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Abstract
Computational power is a challenge when it comes to the high­fidelity modeling of nuclear reactors.
Detailed simulations of reactor physics involve complex calculations that require significant computing
resources, which can be time­consuming and expensive. Reduced Order Modeling (ROM) allows for
an approximation of a complex model by only capturing the essential features, thereby reducing the
computational load. A reduced order model provides computationally efficient approximations of a sys­
tem, but it requires still many evaluations of a high­fidelity model to capture all the dynamics. Using
the adaptive sparse grid can reduce the number of evaluations needed, though the construction of the
reduced order model is still computationally intensive.

The aim is to minimize the computational workload involved in constructing a reduced­order model
during the offline phase. This is achieved by decreasing the number of high­fidelity model evaluations
necessary for building the reduced order model while maintaining accurate results. To this end, the
existing adaptive proper orthogonal decomposition algorithm is enhanced by employing multi­fidelity
techniques. Multi­fidelity methods aim to combine large amount of low­fidelity data with a limited amount
of high­fidelity data to compute accurate, yet computationally inexpensive approximations. Two novel
multi­fidelity reduced order model methods based on proper orthogonal decomposition are proposed;
Filtered Bi­Fidelity Adaptive Proper Orthogonal Decomposition (FB­POD) algorithm and Adapted Bi­
Fidelity Proper Orthogonal Decomposition (AB­POD). These models are evaluated on two different test
cases, and the balance between the accuracy of each multi­fidelity ROM and the computational cost,
measured by the number of high­fidelity evaluations, is investigated. In specific cases, the proposed
methods significantly reduce the number of high­fidelity evaluations compared to the single high­fidelity
ROM, while yielding comparable accuracy.
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Nomenclature

Abbreviation Definition
MSFR Molten salt fast reactor
FEM Finite element method
DGFEM Discontinuous Galerkin Finite element method
HFM High­fidelity model
LFM Low­fidelity model
NTE Neutron transport equation
PDE Partial differential equation
POD Proper orthogonal decomposition
aPOD Adaptive proper orthogonal decomposition
AB­POD Adapted Bi­Fidelity Proper Orthogonal Decomposition
FB­POD Filtered Bi­Fidelity Proper Orthogonal Decomposition
ROM Reduced order modeling
SVD Singular value decomposition

Symbol Definition
𝑡 Time
𝜎 Singular value
𝑒 Absolute error tolerance
𝛾𝑟 Truncation error tolerance
𝛾𝑚𝑎𝑥 Global error tolerance
𝛾𝑖𝑛𝑡 Local error tolerance
𝜆𝑚𝑎𝑥 Global error tolerance for the correction factor
𝜆𝑖𝑛𝑡 Local error tolerance for the correction factor
𝜁𝑚𝑎𝑥 Global error tolerance for the FB­POD
𝑝 Parameter node
p Parameter point
𝑑 Dimension
𝜓 POD mode
M Low­fidelity snapshot matrix
H High­fidelity snapshot matrix
𝑐 Coefficient of POD mode
𝓟 Set of nodes
𝑚 Number of points
𝑙𝑑 Level of sparse grid along dimension 𝑑
𝐿 Level of sparse grid
𝑤 Hierarchical weight
𝒯 Test set
𝒞 Candidate set
𝒵 Important set
Ψ(⋅) Forward operator
𝜇 Greediness factor
𝒳 Union of important sets
Σ𝑥 Macroscopic cross­section
𝑁 Number density of nuclei
𝜎𝑥 Microscopic cross­section
𝑛 Differential neutron density
𝜙 Angle­dependent flux
𝑆 Neutron source
𝑣 Neutron speed
𝐽 Neutron flux density
𝐷 Diffusion coefficient
𝜈 Number of neutrons released per fission reaction
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1
Introduction

1.1. Background and Project Motivation
Nuclear reactors provide a reliable, low­carbon source of electricity and heat, making them an attrac­
tive option for policy makers that need to reduce their countries’ greenhouse gas emissions and meet
climate targets. The safe and efficient operation of nuclear reactors requires accurate and high­fidelity
modeling of the reactor physics. High­fidelity modeling involves detailed simulations of the behavior of
neutrons and other particles in the reactor, as well as the heat transfer and fluid dynamics that occur
in the reactor core. These simulations can be computationally intensive, requiring powerful computers
and specialized software. Accurate modeling of reactor physics is essential to ensure the safety and
reliability of nuclear reactors [2]. It allows for the optimization of reactor design and operation, and for
the prediction and analysis of reactor performance under different conditions. High­fidelity modeling
can also be used to investigate and address safety concerns, such as the behavior of nuclear fuel
during accidents. In recent years, advancements in high­performance computing and simulation tools
have enabled more detailed and accurate modeling of reactor physics. This has led to the development
of advanced reactor concepts, such as small modular reactors and advanced fast reactors, which are
designed to be safer and more efficient than traditional nuclear reactors [3].

Accurate and high­fidelity modeling of the reactor physics is essential to the safe and efficient opera­
tion of nuclear reactors, and to the development of advanced reactor concepts. Ongoing research and
development in the field of reactor physics is critical to realise the full potential of nuclear energy as a
low­carbon source of electricity and heat.

Computational power is on of these challenges when it comes to high­fidelity modeling of nuclear reac­
tors. Detailed simulations of reactor physics involve complex calculations that require significant com­
puting resources, which can be time­consuming and expensive. Advancements in high­performance
computing has helped to address this challenge. High­performance computers and parallel process­
ing techniques allow for faster and more efficient simulations. Additionally, the use of reduced order
models can help to reduce the computational cost of simulations while maintaining a high level of ac­
curacy. This method allows for an approximation of a complex model by only capturing the essential
features, thereby reducing the computational load. When applied in a non­intrusive matter, reduced
order modeling allows for the construction of surrogate models without knowledge of the underlying
mathematics or access to the source code of the model, making these methods easy to implement
and widely applicable in various fields of science and engineering. Ongoing research on reduced order
modeling in the field of reactor physics is focused on developing new techniques and algorithms that
can improve the efficiency and accuracy of simulations[3].

Multi­fidelity modeling plays an important role in the field of high­performance computing. by allowing
for simulations to be performed at different levels of accuracy and computational cost. In multi­fidelity
modeling, simplified models are used to provide estimates of reactor behavior at a lower computational
cost, while more detailed models are used to provide more accurate results but require more com­
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2 1. Introduction

putational resources. By combining these models, it is possible to perform simulations that are both
accurate and efficient [4].

Multi­fidelity modeling can be particularly useful in the field of reduced order modeling as the construc­
tion of a reduced order surrogate model can still require large computational power. In the building
phase, many evaluations of the complex high­fidelity model are used to capture all the dynamics of the
system. This is a process that can be referred to as training the surrogate model. A good approximation
by the reduced order model should have a small approximation error and preserve the properties of
the original system. Obtaining enough high­fidelity data is not always feasible due to the computational
workload. Large amounts of readily available data based on simplified models, however, can be used
for training the surrogate model instead. The need for many computationally expensive high­fidelity
evaluations is thereby reduced. Simplified geometry of physics­informed assumptions can be used to
construct such low­fidelity models.

Overall, multi­fidelity reduced order modeling is a valuable tool in the field of nuclear reactor physics,
as it allows for efficiently exploring a wide range of scenarios and design options.

1.2. Research Objective
The aim of this project is to minimize the computational workload involved in constructing a reduced
order model during the offline phase. This will be achieved by decreasing the number of high­fidelity
model evaluations necessary for building the reduced order model while maintaining accurate results.
To this end, the existing adaptive proper orthogonal decomposition algorithm will be enhanced by em­
ploying multi­fidelity techniques. Two multi­fidelity reduced order models will be built using a filtering
and an adaptation strategy. These models will be evaluated on three different test cases, and the bal­
ance between the accuracy of each multi­fidelity ROM and the computational cost, measured by the
number of high­fidelity evaluations, will be investigated.

The report is structured as follows: in Section 2, the underlying theoretical framework for this study
is presented. The concept of reduced order modeling and multi­fidelity strategies is explained and
both existing methods and novel proposed methods are discussed. The section continues with the
theory of nuclear reactor physics. Section 3 presents the numerical methods used in this work and
the test cases that will be utilized to investigate the proposed multi­fidelity ROM methods. The results
of the developed multi­fidelity algorithms are presented and compared to the existing adaptive proper
orthogonal decomposition method in Section 4. Finally, the conclusions and recommendations for
further research are given in Section 5.



2
Background

In this Section, the underlying theoretical framework for this study is presented. The concept of Re­
duced Order Modeling is introduced in Section 2.1, highlighting its significance and utility. Proper
Orthogonal Decomposition, the reducing methodology utilized in this study, is then described, along
with its application using sparse grids. Furthermore, it explains how the sparse grids can be refined
adaptively following the work of Alsayyari et al. (2019). In Section 2.2, a review of previous literature on
multifidelity methods and a novel approach to the adaptive sparse grid framework is presented. Section
2.2 concludes with a description of the algorithms employed in this study. Finally, Section 2.3 outlines
the nuclear reactor physics theory relevant to the test cases used to evaluate the algorithms.

2.1. Reduced Order Modeling
Capturing the behavior of a complex system results in models that contain many equations or depend
on many parameters, which require large computational power to evaluate. For example, describing
molten salt fast reactors where the primary coolant and fuel are a molten salt mixture leading to cou­
pled neutronics and thermal­hydraulics. Comprehensive models give insight into these multi­physics
phenomena but are impractical for many query applications like uncertainty quantification or design
optimization due to the required computational power. Reduced Order Modeling (ROM) allows for
an approximation of a complex model by only capturing the essential features, thereby reducing the
computational load. To that extent, the number of state variables, the variables used to describe the
system’s state, is greatly reduced in an offline phase. In this phase, many evaluations of the complex
high­fidelity model are used to capture all the dynamics of the system. The order of the model can
then be reduced through various techniques. A good approximation should have a small approxima­
tion error, preserve properties of the original system, and have a computationally efficient reduction
method [33]. In the online phase, the ROM is employed to quickly produce accurate approximations
for any range of input parameters. The speed of the online phase outweighs the computational cost
of the offline part. Reduced order modeling methods can be divided into two classes: intrusive or
projection­based and non­intrusive. Intrusive methods require the governing equations of the system,
while non­intrusive methods build surrogate models based on the in­ and output of the model without
accessing the underlying equations [6].

Intrusive methods project the high­fidelity model on a reduced basis, thereby reducing the dimension
of the system that has to be solved. Consider a general time­dependent Partial Differential Equation
(PDE) that has to be solved for some physical quantity u(x, 𝑡) depending on state space x and time 𝑡:

𝑑u
𝑑𝑡 = 𝔏(u(x, 𝑡)) + 𝔑(u(x, 𝑡)), (2.1)

where 𝔏(⋅) is a linear operator and𝔑(⋅) is a nonlinear function. Many physical phenomena are governed
by PDEs, like the propagation of heat, sound, or as in this work, neutrons, and are often come across
in the science and engineering fields. Finding exact solutions of PDEs is difficult if not impossible [17].
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4 2. Background

Instead, PDEs are often solved numerically using a discretization method like finite differences or finite
elements. For Equation 2.1, this yields the following form

𝑑u(𝑡)
𝑑𝑡 = Au(𝑡) + 𝔑(u(x, 𝑡)), (2.2)

where u(𝑡) ∈ ℝ𝑚 is the spatial discretization of u(x, 𝑡), A ∈ ℝ𝑚×𝑚 is the matrix notation of the dis­
cretization of the linear operator 𝔏(⋅), and 𝔑 is a nonlinear function. To reduce the dimension of the
system 𝑚, an approximation is sought by projecting the full solution onto a r­dimensional subspace,
where 𝑟 << 𝑚. This gives

u(𝑡) ≈ u𝑟(𝑡) = Vc(𝑡), (2.3)

where the columns of V ∈ ℝ𝑚×𝑟 span the reduced subspace and c(𝑡) ∈ ℝ𝑟. Furthermore, a projection
matrix W is defined such that W𝑇V = I where I ∈ ℝ𝑟×𝑟 is the identity matrix. Filling Equation 2.3 into
equation 2.2 and mutliplying both sides withW𝑇 results in the reduced system

W𝑇V
𝑑c(𝑡)
𝑑𝑡 =W𝑇AVc(𝑡) +W𝑇𝔑(c(𝑡)). (2.4)

Once the basis matrix V and the projectionW𝑇 are computed, the computational cost of solving Equa­
tion 2.4 will be lower than solving the full­order model due to the reduced dimensionality. Projection­
basedmodel reduction is especially beneficial for linear systems as the reducedmodel forms a compact
representation that does not require the original m­dimensional model anymore. For nonlinear terms,
however, the reduced operator cannot be computed without evaluating the nonlinear operator 𝔑(⋅)
which still depends on the large dimension of the original system. This reduces the effectiveness of the
model reduction. Various methods of overcoming this exist like linearization of the nonlinear term [14],
though, intrusive model order reduction remains an active field of research that is outside the scope of
this thesis.

Data­driven or non­intrusive methods overcome the problem of non­linearity by building a surrogate
model from the in­ and output, treating the original model as a ‘black box’. Knowledge of the underlying
mathematics or access to the source code of the model is in that case not necessary, making these
methods easy to implement and widely applicable [2]. A common method and the one used in this
work is Proper Orthogonal Decomposition (POD).

2.1.1. Proper Orthogonal Decomposition
Proper Orthogonal Decomposition has become a popular method in the various fields of science and
engineering for computing high accuracy approximations. It has been shown that for a given data set
and a given number of modes, POD will provide the most optimal basis to compute an approximation
in a least square sense [8]. In POD, the state vector u(x;p𝑎) ∈ ℝ𝑚 of an complex system can be
approximated at any given design parameter p𝑎 ∈ ℝ𝑑 by a linear combination of orthonormal basis
functions or POD modes 𝜓𝑖(x), that lay in some subspace with dimension 𝑟 << 𝑚:

u(x;p𝑎) ≈ û(x;p𝑎) = Σ𝑟𝑖=1𝑐𝑖(p𝑎)𝜓𝑖(x) (2.5)

where 𝑐𝑖 are the coefficients dependent on the input parameter p𝑎 and 𝑟 is the number of modes of the
reduced order model. A orthonormal basis is sought that minimizes the error between the true value
and the approximation in the 𝐿2 norm [18]:

min
𝜓𝑖

E =min
𝜓𝑖

𝑟

∑
𝑎=1

||u(p𝑎) − Σ
𝑁𝑟
𝑖=1𝑐𝑖(p𝑎)𝜓𝑖||𝐿2

, (2.6)

where the 𝐿2 norm is defined as

||u(x)||𝐿2 = √∫Ω
|u(x)|2 𝑑Ω. (2.7)
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The idea is to first determine the optimal basis that minimizes Equation 2.6 for the best approximation.
Then, using the orthonormality of the basis, compute the coefficients 𝑐𝑖. Because the basis vectors are
orthonormal, the 𝑖𝑡ℎ coefficient 𝑐𝑖 can be calculated by taking the scalar product of the solution at the
sampled points with the 𝑖𝑡ℎ basis vector:

𝑐𝑖(p𝑎) =< 𝜓𝑖 ,u(p𝑎) > . (2.8)

For convenience, the spatial dependence of the true solution and the basis vectors are now implied,
that is u(x;p𝑎) = u(p𝑎) and 𝜓𝑖(x) = 𝜓𝑖.

Different ways exist to derive the POD basis, in this work Singular Value Decomposition (SVD) is used.
To that extent, a so­called snapshot­matrix has to be constructed,

M = [u1,u2, ...,u𝑛] ∈ ℝ𝑚×𝑛 (2.9)

that contains 𝑛 solutions or snapshots of the high­fidelity model for certain points in parameter space.
The matrix M is then deconstructed into three matrices:

M = UΣV𝑇 . (2.10)

The left singular vector matrix U ∈ ℝ𝑚×𝑚 holds the basis vectors 𝜓𝑖, while the diagonal matrix Σ ∈
ℝ𝑚×𝑛 contains the singular values 𝜎ℎ on its main diagonal. The last 𝑚 − 𝑛 rows of Σ contain zeros.
Furthermore, the singular values are ordered such that 𝜎1 ≥ 𝜎2 ≥ ... ≥ 𝜎𝑚𝑖𝑛{𝑚,𝑛} > 0. The matrix
V ∈ ℝ𝑛×𝑛 holds the right singular vectors 𝑣𝑖. This decomposition is proved to exist for every 𝑚 × 𝑛
matrix [16]. To construct the decomposition of Equation 2.10, it is assumed that𝑚 ≥ 𝑛, though a similar
procedure can be followed in the case of 𝑚 < 𝑛, see [16]. Both matrices U and V𝑇 are orthogonal, that
is

U𝑇U = I𝑚×𝑚 (2.11)

U𝑇U = I𝑛×𝑛 (2.12)

where I is the identity matrix. To find U and V𝑇, the originality property is used to compute the following
two eigenvalue problems:

M𝑇MV = VΣ2 (2.13)

MM𝑇U = UΣ2 (2.14)

Usually, the eigenvalues and eigenvectors of M𝑇M are computed to find V and Σ, and then matrix U is
obtained by direct calculation [8]:

U = MVΣ−1. (2.15)

Once the basis vectors 𝜓𝑖 are found, Equation 2.8 is used to compute the corresponding coefficients
𝑐𝑖(p𝑎) at the sampled parameter points p𝑎.

