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Abstract. Health Monitoring strategies rely on tracking the health status of critical engineering
structures (Structural Health Monitoring) and of people (monitoring of medical conditions) to
detect anomalies in the measurements and make inferences on the health condition for support-
ing decisions on preventive actions to be implemented to restore normal conditions. In these
applications, the health monitoring devices are subjected daily to various events that can dam-
age internal electrical components and sensors. As a result, the quality of the data collected
can be compromised and therefore lead to a wrong health assessment. Therefore, robust health
monitoring strategies need to be capable of automatically detecting sensors failures. Having
the sensors’ data is often not enough to gain insights into a monitoring system failure since the
data variation can be related to changes in operating and environmental conditions. Alterna-
tively, a supervised machine learning approach can be used. However, this requires an engineer
to label the data in real-time, which rarely happens. Nonetheless, the common practice when a
system fails is to write failure reports from which information about the failure can be extracted.
Manually extracting comprehensive labels from the failure reports can be time-consuming. A
strategy for automatically extracting failure labels from a set of failure reports written to de-
scribe failures of different types of sensors of a monitoring device is presented. This strategy
consists in transforming the reports in their word vector form, processing each failure report
to reduce the list of important words and identifying clusters of reports. The feasibility of the
proposed approach is shown through its application to the failure reports compiled to describe
seven types of failure of a low-cost wearable device based on an Arduino programmable board.
Comparisons between manually extracted labels, and labels extracted with the proposed strat-
egy when considering semi-supervised and unsupervised clustering strategies are presented. It
is shown that the proposed strategy is capable of identify the failure label of a cluster of reports
with a good accuracy. Therefore, enabling the development of a self-supervised classification
algorithm for sensor fault identification for robust Structural Health Monitoring.
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1 INTRODUCTION

In engineering and healthcare applications, effective monitoring strategies are being devel-

oped tracking the health status of critical engineering structures (Structural Health Monitoring,

SHM) [1, 2] and of people [3, 4] to make inferences on the health condition and support de-

cisions, such as preventive actions to restore normal conditions. Therefore, the measurements

obtained with the monitoring system must be informative, reliable and accurate. However, a

monitoring device can fail during operating conditions because of poorly manufactured sensors

and/or electronics, problems with cable harnesses, ageing effects, improper handling, electro-

magnetic interference, and environmental factors [5]. Unnoticed failures of the monitoring

device undermine the quality of the measurements and consequently compromise inferences

and decisions making. In SHM applications, a faulty monitoring device could lead to a wrong

assessment of the remaining useful life of a structure [5]. This is one of the key bottlenecks

undermining the reliable deployment of SHM technologies. A faulty wearable health monitor-

ing devices can cause fatal conditions to be missed, over-treatment and it might produce health

anxiety or fatigue [3, 6].

Failures of the monitoring device may not be detected during inspections [5]. The implemen-

tation of an additional monitoring system can be costly and prone to the same problems. Several

investigations have been carried out for automatically detecting a faulty monitoring device for

chemical process monitoring [7], in aircraft control applications [8, 9], in wearable health moni-

toring devices [10] and in SHM applications [1, 2, 5, 11, 12]. Broadly speaking, the approaches

for sensor validation [5, 13] can be grouped into model-based approaches, knowledge-based

approaches and data-driven approaches. Currently the monitoring device health status cannot

be reliably identified and/or distinguished from structural failures and/or operating and envi-

ronmental conditions by using only measurements [14, 15, 16, 17, 18, 19]. Alternatively, a

supervised machine learning approach can be used where discriminative features in the mea-

surements are paired with failure labels. However, this would require an engineer to label the

data in real-time, which rarely happens and might be inaccurate [1, 2, 20], and to asses the dis-

criminative features. Nonetheless, the common practice when a system fails is to write failure

reports [21, 22] from which information about the failure of the device can be extracted. Manu-

ally extracting comprehensive labels from the failure reports can be time-consuming. Therefore,

this work focusses on automatically extracting failure labels from a set of failure reports written

to describe failures of different types of sensors of a monitoring device. This strategy consists in

transforming the reports in their word vector form, processing each failure report to reduce the

list of important words and identifying clusters of reports for each failure type. The feasibility

of the proposed approach is shown through its application to the failure reports compiled to

describe the sensor failures of a low-cost wearable device based on an Arduino programmable

board. The chosen application displays similar challenges encountered in SHM applications,

such as: (i) the sensors employed record various quantities at different rates; (ii) the measure-

ments are influenced by operational and environmental conditions; (iii) similar failure types can

occur for the same sensor; (iv) only a limited dataset of recorded failures is available; and (v)

the number of elements in the training dataset for each failure type is imbalanced. Comparisons

between manually extracted labels, and automatic extraction based on semi-supervised and un-

supervised clustering strategies are presented. Finally, the implications of using these labels to

train a self-supervised classification algorithm for sensor fault identification are discussed.

