
Delft University of Technology
Software Engineering Research Group

Technical Report Series

SoQueT: Query-Based Documentation of
Crosscutting Concerns

Marius Marin, Leon Moonen and Arie van Deursen

Report TUD-SERG-2007-005

SERG



TUD-SERG-2007-005

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note: Accepted for publication in the Proceedings of the International Conference on Software Engineering
(ICSE), 2007

c© copyright 2007, by the authors of this report. Software Engineering Research Group, Department of
Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Uni-
versity of Technology. All rights reserved. No part of this series may be reproduced in any form or by any
means without prior written permission of the authors.



SoQueT: Query-Based Documentation of Crosscutting Concerns
Marius Marin

Delft University of Technology
The Netherlands

A.M.Marin@tudelft.nl

Leon Moonen
Delft University of Technology

The Netherlands
Leon.Moonen@computer.org

Arie van Deursen
Delft Univ. of Technology & CWI

The Netherlands
Arie.vanDeursen@tudelft.nl

Abstract
Understanding crosscutting concerns is difficult because
their underlying relations remain hidden in a class-based de-
composition of a system. Based on an extensive investigation
of crosscutting concerns in existing systems and literature,
we identified a number of typical implementation idioms and
relations that allow us to group such concerns around so-
called “sorts”. In this paper, we present SOQUET, a tool
that uses sorts to support the consistent description and doc-
umentation of crosscutting relations using pre-defined, sort-
specific query templates.

1. Introduction
It is generally accepted that crosscutting concerns hinder
program comprehension due to their tangled and scattered
nature. Understanding these concerns requires one to ob-
serve relations spanning multiple modules and to identify
relevant code elements in each of these modules. For exam-
ple, a simple mechanism for notifying the listeners to specific
events requires a number of methods in a given context to
consistently invoke a given action after executing their core
functionality. The comprehension challenge lies in the fact
that all invocations of this notification method are part of a
common task which itself is implicit in the code.

Having consistent documentation of the crosscutting con-
cerns in a system can help developers to better understand
and evolve the system by providing starting points for explo-
ration and refactoring. In addition, such documentation sup-
ports aspect mining researchers with a much desired “golden
standard” for validating their results.

We propose to use queries to document crosscutting rela-
tions in source code. Queries have been proposed by oth-
ers to navigate and understand code [7, 3, 8]. However,
these previous approaches do not particularly focus on cross-
cutting concerns, and hence neither on identifying common
properties in such concerns, which would be needed for their
consistent formalization and documentation using queries.

In our previous work we have identified and examined
crosscutting concerns in more than 500,000 lines of Java
code (including Tomcat, JBoss, JHotDraw, and Java Pet-
Store) as well as in literature. Starting from this investigation
we have developed a classification of these concerns based
on a number of identified common properties. Such proper-

ties, which include typical implementation idioms and rela-
tions, allow to distinguish several classes of concerns that we
call sorts [5]. Sorts are aimed at ensuring a consistent gran-
ularity level in describing and referring to crosscutting func-
tionality. Moreover, we use queries to formalize the crosscut-
ting concern sorts and their underlying relations, and, thus,
document their concrete instances in source code.

This paper presents SOQUET, a tool for documenting
crosscutting concerns in source code using sort-specific
queries. SOQUET is typically used from two perspectives,
namely, (1) as a tool for consistently creating crosscutting
concern documentation for a system, and (2) as a tool for
exploring query-based crosscutting concern documentation
that was defined earlier for the system under investigation.

In the first scenario, the user is assumed to be acquainted
with the concerns to be documented. An example is a de-
veloper that wants to make explicit some relations that are
otherwise “hidden” by the object-based decomposition of a
given system. The tool assists the developer with document-
ing these relations through a number of query templates de-
fined for each concern sort. These templates can be instanti-
ated using source entities from the target system.

In the second scenario, a user can explore a given system
by loading the (pre-existing) sort-based documentation of an
application into SOQUET in order to understand a number of
crosscutting concerns and policies present in the implemen-
tation. In this case, the documented concerns can be browsed
and their associated queries can be executed to find the cor-
responding source code.

2. Crosscutting Concern Sorts
A crosscutting concern sort is a class of concerns that share a
number of properties: an intent (behavioral, design or policy
requirements), a specific implementation idiom in an (object-
oriented) language, and a (desired) aspect-language mecha-
nism that supports the modularization of the sort’s concrete
instances. Examples of aspect mechanisms include pointcut
and advice or introduction, as in AspectJ [1].

