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Abstract

We present a reduced order model (ROM) for a one-dimensional nonlinear gas dynamics problem: the isentropic piston. The main
body of the PDE, the geometrical definition of the mesh nodes, and the boundary conditions are parametrized. The full order model is
obtained with a Galerkin finite element discretization, under the Arbitrary Lagrangian Eulerian formulation (ALE). To stabilize the system,
an artificial viscosity term is included. The nonlinear convective term is linearized with a second-order extrapolation. The reduced basis
to express the solution is obtained with the POD technique. To overcome the explicit use of the Jacobian transformation, typical in
the context of moving meshes, a system approximation technique is introduced. The (Matrix) Discrete Empirical Interpolation Method,
(M)DEIM, allows us to work with a weak form defined in the physical domain (and hence the physical weak formulation) whilst maintaining
an efficient assembly of the algebraic operators, despite their change with every time step. Two alternative methods are presented to
collect and compress the snapshots for the discretized solution-dependent convective term. Each method leads to a different offline
stage. All in all, our approach is purely algebraic and the reduced model makes no use of full order structures, thus achieving a perfect
offline-online split. A concise description of the reduction procedure is provided. The reduced model is certified with a posteriori error
estimations obtained via mode truncation.

Index Terms

finite elements, Galerkin, reduced order models, moving mesh, ALE, (M)DEIM, POD, SVD, mode truncation
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To go to Rome is little profit;
to go to Rome is little profit, endless pain.
The master that you seek in Rome,
you find at home, or seek in vain.

FOREWORD

These works typically set the ending of a cycle in life. In my case, it marks a restart.
I was very close to dropping out from my masters, contempt with having my bachelor and partially frustrated for

multiple reasons not worth developing here. Taking into account the fact that my professional career seemed to have
drifted away from Aerospace Engineering, I struggled to see the point at completing it, let alone finding the time such task
required.

However, two ideas made me get back to work. First, it is easier to explain an elongated but completed academic
course, rather than an uncompleted one. Second, and most important, I do actually like the subject. In fact, during the last
year I have realized how much I enjoy Applied Mathematics, a field by which Aerospace Engineering is widely nurtered.

In this regard I would like to thank professors A. Quarteroni and A. Manzoni for giving me the opportunity to work
with them in their research group in Milan. Apart from learning mathematics, I met great colleagues and picked up one of
Europe’s most beautiful languages. However, working with the FEM code available there, LifeV, was tough, and probably
its complexity had to do with the growing frustration I was already experiencing in my academic life: too much time spent
debugging, rather than understanding the problem with pen and paper. Nevertheless, with them I discovered a way of
using mathematics that I had not learnt before, one that suits my mind and approach to scientific modelling.

I am grateful for the warmth I received from the PhD students and postdocs at the office where we worked together
everyday: Federica (are you ever going to quite smoking?), Abele (namaste), Dani (south), Dani (north), Ludovica, Stefano,
and a countable infinite more. I keep good memories playing volley and climbing with you all. The same goes for the staff
from the Politecnico: Paola, Lucas, Susanna. Last, but not least, I would like to thank Niccolò Dal Santo for his patience,
time and knowledge; which he generously dedicated to me despite being based in Lausanne. You are definitely among the
most clever people I have met.

At TU Delft, I would like to thank professor Steven for his joyful encouragement during round two of this thesis.
When I first wrote him back after a year and a half since he last heard from me, I thought he would (righteously) no
longer want to have anything to do with this work. I was gladly surprised to receive all of the contrary, a warm welcome
back and a pragmatic view and feedback to make me reach the end at the fastest pace, whilst doing a good job. I would
like to ackwnoledge Simone Floreani too, my fellow student colleage and great friend at TU, who, based in his previous
experience, advised me to go work in Milan and learn these mathematics. Without your words, none of this would have
started. I hope we get to collaborate together in a project involving mathematics in the near future.

At last, although they are completely outside of the academic scope, I would like to thank my colleagues at work and
my close friends. My two supervisors, Ana and Sarah, from whom I have adquired the pragmatism industrial problems
require to be completed in time and form. To Maximiliano, again a smart and kind person across my path in life, eager to
teach me professional coding skills and how to structure creativity. Juan and Javier, with whom I share great adventures
and conversations. To Emmanuel, my housemate, who despite being a lawyer, would kindly ask me every now and then
about the ROM convergence rates. Miquel (both of them), a friend turned brother, for your unwearing support and advice.
And to all of the remaining, with whom I spend great quality time. You influence my life more than you are probably
aware.

As the reader will see, this is quite an elementary work. Formulating and coding it has been laborious, but the
content remains simple. Yet, its simplicity has allowed me to understand the fundamentals of two versatile and powerful
mathematical tools: Finite Elements and Reduced Order Models. This has motivated me to keep on working at it once this
is over, so that hopefully one day I get to tackle the real-life problem I set to solve in the first place: the fluid mechanics
problem of the human heart.

Madrid (España), 2021.
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LIST OF SYMBOLS

t time coordinate
x space coordinate in the physical domain
X space coordinate in a fixed reference domain
A Arbitrary Lagrangian Eulerian map
d mesh displacement
wm mesh velocity
J Jacobian matrix
JA Jacobian transformation (matrix determinant)
L0 initial piston length
L piston movement in time
u flow velocity
û flow velocity for the homogeneous problem
uh flow velocity finite element representation
g Dirichlet boundary lifting
p pressure
ρ density
γ specific heat ratio

MD mass defect in time (numerical integration)
ε artificial viscosity value

εPOD POD approximation error
up piston mach number
a0 reference speed of sound
p0 reference pressure
ρ0 reference density
δ piston displacement from rest (as a fraction of L0)
ω piston oscillating frequency
c dimensionless convection velocity
b0 dimensionless constant convection coefficient
bL dimensionless piston boundary condition
F Gaussian bell
xc Gaussian bell center
σc Gaussian bell dispersion factor
yc Gaussian bell scaling factor
Nh number of finite element degrees of freedom
N number of reduced basis modes
Vh space of Lagrangian functions
VN space of RB solution modes
ϕi Lagrangian finite element basis function
ψi RB solution modes
Ah,q algebraic operator modes (collateral basis)

1 INTRODUCTION

When a painter sets out to paint, she will probably use
most of the available basic colours. However, if she knew
beforehand that she is going to paint landscapes, she would
fare well with a farsighted palette: greens, browns, blues,
whites, etc. Such is the nature of reduced order models, to
find a subset among the combinations of basic colours to
represent the solution to the problem of interest.

In the context of this work, the basic colours are the
classical mathematical Lagrangian finite element basis func-
tions: generic, piecewise, with local support, able to rep-
resent most functions of interest. Instead, the landscape
palette will be ad-hoc: problem-dependent functions with
global support, good at capturing details only specific to
landscapes.

Additionally, she will not need all sorts of brushes, sim-
ply the ones with the right thickness and width for moun-
tains, trees and hills. The brushes represent the algebraic
operators that arise from the finite element discretization.
As with the colours, we can find a subset of combinations of
brushes that suit our problem. That is, we can find a basis
for each algebraic operator to build them efficiently.

Finally, since she is a vanguard painter, the domain of
our problem, her canvas, will be allowed to change in time
as she paints. The landscape colours and brushes we select
need to take this into account.

So far with metaphors.

1.1 The Need for Reduction

Conventional PDE discretization techniques (finite ele-
ments, finite volumes, finite differences, etc.) rely on a
generic representation of the PDE solution to form an al-
gebraic system; whose unknowns allow the determination
of the PDE solution at each mesh node for every time step.
The discretized operators which conform these algebraic
systems are often sparse1 and high-dimensional2. For real-
life scenarios, the computational time required to solve them
can become prohibitive for parameter sweeps or optimiza-
tion problems (two tasks which are often an important step
of scientific or engineering works).

This leads to the idea of building and using ad-hoc
reduced basis (RB) modes to represent the solution, in
substitution of the generic functions used by conventional
methods. The RB solution modes encode the main dynamics
of the PDE, and thus with a few number of them the solution
can be accurately represented. The reduced order model
(ROM) associated to the RB solution modes is obtained by
projection of the discretized operators associated with the
original conventional method. The resulting linear system
is dense, and several orders of magnitude smaller; which
makes it suitable for many-query tasks. We refer to the RB
mode identification step as the offline stage; and to its use to
solve new problems as the online stage.

1. Conventional discretization techniques typically use functions
with local support to represent the solution.

2. The more mesh nodes are added to the mesh (and thus the more
unknowns the discretized algebraic system has), the closer the discrete
PDE solution will get to the continuous PDE solution.



M. SC. AEROSPACE ENGINEERING, TU DELFT 8

1.1.1 Reduction in a Moving Mesh Context
In the context of a fixed mesh, the assembly and projection
steps take place once and for all. On the contrary, if the
mesh moves in time, these steps need to take place for every
time step3. Hence, despite the reduction in size of the linear
system, there is still a considerable overhead during its
assembly. To overcome it, a system approximation technique
is introduced, following the same idea behind RB modes:
find and use a suitable ad-hoc representation basis; thus
the discrete operator is expressed as a linear combination of
operator modes (collateral basis). The system approximation
technique must require that an efficient assembly of the
projected operator can be obtained at runtime, for each time
step.

Since a basis is identified for the solution and each
of the algebraic operators, the combination of these two
techniques defines an hyper reduced order model (HROM).
The adjective hyper4 is present because a collateral basis will
be created for each algebraic operator, on top of the one
created for the solution space.

To put in practice the ideas previously stated, we build
and certify an HROM for a one-dimensional parametrized
piston problem, whose movement is prescribed. The model
PDE, the boundary conditions and the mesh geometry are
parametrized. The finite element method is used as the
conventional discretization technique. This work extends
[1], [2] (albeit for a simpler PDE and domain), which
did introduce the MDEIM system approximation technique
for unsteady problems with geometrically parametrized
domains, although the mesh (and the domain boundary)
remained fixed in time.

1.2 The Modeling Impact of a Moving Mesh

Physical problems with moving meshes (related or not to
fluid dynamics), require the introduction of a convective
term to account for the movement of the mesh, and po-
tentially a transformation in the finite element weak form.
This transformation translates the integrals defined in a
deforming space into a fixed, numerical grid, as shown in
Figure 1.

Fig. 1. Numerical fixed grid to the left, physical moving mesh to the
right. The Jacobian determinant establishes the connection between the
evaluation of an integral over the square (red) in each domain (blue).
Figure from [3].

3. Discrete integrals, fluxes, or interpolations associated to the con-
ventional discretization method need to be recomputed for the new
mesh.

4. From Greek hyper (prep. and adv.) "over, beyond, overmuch, above
measure".

This transformation can take many names, such as gen-
eralized transformation, mapping, boundary-conforming
coordinate transformation, etc. It usually involves the com-
putation of a Jacobian matrix J , whose determinant plays
an important role in the aforementioned transformation.

The entries of the Jacobian matrix might be known
explicitly, if the deformation is known analytically and the
domain is sufficiently simple. However, if the domain takes
arbitrary shapes (likely for real-life problems in higher di-
mensions than one), or we are dealing with an FSI problem
(where the deformation is part of the solution), it is quite
possible that we have to compute the Jacobian transforma-
tion numerically. This is likely to be an undesirable situation,
for the physical weak form will become contaminated with
additional terms, making it more cumbersome to implement
and deal with5, as well as the inevitable overhead in com-
putational costs.

This overhead created by the Jacobian is likely to perme-
ate to the reduced order model (ROM), for in the context of
finite elements, ROMs are often built as a system with the
same algebraic structure as the departing full order model
(FOM), albeit with smaller matrices and vectors. It might
even be the case that we cannot completely uncouple the
ROM from the FOM, if the problem is complex enough, or
that we need satellite6 ROMs to compute the Jacobian matrix
efficiently.

Hence, to avoid all of the previous, we develop a ROM
formulation which allows us to remain in the physical
domain, whilst maintaining a perfect offline-online decompo-
sition, allowing our reduction scheme to reach its maximum
efficiency.

1.3 Literature Review

We now frame our work within the current body of knowl-
edge with a short literature review. Additional references
will be cited within the body of the document, where their
appearence is more accurate and helpful.

We have used mainly two types of papers: methodology
and applications. The former present a numerical method
or formulation which we use, the latter make use of it for
specific applications. We were especially interested in the
applications to see how previous works dealt with inhomo-
geneous boundary conditions, on which will be discussed
later on in the work and the review.

1.3.1 Burgers Terms and Piston Models
Regarding the target PDE to work with, we decided upon
several constraints: it had to be one-dimensional (to ease
implementation), contain non-trivial terms (to make the
problem interesting), and be physically sound (to validate
the outcome).

Luckily, removing viscosity and body forces (which are
strong assumptions), and making use of the isentropic con-
dition, we can transform the Navier-Stokes equations into a
one-dimensional equation [4], [5] in terms of velocity. At the

5. The discretization will not be formulated for the original vari-
able φ, but rather for its distorted counterpart Jφ.

6. If the Jacobian is derived from a PDE, this would require an
additional ROM with its corresponding reduced basis to enhance
computation times.
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discretization level, we can add an artificial viscosity term,
to make sure the solution remains stable [6].

This result is a simple yet complete PDE to model the
movement of a piston, which can be validated with derived
computations such as mass conservation, and whose solu-
tion makes intuitively sense when plotted.

The equation resembles an advection equation with a
nonlinear Burgers-like convective term. The Burgers equa-
tion showed up in the gas dynamics literature several
decades ago [7]–[10], for which under controlled conditions
a range of implicit analytical solutions exist [11], including
for moving domains [12].

Compared to modern problems with moving domains,
the piston is quite simple in nature; and yet it allowed many
aerodynamicists to push forward the barrier of knowledge
back in the days, when computational power was not so
easy to access [13].

1.3.2 Deforming Mesh (ALE)
Because the piston problem is defined in a moving domain,
one needs to modify the formulation to account for the
movement of the mesh nodes, with the introduction of a
convective term governed by the mesh velocity vector. In
fact, this needs to be done even for domains with fixed
boundaries, where the interior mesh nodes move in time
(front-tracking or shock-capturing schemes could be an
example of such situations). This leads to the Arbitrary
Lagrangian Eulerian (ALE) formulation.

An introduction to the details of the ALE formulation
in a simple setting can be found in [14]–[16]. In these
works, stability arguments and implementation details for
finite elements and simple PDE models are provided. Work
[14] contains lengthy and easy-to-read derivations which
explain neatly the differences between conservative and
non-conservative weak forms. For reasons that will be-
come aparent later on, in this thesis we need to solve the
non-conservative weak form, at least to use the current
formulation of the system aproximation technique which we
intend to use. For a complete and generic development of
the subject, in higher dimensions and for complex problems,
we refer the reader to [17], [18].

Regarding the stability of the integration scheme, the
concept of a (Discrete) Geometric Conservation Law (D-GCL) is
often mentioned [19]–[22]. Briefly, how the domain deforms
and how this deformation is accounted for in the discretiza-
tion of the continuous problem, could lead or not to insta-
bilities in the solution; for the movement of the mesh could
introduce artificial fluxes in the discretization. As a general
rule of thumb, to guarantee some notion of stability, the
scheme should be able to reproduce the constant solution
(under the appropriate boundary conditions). In [14] they
prove how the Implicit Euler integration scheme becomes
conditionally stable for a linear advection-diffusion problem
if the non-conservative weak formulation is solved.

As a final note, we would like to point out that a
problem with a deforming domain could also be tackled
with space-time finite elements [23]. In fact, as it is the case
for us, if the boundary movement is prescribed, the domain
in a space-time context will be a fixed one. However, we
disregarded this line of work because it could make the
implementation much more complicated.

This ends the literature review regarding the FOM
model. We now present the literature oriented towards the
construction of the ROM.

1.3.3 Reduced Basis

We do not aim here at providing a comprehensive review of
the whole field (for that could be a complete work by itself),
but rather to present a good starting point from which the
interested reader could start, and of course, the framing of
this thesis.

A problem’s complexity and its computational cost are
typically something that scale together. Hence, the idea of
finding a smaller subspace to represent the solution and
reduce calculation times is justified.

This idea of using a problem-dependent basis with
global support to solve numerically discretized PDEs is
well known. The first references in this line date back to
the 80s, with pioneering works in structural analysis [24].
Since then, this idea has become increasingly popular, with
many papers and books explaining methods and applica-
tions for steady and unsteady problems [25]–[31], including
the Navier-Stokes equations [32]. In fact, reduced basis for
the Burgers’ model have already been examined for a fixed
domain [33].

