
ASYMPTOTIC PROFILES WITH FINITE
MASS IN ONE-DIMENSIONAL

CONTAMINANT TRANSPORT THROUGH
POROUS MEDIA: THE FAST

REACTION CASE

By R. E. GRUNDY

(Mathematical Institute, University of St Andrews, North Haugh,
St Andrews KYI6 9SS)

C. J. VAN DUIJN

(Department of Mathematics and Informatics, Delft University of Technology,
PO Box 5031, 2600 GA Delft, The Netherlands)

and C. N. DAWSON

(Department of Mathematical Sciences, Rice University,
PO Box 1892, Houston, Texas 77251-1892, USA)

[Received 3 April 1992. Revises 8 October 1992 and 3 February 1993]

SUMMARY
The paper considers the large-time behaviour of positive solutions of the equation

d(u + u>) d2u du
— - = r , p > 0

dt dx2 dx

with — oo < x < oo and t ^ 0, for pulse-type initial data. In suitably scaled variables
this equation models the one-dimensional flow of a solute through a porous medium
with the solute undergoing absorption by the solid matrix of the medium. With the total
mass both absorbed and in solution invariant, it is shown that the asymptotic solution
depends crucially on the value of p. For p > 2 the solution approaches the symmetric
solution of the linear heat equation centred on x = t, while for p = 2 this becomes
asymmetric due to the effect of nonlinearity. For 1 < p < 2 convection dominates at
large time and the solution approaches the form of an asymmetric pulse moving at unit
speed along the positive x-axis. Diffusion effects are confined to regions near the leading
and trailing edges of the pulse. For 0 < p < 1 the pulse is still convection-dominated
but it no longer moves under a simple translation. Again diffusion only becomes
important near the leading and trailing edges. It is shown that for p ^ 2 the asymptotic
solutions are uniformly valid in x but for 0 < p < 2 convection-dominated outer
solutions have to be supplemented by diffusion boundary layers. In this latter case
uniformly-valid composite solutions can be constructed. Finally our asymptotic analyses
for the various values of p are compared with numerical solutions of the initial-value
problem.
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1. Introduction

IN THIS paper we consider the large-time behaviour of solutions of the
convection-dispersion equation with nonlinear capacity

-{u + u"}+ — -D— = 0, w i th (x , t ) eR x R+, (1.1)

ot ox ox

subject to the initial condition

u(x, 0) = uo(x) f o r x e R . (1.2)
Here p and D are positive constants and u0 is a non-negative function satisfying
the finite-mass property

u0 + ug e L'fR). (1.3)

The problem (1.1), (1.2) arises as a model for the one-dimensional transport
of a solute, with scaled concentration u ^ 0, through a porous medium. In this
model it is assumed that the solute undergoes equilibrium adsorption with the
porous matrix. In equation (1.1) the term up denotes the scaled adsorbed
concentration. The integrability condition (1.3) implies that initially the total
mass, both in solution and adsorbed, is finite.

For the purposes of this paper the work is organized as follows.

1. Introduction
2. The model
3. Some analytical remarks
4. The asymptotic solution

4.1 The outer solutions
4.1.1 The case p > 2
4.1.2 The case 1 <p^2
4.1.3 The case p < 1
4.2 The uniformity of the outer solutions: the translation-layer solutions
4.2.1 The case 1 < p < 2
4.2.2 The case 0 < p < 1
4.3 Construction of uniformly-valid solutions for 0 < p < 2

5. The numerical method
6. Conclusions
References
Appendix A Error analysis for p = 3 and p = 2
Appendix B Solutions to a boundary value problem
Appendix C The solution for D = 0 when p = \ and p = \

In section 2 we discuss the physical background of the problem and derive
equation (1.1). In section 3 some analytical properties of solutions are given,
such as the occurrence of free boundaries when pe (0 , 1) and the large-time
behaviour when the initial distribution satisfies either uo( — oo) = 1, uo( + oo) = 0
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(convergence towards a travelling wave) or uo( — oo) = 0, uo( + oo) = 1 (con-
vergence towards a rarefaction wave). We also compare our findings with the
analytical results of Escabedo, Vazquez and Zuazua (1). Next, in section 4, the
asymptotic form as t -* oo of pulse-type solutions satisfying

(« + ii')(-,t)eI.1(K) foral l£>0 (1.4)

is derived. We discuss first the outer solutions in section 4.1 and thereafter, in
section 4.2, the boundary-layer solutions which occur for 0 < p < 1 and
1 < p < 2. We also compare the asymptotic profiles with the numerical solution
of problem (1.1), (1.2). The algorithm, which is discussed in section 5, is based
on a higher-order Godunov approach, which makes it possible to compute
solutions of (1.1) with D small, or even with D = 0. In section 6 the concluding
remarks are given as well as an interpretation of the results in terms of the
physical model.

2. The model
In this section we formulate a model for the one-dimensional transport of a

one-species contaminant through a porous medium. To begin with, we consider
the flow of an incompressible fluid through a homogeneous and saturated
porous medium. We shall assume that the flow is steady, macroscopically
one-dimensional and directed along what is chosen to be the positive x-axis.
It is characterized by the volumetric flux, also known as specific discharge,
which will be denoted by q (m/s).

In the fluid a one-species solute is present at tracer-level concentration C
(mol/ml3). This means that the flow is independent of the solute distribution.
We shall therefore take q to be a known positive constant.

If no adsorption reactions occur between the solute and the surrounding
solid part of the porous medium, then the transport is determined by
convection, molecular diffusion and mechanical dispersion; see for instance Bear
(2) or Freeze and Cherry (3). However, if adsorption reactions do take place,
this has to be taken into account when describing the transport process. In this
reactive case we denote by S (mol/kg porous material) the adsorbed concen-
trations. If the boundary and flow conditions are such that both C and S can
be assumed to be constant in planes perpendicular to the x-axis, implying that
C = C(x, t) and S = S(x, t), then mass conservation yields the expression (see,
for example, Bolt (4)).

{eC + pS}+^\qCD^] 0, (2.1)
at ox (. ox)

where t and x denote, respectively, time and space coordinates. Here 6{ —) is
the porosity of the porous material, p (kg/m3) its bulk mass density and D
(m2/s) is the coefficient of hydrodynamic dispersion, which is the sum of
molecular diffusion and mechanical dispersion.
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All coefficients in (2.1) can be considered as being constant and positive. The
term p(dS/dt) in (2.1) represents the rate of change of concentration on the
porous matrix due to adsorption or desorption.

Now we consider the adsorption process. In general, the relation between
the concentration in the fluid and the adsorbed concentration is described by
a first-order ordinary differential equation of the form

^ = kf(C, S), (2.2)
dt

where k > 0 (s"1) is the rate parameter and/(mol/kg porous material) is the
reaction rate function. In (5) general rate functions are considered, some of
which are discussed below together with some of their properties.

If we can solve the equation

f(C, S) = 0 (2.3a)
in the form

S = 4>{C) (2.3b)

then we call ip the adsorption isotherm. In many cases, rate functions and
isotherms satisfy the following monotonicity properties

/ ( C , S ) > ( < ) 0 if and only if S<(>)ij/(C), (2.4a)

t^(0) = 0 and if/ strictly increasing and smooth for C > 0 (2.4b)

The isotherms \ji are sometimes classified according to their behaviour near
C = 0. We say that

1. if/ is of Langmuir(L-type)ifi/' is strictly concave near C = Oand ^ ' (0+) < oo;
2. \p is of Freundlich (F-type) if \p is strictly concave near C = 0 and ^ ' (0+) = °o;
3. ip is of convex (S-type) if \j> is strictly convex near C = 0.