To make a low­order approximation of M, the first 𝑟 POD modes and their singular values are chosen.
The matrix Σ is truncated into a square 𝑟 × 𝑟 matrix, and the corresponding columns of U and V𝑇 are
kept as well [8]:

M ≈ U𝑟Σ𝑟V𝑇𝑟 . (2.16)

Limiting the number of basis vectors to represent the solution introduces a truncation error 𝑒𝑟. The
square of the singular values 𝜎2ℎ represents how much energy a POD mode contributes to the total
solution. The truncation error is therefore represented as the percentage of squared singular values that
are disregarded. It only measures the error in approximating the true solutions that are in the snapshot
matrix. If enough samples points are taken, however, it can indicate the error of new approximations.
This truncation error is controlled by keeping it smaller than a chosen threshold value 𝛾𝑟 [12]:
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𝑒𝑟 =
Σ𝑚ℎ=𝑟+1𝜎2ℎ
Σ𝑚ℎ=1𝜎2ℎ

< 𝛾𝑟 . (2.17)

The coefficients in Equation 2.8 can only be found for the points where the exact solution u(p𝑎) is
known. The purpose of ROM is to make quick approximations for unsampled points, without having to
compute the full solution. To achieve this, the coefficients have to be interpolated for the unsampled
points. Interpolation can be done through simple interpolation as in [24], using Radial Basis Functions
as done in [34], by Kriging [35], or Smolyak interpolation [12]. This last method was employed for the
adaptive Proper Orthogonal Decomposition by Alsayyari et al., which is used in this work.

2.1.2. Sparse grids and Smolyak Interpolation
For an accurate approximation and to not miss any interesting behaviour of the system, the snapshot­
matrixM should contain enough snapshots. An efficient approach to sampling parameter space has to
be taken, because the high­fidelity model requires long computation times and the number of samples
needed from such model grows exponentially with increasing dimensions. Determining the optimal
number of sampling points is a key challenge, which becomes even more difficult in high­dimensional
problems. To capture all dynamics of the system, uniform sampling with small intervals can be used,
but it is computationally expensive. An alternative solution is to use a sparse grid, which is built by
selecting a set of points for each dimension separately. Sparse grids are effective in high­dimensional
problems and can be adapted to reach the desired accuracy in each dimension through a hierarchical
construction of grids on top of each other [12].

To construct a sparse grid, unidimensional nodes are computed hierarchically for each dimension per
level 𝑙, where the node of the highest level is assigned level 𝑙 = 1 and referred to as the root node. A
node refers to a point along a single dimension in a multidimensional parameter space, while a point
is a combination of nodes, one from each dimension. The 𝑗𝑡ℎ node at level 𝑙 along dimension 𝑑 is 𝑝𝑙𝑑𝑗𝑑
and the set of all nodes at level 𝑙 is indicated by 𝓟𝑙𝑑 . Nodes from each dimension together form a point
in parameter space p = (𝑝𝑙1𝑗1 , ..., 𝑝

𝑙𝑑
𝑗𝑑), p ∈ ℝ

𝑑. For this work nested nodes are chosen, i.e. 𝓟𝑙𝑑 ⊆ 𝓟𝑙𝑑+1,
for their efficiency, as this prevents repeating model evaluations when increasing the sparse grid level.
The newly added nodes of level 𝑙 + 1 are in the difference set 𝓟𝑙𝑑+1Δ = 𝓟𝑙𝑑+1\𝓟𝑙𝑑 . For the sparse
grids, the 𝑑­dimensional parameter space is mapped onto a unitary hypercube [0, 1]𝑑, that can later
be scaled to the physical range of the input parameters. Selecting the location of nodes can be done
in various ways. To ensure optimal separations of nodes across the parameter domain, the nodes in
this work are generated equidistant from each other. However, the sparse grid will be locally refined
through an adaptive sampling scheme, described in Section 2.1.3.

A Smolyak interpolant is built to approximate the function 𝑐(𝑝) so that the coefficients of Equation 2.5
can be computed for new input points. First, the unidimensional case is discussed where there are only
nodes, and then the derivation is extended for the multidimensional points. The index 𝑑 is dropped from
the notation in this one­dimensional case. The coefficients of Equation 2.8 are evaluated at the nodes
𝑝𝑙𝑗 of the set 𝓟𝑙 at level 𝑙 to construct a Smolyak interpolant:

𝑐(𝑝) ≈ 𝑈𝑙(𝑐)(𝑝) = ∑
𝑝𝑙𝑗∈𝓟𝑙

𝑐(𝑝𝑙𝑗)𝑎𝑙𝑝𝑙𝑗(𝑝), (2.18)

where𝑈𝑙(𝑐)(𝑝) is an operator that approximates the function 𝑐(𝑝) and 𝑎𝑙𝑝𝑙𝑗(𝑝) are basis functions. Piece­
wise multi­linear functions are used in this work because they can be used to refine specific regions.
For each node 𝑝𝑙𝑗 along a certain dimension, a basis function can be constructed as

𝑎1𝑝11 = 1 if 𝑙 = 1,

𝑎𝑙𝑝𝑙𝑗 = {
1 − (𝑚𝑙 − 1) ⋅ |𝑝 − 𝑝𝑙𝑗|, if |𝑝 − 𝑝𝑙𝑗| <

1
𝑚𝑙−1 ,

0, otherwise,
where 𝑚𝑙 represents the number of nodes at level 𝑙 and 𝑝𝑙𝑗 are the equidistant nodes defined as:
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𝑚𝑙 = {1, if 𝑙 = 1,
2𝑙−1 + 1, if 𝑙 > 1,

𝑝𝑙𝑗 = {
0.5, for 𝑙 = 1 if 𝑚𝑙 = 1,
𝑗−1
𝑚𝑙−1 , for 𝑙 = 1, 2, ..., 𝑚𝑙 if 𝑚𝑙 > 1.

The interpolant (Equation 2.18) is built by adding the terms of all nodes of level 𝑙 𝑝𝑙𝑗. Since the nodes
are nested, all the terms of the interpolant of level 𝑙 − 1 are also present in the interpolant of level 𝑙, i.e.
the interpolant at level 𝑙 − 1 can always be represented by the interpolant of level 𝑙:

𝑈𝑙−1(𝑐)(𝑝) = 𝑈𝑙(𝑈𝑙−1(𝑐)(𝑝)). (2.19)

Therefore, only the terms of the newly added nodes 𝑝𝑙𝑗 ∈ 𝓟𝑙Δ have to be found to compute the interpolant
at the next level 𝑙. The newly added terms are defined as,

Δ𝑙(𝑐)(𝑝) = 𝑈𝑙(𝑐)(𝑝) − 𝑈𝑙−1(𝑐)(𝑝), (2.20)

which can be written as,

Δ𝑙(𝑐)(𝑝) = ∑
𝑝𝑙𝑗∈𝓟𝑙

𝑐(𝑝𝑙𝑗)𝑎𝑙𝑝𝑙𝑗(𝑝) − ∑
𝑝𝑙𝑗∈𝓟𝑙

(𝑈𝑙−1(𝑐))𝑎𝑙𝑝𝑙𝑗(𝑝)

= ∑
𝑝𝑙𝑗∈𝓟𝑙

𝑎𝑙𝑝𝑙𝑗(𝑝)(𝑐(𝑝
𝑙
𝑗) − (𝑈𝑙−1(𝑐)))

(2.21)

The interpolant is built such that at level 𝑙 − 1, the interpolant 𝑈𝑙−1(𝑐) can exactly rebuild 𝑐(𝑝) for the
nodes of level 𝑙 − 1, so 𝑐(𝑝𝑙𝑗) − 𝑈𝑙−1(𝑐)(𝑝𝑙𝑗) = 0 for 𝑝𝑙𝑗 ∈ 𝓟𝑙−1. Therefore, the summation of Equation
2.21 has only nonzero terms for the newly added nodes 𝑝𝑗𝑗 ∈ 𝓟𝑙Δ. Now, 𝑝𝑙𝑗 is redefined such that it is
the 𝑗𝑡ℎ node of the difference set 𝓟𝑙Δ. Making use of the fact that the number of newly added points is
𝑚𝑙Δ = 𝑚𝑙 −𝑚𝑙−1, Equation 2.21 can be written as,

Δ𝑙(𝑐)(𝑝) =
𝑚𝑙Δ
∑
𝑗=1
𝑎𝑙𝑝𝑙𝑗(𝑝) (𝑐(𝑝

𝑙
𝑗) − 𝑈𝑙−1(𝑐)(𝑝𝑙𝑗)) . (2.22)

The unidimensional nodes can be combined onto a multidimensional sparse grid using Smolyak com­
bination if the following condition is satisfied:

𝑑 ≤ |𝑙𝑙𝑙| ≤ 𝐿 + 𝑑, (2.23)

where 𝑙𝑠 is the level index of dimension 𝑠, |𝑙𝑙𝑙| = 𝑙1+𝑙2+ ... + 𝑙𝑑 and 𝐿 is the level of the sparse grid. The
set of points of the sparse grid at level 𝐿 becomes then,

𝐵𝐿,𝑑 = ⋃
𝑑≤|𝑙𝑙𝑙|≤𝐿+𝑑

(𝓟𝑙1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝓟𝑙𝑑) . (2.24)

Points are added iteratively in a hierarchically structured way until the interpolant is accurate enough.
The multidimensional variant of the difference formula of Equation 2.22 can be obtained by tensor
product operation:

𝐴𝐿,𝑑(𝑐)(p) = ∑
|𝑙|≤𝐿+𝑑

Δ𝑙1(𝑐)(𝑝1) ⊗ ⋅ ⋅ ⋅ ⊗ Δ𝑙𝑑(𝑐)(𝑝𝑑). (2.25)

This equation can be split into two parts, the first part is the value of the interpolant up to level 𝐿 − 1
and the second part is the contribution to interpolant of level 𝐿,
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𝐴𝐿,𝑑(𝑐)(p) = Σ|𝑙|<𝐿+𝑑(Δ𝑙1(𝑐)(𝑥1) ⊗ ⋅ ⋅ ⋅ ⊗ Δ𝑖𝑑(𝑐)(𝑥𝑑))⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝
𝐴𝐿−1,𝑑(𝑐)(p)

+Σ|𝑙|=𝐿+𝑑(Δ𝑙1(𝑐)(𝑥1) ⊗ ⋅ ⋅ ⋅ ⊗ Δ𝑖𝑑(𝑐)(𝑥𝑑))⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝
Δ𝐴𝐿,𝑑(𝑐)(p)

.

(2.26)
By filling in the difference Equation 2.22 for each of the dimensions indices 𝑙𝑠 into the second part of
Equation 2.26, we can write Δ𝐴𝐿,𝑑(𝑐)(p) as

Δ𝐴𝐿,𝑑(𝑐)(p) = ∑
|𝑙|=𝐿+𝑑

∑
j
(𝑎𝑙1

𝑝𝑙1𝑗1
(𝑝1) ⊗ ⋅ ⋅ ⋅ ⊗ 𝑎𝑙𝑑

𝑝𝑙𝑑𝑗𝑑
(𝑝𝑑)) ⋅ (𝑐(𝑝𝑙1𝑗1 , ..., 𝑝

𝑙𝑑
𝑗𝑑) − 𝐴𝐿−1,𝑑(𝑐)(𝑝

𝑙1
𝑗1 , ..., 𝑝

𝑙𝑑
𝑗𝑑))⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝

𝑤lj

(2.27)

where𝑤𝑙𝑗 is the hierarchical surplus [2], which is the difference between the true value of the coefficients
𝑐(p𝑙𝑗) at the newly added points and the approximation made by the interpolant 𝐴𝐿−1,𝑑(𝑐)(𝑝𝑙1𝑗1 , ..., 𝑝

𝑙𝑑
𝑗𝑑),

based on the points of the previous level 𝐿−1. Furthermore, j = (𝑗1, ..., 𝑗𝑑) is a multi­index to keep track
of the newly added points along each dimension 𝑘. The indices run from 𝑗𝑘 = 1, ..., 𝑚𝑙𝑘Δ and 𝑘 = 1, ..., 𝑑.
An example of the generation of the interpolant is illustrated in figure 2.1.

Figure 2.1: Computation of the interpolant 𝐴𝐿,𝑑 for levels 𝑙 = 0 to 𝑙 = 2, where each level new terms are added to the interpolant
of the previous level. These new terms are calculated using the weights 𝑤𝐿𝑗 , which is the difference between the true function at
the forward points and the interpolated value. The interpolant is trying to approximate a simple 1D function 𝑓(𝑥) = 𝑥2𝑠𝑖𝑛(𝜋2 )

2[2].

2.1.3. Adaptive Proper Orthogonal Decomposition
The quality of the interpolant is determined by which points in parameter space are sampled and how
many. Enough points should be gathered to accurately represent the dynamics in the system, but the
amount should be still low enough that the offline phase stays computationally feasible. In multidimen­
sional problems, some dimensions affect the system more than others. Instead of uniformly refining
the sparse grid along each dimension, Alsayyari et al. (2019) propose an adaptive sampling strategy
that refines the grid locally and combined this with POD to construct an Adaptive Proper Orthogonal
Decomposition (aPOD) method for reduced order modelling. A detailed description of the construction
of the adaptive sparse grid can be found in [12]. The most important points are summarized in the next
paragraphs.

A root node is selected halfway each dimension at 0.5 and this is labeled as level 𝑙 = 1. New unidi­
mensional nodes are then generated at the boundaries of each dimension and labeled by level 𝑙 = 2.
Following this, nodes are hierarchically generated at half the distance between the nodes from the pre­
vious level and labeled with the corresponding level number. The root point is located at (0.5,...,0.5).
The unidimensional nodes are arranged in a tree­like structure, given in Figure 2.2. Each node gener­
ated at level 𝑙 + 1 is a child from the connected father node at 𝑙. Each node has 2 children, expect at
level 𝑙 = 2, where the nodes only have 1 child to remain within the boundaries. Also, each node has
only 1 father and the root node is its own father.
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Figure 2.2: Tree structure of nodes along one dimension of the sparse grid, where 𝑙 indicates the level. Each node has two
children in the next level, at half the distance between the nodes of the previous level, expect at level 𝑙 = 2. Here, the node has
only one child [12].

By generating the children of a node along one dimension of a point, the forward points of that point
are created. Since each node has two children and the parameter space is 𝑑­dimensional, each point
has maximally 2𝑑 forward points. The set of forward points is the set of descendant points. Reversely,
by returning the father of a node along one dimension, the backward point is created. So, a point has
at most 𝑑 backward points, and the line of father points up to the root point are the ancestor points of
a certain point.

The adaptive sampling algorithm only computes forward points of points that are deemed important,
thereby locally refining the grid around these important points. It is an iterative process that marks
important points from a test set 𝒯𝑘 at each iteration 𝑘 and adds them to the important set 𝒵𝑘. The test
set is composed of the forward points of the important points of the last iteration 𝒵𝑘−1 and the set of
unimportant points at the previous iteration 𝐼𝑘−1, so

𝒯𝑘 = Ψ(𝒵𝑘−1) ∪ 𝐼𝑘−1. (2.28)

where Ψ(⋅) is an operator that returns the forward points of a given set. The important sets of all
iterations are stored in 𝒳𝑘, that is 𝒳𝑘 = ∪𝑘ℎ=1𝒵ℎ. A point p is marked as important if the ROM of the
previous iteration cannot accurately approximate the solution at that point, so if the local error 𝜖𝑘𝑗 at that
point is greater than a threshold 𝛾𝑖𝑛𝑡, where the local error is defined as

𝜖𝑘𝑗 =
||u(p𝑗) − ∑

𝑟𝑘
ℎ=1 𝐴𝑘,𝑑(𝑐ℎ)(p𝑗)𝜓ℎ||𝐿2
||u(p𝑗)||𝐿2

. (2.29)

Only this criterion can lead to the premature termination of the algorithm when the true function inter­
sects the interpolant at the forward points. Therefore, ancestry is included and the importance criterion
is refined. First, the points from the test set that have a local relative error larger than the relative
threshold 𝛾𝑖𝑛𝑡 are added to the candidate set 𝒞:

𝒞𝑘 = {p𝑗 ∈ 𝒯𝑘|𝜖𝑘𝑗 > 𝛾𝑖𝑛𝑡 + 𝑒}. (2.30)

where 𝑒 is an absolute error measure to deal with small norms. Then, the candidate points with all their
ancestors already included in the sparse grid 𝒳𝑘−1 are directly added to the important point set 𝒵𝑘𝑎 .

𝒵𝑘𝑎 = {p𝑗 ∈ 𝒞𝑘|Γ(p𝑗) ⊆ 𝒳𝑘−1}. (2.31)

where Γ(p𝑗) is an operator that returns the set of ancestor points of point p𝑗. For the other candidate
points, their missing ancestors are included in the important set 𝒵𝑘𝑏 instead of the candidate points
themselves. This is because the basis functions for the ancestors support a wider range in the domain.
If a candidate point has an ancestor point that is also a candidate, it is then not added to the important
set but added to the inactive set. This is because the error at these points is likely due to the error at
the ancestor.
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𝒵𝑘𝑏 = {p𝑖 ∈ Γ(p𝑗)|p𝑗 ∈ 𝒞𝑘 , Γ(p𝑗) ∩ 𝒞𝑘 = ∅ ∧ p𝑖 ∉ 𝒳𝑘−1 ∧ Γ(p𝑖) ⊆ 𝒳𝑘−1} (2.32)

The final important set 𝒵𝑘 becomes then the union 𝒵𝑘 = 𝒵𝑘𝑎 ∪ 𝒵𝑘𝑏 . Lastly, a constraint is added to the
test set to limit the number of points that are added, thereby tuning the number of function evaluations.
A greediness factor 𝜇 is introduced that ranges from 0 to 1. A forward point is included in the test set
𝒯𝑘 if its fraction of backward points that are included in the important set 𝒳𝑘−1 is greater or equal that
𝜇. So if 𝜇 = 0, the algorithm is greedy, and none of its backward points have to be included in the
important set for the forward point to be accepted. If 𝜇 = 1, the algorithm is non­greedy, and a forward
point is only accepted if all of its backward points are already deemed important in previous iterations.