In the following, we present a narrative for Reduced
Basis methods in the finite element context, to frame our
use of it. We understand and admit that there might be other
narratives that suit the field, but the following has proven
helpful to understand the ingredients of the ROM.

Our narrative takes the perspective of: where does the
basis come from? Or in other words, how many mathemat-
ical tools are necessary to obtain it? The construction of the
reduced basis needs to take into account the following facts:
there must be a sampling strategy in the parameter space,
the reduced basis must converge to the span of the solutions,
and it must be computationally efficient.

The most plain version of reduced basis is a collection of
solutions for several parametrizations. However, the modes
of this basis are likely to be almost linearly dependent7, and
no approximation arguments have been used to obtain it.

A step one can take to improve such basis is to use
a greedy procedure [34], [35]. That is, the modes of the
basis are still solutions of the PDE, but they are combined
iteratively, by choosing the next mode which minizimes
the error made by the current basis within a randomly
selected parameter space (hence the name greedy, in terms
of approximation accuracy). This procedure only requires
the finite element discretization, and one can prove it will
converge to the whole span. The difficulty in this procedure
is the efficient estimation of the error of the basis at each
iteration. However, it has become the established method to
approach steady models [36].

An alternate approach is to rely on an external method-
ology to construct the basis from a collection of solution
snapshots. An example is the Singular Value Decompo-
sition (SVD) [37], which allows us to compress the span
of the solution space efficiently with optimal convergence

7. A strong assumption underlying reduced basis methods in this
context is that the solutions of the parametrized PDE change smoothly
when the parametrization varies.
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properties. This is also known as the Proper8 Orthogonal
Decomposition (POD) [38]. It has been widely used in many
contexts to obtain a basis from a collection of solutions
automatically, or to analyze the underlying dynamics of a
flow field [39].

The POD has also wider application than the greedy
method, since we could use experimental data, to obtain a
reduced basis which we then use to solve a numerical model
efficiently. Of particular interest is the application made in
[40], where they used the POD of analytical solutions with
and without a deforming grid to split effects and analyze
convergence rates.

Finally, for unsteady problems, one may have the com-
bination of both; the POD-Greedy method [36], [41]. This
method uses the automatic compression feature provided
by the POD in the time dimension, and the greedy approach
to parameter selection in the parameter space. For our work,
we will use a physics-driven approach for the sampling
strategy in the parameter space, and a nested POD strategy
for the time and parameter spaces [1].

Finally, some words need to be said about the han-
dling of the inhomogeneous boundary conditions that we
will encounter. According to their functional expression,
parametrized essential boundary conditions (Dirichlet) can
sometimes be applied directly into the algebraic system
without losing reduction capacities, as it is the case with
scalar-multiplicative conditions, [42], [43]. However, for ar-
bitrary parametrized essential boundary conditions, setting
them directly into the algebraic operators is not a possibility.

Neumann boundary conditions are naturally encoded in
the weak form, so they do not pose a problem. Therefore,
a suitable approach with essential boundary conditions is
to transfer them to the weak form too, with a lifting tech-
nique [44]. Hence, the target model problem that we reduce
becomes one with homogeneous boundary conditions, for
which the results from most references apply.

1.3.4 System Approximation
We reach now the final block of the literature review. In
this section we review the methodology used to efficiently
approximate the algebraic operators that arise from the
discretization. Using an algebraic approach in the reduction
scheme is of great advantage, since then most results can
generalize to other discretization schemes.

We start by reviewing the approximation methodology
for functions and functionals (vectors). The one for matrices
is its natural extension.

The seeds of the methodology lie in what is called
the Empirical Interpolation Method (EIM) [45]–[47]. It gen-
erates an ad-hoc affine decomposition of a parametrized
function, by splitting the dependency into some real-
valued parameter-dependent functions and a parameter-
independent collateral basis. The values of the functions are
obtained by enforcing that certain entries of the vector are
exactly matched by the ad-hoc decomposition (hence the
name interpolation). The entries at which the interpolation
should be enforced are computed during the basis creation,
and they represent those locations where the approximation
behaves worse. The collection of the entries is referred to

8. (adj.) Fitting or right for a particular situation; suitable.

as the reduced mesh. The collateral basis is generated with
function evaluations following a greedy procedure [48].

As with the RB scenario, the generation of the basis can
be delegated to a POD procedure, leading to the Discrete
Empirical Interpolation Method (DEIM) [49], [50]. Finally, if
the columns of a matrix are stacked vertically to vectorize it,
a matrix-DEIM method can be used (MDEIM) [2], [51]–[53].

These approximation methods are convenient in the
finite element context. The calculation of the reduced mesh
entries is the sum of evaluations of the weak form for a
restricted subset of mesh elements. This operation can be
done efficiently in parallel and is much cheaper than as-
sembling the whole operator [1]. Additionally, the collateral
basis can be projected in the reduced space, so that the
reduced operator is approximated right away.

When nonlinearities in the solution are present, two
options are available to solve the problem. Either the
Newton-Rapshon (NR) method is used, and the MDEIM
technique is used to approximate the NR Jacobian matrix
[53]; or the nonlinear term is discretized in such a way that it
is modeled by a trilinear form, whose additional argument is
an approximation of the effects that using the actual solution
would produce, and the MDEIM is used to approximate
the trilinear form [1]. In our work, we follow the second
approach.

In all of the above, time can be easily included by treating
it as an additional parameter, although the implementation
is not so straightforward.

This concludes our literature review.
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1.4 Research Questions
In this work we answer the following specific questions to
drive our research:

• How can the expense of the online application be
minimised? This minimization will go through us-
ing as little information from the FOM as possible
(including using no information at all).

• How does the type of mesh movement, (e.g. uniform
or non-uniform stretching) affect the reducibility of
the operator?

• How does the nonlinear term affect the hyperre-
duction? Is there more than one way to reduce a
nonlinear term?

• How do the approximation errors of the solution and
operators RB basis interact?

• How should a moving-domain problem be imple-
mented to ensure a general but relatively compact
HROM?

1.5 Document Layout
In Section 2 we derive the full order model (FOM), that is,
the model PDE and its boundary conditions, mesh deforma-
tion and the associated Arbitrary Lagrangian Eulerian (ALE)
formulation in the physical domain, both at the continuous
and discrete levels. In Section 3 we explain the details of
the reduction scheme, along with the system approximation
technique (M)DEIM.

In Section 4 we examine the FOM parametrization and
response, check the discretization convergence rates, and
show GCL results. Finally, in Section 5 we present reduction
results and certify the reduction scheme with an efficient a
posteriori error estimators obtained via mode truncation.
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2 ONE-DIMENSIONAL GAS DYNAMICS

The full order model for the parametrized one-dimensional
piston problem is derived here. We depart from the one-
dimensional, compressible, and isentropic Navier-Stokes
equations to end up with a nonlinear Burgers-like equation.
Therefore, this problem contains all the necessary ingredi-
ents to show how a ROM behaves in the presence of a
nonlinear term within a moving domain.

The model will be derived in the continuous,
semi-discrete and fully discrete contexts for a generic
parametrization and forcing term. We shall use the Galerkin
projection principle to find a weak form, which we later
discretize using the finite element method (FEM).

We define the vector ~µ ∈ P to collect all the parameters
present in the formulation. Parameters will be present in
the PDE, in the boundary conditions, or in the geometrical
definition of the domain.

We consider a problem with a deforming domain in
time, whose movement is known and is thus not part of
the solution:

Ω(t, ~µ) := {x ∈ R : x ∈ [0, L(t, ~µ)]} .

From now on, we drop the dependency on time and the
parameters unless it is strictly necessary.

2.1 Physical Derivation
The piston movement L(t) is a real-valued smooth sinu-
soidal function,

L(t) = L0 [1− δ (1− cos (ωt))] , (1)

where ω is the frequency at which it oscillates, and δ � 1 is
a scale variable to adjust how much it is displaced from its
original position. A sketch is given in Figure 2. The length
L0 is defined to keep physical dimensions sound, but it
will be fixed to L0 = 1 for the remainder of the work. See
Appendix A for the derivation of this movement law.

Anechoic

boundary

Fig. 2. Piston sketch. The flow departs from rest to the left of the piston.
Outflow (inflow) is represented by a negative (positive) velocity value.

We depart from the conservation of mass and momen-
tum, and the isentropic relation between pressure and den-
sity,

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0, (2a)

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
= 0, (2b)

p = kργ . (2c)

Body forces and viscosity have been neglected for the sake
of simplicity9. A difficulty we find in this system for the

9. Viscosity terms will be introduced later on for numerical stability.

piston application is the determination of the boundary
condition for density at the piston location. Ideally, we
only want to solve an equation for the velocity, for which
boundary conditions are easy to set.

To do so, we follow the steps given in [5]:

1) Remove the pressure gradient through the isen-
tropic relation.

2) Relate velocity u to density ρ explicitly.
3) Collect the results into one equation expressed in

terms of the velocity u.

Pressure Gradient
To remove the pressure gradient, we start by taking deriva-
tives in the isentropic relation (2c):

∂p

∂x
= kγργ−1 ∂ρ

∂x
(3)

Then, we recognize that the coefficients kγργ−1 multiplying
the spatial derivative of density are in fact the squared speed
of sound. From thermodynamics, the speed of sound a
squared is the derivative of pressure with respect to density
at constant entropy,

a2 =
∂p

∂ρ

∣∣∣∣
S

= kγργ−1. (4)

Hence, the expression for the pressure gradients becomes

∂p

∂x
= a2 ∂ρ

∂x
, (5)

which can be plugged directly into the momentum equation.
The system becomes

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0, (6a)

∂u

∂t
+ u

∂u

∂x
+
a2

ρ

∂ρ

∂x
= 0, (6b)

a =
√
kγρ

γ−1
2 . (6c)

Compatibility Condition between u and ρ
Our next step is to find a compatibility condition between
the mass and momentum equations. We define u := V(ρ),
which, by application of the chain rule, leads to the follow-
ing equalities between the derivatives of u and ρ :

∂u

∂t
= V′

∂ρ

∂t
, (7a)

∂u

∂x
= V′

∂ρ

∂x
, (7b)

where V′ represents differentiation with respect to density.
Introducing these relations into the mass and the momen-
tum equations to remove u, we obtain

∂ρ

∂t
+
∂ρ

∂x
(ρV′ + V) = 0, (8a)

V′
∂ρ

∂t
+
∂ρ

∂x

(
VV′ +

a2

ρ

)
= 0. (8b)

Since we have an homogeneous system, it can only have a
non-trivial solution if the determinant is zero.∣∣∣∣∣ 1 V + ρV′

V′ VV′ + a2

ρ

∣∣∣∣∣ = 0 (9)
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This determinant implies that

V′
(
V +

a2

ρV′
− V− ρV′

)
= 0. (10)

The above equation has two possible solutions, either

V′ = 0→ V = C, (11)

which is the constant solution, valid but uninteresting, or

a2

ρV′
− ρV′ = 0→ V′ = ±a

ρ
. (12)

The ± signs come up because there are two travelling
waves, each directed to one side of the domain. Since our
piston is located at the right boundary of the domain, we
choose the − sign so that waves propagate left. We thus
imply an anechoic left boundary. We can integrate V′ with
respect to ρ to obtain a relation between the flow velocity u
and the speed of sound a:

V = −
∫ ρ

ρ0

a

ρ
dρ (13)

where ρ0 is some reference density. At this point it is
convenient to use this reference density ρ0 to remove the
constant k from the expression of the speed of sound:

a = a(ρ)→ a0 = a(ρ0), (14a)

a =
√
kγρ

γ−1
2 → a = a0

(
ρ

ρ0

) γ−1
2

. (14b)

Plugging this expression into the integral, we get

u = V =
2a0

γ − 1

(
1− a

a0

)
, (15a)

a = a0 −
γ − 1

2
u. (15b)

2.1.1 Burgers-like Equation

With all the above, we are now ready to obtain one equation
which contains the three departing ones. In the momentum
equation we first substitute the space derivative of density,

∂u

∂x
= V′

∂ρ

∂x
→ ∂ρ

∂x
= − ρ

a

∂u

∂x
, (16a)

∂u

∂t
+ (u− a)

∂u

∂x
= 0. (16b)

Then, we express the speed of sound in terms of velocity
(15b), which leads to a PDE containing a Burgers-like non-
linear term and forced convection driven by the static speed
of sound,

∂u

∂t
+
γ + 1

2
u
∂u

∂x
− a0

∂u

∂x
= 0. (17)

This PDE, together with its boundary conditions and the
boundary’s prescribed movement, represents the mathemat-
ical model of interest for our work.

2.1.2 Complete Determination of Flow Variables
Although we now have one equation which accounts for
mass conservation and the isentropic relation between pres-
sure and density, we still have three variables. Computing
density, pressure and the speed of sound in space and
time still remains useful: verification of mass conservation,
computation of the force exerted by the fluid at the piston,
and other secondary derivations.

Since the speed of sound a is defined as a function of u
in Equation (15b), once the latter is given, we can obtain
density ρ and pressure p as a function of flow velocity u:

ρ = ρ0

(
a

a0

) 2
γ−1

, (18a)

p = p0

(
ρ

ρ0

)γ
, (18b)

(
a

a0

)
= 1− γ − 1

2

(
u

a0

)
, (18c)

(
ρ

ρ0

)
=

(
1− γ − 1

2

(
u

a0

)) 2
γ−1

, (18d)

(
p

p0

)
=

(
1− γ − 1

2

(
u

a0

)) 2γ
(γ−1)

. (18e)

2.1.3 Mass Conservation
Before we present the complete problem and its numerical
solution, we comment on the integral equation for mass
conservation. This equation will not be explicitely used to
integrate the system (as some methods do), but we will
use it as a numerical check to assess the correcteness of the
results (we expect to satisfy it up to a given accuracy).

For a control volume whose boundary moves with the
piston, the integral expression for mass conservation is

d

dt

∫
Ωt

ρdΩ +

∫
∂Ωt

ρ (~u− ~uc) · ~ndS = 0 (19)

At the piston location the flow moves with the piston,
~u = ~uc, so the boundary integral vanishes. There is no flux
through the walls either, so the only contribution left is the
outlet. At this location, the scalar product of the velocity and
normal vectors is negative10, which implies

d

dt

∫ L(t)

0
ρ(x, t)dx− ρ(0, t)u(0, t) = 0. (20)

If we introduce the expression for density in terms of
velocity from Equation (18d), we get

d

dt

∫ L(t)

0

(
1− γ − 1

2

(
u(x, t)

a0

)) 2
γ−1

dx

−u(0, t)

(
1− γ − 1

2

(
u(0, t)

a0

)) 2
γ−1

= 0,

(21)

where the constant ρ0 has cancelled out for being a com-
mon factor to both summands, and the whole equation an
equality with zero.

10. Although we expect the flow to leave the domain during com-
pression, which means a negative magnitude, this products needs to be
done taking the variables positive in the direction of their axes.
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To ease our task at verifying this equation, we rather
calculate the integral term for each time step

I(t) =

∫ L(t)

0

(
1− γ − 1

2

(
u(x, t)

a0

)) 2
γ−1

dx, (22)

and only then compute time derivatives, which can be
done with a second order finite difference scheme. Then
we can compute the mass defect MD(t) between the time
derivative of volume variation and mass outflow at the open
boundary,

MD(t) = I ′(t)− u(0, t)

(
1− γ − 1

2

(
u(0, t)

a0

)) 2
γ−1

. (23)

We shall verify to which degree of accuracy this relation is
honoured by our numerical scheme.

2.2 Continuous Formulation

We continue with the definition of the problem in the con-
tinuous setting: a differential model given by a PDE and its
boundary condition, referred to as strong formulation; and
its weak formulation derived with the Galerkin principle.

We introduce the ALE formulation, to account for the
movement of the mesh. Then, we will introduce a scaling
to work with non-dimensional variables. This will complete
the strong formulation.

Then, once we have obtained a weak formulation via the
Galerkin projection principle, we will introduce a Dirichlet
lifting of the boundary conditions. This is not a mandatory
step to solve the FOM, since the boundary conditions can be
directly set into the right-hand side of the algebraic vectors.
However, it is a paramount step for the construction of
our reduced space, to ensure the basis serves all boundary
parametrizations.