The distinction between these classes is of importance, because different
isotherms may give different transport behaviours for the solutes. In mathemati-
cal terms, the regularity and global behaviour of the solutions may be different
if \ji is taken from these different classes. This is clearly the case when considering
the asymptotic profiles in sections 4 and 5.

Well-known examples of isotherms are

1. the Langmuir isotherm, where

K l withK,,K2>0 (2.5)
1 -\- K-j

and
2. the Freundlich isotherm, where

4>(C) = K3C with K3, p>0. (2.6)

In (2.6) the isotherm is of F-type if 0 < p < 1 and of S-type if p > 1. The case



TRANSPORT THROUGH POROUS MEDIA 73

when 0 < p < 1 occurs in many practical situations, although values for which
p > 1 have been used (see, for example, van Genuchten and Cleary (6)).

In this paper we restrict ourselves to the case of fast reactions or equivalently
equilibrium adsorption. Mathematically this is achieved by letting k -> oo in
(2.2). As a result we have

S = <KC); (2.7)

see also (2.3). The convergence process in which k -» oo is discussed in detail
by Knabner (7) and van Duijn and Knabner (8, 9). From a physical viewpoint
this limit implies that the adsorption reactions are very rapid in comparison
with the flow velocity, so that the adsorbed concentration instantaneously
follows the variations of the solute concentration.

We also restrict ourselves with respect to the choice of the isotherm. To be
specific we shall consider the case of Freundlich isotherms only, whence the
transport equation (2.1) becomes

{0C + pK3C}+P\qCD^} O. (2.8)

dt d { d)

We shall consider solutions of this equation in the half-space

Q = {(x,t): - o o < x < oo, t > 0 } ,

and impose the initial condition

C(x, 0) = C0(x)
at t = 0. To eliminate the constants from (2.8) we apply the following scaling
and redefinition: for p = 1,

^yt, x = x, D = ^; (2.9)

for p# 1,

() B ™
This leads to the initial-value problem (for all p > 0)

— {u + u"} + — -D—^ = 0 for(x, t)eQ, (2.11)
dt dx dx

u(x, 0) = uo(x) for x e R, (2.12)
where

for p = 1,

C0(x) for p # 1.
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We shall consider the large time-behaviour of solutions of the initial-value
problem (2.11), (2.12) for the case where u0 is a pulse satisfying

uo(±oo) = 0, uo 3s 0(^0) on R.

In particular we shall require that

(2.13)

so that the total mass of adsorbed and dissolved concentration is finite.
We note that we could have chosen a scaling which also eliminates the

constant D from equation (2.11). To be specific define

x = - , t = - (2.14)

to give
d(u + u") d2u du

dt dx2 dx

which is the equation we actually consider in section 4.
However, keeping D in front of the second derivative allows us to consider

the hyperbolic limit D J.O. We come back to this point in the concluding remarks
of section 6.

We finally observe that in many cases of practical interest pK3/9 » 1. This
means that the implication of the scaling is quite different for p < 1, p = 1 and
p > 1. One has to bear this in mind when comparing solutions of (2.11), (2.12)
for different values of p.

3. Some analytical remarks

We first set
/?(u) = u + u" f o r u ^ O , (3.1)

and write equation (2.11) as

m + p-d£ = 0. (3.2)
dt dx dx

We have put D = 1 in (3.2) which, as we note from (2.19), can be done without
loss of generality. Equation (3.2) is a nonlinear second-order equation of
parabolic type. Since /?'(") may tend to infinity when u tends to zero (p < 1),
equation (3.2) can degenerate at points where its solution vanishes. Therefore
we cannot expect the initial-value problem (2.11), (2.12) to have classical
solutions for values of p belonging to the interval (0, 1).

Writing
w = P(u) and u = <p(w), (3.3)

where <p = /?" ' denotes the inverse of the function /?, we obtain for w the trans-
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formed initial-value problem

dw dq>(w) d2w(w)
— + — T^~ = 0 for(x, t)eG, (3.4)
dt dx dx2

w(x, 0) = wo(x) = uo(x) + ug(x) for x 6 R. (3.5)

The existence and uniqueness theory for the problem (3.4), (3.5) is well known
and can be found in Gilding (10). We can therefore use these results to make
some statements about the solvability of (2.11), (2.12) for u. If we assume that
u0, and hence w0, is such that

u0 e C(R), (3.6a)

then there exist numbers — oo < a t < a2 < oo such that

= 0, — oo < x < au

uo(x)\ >0, a, < x <a2, (3.6b)

= 0, a2 < x < oo.

Then we can make the following statements.

(i) If p > 1 then the problem (2.11), (2.12) has a unique classical solution
u e C°(Q) n C(Q) which satisfies u > 0 in Q,

(ii) If pe (0 , 1) Jhen (2.11), (2.12) has a unique weak (distributional) solu-
tion u e C(Q). At points where u > 0, the solution is smooth (that is,
ueCcc({u>0})) and satisfies the equation classically. Moreover, there exist
functions (for i = 1, 2) s,eC([0, oo)), satisfying s,(0) = a, and — oo < s^t) < oo
for all t > 0, which form the support of u in the x, t plane; that is, u(x, t) > 0
if and only if x e (5,(0, s2(0) for every t ^ 0.

The functions s( are called interfaces or free boundaries and they occur only in
the degenerate case p e (0, 1).

In this paper we are interested in the large-time behaviour of solutions of
the problem (2.11), (2.12). First we make some statements about previous work
on equation (3.2) which, to the authors' knowledge, has dealt exclusively with
initial data satisfying

u0(±co) = u ± , (3.7)

where either

0 ^ u_ < u+ < oo (3.8a)

or
o o > u _ > u + > 0 . (3.9b)

We note that (3.2) has travelling-waves solutions u(x, t) = f(x — ci), which
satisfy / ( ± o o ) = u±, where u+ and u_ satisfy (3.8a) if p > 1 and (3.8b) if
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p e (0, 1) and where the wave speed c is given by

c= u+~u~—. (3.10)

The stability of these travelling waves follows from a result of Osher and Ralston
(11). They employ a contraction property of the semigroup associated with the
transformed problem (3.4), (3.5) to prove convergence, as t -> oo in L\\R),
towards a suitably shifted travelling wave.

The large-time behaviour for the cases where no travelling waves exist, that is,

p>\ and (3.8b) (3.11a)
or

pe(0, l ) and (3.8a) (3.11b)

was considered by van Duijn and De Graaf (12). For this parameter choice,
the contaminant profiles become flatter as time increases. In fact it was shown
that /?(w(-, £)) converges to the transformed solution u* of the reduced hyper-
bolic problem

~J(u) + ^- = 0 (or (x,t)eQ (3.12a)

' X<°' (3.12b)
., x > 0.

The function u* is a rarefaction wave with u* = u*(x/t). Since /? is given by
(3.1), it is easy to obtain explicit expressions for u*. The convergence analysis
gives an estimate for decay rate of ||/?(u(-, t)) — /?(u*(-, t))\\Loo(ft) as t -* oo.

We now make some remarks about the solution to (2.11), (2.12) and the
procedures used to find the asymptotic solutions. We first note that the solutions
have mass conservation, that is, for all t > 0

I {u + u'}(x, l) dx = I (u0 + ug)(x) dx
JR JR

= M, say

This property, together with scaling arguments, plays a crucial role in establish-
ing the asymptotic solutions.