To evaluate the approximation at iteration 𝑘, the interpolant for the coefficients at the newly sampled
point have to be computed. Since the sparse grid is built by adding a level per iteration, the interpolant
of Equation 2.26 is written in terms of iterations 𝑘 as,

𝐴𝑘,𝑑(𝑐)(p) = 𝐴𝑘−1,𝑑(𝑐)(p) + Δ𝐴𝑘,𝑑(𝑐)(p), (2.33)

Δ𝐴𝑘,𝑑(𝑐)(p) =
𝑚

∑
𝑛=1

𝑤𝑘𝑛Θ𝑛(p), (2.34)

where Θ𝑛(p) is the d­dimensional basis function for the point p,

Θ𝑛(p) =
𝑑

∏
𝑠=1

𝑎𝑖𝑠
𝑝𝑖𝑠𝑛,𝑠
(𝑝𝑠). (2.35)

The surplus for each point p𝑛 ∈ 𝒵𝑘 is computed as,

𝑤𝑘𝑛 = 𝑐(p𝑛) − 𝐴𝑘−1,𝑑(p𝑛). (2.36)

After the important points are identified at iteration 𝑘, the new snapshots are added to the snapshot
matrix, thereby changing the basis functions 𝜓𝑖 that roll out of the SVD of Equation 2.10. As a con­
sequence, the corresponding coefficients are also not equal and the interpolant based on these coef­
ficients 𝐴𝑘,𝑑(𝑐)(p) should be rebuilt. Since 𝐴𝑘,𝑑(𝑐)(p) is mostly a function of weights 𝑤𝑘, the weights
are updated instead of building the interpolant from scratch. The weights are easily updated by taking
the dot product between the old and new basis functions,

𝑤̂𝑘𝑞,𝑔 =
𝑟𝑘
∑
𝑖=1
𝑤𝑘𝑞,ℎ < 𝜓𝑖 , 𝜓𝑔 > g = 1,...,𝑟𝑘+1, (2.37)

where 𝜓𝑖 are the basis functions before updating the snapshot matrix and 𝜓𝑔 the basis functions from
the updated snapshot matrix. After each iteration 𝑘, the weights are stored in the set𝒲𝑘.

where u(p𝑗) is high fidelity solution for point p𝑗 and the summation term is the approximation made
by the reduced order model at iteration 𝑘 with 𝑟𝑘 POD modes. The algorithm is terminated when all
relative errors are below a global error threshold 𝛾𝑚𝑎𝑥.
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2.2. Multi­fidelity Methods
A reduced order model provides computationally efficient approximations of a system, but it requires
many evaluations of a high­fidelity model (HFM) to capture all the dynamics. Using the adaptive sparse
grid described in section 2.1.3 can reduce the number of evaluations needed, but the snapshot matrix
may still be computationally expensive to compute. An alternative is to use cheap low­fidelity models
(LFM) that are readily available but have limited accuracy. Multi­fidelity methods aim to combine this
low­fidelity data with a limited amount of high­fidelity data to compute accurate, yet computationally
inexpensive approximations. In the literature, the distinction between three model management strate­
gies is made: filtering, adaptation, and fusion [4]. In this section, the three methods are described in
detail, as well as, the proposed filtering and adaptation method applied to the adapted Proper Orthog­
onal Decomposition algorithm of section 2.1.3.

2.2.1. Filtering
In filtering, the high­fidelity model is only employed when the low­fidelity indicates certain sample points
as important, for example when the low­fidelity model is not accurate enough or some criterion is met
based on the low­fidelity evaluation. This way, the low­fidelity model guides the high­fidelity model
through the parameter space and reduces the number of sampling points that have to evaluated by
the high­fidelity model [4]. For example, Peherstorfer et al.(2016) constructed a biasing distribution for
importance sampling with a computationally cheapmodel [5]. In importance sampling, points are drawn
from a distribution that favors values that are expected to influence the output the most, with the aim
to reduce the variance. In the case of [5], samples that have a greater probability to lie in the failure
domain are sought after. A Markov Chain Monte Carlo scheme is presented by Precott et al.(2020)
[31], that draws samples from a prior distribution, evaluates them with a low­fidelity model, and only
acceptance of the output leads to evaluation by the high­fidelity model. The idea of pre­screening
sampled parameter points by the low­fidelity function is used in this work. The adaptive sparse­grid
sampling scheme described in section 2.1.3 is used for point selection, as the important point criteria
only refines the grid along dimensions that improve the accuracy of the ROM.

2.2.2. Filtered Bi­Fidelity Proper Orthogonal Decomposition
Despite the adaptive sparse­grid algorithm’s ability to efficiently sample parameter space, there is still
oversampling reported [12]. This means that certain points are evaluated with the high­fidelity model,
but they do not end up being included in the important set of points required to build the reduced order
model. Some of these points originate from the initial steps, where all dimensions are searched for
important points even though some parameters have minimal impact on the system. This is particu­
larly challenging for high­dimensional systems as all dimensions have to be examined. Additionally,
oversampling is inherent during the important point selection. When determining if points should be
included in the important set 𝒵𝑘, the high­fidelity solution of the forward points Ψ(𝒵𝑘−1) are computed
to compare the true solution with the approximation made by the reduced order model. If it is found
that the approximation was sufficient, then it was unnecessary to compute that high­fidelity solution.

To address the issue of unnecessary evaluations of the high­fidelity model, a Filtered Bi­Fidelity Proper
Orthogonal Decomposition (FB­POD) method is proposed in this work that utilizes the efficient grid
search of the adaptive Proper Orthogonal Decomposition algorithm. The sparse grid search of Alsay­
yari et al. lends itself well to the filtering method due to its locally refining nature and identification of
important points through error tolerances. The criteria of Equations 2.31 and 2.32 ensure that the im­
portant set only contains input points that support the approximation of the high­fidelity solution, which
makes them potential filter criteria. This filtering approach, which involves utilizing an adaptive sparse­
grid to search for sample points and filtering out important points based on specific error criteria and
ancestry, has not yet been demonstrated in the literature.

The proposed approach involves first building a sparse grid using a less computationally expensive low­
fidelity model, following the procedure outlined in section 2.1.3. Once the low­fidelity ROM converges
and the global error is below the threshold at a given iteration 𝑘, the set of important points 𝒳𝑘 is
transferred to the high­fidelity model. These points will be evaluated in high fidelity to compute the
high­fidelity snapshot matrix H. This matrix is then used to construct the final ROM. By using the low­
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Figure 2.3: Block diagram representation of the Filtered Bi­Fidelity Proper Orthogonal Decomposition method proposed in this
work.

fidelity model to filter out important points, this method eliminates the need for unnecessary evaluations
of the high­fidelity model. If the high­fidelity model has significantly longer computation time than the
low­fidelity equivalent and oversampling is large, significant speed­up is expected by only evaluating
the important points in the high­fidelity setting. Additionally, since the points are hierarchical, with the
top level points supporting more of the domain, the important points are fed in a level­by­level manner.
The set of to­be­evaluated points at iteration ℎ is then given by

𝒯ℎ = 𝒵ℎ (2.38)

where 𝒳𝑘 = ∪𝑘ℎ=1𝒵ℎ. Since points of a deeper level only provide local refinement, e.g. adding terms
to the interpolant of the previous level, the filtered ROM is tested after each iteration to check if it can
already provide an accurate approximation of the important points of the next level. If the high­fidelity
ROM is already accurate enough at a particular level,

𝜖ℎ𝑗 < (𝜁𝑚𝑎𝑥 + 𝑒) ∀pℎ+1𝑗 ∈ 𝒯ℎ+1, (2.39)

where 𝜁𝑚𝑎𝑥 is a set relative global tolerance and 𝑒 is again a small absolute error, the feeding of impor­
tant points is prematurely terminated to avoid unnecessary evaluations. If the high­fidelity model does
not converge after all important points have been fed, tighter error bounds and a higher greediness fac­
tor can be tested using the low­fidelity model to capture more of the system’s dynamics. The solutions
of the sampled low­ and high­fidelity solutions can be recycled to keep the number of evaluations low.
The pseudo­algorithm can be found in Algorithm 1 on the next page. In Figure 2.3, a block diagram of
the proposed method is presented.

It is assumed that the important points of the high­ and low­fidelity models share their locations in
parameter space. It is therefore assumed that similar POD modes are present in both models and
that the dependence of the corresponding coefficients on the parameters is also similar, i.e. both
models contain the same information. This assumption is reasonable for models that have the same
set of input parameters to describe the same system but differ in non­physical properties like numerical
solver. However, models of different fidelity may be influenced by other input parameters, by the same
input parameters in different ways, or contains other dynamics. The important point selection of the
low­fidelity model will not capture all the physical behavior that is present in the high­fidelity model.
This makes the applicability of the filtered aPOD model specific. In this work, three test cases utilizing
different types of variable fidelity are tested. These three test cases are described in detail in Section
3.2.
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Algorithm 1: Filtered Bifidelity Adaptive Proper Or­
thogonal Decomposition
Initialize: Run aPOD algorithm of section 2.1.3 to
obtain 𝒳𝑘
Input: 𝑓𝐻𝐹, 𝒳𝑘, 𝜁𝑚𝑎𝑥,𝑒
Output: 𝒲ℎ, U
Set iteration ℎ = 1
Generate the first point 𝒵1 = 0.5𝑑
Evaluate the first sparse grid point in high­fidelity
» u𝐻𝐹,1
Add u𝐻𝐹,1 to snapshot matrix
» H = [u𝐻𝐹,1]
Compute SVD on H to obtain POD modes and
truncate
» U1 = [𝜓11 ]
Determine coefficients
𝑐1𝑖 (0.5, ..., 0.5) =< 𝜓1𝑖 ,u𝐻𝐹,1(0.5, ..., 0.5) >
Set initial weights 𝑤1𝑖 = 𝑐1𝑖
for ℎ = 2 ∶ 𝑘 do

Evaluate the function at the next level points
pℎ𝑗 ∈ 𝒵ℎ in high­fidelity
» u𝐻𝐹,ℎ
Compute interpolant 𝐴ℎ−1,𝑑(𝑐) for 𝑐𝑖(pℎ𝑗 ) using
𝒲ℎ−1

Find the error at points pℎ𝑗 as given in Equation
2.29
» 𝜖ℎ𝑗
if 𝑎𝑙𝑙(𝜖ℎ𝑗 < 𝜁𝑚𝑎𝑥 + 𝑒) then

U = Uℎ−1
break

end
Add u𝐻𝐹,ℎ to snapshot matrix
» Hℎ
Compute SVD to obtain new modes and truncate
» Uℎ = [𝜓1, ..., 𝜓𝑟]
Update the weights using Equation 2.37
» 𝑤̂ℎ𝑖
Recompute the interpolant at the new points
» Aℎ,𝑑(𝑐)
Find the new surpluses using Equation 2.36
» wℎ𝑖
Store weights
»𝒲ℎ = [𝒲ℎ−1, 𝑤ℎ𝑖 ]
ℎ = ℎ + 1

end

2.2.3. Adaptation
Adaptation multi­fidelity techniques enhance the output of low­fidelity methods with more accurate in­
formation from high­fidelity models during computation. A common strategy is to build a correction
model for the low­fidelity model by comparing the low­ and high­fidelity solutions for sample points.The
correction can be additive, which is based on the difference between the low­fidelity model 𝑓𝐿𝐹(x) and
the high­fidelity model 𝑓𝐻𝐹(p)

𝑓𝐻𝐹(p) = 𝑓𝐿𝐹(p) + 𝐶1(p). (2.40)
or multiplicative, which uses the ratio between the low­ and high­fidelity output,
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𝑓𝐻𝐹(p) = 𝐶2(p)𝑓𝐿𝐹(p). (2.41)

The correction terms 𝐶1 and 𝐶2 can be found, respectively, by subtraction or division of the high­ and
low­fidelity results;

𝐶1(p) = 𝑓𝐻𝐹(p) − 𝑓𝐿𝐹(p) (2.42)

𝐶2(p) =
𝑓𝐻𝐹(p)
𝑓𝐿𝐹(p)

. (2.43)

The information on the correction factors at the sampled points is combined to compute corrections
factors at new unsampled locations in parameter space. Adaptation methods differ in the way that
the correction factor for new samples point is generated. Typically, Taylor series expansion based on
gradients or higher­order derivatives is used for this [4]. If information on derivatives is not available,
an approximation can be made, for example, by using finite difference like is done in [11]. These first­
and second­order approaches are local to the current point and do not use the solutions from previous
points. Instead, Kriging­based methods have been explored for the construction of the correction factor
[15, 29]. In Kriging, information from all sampled points is used and weights are assigned based on the
distance of the sampled points and the to­be­approximated point. Since the right choice between an
additive and a multiplicative correction is case dependent and generally not known beforehand, Gano
et al. (2005) proposed a hybrid scaling model that combines the additive and multiplicative corrections
using a weighted sum [15]. They concluded, however, that a hybrid model does not outperform the ad­
ditive or multiplicative corrections, but rather removes the need to choose between them beforehand.
In the context of proper orthogonal decomposition, an additive correction factor has been computed
by a ROM in [7]. The ROM was built using a snapshot matrix filled with snapshots of the correction
surfaces at sampled points during the offline phase. In the online phase, new points are simulated
by a low­fidelity evaluation and a ROM produced correction factor. A similar approach to multi­fidelity
reduced order modeling will be used in this work and is described in detail in Section 2.2.4.

2.2.4. Adapted Bi­Fidelity Proper Orthogonal Decomposition
To utilize the information of the high­fidelity snapshot more efficiently and to remove the need to deter­
mine the ratio of high­ and low­fidelity data beforehand as in most adaptation techniques, the adaptation
multi­fidelity strategy is applied to the aPOD reduced order model, giving rise to the Adapted Bi­Fidelity
Proper Orthogonal Decomposition AB­POD. To that extent, a reduced order model is made based on
the additive correction factor as defined in Equation 2.42. The true correction factor is approximated
by the linear combination of basis functions, as

C(p) ≈ Ĉ(p) =
𝑟

∑
𝑖=1
𝑏𝑖(p)𝜙𝜙𝜙𝑖 . (2.44)

where 𝜙𝜙𝜙𝑖 are the POD modes and 𝑏𝑖(p) the corresponding coefficients. To obtain these basis vectors,
a snapshot matrix is filled using the same adaptive grid search as described in section 2.1.3. The points
of the test set 𝒯𝑘 at iteration 𝑘 are now evaluated twice: by the high­ and low­fidelity model. An additive
correction factor C(p𝑗) is obtained for each of the points and added to the snapshot matrix S instead
of the solutions themselves:

S = [C1, ...,C𝑛]. (2.45)

Singular value decomposition is applied to the matrix S and the POD modes and coefficients are ob­
tained. The same procedure of building an approximation for the test points 𝒯𝑘 at each iteration 𝑘 and
comparing it to the true solution to find the important points as in section 2.1.3 is followed. Now the
true solution and approximation for the correction factor are compared. Two additional error tolerances
are defined: the local relative error tolerance for the selection of important points to compute the ap­
proximation for the correction factor 𝜆𝑖𝑛𝑡 and a global relative error tolerance to stop the iterations of
building the ROM for the correction factor 𝜆𝑚𝑎𝑥. For points to be now added to the candidate set 𝒞𝑘,
the relative error of the correction factor has to be smaller than 𝜆𝑖𝑛𝑡, so
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𝒞𝐾 = {p𝑗 ∈ 𝒯𝑘|𝜉𝑘𝑗 > 𝜆𝑖𝑛𝑡 + 𝑒}, (2.46)

where 𝑒 is again a small absolute error and 𝜉𝑘𝑗 is the local relative error of point p𝑗 at iteration 𝑘, defined
as

𝜉𝑘𝑗 =
||C(p𝑗) − Ĉ(p𝑗)||
||C(p𝑗)||𝐿2

. (2.47)

If all error 𝜉𝑘𝑗 are below a global error tolerance 𝜆𝑚𝑎𝑥 or if no new important points are computed, the
reduced order model has converged and can make accurate enough approximations of the correction
factor for unsampled points. Now, it’s time to build the final ROM to approximate the high­fidelity so­
lution. The snapshot matrix M will be filled with corrected solutions of the low­fidelity model to mimic
high­fidelity solutions,

M = [ ̂𝑓1, ..., ̂𝑓𝑛] (2.48)

where,

̂𝑓(p𝑗) = 𝑓𝐿𝐹(p𝑗) + 𝐶̂(p𝑗). (2.49)

The same procedure is followed of section 2.1.3, but now ̂𝑓(p𝑗) has replaced the role of the true high­
fidelity solution u(p𝑗). The main idea is that the dependence of the correction factor on the input
parameters is easier to learn than the solution itself, as thus it is assumed that the correction field is
more regular than the solutions. Once a ROM is made of the correction factor, the online phase can
consist of computing low­fidelity solution of new input points and correcting them with an approximated
correction factor, like is done in [7]. However, the low­fidelity model can still be too computationally
expensive to evaluate many times in an online phase. Therefore, in this work, the low­fidelity solutions
with a correction factor are recycled into a second snapshot matrix, and a final reduced order model is
computed based on corrected low­fidelity solutions. The proposed method is expected to produce an
adapted MF ROM that can accurately approximate the high­fidelity model quickly in the online phase
and has a computationally less intensive offline phase compared to the high­fidelity ROM. The use
of non­intrusive reduced­order techniques based on POD and adaptive sparse grids with corrected
low­fidelity models is a novel approach in the field and may prove helpful when constructing a high­
fidelity ROM is prohibitively computationally expensive and abundant low­fidelity data is available. The
pseudo­algorithm is presented in Algorithm 2 on the next page.