160



Andreea-Maria Oncescu and Alice Cicirello

2 BRIEF DESCRIPTION OF THE MONITORING DEVICE AND FAILURES CON-
SIDERED

A low-cost wearable device that includes typical sensors used in wearable applications is

chosen for investigating several failure types while keeping the costs low. This monitoring

device is composed of a programmable Printed Circuit Board (Adafruit Metro Mini 328), a

temperature sensor (digital Dallas Temperature Sensor), a humidity sensor (digital Grove -

Temperature & Humidity Sensor Pro), an accelerometer (analog Triple Axis Accelerometer

BMA220(Tiny) ) and a Galvanic Skin Response (GSR) sensor. Seven types of failure are man-

ually induced for a total of 117 failure instances. Specifically, three failure types are considered

for the GSR sensor and two for the accelerometer, a failure type for the temperature sensor and

another for the humidity sensor. Moreover, different number of failure instances are considered

for each failure type.

Wearable devices, and in general small electronic devices, experience predominantly failures

related to the solder joints and to the the sensor connectors [23]. These failures can be caused

by improper soldering, ageing, improper handling of the wearable device or cracks in the solder

at the connection point caused by a bent Printed Circuit Board (PCB). Within the current setup

these failures can be easily reproduced by disconnecting wires at the interface with the PCB.

Depending on the sensor and which pin was disconnected, the effects on the recorded signal

varied. Moreover, another common failure type is related to burnt resistors. This failure type

is induced by adding a resistor to the analog and power pins of the GSR sensor. The induced

failures are summarised in Table 1.

Failure Type Effects on measurements Occurrences
(GSR, analog, pin) jumps to 521 24

(GSR, ground, pin) jumps above 1000 24

(GSR, burnt, resistor) signal distorted 16

(accelerometer, ground, pin) jumps to higher values 11

(accelerometer, power, pin) jumps to lower values or zeros 11

(humidity, power, pin) jumps to different values or -300% 18

(temperature, ground, pin) jumps to different values or -127 ◦ C 13

Table 1: Induced failures and effects on recorded data

Data was recorded during controlled and operating conditions, and a failure report was writ-

ten each time a failure occurred, for a total of 117 failure instances. Data and reports are stored

within a Structured Query Language database for easy retrieval of information.

3 FAILURE INVESTIGATIONS AND FAILURE REPORTS

Failure investigations of a structure/system are carried out by an expert to identify the root-

cause of failure and suggest remedial actions [21, 22]. Each failure investigation includes the

measurements collected in operation, an analysis of the patterns observed in the measurements

before and after the failure occurred, the lab experiments and steps required to identify the root-

cause of the failure, and a failure report. Currently, the information collected during failure

investigations is used for quality assessment, to support decisions about design changes and

schedule maintenance [22]. The information collected during these investigations can be also

used to improve SHM technologies.
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Failure reports are documents with a standard outline [21, 22] and with sections written as

free text. The first section focuses on the description of the failure effects observed during

operating conditions, and it includes images and plots, and a brief description of the patterns

observed in the measurements. Other sections focus on describing the steps taken to identify the

root-cause of failure and to reproduce it; the remedial actions implemented; and how to manage

similar failures in the future. One example of a failure report for the low-cost monitoring device

under investigation is provided in Figure 1.

Figure 1: Example of a failure report.

Manual extraction of the information from reports can be time consuming and costly. There-

fore a strategy for automatically grouping and extracting the failure labels from failure reports

is presented.