In constructing the asymptotic solutions of section 4 we use the following
intuitive ideas. In the degenerate case, p e (0, 1), for t -» oo we may write

u + u" ~ up

and consider the simplified equation

-i—^ + — ^ = 0 (3.13)
dt dx dx
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to obtain the asymptotic limit. This procedure is formalized in detail in section
4.1.3.

When p = 1, we have the linear equation

*u 6u3j«
2 +

dt dx dx2

which has the asymptotic profile

When p > 1 the situation becomes more subtle. Both the numerical evidence
and the solution in the hyperbolic limit (£>|0) suggest that we first transform
to the moving coordinates

t = t and £ = x - t (3.16)

which gives the equation, now with nonlinear convection,

-{u + u")- — -£-!J = 0. (3.17)
dt 8$ d£2

Next we write
u + up ~ u

as t -> oo and obtain the equation

du du" d2u
C2

(3.18)

This procedure is also formalised in section 4, where we distinguish the following
cases. For 1 < p < 2, we show in section 4.1.2 that convection terms in (3.18)
dominate diffusion as t -+ 00 and the asymptotic profile becomes, in the
appropriate variables, a semi-N-wave.

For p = 2 the convection and diffusion terms in (3.18) balance in the
large-time limit, resulting in a Burgers equation for which a self-similar limit
profile exists which the solution approaches. This is also given in section 4.1.2.

For p > 2 we show that the diffusion term in (3.18) dominates convection
and that the asymptotic profiles are now symmetric self-similar solutions of the
heat equation; see section 4.1.1.

The asymptotic forms discussed above are called outer solutions. We note
here that convergence (in the Ll sense) of solutions of (3.18) towards these
outer solutions for p > 1 was proved by Escabedo, Vasquez and Zuazua (1)
and Escabedo and Zuazua (13). However for 1 < p < 2 there are two defects
associated with the outer solutions. First they are not continuous and secondly
they do not have unbounded support. It is necessary therefore to supplement
the outer solutions by boundary-layer solutions which are valid in thin regions
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near points of discontinuous behaviour of the outer solution. Except for one
case, we can solve the boundary-layer equations explicitly. These solutions can
be used to do two things: first to render the outer solution continuous and
secondly to give the solution unbounded support. Boundary layers have also
to be inserted when 0 < p < 1 to smooth out the outer solution and locate the
position of the free boundaries which occur since the outer solution predicts,
erroneously, a stationary interface at one end of its support.

4. The asymptotic solution

4.1 The outer solutions

In this section we construct the large-time solution of the scaled equation

d(u + u") d2u du

3t dx2 dx'
p>0,(x,t)eQ (4.1)

with pulse-type initial conditions satisfying (2.13). Our approach is to a large
extent intuitive in the sense that we postulate an analytic form for the solution
and then deduce for what range of values of p this type of solution is expected
to occur. This idea has been successfully used in a number of papers devoted
to large-time asymptotics for nonlinear diffusion and related equations, particu-
larly for pulse-type initial data with either bounded or unbounded support; see
for example Grundy (14, 15, 16).

The nature of the limiting solution depends on the value of the parameter p
and reflects the relative importance of the various terms in (4.1) as t becomes
large. As will become apparent later on, it is natural to take the cases 0 < p < 1,
1 < p < 2 and p > 2 separately. Let us take p > 2 first.

4.1.1 The case p > 2. We start off by transforming equation (4.1), using the
moving coordinate system

(t, Z = x - 0 (4.2)

with u = u(^, t), giving

d / px d2u d(u")
— (u + up) = — + — - . (4.3)
dt d£2 dt,

We would expect the spread of the solution to be incorporated by using the
similarity variable

where 6 > 0, together with the change of dependent variable

u(£, t) = t'v(?,, t) (4.5)
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with a < 0 to simulate temporal decay. In the new variables (4.3) now becomes

dv . dv\ ,D . . [ d(v") „ . d(v")}

dt dt]) { dt dt]

,--,,d2v

dt]1 dt]

which we write as A + B = C + D.
The immediate aim of the analysis is to determine the unknown indices a

and 5. To assist us in this task we turn to the time invariant (3.13), namely

M = {u + up} dx (4.7)
J - oo

which, in terms of t] and v, can be written as

M = {t°+iv + r " p + V } dtj. (4.8)
J - w

Thus, for p > 1

M ~ t"+> as t -> oo

and hence for M to be invariant in time,

<5 = -a. (4.9)
Remembering that we are seeking solutions in the limit t -> oo, t] = 0(1), we
now assume that v and its derivatives with respect to r\ together with t dv/dt
are bounded in this limit. With this assumption it is clear that for p > 1 and
a < 0 the term A dominates the left-hand side of (4.6) as t -> oo. Two
possibilities now emerge; either I: C dominates D on the right-hand side of (4.6)
and balances asymptotically with A or II: D dominates C on the right-hand
side and balances asymptotically with A. By the term asymptotic balancing we
mean asymptotically equivalent as t -» oo. The first possibility (I) requires that

<5 = ^ (4.10)
and

a(p-l)+l-5<0. (4.11)

With a = — \ from (4.9), condition (4.11) is simply

P > 2, (4.12)
whence (4.6) becomes

dt 2\ dt]) \ dt 2 2 dt]

= ^4 + r ( ' - 2 " 2 ^ . (4.13)
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We now expand

»(?, 0 = "ofo) + 0(1), (414)

such that t dv/dt = o(l), in the limit t -> oo, r\ = 0(1) and substitute into (4.13).
Collecting leading-order terms gives

"o + K ^ o + vo) = 0.

where primes denote differentiation with respect to tj. The general solution of
this equation is

v0 = K{ e ' " - K2 e " " e' ^ ds = Kte " " + O(r/ ') as ?/ -> oo

where Kj and K2 are arbitrary constants. Bearing in mind that mass invariance,
for p > 2, in the form (4.8) requires vo(?i) be integrable on ( — 00, 00), we must
put K2 = 0 to give

»o = K , e - ' 1 ' 4 (4.15)

Substituting (4.14) into (4.8), with (4.15), the leading-order result gives

M = K, \ e-*!*dti or /= Kl \ e-"3/

J-00

Thus we have shown that for p > 2,

u(Xtt) = - ^ - r * e-<*-'»J/*'{i +o( l )} (4.16)

as t -» 00, (x — t)/2jt = 0(1). This result is uniform in x.
It is instructive at this stage to compare the leading-order behaviour of (4.16)

with the numerical computations. In Fig. 1 we plot v{tj, t) = tl/2u(x, t) as a
function of r\ for p = 3 and the initial data

«0(x) = H(x + 1) - H(x - 1) (4.17)

for various values of t. Here H(x) is the Heaviside function. So with Af = 4
from (4.7) the results show a slow but evident convergence to the asymptotic
profile

2 __„.

the slowness due presumably to the neglect of the dominant convective error
term t~(p~2)l2 d(vp)/drj in (4.13). If we include this term in a first-order error
analysis then we show in Appendix A that for p = 3 and t -> oo

v(n, t) = vM + — 5 _ „;,(,,) + o(t - 1 / 2 ) (4.18)
3
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ut'

-10 - 8 - 6 - 4 - 2

FIG. 1. Convergence of the numerical solution to the limiting profile for the
case p = 3. ut112 plotted as a function for r\ for t = 80, --- t = 320,

or, equivalently, that

where

+ + + t = 1000, • • * 1 = 2 0 0 0

4 r 1 / 2 i o g t

(4.19)

(4.20)

The utility of this device is shown in Fig. 2, where the numerical solution is
represented as a function of t\v The accelerated convergence to

Aexp(-^f/4)
is clearly evident.