In the case of different discretizations of both models, the low­fidelity model is interpolated to match
the discretization of the high­fidelity model using MATLAB’s modified Akima cubic Hermite interpola­
tion. A piecewise function of polynominals of at most degree three is constructed using the values of
the directly neighboring grid points in every dimension. The coefficients of the polynomial are chosen
such that the function passes through the given data points and satisfies the specified derivatives. This
method was chosen because the interpolation method secures continuity of the first derivatives at the
data points, resulting in a smooth curve. Also, it only uses information from the neighboring points to
determine the interpolation coefficients, which makes the method computationally efficient. Moreover,
this method has less fluctuations compared to spline interpolation. The method was modified to avoid
overshoots [1, 20, 28]. Other interpolation techniques can be explored, but are not in the scope of this
thesis due to time constraints.
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Algorithm 2: Adapted Bi­Fidelity Proper Orthogonal Decomposition
Input: 𝑓𝐿𝐹, 𝑓𝐻𝐹, 𝜆𝑖𝑛𝑡, 𝜆𝑚𝑎𝑥, 𝑒
Output: 𝒲𝑘, 𝒳𝑘, U
Generate the first point 0.5𝑑
Evaluate the first sparse grid point in HF and LF
» u1𝐻 and u1𝐿
Check size compatibility
Interpolation of u1𝐿 if needed using Akima interpolation
Calculate correction factor
» C1 = u1𝐻 − u1𝐿
Add C1 to snapshot matrix
Compute SVD on C to obtain POD modes and truncate
Obtain coefficients 𝑏𝑖 by projection
Initial weights 𝑤1𝐶,𝑖 = 𝑏𝑖
Save initial weights𝒲1

𝐶 = 𝑤1𝐶,𝑖
First important point 𝒵1 = 0.5𝑑
Set iteration 𝑘 = 1
while 𝑎𝑛𝑦(𝜉𝑘𝑗 > 𝜆𝑚𝑎𝑥 + 𝑒) do

𝑘 = 𝑘 + 1
Generate forward points Ψ(𝒵𝑘−1)
Construct test set 𝒯𝑘
Evaluate the function in the test set in LF and HF
» u𝑘𝐻 & u𝑘𝐿
if size(u𝑘𝐻)≠size(u𝑘𝐿 ) then

interpolate u𝑘𝐿
end
Compute the correction factor at the test points p𝑘𝑗 ∈ 𝒯𝑘
Compute the POD coefficients 𝑏𝑖(p) at the test points via Smolyak interpolation using
weights𝒲𝑘−1 and Equation 2.18
Find the error at each test point using Equation 2.47
if 𝑎𝑙𝑙(𝜉𝑘𝑗 < 𝜆𝑚𝑎𝑥 + 𝑒) then

break
end
Find important points
Add corrections of forwards points 𝐶𝑓𝑤𝑘 to snapshot matrix
Compute SVD on S to obtain new POD modes
Update weights using Equation 2.37
Recompute the approx solution at the important points
Find the new surpluses using Equation 2.36 and save
»𝒲𝑘

𝐶 = [𝒲𝑘−1
𝐶 𝑤𝑘𝐶,𝑗]

end
, Set iteration 𝑚 = 1
Generate the first point 0.5𝑑
while 𝑎𝑛𝑦(𝜖𝑚𝑗 > 𝛾𝑚𝑎𝑥 + 𝑒) do

𝑚 = 𝑚 + 1
Generate forward points
Construct test set 𝒯𝑚
if p𝑚𝑗 already evaluated in previous loop then

Reuse LF solution u𝐿 from previous loop
Else Evaluate the function at the forward points in LF

end
Interpolate correction C from weights and anchor points from the previous loop
𝑦̂𝑚𝑗 = 𝑦𝑚𝐿,𝑗 + 𝐶̂𝑚𝑗
Find the error in every point using Equation 2.29
if 𝑎𝑙𝑙(𝜉𝑚𝑗 < 𝜆𝑚𝑎𝑥 + 𝑒) then

U = U𝑚
break

end
Find important points
Add corrections û to snapshot matrix M
Compute SVD on M to obtain new POD modes
Update weights using Equation 2.37
Recompute the approx solution at the important points
Find the new surpluses using Equation 2.36 and save
»𝒲𝑘 = [𝒲𝑘 , 𝑤𝑚+1𝑗 ]

end
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2.2.5. Fusion
The final multi­fidelity strategy is fusion. With this method, models of different fidelities are evaluated
separately and the information from all outputs is fused together, most commonly by exploring the
cross­correlations between low­ and high­fidelity models. Many of these models are based on Gaus­
sian process regression, or Kriging, in combination with the linear auto­regressive information fusion
framework by Kennedy & O’Hagan [21]. In Kriging, results for unsampled points are obtained by con­
structing a weighted sum of values of neighboring points. The weights are determined by covariance
functions. For example, Dong et al.(2015) [10] proposes a fusion of information from low­ and high­
fidelity models based on the Kalman filter. For the Kalman filter, optimal estimates at some time step 𝑡
are found by combining the observation at the previous time step and a prediction for the current time
step. The surrogate model proposed in [10] disregards the time dependence and only combines the
output of two different fidelity models. The predicted results are replaced by the output of the low­fidelity
model 𝑌𝐿𝐹, while the high­fidelity model result 𝑌𝐻𝐹 places the result at the previous time step.

Furthermore, in recent years artificial neural networks have been developed to accomplish multi­fidelity.
They overcome problems other methodsmight encounter when approximating discontinuous functions,
high dimensional problems, or strong nonlinearities [36]. The name neural comes from the fact that
these networks mimic the function of a human brain and contain artificial neurons called nodes. These
nodes are organized into different layers, starting with an input layer, one or multiple hidden layers, and
an output layer. The nodes of the input layers are connected to nodes of the next layer through weights,
where larger weights result in more influence of that input node on the output of the connected node.
Neural networks can be trained to learn the relationship between low­ and high­fidelity data. They can
be applied in a filtering context where inexpensive low­fidelity data is used to train a neural network
and when its performance does not improve anymore, the switch is made to the high­fidelity model
[32]. Adaptation strategies have also been employed, where multiple neural networks are trained with
varying fidelity data and are then coupled to discover their relationship [23, 30].

Lastly, Perron et al. (2022) proposed a multi­fidelity reduced­order modeling approach using Manifold
alignment in recent work. This method projects the solutions of low­ and high­fidelity models onto a
common low­dimensional subspace, allowing for different solution sizes. The approach utilizes Proper
Orthogonal Decomposition as the reduced order modeling technique, with the POD modes obtained
through Singular Value Decomposition, similar to this work. In their approach, the basis functions and
corresponding POD coefficients for the low­ and high­fidelity data sets are obtained independently.
The approach aims to transform the coefficients of the low­fidelity data set to match those of the high­
fidelity set, thereby increasing the number of coefficients available for interpolation in the online phase.
Procrustes analysis is used to align the coefficients of the shared data points. Once the alignment
parameters are found, the coefficients of unlinked points in the low­fidelity set are shifted to optimally
align with those of the high­fidelity set. The information from both POD coefficient sets is combined
to obtain Hierarchical Kriging models. These models are used in the online phase together with the
high­fidelity POD modes to obtain approximations for new points[9].

The employment of neural networks and manifold alignment in multi­fidelity methods are both still quite
novel and could be an interesting path to explore.
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2.3. Nuclear Reactor Physics
In this section, the basic principles of nuclear reactor physics that are used for this work are explained.
A short introduction to neutron interactions is given, followed by the derivation of governing equations.

2.3.1. The Neutron Transport Equation
Neutrons play the crucial role of inducing fission reactions in nuclear reactors. Therefore, it is important
to study their behavior in reactor physics. Neutrons travel in straight lines through media, with their
paths affected by scattering and absorption due to collision with nuclei. Furthermore, neutrons can
be absorbed by nuclei they come across. The probability of interaction between a neutron and one
nucleus is captured in the microscopic cross­section 𝜎𝑥 , where 𝑥 stands for the type of interaction.
The cross­sections are usually dependent on the neutron energy and the type of reaction. Most of the
time, the interactions that happen within 1 𝑐𝑚3 of material are considered. The number of a certain
reaction per cubic centimeter is obtained by multiplying the microscopic cross­section with the number
nuclei in 1 𝑐𝑚3 material, namely the number density 𝑁:

Σ𝑥 = 𝑁𝜎𝑥 (2.50)

where Σ𝑥 is the macroscopic cross­section for a certain reaction 𝑥. This macroscopic cross­section
indicates the probability of such interaction per unit path length.

Not the individual neutrons are studied, but rather the statistical behavior of many neutrons and their
distribution over the reactor. This distribution of neutrons is described by the neutron transport equation
(NTE), an equation based on the balance between neutron loss and gain over time. While the neutron
distribution is fully described by the differential neutron density 𝑛(𝑟, 𝐸, Ω, 𝑡), in nuclear reactor physics
the angle­dependent flux 𝜙(𝑟, 𝐸, Ω, 𝑡) is preferred instead:

𝜙(𝑟, 𝐸, Ω, 𝑡) = 𝑛(𝑟, 𝐸, Ω, 𝑡)𝑣 (2.51)

where 𝑣 is the neutron speed. The angle­dependent flux represents the number of neutrons that pass
through a unit area perpendicular to its direction Ω per unit time. The total number of neutrons in an
arbitrary volume 𝑉, enclosed by surface 𝑆, with an energy between 𝐸 and 𝐸 +𝑑𝐸, and with direction in
the solid angle 𝑑Ω around Ω, is equal to

∫
𝑉
𝑛(𝑟, 𝐸, Ω, 𝑡)𝑑𝑉𝑑𝐸𝑑Ω (2.52)

This number of neutrons can increase over time if a source is present, including fission. The source
𝑆(𝑟, 𝐸, Ω, 𝑡) is defined so that the increase of neutrons is

∫
𝑉
𝑆(𝑟, 𝐸, Ω, 𝑡)𝑑𝑉𝑑𝐸𝑑Ω. (2.53)

As neutrons travel through the medium, interactions occur between the neutrons and the atoms of the
medium, such as scatter or capture. The probability of neutrons with other energies and directions
scattering into the defined energy range 𝑑𝐸 and 𝑑Ω can be defined as the macroscopic cross­section
Σ𝑠(𝑟, 𝐸′ → 𝐸,Ω′ → Ω). When integrating over all possible energies and angles from which neutrons can
scatter in, the increase of neutrons due to this in­scattering becomes

∫
𝑉
∫
∞

0
∫
4𝜋
Σ𝑠(𝑟, 𝐸′ → 𝐸,Ω′ → Ω, 𝑡)𝜙(𝑟, 𝐸′, Ω′, 𝑡)𝑑𝐸′𝑑Ω′𝑑𝑉𝑑𝐸𝑑Ω. (2.54)

Leakage or net outflow of volume 𝑉 can also occur, which is given by

∫
𝑆
𝑛 ⋅ Ω𝜙(𝑟, 𝐸, Ω, 𝑡)𝑑𝐸𝑑Ω𝑑𝑆 = ∫

𝑉
∇ ⋅ Ω𝜙(𝑟, 𝐸, Ω, 𝑡)𝑑𝑉𝑑𝐸𝑑Ω, (2.55)

where the divergence theorem of Gauss is used [19].
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The probability of undergoing any interaction that leads to a decrease in the number of neutrons is
given by the total macroscopic cross­section Σ𝑡. The number of neutrons that is lost due to this is given
by

∫
𝑉
Σ𝑡(𝑟, 𝐸)𝜙(𝑟, 𝐸, Ω, 𝑡)𝑑𝑉𝑑𝐸𝑑Ω. (2.56)

Adding these various positive and negative contributions gives the change in number of neutrons over
time:

𝜕
𝜕𝑡 ∫𝑉

𝑛(𝑟, 𝐸, Ω, 𝑡)𝑑𝑉𝑑𝐸𝑑Ω = ∫
𝑉
𝑆(𝑟, 𝐸, Ω, 𝑡)𝑑𝑉𝑑𝐸𝑑Ω

+∫
𝑉
∫
∞

0
∫
4𝜋
Σ𝑠(𝑟, 𝐸′ → 𝐸,Ω′ → Ω, 𝑡)𝜙(𝑟, 𝐸′, Ω′, 𝑡)𝑑𝐸′𝑑Ω′𝑑𝑉𝑑𝐸𝑑Ω

−∫
𝑉
Σ𝑡(𝑟, 𝐸)𝜙(𝑟, 𝐸, Ω, 𝑡)𝑑𝑉𝑑𝐸𝑑Ω.

(2.57)

When substituting equation 2.51 into equation 2.57, the latter can be rewritten to:

∫
𝑉
(1𝑣
𝜕𝜙(𝑟, 𝐸, Ω, 𝑡)

𝜕𝑡 − 𝑆(𝑟, 𝐸, Ω, 𝑡) − ∫
∞

0
∫
4𝜋
Σ𝑠(𝑟, 𝐸′ → 𝐸,Ω′ → Ω)𝜙(𝑟, 𝐸, Ω, 𝑡)𝑑𝐸′𝑑Ω′

+Ω ⋅ ∇𝜙(𝑟, 𝐸, Ω, 𝑡) + Σ𝑡(𝑟, 𝐸)𝜙(𝑟, 𝐸, Ω, 𝑡))𝑑𝑉 = 0
(2.58)

This integrand should be zero, as equation 2.58 has to hold for every volume 𝑉. This last step yields the
linear integro­differential equation for the angle­dependent neutron flux, known as the neutron transport
equation:

1
𝑣
𝜕𝜙(𝑟, 𝐸, Ω, 𝑡)

𝜕𝑡 = 𝑆(𝑟, 𝐸, Ω, 𝑡) + ∫
∞

0
∫
4𝜋
Σ𝑠(𝑟, 𝐸′ → 𝐸,Ω′ → Ω)𝜙(𝑟, 𝐸, Ω, 𝑡)𝑑𝐸′𝑑Ω′

−Ω ⋅ ∇𝜙(𝑟, 𝐸, Ω, 𝑡) − Σ𝑡(𝑟, 𝐸)𝜙(𝑟, 𝐸, Ω, 𝑡)
(2.59)

In this thesis, the time­independent version of the one­speed neutron transport equation is solved,
which is obtained by assuming steady­state, i.e. 𝜕𝜙/𝜕𝑡 = 0, and assuming all neutrons have the
same energy. Though in reality neutrons occur with a spectrum of energies that changes by scattering
collisions, the energy dependence can be dropped by only considering mono­energetic neutrons:

𝑆(𝑟, Ω) + ∫
4𝜋
Σ𝑠(𝑟, Ω′ → Ω)𝜙(𝑟, Ω)𝑑Ω′

= Ω ⋅ ∇𝜙(𝑟, Ω) + Σ𝑡(𝑟)𝜙(𝑟, Ω).
(2.60)

2.3.2. Neutron Diffusion Theory
Solving the neutron transport equation analytically is very difficult, even for the simplest of cases. In­
stead, assumptions are made to simplify equation 2.59. The first assumption is considering only mono­
energetic neutrons,

1
𝑣
𝜕𝜙(𝑟, Ω, 𝑡)

𝜕𝑡 = 𝑆(𝑟, Ω, 𝑡) + ∫
4𝜋
Σ𝑠(𝑟, Ω′ → Ω)𝜙(𝑟, Ω, 𝑡)′𝑑Ω′

−Ω ⋅ ∇𝜙(𝑟, Ω, 𝑡) − Σ𝑡(𝑟)𝜙(𝑟, Ω, 𝑡).
(2.61)

Furthermore, the neutron flux density 𝐽(𝑟, 𝐸, 𝑡) represents the net number of neutrons that flows through
a surface 𝑑𝑆 per unit time, and is defined as

𝐽(𝑟, 𝐸, 𝑡) = ∫
4𝜋
Ω𝜙(𝑟, 𝐸, Ω, 𝑡)𝑑Ω (2.62)
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Substitution of the neutron flux density into equation 2.61 and integrating over Ω gives

1
𝑣
𝜕
𝜕𝑡𝜙(𝑟, 𝑡) = −∇ ⋅ 𝐽(𝑟, 𝑡) − Σ𝑎(𝑟𝜙(𝑟, 𝑡) + 𝑆(𝑟, 𝑡) (2.63)

where Σ𝑎 is the macroscopic absorption cross­section and Σ𝑎 = Σ𝑡−Σ𝑠. A final diffusion approximation
is made to arrive at the diffusion equation. It is assumed that the neutron current density 𝐽(𝑟, 𝑡) is
proportional to the negative of the gradient of the neutron flux ∇𝜙(𝑟, 𝑡), meaning that neutrons diffuse
from high density areas to low density. The proportionality constant is called the diffusion coefficient
𝐷(𝑟). This assumption is referred to as Fick’s law [19] ,

𝐽(𝑟, 𝑡) ≈ −𝐷(𝑟)∇𝜙(𝑟, 𝑡). (2.64)

Substitution of equation 2.64 in 2.63 yields the final diffusion equation:

1
𝑣
𝜕
𝜕𝑡𝜙(𝑟, 𝑡) = ∇ ⋅ 𝐷(𝑟)∇𝜙(𝑟, 𝑡) − Σ𝑎(𝑟𝜙(𝑟, 𝑡) + 𝑆(𝑟, 𝑡) (2.65)

By making assumptions about the angle dependence of neutron flux, the diffusion equation is not valid
at places with strongly differing properties or in strongly absorbing media. This implies that the solution
that follows from the diffusion equation may deviate from the more accurate solution of the transport
equation when external neutron sources and interfaces are present.

In this thesis, the fixed source equation will be solved, meaning that it is assumed that there is no time
dependence and there is a fixed source 𝑆(𝑟). The time­independent diffusion equation then becomes,

∇ ⋅ 𝐷(𝑟)∇𝜙(𝑟) − Σ𝑎(𝑟𝜙(𝑟) + 𝑆(𝑟) = 0. (2.66)
Furthermore, the source is split into an external source and a fission source

𝑆 = 𝑆𝑒𝑥𝑡(𝑟) + 𝑆𝑓 (2.67)
where 𝑆𝑓 = 𝜈Σ𝑓(𝑟)𝜙(𝑟) is the fission source, 𝜈 is the number of neutrons released per fission reaction,
and Σ𝑓 is themacroscopic fission cross­section. By substituting equation 2.67 into the time­independent
diffusion equation, the source driven one­group diffusion equation is obtained,

∇ ⋅ 𝐷(𝑟)∇𝜙(𝑟) − Σ𝑎(𝑟𝜙(𝑟) + 𝜈Σ𝑓(𝑟)𝜙(𝑟) + 𝑆𝑒𝑥𝑡(𝑟) = 0. (2.68)

2.3.3. Molten Salt Fast Reactor
Renewable energy sources have been the topic of discussion in politics and science for many years
now. With the increasing global population and economic growth among all continents, the rising de­
mand for energy not expected to slow down and alternatives to fossil fuels should be explored. The
Generation IV International Forum (GIF) selected the Molten Salt Fast Reactor (MSFR) as one of the
Generation IV reactors. Their goal is to develop research on feasibility and performance of the reac­
tor, and enable deployment of the reactor in industry by 2030 [13]. In a MSFR, liquid salt is not only
used as fuel, but also functions as a coolant. The design is considered to be inherently safe due the
strong negative temperature feedback coefficient and freeze­plug safety mechanism. Moreover, the
MSFR can consume waste from other conventional reactors [27]. The safety and sustainability aspects
make this type of reactor an attractive candidate for future energy supply. Currently, MSFR research
projects focuses on physical, chemical, and material studies to obtain the optimal system configuration
for the reactor core, waste conditioning, and reprocessing unit. Some of the research and development
objectives include, chemical and thermodynamic properties of salts, advanced neutronic and thermal­
hydraulic coupling models, salt redox control technologies, and safety assessment [13]. Analyzing
these objectives requires computational heavy high­fidelity models with multiple input parameters and
intertwined neutronics, fluid dynamics and heat transfer [3]. ROM techniques can be applied to sim­
plify these problems and produce an efficient, cheap, and accurate model of the system. Moreover,
multi­fidelity methods introduced in Section 2.2 can possibly relieve some of the computational burden
for the construction of the ROMs by decreasing the number of high­fidelity evaluations.