4 APPROACH FOR REPORTS CLUSTERING AND LABEL EXTRACTION

A strategy is proposed for automatically grouping the reports according to the failure type

described and extract the failure labels by pre-processing the failure reports and applying Nat-

ural Language Processing (NLP) techniques. Each document is represented as a vector in a

multi-dimensional space, the so-called document embedding [24]. Initially text is extracted

from the failure reports (word documents) by using the docxpy python package. The number
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of representative words of each failure report is reduced to the most relevant ones by applying

pre-processing techniques [24] such as: tokenization; reducing list of tokens; part of speech

tagging; and lemmatization. Then, each failure report is represented as a vector in a word-space

model. In particular, the Term Frequency-Inverse Document Frequency (TF-IDF) [24] is used

in combination with Bag of Words (BoW) [24] to refine the list of words. BoW considers the

raw frequency of that specific word within the report [24] and therefore selects the most frequent

words. However, some words, such as figure, failure or sensor, are not helpful for distinguish-

ing the group of reports. These non-informative words are then eliminated by using the TF-IDF

approach [24] which considers how many times each word appears in one document and also

how many times that word appears in all the documents of the corpus. Words that appear in all

the documents being processed will be given a zero TF-IDF score.

These weights can be calculated by first finding the term frequency (tf) [24]:

tf(word) =
Number of times the word appears in document

Total number of words in document
(1)

Next, the inverse document frequency term is needed (idf) [24]:

idf(word) = log
(

Total number of documents in corpus

Number of documents containing the required word

)
(2)

Finally, the TF-IDF score (which takes values in the interval [0,1]), is calculated as [24]:

TF-IDF = tf(word) × idf(word) (3)

The words with TF-IDF scores above a certain threshold are then used to represent each

document as a vector. Once this vector representation is obtained, groups of reports belonging

to different failure types can be then obtained by applying semi-supervised and unsupervised

K-means clustering [25]. While in the unsupervised clustering the initial cluster centres are

randomly allocated, in the semi-supervised clustering the initial cluster centres are assigned

by selecting one report for each failure type. Once the K-means algorithm has been run to

determine each cluster centre and the reports belonging to that cluster, the label of each cluster

is manually extracted by selecting a single report within that cluster that is close to the identified

cluster centre.

5 APPLICATION OF THE PROPOSED APPROACH

A TF-IDF score threshold of 0.0019 was set. The K-means implementation from the sklearn

package [26] was used where the cluster number was set to 7. A brute-force algorithm was im-

plemented to quantify the performance of K-means clustering. This performance was assessed

in terms of “accuracy”, that is the ratio of correct failure type predictions to total predictions

made. Since multiple classes are considered and each class has an unequal number of obser-

vations, the confusion matrix is also considered. These matrices display the count values of

the correct and incorrect failure labels predictions, and they are defined such that rows display

the expected class, while the columns represent the predicted class obtained with the clustering

algorithm. The goal is to maximise the count values obtained on the main diagonal since they

correspond to the total number of failures for that class.

For the unsupervised K-means clustering with 100 starting points, a maximum accuracy of

83.7% was observed, and a lowest of 70.1%. The clustering with the lowest accuracy is shown

in Table 2.
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Labels L1 L2 L3 L4 L5 L6 L7

L1= (GSR, analog, pin) 12 0 0 0 12 0 0

L2= (GSR, ground, pin) 12 12 0 8 0 0 0

L3= (GSR, burnt, resistor) 0 0 16 0 0 0 0

L4= (accelerometer, ground, pin) 0 0 0 11 0 0 0

L5 = (accelerometer, power,pin) 0 0 0 11 0 0 0

L6= (humidity, power, pin) 0 0 0 0 0 18 0

L7= (temperature, ground, pin) 0 0 0 0 0 0 13

Table 2: Unsupervised clustering, confusion matrix with accuracy of 70.1%.

It can be observed that the failure types (GSR, analog, pin), (GSR, ground, pin), (accelerom-

eter, ground, pin), and (accelerometer, power, pin) can be miss-clustered due to the similarity

of the failure reports and to the reduced number of reports to learn from. In Table 3 it is shown

that even when an accuracy of 83.7% is obtained, the failure type (accelerometer, power, pin)

can still be entirely miss-clustered.