2.2.1 Strong Formulation

At this point of the derivation, we allow ourselves to intro-
duce an artificial viscosity term which was not present in
the physical derivation of the model. The viscosity value ε
will be small enough so that it does not remove significant
amount of energy from the system, while keeping it suffi-
ciently stable. More on this in Section 4.3.

Thus, the differential model in the physical space is given
by the following PDE, boundary and initial conditions,

∂u

∂t

∣∣∣∣
x

+
∂u

∂x

(
γ + 1

2
u− a0

)
− ε∂

2u

∂x2
= 0, (24a)

u(L, t) = L′(t), (24b)
lim

x→−∞
u(x, t) = 0, (24c)

u(x, 0) = 0. (24d)

The notation for the time derivative,

∂u

∂t

∣∣∣∣
x

,

indicates that the derivative takes place in the physical
domain. This is relevant for the ALE formulation, which
we explain in the following section.

2.2.2 Boundary conditions
At the right boundary (moving piston) a Dirichlet condition
sets the flow velocity equal to the one of the moving wall,

L′(t) = −δL0ω sin(ωt). (25)

At the left boundary, we have to find a procedure to model
the condition that our piston tube is infinite, and hence that
the far region of the flow is not aware of the piston’s motion.
This is an artificial boundary condition, which we choose to
deal with by setting the normal derivate in space to zero

∂u

∂x
(0, t) = 0. (26)

This simplified model reflects that, due to the absence of
incoming waves from the infinite tube, the solution does not
change in space once it is far away from the piston motion.

2.2.3 ALE Formulation
Despite the fact that we will be solving the problem in the
physical moving domain, we still need two basic ingredients
stemming at the root of the ALE method:

• a smooth mapping between domains;
• a mesh velocity vector.

We introduce the ALE mapping A : Ω0 → Ωt that con-
nects a point in the fixed reference domain X with a point
in the physical domain x,

x = A(X , t), (27a)

X = A−1(x, t). (27b)

We assume this map to be regular enough for all the op-
erations that we carry with it. Then, we define the mesh
velocity wm(x, t) function as the time derivative of the spa-
tial coordinate, which will coincide with the time derivative
of the ALE map:

wm(x, t) =
∂x

∂t
=
∂A
∂t

(x, t) =
∂A
∂t

(A(X , t), t). (28)

2.2.4 ALE: Uniform Stretching
For the moving piston, a simple mapping can be derived,
rescaling the spatial variable with the piston length in time,

X =
x

L(t)
→ A(X , t) = XL(t), X ∈ [0, 1]. (29)

Then, we have an analytical expression for the mesh velocity
too,

wm(x, t) =
∂A
∂t

= XL′(t) = L′(t)

(
x

L(t)

)
. (30)

The mesh velocity results in a linear interpolation of the
moving boundary velocity.

Additionally, we introduce the Jacobian of the ALE map-
ping. The Jacobian is defined as the determinant of the ALE
mapping gradient,

JA =

∣∣∣∣ ∂x∂X
∣∣∣∣. (31)

The Jacobian is used when we want to map an integral in
the physical domain into an integral in the reference, fixed
domain, ∫

Ωt

φdΩ =

∫
Ω0

φJAdΩ. (32)
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For our piston-like one-dimensional geometry, we have a
very simple transformation,

JA = L(t), (33)

which spreads out the deformation of the domain uniformly
across all the mesh elements. Since the Jacobian does not
depend on space, we could pull it out of the integral,∫

Ωt

φdΩ =

∫
Ω0

φL(t)dΩ = L(t)

∫
Ω0

φdΩ. (34)

That is, the Jacobian transformation for a piston-like motion
does not introduce any nonlinearity in the space dimen-
sion. We will come back to this fact further down in the
document, when we comment upon the reduction of the
algebraic operators.

At last, we can carry out a correctness check in our
calculations by attempting to verify a well known relation
between the mesh velocity vector and the Jacobian [54],

∂JA
∂t

= JA∇ · wm, (35a)

∂JA
∂t

= L′(t), (35b)

JA∇ · wm = L(t)
L′(t)

L(t)
= L′(t), (35c)

which proves the identity. Equation (35a) could be part of
our problem if we did not have access to an explicit expres-
sion for the Jacobian, and we wanted to solve our problem in
a fixed reference domain. If the reference domain coincided
with the initial configuration of the transient domain, this
would be an ODE whose initial condition is JA(0) = 1.

2.2.5 ALE: Non-Uniform Mesh Displacement

We also introduce a non-uniform distortion to the nodes, to
mimick the effects of mesh adapting techniques. As a proxy,
we take a generic density function with a Gaussian bell,

F(X ) = yc · exp

(
−
(X − xc

σc

)2
)
, (36)

where three geometrical parameters are defined:

• xc: location;
• σc: span,
• yc: magnitude.

This will concentrate nodes on a specific region of the
domain. Then, for X ∈ Ω0, where Ω0 = [0, L0] is the fixed
reference domain, we have the following transformation in
terms of a mesh displacement,

x = X + d(X , t), (37a)

d(X , t) = X · [1 + F(X )]
(
L̂(t)− 1

)
, (37b)

L̂(t) = 1− δ · (1− cos(ωt)). (37c)

This displacement contains the piston oscillation and the
non-uniform concentration of the nodes.

Effects on the Mesh Size
We demonstrate the effects of the non-uniform displacement
in the mesh step size. By evaluating Equation (37a) at two
consecutive nodes and computing their difference,

∆xi = xi − xi−1, (38a)

∆xi = Xi −Xi−1 + (d(Xi, t)− d(Xi−1, t)), (38b)

∆xi = ∆Xi + (d(Xi, t)− d(Xi−1, t)), (38c)

∆xi = ∆Xi · L̂(t)︸ ︷︷ ︸
Uniform stretching

+ [Xi · F(Xi)−Xi−1 · F(Xi−1)] ·
(
L̂(t)− 1

)
; (38d)

we arrive to an expression for the mesh size ∆xi as a
function of the reference mesh size and nodes position. If
the function F was set to zero, we recover the uniform
stretching derived in Section 2.2.4.

2.2.6 Time Derivative in the Reference Domain
Since the equations are to be solved in the physical domain,
we need to adjust the time derivative in the physical domain(
∂u
∂t

∣∣
x

)
, so that it takes into account the movement of the

mesh nodes. By application of the chain rule we get

∂u

∂t

∣∣∣∣
X

=
∂u

∂t

∣∣∣∣
x

+ wm
∂u

∂x
, (39)

from where we get the necessary modification to the strong
form (24a) of the PDE,

∂u

∂t

∣∣∣∣
X

+

(
γ + 1

2

)
u
∂u

∂x
− (a0 + wm)

∂u

∂x
− ε∂

2u

∂x2
= 0. (40)

An additional convective term shows up, to take into ac-
count the movement of the nodes. If we neglect this term,
mass is no longer conserved.

2.2.7 Dimensionless Equations
Finally, we carry out a non-dimensionalization of the veloc-
ity and the spatial coordinate,

x̃ =
x

L0
, ũ =

u

a0
, (41a)

with respect to the static speed of sound a0 and the piston’s
initial length L0. This leads to the PDE and boundary
condition
∂ũ

∂t
+

(
γ + 1

2

)(
a0

L0

)
ũ
∂ũ

∂x̃
−
(
ε

L2
0

)
∂2ũ

∂x̃2

−
(
a0

L0

)(
1 +

wm
a0

)
∂ũ

∂x̃
= 0, (42a)

ũ(L(t), t) =
L′(t)

a0
= bL(t). (42b)

For the sake of clear notation, we condense the coefficients

b0 =
a0

L0

(
γ + 1

2

)
, (43a)

bL(t) = −δL0ω

a0
sin(ωt), (43b)

c(x, t) =

(
a0

L0

)(
1− wm

a0

)
, (43c)
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and drop the ũ notation to avoid an overloaded notation.
The coefficient

up =

(
δL0ω

a0

)
(44)

multiplying the boundary condition is the ratio between
the piston motion and the static speed of sound11. It is the
maximum piston mach number, in terms of the static speed
of sound. This coefficient will drive the response of the fluid
to the motion of the piston. The larger it is, the stronger the
nonlinear response will become (steepening shock wave).

With all of this done, we obtain a familiar PDE structure
with diffusion, linear and nonlinear convection terms:

∂u

∂t

∣∣∣∣
X

+ b0u
∂u

∂x
− c(x, t)∂u

∂x
− ε∂

2u

∂x2
= 0. (45)

2.2.8 Dimensionless Mass Conservation

If the former rescaling is applied, Equation (23) for mass
conservation needs to be updated, to take into account the
fact that the velocity variable is now scaled with the speed
of sound.

I(t) =

∫ L(t)
L0

0

(
1− γ − 1

2
u(x, t)

) 2
γ−1

dx, (46a)

MD(t)

ρ0a0
=

1

a0
I ′(t)− u(0, t)

(
1− γ − 1

2
u(0, t)

) 2
γ−1

.

(46b)

2.2.9 Weak Formulation

Since we will be working with the Galerkin procedure to
solve PDEs, we define the L2(Ω) inner product to transform
the strong formulation into a weak, variational one,

〈u, v〉 =

∫ L

0
uv dΩ. (47)

This inner product induces the so called eyeball norm, if two
functions look alike ‖f − g‖ will return a small value,

‖f − g‖ =

√∫ L

0
(f − g)2 dΩ. (48)

With this inner product, we project the residual of the strong
formulation onto a given fuction space u, v ∈ V , where V is
a suitable Hilbert space,〈

∂u

∂t
, v

〉
+ 〈b0u∇u, v〉− 〈c∇u, v〉

+ 〈ε∇u,∇v〉+ ε
∂u

∂x

∣∣∣∣
x=0

v = 0, (49a)

u(x, 0) = 0, (49b)
∂u

∂x
(0, t) = 0, (49c)

u(L, t) = bL(t); (49d)

bL(t) = −δL0ω

a0
sinωt. (49e)

11. A proxy for the average speed at which information propagates.

2.2.10 Dirichlet Lifting

For reasons related to the fact that we have a parametrized
boundary condition, which will become apparent when the
reduction scheme is presented, it is preferable to work
with a homogeneous problem in the Dirichlet boundary
conditions.

To obtain so, we introduce a lifting g(x, t) of the Dirich-
let boundary conditions. We express the solution of our
problem like the linear combination of the solution of the
homogeneous problem and the lifting function:

u(x, t) = û(x, t) + g(x, t). (50)

The lifting of the boundary conditions has to meet two
restrictions:

• reach the prescribed values at the boundary nodes;
• be sufficiently smooth within the domain.

In a one-dimensional setting, the definition of a lifting
function g(x, t) is straigtforward, and can be done using
a linear interpolation of the boundary values,

g(x, t) = bL(t)
( x
L

)
. (51)

In higher dimensional settings a similar procedure is used.
However, due to the arbitrary shape the domain can take,
the construction of the lifting function can be more labori-
ous.

Introducing the lifting breakdown (50) into the weak
formulation (49a), we find additional forcing terms and PDE
terms, due to the cross-product between the function and its
derivative,

u
∂u

∂x
= (û+ g)

(
∂û

∂x
+
∂g

∂x

)
. (52)

Taking this into account, we find the following lifted weak
formulation, 〈

∂û

∂t
, v

〉
−〈c∇û, v〉+ 〈ε∇û,∇v〉

+ 〈b0g∇û, v〉+ 〈b0û∇g, v〉
+ 〈b0û∇û, v〉

= −
〈
∂g

∂t
, v

〉
+ 〈c∇g, v〉− 〈ε∇g,∇v〉

− 〈b0g∇g, v〉, (53a)

where we have reorganized the terms to show in order:
linear dependency with the solution, terms due to cross-
product effects, and finally the actual nonlinearity.

Thanks to the lifting, we find the homogenization of the
left boundary condition for all time t,

û(L, t) = 0, (54a)

and recall that the initial condition should be modified
accordingly to the homogeneous problem definition,

u(x, 0) = û(x, 0) + g(x, 0), (55a)
û0(x) := û(x, 0) = u(x, 0)− g(x, 0). (55b)

At this point, we have defined the continuous problem for
the one-dimensional piston in a moving domain.
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2.3 Semi-Discrete Formulation: Time Discretization

The continuous solution changes in two dimensions: space
and time. Eventually, we need to discretize them both, but
we can do so separately. We choose to first discretize in time.

For this task, we need to build an approximation for
the time derivative. A polynomial interpolation pn(x, t) of
the function û(x, tn+1) is built, using the solution at pre-
vious time steps,

{
û(x, tn), û(x, tn−1), . . .

}
. Then, the inter-

polant’s derivative at time tn+1 is used as an approximation
of the actual derivative,

∂û

∂t

(
x, tn+1

)
' ∂pn

∂t

(
x, tn+1

)
. (56)

The accuracy of the scheme (and also its complexity) is
determined by the number of previous time steps used in
the interpolation.

In the coming sections, we define two time-marching
schemes of order one and two, BDF-112, and BDF-2, respec-
tively. Throughout our simulations we will use BDF-2, but
since it requires two points from the past, it cannot be used
at the beginning of the simulation. Thus, the first step is
done with BDF-1, to obtain û(x, t1).

From now on we use the abbreviated notation

ûn := û(x, tn) (57)

to define a function in space evaluated at time tn. Ad-
ditionally, to simplify our derivations, we will use a toy
weak form, with only two spatial differential operators and
one forcing term, as placeholders for the actual linear and
nonlinear terms of a complete model,〈

∂û

∂t
, v

〉
+ 〈u, v〉+ 〈l(u), v〉 = 〈f, v〉 . (58)

The functional l(u) stands for a nonlinear transformation on
u and its derivatives in space.

2.3.1 BDF-1
To derive the both schemes, we start by evaluating our weak
formulation at time tn+1, where the solution is unknown13,〈

∂û

∂t
, v

〉n+1

+ 〈û, v〉n+1
+ 〈l(û), v〉n+1

= 〈f, v〉n+1 (59)

Then, we construct our interpolation polynomial using only
one previous time step from the past,

p1(t) := ûn+1

(
t− tn

∆t

)
− ûn

(
t− tn+1

∆t

)
; (60a)

∂p1

∂t
=
ûn+1 − ûn

∆t
. (60b)

With this approximation of the time derivative, we get the
following semi-discrete weak formulation,

ûn+1 + ∆t 〈û, v〉n+1
+ ∆t 〈l(û), v〉n+1

=

〈ûn, v〉n+1
+ ∆t 〈f, v〉n+1 (61)

Note that the problem is still continuous in space, but no
longer in time.

12. Also known as Backwards Euler.
13. For the initial time t0 the solution is known, from the initial

condition u(x, 0).

2.3.2 BDF-2

For the BDF-2 scheme, our interpolation takes two previous
time steps from the past,

p2(t) := ûn+1

(
t− tn

∆t

)(
t− tn−1

2∆t

)
− ûn

(
t− tn+1

∆t

)(
t− tn−1

∆t

)
+ ûn−1

(
t− tn+1

2∆t

)(
t− tn

∆t

)
; (62a)

∂p2

∂t
=

3ûn+1 − 4ûn + ûn−1

2∆t

=
1

∆t

(
3

2
ûn+1 − 2ûn +

1

2
ûn−1

)
. (62b)

With this alternative approximation of the time derivate, we
get a very similar semi-discrete weak formulation as the one
from Equation (61),

3

2

〈
ûn+1, v

〉n+1
+ ∆t 〈û, v〉n+1

+ ∆t 〈l(û), v〉n+1
=

2 〈ûn, v〉n+1 − 1

2

〈
ûn−1, v

〉n+1
+ ∆t 〈f, v〉n+1

. (63)

In fact, both formulations can be synthezised into one,

mBDF
〈
ûn+1, v

〉n+1
+ ∆t 〈û, v〉n+1

+ ∆t 〈l(û), v〉n+1
=

〈ûBDF, v〉n+1
+ ∆t 〈f, v〉n+1

,
(64)

provided that the forcing term due to the time integration
scheme is generalized,

ûBDF =

{
ûn, BDF-1,
2ûn − 1

2 û
n−1, BDF-2;

(65)

and the parameter mBDF is modified accordingly for each
time integration scheme,

mBDF =

{
1, BDF-1,
3
2 , BDF-2.

(66)

The generalized semi-discrete weak formulation from
Equation (64) is much more comfortable from an
implementation-wise perspective, since it has isolated the
effects of the discretization scheme.

2.3.3 Nonlinear Convective Term Linearization

Now, Equation (64) is a nonlinear one, due to the presence
of the l(û) functional, which represents the nonlinear con-
vection term from our original model.

