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The increasing reliance on renewable energy
generation means that storage may well play
a much greater role in the balancing of future
electricity systems. We show how heterogeneous
stores, differing in capacity and rate constraints, may
be optimally, or nearly optimally, scheduled to assist
in such balancing, with the aim of minimizing the
total imbalance (unserved energy) over any given
period of time. It further turns out that in many
cases the optimal policies are such that the optimal
decision at each point in time is independent of the
future evolution of the supply–demand balance in
the system, so that these policies remain optimal in a
stochastic environment.

This article is part of the theme issue ‘The
mathematics of energy systems’.

1. Introduction and model
A future much greater reliance on renewable energy
means that there is likely to be corresponding much
greater need for storage in order to keep electricity
systems balanced [1,2]. The optimal operation of energy
storage for such balancing may be considered from
the viewpoint of the provider (see [3–8] and references
therein), or from that of the system operator, who is

2021 The Author(s) Published by the Royal Society. All rights reserved.
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seeking to schedule given storage resources so as to balance the system as far as possible. The
latter problem has only received significant attention relatively recently, and then mostly for the
problem of scheduling initially full stores so as to cover periods of continuous energy shortfall—
see, e.g., [9] for practical applications in the context of the GB energy system, [10–12] for dynamic
programming and simulation approaches, [13–16] for underlying theory and [17] for a hybrid
approach that uses an analytical discharge policy and a recharging policy based on machine
learning.

The present paper considers the problem of optimally scheduling heterogeneous storage
resources—characterized by different capacities, input/output rate constraints and round-trip
efficiencies—over extended periods of time in which there are both periods of energy shortfall
to be met from storage and periods of energy surplus available to recharge storage. Our main
objective is the minimization of unserved energy demand over any given time horizon, or, in
a stochastic environment, the expectation of this—often referred to as expected-energy-not-served
(EENS). We work primarily in a deterministic environment. Progress may be made using strong
Lagrangian or other closely related techniques—see, e.g. [18] and, for an application of this
approach to the present problem, see [16]. However, in a deterministic environment optimal
solutions are typically far from unique, and the optimal solution obtained by such techniques
as above is often such that at any point in time the optimal decision has some dependence on
the future evolution of the external supply–demand balance process. The approach of the present
paper does not require the use of such machinery and, for the problems considered in the paper,
it turns out that the optimal (or near optimal) policy is generally non-anticipatory, i.e. the optimal
decision at each successive time is independent of the evolution of the external supply–demand
balance subsequent to that time, so that results continue to hold in a stochastic environment, both
for the minimization of the unserved energy demand and for the minimization of any quantile of
the distribution of the unserved energy demand.

We thus study a given set S of energy stores. At each time t ∈ [0, ∞), the volume of usable
energy (after accounting for any output losses) within each store i ∈ S is given by Ei(t), where the
latter is subject to the capacity constraint

0 ≤ Ei(t) ≤ Ei. (1.1)

A policy for the use of the stores is a specification, for each time t ≥ 0, of the rate ri(t), at which
each store i ∈ S serves energy at time t, where positive values of ri(t) correspond to the store
discharging, and negative values of ri(t) correspond to the store charging. Hence, in particular,

Ei(t) = Ei(0) −
∫ t

0
ri(u) du, for all t ≥ 0. (1.2)

For each store i ∈ S, the rates ri(t) are further required to satisfy the power or rate constraints

− P′
i ≤ ri(t) ≤ Pi, for all t ≥ 0, (1.3)

for given constants P′
i ≥ 0 and Pi > 0. Finally, each store i ∈ S is assumed to have a round-trip

efficiency 0 < ηi ≤ 1, so that, at any time t such that the store is charging (i.e. ri(t) < 0) the rate
at which energy must be supplied to the store from some external source is given by −ri(t)/ηi
(recall that the level of energy within a store is measured as that which it may usefully output).

The stores are used to assist in managing some given demand process (d(t), t ≥ 0), defined for all
times t ≥ 0, positive values of which correspond to an external energy demand to be met (perhaps
partially) from the stores, and negative values of which correspond to an external energy surplus
which may be used to recharge the stores.

In §2, we study the case in which the demand process (d(t), t ∈ [0, T]) is non-negative over
some given time interval [0, T] and is to be served as far as possible over that interval by the
stores, subject to the constraint that the latter may only discharge for t ∈ [0, T]. In particular, this
may be appropriate to the situation in which storage is used to cover continuous periods of what
would otherwise be energy shortfall (e.g. periods of daily peak demand), but may readily be fully
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recharged between such periods. We show that there is a policy which minimizes the unserved
energy demand

∫T

0
max

(
d(t) −

∑
i∈S

ri(t), 0
)

dt, (1.4)

and in which the rates ri(t), i ∈ S, at each time t depend only on d(t) and the energy in each store at
time t. This policy therefore continues to be optimal in a stochastic environment. The results in this
section gather together—and, in considering arbitrary time intervals, extend—results collectively
obtained in [13–16,19], but are now unified and presented with considerably simpler proofs,
laying a necessary foundation for subsequent sections.