We recall here the results of Escabedo et al. (1) and Escabedo and Zuazua
(13), who proved that for p > 2 the finite-mass solutions of (4.3), after neglecting
the time derivative of up, converge in the Ll sense to the solution of the heat
equation, obtained by disregarding the derivative 3(up)/3iJ in (3.17). Our
analysis includes this term as t -* oo and enables us to improve the convergence
to the asymptotic profile.

4.1.2 The case 1 < p s$ 2. We now turn to the second (II) possibility in (4.6).
By equating powers of t as before we find that

«(p - 1) + 1 - 5 = 0 (4.21)
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ut1

0-2

- 1 0 - 8 - 6 - 4 - 2 0 8 10

FIG. 2. Convergence of the numerical solution to the limiting profile for
the case p = 3. ut''2 plotted as a function of the modified variable tj, for

t = 200, --- t = 500, + + + t = 1000, *** t = 1500

and

Hence, using (4.9), (4.21) yields

1 - 23 < 0.

and the inequality (4.22) becomes
p<2.

With these values of a and 3 (4.6) can be written as

dv \ dv
7—

(4.22)

(4.23)

(4.24)

We now expand
v = vo(f]) + o(

dt\2 dn

(4.25)

(4.26)

as f -> oo, t\ = 0(1), with t(dv/dt) = o{\), which we call the outer expansion.
Leading-order terms in (4.25) now give

(v0 + t}v'o) + p{v$)' = 0,
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where again primes denote differentiation with respect to r\. The general solution
of this equation is

ug + - u0 = C,
P

where C is an arbitrary constant. In order to fix the value of C in this solution
we use the following argument. For C < 0 vo(r]) is double-valued with

a solution which we reject. On the other hand for C > 0 vo(t]) is single-valued
on — oo < r] < oo but as tj -> + oo

v0 ~ pC/rj.

Since mass invariance requires vo(r)) be integrable on ( — oo, oo), it follows that
C cannot be positive. Thus we must take C = 0 and the solution for v0 is simply

» o = - - • (4-27)

V p /
The solution (4.27) is defined for all t] e R but gives a solution with infinite
mass. To ensure a finite mass M as given by (4.8) we must restrict the range
of validity of (4.27) to the finite interval rjl < r\ ^ 0, setting v0 identically zero
outside this interval. This leads to an outer solution with a discontinuity at t]i.
Substituting (4.26) into (4.8), with (4.27), gives to leading order

M

and hence

It =-p( r < 0 . (4.28)
\P- 1/

In terms of x and t therefore we have shown that for 1 < p < 2

ft _ Y\I/(P-I>
u(x, t) = r llp( — \ { l+o(l)} (4.29)

as t -> oo, (x - t)/tilp = 0(1). The condition t]l ^n < 0 requiring in (4.29) that

x~ t < 0 .

It is convenient at this stage to consider the borderline case p = 2. In this event
the terms A, C and D are asymptotically equivalent at t -* oo, ^ = 0(1), whence

Expanding
V = V0{t]) + 0(1),

with t dv/dt = o(l) as before, yields a second-order differential equation for v0
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which has the solution

(4.30)

where K is an arbitrary constant given by the asymptotic mass-invariance
condition

M

This condition gives

-f",
J - CO

(i) dri-

e" + l)/(eM - 1).

Again we can compare this asymptotic result with the full numerical solution.
With u0 given by (4.17), ufa, t) = tllpu(x,t) converges rather slowly to (4.26)
due to the neglected term of 0(r~1/2) in (4.13). To include this term we can go
through a procedure similar to the one for p > 2. In Appendix A we expand

ufa, 0 = yofa) - O-0639-r 1/2(log rKfa) + O(tl/2), (4.31)

suggesting that we may write

Xi, t) = »ofai) + O(ti/2), (4.32)

where tj1 = rj — 0-0639t"1/2 log t. The numerical solution is represented as a
function of t]x in Fig. 3, where a somewhat faster convergence to the asymptotic
profile is evident.

- 1 0 - 8 - 6 - 4

FIG. 3. Convergence of the numerical solution to the limiting profile for the
case p = 2. ut'12 plotted as a function of the modified variable >;, for

t = 500, - - - i = 1000, + + + t= 1500, • • * (~3000
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Finally we note that (4.26) agrees with the convergence result of Escabedo
et al. (1) for these cases. This can be understood if one disregards the time
derivative of up in equation (4.3). Also note that the function i;0 in (4.26) is a
self-similar solution of Burgers's equation ((3.19) with p = 2).

4.1.3 The case p < 1. Our intuition suggest that we adopt a different strategy
by considering a similarity variable with no translation. This is confirmed by
the computations and the propagation properties of the profile in the hyperbolic
limit, see Appendix C. So now we put

(4.33)

(4.34)

with

Making the change

i-4tdv+
1 dt

u(x, t) =

of variable in

dv)
Vt] St]\

X

'?'

t"v{r],
(1.1)

\td(

v >

0,
gives

vp)

- . .

0

p<o.

d(v")

_2vd
2v W1_J - » ^ C435)

drj' K

Clearly since /? < 0 and p < 1, B dominates the left-hand side of (4.35) as t -* oo.
The question is with which term on the right-hand side does B balance. It turns
out that the only consistent possibility is that D dominates C and takes up the
asymptotic balance with B. This requires that

p(\ - p) + 1 - v = 0 (4.36)
and

0(1 - p) + 1 - 2v < 0. (4.37)

The second equation relating /? and v in addition to (4.36) is obtained from the
mass-invariance result (4.7). Writing this in terms of t] and v from (4.33) and
(4.34) we have

M = {t'+ 'u + t'"+*u"} dt] (4.38)
J - OO

and, for p < 1 with 0 < 0,

M~t'p+y as t - o o .

Hence the invariance of M requires that

v = -/?p, (4.39)
which, along with (4.36), gives

P = — 1 and v = p.
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With these values of /? and v, (4.35) becomes

p) f d(v")\ .. J dv dv} d2v dv /A An^

{ d d) d2 ddt { dn ) { dt dn.) dn2 dn

We now expand
(4.41)

such that t(dv/dt) = o(l), as t -> oo, n = 0(1). Substitution into (4.40) gives to
leading order

PH + nW} = v0,
where again primes denote differentiation with respect to n. The general solution
is given by

- v0 - C

with C constant. A similar argument to that of section 4.2.1 leads to C = 0
and the solution for v0 is then

(4.42)

The non-trivial part of the asymptotic solution is confined to the interval
0 < r\ < rj2 by the mass-invariance condition (4.38), which using (4.41) with
(4.42), gives to leading order

M
Jo

Thus
Jo

(4.43)

In terms of x and t and for 0 < p < 1 we have now shown that

(4.44)

as f -+ oo, x/tp = 0(1). The condition 0 < r\ < rj2 requires that

0 < x < ri2t".

We call (4.44) the outer solution.
We discuss the case p = 1 and its role in the transition from (4.29) to (4.44)

in section 6.