Table 1 gives a short description of the most commonly
encountered sorts from the catalog of 12 sorts that we have
compiled in previous work [5].
Query-based documentation of concerns As an example,
consider the Consistent Behavior sort. Instances of this sort

SERG Marin, Moonen & van Deursen – SoQueT: Query-Based Documentation of Crosscutting Concerns

TUD-SERG-2007-005 1



Sort Short description
(Method) Consistent Behavior A set of method-elements consistently invoke a specific action as a step in their execution.
Contract Enforcement A set of method-elements consistently check a common condition.
Redirection Layer A type-element acts as a front-end interface having its methods responsible for receiving calls and redirect-

ing them to dedicated methods of a specific reference, optionally executing additional functionality.
Expose Context (Context Passing) Method-elements part of a call chain declare additional parameter(s) and pass it as argument to their callees

for propagating context information along the chain.
Role Superimposition Type-elements extend their core functionality through the implementation of a secondary role.
Support Classes for Role Superim-
position

Type-elements implement secondary roles by enclosing nested, support classes. The nesting mechanism
enforces and makes explicit the relationship between the role of the enclosing class and the one implemented
by the support class.

Policy Enforcement References between program elements are restricted as part of a (system) policy rule.
Exception Propagation (Declare
throws clause)

Method-elements in a call chain consistently (re-)throw exceptions from their callees in the absence of an
appropriate answer.

Table 1. A selection of Sorts of crosscuttingness.

include concerns like tracing the execution of all methods of
a system, authentication and authorization calls from meth-
ods whose execution requires credentials checks, or consis-
tent notification of observers of changes in the observed ob-
ject. In all these cases, the implementation of the concern
consists of scattered method calls to a specific action, imple-
mented by a single method. Therefore, the relation specific
to this sort is an invoke relation between the elements of a
(defined) set of methods, the source context, and the set of
the specifically invoked action, the target context. This rela-
tion can be formalized as follows:

CB(Element s, Method m) := { (m′
, m) |

m
′ ∈ Method ∩ ContextCB(s) ∧ m

′ invokes m }

To document a concrete concern of this sort, the user pro-
vides seed-elements to the query for the two contexts. The
source context is a subset of all possible invokers of the
method-action in the target context. This can correspond to
the set of methods in a Java project, or the methods in a type
hierarchy, or a class, etc. The helper function ContextCB
extracts all methods used from such a seed s.

We have used similar queries to formalize the relations
for the other sorts as well. For instance, a Role Superimposi-
tion consists of an implements relation between a set of types
and an explicitly (in case of an interface) or implicitly (type
members) defined role. Such instances include implementa-
tion of design pattern roles, or concerns like Java’s standard
serialization mechanism.

A Redirection Layer, as another example, relates a set
of methods in a class to methods of another class through
an one-to-one forwards relation. Decorators and wrapper
classes are typical examples of redirection layers.

Sorts queries such as the one above allow for the descrip-
tion of basic crosscutting relations. To express more com-
plex relations that involve multiple sort instances, we orga-
nize these instances in composite concern models. Concern
modeling has been used by tools like FEAT [7] or CME [2].
A concern model organizes concerns in a hierarchical struc-
ture. We integrate sorts into concern models by permitting
queries as leaf elements in the concern hierarchy.

3. SOQUET Overview
To support sort-based concern modeling, we have built an
Eclipse plugin called SOQUET (SOrts QUEry Tool).1 This
tool makes it possible to describe crosscutting relations and
allows for persistent, sort-based documentation of concerns
in existing code. SOQUET enables an engineer to query
source code using query templates pre-defined for each
crosscutting concern sort, as illustrated in Figure 1. In ad-
dition, the tool allows an engineer to organize sort instances
into composite concern models to document complex cross-
cutting design decisions and features.

SOQUET provides three main user interface components:
The interface to define a query for a specific sort based on its
template is shown at the bottom of Figure 1. The template
guides the user in querying for elements that pertain to a con-
crete sort-instance. The user just needs to introduce seed el-
ements for defining the queried relation’s contexts like, for
instance, the top-level interface of a hierarchy context-type.

