (24)

with dv, = dx; — Z@ [71(Ayx: + Byuy)]de.
ne
Thanks to Theorem 4.1 we are now able to characterize the optimal control policy and compare this to the Averaging MJLS control
policy (23).

Theorem 5.3. let Cy = C for all 0. Given Y; = o{x,;s € [0, t]}, the optimal control satisfies:

=Y (7K, (0] (25)

0

11
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with : K,(t) = = [7/{R'B,Py(t)], (26)

n
where ;?f is the Wonham filter solution (24), and P(t) is the solution of (15).
Proof. To verify that Condition CO is satisfied, we verify that {u;} does not influence E{agt}
E{E&IY) = Elx- 7, x|V} = % Bz |V} -x =

=Xt Z[}(\f ‘E{J?r)?[lYn)(f:l}] 'xt' =Xt Z[/?f ’E{(lﬂ*)?t) (l” 7}(\1)"Yn)(?:1}} * Xt
0 0
=X+ ZD(\? : (lefjf\t) (la *)f(\t)/} 'xt/
0
where ¢/ is a column vector of length N satisfying lz, =1for ¢ =0, and L“g’, =0 for & #6.

This shows that {u, }does not inﬂuenceE{gtE[\Yt}. Hence, {u;}neither influences E{gtg[} Moreover, the Wonham filter shows that
{u:} does not influence {¥,}. This means that CE condition CO is satisfied, and (14-18) hold true.
Substituting eq. (14) in eq. (18), and subsequent evaluation yields:

7IRZ'B,Y [Pne(tﬁf}} =

_u}‘zll/,..j{‘fNI/} IBP( )E Z

==Y ;??RlB;Z[;?wa(t)xt]}Zb?f {Z)?"R B, Pyt } } Zb?f xt} Q.ED.

Remark 5.4. The difference between (25) and the Averaging MJLS feedback (23) lies in the mode-dependent feedback gains K,(t)
and K¥(t) respectively. In contrast to K¥(t), K,(t) takes 7, and the off-diagonal sub-matrices of P(t) into account. These off-diagonal

sub-matrices play an important role when 7, has multiple non-zero ;?f components.
6. General MJLS control problem

This section addresses the more general MJLS control under partial observations Y, = 6{y;;s € [0,t]}, where the linear Gaussian
observation process {y,} satisfies (19).
By defining H = Row{H,,, ..,He,, }, (19) can be written as:

dy, = H¢,dt + Gdb,. (27)

The objective is to elaborate the control policy of Theorem 4.1 for this general MJLS stochastic control problem. This elaboration

involves three steps. The first step is to develop the nonlinear filtering equations for the estimation of = Col{/ffl J e Ef”} ineq. (17).

The second step is to prove that relaxed CE condition CO* is satisfied, i.e. E{ (& — EZ)) (&~ a‘) 1,0 € ©, is not influenced by {u,}. The
third step is to picture how the various developments in this paper define the optimal feedback controlled system.

Proposition 6.1. Let assumptions i-iii be satisfied for system (10-12), and H, G have finite-valued components.
The process {Ef}, defined by Ef = E{&|Y,}, satisfies:

&, = AL dt+ B, ude + > [4,8,)de + [q/H) — & E.H](GG) \dv, (28)

nee
with dv, = dy, — HEdt, &, = Col{a21 , ...2‘5”}, and where 7? satisfies:

a7} = = [hori]de + [A0d! + 7/Bauc— = [(A,E) + 7B, w)]] fec] dv, (29)

and the matrix process {af}, defined by G’ = E{ffgf/ |Y:}, satisfies:

A~ A~ o~ o’ ’\H, ~0 ’ A~ o’ -~
dq; = [AeG; +q/A) +Bowé, + & (Bow) + Co7{Coldt + > [Aeq}]dt
nee

(30)
+[( 5[) ~§'¢, ](GG')’ldvt

12
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Proof. Application of the fundamental filtering theorem [Elliott [16], Th. 18.11] to eq. (7) yields:

A, = AEdt + Bplude + S (18 )de + [ (801 ) - EEH] (GG .