Labels L1 L2 L3 L4 L5 L6 L7

L1= (GSR, analog, pin) 24 0 0 0 0 0 0

L2= (GSR, ground, pin) 0 24 0 0 0 0 0

L3= (GSR, burnt, resistor) 0 0 16 0 0 0 0

L4= (accelerometer, ground, pin) 0 0 0 11 0 0 0

L5 = (accelerometer, power,pin) 0 0 0 11 0 0 0

L6= (humidity, power, pin) 0 0 0 0 6 12 0

L7= (temperature, ground, pin) 0 2 0 0 0 0 11

Table 3: Unsupervised clustering, confusion matrix with accuracy of 83.7%.

These results could be improved by considering pre-knowledge on the labels and/or rela-

tionships between words at the TF-IDF stage, before running the clustering algorithms, or by

increasing the number of available documents.

For example, when the initial cluster centre was set manually by assigning one failure report

to each failure type, the accuracy was improved as shown in Table 4 and the (accelerometer,

power, pin) was correctly clustered.

Labels L1 L2 L3 L4 L5 L6 L7

L1= (GSR, analog, pin) 20 4 0 0 0 0 0

L2= (GSR, ground, pin) 0 24 0 0 0 0 0

L3= (GSR, burnt, resistor) 0 3 13 0 0 0 0

L4= (accelerometer, ground, pin) 0 0 0 2 9 0 0

L5 = (accelerometer, power,pin) 0 0 0 0 11 0 0

L6= (humidity, power, pin) 0 0 0 0 0 18 0

L7= (temperature, ground, pin) 0 2 0 0 0 0 11

Table 4: Semi-supervised clustering, confusion matrix obtained when initial cluster centres are assigned by speci-

fying one report belonging to each cluster.
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Therefore, when the labels are extracted automatically, some reports may be incorrectly

labelled. As a result, this would reduce the performance of a self-supervised classification algo-

rithm. Nonetheless, the overall performance of the proposed approach can still reach a certain

target accuracy while at the same time reducing the setting up time by making the labelling

process fully automatic or semi-automatic for the user.

6 CONCLUSIONS

An approach for extracting information obtained during failure investigations is proposed

with the aim to facilitate the implementation of a self-supervised machine learning strategy that

enables to detect if a monitoring device failed, and if so, to classify which sensor failed and the

type of sensor failure.

Within the proposed approach, the process of extracting labels from failure reports, and

therefore assigning labels to the corresponding measurements, is sped up by pre-processing the

failure reports and applying Natural Language Processing (NLP) techniques to create a vector

representation of each failure report in the word-space. The failure report vector representations

are clustered together using K-means clustering, and a failure label is assigned to each cluster.

The applicability of the proposed approach was shown by analysing the reports collected

when performing failure investigations of a low-cost health monitoring device. This application

displays similar challenges encountered in SHM applications, such as: (i) the sensors employed

record various quantities at different rates; (ii) the measurements are influenced by operational

and environmental conditions; (iii) similar failure types can occur for the same sensor; (iv) only

a limited dataset of recorded failures is available; and (v) the number of elements in the training

dataset for each failure type is imbalanced. Seven types of failures were manually induced, and

measurements with different sensors were recorded during operating and testing conditions.

Failure reports for each failure investigated were written, and paired with the recorded data. A

small dataset of 117 failures was produced. This limited dataset was characterised by four dif-

ferent faulty sensors, two of which displayed multiple failure types and an imbalanced number

failure were considered for for each failure type.

It was shown that the proposed label extraction procedure when using unsupervised cluster-

ing can miss-cluster entirely one of the failure types even if yielding an overall high accuracy.

As a result, this would reduce the performance of the self-supervised classification algorithms.

Nonetheless, the overall performance of the proposed approach can still reach a certain target

accuracy while at the same time reducing the setting up time by making the labelling process

fully automatic or semi-automatic for the user. It was concluded that when dealing with small

failure datasets, with unbalanced classes and similar failure types that the semi-supervised clus-

tering procedure should be preferred.

Indeed, depending on the complexity of the failure reports, the extraction of the failure type

labels using NLP strategies can lead to wrong labels assignment, with the risk of not including

a particular failure type in the training dataset. Moreover, a failure type can potentially be

wrongly identified in the failure report itself, and in fact it might not be supported by the features

observed in the data. In turn, this will affect the capability of the proposed approach to detect

and isolate the correct failure type for new, unseen data. This is of particular importance for

SHM applications. The assessment of the quality of the features-label pairs for improving the

training of the classification algorithm is the subject of current research investigations.
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