4.2 The uniformity of the outer solutions: the boundary-layer solutions

We now consider the question of uniformity in x of the outer solutions for
u(x, t) in the limit t -> oo. In the case p ^ 2 it is clear that the asymptotic repre-
sentations (4.16) and (4.30) are uniformly valid for all x. For other values of
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p the situation is not so straightforward. For instance when 1 < p < 2 we
must first ask how (4.25) represents the zero-order asymptotic solution on
— <X) < x < oo. Since this has to satisfy u = 0 a t x = +oo we would expect the
structure

10, - o o < x < t +

t~ll\-[u^) • t + n^'^xKt, (4.45)
x>t,

There are, however, two objections to this representation. First u(x, t) is not
continuous while in the second place, contrary to what we know, the support
is bounded. Both these objections to (4.45) can be met by including boundary
layers at the trailing and leading edges of the pulse where n = rjl and r\ = 0
respectively. As t -> oo these will be thin on the scale of n but since we include
the diffusion term within them, they have the effect of smoothing out the
solution and at the same time rendering the support unbounded. We note that
this approach has been successfully used to uniformize asymptotic solutions to
diffusion-convection equations by Grundy (14, 15, 16).

A similar situation presents itself in the case 0 < p < 1 where, in principle,
the uniformization can be carried out in the same way. In this case the
zero-order outer representation is

u(x, 0 =

0, x<0,

rM-^j , 0<x<^2tp, (4.46)

0, x > Ti2t".

Once again this situation is at variance with what we expect since the solution
is discontinuous at x = n1t

1' and there is no moving interface to the left. As in
the case p > 1, these difficulties can be removed by including boundary layers.

Having set out our reasons for seeking boundary-layer solutions we devote
the remainder of this section to constructing them.

4.2.1 The case 1 < p < 2.
(a) The trailing edge layer at t] = r\x. Near n = tjl we make the change of

variable

n = fj, + t-"C, V > 0, (4.47)

where ( = 0(1), t -> oo. This defines a thin layer, on the t] scale, of thickness
t~", where \i has to be found. In this layer we look for a solution which varies
on the C-scale so we put

vin, 0 = w(C, t) (4.48)
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in (4.25) which now becomes

dw w
- f

3t p V p) <?O I dt K J

dC2 '

p

dw

(4.49)

An essential feature of the boundary layer is that the diffusion term becomes
important there. Assuming that all (-derivatives are bounded within the
boundary layer we therefore put

H = ^ ^ > 0 (4.50)
P

and expand
o(\), (4.51)

with t{dw/dt) = o(l), as t -» oo, C = 0(1) in (4.49). Collecting leading-order
terms gives

wo+(wg)' + ^ w 0 = 0 (4.52)
P

with primes denoting differentiation with respect to (. The matching condition
requires that

/ - \ i/(p-1)

as C -» oo (4.53)

while the boundary conditions are

wo = w'o = 0 as C -» — oo. (4.54)

Equation (4.52) admits the solution

which satisfies the conditions (4.53) and (4.54) but is only unique to within the
arbitrary translational shift (0. Unfortunately there appears to be no way of
finding Co t o tn>s order of approximation but we surmise that this constant will
depend on the initial distribution via an integral invariant or through higher-
order terms in the asymptotic analysis. However, we have made no attempt to
determine its value but it may be possible to fit (4.55) to numerical or experi-
mental data, thereby prescribing a value of £0.

(b) 77ie leading-edge layer near n = 0. Near n = 0 we make the change of
variable

n = yr\ (4.56)

where e > 0 will be chosen so that the diffusion term in (4.25) becomes
important in the region where the variable x ' s 0(\). To see how to scale the
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independent variable v within the trailing edge layer we have the outer
expansion

n _y\i/(p-D

, 0 = [ J ( *JJ
in terms of x- This suggests we put

*») (4.57)
and expand

, 0 = WQ(x) + o(l) (4.58)

with t(dW/di) = o(l) as t -> oo, * = 0(1), using

as a matching condition. Making the above changes of variables in (4.25) gives

dW
l~dt~

dX
2 dX

We now invoke the condition that the second derivative becomes important in
the limit t -* oo, x = 0(\). This demands that

e = (2 - p)/2p

and the equation for W(x, 0 then becomes

W

dt 2(p - 1) 2 dX \ dt 2 dX J 5x2 3X

(4.60)

Substituting (4.58) into (4.60) and equating leading-order terms gives

W + ( m ' + k K + — ^ - = 0, (4.61)

with primes indicating ^-derivatives, which has to be solved subject to (4.59)
and the boundary conditions

Wo = 0, x -» oo. (4.62)

The boundary-value problem (4.61), (4.59) and (4.62) has been recently
studied by Cazenave and Escabedo (17). They show that this problem has a
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family of monotone solutions of which only one has exponential decay of the
form exp(—x2/4) as % -»oo. The remainder have a power-law decay in the same
limit. Based on the non-degenerate nature of equation (4.1) for this range of p,
we select this unique exponentially decaying solution to the boundary-value
problem.

4.2.2 The case 0 < p < 1.
(a) The leading-edge layer near tj = rj2. We now go through a similar pro-

cedure for the case 0 < 1 < p, where we expect interfaces to appear within the
support of the solution. We put

ri = ri2 + r"C, P>0, (4.63)

where ( = 0(1) as t -* oo, defining a thin layer on the scale of tj of thickness
t~", where p is to be found. In this layer we look for solutions of (4.35), where

v(x, t) = z(£, t)

which, in the new variables, becomes

f d(z") d(z")) d{z") d2z dz
+ t~fi<t — - - pz" -(p + p)C -5—^> - pn2 - — - = t"~p .

I dt d£ J dC d(2 dC

Choosing p = p has the effect of making the diffusion term 0(1) so the equation
for z(£, t) becomes

dz \ n .dz

* + „ , * £ > . (4.64)

Expanding

such that t(dz/dt) = o(l) as t -• oo, £ = 0(1), yields the equation

*S - zo + P'/z^g)' = 0 (4.65)

for z0, with primes denoting differentiation with respect to £. This has to be
solved subject to the matching condition

Zo-(/"72)1 / < 1"p ) , C - - 0 0 (4.66)

and the boundary condition

z0 = *o = 0, C - oo. (4.67)
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The problem (4.65) to (4.67) admits the solution

Zn = (4.68)

0, t > { , + ^ ,
1 - p

which is unique to within the arbitrary shift Co which is not determined to this
order of approximation. Clearly (4.68) has an interface at

(1 -P)

(b) The trailing-edge layer near r\ = 0. In order to work out the structure of
the asymptotic solution near i | = 0 w e have to look in a little more detail at
the outer expansion (4.41). To be specific we write

" ( » / , 0 = ( P i ) l n i ~p) + t~" l o g M f ) + r p v 2 ( t j ) + r ( 1 - p ) v 3 ( r j ) + ••• . ( 4 . 7 0 )

Substituting this into (4.40) we find that

^-*, (4.71)

f ^ A ^ } l ' p ) (4-72)
and

v3 = ^ - — + C3m (4.73)
P(l - P)

where K, C2 and C3 are arbitrary constants. Comparing the first two terms in
(4.70) with (4.71) reveals that the outer expansion is non-uniformly valid when
x = O(log i), suggesting the inner independent variable

^ ^ (4.74)
log t log t

together with the dependent variable

/logAu = i-j-J Z(C, 0, (4-75)

where we have reverted to the original independent variable u. Making these
changes of variables in (4.1) and expanding

C, t) = Z0(0 + o(l) (4.76)
yields the equation

p
7' — 7

(1 -P)
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with solution

Co)VHl-p\ (4-77)

giving an interface at C = Co which is, at the moment, unknown.
To match the inner and outer expansions we first recast (4.70) with (4.71) to

(4.73) in terms of £ and u to give

u_ / t o g * * - - 1 _„ ( p o - - r _ _ p » "I o

V t / 1 ( i - p ) L (i - p)2J
(4.78)