nee

Since for all  # 0, §f§?/ = 0, the latter implies (28).
Application of the fundamental filtering theorem to eq. (5) yields (29). Application of the differentiation rule for discontinuous

semimartingales to g/ = £’£7, using eq. (6), yields:

g = d(&&) = dee’ + Ede* + CplCy de+ [0 — & & ] =

= [Aoldt + By uidt + Copdw ] & + & [AoEldt + Byy'uidt + Coldw,] + Co!C, dt + S lee dpy.
nee
= A()q dt + qf YA'dt + Byy, llrfd dt + 5[ (B(}Z[ llt) dt + Cyy; dwtfg + ft (C()}{ th) + Cn)(fco dt + Z i ,dpq(),z}
neod
= [Aoq] + q/Ay + By} Utft + & (Boy! U[) + Cox?Cy]dt + Cyy! th‘fg +&(C, th), + Z[Q'Ldpvy,t}
nee

Application of the fundamental filtering theorem yields:
=0 _ ~0 ) ~03' 1
dq, =7idt + quét'H) -q, .ftH] (GG) "du,

with 77 = Aeq} + G'As + Bou! + & (Bow) + Ca'Co + Xyc0 @]

This, and using ¢/ 1 =0, Vi # 6, yields (30). Q.E.D.

Because the innovation term for af, in eq. (29), involves a third order moment, a full solution of afis complemented by a char-
acterization of the joint conditional density of {6;,x;}, e.g. [17,18].

Proposition 6.2. Let the conditional probability mass-density pg, x, (6, x) be in the domain of L?, then:

P, (0,%) = [L* +J] Do, (6. %)dt + P, (6,) (Hox — HE) (GG)) " dv, (31)

where dv, = dz, — EtH dt; J is the Kolmogorov operator:

X) =Y [yaf (1, )] (32)

70

and L? is the mode-conditional Fokker-Planck operator:

LF(0.2) = — ooty i [(Ax + Byu)f0,.0] + 3 Sy 55 [Cich e, >] =

= Y [ABF(0.2)] — Y [(Alx + Biu) &F0.00]+ 1 Y0 [0 | e f 0. x)} (33)

Having characterized the exact nonlinear estimator of ét, the crucial step is to prove that relaxed CE condition CO* is satisfied, i.e.
E{(& - )(cft Ef),}ﬂ € @, is not influenced by {u,}.
Theorem 6.3. Define Ef =g Ef Given eq. (27) observations {y;} of the solution {£,} of (10), then

B}~ E(G ) + S} + EEE)A, + 3 [hr{8e] )]s (39
) nee

which assures CO*, i.e. that the evolution of E {g:f E;?} is not influenced by {u;}, and that the optimal control policy of Theorem 4.1 holds true,
with {ft} satisfying (29).  Proof.
SV SV
(e} =E{(& - &) (& - &) } = E{erel + B8 -l -Fel} =

—E{8e + B8 —E(8E + L V) = E{ge +EE -EE + 5 ) =

=E{gg ~FE) =E{&e g}

13
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Hence E{d(&/¢/) }= E{d(&&] — /) = E{d(&&! )} — E{dq.}
Application of differentiation rule for discontinuous semimartingales to (6) yields:
A =& de? +dEe + o 4 Cdt + [gtfﬂ _E e @A AT } = & dE +dEPE + oy Cdt
+Y0 [ 8! dpe] =
n

= & [Ap€ldt + Boylu,dt + Copldw,| + [As€ldt + Boyu,dt + Cox?dw,] & + Cox!C,dt + Z 1 dpyo.]

where £/° is the continuous part of £. Together with eq. (30), this yields: E{d(gfg)} = E{d(éfaff/)} — E{dq}} =

= E{&[Ap&)dt + Byylu.dt| ' }+ E{[Aoldt + Byylu.dt) z:f' }+E{Coy’C,}dt + E{ Z [201e"] }dH-

neoe

—E{ [Aaaf"‘a:)Ae/ +Ba)(fur?¢) +EZ)(B€Z?U:), +C9)A(fce/]dt} - E{Z[ 00y ]dt}

nee

= E{&/[Ag] de} + E{Aogle] de} + E{CorC Yt + > [oE{&1e! }]de+

neoe

—E{[AsQ; + /Ay +Co7{Co]dt} — > [1,0E{q; }]dt}+

nee
HE{ (& — &) (Buriw) Yt + E{Byylu (& — &) Yt =

SE{A (G ) + (8 - T)AT+ Gl 7 G Y+ Y LE{gre Y

nee

= E{A9(§t§0 Aﬂ) (‘5055 '\0 A9 }dt+ Z HE{ - qt}]

nee

MILS plant, egs. (1-2)