2.3. Nuclear Reactor Physics 21

Summary
This concludes the theoretical background of this study, detailing how non­intrusive reduced­order
modeling techniques can overcome computational barriers in modeling complex systems like nuclear
reactors. Section 2.1 serves as the mathematical foundation for the multi­fidelity methods proposed
in this work. Multi­fidelity strategies can aid in reduced order modeling, as discussed in Section 2.2.
Section 2.2 includes a literature review of multi­fidelity approaches in filtering, adaptation, and fusion.
Additionally, Section 2.2 describes the two novel approaches to applying multi­fidelity in proper orthog­
onal decomposition, namely the Filtered and Adapted Bi­Fidelity Proper Orthogonal Decomposition
algorithms. The FB­POD and AB­POD algorithms will be used to approximate solutions to the neutron
diffusion and transport equations discussed in Section 2.3.1 for specific geometries, which will be de­
scribed in detail in the next section.





3
Methods

In this section, the numerical methods and test cases to study the proposed filtering and adaptation
bi­fidelity methods of Section 2.2.2 and 2.2.4 are described. Section 3.1.1 describes the Finite Element
Method that is used to approximate the solutions to the neutron diffusion and transport equations of
Section 2.3.1. Then, Section 3.1.2 describes the Space­Angle Discontinuous Galerkin Method, which
is used for computing the numerical solutions of the neutron transport equation in this work. This sec­
tion concludes with a detailed description of three test cases in Section 3.2. The three test cases differ
in the problem definition, solver, and variable fidelity strategy, and will be used to study the accuracy
and computational burden of the proposed Filtered and Adapted Bi­fidelity Proper Orthogonal Decom­
position.

3.1. Numerical Methods
3.1.1. Finite Element Method
Most complex problems cannot be solved analytically with partial differential equations due to their
geometry or non­linearities. Instead, discretization methods are used to approximate the system and
solve the equations numerically. One such method is the Finite Element Method (FEM), which divides
a complex space into finite number of elements described by simple equations to solve boundary value
problems [25].

FEM involves dividing a complex physical system or structure into smaller, simpler sub­components
called finite elements. These elements are small, geometrically simple shapes, such as triangles or
rectangles, that can be easily analyzed. Mathematical equations are developed to describe the be­
havior of each element, typically involving the physical properties of the element, such as material
properties and boundary conditions. The equations for each element are combined into a larger sys­
tem of equations that describe the behavior of the entire system. The system of equations is solved
numerically using a computer algorithm to approximate the solution of the entire system.

In the context of nuclear reactors, FEM is commonly used to simulate and analyze the behavior of
reactor components and systems under various operating conditions [26]. This includes the behavior
of fuel rods, reactor pressure vessels, coolant systems, and other critical components.

3.1.2. Space­Angle Discontinuous Galerkin Method
Numerical solutions of the neutron transport equation have been a topic of research for over 50 years
due to the high dimensionality of the problem. This work uses the in­house code PHANTOM­DG, which
is based on a space­angle Discontinuous Galerkin Finite Element Method (DGFEM) approach with lo­
cal angular refinement developed by J. Kópházi and D. Lathouwers. Here the method is summarized,
and the detailed explanation can be found in [22].

The spatial domain 𝑉 is discretized in elements 𝑉𝑘, which are chosen to be triangular in this work, but
other element shapes can be used. The angular domain 𝐷 is a sphere of directions with its center at
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the origin and is sectioned in hierarchical patches 𝐷𝜅. They are hierarchical in the sense that patches
can be again divided into smaller patches. The largest patches are at level 1 and are formed by dividing
the sphere into octants. The separation is created by the intersection of the sphere with the coordinate
places Ω𝑥 = 0, Ω𝑦 = 0, and Ω𝑧 = 0, creating eight spherical triangles. These triangles can be divided
again into four patches at level 2. This is done by connecting the midpoints of each side of the triangle.
Each level higher, the patch is divided in the same way into four sub­patches. In figure 3.1 this process
is illustrated up to level 3 patches.

Figure 3.1: Angular domain divided hierarchically into patches. The largest triangular patches are level 1, and the subdivision of
one patch into four smaller patches indicate level 2 and 3 [22].

An angular subdivision is made by defining the set of patch indices 𝑃 such that all the non­overlapping
patches 𝐷𝑝, where 𝑝 ∈ 𝑃, together make up the angular domain 𝐷, i.e. ⋃𝑝∈𝑃 𝐷𝑃 = 𝐷 and 𝐷𝑝⋂𝐷𝑞 = ∅
for ∀𝑝, 𝑞 ∈ 𝑃 where 𝑝 ≠ 𝑞. The spatial elements 𝑉𝑘 are coupled to the angular subdivisions to create
phase space elements. Within each spatial element 𝑘, the angular component of flux is described by
the same set of patches at each node. However, the angular subdivision can vary between spatial
elements, thereby locally refining the angular component in space.

Angular Basis Sets
To describe the angular dependence of the neutron flux within an angular patch 𝐷𝑘, basis functions are
defined that are local to the patch,

Ψ𝜅,𝛼(Ω) = 0 if Ω ∉ 𝐷𝜅 , (3.1)

where Ψ𝜅,𝛼(Ω) is the 𝛼th basis function of patch 𝐷𝜅. Since basis functions are local to the patch, they
can be discontinuous at the boundaries of the patch. Within the PHANTOM­DG code, the choice can
be made from five sets of basis functions. In this work, only two sets are used; the constant set for the
low­fidelity model and the linear set for the high­fidelity model:

Constant Every patch 𝐷𝜅 has one constant basis function; Ψ𝜅,1(Ω) = 1 in the patch and zero outside of
the patch. This is the same as the 𝑆𝑛 method where the angular domain is divided into a discrete
set of directions.

Linear The linear set is a nodal set of three basis functions that satisfy Ψ𝜅,𝛼(Ω𝛽) = 𝛿𝛼,𝛽, where 𝛿𝛼,𝛽 is
the Kronecker delta and Ω𝛽 are the corner points of the triangle patches. The standard Lagrange
functions of the flat triangle are projected onto the sphere.

The constant basis function set is the simplest to compute but gives the highest absolute error of the
angular flux and of the scalar flux in most cases compared to other basis function sets. These basis
functions are therefore used for the low­fidelity model. The other four basis sets give comparable re­
sults regarding the absolute error of the angular and scalar flux. However, the Ω­linear scheme results
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in significant error in the scalar flux in diffusive materials, and is, therefore, less suited for reactor cal­
culations [22]. The description of the other three basis sets can be found in [22].

The neutron flux of equation 2.60 is approximated by summing the product of the spatial and angular
basis functions over all the phase space elements

𝜙(𝑟, Ω) ≈ 𝜙̂(𝑟, Ω) =∑
𝑘,𝑖

∑
𝑝∈𝑃𝑘 ,𝑑

𝜙𝑖,𝑑𝑘,𝑝Φ𝑘,𝑖(𝑟)Ψ𝑝,𝑑(Ω), (3.2)

where Φ𝑘,𝑖(𝑟) is the 𝑖th basis functions on the spatial element 𝑘 and Ψ𝑝,𝑑(Ω) is the 𝑑th basis function
of the angular element 𝑝. Following Galerkin’s method, this is substituted into equation 2.60, multiplied
with spatial and angular test functions Φ𝑗,𝑙(𝑟) and Ψ𝑞,𝑚(Ω), respectively, and integrated over the entire
phase space.

∫
𝑉
∫
𝐷
Φ𝑗,𝑙(𝑟)Ψ𝑞,𝑚(Ω)𝑄(𝑟, Ω)𝑑Ω𝑑𝑟 =

3

∑
𝜉=1

∫
𝑉
∫
𝐷
Φ𝑗,𝑙(𝑟)Ψ𝑞,𝑚(Ω)Ω𝜉∇𝜉∑

𝑘,𝑖
∑
𝑝∈𝑃𝑘 ,𝑑

𝜙𝑖,𝑑𝑘,𝑝Φ𝑘,𝑖(𝑟)Ψ𝑝,𝑑(Ω)𝑑Ω𝑑𝑟

+∫
𝑉
∫
𝐷
Φ𝑗,𝑙(𝑟)Ψ𝑞,𝑚(Ω)Σ𝑡(𝑟)∑

𝑘,𝑖
∑
𝑝∈𝑃𝑘 ,𝑑

𝜙𝑖,𝑑𝑘,𝑝Φ𝑘,𝑖(𝑟)Ψ𝑝,𝑑(Ω)𝑑Ω𝑑𝑟 𝑗 = 1, ..., 𝑛, 𝑞 ∈ 𝑃𝑗 , 𝑙 = 1, ..., 𝑛𝑗 , 𝑚 = 1..., 𝑛𝑎

(3.3)

where 𝑄(𝑟, Ω) includes the source term 𝑆((𝑟, Ω)) and the scatter term, 𝜉 is the index of the Cartesian
coordinates, 𝑛 is the number of spatial elements, 𝑛𝑗 is the number of basis functions of spatial element
𝑗, and 𝑛𝑎 is the number of angular basis functions per angular element.

3.2. Test Case Studies
The proposed multi­fidelity ROMs methods presented in Sections 2.2.2 and 2.2.4 will be tested on
three different case studies; 1D analytical functions, a 2D neutron diffusion problem, and a 2D neutron
source­detector problem.

3.2.1. Case 1: 1D Analytical Models
First, the adaptation and filtering algorithms are tested on two analytical models with different multi­
fidelity aspects for validation. For the first analytical test case, a parabola combined with a sinusoidal
function is chosen of the following form

𝑓(𝑥) = 𝐴𝑥2 + 𝐶 ⋅ 𝑠𝑖𝑛 (𝜋𝑥𝐵𝐿 ) . (3.4)

Here parameters A, B, and C will be sampled; the corresponding parameter ranges can be found in
Table 3.1. The length of the domain is 𝐿 = 10 arb. unit. The fidelity level of the model is determined by
the discretization of the spatial domain; the low­fidelity model will have a coarse grid with a step size
of ℎ𝑐 = 0.1 and the high­fidelity model a finer grid with a step size of ℎ𝑓 = 0.001. This analytical test
case will therefore be labeled as multi­grid. Two experiments are run, one with a greediness factor of
1 (non­greedy) and one with a factor of 0 (greedy).

Table 3.1: Parameter ranges for the high­ and low­fidelity models of the multi­grid 1D analytical test case.

A B C
High­fidelity 1­5 10­15 3­5
Low­fidelity 1­5 10­15 3­5

For the multi­physics test case, the low­fidelity model will have only the parabola component with a
dependency on parameter A:
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𝑓𝑙𝑜𝑤(𝑥) = 𝐴𝑥2, (3.5)

whereas the high­fidelity function will be again Equation 3.4, which will now be indicated as 𝑓ℎ𝑖𝑔ℎ. The
presence of the sine component in the high­fidelity case represents some additional ‘physical phe­
nomenon’, which is neglected in the low­fidelity case. The domain length is again 𝐿 = 10 arb. unit
and is discretized in steps of ℎ = 0.001 for both models. The ranges for parameters 𝐴, 𝐵, and 𝐶 are
presented in Table 3.2. Again, a greediness factor of 0 and 1 are tested. Equations 3.4 and 3.5 are
plotted for the values 𝐴 = 1, 𝐵 = 15, and 𝐶 = 1 to illustrate.

(a) (b)

Figure 3.2: Low­fidelity (a) and high­fidelity (b) functions plotted for parameters A = 1, B = 15, and C = 1.

Table 3.2: Parameter ranges for the high­ and low­fidelity models of the multi­physics 1D analytical test case.

A B C
High­fidelity 1­5 10­15 3­5
Low­fidelity 1­5 ­ ­

For both the multi­grid and multi­physics test case the same error thresholds are used. The local
relative threshold for selecting important points is set to 𝛾𝑖𝑛𝑡 = 10−3 and the global error tolerance to
stop the iterations is set to 𝛾𝑚𝑎𝑥 = 10−3. The error tolerance for truncating the POD modes is set to
𝛾𝑟 = 10−6 to limit the error introduced by truncation. For the adaption algorithm, the local and global
error thresholds for computing the correction factor are set to 𝜆𝑖𝑛𝑡 = 10−3 and 𝜆𝑚𝑎𝑥 = 10−3.

3.2.2. Case 2: 2D One Group Neutron Diffusion
The multi­fidelity methods are tested on a 2D one­group neutron diffusion model for the second test
case. The model solves a fixed source problem that is time­independent as given in equation 2.68. The
geometry is fixed over time and consists a square that is 3­by­3 cm. Within this square, two regions are
defined; a circular region in the middle of the square with a radius 0.6 cm indicated by R2, and the re­
maining area between with the central circle cut out indicated by R1. The geometry is given in figure 3.3.
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Figure 3.3: Geometry used for the 2D neutron diffusion test case. In region F1 an absorbing material is placed, while a fissile
material is placed in area F2. A neutron source is placed in the circular area F2. Neumann boundary conditions are applied to
all boundaries E1­E5.

In region R1 an absorber material is placed, and region R2 consists of fissile material, mimicking a
fuel pin. Also, an external neutron source is placed of strength 𝑆 = 1. Matlab’s built­in PDE solver is
used to discretize the problem in space using finite elements. The high­fidelity model has a fine mesh
size of ℎ𝑓 = 0.1, resulting in 2016 triangular elements, while the low­fidelity model uses a mesh size
of ℎ𝑐 = 0.5, which gives only 130 triangular elements. The high­and low­fidelity meshes are given in
figure 3.4. Furthermore, Neumann boundary conditions are applied to all boundaries E1­E5.

Figure 3.4: Low­fidelity and high­fidelity meshes used to solve the 2D neutron diffusion equation.

To test the multi­fidelity ROMs, three parameters will be sampled. In region R1, the diffusion coefficient
𝐷 will be varied by ±50% of it’s nominal value 𝐷 = 0.759 cm2s−1. The fission cross­section of region
R2 is Σ𝑓 = 0.050 cm−1 and will also be varied with ±50%.

Table 3.3: Parameters including perturbations in percentages for the two regions of the geometry used for the 2D diffusion
multi­fidelity Reduced Order Models.

Macroscopic Cross Section
D S [cm−1]

[cm2𝑠−1] ­ Σ𝑠 Σ𝑓 Σ𝑐 Σ𝑡
R1 0.759 ±50% 0 0.0150 0 0.424 ±50% 0.439
R2 2.40 1 0.0150 0.050 ±50% 0.074 0.139
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The local relative threshold for selecting important points is set to 𝛾𝑖𝑛𝑡 = 10−3 and the global error
tolerance to stop the iterations is set to 𝛾𝑚𝑎𝑥 = 10−3. The error tolerance for truncating the PODmodes
is set to 𝛾𝑟 = 10−6 to limit the error introduced by truncation. For the adaption algorithm, the local and
global error thresholds for computing the correction factor are set to 𝜆𝑖𝑛𝑡 = 10−2 and 𝜆𝑚𝑎𝑥 = 10−2.

3.2.3. Case 3: 2D Neutron Transport
For the last test case, the time­independent one­group neutron transport equation will be solved for
a fixed source problem by the Phantom­DG code. A geometry is made of a 1­by­1 cm domain with
6 areas; 4 absorbing patches (P1­P4), a neutron source (S), and the medium (M) in between. The
absorbing patches are placed in the corners of the domain, where patch P1 is found in the left bottom
corner, patches P2 and P3 are both in the right top corner, and patch P4 is directly above the neu­
tron source. The patches are placed such that the neutron flux in region P1 will be independent of
the absorption cross­sections of the other patches. Patch 3 will be expected to be influenced by the
absorption of patch 2 since patch 2 lays on the direct line between the source and patch 3. In contrast
to the other patches, patch P4 is not placed on the diagonals of the source but on it’s vertical.

Figure 3.5: Geometry used for the 2D neutron transport test case. A source is placed in area S, and four absorbing patches
indicated by P1­P4.

The geometry will be divided into triangular finite elements with characteristic length ℎ = 0.03, resulting
in 2826 elements. The mesh is depicted in Figure 3.5. The angular component of the flux computed by
the low­fidelity model is described by 4 patches and constant values per patch. The high­fidelity model
used linear basis functions and discretized in 64 patches. A thick and a thin medium are chosen, where
a thick medium has a scattering cross section of Σ𝑠 = 25 cm−1 and the thin medium Σ𝑠 = 0.50 cm−1.
The parameters that will be sampled are the absorption cross­sections of regions 1­4. The parameter
space ranges from Σ𝑎 = 0 − 10 cm−1. These cross­sections are summarized in Table 3.4 as well as
the perturbations. There is no fission present in the system, so the total cross­section is Σ𝑡 = Σ𝑎 + Σ𝑠.
An external neutron source of strength 𝑆𝑒𝑥𝑡 = 10 is placed in the region 𝑆. Bare boundary conditions
are applied to the edges.
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Figure 3.6: Mesh used for the 2D neutron transport test case with 2826 elements.