This must match with (4.71) and (4.73) expanded as £ -* oo, namely

t J I ( 1 - p )

Thus for a successful match we require that

rs*-* (479)

To proceed further we note that the diffusion term has yet to be taken into
account in the inner region. In order to do this we make a further scaling near
C = Co> namely

C = Co + ~ (4-80)
logt

together with
) . (4.81)

We observe in passing that in terms of x the scaling (4.80) can be written as

x = Cologt + £. (4.82)

Making these changes of variables the equation for U(£, t) becomes

u r du\ , d(W) P r,D , r a(t/") d2u eu

(4.83)

Expanding
l / « , 0 = U0(O + o(l)

such that t(dU/dt) = o(l) as t -» oo, { = 0(1) gives the ordinary differential
equation

t/o - U'o + — ^ — l/^ + UUSY = 0 (4.84)
(1 )(1 -P)

for t/0 with primes denoting differentiation with respect to ^. The matching
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condition with the inner solution requires that
1""', £-°o (4.85)

while the boundary condition demands that

t/0 = 0, £ - - o o . (4.86)

The problem is to find Co and Uo subject to (4.84) to (4.86).
We show in Appendix B that a unique solution to this problem exists if and

only if
Co = -P/(1 - P) (4-87)

and in that event

(0, Z < Zi

for some £,. So, returning to (4.83) we find that

K = p2/(l - P)2-

We note that (4.88) is actually uniformly valid throughout the inner region and
can be matched to zero order with the outer expansion. We use this observation
in the next section, where we construct uniformly valid solutions for all x.

Finally from (4.88) we observe that the trailing-edge interface is located at
£ = fi or in view of (4.87) and (4.82) at

(1-p)

4.3 Construction of uniformly-valid solution for 0 < p < 2

In this section we make some remarks about the construction of uniformly-
valid large-time solutions for the parameter range 0 < p < 2. In contrast to the
situation for p ^ 2, for 0 < p < 2 the asymptotic analysis does not yield a single
formula which approximates u(x, t) uniformly in x as t -»oo. To see how such
a formula may be constructed we note that the asymptotic solution for both
0 < p < 1 and 1 < p < 2 can be regarded as an outer expansion linked by two
boundary layers to the conditions at infinity. Although this picture is not
entirely straightforward for 0 < p < 1 the interpretation can still be made since,
as noted above, equation (4.88) is uniformly valid in the trailing-edge layer.

If we denote the zero-order solution by Uo, the zero-order leading-edge
boundary-layer solution by Ul and the zero-order trailing-edge boundary-layer
solution by U2 then for 0 < p < 1 we have from (4.46)

0, x < 0,

0, x > n2f,
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and from (4.88)
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-'Tnn — pd-pMx-wi'-Com/d-p)t '[p^-e

o,

while from (4.88) with (4.82)

0,

) ] 1 / ( 1 - p ) , x < ttf' + Co
lOg{pTl2\

1 -p

x > r\2t
p + Co +

\ - P

\-p
logt,

For 1 < p < 2, the corresponding expressions and domains are from (4.45)

0, x < r + Vi^1/P.

't - xy

, t + 7/jt

x > t,
from (4.55)

- \)ni{x - t -

— oo < x < oo,
and from (4.58)

— oo < x < oo.

The next step in the process is to construct the inner limits of the outer solution,
expressions which have to reflect the failure of analyticity of Uo at the leading
and trailing edges. For 0 < p < 1 we write the leading-edge inner limit of Uo as

0,

and the trailing-edge inner limit of Uo as

0,

X > t]2t",

~"\ x > 0,

x < 0 .

For 1 < p < 2, corresponding expressions are

U"1 / p(-fi/p),

x < t + r]itllp,
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and
l~ x < t,

0,

The idea now is to construct what, in the language of matched expansions, are
called composite solutions and which are uniformly valid for all x. In this case
we use multiplicative composition; for a number of reasons the more familiar
additive composition is not applicable here. In a more straightforward situation
a leading-order composite approximation would be of the form

uc(x, t) = (4.89)

(see for example van Dyke (18)). However this rule cannot be applied directly
since Uo, (C/0)i and (l/0)2 are zero over certain domains of x. Nevertheless the
multiplicative nature of uc makes it a straightforward matter to modify (4.89)
to take this into account. In the case 0 < p < 1 we write

«c(*,0=<

0,

U1U2

C < ^ - l O g t ,

*,! - l o g t < x < 0 ,

0 < x < t]2t",

1 - p

0,
1 - p

This is adapted from (4.89) by omitting Uo = (U0)2 = 0 from both numerator
and denominator in the second domain. In the third domain Uo = (Uo)2 which
cancel while in the fourth domain Uo = (t/0)i = 0 which can again be omitted.
The corresponding result for 1 < p < 2 is

uc(x, t) =

(1/0)0)2

X < t + t]2V

t + ^/jt1"" < X < t,

-, X > t.

Although these uniformly valid composite expansions are continuous, they accept
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discontinuities in their x-derivatives; namely of 0(t~lp+l)) at x = r\2t
p for

0 < p < 1 and of 0{t~2lp) at x = t + t]xt
llp for 1 < p < 2. However, this is not

a high price to pay since in each case the formula for ue is simple and in the
case 0 < p < 1 very easy to compute. For 1 < p < 2 the procedure is com-
plicated by the need to evaluate W0((x — t)/ti/2) at prescribed values of its
argument.

The main problem with using the composite solutions is that they are indeter-
minate to within the two arbitrary constants occurring in each of the boundary-
layer solutions. In principle these cannot be determined from the zero-order
analysis. However, it is possible to simulate the convergence to the asymptotic
solution by adjusting these constants so that the composite solution fits, in
some ad hoc way, the numerical solution at a suitable value of time. From a
practical computational point of view the use of such a formula would reduce
the excessive computing time required to calculate the slowly converging
large-time solution using the scheme of section 5.

5. The numerical method

The method used to generate the numerical solutions was developed and
analysed by Dawson (19) for nonlinear parabolic equations in one space
dimension. Here, we discuss the application of the method to the problem
(2.11), (2.12).

Again we make transformation (3.3) and use the transformed equation as a
starting point for the discussion. However, here we want to keep the diffusion
coefficient D in the analysis, because this will allow us to do computations for
problems in which convection dominates diffusion. Therefore we consider, with
w = /?(u) and u = q>(w),

dw d<p{w) d2<p(w)
— + — D = 0, (x,t)eQ. (5.1)
ot ox ox

Let — oo < • •• < x_y_1/2 < x_ J + 1/2 < oo be a partition of R into grid blocks
B} = [xj_1 / 2 , Xj+l/2], and let Xj be the midpoint of Bj. For simplicity, assume
that the partition is uniform with mesh spacing h > 0. Let At > 0 denote a
time-stepping parameter, and let t" = nAt and £"+1/2 = (I" + t"+1)/2. For
functions g(x, t), let g] = g(xj, t"), g]Xl\l = g(xJ+l/2, t" + 1 /2), etc.