* N (xt’ t)
U dx, = Ay x,dt + Byu,dt + C, dw,

CE Feedback of Theorem 4.2
Partial observation eq. (19)

w =20 20 LK, dy, = H, xdt +Gdb
t )t t

*
ut

Nonlinear filter of Proposition 6.1

(2.) o ColBe e 3
yields: & =Col{&",...,E"}

and 7 =Col{y",.. 2"}

Figure 1. The optimal control loop for MJLS (1-3) given partial observations (19), where feedback gain K(t) is the solution of egs. (14-16) in the
J{(u;)} characterization of Theorem 3.1.

14



H.A.P. Blom Nonlinear Analysis: Hybrid Systems 59 (2026) 101644

— AE{EE e+ B{EE YA e+ S [hoE{E1E] Y] de

neoe
where for equality 9 use is made of:
0 (e 20\ o0 0 3 0 20
E{Bf’xtut(‘ft - 5[) } :B"E{Ztuf(ét - gt) } :B“’E{E{)(tuf(gf - é:t) ‘Yf}} =

= BeE{P{0, = 0|V JE{y u, (¢! — EZ’)/ 10:=06,Y:}} = BE{7 E{uc(&] — Ef)’ 6:=06,Y.}} =

N ~0," ~
= BE{Z/uE{(& — &) 16:=6,Y,}} = BE{Z{u;- 0} =0
Writing (b) in integral form yields (34). Q.E.D.
The final step is to picture the resulting optimal feedback control loop for MJLS (1-3) under partial observation (19) in Figure 1.

Remark 6.4. If the CE version of the Averaging MJLS control is adopted, then in the left block in Figure 1, the optimal control u; =
[791,...7™1]K(t)&has to be replaced by u? = HEZ@K’QV’(t)Ef with K} (t) the solution of egs. (21-22).

Remark 6.5. For the MJLS control problem addressed by Theorem 6.3, [Everdij and Blom, 1996] have developed the Open Loop
Optimal Feedback (OLOF) control u9“%F under the OLOF assumption that observations beyond moment t are ignored during the control
optimization. Thanks to Theorem 6.3 we now know that this OLOF assumption is correct, which means u®%F = u?. For a simple MJLS
example, [Everdij and Blom, 1996] have also conducted simulations to compare the use of u?“Fversus the use of the CE version of the

Averaging MJLS control u? = HZ@KQ” (t)Ef. This comparison showed the important role played by non-sparse 7, in u®2%F = u?. Although
(S

uPLOF =y, it is relevant to be aware that the control law equations for u®.% are much more complicated than eq. (18) for u}.

Remark 6.6. It can be noticed that there is a partial form of duality only between the P(t) solution of eq. (15), and the covariance
[Diag(q;', ..., q™) 7Et2t,] from the nonlinear filter. There is a coupled Riccati type of duality between the N = |@| diagonal matrix
~e1 ~en

components of P(t) and Diag(q,',...,q," ). However, such type of duality does not apply to theN(N —1) off-diagonal matrices of P(t) and

~en

[Diag(qe', ..., §) —&,&, | respectively.

Remark 6.7. The innovation term in eq. (30) causes the nonlinear filter of Proposition 6.1 to be infinite-dimensional. Hence, in
literature, finite-dimensional numerical approximation methods have been developed. The main methods are:

Continuous-time Interacting Multiple Model (IMM) estimator [19-21]
IMM Particle Filter [21]

IMM Feedback Particle Filter [22]

Grid-based numerical integration of eq. (31) for pg, x(.,.) [23]

Each of these methods can be used to numerically estimate &. IMM has the lowest computational load, at the cost of assuming
second order density approximations. The computational load of the grid-based approach grows linearly with the number of grid
points used. For many practical problems this is impractically large. The IMM Particle Filter approach makes use of a flexible grid
which adapts to the evolution of the joint conditional density of (6;,x;). The adaptation of this grid is further improved by the IMM
Feedback Particle Filter.