Table 3.4: Cross­sections for the six regions of geometry used for the 2D Neutron Transport multi­fidelity Reduced Order Model.

Region Σ𝑎 Perturbation Σ𝑠
[cm−1 ] [cm−1 ]

P1 5.0 ±100% 0
P2 5.0 ±100% 0
P3 5.0 ±100% 0
P4 5.0 ±100% 0
M 0 ­ 0.5, 25
S 0 ­ 0.5

The local relative threshold for selecting important points is set to 𝛾𝑖𝑛𝑡 = 10−3 and the global error
tolerance to stop the iterations is set to 𝛾𝑚𝑎𝑥 = 10−3. The error tolerance for truncating the PODmodes
is set to 𝛾𝑟 = 10−6 to limit the error introduced by truncation. For the adaption algorithm, the local and
global error thresholds for computing the correction factor are set to 𝜆𝑖𝑛𝑡 = 10−2 and 𝜆𝑚𝑎𝑥 = 10−2.





4
Results

?? In this section, the results of the proposed Filtered Bi­Fidelity Proper Orthogonal Decomposition
method and the Adapted Bi­Fidelity Proper Orthogonal are presented and compared against the aPOD
ROM of Section 2.1.3. First, the results for the analytical functions of test case 1 will be presented in
Section 4.1, followed by results for the neutron diffusion model of test case 2 in Section 4.2. Finally,
the results will be discussed in Section ??.

4.1. Results Case 1: 1D Analytical Functions
The proposed Filtered Bi­fidelity Proper Orthogonal and Adapted Bi­fidelity Proper Orthogonal method
were tested on one­dimensional analytical functions as described in Section 3.2. The results are di­
vided into two sections; multi­fidelity methods based on multi­grid and multi­fidelity methods based on
multi­physics.

For benchmark purposes, a high­fidelity ROM (HF ROM) was built using the aPOD algorithm with a
greediness factor of 1 (non­greedy) and 0 (greedy). The algorithm needed 145 snapshots to converge,
of which 133 were deemed important in the non­greedy test case. Using a greediness factor of 0, the
high­fidelity model sampled 301 solutions, of which again 133 points were important. The number of
POD modes to build the approximation was 13 and when tested on a test set of 1000 randomly gener­
ated points, the HF ROM had a maximum relative error in the 𝑙2 norm of 0.360 ⋅ 10−3 and 0.348 ⋅ 10−3
for the non­greedy and greedy algorithm respectively. Both values are below the set global tolerance
of 𝛾𝑚𝑎𝑥 = 10−3. These results are presented in both Tables 3.1 and 3.2.

31
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4.1.1. Multi­grid

Table 4.1: Number of sampled points to construct the single fidelity reduced order model using a high­fidelity model (HF ROM),
a low­fidelity model (LF ROM), the filtered multi­fidelity reduced order model (MF ROM), and the adapted reduced order model
(MF ROM), for the 1D multigrid case. The important points are in the filtered MF ROM the important points of the high­fidelity
model, while the important points for the Adapted MF ROM are for the final ROM that is constructed using corrected low­fidelity
samples.

Method Greediness
Low­fidelity

snapshots

High­fidelity

snapshots

Important

Points

POD Modes

ROM

POD Modes

Correction

factor

Maximum

relative

error (⋅10−3)

HF ROM
1 ­ 145 133 13 ­ 0.360

0 ­ 301 133 13 ­ 0.348

LF ROM
1 145 ­ 133 13 ­ 0.358

0 301 ­ 133 13 ­ 0.344

Filtered

MF ROM

1 145 133 133 13 ­ 0.360

0 301 133 133 13 ­ 0.348

Adapted

MF ROM

1 166 21 133 13 9 0.361

0 354 53 133 13 9 0.346

Filtered Multi­fidelity ROM
The FB­POD method was used to construct a filtered multi­fidelity reduced order model (filtered MF
ROM) with a greediness factor of 1 (non­greedy). The number of high­fidelity evaluations or snapshots
needed for this was 133, of which all were deemed important. This was as expected since the input
points were already pre­selected as important by the low­fidelity run. To obtain the important points from
the low­fidelity model, 145 low­fidelity snapshots had to be computed. This brings the total computa­
tional burden of the filtered MF ROM to 133 high­fidelity snapshots and 145 low­fidelity snapshots. For
a non­greedy algorithm, about 8% of the number of high­fidelity evaluations is reduced by the FB­POD
compared to the high­fidelity aPOD algorithm. This reduction comes at a cost of 133 extra low­fidelity
snapshots. When the greediness factor is set to 0 (greedy), the reduction in high­fidelity evaluations is
larger. For this greediness factor, the filtered ROM used 133 high­fidelity evaluations for this greedi­
ness factor, which reduced the number of high­fidelity evaluations by roughly 56% compared to the HF
ROM. Since the greediness factor increases the number of sampled points during the pre­selection, the
filtered MF ROM utilized 301 low­fidelity evaluations. The number of low­ and high­fidelity snapshots
used for the filtered MF ROM is presented in Table 3.1.

The filtered MF ROM, LF ROM, and HF ROM all needed the 13 POD modes to approximate the true
solution and 133 important points to construct the interpolant for the coefficients of Equation 2.5, re­
gardless of greediness. Figure 4.1 shows that the important points all share the same locations in
parameter space across the ROMs, meaning that the interpolants of all ROMs is supported by the
same nodes and the snapshot matrix of the HF ROM is filled with the same solutions as the MF ROM.
This indicates that no information is lost in the multi­grid case by using the FB­POD algorithm compared
to the high­fidelity aPOD algorithm. Furthermore, to approximate the dependence of the high­fidelity
on parameters A and C, three nodes along each direction are needed. This corresponds with the linear
dependence of the high­fidelity model on parameters 𝐴 and 𝐶. For parameter 𝐶, 65 unique values were
sampled. Furthermore, Table 4.1 shows increasing the greediness does not contribute to the construc­
tion of the reduced order model of the high­ low­ or multi­fidelity model in terms of the number of modes.
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Figure 4.1: Parameter points deemed as important by the low­, high­, and filtered multi­fidelity reduced order model.

To quantify the accuracy of the filtered MF ROM, it was tested on 1000 randomly generated test points.
The approximation made by the filtered MF ROM was compared against the high­fidelity solutions of
the test points. The relative error for each point was calculated in the 𝐿2 norm, given by Equation 2.29.
The histogram of these errors in figure 4.2 shows that 100% of the approximations are below the given
error threshold of 𝛾𝑚𝑎𝑥 = 10−3 for both greediness factors. The maximum relative error was 0.360⋅10−3
for the non­greedy test case and 0.348 ⋅ 10−3 for the greedy test case. These values are identical for
the HF ROM, since both HF ROMs and MF ROMs are constructed using the same important points
and thus the same POD modes. The FB­POD algorithm, therefore in this multi­grid, yields the same
reduced­order model as the aPOD algorithm in terms of accuracy and information.

(a) (b)

Figure 4.2: Histograms of the relative errors in the 𝑙2 norm of the filtered Multi­Fidelity Reduced Order Model constructed the
Filtered Bi­fidelity Proper Orthogonal Decomposition algorithm. A global error tolerance is set of 𝛾𝑚𝑎𝑥 = 10−3. In the left image
(a) a greediness factor of 𝜇 = 1 is set, while the greediness factor in the right histogram (b) is set to 𝜇 = 0.

Adapted Multi­fidelity ROM
The AB­POD method was used to construct an adapted multi­fidelity reduced order model (adapted
MF ROM) with a greediness factor of 1 (non­greedy). The number of high­ and low­fidelity evaluations
or snapshots needed to construct the additive correction C factor was 21. Furthermore, 9 POD modes
are used to approximate the correction factor. This indicates that the difference between the two fidelity
models is easier to learn than the solutions themselves. In addition to the high­fidelity snapshots, 145
corrected low­fidelity evaluations were needed for the AB­POD algorithm to converge, giving a total
of 166 low­fidelity solutions for the construction of the adapted MF ROM. This reduced the number of
high­fidelity snapshots by roughly 86% compared to the HF ROM. When the greediness factor is set
to 0, 53 high­ and low­fidelity points are sampled to construct the correction factor and 301 additional
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low­fidelity samples were needed to construct the adapted MF ROM, bringing the total of low­fidelity
evaluations to 354. Compared to the HF ROM built using the aPOD algorithm, the number of high­
fidelity evaluations is reduced by 82%. The number of low­ and high­fidelity snapshots used for the
adapted MF ROM is presented in Table 3.1.

The adapted MF ROM ROM also needs 13 POD modes to approximate the true solution and 133 im­
portant points to construct the interpolant for the coefficients of equation 2.5. These important points
are the as given in figure 4.1. This indicates that the corrected low­fidelity model snapshots are utilized
in the same way as the high­fidelity snapshots during the construction of the MF ROM.

To quantify the accuracy of the adaptedMFROM, it was tested on 1000 randomly generated test points.
The approximation made by the adapted MF ROM was compared against the high­fidelity solutions of
the test points. The relative error for each point was calculated. The histogram of these errors in Figure
4.3 shows that 100% of the approximations are below the given error threshold of 𝛾𝑚𝑎𝑥 = 10−3 for both
greediness factors. The maximum relative error was 0.361 ⋅ 10−3 for the non­greedy test case and
0.346 ⋅ 10−3 for the greedy test case. These values are comparable to the HF ROM. The AB­POD
algorithm in this multi­grid case yields the same reduced­order model as the aPOD algorithm in terms
of accuracy and information.

(a) (b)

Figure 4.3: Histograms of the relative errors in the 𝑙2 norm of the adapted Multi­Fidelity Reduced Order Model constructed by
the Adapted Bi­fidelity Proper Orthogonal Decomposition algorithm. A global error tolerance is set of 𝛾𝑚𝑎𝑥 = 10−3. In the left
image (a) a greediness factor of 𝜇 = 1 is set, while the greediness factor in the right histogram (b) is set to 𝜇 = 0.
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4.1.2. Multi­physics

Table 4.2: Number of sampled points to construct the single fidelity reduced order model using a high­fidelity model (HF ROM),
a low­fidelity model (LF ROM), the filtered multi­fidelity reduced order model (MF ROM), and the adapted reduced order model
(MF ROM), for the 1D multiphysics case. The important points are in the filtered MF ROM the important points of the high­fidelity
model, while the important points for the Adapted MF ROM are for the final ROM that is constructed using corrected low­fidelity
samples.

Method Greediness
Low­fidelity

snapshots

High­fidelity

snapshots

Important

Points

POD Modes

ROM

POD Modes

Correction

factor

Maximum

relative

error (⋅10−3)

HF ROM
1 ­ 145 133 13 ­ 0.360 ⋅ 10−3

0 ­ 301 133 13 ­ 0.348 ⋅ 10−3

LF ROM
1 9 ­ 3 1 ­ 4.06 ⋅ 10−14

0 17 ­ 3 1 ­ 4.28 ⋅ 10−14

Filtered

MF ROM

1 9 3 3 1 ­ 0.095

0 17 3 3 1 ­ 0.099

Adapted

MF ROM

1 1176 1031 133 13 14 0.372 ⋅ 10−3

0 2616 2315 133 13 14 0.356 ⋅ 10−3

Filtered Multi­fidelity ROM
For the test case involving multiple physics, the FB­POD algorithm was used to build a filtered MF ROM
with both a greedy and non­greedy algorithm. The FB­POD algorithm utilized the low­fidelity model,
which is a parabolic function dependent solely on parameter A, to pre­select points. From the 9 sam­
pled points, only 3 were deemed important in the non­greedy case, the root node and the two forward
points. This reduces the number of high­fidelity snapshot by 98% compared to the high­fidelity aPOD
ROM. One POD mode sufficed for describing the low­fidelity model. Constructing a MF ROM using
three high­fidelity snapshots resulted in a maximum error of 0.095. Furthermore, the histogram of Fig­
ure 4.5 (a) indicates that out of the 1000 tested points, 998 exceeded the predefined global threshold
of 𝛾𝑖𝑛𝑡 = 10−3. To illustrate the inadequacy of the filtered MF­ROM, a randomly sampled test point
(3, 14, 3) is depicted for the low­, high­, and multi­fidelity ROMs. The multi­fidelity solution adheres to
the dominant curve of the parabola but diverges from the sine component of the high­fidelity function.
Setting the greediness factor to 0 yields 17 sampled points, with the same 3 values being deemed as
important. Figure 4.5 (b) shows that a 996 points exceeded the relative tolerance of 10−3 for the greedy
algorithm, and yielded a maximum relative error of 0.099.
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Figure 4.4: Approximation by the high­fidelity ROM (blue) and multi­fidelity ROM (red) of 𝑓ℎ𝑖𝑔ℎ = 3𝑥2+3⋅𝑠𝑖𝑛(
14𝜋𝑥
10 ) are plotted.

Also, the approximation by the low­fidelity ROM (green) of 𝑓𝑙𝑜𝑤 = 3𝑥2 is given.

(a) (b)

Figure 4.5: Histograms of the relative errors in the 𝑙2 norm of the filtered Multi­Fidelity Reduced Order Model constructed the
Filtered Bi­fidelity Proper Orthogonal Decomposition algorithm. A global error tolerance is set of 𝛾𝑚𝑎𝑥 = 10−3. In the left image
(a) a greediness factor of 𝜇 = 1 is set, while the greediness factor in the right histogram (b) is set to 𝜇 = 0.

Adapted Multi­fidelity ROM
The AB­PODmethod was used to construct an adapted multi­fidelity reduced order model (adapted MF
ROM) with a greediness factor of 1 (non­greedy) based on the 1D analytical multi­physics functions.
The number of high­ and low­fidelity evaluations or snapshots needed to construct the additive correc­
tion factor was 1031. This is an increase of 611% in the number of high­fidelity evaluations needed
compared to high­fidelity ROM. The correction factor was approximated by 14 POD modes. In addi­
tion, the number of corrected low­fidelity snapshots needed to converge the FB­POD algorithm was
145, giving a total of 1176 low­fidelity solutions for the construction of the adapted MF ROM. When the
greediness factor is set to 0, 2315 high­ and low­fidelity points are sampled to construct the correction
factor and 301 additional low­fidelity samples were needed to construct the adapted MF ROM, bringing
the total of low­fidelity evaluations to 2616. In the greedy setting, the number of high­fidelity evaluations
is increased by 669% by the adapted MF ROM. For both the non­greedy and greedy algorithm, the final
adapted MF ROM utilized 13 PODmodes to construct approximations in the online phase. The number
of low­ and high­fidelity snapshots used for the adapted MF ROM is presented in Table 3.1.

To analyze the behavior of the adapted MF ROM, the square singular values of the POD modes used
to approximate the high­fidelity model by the high­fidelity aPOD ROM is shown in Figure 4.6a. The
square of the singular value is a measure of how much energy is contained in the corresponding mode.
Figure 4.6b shows the corresponding 13 POD modes. The first mode is dominant in approximating
the high­fidelity solution, as the square of the first singular value is 104 times larger than the second to
largest singular value.
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In Figure 4.7a, the square of the singular values of the POD modes that are used to construct the
correction factor of the AB­POD algorithm are shown. The corresponding 14 POD modes are depicted
in Figure 4.7b. The dominant POD mode of Figure 4.6b is absent in the spectrum of Figure 4.7b.

(a) (b)

Figure 4.6: Square of singular values for the 13 POD modes used to approximate the high­fidelity model by the HF ROM (a) and
the corresponding 13 POD modes used to approximate the high­fidelity model by the HF ROM (b).

(a) (b)

Figure 4.7: Square of singular values for the 14 POD modes used to approximate the correction factor by the adapted MF ROM
(a) and the corresponding 14 POD modes (b).

The global relative error tolerance for the correction factor 𝜆𝑚𝑎𝑥 can be set independently of the global
error threshold for the final multi­fidelity ROM 𝛾𝑚𝑎𝑥. The threshold 𝜆𝑖𝑛𝑡 is relaxed to reduce the number
of points needed for the correction factor C for the adapted multi­fidelity ROM. Table 4.3 shows the
number of high­fidelity snapshots needed to construct the adaptedmulti­fidelity ROM for different values
of 𝜆𝑖𝑛𝑡, using a non­greedy algorithm. The multi­fidelity ROMs with less stringent error thresholds
are then tested using 1000 random test points. Table 4.3 also provides the maximum relative error
observed when testing the multi­fidelity ROM on these points and the number of points that fall below
the predetermined global threshold 𝛾𝑖𝑛𝑡. Figure 4.8 shows the histograms of the relative errors when
testing the multi­fidelity ROM for error tolerances ranging from 10−1−10−4. From the 1000 test points,
988 still fall under the set global tolerance of 𝛾𝑚𝑎𝑥 when a relaxed correction error tolerance was used
of 𝜆𝑚𝑎𝑥 = 10−1. To construct the correction factor, 71 high­fidelity snapshots were used. This is a
reduction of 51% compared to the high­fidelity ROM.
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Figure 4.8: Histograms of the relative errors in the 𝑙2 norm of the adapted Multi­Fidelity Reduced Order Model (MF ROM)
constructed by the Filtered Bi­fidelity Proper Orthogonal Decomposition method using a non­greedy algorithm. Four global error
tolerances for the additive correction factor are set ranging from𝜆𝑚𝑎𝑥 = 10−4−10−1. The overall global relative error tolerance
for the MF ROM is set to 𝛾𝑚𝑎𝑥 = 10−3.

Table 4.3: Histograms of the relative errors in the 𝑙2 norm of the adapted Multi­Fidelity Reduced Order Model for different values
of global relative error tolerance 𝜆𝑚𝑎𝑥 for approximating the correction factor.