In the presence of nonlinearities, one can opt to evaluate
certain terms with known information from the past. This
trick can be used in problems such as Burgers’s equation,
(or the Navier-Stokes equations) where going fully implicit
leads to a nonlinear algebraic system. If the convective
velocity term is extrapolated, one recovers a linear system,
and yet reaches a satisfactory numerical solution [1].
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Thus, we opt for the approximation of its effect by
considering a second order extrapolation in time of the
convection velocity,

〈b0û∇û, v〉n+1 '
〈
b0û
∗∇ûn+1, v

〉
, (67a)

û∗ = 2ûn − ûn−1 +O(∆t2). (67b)

The extrapolation can be obtained by expanding ûn+1 and
ûn−1 with a Taylor polynomial centered around ûn,

ûn+1 = ûn +
∂ûn

∂t
∆t+

1

2

∂2ûn

∂t2
∆t2 +O

(
∆t3

)
, (68a)

ûn−1 = ûn − ∂ûn

∂t
∆t+

1

2

∂2ûn

∂t2
∆t2 +O

(
∆t3

)
. (68b)

Combining both expansions, ∆t-order terms cancel out and
one gets

ûn+1 = 2ûn − ûn−1 +
∂2ûn

∂t2
∆t2 +O

(
∆t3

)
. (69)

If the Taylor expansion terms are truncated, one gets the
expression for the velocity extrapolation in time,

û∗ = 2ûn − ûn−1 +O(∆t2). (70)

With this strategy we obtain a linear system. It is paramount
to use a second order approximation for the convective ve-
locity, otherwise the accuracy benefits of the BDF-2 scheme
are lost; falling back to order one convergence rates, despite
the second order approximation of the time derivative.

At the continuous level, this term is nonlinear, but at the
discrete level, it is trilinear in all its arguments.

2.3.4 Semi-Discrete Weak Formulation
All in all, the complete semi-discretized weak formulation
for the original problem can be found by replacing the place-
holders for the actual spatial operators from Equation (53)
into Equation (64); the generalized forcing term ûBDF due
to time-discretization, Equation (65); and the second-order
approximation û∗ of the convection velocity in the nonlinear
operator, Equation (67b),

mBDF
〈
ûn+1, v

〉
−∆t

〈
c∇ûn+1, v

〉
+ ∆t

〈
ε∇ûn+1,∇v

〉
+∆t

(〈
b0û

n+1∇gn+1, v
〉

+
〈
b0g

n+1∇ûn+1, v
〉)

+
〈
b0û
∗∇ûn+1, v

〉
= 〈ûBDF, v〉 −∆t

〈
∂gn+1

∂t
, v

〉
−∆t

〈
b0g

n+1∇gn+1, v
〉
−∆t

〈
ε∇gn+1,∇v

〉
+∆t

〈
cn+1∇gn+1, v

〉
.

(71a)

2.4 Discrete Problem: Space Discretization
To complete our discretization, we define a finite functional
space Vh ⊂ V , where we can represent the solution as
the linear combination of a set of finite elements (FE) basis
functions ϕi(x) with local support,

ûn(x) ' ûnh(x) =
Nh∑
j

ûnhjϕj(x), (72a)

ûnh =
[
ûnhj

]
. (72b)

We define the FE vector ûnh to be the collection of co-
efficients ûnhj which multiply the basis functions. In the
FE context with Lagrangian functions, these coincide with
the values of the function at each node.

Applying the Galerkin principle to solve PDEs, we en-
force the orthogonality of the residual to the functional
space Vh. Because the domain changes with time, both the
matrices and the vectors change for each time step,[

Mn+1
h

]
ij

= mBDF 〈ϕj , ϕi〉n+1
, (73a)[

An+1
h

]
ij

= 〈ε∇ϕj ,∇ϕi〉n+1
, (73b)[

Cn+1
h

]
ij

= −〈c∇ϕj , ϕi〉n+1
, (73c)[

Nn+1
h

]
ij

= b0 〈u∗,n∇ϕj , ϕi〉n+1
, (73d)[

N̂n+1
h

]
ij

= b0
(
〈g∇ϕj , ϕi〉n+1

+ 〈ϕj∇g, ϕi〉n+1
)
, (73e)[

Fn+1
g,h

]
i

= −
〈
∂g

∂t
+ b0g∇g − c∇g, ϕi

〉n+1

− 〈ε∇g,∇ϕi〉n+1
, (73f)

[
Fnûh

]
i

=

〈û
n
h, ϕi〉

n+1
, BDF-1,

2 〈ûnh, ϕi〉
n+1 − 1

2

〈
ûn−1
h , ϕi

〉n+1
, BDF-2.

(73g)

This leads to the following algebraic system:

mBDFM
n+1
h ûn+1

h + ∆tCn+1
h ûn+1

h + ∆tAn+1
h ûn+1

h

+∆tN̂n+1
h ûn+1

h + ∆t
[
Nn+1
h (û∗h)

]
ûn+1
h

= Fnûh + ∆tFn+1
g,h , (74a)

û0
h = ûh,0. (74b)

The spatial boundary conditions are encoded within the
matrices and the vectors. The initial condition is obtain
via interpolation or projection. The assembly of the forcing
term in Equation (73f) has to be done with the FE vector
representation of the functional fg (which can be obtained
by projection or interpolation).

Regarding the forcing due to previous time steps,
(
Fnûh

)
,

although for the FOM model we could compute the inner
products at each time step, for the Reduced Order Model
we will exploit an algebraic expression of these expressions.
It can be expressed as the product between the mass matrix
and the FE representation of the previous solution(s),

Fnûh =

Mn+1
h ûnh, BDF-1,

2Mn+1
h ûnh − 1

2M
n+1
h ûn−1

h , BDF-2.
(75)

We point out how the time step ∆t has been intentionally
left out of the discrete operators definition. There are two
reasons to back this decision:

• Conceptually, each discrete operator encodes a spa-
tial model, in terms of a differential operator or
the presence of a forcing term. The time step ∆t
shows up because we first discretized the continuous
problem in time. Had we gone the other way around
(discretizing first in space), we would have found a
system of ODEs with the previously defined spatial
operators.
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• When we leverage the system approximation reduc-
tion technique, we will not want to have inside the
operator the presence of the time step. The reduced
model could use a different time step, or the snap-
shots for different parameters could be gathered for
different time step values.

If we collect terms and factor out the unknowns, we get
a compact linear system to be solved at each time step to
advance the solution,

Kn+1
h ûn+1

h = bn+1
h , (76a)

û0
h = ûh,0; (76b)

Kn+1
h = Mn+1

h + ∆t
[
An+1
h + Cn+1

h

+N̂n+1
h + Nn+1

h (û∗h)
]
, (76c)

bn+1
h = Fnûh + ∆tFn+1

g,h . (76d)

2.4.1 Summary
The problem has been explained within three levels of
abstraction: continuous with strong and weak formulations,
semi-discrete in time with the approximation of the time
derivative, and fully discretized with the additional FEM
representation of the solution. To discretize the nonlinear
term, the convective velocity has been extrapolated with a
second order scheme.

A lifting of the Dirichlet boundary conditions has been
introduced, which leads to an additional forcing term and
the homogenization of the boundary conditions. Hence, we
will focus in the solution of an homogeneous boundary
value problem. This fact will prove useful when we get into
the implementation details of the reduction procedure.
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3 (HYPER) REDUCED ORDER MODEL

For any unseen parameter value, our aim is to be able to
assemble and solve a smaller algebraic problem, and yet to
obtain a solution close enough to that of the FOM. In order
to do so, first we need to obtain certain algebraic structures
which capture the essence of the problem at hand.

We do so by sampling the original problem at certain
parameter values and processing snaphsots of the solution
and the operators, obtained from the solution of the FOM
problem. This is called the offline phase. Later on, we exploit
these static structures to build reduced operators which
capture the dynamics of the problem sufficiently well, solve
a smaller algebraic system and then recover the solution in
the original mesh variables, in order to postprocess it. This
is called the online phase.

We will use the Reduced Basis Method (RB) to construct
an ad-hoc problem-based basis to represent our ROM; the
Discrete Empirical Interpolation Method (DEIM) and its
matrix version (MDEIM) to build suitable approximations
of the algebraic operators involved.

The continuous reduced problem formulation is skipped
since it will not be used. Therefore, we jump directly into the
discrete problem. We recall that we are focused on reducing
the problem for the homogeneous component û(x) of our
solution, that is, for the weak formulation given by the
system of equations (53).

3.1 A Naive Approach

We have included in the title the word naive because we will
define the reduction problem in a very blunt way, where
many ineffiencies will show up. We do so to motivate the
operator reduction procedures we will include later on.

In the reduced context, we use a finite space VN ⊂ Vh,
where we can represent the solution as the linear combi-
nation of a set of orthonormal14 problem-based basis func-
tions ψi(x),

ûN (x) =
N∑
j

ûNjψj(x). (77)

Their goal is to capture the problem dynamics, so these RB
solution modes ψi(x) have global support. Since we want
to reduce the number of modes we need to represent our
solution, we usually expect or desire to have N � Nh, .

To maintain focus and in favor of generality, let us
assume at this point that the global basis functions are given,
and that they are zero at the boundary. We will give details
on how to obtain them later on.

3.1.1 Reduced Space Projection

Since we can represent any function in terms of our FE
basis functions ϕi(x), we have a linear mapping between
the problem-based functions ψj(x) and the nodal basis
functions. This allows us to establish the following relation
between the problem solution in the reduced and original
spaces,

ûh = VûN . (78)

14. If they were not, we can always make them so via Gram-Schmidt.

The entries of the V matrix represent the coefficients of the
global basis representation in the FE basis,

ψi(x) =
∑
j

[V]ji ϕj(x). (79)

3.1.2 Discrete Reduced Problem Assembly
In theory, to assemble the reduced problem operators, one
could actually compute the inner products defined in Equa-
tions (73) with these new basis functions ψi(x). In practice,
it is more convenient to project the algebraic FOM operators
with matrix-matrix and matrix-vector products into the
reduced space,

Xn+1
N = VTXn+1

h V, (80a)

Fn+1
N = VTFn+1

h , (80b)

where Xh and Fh stand for each of the FOM operators (ma-
trices and vectors respectively). The assembly of matrices
based on a FE basis can be easily done in parallel due to their
local support, whereas the integration of functions with
global support is not necessarily computationally efficient.

By doing so, we find the following pure ROM problem
for the time evolution problem,

mBDFM
n+1
N ûn+1

N + ∆tCn+1
N ûn+1

N + ∆tAn+1
N ûn+1

N

+∆tN̂n+1
N ûn+1

N + ∆t
[
Nn+1
N (û∗N )

]
ûn+1
N

= FnûN + ∆tFn+1
g,N , (81a)

û0
N = ûN,0. (81b)

If we collect terms and factor out the unknowns we get a
linear system, this time in the reduced space, to be solved
for each time step to advance the solution,

Kn+1
N ûn+1

N = bn+1
N , (82a)

û0
N = ûN,0; (82b)

Kn+1
N = mBDFM

n+1
N + ∆t

[
An+1
N + Cn+1

N

+N̂n+1
N + Nn+1

N (û∗N )
]
, (82c)

bn+1
N = FnûN + ∆tFn+1

g,N . (82d)

All of the previous has the same algebraic pattern as the
FOM problem. The only difference is the size of the opera-
tors, much smaller due to the small size of N .

3.1.3 ROM Time Discretization Forcing Term
The forcing term Fnûh due to the time discretization has
been intentionally left out in the previous section. We could
naively project it too,

FNûN = VTFnûh , (83)

but this would force us to reconstruct the FE vector of the
ROM at each time-step, making the integration cumber-
some. To get around this issue, we can exploit the algebraic
representation of Fnûh , given in Equation (75) in terms of the
mass matrix. The forcing term due to the time discretization
takes the following form in the ROM:

FnûN =

{
Mn+1

N ûnN , BDF-1,
2Mn+1

N ûnN − 1
2M

n+1
N ûn−1

N , BDF-2.
(84)
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Again, these mimic the algebraic pattern obtained in the
FOM.

3.1.4 Boundary and Initial Conditions

The computation of the initial condition ûN,0 is to be done
in two steps. First, the initial condition ûh,0 in the FOM
space needs to be computed as a FE vector via interpolation
or projection. Then, this FE representation ûh,0 needs to be
projected unto the reduced space. Since we are dealing with
an orthonormal basis, we can use the matrix V to project the
FE vector departing from the FOM-ROM relation given in
Equation (78),

VT ûh,0 = VTV︸ ︷︷ ︸
I

ûN,0 → ûN,0 = VT ûh,0. (85)

Regarding the spatial boundary conditions, at this point
of the naive reduction scheme, two facts come into play,
which we first present and then put together:

1) The weak form has homogeneous boundary condi-
tions.

2) The ad-hoc RB solution modes ψi(x) are zero at the
boundaries,

ψi(x) = 0 ∀x ∈ ∂Ω.

These two facts imply that the projection of the operators,
Equation (80), does not break the original constraint of ho-
mogeneous boundary conditions; and that the linear expan-
sion of the solution ûN (x) in the span of VN , Equation (77),
is always true.

Once the reduced homogeneous solution ûN (x) is ob-
tained, it can be brought back to the original space Vh via
Equation (78), and then added to the FE representation of
the Dirichlet lifting, to obtain the solution uh(t, µ) in the
physical domain,

u(x, t;µ) ' uh(t, µ) = VûN (t, µ) + gh(t, µ). (86)

3.1.5 Naive Reduction Scheme: Final Remarks

At this point, the naive reduction scheme for the RB-ROM
has been defined and explained. However, some aspects of
it remain unattended.

The construction of the problem-based basis functions
ψi(x): there are many methods to build them, and which
combination of them we choose defines which reduction
method we are applying, along with their advantages and
requirements.

The offline-online decomposition: that is, to uncouple the
usage of FOM operators in as much as possible from the
integration of the ROM. Ideally, no FOM structures should
be assembled during the online phase. In this naive scheme,
we are clearly not meeting such requirement, since we need
to assemble all the FOM operators and then project them for
each time step.

Hence, some additional sections need to be brought up,
in order to complete our definition of the reduction scheme.
We now treat the construction of the basis functions, Sec-
tion 3.2; and the approximation of the algebraic operators,
Section 3.3.

3.2 Reduced Basis Construction

Hereby we layout the details of the basis construction, that
is, the definition of the ψi(x) functions. There are many
techniques to build such basis. We opt for an automatic and
out-of-the-box technique: the nested POD approach [1].

On paper, the most simple basis anyone could come
up with is a collection of solution snaphsots for different
parameter values and time steps,

Ψû := [ψi]

= [ûh(t0;µ0), ûh(t1;µ0), . . . , ûh(tj ;µi), . . .],

= [Ψû(µ0),Ψû(µ1), . . . ,Ψû(µNµ)] (87)

Yet, this basis Ψû is unpractical from a computational point
of view: we could not possibly store all the basis vectors
or compute efficiently all the required algebraic operations
with them. Additionally, it would probably lead to ill-
posed linear systems, since the vectors are almost linearly
dependent.

However, since all these vectors arise from the same PDE
(although for different parametrizations of it), and for each
time step the solution is close to the previous one, in a way,
we could expect there to be a lot of repeated information
inside each Ψû(µi), and consequently, inside Ψû. We can
exploit this fact by using a compression algorithm, such as
the Proper Orthogonal Decomposition (POD), to find a set
of vectors which sufficiently capture the span of Ψû, and yet
do so with less basis vectors.

3.2.1 POD Space Reduction

We define the POD : X → Y function between two normed
spaces, such that Y ⊆ X , which takes as inputs a collection
of NS vectors yk ∈ X , a prescribed tolerance error εPOD,

[ψi]
NPOD
i=1 = POD

(
[yk]NSk=1, εPOD

)
. (88)

and returns a basis of modes ψi ∈ Y to approximate the
span of yk. This function returns a collection of orthonormal
NPOD vectors, whose span is a subset of the input vector
span. The modes ψi are obtained from an optimality prob-
lem in the L2 norm,

(vi, ψi) s.t. min
∑
k

∥∥∥∥∥yk(x)−
∑
i

viψi

∥∥∥∥∥
2

≤ εPOD, (89)

that is, the representation of any vector in the original space
can be reconstructed by the POD basis, and the error in the
L2 norm should be less or equal to εPOD.