On each grid block BJt approximate w" and uj by constants co" and Uf
respectively, where

wj = I// + ([/;)". (5.2)

Discretizing (5.1) by finite differences in space and time, we find that

At + h h2 ~
(5.3)

The term <p(yv]Zlj2
2) is approximated using a higher-order Godunov approach,
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see van Leer (20). Assume the time step satisfies the CFL constraint

sup<p'(w)At ^ h. (5.4)

Expanding in a Taylor series about the point (xJt t"),

w;+
+,y2 = W + -Wi + — w , + 0{h2 + Ath + At2), (5.5)

where the right-hand side of (5.5) is evaluated at (xp t"). Using the differential
equation (5.1), we find that

w"+lj2 = w + I <p'(w) — )wx + O(h2 + At). (5.6)

Emulating (5.6), define

f * * . <">
where 8xa>j is calculated by a slope-limiting procedure. In particular

where

S- co" = {mindA+<""!'IA-<""!) ifA+a>;.A_o>;>0,
"" J (.0 otherwise.

Here A+coj is the forward difference (coJ+ j — (Oj)/h, and A_a>j = (co, — (Uj_ J/Zi.
Approximating Wj+f/i by (oj+t/i, we obtain the nonlinear system of equations

At h

D vwift - 2?(<') + »K-11) _ 0 (510)
h

Initially, set U° = u°(x7) and co° = [// + (I/,0)". Note that, given OJ" at some
time level t", the term <p(d>"+ //f) is calculated explicitly. Thus, we are left with
a symmetric system of nonlinear equations to determine co"+1, which we solve
by a fixed-point iteration.

Let

Then, substituting the definition of <y"+1 into (5.10) we find that

UJ ~ •> -[ (U-> > ~ ^ j ) g
 UJ+l ~ lUJ +UJ-1 _

At At /i2
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Let t / / + 1 ° be an initial guess for C// + 1. Then, given l/ ; + 1 ' \ define

* j ' (5.12)

[0, otherwise,

and determine the (k + l)th iterate i//I + 1-* + 1

n + l , t + l Tin j r n + \ , k + l - ) I j n + l , k + 1

- At h1 '

This procedure gives iterates which satisfy a maximum principle; that is

min Up < up + l'k < max U';
j j

therefore /?"•* well defined.

6. Summary and discussion

By way of conclusion we summarize our results. For p > 2 the limit profile
is given by the leading term in (4.16). This is a symmetric profile which travels
to the right with unit speed decaying like t~1/2. Numerical solutions of the
initial-value problem for (2.11) with p = 3 and D = 1 are displayed in Figs 1
and 2 with tll2u as a function of tj = (x — t)/t1/2 for various values of t. These
clearly confirm the analytic behaviour.

For p = 2 the diffusion-dominated profile becomes asymmetric due to the
influence of convection. The limiting solution is in fact a similarity solution of
Burgers's equation. Numerical convergence to the limit profile is illustrated in
Fig. 3.

For 1 < p < 2 the asymptotic profile still moves to the right with unit speed.
It is left-asymmetric with respect to x = t and has a discontinuity along the
curve (x — t)/tl/p = t]u with tjv given by (4.29). In section 4.2 boundary-layer
solutions are constructed near the leading and trailing edges of the outer solu-
tion which resolve its non-analytic behaviour near r\ = 0 and r\ = rjl. Figure 4
presents sample numerical solutions for the case p = f. The main aim here is
to show convergence to the outer solution. In order to reduce the spatial effect
of the boundary layers, which have thickness proportional to D*t~f for some
a, ft > 0, we take D=10~2. To check the convergence properties of this
numerical solution we compare the computations with the analytic solution of
the initial value problem for D = 0. The solution is written down for p = \ in
Appendix C and presented in Fig. 5. The slow convergence to the outer limit,
shared by both sets of results, is clearly evident.

As p 11 the outer expansion is no longer valid. This is clear from (4.25).
However, we can solve the asymptotic problem for p = 1 (see (3.15)) to give

, ^ M { (x-t/2)2]
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itf'

FIG. 4. Convergence of the numerical solution to the zero- order outer solution
for p = 1-5. ur"/3 plotted as a function of t\ for t = 1000, - - - t = 2000

with D = 10~2

ut'

- 4 - 2

FIG. 5. Convergence of the exact solution of the initial-value problem to the
zero-order outer solution for D = 0 and p = 1-5. The values of time are 1000,

2000, 5000, 10 000 and 20 000

a diffusion-dominated profile moving with speed | to the right. Bearing in mind
the change in translation properties of the solution as p passes through 1, it is
not surprising that the limiting form for 0 < p < 1 does not translate at all. In
this regime the relevant outer variable is q = x/t" and the outer solution
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ut

FIG. 6. Convergence of the numerical solution to the zero-order outer solution
for p = 05. ut plotted as a function of q for t = 1000, - - -1 = 2000 with

D= 10~2

becomes right symmetric with respect to x = 0 with a discontinuity along the
curve x = tj2t

p, with tj2 determined by (4.43). Again we can construct boundary-
layer solutions near rj = 0 and tj = rj2, which in both cases lead to solvable
problems predicting interfaces. Figure 6 shows results of the computations for
the initial-value problem (2.11) with D = 10"2 to isolate the outer solution
from the influence of the boundary layers. As a check on the numerical con-
vergence we again compare the computations with the analytic solution for
D = 0 given in Appendix C and displayed in Fig. 7. In both cases the slow
convergence to the outer solution is apparent.

The results of the paper clearly distinguish the difference between the cases
p > 1 and p < 1. This can also be interpreted in terms of the underlying physical
model; see also van Genuchten and Cleary (6), in the following way.

The differential capacity for adsorption, which is obtained from equation
(1.1) by differentiating the nonlinear term in the time derivative, that is,

pu
p - 1 1, (6.1)

shows that for p > 1 the adsorption at low concentration is relatively minor.
Consequently the leading edge of the profile propagates at a speed nearly equal
to that of the fluid. This is consistent with the translational properties of the
outer solution as given by (4.1) for p > 1. At higher concentrations adsorption
becomes much more extensive, resulting in a lower speed of propagation. This
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FIG. 7. Convergence of the exact solution to the initial value problem for
D = 0 and p = 0-5. The values of time are 1000, 2000, 5000, 10000 and

20 000

will cause the profile to be flat or dispersed behind the leading edge. After most
of the chemical has passed and the concentration starts decreasing, much of
the chemical which was adsorbed will go back into solution (capacity relatively
large). Consequently the concentration tends to remain high, leading to a sharp
front at the trailing edge of the profile. Again this agrees with the representation
(4.45) and the computations shown in Fig. 4. As p increases the effect of
absorption becomes progressively weaker and the transport of the solute will
be governed by diffusion. Our analyses show that p = 2 is asymptotically a
critical value in this respect since for p > 2 the limiting profile is dominated by
diffusion. See Figs 1, 2 and 3.

When p = 2, the differential capacity is constant and equal to 2. Therefore
all concentrations move with half the speed of the fluid, leading to a symmetrical
profile of the form (3.16).