The results of the query are displayed in the Search Sorts
view, shown at the top right in Figure 1. The view provides
a number of options for navigating and investigating the re-
sults, such as display and organization layouts, sorting and
filtering options, source code inspection, etc.

The Concern Model view allows to organize sort in-
stances in composite concerns described by their user-
defined names. The concern model is a connected graph,
defining a view over the system that is complementary to
Eclipse’s standard package explorer. The graph is displayed
as a tree hierarchy, with sort instances as leaf elements. A
sort instance element can be expanded to re-run its associ-
ated query and display the results. A node representing a
sort instance is labeled with a user defined name and the de-
scription of the associated query. Queries are associated only
with sort instances and not with a composite concern.

To define and describe a role whose definition is tangled
within another type, the tool introduces the concept of virtual
interfaces. This mechanism allows the user to create a virtual

1Available at http://swerl.tudelft.nl/view/AMR/SoQueT

Marin, Moonen & van Deursen – SoQueT: Query-Based Documentation of Crosscutting Concerns SERG

2 TUD-SERG-2007-005



Figure 1. SoQueT views and dialogs

type by selecting in a graphical interface those members of
the multi-role type, such as methods or fields, that are part of
the role of interest.
Documentation of Command support The concern model
depicted in Figure 1 shows several concerns in JHOT-
DRAW’s use of the Command design pattern. JHOTDRAW is
a drawing application that was developed as an open-source
show-case for good use of design patterns.1

Commands are responsible for executing actions trig-
gered by, for example, menu items selected in the applica-
tion’s user interface. The (core of the) command and undo
functionality is modeled in two dedicated (but interacting)
hierarchies. The following concern model shows a (partial)
documentation in SOQUET of the concerns that cut across
these hierarchies:

ConcernModel(CommandHierarchy) = {
CE(Command, AbstractCommand.execute())

[PreExecutionCheck] ∪
CB(Command, DrawingView.checkDamage())

[PostExecNotification] ∪
CB(Command, setUndoActivity())[UndoSetup] ∪
SC(Command, Undoable)[CmdUndoSupport] ∪
RL(UndoRedoActivity, myReversedActivity)

[ReverseActivity] ∪
...}

Each concern instance is represented by a two-letter function
with the source and target contexts as arguments, as well as

a symbolic name in square brackets explaining the intent of
this concern instance.

The first concern is an instance of the Contract Enforce-
ment (CE) sort; Before executing, commands check a ref-
erence to the drawing editor’s active view by invoking the
execute method of the default Command implementation
(AbstractCommand).

The execution of commands is concluded with notifying
the views of changes that occurred due to the command’s
execution. This notification is an instance of the Consistent
Behavior (CB) sort, where the action to be executed consis-
tently is implemented by the checkDamagemethod. Simi-
larly, the commands create and store a reference to an associ-
ated Undo-support object. The queries that document these
Consistent Behavior concerns are parameterized with the ac-
tion that is (and needs to be) consistently executed. This
action identifies the target context. The source context seed
consists of the Command type, and is defined as the hierar-
chy of this type. The instantiation of the sort-query for the
second concern is also shown in Figure 1.

The fourth element (SC) in the CommandHierarchy
model documents an instance of a different sort: Support
Classes are used to make explicit the association between
Commands and their support Undo activities. The latter ones
are implemented by Undoable classes nested in the concrete
Command implementations. The query returns all the classes

1jhotdraw.org

SERG Marin, Moonen & van Deursen – SoQueT: Query-Based Documentation of Crosscutting Concerns

TUD-SERG-2007-005 3



of type Undoable nested within Command classes.
The last concern in the model belongs to the Redirection

Layer sort. The UndoRedoActivity reverses an undo/redo ac-
tion. To this end, it stores a reference to the reversed activity
and has its methods consistently forwarding calls to that ref-
erence. The query receives as inputs the redirector type and
the reference used for redirection, and reports those methods
that consistently redirect calls.

4. Evaluation
We have documented well over a hundred crosscutting con-
cerns using SOQUET, in significantly complex Java systems,
such as JHOTDRAW and J2EE PETSTORE.2 The documen-
tation also covers a large number of sort instances present
in design patterns solutions and complex features, like Undo
support or transaction management. The experiments show
that common crosscutting relations can be described by sorts,
and documented using sort queries.