There is a relation between the prescribed tolerance error
εPOD and the outcoming number of modes NPOD,

NPOD = NPOD(εPOD). (90)

This function usually shows exponential decay, or a sharp
drop beyond a given number of modes. If a problem can
be reduced, beyond a given number of modes, including
more in the approximation will not improve significantly
the approximation error.
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Fig. 3. Nested POD treewalk. For each parameter µ a simulation is run,
and snaphsots are collected and compressed in time (red dots). This
provides a collateral basis for each value of the parameter. These bases
are finally compressed into one, which summarizes the changes in time
and parameters.

3.2.2 Nested POD Basis Construction

We now describe the nested POD algorithm, sketched in
Figure 3. First, for a fixed parameter value, we build a POD
basis from the snapshots at different time steps,

Ψµ0 = PODε

([
ûh(t0;µ0), . . . , ûh(tT ;µ0)

])
,

Ψµ1 = PODε

([
ûh(t0;µ1), . . . , ûh(tT ;µ1)

])
,

. . . ,

ΨµNµ
= PODε

([
ûh(t0;µNµ), . . . , ûh(tT ;µNµ)

])
.

Then, all the µ-fixed POD basis (which sum up the in-
formation contained in the time evolution direction), are
compressed again using a POD,

V := Ψ = PODε

([
Ψµ0 ,Ψµ1 , . . . ,ΨµNµ

])
.

In the end, we obtain a basis Ψ = [ψi] = V, which contains
information for parameter variations and time evolution.
This leads to an efficient basis, in terms of storage and
numerical stability Different error tolerances could be pre-
scribed at the time and parameter compression stages for
demanding15 problems.

We call this an automatic and out-of-the-box procedure
because it does not require further developments beyond
the storage of the snapshots and the implementation of
the POD algorithm. It only requires the construction of
a collection of parameter values to solve for. This can be
done with random sampling techniques, or if some physical
knowledge is available, a custom selection of parameter
subsets for which the solution will present strong variations
(leading to the identification of richer RB solution modes).

Since we are using an SVD-based POD, we need to set
a threshold for the acceptable singular values/modes. We
set this threshold at 10−7, since after visual inspection of
the resulting modes revealed numerical noise beyond this
figure.

15. Ideally, the whole POD basis is stored and then partially loaded
during the online stage, according to the desired ROM accuracy. How-
ever, the offline stage might still be a memory-consuming one, which
could require triming at runtime the POD basis before storing it.

3.3 (M)DEIM: System Approximation

During the offline stage (where the FOM problem is solved),
we have to assemble all the discrete operators for each
time step; during the online stage we additionally have to
project them onto the reduced space as well, as shown in
Equations (80). This projection step can mean a ROM is
still costly, if it only relies on RB solution modes to reduce
the problem. This will be our main motivation to include a
system approximation technique, with the goal of speeding
up the construction of the operators.

An essential ingredient for our system approximation is
the concept of parameter and time separable problems (or the
existence of an affine decomposition). This takes place when
the spatial operators (bilinear or linear forms) present the
following functional separable form:

Ah(t, µ) =

Qa∑
q

Θa
q (t, µ)Ah,q, (91)

where the coefficient functions are real-valued,
Θa
q (t, µ) ∈ R; and the RB operator modes Ah,q are

parameter-independent.
This expansion can be used for both matrices or vectors

provided the topology of the mesh does not change. If this
is the case, the matrices can be transformed into vectors by
stacking the columns16, and later on brought back to matrix
form once any necessary operation has been carried out.

If we had such a decomposition, once we had computed
the basis matrix V, we could project each mode of the
operator basis Ah,q to obtain an expression for the reduced
operator,

AN (t, µ) = VTAh(t, µ)V,

=

Qa∑
q

Θa
q (t, µ)VTAh,qV,

AN (t, µ) =

Qa∑
q

Θa
q (t, µ)AN,q.

(92)

Since AN,q is fixed, provided that we had a way to evaluate
each Θa

q (t, µ), we would be able to build the reduced opera-
tor for a given parameter for each time step without having
to use any FOM operator.

3.3.1 Discrete Empirical Interpolation Method

Naturally, not many problems are likely to present a separa-
ble form as the one shown above. Even a simple linear heat
equation problem, due to the time-deformation of the mesh,
cannot be presented in such a form.

To tackle this issue, we use the Discrete Empirical Inter-
polation Method (DEIM). This method is a numerical ex-
tension of its analytical sibling, the Empirical Interpolation
Method (EIM). Basically, it mimicks the idea of creating a ba-
sis for the solution space, but this time centered around the
operator space. By means of a nested POD as we explained
in Section 3.2.2, if we replace the solution snapshots with
operator snapshots, we can build the static and problem-
dependent basis Ah,q .

16. We used a CSR storage format.
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Since we will be creating the operator basis with an
approximation technique, an error is expected in the re-
construction of the actual operator, and so we introduce
the notation Amh (t, µ) to reference the approximation of the
operator via the (M)DEIM algorithm,

Ah(t, µ) ' Amh (t, µ) =

Qa∑
q

Θa
q (t, µ)Ah,q. (93)

Naturally, this idea leads to the concept of approximated
reduced operators,

AN (t, µ) ' AmN (t, µ) =

Qa∑
q

Θa
q (t, µ)AN,q, (94)

which is the approximation of the reduced operators when
the collateral basis has been projected unto the reduced
space.

3.3.2 Evaluation of the Coefficient Functions
To evaluate the Θa

q (t, µ) functions, we set and solve an
interpolation problem; that is, we enforce the approximation
to actually match certain entries of the operator,

[Ah(t, µ)]k = [Amh (t, µ)]k

=

Qa∑
q

Θa
q (t, µ)[Ah,q]k,

(95)

for certain indices k ∈ Ia such that |Ia| = Qa. These
indices Ia are known as the reduced mesh nodes, sketched
in Figure 4. The notation [Ah(t, µ)]k stands for the value of

Reduced mesh

nodes

Fig. 4. Reduced mesh nodes Ia sketch for P1 Lagrangian finite element
basis functions. The weak form integral evaluation only takes place for
a restricted subset of mesh elements, to assemble the entries corre-
sponding to the selected nodes. In dashed are shown the interactions
with adjacent finite elements basis functions. A sketch for a 2D domain
can be found in [2].

the operator at the given mesh node k. In the FE context it
can be obtained by integrating the weak form locally.

This leads to a determined system, where each Θa
q (t, µ)

is unknown. The indices Ia are selected during the offline
stage, according to error reduction arguments of the recon-
struction error [49],

ea(t, µ) = ‖Ah(t, µ)−Amh (t, µ)‖. (96)

3.3.3 Reduction of the Trilinear Term
We recall that the trilinear operator Nh(u∗) from Equa-
tion (73d) takes as input in its first argument an extrapo-
lation of the velocity u∗. This extrapolation lives in the same
function space as the solution: from Equation (70), it is a
linear combination of past discrete timestamps.

Therefore, two approaches can be followed to build the
the trilinear operator modes,

• (u∗-general) collecting the snapshots from the FOM
simulation [1];

• (u∗-restricted) collecting the snapshots from evalua-
tions of the operator with RB solution modes.

The first approach to simply collect and compress the opera-
tor snapshots during the offline phase of the FOM, with the
general nested POD algorithm described in Section 3.2.2.
This would tie the operator snapshots to the parameter
space sampled to identify the RB solution modes.

The second approach is to recognise that in the execution
of the ROM, the first component of the trilinear term, the
extrapolated solution, will always be expressed in the finite-
dimensional subspace of the RB solution modes (as by
Equation (77)). Thus, why not use these modes to assemble
the operator snapshots? Both approaches are summarized
in Table 1.

The u∗-restricted strategy requires a slight modification
of the nested POD algorithm. Instead of two, we have three
nested levels: parameters, modes and time, as sketched in
Figure 5.

Fig. 5. Nested POD treewalk for the trilinear term, u∗-restricted strategy.
The parameter space is sampled, for each parameter value and RB
solution mode snaphsots are collected and compressed in time (red
dots). This provides a collateral basis for each parameter. These bases
are finally compressed into one, which summarizes the changes in time,
parameters and RB solution modes.

We set a parameter, we pick a mode, collect as many
snapshots as time steps, and compress:

Ψµi,ψ0 = POD({Nn
h (ψ0)}n=T

). (97)

This gives us a basis for the parameter/mode tuple Ψµi,ψ0 .
Then we pick the next mode, and obtain a basis for it,
Ψµi,ψ1 . So on and so forth, we get as many bases as modes
for that given parameter. We then compress thoses bases
altogether to obtain one final parameter basis,

Ψµi = POD(
{

Ψµi,ψj

}j=N
), (98)
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which collects the effects of each mode and time variation
(for that specific parameter). We repeat the process again for
another parameter, until we end up with one operator basis,
which is the result of compressing all parameter bases,

ΨNh = POD({Ψµi}
i=Nµ). (99)

An advantage of this procedure is that it can be used when
the FOM simulation is not available, e.g. when the RB
solution modes are obtained from experimental data.

TABLE 1
Trilinear operator N-MDEIM reduction approaches.

The snapshots outset ("Op. assembly"), the first argument of the weak
form ("1st argument"), and the treewalk pattern are compared.

The restricted strategy has an additional nesting level, but it can be run
as an independent step during the offline stage (provided that the RB

solution modes are given).

Op. assembly 1st argument Treewalk

u∗-general FOM simulation Extrapolation u∗ Figure 3
u∗-restricted Ind. offline step RB solution modes Figure 5

3.4 Hyper Reduced Order Model
With an approximation of the reduced operators available,
we can define yet another algebraic problem to integrate and
obtain the reduced solution in time for a given parametriza-
tion,

mBDFM
m,n+1
N ûm,n+1

N + ∆tCm,n+1
N ûm,n+1

N

+∆tAm,n+1
N ûm,n+1

N

+∆tN̂m,n+1
N ûm,n+1

N

+∆t
[
Nm,n+1
N (ûnN )

]
ûm,n+1
N

= Fm,nûN
+ ∆tFm,n+1

g,N ; (100a)

û0
N = ûN,0. (100b)

If we collect terms and factor out the unknowns we get a
linear system, in the reduced space and with approximated
operators, to be solved for each time step to advance the
solution,

Km,n+1
N ûm,n+1

N = bm,n+1
N , (101a)

û0
N = ûN,0; (101b)

Km,n+1
N = mBDFM

m,n+1
N + ∆t

[
Am,n+1
N + Cm,n+1

N

+N̂m,n+1
N + Nm,n+1

N

(
ûm,∗N

)]
, (101c)

bm,n+1
N = Fm,nûN

+ ∆tFm,n+1
g,N . (101d)

Each of the operators present in the problem will have asso-
ciated an operator basis and will require the solution of the
interpolation problem (95) for each time step and parameter
value. Although this could still seem like a costly procedure,
if the operators are actually reduceable, the number of basis
functions Qm, Qa, Qf , Qf,g should be small, and thus way
simpler problems than assembling the whole operator and
then carrying out the projection.

Once the reduced homogeneous solution ûmN (x) is ob-
tained with approximated operators, it can be brought back

to the original space Vh via Equation (78), and then added
to the Dirichlet lifting, to get the solution in the physical
domain,

u(x, t;µ) ' umh (t, µ) = VûmN (t, µ) + gh(t, µ). (102)
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4 FOM CALIBRATION

This section is devoted to present the full order model dis-
cretization details. Certain parameters need to be defined,
along with consistency checks to validate the simulation.

Sections 4.1 and 4.2 define the parametrization space and
show some results. In Section 4.3 we show the effects of
artificial viscosity, in Section 4.4 we explore the differences
between BDF-1 and BDF-2 time integration schemes.

4.1 Parameter Space and Discretization
To identify the reduced and collateral bases, we randomly
sample the parameter space. We set the range for each
parameter in Table 2. The discretization parameters are
given in Table 3.

TABLE 2
Parameter range for random sampling. Note that mesh

parametrizations which produce an invalid mesh are discarded at
runtime.

Variable Min. Max.

a0 18 25
ω 15 30
δ 0.15 0.3

xc 0.2 0.75
σc 0.1 0.2
yc 0.25 1.75

TABLE 3
Space-time domain definition, and discretization parameters.

L0 Nx T Nt ∆x ∆t

1 1000 1.0 500 ∼ 10−3 0.5 · 10−3

There are two relevant dimensionless groups for this
problem, presented in Table 4. Dimensionless groups are
useful to sample the parameter space wisely, probing differ-
ent dynamical scenarios rather than different parametriza-
tions which actually represent the same kind of response.
For our sampling during the offline stage (and online
testing), we determined that taking into consideration the
piston mach up was sufficient to collect physically distinct
system responses.

TABLE 4
Relevant dimensionless groups. Note that δ is a dimensionless scale

parameter.

Name Expression Min. Max.

Reduced frequency ω̂ ωL0
a0

0.6 1.65

Piston mach up δωL0
a0

0.1 0.4

4.2 FOM Response to Piston Motion
We present the response of the system for a piston mach
value up = 0.37. The dimensionless velocity profile is
shown in Figure 6; the mass conservation check is exam-
ined in Figure 7. The PDE was derived using the mass
conservation principle, but the mass conservation integral

equation has not been used in the discretization of the weak
form. Hence it is a good independent quality check of our
simulation results.

Fig. 6. Flow response (blue) to piston motion (dashed). (Top) Piston
outlet, artificial boundary condition. (Bottom) Piston mid-length. A weak
shock wave is formed due to Burgers’ nonlinear convection.

Fig. 7. Mass conservation check. (Top) The two resulting summands
from the mass conservation integral equation: density integral derivative
in time and outlet boundary mass flow. The weak shock wave is also
present in the mass conservation. (Bottom) Numerical value of the
mass conservation principle, coined mass defect MD. The mean value
(red line) is the corresponding y-axis value in the convergence plot in
Figure 10.

4.3 Artificial Viscosity

As stated previously in the document, we included an
artificial viscosity term in the final formulation to go around
the need for more involved17 stabilization schemes. A value
needs to be choosen for the viscosity constant ε. For con-

17. Note that the reduction approach used remains valid, since it is
purely algebraic.
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sistency with the PDE, this constant should scale with the
square of the mesh size,

ε ∼ k · (∆x)2.

For a mesh size of ∆x ∼ 10−3, the k-value which keeps
the system stable whilst purely convective (at least for our
simulation time scale) is

k = 10−4 → ε ∼ 10−10.

In Figure 8 we present a comparison for these two viscosity
values. We show the motion of the fluid at the outflow
and a phase plot, to ease the analysis of the correlation
between the weak shock wave at the outflow and the
piston motion. The smallest viscosity value, (10−10) leads
to a convection-like phase plot: the shape of the input
is distorted but the maximum and mimimum values are
honored, the same path is repeated over and over. Instead,
the solution with a higher viscosity value shows a diffusion
pattern, reducing the extrema and changing its path on
every pass.

Fig. 8. Artificial viscosity comparison. (Top) Outer boundary velocities for
two different values of the viscosity term. In dashed, the piston motion,
to help in the visualization of the nonlinear distortion. (Bottom) Phase
plot between the piston motion (x-axis) and the response at the outer
boundary (y-axis) for the same artificial viscosity values. Due to the
creation of a weak shock wave, the piston motion is distorted. The
viscosity value (10−10) presents a stable phase plot, going over and
over the same path.

4.4 BDF Convergence Rates

To check the quality of our simulations we examine the
convergence rates for the two time-integration schemes,
BDF-1 and BDF-2. We analyze two convergence plots: the
solution itself and mass preservation.

For the solution, since we do not have an analytical refer-
ence, we establish one numerically. It will be the one corre-
sponding to the solution for a small time step, ∆t = 10−4. In
Figure 9 we present the convergence rates for the solution,
where the BDF-2 scheme (1.98 ∼ 2) decreases twice as fast
as the BDF-1 scheme (0.95 ∼ 1).

For the mass defect, we do know it should tend to zero
analytically. In Figure 10 we give the convergence rates for
the mass defect, where the BDF-2 scheme (2.08 ∼ 2) is seen
to converge twice as fast as the BDF-1 scheme (1.24 ∼ 1).
Hence, the BDF-2 scheme is correctly implemented.

Fig. 9. Convergence rates to numerical reference solution. The refer-
ence was obtained with a small time step, ∆t = 10−4. Both schemes
decrease at their expected rates.