Relative
error tolerance C

𝜆𝑚𝑎𝑥

High­fidelity
snapshots

Max. relative
error (⋅10−3)

% approximations
below global threshold

10−4 2055 0.315 100%
10−3 1031 0.335 100%
10−2 263 0.334 100%
10−1 71 1.24 98.8%

4.2. Results Case 2: 2D Neutron Diffusion
The proposed Filtered Bifidelity Proper Orthogonal and Adapted Bifidelity Proper Orthogonal method
were tested on a two­dimensional neutron diffusion model, solving Equation 2.68 of Section 2.3.2.
The variable fidelity between the two models was based on different discretization of the mesh. A
high­fidelity ROM (HF ROM) was built using the aPOD algorithm with the mesh size of ℎ𝑓 = 0.1 for
comparison. The HF ROM was constructed with a greediness factor of 1 (non­greedy) and 0 (greedy).
677 points were sampled of which 535 were deemed important in the non­greedy test case. Using
a greediness factor of 0, the high­fidelity model sampled 871 solutions, of which 562 points were im­
portant. The number of POD modes to build the approximation was 5 in the non­greedy setting, and
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7 in the greedy setting. When tested on a test set of 1000 randomly generated points, the HF ROM
had a maximum relative error 0.324 ⋅ 10−3 and 0.309 ⋅ 10−3 in the 𝑙2 norm of non­greedy and greedy
algorithm respectively. Both values are below the set global tolerance of 𝛾𝑚𝑎𝑥 = 10−3. These results
are presented in both Table 4.4.

Table 4.4: Number of sampled points to construct the single fidelity reduced order model using a high­fidelity model (HF ROM),
a low­fidelity model (LF ROM), the filtered multi­fidelity reduced order model (MF ROM), and the adapted reduced order model
(MF ROM), for the 2D neutron diffusion model. The important points are in the filtered MF ROM the important points of the
high­fidelity model, while the important points for the Adapted MF ROM are for the final ROM that is constructed using corrected
low­fidelity samples.

Method Greediness
Low­fidelity

snapshots

High­fidelity

snapshots

Important

Points

POD Modes

ROM

POD Modes

Correction

factor

Maximum

relative

error (⋅10−3)

HF ROM
1 ­ 677 535 5 ­ 0.324

0 ­ 871 562 7 ­ 0.309

LF ROM
1 675 ­ 537 5 ­ 0.323

0 872 ­ 564 5 ­ 0.328

Filtered

MF ROM

1 675 317 317 5 ­ 1.20

0 872 327 327 5 ­ 1.08

Adapted

MF ROM

1 1034 357 543 7 3 0.372

0 1276 401 567 7 3 0.345

(a) Non­greedy (b) Greedy

Figure 4.9: Histograms of the unique values sampled for each parameter by the filtered MF ROM, adapted MF ROM, HF ROM
and LF ROM, using a non­greedy (a) and greedy (b) algorithm.

Filtered Multi­Fidelity ROM
The FB­POD method was used to construct a filtered multi­fidelity reduced order model with a greed­
iness factor of 0 and 1. The low­fidelity model sampled 675 points, of which 537 were identified as
important in the non­greedy setting. These points were transferred to the high­fidelity part of FB­POD
algorithm. The FB­POD however converged already after 317 high­fidelity snapshots. This means
that the filtered MF ROM could already predict the forward points with an accuracy below 10−3. This
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reduced the number of high­fidelity samples by 53% compared to the high­fidelity aPOD ROM. 5 POD
modes were used to construct the approximations by the MF ROM. In the greedy setting, the low­
fidelity sparse grid search sampled 872 points, of which 564 were deemed as important. When trans­
ferred to the high­fidelity section, 327 were utilized to build the MF ROM. This reduced the number
of high­fidelity evaluations by 62% compaired to the HF ROM. The number of low­ and high­fidelity
snapshots used for the filtered MF ROM is presented in Table 4.4. To illustrate the filtered MF ROM,
Figure 4.10a shows the true solution for the neutron flux for a randomly sampled point with parameters
Σ𝑓 = 0.049 cm−1,Σ𝑐 = 0.31 cm−1, and 𝐷 = 0.84 cm2s−1 and Figure 4.10b shows the approximation for
that same parameter points made by the non­greedy filtered multi­fidelity ROM.

Figure 4.9 shows the number of uniquely sampled values per parameter for each the high­, low­, and
multi­fidelity ROMs. The FB­POD algorithm sampled fewer values for the macroscopic cross­section
and diffusion coefficient compaired to the other ROMs.
When tested on 1000 randomly sampled points, the non­greedy FB­POD had a maximum relative error
of 1.08 ⋅ 10−3 and the greedy FB­POD 1.20 ⋅ 10−3, both values are below the set relative tolerance of
10−3. Figure 4.11 shows the histograms of the relative errors of the 1000 generated test points. In
the greedy setting 99.5% of the tested points were still below the set relative tolerance, while in the
non­greedy setting 98.9% of the sampled point fell still within allowed limits.

(a) (b)

Figure 4.10: The true solution for the neutron flux of Section 3.2 computed by Matlab’s in­built PDE solver using the high­fidelity
mesh for a randomly sampled point (a) and the approximation of this solution made by the filtered multi­fidelity ROM (b). The
parameters of the point are Σ𝑓 = 0.049 cm−1,Σ𝑐 = 0.31 cm−1, and 𝐷 = 0.84 cm2s−1.
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(a) (b)

Figure 4.11: Histograms of the relative errors in the 𝑙2 norm of the adapted Multi­Fidelity Reduced Order Model constructed by
the Filtered Bi­fidelity Proper Orthogonal Decomposition algorithm. The MF ROMs are built based on a 2D diffusion problem. A
global error tolerance is set of 𝛾𝑚𝑎𝑥 = 10−3. In the left image (a) a greediness factor of 𝜇 = 1 is set, while the greediness factor
in the right histogram (b) is set to 𝜇 = 0.

Adapted Multi­Fidelity ROM
The AB­POD method was used to construct an adapted multi­fidelity reduced order model based on
the 2D neutron diffusion model. The method was used using a greedy and non­greedy algorithm. The
number of high­ and low­fidelity evaluations or snapshots needed to construct the additive correction
factor was 357. This reduces the number of high­fidelity samples by 47% The correction factor was
approximated by 3 POD modes. In addition, the number of corrected low­fidelity snapshots needed to
converge the AB­POD algorithm was 677, giving a total of 1034 low­fidelity solutions for the construc­
tion of the adapted MF ROM. When the greediness factor is set to 0, high­ and low­fidelity 401 points
are sampled to construct the correction factor and 1276 additional low­fidelity samples were needed
to construct the adapted MF ROM, bringing the total of low­fidelity evaluations to 1677. The number
of high­fidelity solutions was reduced by 54% compared to the high­fidelity aPOD method. The cor­
rection factor was again approximated by 3 POD modes. The adapted MF ROM in both greediness
settings 5 POD modes to approximate high­fidelity solutions in the online phase. The number of low­
and high­fidelity snapshots en POD modes used for the adapted MF ROM is presented in Table 4.4.
Figure 4.12a shows the true solution for the neutron flux for a randomly sampled point with parameters
Σ𝑓 = 0.035 cm−1,Σ𝑐 = 0.40 cm−1, and 𝐷 = 0.40 cm2s−1 and Figure 4.12b shows the approximation for
that same parameter points made by the adapted multi­fidelity ROM.

In Figure 4.9, it can be seen that the AB­POD algorithm samples the same number of unique values per
dimension as the high­fidelity model. This indicates that the corrected low­fidelity snapshots contains
similar information as the high­fidelity snapshots.

The global error tolerance to stop iterations for the correction factor was set to 𝜆𝑚𝑎𝑥 = 10−2, while the
global error tolerance that was used for the final multi­fidelity ROM was kept on 𝛾𝑚𝑎𝑥 = 10−3. Section
3.2.1 revealed that a less accurate approximation to the correction factor still yields an accurate final
multi­fidelity ROM with a lower cost of high­fidelity snapshots. Consequently, the threshold 𝜆𝑖𝑛𝑡 was
reduced and resulted indeed in a reduction of high­fidelity snapshots.
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(a) (b)

Figure 4.12: The true solution for the neutron flux of Section 3.2 computed by Matlab’s in­built PDE solver using the high­fidelity
mesh for a randomly sampled point (a) and the approximation of this solution made by the adapted multi­fidelity ROM (b). The
parameters of the point are Σ𝑓 = 0.035 cm−1,Σ𝑐 = 0.40 cm−1, and 𝐷 = 0.40 cm2s−1.

When tested on 1000 randomly sampled test points, the non­greedy AB­POD generated ROM yielded
a maximum error of 0.372 ⋅ 10−3 in the 𝑙2 norm, while the greedy version yielded a maximum error of
0.345 ⋅ 10−3. Figure 4.13 shows the histograms of the relative errors of the 1000 generated test points.
Though the correction factor had a looser error threshold compared to the final multi­fidelity ROM, all
samples that were tested fell under the preset global error threshold of 𝛾𝑚𝑎𝑥 = 10−3.

(a) (b)

Figure 4.13: Histograms of the relative errors in the 𝑙2 norm of the adapted Multi­Fidelity Reduced Order Model constructed by
the Adapted Bi­fidelity Proper Orthogonal Decomposition algorithm. The MF ROMs are built based of a 2D diffusion problem. A
global error tolerance is set of 𝛾𝑚𝑎𝑥 = 10−3. In the left image (a) a greediness factor of 𝜇 = 1 is set, while the greediness factor
in the right histogram (b) is set to 𝜇 = 0.

Notably, 7 POD modes were used for the adapted MF ROM, while the LF ROM used 5 POD modes in
both greediness settings and the HF ROM in the non­greedy setting. In Figure 4.14, the square of the
singular values for the corresponding POD modes of the adapted MF ROM are given, as well as those
of the high­fidelity ROM in the non­greedy setting for comparision.
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(a) (b)

Figure 4.14: Singular values squared for the 7 POD modes used by the adapted MF ROM (a) and the 5 POD modes used for
the single­fidelity HF ROM for the non­greedy algorithm (b).

4.3. Case study 3: 2D Neutron Transport
Due to technical problems, only a filtered MF ROM was constructed using a non­greedy algorithm for
the 2D Neutron Transport equation in a thin material. The relative global error tolerance for the low­
fidelity grid search was set to 𝜁𝑚𝑎𝑥 = 0.010. The low­fidelity grid search sampled 75 points, of which
42 were deemed as important. These were transferred to the high­fidelity part, all 42 points were used
to construct the filtered MF ROM. The filtered MF ROM was tested on a randomly generated test set of
65 points and yielded a maximum relative error of 0.0332. Furthermore, 43 out of the 65 tested points
were above the error tolerance of 0.010. Due to technical difficulties and time constraints, a larger test
set could not be obtained.

For benchmark purposes, an HF ROM was constructed using the aPOD algorithm for the thin material
with global error tolerance of 𝛾𝑚𝑎𝑥 = 0.010. Of the 65 high­fidelity snapshots that were sampled, 42
were deemed important. When tested on the 65 test points, the maximum relative error was 0.0332,
which exceeds the set global error tolerance. Furthermore, 65% of the tested points exceeded this
error tolerance. As the algorithm is designed to converge after the ROM can approximate the high­
fidelity solution with an accuracy of 0.010, these results cannot be deemed as reliable. It is not clear if
the construction of the HF ROM or the construction of the test set was insufficient. Furthermore, a test
set of 65 points is not large enough to accurately test the HF ROM and filtered MF ROM. Figure 4.15,
show the histograms for the relative errors of the 65 tested points.

(a) (b)

Figure 4.15: Histograms of the relative errors in the 𝑙2 norm of the adaptedMulti­Fidelity Reduced Order Model constructed by the
Filtered Bi­fidelity Proper Orthogonal Decomposition algorithm (a), and of the single­fidelity aPOD MOD based on a high­fidelity
model. A global error tolerance is set of 𝛾𝑚𝑎𝑥 = 10−2.
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This concluded the Results section of this thesis. In the next section, these results will be discussed
for each of the FB­POd and AB­POD algorithms.
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Discussion

In this section, the results of Section 4 will be discussed. The discussion is split into two parts: first, the
results for the Filtered Bi­Fidelity Proper Orthogonal Decomposition method are discussed in Section
5.1. Then, the methods to assess the FB­POD are evaluated. The meaning of these results in an
academic context is also mentioned. Secondly, the results of the Adapted Bi­Fidelity Proper Orthogonal
Decomposition are discussed in Section 5.2. The evaluation methods and the academic relevance of
the AB­POD algorithm are discussed as well.

5.1. Filtered Bi­Fidelity Proper Orthogonal Decomposition
In this work the FB­POD algorithm was demonstrated on 1D analytical functions for multi­grid and
multi­physics variable fidelity, and on a 2D diffusion model. Both test cases showed that when the
multi­fidelity approach relied on multi­grid, 8 − 56% of the high­fidelity snapshot could be reduced in
the 1D analytical case and 53−62% in the 2D diffusion case compared to the high­fidelity aPOD algo­
rithm. Tables 3.1 and 4.2 show that a greedy algorithm increased the number of low­fidelity snapshots
significantly during the grid search. These extra sampled points did not increase the number of POD
modes used in both of the cases, nor did they significantly increase the number of important points.
In the 1D test case, the number of important points was the same for both greediness factors, while
the number of important points in the 2D test case only increased by 3% between greediness factors.
Therefore the maximum relative errors of the filtered MF ROMs did not improve significantly by using
a greedy algorithm. In these test cases, the greedy algorithm mostly induced oversampling during the
grid search. This can be explained by the fact that the dependence along some dimensions is linearly
or close to linear, and refining the grid along those dimensions is not necessary, as the dependence
can already be approximated accurately with a few supporting nodes. This is in agreement with the
results found in [2] where setting the greediness factor from 1 to 0 led to a large increase in sampled
points with a limited increase in accuracy. In this work, only two greediness factors were used for the
prove of concept of the FB­POD algorithm. Since the greediness factor has a significant effect on the
oversampling by the low­fidelity search, and thus on the reduction of high­fidelity snapshots, other val­
ues between 0 − 1 can be tested in further research.

Due to the similarity of both fidelity models using multi­grid, the low­fidelity adaptive grid search se­
lected the same important points for the high­fidelity part of the FB­POD algorithm. In the 1D analytical
test case, these important points were identical because both models depend on the same parameters
and treat them the same way. Therefore, the snapshot matrices of both reduced­order models were
filled with the same snapshots, and their proper orthogonal decomposition basis function sets were
identical. Consequently, the maximum relative error of the filtered MF ROM was identical to that of the
HF ROM. However, there was variance in the maximum relative error between different greediness
factors even though the same important points were used. This could be explained by the fact that the
HF and filtered MF ROM were tested on different randomly sampled test sets. Since the test sets are
randomly generated, the maximum relative error can vary between sets. Nevertheless, the values for
the non­greedy and greedy filtered MF ROM were comparable. The reason for examining the maxi­
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mum relative error rather than the average error for the 1000 test points is that the reduced­order model
is constructed to compute approximations below a specific error tolerance. To test if the construction
was successful, the reduced­order model is evaluated for many input points to ensure convergence
over the whole phase space, which was the case for the 1D multi­grid test case.

In contrast to the 2D test case, the maximum relative error in the non­greedy case was 0.095, while it
was 0.099 in the greedy case. This exceeded the set error tolerance of 10−3. The reduced accuracy
can be explained by the fact that not all preselected points were utilized by the FB­POD algorithm in
the 2D diffusion test case. The FB­POD algorithm utilized only 317 of the 537 selected important points
in the non­greedy setting, and 327 out of 564 in the greedy case. This can be explained by how the
FB­POD algorithm is constructed. To limit the number of high­fidelity evaluations by FB­POD algorithm,
the filtered MF ROM was tested after each level of important points was fed. The test points were the
important points of the next level. These points were chosen as the test points because their high­
fidelity solutions are needed for building the interpolant at the next level. If randomly sampled points
were chosen to evaluate the filtered MF ROM, their high­fidelity solutions could only serve for validation
and not help in constructing the interpolant for the coefficients, since they are not part of the ancestry
of the sparse grid. In the 2D diffusion case, this led to the premature termination of the algorithm. The
number of consequent important points was not enough to ensure an accurate ROM over the entire
phase space. Dynamics were missed which led to errors above the set tolerance of 10−3. Figure 4.9
shows that the FB­POD algorithm samples fewer points in the macroscopic capture cross­section and
diffusion coefficient of Region 1 as the algorithm is terminated before the deepest level of important
points is reached. The macroscopic fission cross­section already converged with fewer points at a
lower level in the grid, and was therefore not affected by the premature termination.

The problem of premature termination could be avoided by dismissing the accuracy check after each
iteration. This way, all important points will be utilized in building the MF ROM. Since the low­ and
high­fidelity models required a comparable amount of important points, it is expected that the accuracy
of the filtered MF ROM will improve in this case. The increase in accuracy comes however at the cost
of more high­fidelity evaluations. Another solution would be to test the filtered MF ROM after each
iteration with one large test set. Since the constructed filtered MF ROM will be tested on a large test
set anyways, this same set can be used after each iteration without additional high­fidelity evaluations.
This can mitigate the issue of premature termination.

Nonetheless, the majority of the tested points (98.9 − 99.5%) in the 2D diffusion test case fell under
the pre­set global error tolerance. The highest relative error observed was 1.20 ⋅ 10−3 and 1.08 ⋅ 10−3
in the non­greedy and greedy test cases, respectively. The FB­POD method proved itself to effectively
reduce the number of high­fidelity solutions while being able to produce accurate approximations when
compared to the high­fidelity solution, in the case of multi­grid variable fidelity. In these test cases, the
low­ and high­fidelity models were still very similar and contained the same dynamics.

In other test cases using variable discretization, problems may occur if the low­fidelity model’s dis­
cretization becomes too coarse to capture certain behavior accurately. For example, when the mesh
size in the 2D neutron diffusion model exceeds the mean free path of neutrons and interactions of
neutrons with other particles are missed. If the coarse grid has an insufficient mesh size, the low­
fidelity method will likely identify fewer or different points as important. Consequently, the dynamics
that arise from the finer mesh of the high­fidelity model will not be accurately represented, as seen in
the multi­physics test case. Therefore, mesh convergence tests must be performed on both the low­
and high­fidelity models to ensure that they contain sufficient information about the system in their ap­
proximations.