7. Conclusions

This paper has derived a general separation principle for optimal control of partially observed MJLS with n-dimensional Euclidean
state process {x;} and a finite state Markov process {6;}. To accomplish this, in section 2, the MJLS system has been transformed to
optimal control of an Nn-dimensional process {&,} that is a solution of a martingale driven linear system. Section 3 has derived a Non-
sparse optimal control law given full observations of a non-sparse {£, } solution of the transformed system of section 2. In Section 4, for
partial observations of the process {¢,} a generally applicable Separation Principle has been derived, under a relaxed CE condition CO*.
In section 5, two partially observed MJLS cases have been considered. The first case has full observations of {6} and a Kalman
estimator of X;; it has been shown that the optimal control solution of section 4 is equal to the known solution [4]. The second case has
full observations of {x;} and a Wonham filter to estimate {6,}; it has been shown that the optimal control of section 4 significantly
enriches the averaging MJLS control policy of Fragoso [7]. Section 6 considers the general MJLS case of partial observations of {x;}
only; it has been proven that CE condition CO* of section 4 holds true. Subsequently, for this general MJLS case the optimal
feedback-control law has been depicted in Figure 1.

There are interesting directions for follow-on research. One direction is to investigate if and how the obtained separation principle

15
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can be extended to discrete time setting of a partially observed MJLS, e.g. Costa et al. [24]. A complementary direction is to investigate
if and how this separation principle can be extended to a MJLS that is enriched with hybrid jumps [25-28], i.e. jumps in the
Euclidean-valued process {x;} that occur simultaneous with a {6, }switching, and the jump size may depend on the mode values before
and after the switching.
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Appendix A

Al. Differentiation rule for discontinuous semimartingales

The differentiation rule for discontinuous semimartingales as well as the relation to other differentiation rules are well explained by
[Protter [29], Chapter II].

Let {z:} be an L-vector semimartingale, and let f be a twice continuously differentiable mapping of z, into R. Then f(z,) is a
semimartingale satisfying up to indistinguishability:

L L Lo
_ d i 1 J .
f(z) = f(20) + ?:1 /azif(zs,)dz: ) ;,-:1 /—aziaz,-f(zsf)d <mi,mi >+
0 K 0

L

flz) —flz) =Y L)%f(zs)AfH (A1)

i=1

>

O<s<t

where m? is the i-th component of the continuous martingale part of z,, d < m? ,m? >; is the quadratic co-variation of <m§ft7m§’; t) , A7 A1

— zl_,and the summation in the last term is over all time moments s € (0, t] at which 2! # 2zl for some i € [1,L].
A2. Derivation of eq. (5)
Because {6;} is purely discontinuous, we have: d¢, = A’.
By defining the mapping f?(6;) = 1(6; = 0) = 4?, the differentiation rule yields:

dr! = df'(0) =f(0) —f(0) =1 =2 =D X dpyoc — > _xi dpone

n#0 n#0

where the first sum covers all possible jumps from 6, # 6 to 6; = 6, and the second sum covers all possible jumps from 6, = 6 to
0, # 6. Using dpgg 2 — > 26@Pons, yields:

d)([g = E#gﬂf’r&dpne,c *){idpee,t = queﬂf?fdpne,t Q.E.D.

A3. Derivation of eq. (6)

Because {x;} has no discontinuities, we have A¥ = 0.

By defining the mapping F?(6,,x,) = f?(00)x; = yx. = &, we get: %Fﬂ (6,x) = 0.

oxt

Together with d, = A?, application of the differentiation rule yields:

n a .
de = ; {ﬁf‘g(xt,ﬁt,)dxi + [F(xe,0,) — F'(x,60,.)] =

=2+ [rx = x|
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For the terms within brackets, we sum over all possible jumps from 6, # 0 to 8, = 6, and distract the sum over all possible jumps

from 6, = 6 to 6, # 6, which yields

dff = }(f_ dx; + Z [Zz_xt—dpna,t] - Z [){f_xt— dpem]

n#0 n#0

Using dpaa,[é - Z#edpen,u yields: dff = ;(fidx[ + an@ [)(:I—xt— dpna,t} = fodxt + ZWE@ [4:;77 dpne,t] .
Substitution of (1), and subsequent evaluation yields (6). Q.E.D.

Data availability

No data was used for the research described in the article.
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