Fig. 10. Convergence rates for mass defect MD. The analytical solution
of this variable is zero (mass is perfectly preserved). Both schemes
decrease at their expected rates.
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4.5 Non-Uniform Mesh Displacement
Not all geometrical parametrizations of the mesh displace-
ment are valid. As shown in Table 5, some parametrizations
lead to non-invertible mappings. This takes place when
the displacement is so large locally that the mesh nodes
ordering is lost in the physical domain. When this happens,
two points in the reference domain map to the same point
in the physical space.

TABLE 5
Mesh deformation parametrizations.

δ xc σc y0 Invertible

Figure 11
0.3 0.5 0.1

0.5 YesFigure 12 0.75
Figure 13 1.75 No

The correct procedure to deal with the mesh feasibility
problem would be to compute the Jacobian analytically and
derive from it upper and lower bounds for each parameter.
However, for such a simple domain transformation, we opt
to check numerically at runtime if the mesh is feasible or
not. In fact, to prevent round-off errors, we impose a lower
bound on the mesh step size. When it is breached,

∀ i ∆xi < 10−6, (103)

we discard that parametrization.

Fig. 11. Feasible mesh compression. The green line shows the maxi-
mum piston compression. The nodes are locally compressed to the left
of the Gaussian curve.

Fig. 12. Feasible mesh expansion. The green line shows the maximum
piston expansion. The nodes are locally compressed to the right of the
Gaussian curve.

Fig. 13. Unfeasible mesh expansion. Due to the large mesh distortion,
the ordering is lost in the physical domain, leading to negative mesh step
sizes.
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4.6 Geometric Conservation Law
As mentioned in the literature review regarding deforming
meshes, in Section 1.3.2, a proxy to determine how affected
is a discretization by a moving mesh is to attempt the
resolution of the constant solution.

This is so because if the discretization is not handling
the movement of the mesh correctly, artificial fluxes of in-
formation might be introduced. Nevertheless, no strict con-
clusions can be reached with this numerical test. Succesfully
integrating the constant solution seems to be a sufficient but
not a necessary condition for stability.

Our implementation seems unable to reproduce cor-
rectly the constant solution. This happens in a fixed and
moving mesh setting (see Figure 14). Therefore, we believe
it could be due to the accumulation of round-off errors, as
previous works have reported in the literature [55].

In a way, we are surprised that this blowing-up effect
does not show up in the piston problem. We hint towards
the fact that, in that context, the constantly changing bound-
ary conditions somehow lead to balanced round-off errors,
which cancel out in time. In the constant solution test, the
boundary condition is constant, thus potentially preventing
round-off error cancellation.

Chasing to the detail this behaviour is certainly mean-
ingful, but since our reference solution (the piston) does not
suffer from these effects, we limit ourselves to report this
behaviour and skip any further investigation, as we believe
it falls out of the scope of this work.

Fig. 14. Constant solution simulation for fixed (top) and moving mesh
(middle, bottom). The round-off error increases as the number of DoFs
increases too (Nx). The errors in the fixed mesh take more to accumu-
late or do not accumulate at all. For the moving mesh, for the smallest
number of DoFs the solution drifts away from the constant solution. In
the bottom plot, the values have been clipped to the [0.01, 10] interval.
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5 RESULTS AND CERTIFICATION

We are now going to see the HROM in action. This section
is divided in two conceptual blocks, summarized in Table 6.

The first block will show HROM results with a uniform
mesh stretching. This scenario is interesting to establish
certain procedures and results, but due to its simplicity,
the reduction of the bilinear operators is trivial (limiting
the range of the discussion). Section 5.2 shows the expected
error decay of the standalone RB solution modes; Section 5.3
shows the results of the u∗-general and u∗-restricted ap-
proaches to deal with the N-MDEIM of the trilinear form.
An unexpected behaviour is present in the singular value
decay for the u∗-restricted approach, which we discuss and
clarify in Section 5.4. Finally, in Section 5.5 we show how to
certify the HROM solution by mode truncation.

To compensate for the simplicity of the bilinear operator
reductions, we introduce a second block, where the HROM
will be applied in the presence of a non-uniform mesh
stretching (all operators then require a non-trivial number
of RB operator modes). In Section 5.6 we present u∗-general
reduction results. In Section 5.7 we present the limits of
mode truncation for HROM error estimation in this context.
Finally, in Section 5.8 we show the improvement and limits
of the u∗-restricted approach.

TABLE 6
Summary table with the FOM and HROM characteristics for each

section. Certain sections contain results without the (M)DEIM
methodology activated, to isolate effects.

Mesh Stretching Section (M)DEIM N-MDEIM Approach

Uniform

5.2 No -
5.3 Yes general / restricted
5.4 Yes restricted
5.5 No -

Non-Uniform
5.6

Yes
general

5.7 general
5.8 restricted

5.1 RB Solution Basis
The piston is moving according to a harmonic law, and we
have seen in Figure 6 from the previous section how the
flow response is periodic and nonlinear. Additionally, the
solution is stretched in time with the boundary movement.
We expect to find these effects in the RB solution modes.

We show the first ten RB solution modes obtained by
the POD in Figure 15. They are represented in the reference
domain with L0 = 1. The first five modes contain some sort
of oscillatory response near the right boundary, where the
piston movement is located, but they are not harmonic at all.
The next five modes look similar to Fourier modes, which
is an expected behaviour given the harmonic movement
of the piston and the fact that we sample for different ω
values during training. The forcing of the piston at the right
boundary can be guessed. The first five modes capture the
nonlinear response, whereas higher order modes present the
oscillatory nature of the solution.

We do not represent the RB operator bases because their
interpretation would be too abstract, given that the operator
itself does not have a simple representation in space.

Fig. 15. First ten RB solution modes (0-indexing is used to be aligned
with code results). (Top) First five modes. (Bottom) Next five modes. The
first modes seem to collect the effects of the weak shock wave formation.
The next five modes look like Fourier modes for different frequencies
(which is an expected behaviour given the harmonic movement of the
piston and the fact that we sample for different ω values during training).

5.2 RB Solution Basis Error

We explore how the number of modes influences the ap-
proximation error of the FOM solution. We have trained our
model with 10 random samples according the parameter
ranges given in Tables 2 and 4. In Table 7 the resulting
bases size are reported. Since the stretching is uniformly
spread across the mesh elements, despite their change in
time, all the linear operators are trivially reduced. The RHS
requires two RB operator modes because it contains the
lifting and its gradient. Since we are using the POD to build

TABLE 7
For each operator, basis size after the tree walk and final size after tree
walk compression. The trilinear term and the RB space have the same
size, since the RB solution modes were used to evaluated the trilinear

term. The Nonlinear-lifting operator corresponds to the cross-term
lifting matrix that arises from the nonlinear convective term.

After Treewalk Final Size

RB 295 69
RHS 20 2

Mass 10 1
Stiffness 10 1
Trilinear 690 69

Convection 20 2
Nonlinear-lifting 10 1

our reduced basis, we attempt to relate POD a posteriori
error estimations with the actual error between ROM and
FOM.

5.2.1 POD: A Posteriori Errors

The POD returns a collection of modes and sigular values,
(ψi(x), σi), each related to the other. The magnitude of each
singular value σi somehow encodes how much information
is carried by its associated mode about the original span.
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We define the energy of the basis that contains up to the
i-th mode as

Ei =

∑i
j=0 σ

2
j∑

σ2
k

. (104)

This magnitude is derived from the a posteriori error bounds
for a POD reconstruction, where the following inequality
holds, ∥∥∥∥∥∥y(x)−

n∑
j=0

wjψj(x)

∥∥∥∥∥∥
2

2

≤
N∑

i=n+1

σ2
i , (105)

with y(x) belonging to the snapshots used to build the POD
basis. This inequality is telling us that if up to n basis modes
are used to reconstruct a function belonging to the original
span, the average error in the L2 sense will be smaller or
equal to the sum of the remaining squared singular values.

We shall see if this variable has any predictive power on
the ROM error.

5.2.2 Error Decay
We want to find the smallest size N∗ for which the FOM
is correctly reproduced. Naturally, the exact value of this
variable is problem-dependent, but the way in which we
approach its search would suit any RB problem.

TABLE 8
Online sampling parameters, sorted in ascending order by piston

mach up values.

a0 ω δ up

22.96 29.55 0.15 0.20
19.28 22.87 0.20 0.23
18.24 18.88 0.29 0.30
24.64 27.13 0.29 0.32
20.62 25.98 0.29 0.37

In Figure 16 we present the ROM error with respect to
the number of RB solution modes and the energy of the
truncated basis. At this stage, the (M)DEIM approximation
is not used (the FOM operators are projected at each stage).
The more RB solution modes, the smaller the error. The more

Fig. 16. Error decay vs. the number of RB solution modes and basis
energy level. Expectedly, the more RB solution modes we have, the
lower the error.

energy the basis contains, the better the approximation.
We present in Figures 17 and 18 the actual solution at

the outflow for each model (FOM and ROM). We can see
how the ROM model is not accurately resolved for N =
5, as reflected by the error, but how it improves for N =
10. Clearly, the problem is quite simple to reduce if these
few modes are sufficient to reduce the problem. The flow

Fig. 17. Outflow velocities for different models, for N = 5 RB solution
modes. It is inaccurately resolved at the beginning of the transient and
some difussion is introduced, reducing the extrema values.

Fig. 18. Outflow velocities for different models. The ROM model is better
resolved for N = 10 RB solution modes.

departs from rest as the piston starts to move. Therefore, the
first snapshots contain a nonlinearity in the sense that the
flow starts to move on one side, but remains still along the
rest of the tube.

However, for most of the time interval, this kind of non-
linearity is not present again, since the flow is in constant
motion, flowing in and out of the system. Hence, it is an
expected behaviour that for the initial interval the ROM
is inaccurate, unless we include a sufficient number of RB
solution modes. To fix this problem, certain techniques exist
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which enhance the POD basis without adding excessive
complexity [56].

5.3 N-MDEIM Basis Error

In this section we explore the reduction of the trilinear
operator for the mesh with uniform stretching.

In Section 5.3.1 we present the results for the basis result-
ing from the snapshots collected from the FOM simulation.
In Section 5.3.2 we investigate the interaction between the
RB and MDEIM errors. Finally, in Section 5.3.3 we present
the results for the snapshots resulting from the snapshots
collected from RB mode evaluation in the trilinear form.

We refer to the collateral basis of the trilinear operator as
the N-MDEIM basis.

5.3.1 N-MDEIM: Hierarchical Basis

We present the results for the u∗-general strategy, for the
uniform stretching mesh displacement. During the simula-
tion of the FOM, we collect snapshots of the trilinear term
and compress them with the same nested POD strategy as
we did for the reduced basis, Section 3.2.2.

By doing so, we obtain a hierarchical basis, which allows
us to tune the error, as proved by the singular value decay
(Figure 19). The singular value decay for the trilinear oper-
ator presents the same pattern as the one for the solution.
The reduction difficulty is the same as the one required for
the reduced basis.

Fig. 19. Singular values decay for the reduced basis and the trilinear
operator. The dashed vertical line corresponds to the number of modes,
N = 69. The basis for the trilinear operator presents the same pattern
(and hence the same size) as the solution reduced basis. This is due to
the fact that the operator is a trilinear form. Hence, due to the simplicity
of the Jacobian, the reduction difficulty is similar to the one required for
the reduced basis.

In Table 9 we show the parameter range for which we
tested this basis against the first ten modes. In Figure 20
we present the reconstruction error decay, as the N-MDEIM
basis is truncated. The basis shows the expected error decay
as modes are removed, hence allowing to speed up even
further computations if some compromise is made in the
error.

TABLE 9
Parameter space sampling for trilinear term reconstruction.

a0 ω δ up

24.275 18.549 0.203 0.155
21.055 15.969 0.236 0.179
23.627 24.427 0.211 0.218
21.533 24.376 0.200 0.226
20.440 18.913 0.289 0.267
23.849 27.396 0.261 0.300
19.976 23.190 0.259 0.301
20.633 24.184 0.280 0.329
18.803 29.705 0.226 0.357
19.890 27.986 0.278 0.391

Fig. 20. N-MDEIM reconstruction error decay, as we truncate the modes
from the MDEIM basis for some individual parametrizations. Due to the
simplicity of the problem, the (implicit) Jacobian and the fact that the
linearized term is trilinear in all of its arguments, there is no noticeable
difference for different parametrizations.

5.3.2 RB and N-MDEIM Error Interaction
With two bases (solution and trilinear operator) which
show error decay, we can truncate them simultaneously,
to determine their interaction. In Table 10 we present the
timewise L2 error for different numbers of RB solution and
RB trilinear modes. In Figure 21 we present the same table,
albeit in a heatmap plot.

Expectedly, we reach a situation where one error dom-
inates the other one. Increasing the size of one basis will
not improve the results, unless the other one is enlarged
too. If we wanted to achieve a determined error threshold,
we would have to analyze and take into account both bases
errors simultaneously.

5.3.3 N-MDEIM: Non-Hierarchical Basis
Now we see what happens if we build the MDEIM basis
from trilinear snapshots assembled with RB solution modes
(u∗-restricted).

The first ten RB solution modes are used to assemble the
operator for the ten parameters from Table 9. In Figure 22
we show the mean approximation error in time for the
trilinear operator on these same RB solution modes. We
see that unless the complete basis is used (N = 69), the
approximation error is quite poor.
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TABLE 10
Timewise L2 error decay for different truncation levels of the reduced

basis space (N) and the trilinear operator basis (N-MDEIM).

N-MDEIM 5 10 15 30 40 50
N

5 3.4e-2 3.4e-2 3.4e-2 3.4e-2 3.4e-2 3.4e-2
10 3.4e-3 7.8e-4 7.8e-4 7.8e-4 7.8e-4 7.8e-4
15 3.3e-3 2.1e-5 1.4e-5 1.4e-5 1.4e-5 1.4e-5
20 3.3e-3 1.7e-5 8.0e-7 7.8e-7 7.8e-7 7.8e-7
25 3.3e-3 1.7e-5 2.8e-7 1.5e-7 1.5e-7 1.5e-7
30 3.3e-3 1.7e-5 2.5e-7 5.1e-8 5.3e-8 5.3e-8
35 3.3e-3 1.7e-5 2.5e-7 4.5e-8 4.6e-8 4.6e-8

Fig. 21. Timewise L2 error decay for different truncation levels of the re-
duced basis space (N) and the trilinear operator basis (N-MDEIM). The
log10 transformation was applied, so that the heatmap color gradient is
smooth.

This has to do with the fact that the RB solution modes,
which form an orthogonal basis, were used to assemble
the trilinear operator snapshots. Hence, all the result RB
operator modes contain fundamental information, as hinted
by the abrupt drop in the singular value, see Figure 23. We
have obtained a basis that allows us to reduce the assembly
of the operator, but it doesn’t allow us to tune the error. We
name such basis non-hierarchical, because there is no decay
in its singular value spectrum. We will clarify the loss of
hierarchy in Section 5.4.

Fig. 22. N-MDEIM error approximation on the first ten RB solution modes
for different collateral basis size. The first ten RB solution modes were
used to assemble the operator. The approximation is quite poor, unless
the complete basis is used (N = 69).

Fig. 23. Singular values decay for the reduced basis and the trilinear
operator. The dashed vertical line corresponds to the number of reduced
modes, N = 69. The singular value decay for the trilinear operator
does not present the same pattern as the one for the reduced basis.
All RB trilinear operator modes seem to contain the same amount of
information from the original span. This has to do with the fact that the
modes, which form an orthogonal basis, were used to assemble the
trilinear operator snapshots.

5.4 Non-Hierarchical POD Bases
We investigate further the non-hierarchical character of the
N-MDEIM basis that showed up in Section 5.3.3. After we
discretized the nonlinear term we obtained a trilinear form,
whose first argument is the velocity extrapolation.

To build a basis in the u∗ − restricted approach, we ob-
tain the snapshots from evaluations of the trilinear operator
with RB solution modes,[

Nn+1
h (ψh)

]
i,j

= b0 〈ψh(x)∇ϕj , ϕi〉n+1
,

= b0

∫ L(tn+1)

0
ψh(x)∇ϕjϕidx.

(106)
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Now, the RB solution modes are expressed themselves in
terms of the finite element Lagrangian basis functions,

ψh(x) =
∑
k

ψkϕk(x), (107)

which leads to the following exact expression for each of the
entries of the trilinear form,

[
Nn+1
h (ψh)

]
i,j

= b0
∑
k

ψk

∫ L(tn+1)

0
ϕk∇ϕjϕidx︸ ︷︷ ︸

Only affected by J(x, t)

.
(108)

Each summand takes a nonzero value only when the local
support of the three basis functions coincides simultane-
ously.