A concern model for JHOTDRAW comprising 103 sort in-
stances is made available on the SOQUET web-site. More
details about the documented concerns are provided in a
technical report [4].

Documentation of crosscutting concerns with SOQUET
helps in establishing benchmarks for aspect mining and
refactoring. JHOTDRAW is evolving into such a benchmark
for aspect mining that is currently being used by several re-
search groups. The documentation of the crosscutting con-
cerns by sorts and, hence, specific idioms allows for the com-
parison and combination of mining techniques [6].

5. Related Work
A number of tools allow to query and explore source code
for concern understanding. Like SOQUET, most of these are
implemented as Eclipse plug-ins.

FEAT uses a graph-based representation of concerns that
originates in a seed, root (class) element [7]. The tool in-
corporates browsing capabilities to investigate incoming and
ongoing relations from the program elements in the concern
graph, and based on these relations to add new elements to
the concern.

In contrast to SOQUET, the primary representation of a
concern in FEAT is based on elements participating in the
concern implementation. These participants can further be
described by their relations with other elements in the graph.
SOQUET on the other hand, emphasizes relations specific to
crosscutting concerns implementation.

The Concern Manipulation Environment (CME) supports
its own (pattern-matching) language for code querying. Fur-
thermore, it allows for restriction of the query domain, sim-
ilar to context definitions in SOQUET [8]. Although viable

2java.sun.com/developer/releases/petstore

in theory, practical implementation of SOQUET’s query tem-
plates using CME’s infrastructure was hindered by the lack
of a precisely defined syntax and a complete implementation
of CME’s query language. Private communication with the
CME developers identified the template queries, as available
in SOQUET, as a desired extension for CME.

JQuery is a code browser that uses a logic query language
(TyRuBa) similar to Prolog. It is more flexible than CME for
querying code and it covers more relations than the previous
tools. One of JQuery’s limitations is that it does not allow to
save and then re-load a concern model of choice for a given
project. The tool is also not suitable for large systems due to
performance issues.

The focus in SOQUET is less on code browsing capabili-
ties, as for the most of the aforementioned tools, but mainly
on a consistent description of typical relations in crosscutting
concerns implementation and on guiding the user in docu-
menting such concerns.

6. Conclusions
This paper describes SOQUET, a tool supporting persistent
documentation of crosscutting concerns using queries. The
tool allows users to instantiate sort-specific query templates
to reveal the crosscutting relations and their participant el-
ements in the code under investigation. SOQUET has been
used to document crosscutting concerns in various Java sys-
tems, such as JHOTDRAW and the PETSTORE J2EE appli-
cation.

References
[1] The AspectJ Team. The AspectJ Programming Guide. Palo

Alto Research Center, 2003. Version 1.2.
[2] W. Harrison, H. Ossher, S. M. S. Jr., and P. Tarr. Concern

modeling in the concern manipulation environment. Technical
Report RC23344, IBM T.J. Watson Research Center, 2004.

[3] D. Janzen and K. De Volder. Navigating and querying code
without getting lost. In Proc. 2nd Intl. Conf. on Aspect-
Oriented Software Development (AOSD), 2003.

[4] M. Marin. Formalizing typical crosscutting concerns. Techni-
cal Report TUD-SERG-2006-010, Delft Univ. of Technology,
2006.

[5] M. Marin, L.Moonen, and A. van Deursen. A classification
of crosscutting concerns. In Proc. 21st Intl. Conf. on Software
Maintenance (ICSM), 2005.

[6] M. Marin, L. Moonen, and A. van Deursen. A common frame-
work for aspect mining based on crosscutting concern sorts. In
Proc. 13th Working Conf. on Reverse Eng. (WCRE), 2006.

[7] M. P. Robillard and G. C. Murphy. Concern graphs: finding
and describing concerns using structural program dependen-
cies. In Proc. 24th Intl. Conf. on Softw. Eng. (ICSE), 2002.

[8] P. Tarr, W. Harrison, and H. Ossher. Pervasive query support
in the concern manipulation environment. Technical Report
RC23343, IBM T.J. Watson Research Center, 2004.

Marin, Moonen & van Deursen – SoQueT: Query-Based Documentation of Crosscutting Concerns SERG

4 TUD-SERG-2007-005





TUD-SERG-2007-005
ISSN 1872-5392 SERG