In the test case involving multiple physics, the limitations of the FB­POD algorithm became clear. The
high­fidelity model incorporated a sine function representing an additional physical phenomenon. The
FB­POD algorithm utilized the low­fidelity model, which is a parabolic function dependent solely on
parameter A. The root node and the two forward points were deemed important. As the low­fidelity
model has a linear dependence on parameter A, the relationship can be approximated using a linear
function, which is the interpolant 𝐴𝑙,𝑑 when 3 supporting nodes are employed. This is illustrated in
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Figure 2.1 of Section 2.1.2. However, a filtered MF ROM build on three high­fidelity snapshots does
not give accurate approximations, as 99.8% of the 1000 test points exceeded the predefined global
threshold of 𝛾𝑖𝑛𝑡 = 10−3. The limitations of the FB­POD algorithm can be explained by the fact that
the low­ and high­fidelity models include different parameters. The low­fidelity model does not depend
on parameters B and C. The adaptive sparse grid search therefore will only sample the first two for­
ward points along those dimensions and will not deem them as important, as these parameters do not
affect the system. When transferring these sampled points to the high­fidelity model, the dynamics
that parameter B and C introduce is missed by the ROM. Setting the greediness factor to 1 yielded
more sampled points but found the same three points important as in the non­greedy case. A greedy
FB­POD algorithm does not result in a more accurate filtered MF ROM. It can be concluded that the
FB­POD algorithm only works in cases where the models of both fidelity depend on the same param­
eters.

5.2. Adapted Bi­Fidelity Proper Orthogonal Decomposition
In this study, the AB­POD algorithm was also demonstrated on 1D analytical functions for multi­grid
and multi­physics variable fidelity, and on a 2D diffusion model. For the 1D analytical multi­grid case,
the number of high­fidelity solutions was reduced by 82 − 86% depending on the greediness factor.
In the 2D diffusion test case with variable discretization, the number of the high­fidelity solution was
reduced by 47% in the non­greedy case and 54% in the greedy setting. For both cases, the accuracy
of the adapted MF ROM was comparable to that of the high­fidelity aPOD ROM when tested on 1000
test points. Furthermore, utilizing a greedy algorithm did not significantly improve the accuracy of the
ROM in both test cases.

The reduction in high­fidelity evaluations can be explained by the similarities between the low­ and
high­fidelity model. As a result of using a multi­grid variable fidelity approach, the low­ and high­fidelity
models exhibit similar behavior and handle parameters in the same manner. As the parameters are
perturbed, both the low­ and high­fidelity models undergo similar changes, such as a steeper parabola
or a shifted sinusoidal curve in the 1D analytical case, or an increase in flux density in the 2D diffu­
sion case. However, the difference between the two models changes less significantly, resulting in a
smaller impact on the snapshots of the correction factor. This reduced variability between snapshots
may explain why only 9 POD modes are needed to approximate the correction factor instead of 13.
Because the snapshots are similar, fewer dynamics are found by the ROM and the solution can be
approximated with fewer POD modes. A similar result was found in the 2D diffusion case, where only
3 POD modes were used to approximate the correction. The single high­fidelity ROM needed 5 POD
modes to approximate the solution in the non­greedy case and 7 in the greedy case. Since a smoother
behavior is presumed for each of the coefficients 𝑐𝑖(p) associated with the POD, fewer important points
are required to construct the correction factor than in the high­fidelity model. Moreover, in the 1D ana­
lytical case, the low­fidelity model’s spatial grid points are included in the high­fidelity model, and since
they use the same function to calculate values at those points, their solutions are identical. The cor­
rection factor remains constantly zero at these points and will not contribute to the approximation error
of the adapted MF ROM.

In the multi­physics test case, more training samples are needed for the ROM to approximate the cor­
rection factor, which is a sinusoidal function, than the high­fidelity model which is a parabola with a
smaller sinusoidal component. An increase of 611 − 669% in high­fidelity solutions was seen when
the AB­POD algorithm was applied over the aPOD algorithm. The lower number of evaluations of the
HF ROM can be explained by the fact that the high­fidelity model is mostly a parabola and linearly de­
pendent on parameter A. Figure 4.6a shows that the first squared singular value of the HF ROM is 104
times larger than the second largest value. The singular values squared are a measure of the energy
contributed by each PODmode to the system. The first PODmode, which corresponds to the parabolic
component of the high­fidelity function, captures therefore most of the energy. The POD modes used
by the HF ROM are shown in Figure 4.6b. Since the parabola is the dominant feature of the high­fidelity
solution and the sinusoidal component constitutes only a fraction of the overall solution, perturbations
of parameters B and C will have a lesser impact on the overall solution. As a result, the model’s depen­
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dence on these parameters can be approximated with lower accuracy while still maintaining a global
error below the threshold. Consequently, fewer samples will be required along the dimensions of B
and C.

The correction factor, however, is a sinusoidal function. Figure 4.7b displays the POD modes used for
approximating the correction factor. It is apparent that the parabolic corresponding mode is absent as
it is not needed for approximating a sine function. In Figure 4.7a the squares of the corresponding sin­
gular values are given. The first five values are of the same order or magnitude. The interpolants that
approximate the corresponding coefficients for these POD modes have to be of comparable accuracy,
since these modes contribute similar amounts of energy to the system. Although the correction scales
linearly with B and the interpolant requires three supporting nodes to reconstruct the dependency, a
large number of samples are required to approximate the highly non­linear frequency parameter C.
Specifically, 513 unique values were sampled along the dimension of parameter C to reconstruct the
correction factor with a relative error tolerance of 𝜆𝑚𝑎𝑥 = 10−3.

The results of Section 4.1.2 give insight into overcoming hard­to­learn correction factors by adjusting
the global relative error tolerance of approximating the true correction factor. When the relative error
tolerance for the correction factor is reduced to 10−1 results in 71 high­fidelity evaluations, which is a
reduction of 51% in high­fidelity evaluations compared to the HF ROM. When tested on 1000 randomly
sampled points, 98.8% of the test points fell below the set global error limit and resulted in a maximum
relative error of 1.24 ⋅ 10−3. Since the sinusoidal component accounts for only a portion of the overall
solution, it can be approximated with less precision while still maintaining the accuracy of the overall
solution. Similar results were obtained in the 2D neutron diffusion test case. The global relative error
threshold was set to 𝜆𝑚𝑎𝑥 = 10−2, while the overall relative error tolerance was set to 𝛾𝑚𝑎𝑥 = 10−3.
Even though the correction factor was less accurately approximated, the adapted MF ROM produced
approximations with comparable accuracy to that of the single­fidelity aPOD ROM. By adjusting the
global and local error tolerances of the correction factor, a desired balance between the number of
high­fidelity evaluations and accuracy can be achieved. Therefore, the AB­POD method offers a flex­
ible trade­off between these two factors and could be a useful tool for many query applications, like
design optimization, where not all features have to be approximated with similar accuracy. The bal­
ance between accuracy and required computational power can be customized per test case.

Looking into the methods of the neutron diffusion case, the neutron flux is approximated by the adapted
MF ROM using 7 PODmodes, while the HF ROM and the LF ROM only use 5 in the non­greedy setting.
Some extra dynamics are added to the system when corrected low­fidelity snapshots are used instead
of pure low­ or high­fidelity snapshots. The correction factor that is added is an approximation itself
that contains an error. This error might vary from point to point, thereby introducing variation between
the snapshots. Moreover, the low­fidelity snapshots are interpolated to match the size of the correction
factor, which introduces errors as well. Though Akima interpolation introduces fewer undulations than
other methods like spline, the interpolated values will inevitably have so deviations from their high­
fidelity counterparts. The errors could be recognized by the ROM as system dynamics. Though more
POD modes are used to construct the approximation, the maximum relative error of the adapted MF
ROM is in the same order of magnitude as the HF­ROM. Figure 4.14 shows that the square singular val­
ues of the last two POD modes of the adapted MF ROM have a value in the order of magnitude of 10−7
and 10−8, only contributing limited amounts to the overall solution. Furthermore, in Figure 4.9, it can
be seen that the AB­POD algorithm samples the same number of unique values per dimension as the
high­fidelity model. This indicates that the corrected low­fidelity snapshots contain similar information
as the high­fidelity snapshots. To approximate the dependence on each parameter, the same degree
of refinement along the dimensions is needed for the adapted MF ROM and HF ROM. The corrected
low­fidelity snapshots are constructed such that they mimic the high­fidelity solution. These results
indicate that this was successful and that the AB­POD preserves the high­fidelity dynamics through the
correction factor.

Furthermore, The global error tolerance to stop iterations for the correction factor was set to 𝜆𝑚𝑎𝑥 =
10−2, while the global error tolerance that was used for the final multi­fidelity ROM was kept on 𝛾𝑚𝑎𝑥 =
10−3. Section 3.2.1 revealed that a less accurate approximation to the correction factor still yields an
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accurate final multi­fidelity ROM with a lower cost of high­fidelity snapshots. Consequently, the thresh­
old 𝜆𝑖𝑛𝑡 was reduced and resulted indeed in a reduction of high­fidelity snapshots.

5.3. Concluding Remarks
The FB­POD and AB­POD methods were not successfully tested on the third test case due to technical
difficulties and time constraints and were produced unreliably. The main problem was the termination
of the computation before the ROM had converged. The reason for the early termination was not clear.
Moreover, due to long computation times, the termination became apparent late in the process. Be­
cause the data was not saved after each iteration, the ROM had to be started all over again. It was
attempted to reload sampled solutions into the adaptive grid search, but an insufficient data manage­
ment strategy prohibited this. It is highly recommended to change the data saving structure of the
proposed algorithm, so that data can be stored in between runs, and can be reloaded when premature
termination occurs. This will reduce some of the computation time for constructing the ROM. Also,
looser error tolerances can be used to limit the number of high­fidelity evaluations. This way, the ROM
might converge before the algorithm is prematurely terminated.

This concludes the discussion of the results for the Filtered and Adapted Bi­Fidelity Proper Orthogonal
Decomposition. In the following section, the conclusion that can be drawn from the results will be
presented along with an outlook for further research.





6
Conclusions and Recommendations

In this section, the conclusions that can be drawn from the results will be presented. Recommendations
for improvements of the presented Filtered­ and Adapted Bi­Fidelity Proper Orthogonal Decomposition
methods, and for future research will also be given.

The aim of this study was to minimize the computational workload involved in constructing a reduced
order model during the offline phase using adaptive sparse grids and multi­fidelity strategies. This
was achieved through two novel approaches; the Filtered Bi­Fidelity Adaptive Proper Orthogonal De­
composition and Adapted Bi­Fidelity Adaptive Proper Orthogonal Decomposition. Both methods were
evaluated on two different test cases, and the balance between the accuracy of each multi­fidelity ROM
and the computational cost, measured by the number of high­fidelity evaluations, was investigated.

6.1. Filtered Bi­Fidelity Proper Orthogonal Decomposition
This study presented a novel approach to filtered bi­fidelity reduced order modeling using Proper Or­
thogonal Decomposition and adaptive sparse grids. The Filtered Bi­Fidelity Proper Orthogonal De­
composition was tested in three different cases, to assess the computational burden of constructing
the filtered multi­fidelity ROM and its performance in terms of accuracy. The success of the proposed
method was shown to depend on the specific case, highlighting the reduction of high­fidelity samples
in the greedy 1D analytical and 2D diffusion case by 56% and 62% respectively. The results also
showed that the number of high­ and low­fidelity samples did not need to be set beforehand, as it is
determined during the offline phase by the adaptive grid search. The greediness factor was found to
be a determining factor in the reduction of high­fidelity samples due to unnecessary refinement along
certain directions in the greedy case. Furthermore, it was observed that models of different fidelities
should depend on the same parameters in similar ways for the successful construction of the filtered
MF ROM. Finally, the accuracy of the filtered MF ROM based on the FB­POD approach was compa­
rable to aPOD reduced order modeling technique in variable discretization cases, demonstrating the
potential of this filtered multi­fidelity approach for modeling complex systems.

6.2. Adapted Bi­Fidelity Proper Orthogonal Decomposition
In this thesis, a novel approach to multi­fidelity reduced order modeling using adaptation, POD, and
sparse grids is presented. An adapted bi­fidelity reduced order model was constructed and tested
in three different test cases. The results showed that the success of the adapted bi­fidelity model is
case specific as well, with a reduction of 47 − 86% of high­fidelity samples in cases based on variable
discretization, while maintaining a comparable accuracy to the high­fidelity ROM. A prerequisite for
success is that the correction factor needs to be smoother than the high­fidelity model solution, which
is not always known beforehand. Additionally, it was demonstrated that the adapted bi­fidelity reduced
order model provides flexibility in the trade­off between accuracy and computational power, as the error
tolerance of the correction factor can be set independently of the global error tolerances. Notably, it
was not required to set the number of high­ and low­fidelity samples beforehand, as this is determined
during the offline phase by the adaptive grid search. Finally, it was demonstrated that the accuracy of
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Adapted Bi­Fidelity model was comparable to that of the aPOD method. These findings contribute to
the development of more efficient and accurate reduced order modeling techniques that can be used
in a variety of applications.

6.3. Recommendations
Improvements can be made to the FB­POD algorithm in terms of point selection and the interaction
between low­ and high­fidelity models. The algorithm is now divided into two distinct phases: a pre­
selection of parameter points in the low­fidelity model and a sequential construction of the ROM using
the high­fidelity model. These two phases can be more integrated by evaluating important points in
high­fidelity after each iteration selecting important points. If the high­fidelity ROM converges before
the adaptive grid­search is finished in low­fidelity, then a number of low­fidelity evaluations can be
spared. Additionally, the compatibility of the FB­POD algorithm with the test case becomes apparent
earlier in the process. If providing more important points to the high­fidelity model does not result in
more accurate approximations, it could indicate that the low­fidelity model is searching in the wrong di­
rection. This work found that the FB­POD method was most limited in situations where the high­fidelity
and low­fidelity models relied on different parameters. To overcome this issue, a potential solution is to
combine various low­fidelity models that capture different dynamics in the system to create a combined
set of important points.

To limit the number of high­fidelity evaluations by FB­POD algorithm, the filtered MF ROM was tested
after each level of important points was fed. The test points were the important points of the next level.
In the 2D diffusion case, however, this led to the premature termination of the algorithm. The number of
consequent important points was not enough to ensure an accurate ROM over the entire phase space.
This problem could be avoided by dismissing the accuracy check after each iteration. This way, all im­
portant points will be utilized in building the MF ROM. Since the low­ and high­fidelity models required
a comparable amount of important points, it is expected that the accuracy of the filtered MF ROM will
improve in this case. The increase in accuracy comes however at the cost of more high­fidelity eval­
uations. Another solution would be to test the filtered MF ROM after each iteration with one large test
set. Since the constructed filtered MF ROM will be tested on a large test set anyways, this same set
can be used after each iteration without additional high­fidelity evaluations. This can mitigate the issue
of premature termination.

Other filtering criteria can be explored as well. The main criterion of deeming points as important is
based on the error between the true solution and the ROM approximation in the 𝑙2 norm. If certain
areas of the system are of particular interest, the adaptive grid search can be directed toward those
directions. Important points would then be selected based on if the ROM can approximate the solution
accurately enough in only certain parts of the system. The ROM can also become more goal­oriented
by refining the accuracy of a response derived from the solution, like a detector response, instead of
the solution itself.

Furthermore, improvements can be made to the AB­POD algorithm. The method is most limited in
cases where the dependence of the parameters on the correction factor is more difficult to learn than
the high­fidelity solution itself. It was shown that the correction factor does not have to be approximate
with the same level of accuracy as the high­fidelity solution. More research with different error toler­
ance can be done to investigate the influence of poorly approximated correction factors on the solution
produced by the adapted MF ROM. As lower error tolerances for the correction factor reduce the num­
ber of high­fidelity evaluations, finding limits for the error tolerances could lead to a further decrease in
high­fidelity evaluations during the construction of the adapted MF ROM. Furthermore, constructing the
correction factor using a ROM can be computationally intensive. As this research has shown, when
models of high­ and low­fidelity are similar, the correction factor does not have to be as accurately
approximated. Simpler interpolation schemes for the correction factor can be tested to lift some of the
computational load of the offline phase of reduced order modeling.

In this study, due to technical difficulties and time constraints, the proposed multi­fidelity methods were
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not properly tested for solving the Neutron Transport Equation using Phantom­DG. As this test case
relies on a different form of variable fidelity, different angular discretizations, it can present itself as an
interesting test case. It is expected that the filtering method will perform best in the thick material test
case, as a coarser angular discretization will have less effect on the neutron flux. This is assumed
because more scattering of the neutrons will occur in the thick material, thereby scattering them more
isotropically away from the source. As the low­ and high­fidelity solutions will be similar, FB­POD is as­
sumed to select the right points in low­fidelity, and enough information is transferred to the high­fidelity
part. The AB­POD is also assumed to perform well in thick material due to the similar nature of the low­
and high­fidelity solutions. The responses of both models to perturbations in parameters are assumed
to be similar, thereby creating a smooth correction field between the two. In the thin material, rays
effects are expected in the low­fidelity solution. It will be interesting to investigate how these unnatural
effects will be handled by FB­POD and AB­POD methods.

In this work, two out of the three multi­fidelity strategies were applied and tested. The multi­fidelity
through fusion scheme can be explored. The manifold alignment technique of Perron et al.(2022)
based on Proper Orthogonal Decomposition can conveniently be linked to the aPOD framework due
to the similar underlying mathematical framework [9]. Also, the employment of neural networks and
manifold alignment in multi­fidelity methods are both still quite novel and could be an interesting path
to explore.

Lastly, though these multi­fidelity non­intrusive reduced­order models were used to analyze the behav­
ior of nuclear reactors, they can be applied in any other field of science and engineering due to the
non­intrusive nature of the reduced­order modeling technique.
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