For the assembly of the trilinear operator during the
FOM integration, the extrapolated velocity u∗ is also ex-
pressed within the Lagrangian basis (as shown in Equa-
tion (70), it is a linear combination of the two previous
time steps). And yet, the snapshots compressed from that
source lead to a hierarchical basis. Therefore, the interaction
between the finite element basis functions is not the effect
leading to a non-hierarchical basis.

The remaining degrees of freedom are the coefficient
values ψk. Since the solution is smooth, when the snapshots
are collected during the FOM simulation, each of the u∗k
values is quite similar to the ones from the previous time
step. However, when the modes are used to create the tri-
linear operator snapshots, for any two different basis modes
ψ1(x) and ψ2(x), we know that they satisfy an orthogonality
condition. To determine if this condition is playing a role,
we remove the complexity of the reduced basis construction
(application of the POD on the solutions from the PDE);
and consider an example using functions from a naturally
orthogonal basis: the Fourier basis.

Our working hypothesis is that if the functions used to
evaluate the trilinear form are orthogonal, so will be the
resulting POD base, and hence non-hierarchical (there is
no reduction capacity, since the input is already forming
a base).

5.4.1 Fourier Basis: Insights

We kick-off by studying the effects of attempting an SVD
over a Fourier basis,

ψq = {cos(2πωqx) : ωq ∈ {1, . . . , 3}}. (109)

We carry out two experiments:

• (I) Run the Fourier basis through the SVD and ana-
lyze its spectrum decay. We would expect no decay,
since the basis is orthogonal18.

• (II) Compute snapshots of the trilinear operator with
the Fourier basis and run them through the SVD as
well. The spectrum decay will be used to establish
conclusions.

18. It the input modes are normalized with the L2 norm, the singular
values will be equal to one. Else, the singular values will be equal to
the L2 norm.

5.4.2 (I) SVD of a Fourier Basis
When the POD is applied to a basis of orthogonal modes,
the resulting basis is potentially19 formed by linear combi-
nations of the original modes.

Our implementation of the POD is based on the SVD
breakdown, which splits a matrix into two rotations and
one scaling,

A = UΣV T . (110)

If the matrix A is orthogonal20, we would expect that the
transformation is such that the modes remain unaltered,

U = A,Σ = I, andV = I

(with their respective dimensions well set). However, the
only guarantee we actually have is that Σ = I , the rotations
U and V are not unique. And so is the case with the
implementation we are using of the SVD.

Instead of returning the original Fourier modes, it is
creating linear combinations of it, where the coefficients of
the linear combination are collected in the columns of

V =

0.577 0 0.816
0.577 0.707 −0.408
0.577 −0.707 −0.408

 . (111)

There is no spectrum decay, for all singular values are equal
to 1.0, as shown in Table 11.

TABLE 11
Singular value spectrum for the SVD of the Fourier basis. Since the

input is orthogonal, the resulting POD basis is non-hierarchical. To be
aligned with the code, a 0-indexing presentation is used.

Singular index σi

0 1.002
1 0.999
2 0.999

Fig. 24. Fourier basis and its SVD transformation. Since the Fourier
basis is orthogonal, the resulting SVD transformation is a linear com-
bination of Fourier modes.

19. This is an implementation-wise feature.
20. AAT = ATA = I
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5.4.3 (II) N-MDEIM with Fourier Basis
To confirm our working hypothesis, we build the trilinear
form (Equation (108)) using the first five modes of the
Fourier basis,

ψq(x) = {cos(2πωqx) : ωq ∈ {1, . . . , 5}}. (112)

Since the Jacobian transformation is a linear function of
time, despite the change in time of the domain, the trilinear
form remains linear. If there were no additional argument
ψk, we would only require one mode to represent the whole
operator. Therefore, we predict that we will only find 5
orthogonal resulting modes, that is, a non-hierarchical basis.
This is confirmed by the singular value decay, shown in Ta-
ble 12 (to be aligned with the code, a 0-indexing presentation
is used).

TABLE 12
Singular value spectrum for the N-MDEIM reduction with a Fourier

basis. We have built the snapshots in time for two parameters and five
Fourier modes. Since we know the resulting bases will be of the same
size as the original input, we expect to have only 5 non-zero singular
values, which is the case. To be aligned with the code, a 0-indexing

presentation is used.

Singular index σi

0 1.414
1 1.414
2 1.414
3 1.414
4 1.414
5 0.000
6 0.000
7 0.000
8 0.000
9 0.000

Again, as depicted by Figure 25, we obtain the same
poor results in the approximation error when we attempt
to reconstruct the operator with a truncated basis.

Fig. 25. N-MDEIM reconstruction error. The basis for this N-MDEIM has
been built using the first five Fourier modes to evaluate the trilinear form.
According to the singular value decay, the basis is not hierarchical, that
is, all the operator modes (continuous) need to be used to recover an
accurate representation of the space. Hence, when one operator mode
is removed (dashed), the approximation error increases to unaffordable
values for a simulation.

Now that we have been able to reproduce the same
behaviour, and to validate our working hypothesis, we go
back to the use of RB solution modes.

5.4.4 N-MDEIM with RB Solution Modes
What would happen if we only used one mode from the RB
solution modes to reduce the operator? Could we use that
basis to approximate the trilinear operator evaluated with
other functions? We take the first three RB solution modes
and create a linear combination f(x) with them,

f(x) = 2ψ0(x) + ψ1(x) + 3ψ2(x). (113)

We now reduce the trilinear form with two strategies:

• (a) Subspace: using only the first RB solution mode.
• (b) Complete space: using the three RB solution

modes.

With each approach, we obtain a non-hierarchical or-
thogonal basis, which we then use to reconstruct Nh (f(x)).
Since f(x) is made out of the three orthogonal modes, we
could expect approach (a) to fail. However, it succeeds as
well as approach (b). This is proved by Figures 26 and 27.
Additionally in Figure 27 we have included the reconstruc-
tion error for the truncated base (we have removed operator
mode).

Using one RB solution mode is sufficient to construct a
perfect collateral basis due to the linearity of the integrand
within the trilinear form, and the linearity of the Jacobian
transformation. Despite the fact that the function f(x) con-
tains other modes, the collateral basis built with one mode
is able to reproduce its effect on the operator perfectly. In

Fig. 26. Reconstruction error for the trilinear operator evaluated with
linear combination f(x). The basis has been obtained only using the
first RB solution mode.

the next section we explore what happens if a nonlinear
function is present in the integrand.
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Fig. 27. Reconstruction error for the trilinear operator evaluated with
linear combination f(x). The basis has been obtained using the three
RB solution modes. In dashed is the approximation error using a trun-
cated basis (N = 2 operator modes). The truncated basis shows a
poor approximation error because the original basis is non-hierarchical,
hence all the operator modes are required to reconstruct the operator.

5.4.5 N-MDEIM with a Nonlinearity in Space
We have shown in the previous section how one can achieve
a perfect collateral basis for the trilinear using exclusively
one RB solution mode.

We now show results for a form with a nonlinear
function inside the weak form, e.g., a non-uniform mesh
displacement. Hence, we take on the reduction of[
Wn+1

h (ψh)
]
i,j

= b0 〈ψh(x) cos(1 + x)∇ϕj , ϕi〉n+1
,

= b0

∫ L(tn+1)

0
ψh(x) cos(1 + x)∇ϕjϕidx.

(114)

The results are shown in Figures 28 and 29. Both figures
include the reconstruction error for a truncated base.

We find out that in the presence of a nonlinearity, it is un-
sufficient to use only one RB solution mode. When the basis
built with approach (a) is truncated, the approximation error
goes up to values near unity, leading to poor reconstruction
results.

Instead, when the first three RB solution modes are
used to build the collateral basis, truncating the outcome
leads to a feasible basis. The truncation leads to a higher
approximation error, but still sufficiently small to produce
meaningful results if it were used in a simulation.

Fig. 28. Reconstruction error for the nonlinear operator evaluated with
function f(x). The basis has been obtained only using the first RB
solution mode (Nfull = 7). In dashed is the approximation error using a
truncated basis, from which only one operator mode has been removed
(Ntruncated = 6). The truncated basis fails, due to the presence of the
nonlinearity, it is now unsufficient to use only one RB solution mode
to construct a collateral basis which accurately represents the whole
space.

Fig. 29. Reconstruction error for the nonlinear operator evaluated with
function f(x). The basis has been obtained using the three RB solution
modes (Nfull = 19). In dashed is the approximation error using a
truncated basis, from which several operator modes have been removed
(Ntruncated = 10). The truncated basis does not fail as drastically as the
previous ones did, it simply presents a higher error, but still within an
acceptable order of magnitude.

5.4.6 Wrap-Up

We have clarified the behaviour of the POD in the presence
of a trilinear form and a linear Jacobian transformation.

Our first conclusion was that the POD of an orthogonal
basis will produce another orthogonal basis, as a linear
combination of the input vectors. This orthogonality is pre-
served under the linear transformation of the trilinear form.
As a consequence, the construction of the collateral basis
can be achieved collecting snapshots with the evaluation
of the trilinear form with only one RB mode. If more RB
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solution modes are used to build the snapshots, the POD
will return a larger collateral basis, but one that will not
have the hierarchical property. That is, truncating that basis
will consistently lead to poor approximation results. The
full basis will have to be used. This is so because the SVD
has created a linear combination of the orthogonal input
snapshots.

In the presence of a non-uniform mesh movement, the
reduction trick of using one RB solution mode is unsuffi-
cient. More RB solution modes have to be used to obtain a
collateral basis that appropriately spans the whole domain.
Then, the basis is hierarchical, and allows for error control
through basis truncation.

If we collect snapshots of the operator evaluated with
the PDE solutions, we couple the reduction of the RB
space and the operator space. Hence, it is best to reduce
trilinear forms with RB solution modes. If the trilinear form
does not contain any spatial or time nonlinearity, one RB
solution mode will be enough. Instead, if nonlinearities are
present within the integrand, more RB solution modes will
be necessary to build a satisfactory basis. One way or the
other, this approach will reduce the number of snapshots to
collect and compress, leading to a lighter offline stage.

5.5 Certification by Truncation

To compute the HROM error in the preceding sections we
required the assembly and solution of the FOM model. This
is an undesirable fact, since if to validate our ROM solution
we need to compute its FOM counterpart, we are better
off computing the FOM model straightaway (which will be
more accurate by definition). Hence, we need an efficient a
posteriori error estimator.

5.5.1 Sacrificial ROM

We use the mode truncation technique. That is, we carry
with us two ROMs, with different basis sizes. The additional
ROM is called sacrificial ROM (SROM). It will be used to
compute the actual error for the smaller ROM, without
requiring the calculation of the FOM. By doing so, we bound
the SROM error. We assume it is smaller than the one of base
ROM, since it contains more modes, but we cannot know
how much smaller it is. Hence, we would bound the SROM
errors by using a smaller ROM, but would use the SROM to
calculate and present results.

For this error estimation procedure, the question we seek
to answer is: how many more modes does the SROM need
to carry to estimate accurately the base ROM error? Again,
the answer to this question is problem-dependent, but our
approach to find it could be used for any problem.

5.5.2 Error Estimation

We depart from the error with respect to the FOM, which
we seek to bound. Then, we proceed to add and susbtract
the solution from the sacrificial ROM,

‖uh − VNuN‖ =
∥∥uh ± VN̂uN̂ − VNuN

∥∥, (115)

where N̂ > N . By the triangle inequality, we get

‖uh − VNuN‖ ≤
∥∥uh − VN̂uN̂

∥∥+
∥∥VN̂uN̂ − VNuN

∥∥.
(116)

If we define the error function eN = ‖uh − VNuN‖, we
get an upper bound of the desired error in terms of the
sacrificial ROM error and the error between ROMs,

eN ≤ eN̂ +
∥∥VN̂uN̂ − VNuN

∥∥. (117)

With sufficient RB solution modes, it should be safe to
assert that the error made with additional modes should
be smaller or equal to the one made without it,

eN̂ ≤ eN . (118)

Thus, we get the following error bound,

eN ≤
∥∥VN̂uN̂ − VNuN

∥∥, (119)

It remains to determine how sharp this error estimate is.

5.5.3 Error Between Two ROMs

The error estimator

ẽN (N̂) =
∥∥VN̂uN̂ − VNuN

∥∥ (120)

can be expressed as a sum in terms of the RB solution
modes. Due to the hierarchical character of the RB basis,
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VN̂ contains the same columns up to N as VN . Thus, the
error between ROMs can be expressed as∥∥VN̂uN̂ − VNuN

∥∥ =∥∥∥∥∥∥
N̂∑

i=N+1

uN̂i ψi +
N∑
j

(uN̂j − uNj )ψj

∥∥∥∥∥∥. (121)

The difference (uN̂j − uNj ) between ROM coefficients is rel-
atively small, since it represents the difference between the
two coefficients associated to the same mode. If they were
notably different, it would mean that the dynamics between
the original ROM and the sacrificial one are different. Since
the RB solution basis is hierarchical, this will not be the case
for sufficiently well resolved ROMs: adding an additional
mode should only refine the solution, not change drastically
how the previous modes are scaled. They are not strictly
the same because the ROM matrix changes if more modes
are added to the basis, but again, it does so in a way that
dynamics are preserved.

In Figure 30 we show in the behaviour of the error
estimator for each time step. In Figure 31 we present how
close the estimator is to the actual error, where both are
aggregated in the time direction. We have computed the
estimator for ∆N = 1, 5 and 10 additional modes. Then,
we compute estimator accuracy, how far it is from the actual
ROM error, aggregated for all time steps,

Estimator Accuracy = ‖et − ẽt‖ (122)

We conclude that it seems to be better to carry more than
one mode. Nevertheless, if to compute all these additional
modes becomes too costly, one extra mode will produce
a valid estimator, provided that the base ROM is well
resolved. Later on in Section 5.7 we explore the limits of
this certification technique.

Fig. 30. Time-wise a posteriori error estimator accuracy for NROM = 10,
NSROM = 11. We observe how accurate the estimator is carrying only
one additional mode.

Fig. 31. A posteriori error estimator accuracy. We see how it can become
more effective to carry more additional modes than rather just one.
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5.6 Results for Non-Uniform Mesh Stretching

We now present results for a non-uniform mesh displace-
ment. In Table 13 we give the resulting basis size for each
operator at each step of the nested POD. The final size
("Param. space" column) is sufficient to accurately recon-
struct the operators. All operators require more than a trivial
number of elements, but the bases size differ. The trilinear
term snapshots have been obtained from the FOM simu-
lation (u∗-general). Again, the reduction of this operator
requires as many terms as the solution space.

We have purposefully used a different parameter sam-
pling size for the FOM simulation and the collection of op-
erator snapshots; to show a weakness of this methodology.
Assembling operators is a time-consuming operation, but it
is cheaper than carrying out a full FOM simulation. Hence,
it is encouraged to have a methodology which splits the
collection of operator snapshots and solution snapshots. The
former are cheaper to obtain than the latter, and hence a
larger parameter space can be sampled to produce a richer
collateral basis. By richer basis we intend one that is likely
to work better during the online stage, for it has potentially
a higher generalization degree.

A possible scenario where the split between the assem-
bly and snapshot-collection steps is not feasible is one where
the displacement had to track the solution of the PDE,
e.g. in fluid-structure interaction. In that case we have no
alternative but to collect all the snapshots (operators and
solution) from FOM simulations.

TABLE 13
Basis size at each step of the nested POD strategy. The operators are

sorted by collateral basis final size. The Nonlinear-lifting operator
corresponds to the cross-term lifting matrix that arises from the

nonlinear convective term.

Time int. (Nt = 500) Param. space Nµ

Reduced-basis 660 93 20

Trilinear 670 94 20
Stiffness 121 68

30
Rhs 180 32
Mass 60 21
Convection 60 20
Nonlinear-lifting 60 19

In Figure 32 we show the singular value decay (SV
decay) for each operator. On the top plot, we present the
decays for each time integration path (for a fixed parameter,
they represent the branches of the treewalk). These decays
correspond to the first compression of the snapshots, with
which we obtain a basis Ψµi for a specific parametrization.
On the bottom plot, we present the decay of the final
POD step, which compresses (for each operator) all of the
previous bases into one.