Finally, 0 < p < 1. Here the capacity decreases with increasing concentration.
This means that as concentration increases, the resulting adsorption rate
becomes smaller, leading to an increase in propagation speed. Consequently
the solute distribution becomes steep at the leading edge of the profile. As con-
centration decreases, the desorption rate of the chemical increases, bringing
more and more chemical into solution and hence reducing the decrease in the
solution concentration. This leads to a highly dispersed solute profile near the
trailing edge. This physical interpretation is supported by both the limiting
solution (4.44) and the computations presented in Fig. 6.
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APPENDIX A

Error analysis for p = 3 and p = 2

In the first part of this Appendix we compute the leading error term in the expansion
(4.14) for v(q, t) when p = 3. It turns out that we must consider an expansion of the form

efo, 0 = «M + r I/2(iog t)»,fo) + r^vjfn) + o(t-"2), (A.i)
where

With a few modifications the analysis can be extended to all values of p > 2. Substituting
(A.I) into (4.13) and equating terms of O(t~ " 2 log t) gives

«i + fov\ + ui = 0. Bi(±°o) = 0. (A.2)

If we require D, to have exponential decay as tj -> ± oo, then (A.2) has the solution

o, = Av'0(n), (A.3)



TRANSPORT THROUGH POROUS MEDIA 103

where A is an arbitrary constant. The equation for v2 can now be written as

v"2 + inv2 + v2 = (A - 3vl)v'o
with solution

v2 = v'0(n)w2(n),

where
, _ B e ^ 4 3M2

1— s2 e"3'1'4 ds - ^— s1 e-*1* ds
I2 J , I2 J ,

and B is an arbitrary constant. We now require that v2 decays exponentially to zero as
r\ -> ±00. This demands that the exponentially growing terms in o)'2 be suppressed,
which, as t\ -* + oo, requires B to be zero. The same condition as rj -> — oo gives

and hence (A.I) can be written as

v(n, t) = vo(n) H — t~ 1/2(log t)uo(

or, equivalently,

u ^ I M2 -1/2 1

which gives the representation (4.18) with (4.20).
The case p = 2 can be dealt with in a similar way. With this value of p, (4.13) becomes

- 2 } = + (A5)at 2 V W 1 at 2 2 df, J 5^2 5r,
Again we have to expand

o(«l, 0 = v0W + t-"2(log t)»,(ij) + r "2o2(i,) + o(t- I /2), (A.6)

where this time uo(;j) is given by (4.30). Substituting (A.6) into (A.5), equating terms
O(t~111 log t) and requiring exponential decay on u, as tj -* ± oo gives

A similar procedure for terms of O(t ~1/2) gives the condition on B for exponential decay
of v2 as ;; -• ± oo as

= f"
J-o "0 l)-x,\VoJ

Numerical evaluation gives B = —0-0630 to four decimal places.

A P P E N D I X B

Solution to a boundary-value problem
In this Appendix we construct the solution to the boundary-value problem represented

by (4.86) to (4.88) in section 4.2.2.
We first show that l/0(f) is monotonically increasing for — oo < { < oo. To see this

we suppose that {„ is a stationary point of t/0(f) 3° t n a t fr°m (4.86) we have, with
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tfoKo) > 0-

US = - ~ - , uS(Zo) < o
(1 -p)

so £0 is a maximum. This implies that Uo(£) < Co(io) f° r a " £ s o t n e boundary condition
(4.87) cannot be satisfied, hence Uo cannot have a stationary point and thus the
monotonicity condition must hold. This result now enables us to change the independent
variable from £ to UQ. Putting Uo = u we write

regarding u as the independent variable with 0 < u < oo. This reduces (4.86) to the
first-order equation

^ = 1 + C o p u ' - ' - — ^ - . (B.2)
du (1 -p) y

Since we are assuming that u = Uo(£) has a continuous derivative for all £ then we must
have u'(£) -> 0 as £ -» oo and we must solve (B.2) subject to the initial condition y(0) = 0.
Now near u = 0

y(u) ~ Co"" + • • '

and hence from (B.I) we see that the support of u(£) must be finite since with 0 < p < 1

Jo><s)
is bounded. Thus u(£) ^ 0 for £ ̂  £, and u(<J) = 0 for — oo < { < £x where we may take
£, = 0 since (4.86) is translationally invariant. To see what conditions hold at £ = 0 we
integrate (4.86) between zero and £ > 0 with u(0) = u'(0) = 0 to give

whence dividing by up(£) > 0 we have

"'(0
Since up(£) is monotonically increasing it follows that

I u'(s)ds.
(1 - p)«'«) Jo

'(5) ds < £u'(£)
Jo

so
J o " '

or
{« ' " '« )} ' = Co(l~P) (B.3)

at { = 0.
We are now in a position to construct the solution. First we put

v = ul~" and v'(£) = Y(v)
in (B.2) to give

i r ^ ^ p ) - y } , (B.4)
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where from (B.3)
y(0) = (1 - p)C0 (B.5)

and from (4.87)
r(oo) = p. (B.6)

To determine Co and Y(v) we proceed as follows. First if we suppose that Co > P/0 — P)
then y(0) > p and, from (B.4), Y'(0) > 0. Now in order for the condition (B.6) to be
satisfied there must be a value of D > 0 for which Y = C0(l — p) and Y' < 0. Clearly
from (B.4) such a condition cannot hold for Co > P/(l — P)- A similar argument holds
if Co < P/(l - P) and so we conclude that

Co = P/(l - P), (B.7)
whence the problem becomes

dY_(Y-P){(l-p)v-pY}
dv vY(l -p)

Now there are no solutions which increase from Y(0) = p since dY/dv < 0 for Y< p
and Y > (1 - p)v/p. Similarly there are no solutions which decrease from Y(0) = p. Thus
Y = p is the only solution satisfying Y(0) = p and hence with (B.7) constitutes the unique
solution. In the original variables this becomes

I, Jto* B 8

which together with (B.7) is the unique solution, to within the arbitrary translation {,,
of the boundary value problem (4.86) to (4.88).

A P P E N D I X C

The solution of the initial-value problem for D = 0
In this Appendix we write down the solution of the equation (2.11) with D = 0 and

initial data (4.17) for p = { and p = \.
1. p = i. In this case the point x = — 1, where u = 0, does not move so there is an

expansion wave which connects u = 0 to u = 1. In addition a shock initiated at x = 1
moves to the right with a speed determined by the mass invariance condition. So we have

0, x < - l ,

(1 + *)2

u(x,t)= 4 ( t - x - l ) 2 ' ' (C.I)

0, x > (t/2) + 1.

This persists until the head of the expansion wave coalesces with the shock at
t = 12 and x = 7. For t > 12 we then have

t

0, x < - l ,

—- , -1 ^ x s£ S(r), (C.2)

k0,
where

= 4(t + 4)"2 - 9, t > 1 2 . (C.3)
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In terms of the outer variable of section 4.1.3, namely q = x/t1/2, we have
t

f, 0 = 2(0, (C.4)

with

4(1-f/r l /2-t-')2 '

o, x> ni{t),

n2(t) = 4(1 + 4 t - " 2 ) " 2 - 9 r " 2 . (C.5)

2. p = J. Here the point x = 1 translates to the right with unit speed so we put

X = x - t

and the leading edge of the wave, where u = 0, is located at X = 1. There is an expansion
wave which links u = 0 and u = \, together with a shock which moves to the left in the
(X, 0-plane from X = — 1 according to mass conservation in the wave.

Hence the solution can be written

u(X, t) =

0,

1,

4(1

9 ( r -

0,

-xy
1 + X)2'

X

-

1

X

< - 1 - 0 / 5 ) ,
1 - (t/5) ^ X < 1

- (3t)/5 < X =5 1,

3* 1.

- (30/5,
(C.6)

The solution persists until t = 20, at which time the shock and expansion waves coalesce.
For t ^ 20 we then have

0, X < * ,(0,

4(1 -X)2

u(X, 0 =
9 ( * + r - l ) 2 '

0, X:

(C7)

where A",(0 is given by the solution of a cubic. In terms of the outer variable of section
4.1.2, namely r\ = X/t2li, we have

0,

o(i, 0 =

where

9(1 + / jr ' / 3-r ' )2 >

o,

,-113 (C.8)

, -2 /3

v = -p/u.

= r/8 — 9/16 and ? = f2/128 - (90/64 + 27/64.