In Figure 33 we present a zoom-in for the first ten singu-
lar values. This shows how some operators are reduced to
very few modes in the time direction.

Indeed, in the time direction most operators still remain
simple to reduce, but when each parameter-fixed basis is
compressed with the others, most information is retained.
This is so because the mesh parameters have a nonlinear
effect, whereas time has a linear one. That is why in time
it is simple to reduce the operator, but not so much across

the geometrical parameter space. When we were dealing
with a uniform deformation of the mesh, since the stretching
parameter δ is present linearly, the piston oscillation can be
captured by sampling one parametrization, two21 at most.

5.6.1 Operators Error Decay
Now that we have multiple operators with a non-trivial
basis, we have to tune all of their errors simultaneously.
We plot in Figure 34 the error decay for each operator as a
function of the basis percentile size. The offline and online
sampling pools are shown in Figure 41 in the Appendix.

All the errors decay as the basis size increases, but
each operator needs a different basis size to reach the
same error threshold. For the offline samples, as the basis
size is shrunk, the errors remain concentrated for different
parametrizations. For the online samples, this behaviour
is not present, with more dispersion between the different
parametrizations. The errors with the full basis are smaller
for the offline pool, compared to those from the online pool.
This is an expected behaviour, since the basis is optimized
for the offline sample.

Fig. 32. Singular value decay for the two nested POD steps:
time integration (top) and parameter space (bottom). Both axes are
represented in logarithmic scale. We observe how due to the presence
of the non-uniform displacement the operators are no longer trivially
reduced. It takes several basis terms to accurately represent the effects
of the nonlinearity. The solution space and the trilinear operator have an
identical decay. This is so because the trilinear form is equally affected
by the values of the extrapolated velocity u∗ and the effects of the non-
uniform displacement.

21. The oscillating frequency ω is inside a sinusoidal function, but this
was only relevant for the mesh velocity, not the overall displacement.
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Fig. 33. This figure is a zoom-in of Figure 32. Only the first ten singular
values (modes) are shown. We can see how for the time integration step
most operators are perfectly summarized with two to six modes. This is
due to the fact that the displacement is separable in time and space; and
only the space function is not linear.

Fig. 34. Operator error decay as a function of basis size percentile.
(Top) Offline parameter sample. (Bottom) Online parameter sample. All
the errors decay as the basis size increases, but each operator needs
a different basis size to reach the same error threshold. For the offline
samples, the errors are concentrated. For the online samples, the errors
present more dispersion. The errors with the full basis are smaller for the
offline pool, compared to those from the online pool. This is an expected
behaviour, since the basis is optimized for the offline sample.

5.7 Certification by Truncation: Limits

We already saw in the heatmap from Figure 21 in Sec-
tion 5.3.2 how the RB and MDEIM approximation errors
could set a lower bound to the HROM error. We show how
this interaction can make the HROM certification by trunca-
tion fail. To do so, we set the experiments shown in Tables 15
and 16. The online parametrization is given in Table 14. We
want to determine the error estimator behaviour when the
RB solution approximation error is smaller or greater than
the (M)DEIM error.

TABLE 14
Online parametrization. The results will only be obtained for one

parameter, since the conclusions scale for many.

Variable Value

a0 18.64
ω 24.78
δ 0.28
up 0.37

xc 0.32
σc 0.14
yc 0.26

The conclusion of the experiments is that if the RB solu-
tion error is smaller than the (M)DEIM error, the HROM er-
ror is saturated by the (M)DEIM errors; and hence the mode
truncation technique cannot be used to certify the HROM
results, because both HROMs produce the same result.
When the RB solution error is greater than the (M)DEIM
error, the trucation technique will produce effective error
estimations.

TABLE 15
Numerical experiments configuration. Pure ROM means no (M)DEIM is

used. HROM means all collateral bases are used.

Pure ROM HROM

εRB > εMDEIM Figure 35 Figure 37
εRB < εMDEIM Figure 36 Figure 38

TABLE 16
Numerical experiments summary. The bases size and the order of

magnitude of the error are provided.

Experiment (M)DEIM ROM SROM Estimator
N , Error N , Error

Figure 35 - 15, 10−4 25, 10−6 Accurate
Figure 36 - 25, 10−6 30, 10−7 Accurate
Figure 37 10−6 15, 10−3 25, 10−4 Regular
Figure 38 10−6 25, 10−4 30, 10−4 Ineffective
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Fig. 35. ROM vs. FOM approximation error, no (M)DEIM. The FOM op-
erators are assembled and projected for each time step. The certification
by truncation procedure is accurate, with the estimator matching the
ROM error.

Fig. 36. ROM vs. FOM approximation error, no (M)DEIM. The FOM oper-
ators are assembled and projected for each time step. The certification-
by-truncation procedure is accurate, with the estimator matching the
ROM error.

Fig. 37. ROM vs. FOM approximation error, (M)DEIM is active. The
approximation error for all operators is 10−6. The error of the SROM
has increased, but it remains smaller than the ROM error. Hence, the
certification-by-truncation procedure produces a valid estimator.

Fig. 38. ROM vs. FOM approximation error, (M)DEIM is active. The
approximation error for all operators is 10−6. The error for the ROM and
the SROM is the same, leading to an ineffective truncation estimator.
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5.8 Non-Uniform Mesh: Restricted N-MDEIM
In this final section we build the N-MDEIM basis for the
trilinear term from snapshots obtained from RB solution
modes evaluation (u∗-restricted).

We anticipate that we obtain a non-hierarchical basis
as in Section 5.4.4 (N-MDEIM with RB Solution Modes),
despite the non-uniform spacing of the mesh. This is due
to the following facts:

• The domain is one-dimensional.
• The FEM basis functions are P1 polynomials.
• The trilinear integrand is linear in all of its arguments

(including parameters).
• The trilinear integrand contains one derivative (trial

function u).

The last fact is crucial, making the non-uniform mesh size
go unnoticed. For P1 polynomials, the derivative of the
Lagrangian function is the inverse of the mesh size, which
gets cancelled by the integration over the mesh element.
This is a known fact of convection-like forms, for which the
mesh size does not show up in the FEM matrix. We could
have expected that due to the non-uniform displacement,
the mesh size would have an impact in the matrix elements.
However, in the specific context described in the list above,
this is not the case. For our particular scenario (despite the
the non-uniform of the mesh displacement), to reduce the
trilinear form it is sufficient to collect snapshots for one
parameter for as many RB solution modes as we will be
using for the HROM simulation (taking into account the
number of modes carried by the SROM).

As we saw in previous sections, when the basis is not
hierarchical, the reconstruction error cannot be used as a
proxy to determine the accuracy of the collateral basis. Our
conclusion here is that for this trilinear form, the collateral
basis error will be as good as the error associated to the RB
solution basis used to assemble the snapshots.

This is shown in Figure 39. The N-(M)DEIM has been
assembled with the first five RB solution modes. In com-
parison to the results in Figure 35, which only reflect the
RB solution error22; these HROMs underperform because
the N-MDEIM captures the dynamics for the first five RB
solution modes, where the ROM and the SROM have 15 and
25 respectively. Instead, when the N-MDEIM is assembled
with 15 modes, the ROM recovers its original accuracy, see
Figure 40.

Furthermore, since the SVD creates a linear combination
of the inputs; for non-hierarchical operator bases, trucating
the RB operator basis is not equivalent to collecting the
snapshots without the same number of removed RB solution
modes.

22. We recall that no (M)DEIM is active there.

Fig. 39. ROM vs. FOM approximation error. The (M)DEIM bases size
for the linear operators is such that the error is 10−6. The trilinear N-
MDEIM has been assembled with N = 5 RB solution modes. The ROM
and the SROM are poorly resolved due to unsufficient representation
of the excess modes they carry with respect to the N-MDEIM training
modes.

Fig. 40. ROM vs. FOM approximation error. The (M)DEIM bases size
for the linear operators is such that the error is 10−6. The trilinear N-
MDEIM has been assembled with N = 15 RB solution modes. The
ROM recovers its original accuracy, since the N-MDEIM is accurately
represented for that number of modes. Instead, the SROM presents
a larger error than expected, due to the excess RB solution modes it
carries with respect to the N-MDEIM training modes.
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6 CONCLUSIONS

An hyper reduced order model has been succesfully created
and certified for the one-dimensional isentropic moving
piston. This simplified gas dynamics problem contains all
the ingredients that conform a real life problem: a Burgers-
like nonlinear term and a moving mesh. Two parametrized
moving meshes have been introduced: uniform and non-
uniform mesh stretching. We are not restricted to moving
boundaries, the conclusions and methods are also valid for
domains whose mesh nodes move inside the domain, whilst
remaining fixed at the boundaries.

The reduction strategy permits us to remain in the phys-
ical domain, thus skipping the Jacobian transformation.

6.1 Research Answers

Thanks to the fact that the methodology is purely alge-
braic, and that we have dealt in a general way with the
parametrized Dirichlet boundary conditions, (without any
assumption on their functional form), our reduction strategy
adquires non-intrusive and compactness properties, that
should allow its implementation on existing solvers.

We have identified a reduced basis to carry out the
Galerkin projection; and a collateral basis for each of the
algebraic operators (vectors and matrices), to approximate
their projection onto the reduced space without explicitly
assembling and projecting the original FOM operator. Build-
ing the collateral basis increases the cost of the offline stage,
but it allows a perfect offline-online split: no FOM operators
are used during the online run. For the linear operators,
the offline stage is carried out separately from the solution
RB basis identification, so that a wider parameter range
can be spanned, and thus a richer operator basis obtained
(a simulation is more expensive than the assembly of an
operator). To approximate the operators at the same level of
accuracy, the presence of the non-uniform mesh movement
requires more operator modes than the uniform mesh.

The interaction between the RB and (M)DEIM errors has
been analyzed. The number of RB solution and RB operators
modes needs to be such that the (M)DEIM error is always
smaller or equal to the RB solution error. Otherwise, the
certification by truncation technique will fail.

6.1.1 Discretization Flexibility
The (M)DEIM technique determines certain operator entries
which have to be computed at runtime during the online
stage to carry out the empirical interpolation. In the finite
element context, this is quite convenient. The restricted
operator entries are computed by evaluating the weak form
integral for the mesh elements associated with the selected
entries. However, all the content of this work could be
reused in a finite difference or finite volume formulation,
provided that the implementation is capable of an efficient
calculation of individual operator entries.

6.1.2 Nonlinear Convection MDEIM
Due to the velocity extrapolation in Burgers’ nonlinear
convection term, a trilinear operator is present in the FOM
discretization. We have compared two approaches to create
the MDEIM basis for this operator:

• (u∗-general) collecting the snapshots from the FOM
simulation [1];

• (u∗-restricted) collecting the snapshots from evalua-
tions of the operator with RB solution modes.

The u∗-general approach has the following drawbacks:

• it limits the sampling pool of the N-MDEIM to the
one used to identify the solution reduced basis;

• the FOM operators from the simulation would not
be available if the reduced basis is identified from
experimental data.

Our enhancement of the trilinear MDEIM offline stage
(u∗-restricted) tackles these two issues, uncoupling snapshot
collection from the FOM simulation. Once the RB solution
modes have been identified (and trimed to a given threshold
error) they can be used to build the N-MDEIM collateral
basis.

The u∗-restricted approach is not limited to Burgers’
nonlinear convective term. It could be used with the nonlin-
ear convective term present in the Navier-Stokes equations,
and potentially with any trilinear form whose additional
argument is expressed in terms of a linear combination of
the solutions. In fact, if the additional argument belonged
to another space (different from the solution space), the
modes23 of such function space could be used to sample
the operator efficiently.

6.2 Limitations and Future Work
We are aware of how we have benefited from solving our
PDE in a one-dimensional domain. Despite the presence of
a nonlinear term and a moving mesh, the formulation of the
problem remained benign.

Nevertheless, our whole procedure would scale switfly
to higher dimensions. We have restricted ourselves to P1
finite elements. Although for one-dimensional domains scal-
ing to higher order polynomials does not raise dimensional-
ity issues, for actual three-dimensional domains it would.
Therefore, we saw no need for rising our degree at this
point.

The oscillating cylinder problem is a good candidate
to test the formulation in a more realistic setting. Most of
the problem algebraic formulation would remain the same
(albeit larger matrices), except for a difficulty which was not
present in this work: the calculation of the Dirichlet lifting.
In this work we have leveraged the fact that the lifting
could be computed analytically. For higher dimensions, the
boundary conditions need to be numerically extended to
the domain, e.g., via harmonic extensions [14], or solving
the elastodynamic equations [57]. These extension problems
can be expressed as HROMs too [1].

These are not the only challenges when the problem
is dealt with in higher dimensions. For the creation of the
Navier-Stokes ROM, the velocity field needs to be enriched
[58], so that the inf-sup condition is also satisfied at the ROM
level.

23. Not necessarily obtained with a POD decomposition.
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APPENDIX A
DETERMINATION OF PISTON MOVEMENT LAW

We impose the movement of the piston, so we need to
make sure we do so in a physically meaningful way. This
appendix is born after making the mistake of believing that
any sinusoidal function would do the job. Since our flow
will depart from rest, we need to set the piston motion so
that at the initial instant the piston also starts its movement
from rest.

To derive the piston movement law, we depart from a
force defined by the elemental harmonic functions,

A cos(ωt) +B sin(ωt) = mẍ(t), (123a)
x(0) = 0, (123b)
ẋ(0) = 0. (123c)

Integrating in time, we get

A

mω
sin(ωt)− B

mω
cos(ωt) + C1 = ẋ(t). (124)

If we enforce the initial condition of rest to find the value of
the integration constant, we arrive to an incongruency,

− B

mω
+ C1 = 0→ C1 =

B

mω
. (125)

If we were to integrate in time again, due to the presence
of the constant C1, a linear term proportional to ∼ t would
show up.

This is not the physical result we expected, given the
fact that we departed from two linear harmonic functions
(which introduce and remove energy with fixed frequency
and amount from the system). Hence a harmonic movement
was expected, not one changing linearly in time.

This conflictive result comes from the sinusoidal term
in the definition of the force moving the piston. If we set
B = 0, the first integration constant will become identically
zero, C1 = 0. When this is the case, the linear term vanishes,
and we recover a harmonic piston movement,

A

mω2
cos(ωt) + C2 = x(t). (126)

By setting the initial piston location, we get the value for C2,

x(t) = L0 −
A

mω2
(1− cos(ωt)) . (127)

If we now define A such that A
mω2 represents a fraction of

the initial piston length, δL0, we get a compact expression
for the piston movement,

x(t) = L0 [1− δ (1− cos(ωt))] . (128)
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APPENDIX B
LARGE FIGURES

B.1 Non-Uniform Displacement

TABLE 17
Online operator approximation errors.

Convection Mass N-Lifting RHS Stiffness Trilinear
p

0.05 7.4e-01 3.6e-05 2.9e-02 4.2e-03 4.0e-08 2.5e-01
0.10 3.5e-02 2.1e-05 2.9e-02 4.6e-04 2.2e-08 6.8e-04
0.20 2.1e-02 1.7e-05 7.7e-03 9.7e-05 4.3e-09 5.1e-07
0.40 3.4e-03 3.2e-06 1.0e-03 1.4e-05 6.8e-10 1.5e-09
0.60 2.8e-04 2.4e-07 4.9e-05 1.5e-07 2.0e-11 4.1e-11
0.80 9.4e-06 4.8e-09 2.2e-06 3.2e-09 6.7e-13 3.3e-13
0.85 2.5e-06 2.6e-09 3.6e-07 2.5e-09 3.9e-13 -
0.90 6.6e-07 1.2e-09 1.9e-07 5.6e-10 4.2e-13 -
0.95 6.1e-07 6.3e-10 1.6e-07 2.7e-10 3.5e-13 -
1.00 1.7e-07 1.7e-10 6.5e-08 1.4e-10 4.8e-14 1.3e-15

TABLE 18
Basis size according to percentile position.

Convection Mass N-Lifting Rhs Stiffness Trilinear
p

0.05 1 1 0 1 3 4
0.10 2 2 1 3 6 9
0.20 4 4 3 6 13 18
0.40 8 8 7 12 27 37
0.60 12 12 11 19 40 56
0.80 16 16 15 25 54 75
0.85 17 17 16 27 57 79
0.90 18 18 17 28 61 84
0.95 19 19 18 30 64 89
1.00 20 21 19 32 68 94
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Fig. 41. Sampling space for offline and online stages for the nonlinear displacement test case.
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