In §3, we continue to assume a non-negative demand process over some time interval [0, T],
but allow that individual stores may both charge and discharge over that interval, typically
corresponding to the situation is which cross-charging between stores is allowed. We show
that such cross-charging may occasionally be helpful, but give results which identify common
situations in which it is not. In particular, we show that cross-charging cannot be helpful when, as
discussed in the preceding paragraph, storage may be fully recharged between periods of external
energy shortfall and in which the energy shortfall during such periods is unimodal, increasing to
a maximum and thereafter decreasing.

Finally, in §4 we consider the general case in which the demand process may be both positive
and negative, where negative values have the interpretation given above. We study the situation
in which the stores have a common round-trip efficiency, and use earlier results to identify
heuristic policies for the (near) optimal management of the storage, and to derive conditions
under which they are truly optimal.

2. Pure discharge model
In this section, we take the demand process (d(t), t ≥ 0) to be non-negative over some time interval
of interest. Without loss of generality—by, if necessary, redefining the demand process to be zero
outside it—we may take this time interval to consist of the entire positive half-line, so that d(t) ≥ 0
for all t ≥ 0. We assume that, throughout this time interval, each store i ∈ S may only discharge, so
that the rate constraint (1.3) is replaced by

0 ≤ ri(t) ≤ Pi, for all t ≥ 0, (2.1)

and that ∑
i∈S

ri(t) ≤ d(t), t ≥ 0. (2.2)

The energy Et(t) in each store i at each time t ≥ 0 is then as given by (1.2) and is a (weakly)
decreasing function of t which we continue to require to satisfy (1.1) (though the second inequality
in (1.1) plays no part in the analysis of this section). Our objective is to choose rate processes
(ri(t), t ≥ 0) for all stores i ∈ S, satisfying the above constraints, with the objective of either
satisfying (2.2) with equality for all t in some interval [0, T] where T is as large as possible, or
else that of minimizing the unserved energy demand, given by (1.4), over any given time interval
[0, T] (where we allow also T = ∞).

Under any given policy for the use of the stores in S, the further capabilities of the energy
contained within that set at and subsequent to any given time t ≥ 0 are defined by the rate
constraints Pi and by the residual stored energies (Ei(t), i ∈ S) at time t. It is helpful to have
some efficient way of representing this residual stored-energy configuration. This should be sufficient
to characterize the set of residual demand processes (d(t′), t′ ≥ t) which may be fully served at
and subsequent to the time t. For any such time t, define the (residual) burst-power profile of the
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Ei(t)/Pi

Ei – Ei(t)Ei(t)

S3

S2

S1

d(t)

p

)E

Pi

Figure 1. Greatest-discharge-duration-first policy for five stores. The shaded areas correspond to the residual energies Ei(t)
within the stores at time t. Stores are selected in descending order of Ei(t)/Pi . (Thus, the total shaded area is the area under
the burst-power profile at time t, while the shaded area above any level p defines the energy-power transform e ps (t) at time t.)
When d̄(t) is the energy to be served, S1, S2 and S3 are the sets of stores which are fully, partially, or not used at time t.

stored-energy configuration at that time as the necessarily decreasing function st(u) of u given by

st(u) =
∑

i∈S:Ei(t)/Pi≥u

Pi (2.3)

(see also figure 1). For each store i ∈ S, we refer to the quantity Ei(t)/Pi as the (residual) discharge-
duration of the store i at the time t. This is the length of further time for which the store i could
supply energy if it did so at its maximum rate. Thus the integral of st(u′) from 0 to any time u is
the maximum amount of further energy which can possibly be supplied by the stores between
the times t and t + u. Define also the energy-power transform et

s(p) [14] of the burst-power profile at
the time t to be given by

et
s(p) =

∫∞

0
max(0, st(u) − p) du, p ≥ 0. (2.4)

This has the interpretation that, for each t and for each p ≥ 0, the quantity et
s(p) would be the

energy supplied above the reference output p if all stores output at their maximum rates for as
long as possible (i.e. until empty) subsequent to the time t (figure 1). Note that, for each time t, the
burst-power profile (function of u) given by st(u) is recoverable from the energy-power transform
(function of p) given by et

s(p).
Observe that et

s(p) is a (weakly) decreasing function of both p and t. For each t ≥ 0, the quantity
et

s(0) is the total energy in the stores at time t, and et
s(p) is a convex, piecewise linear, (weakly)

decreasing function of p which is zero for all p ≥ ∑
i∈S:Ei(t)>0 Pi. The quantity

∑
i∈S:Ei(t)>0 Pi is also

the maximum rate at which demand which may be served by the stored-energy configuration at
time t, and is of course decreasing in t.

For each T > 0 and for each t ∈ [0, T], define also the energy-power transform et,T
d (p) of the demand

process on the interval [t, T] to be given by

et,T
d (p) =

∫T

t
max(0, d(u) − p) du, p ≥ 0. (2.5)

We allow also T = ∞, and write et
d(p) for et,∞

d (p). The quantity et,T
d (p) has the interpretation that it

would be the unserved energy demand over the interval [t, T] demand if power were supplied at
a constant rate p during that interval. For each T and for each p ≥ 0, the function et,T

d (p) is (weakly)

decreasing in t and, for each t ≥ 0, the function et,T
d (p) is convex and (weakly) decreasing in p and

is zero for all p ≥ maxu≥t d(u).
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We shall say that the (residual) stored-energy configuration (Ei(t), i ∈ S) at any time t is balanced
at time t if and only if Ei(t)/Pi is constant over all stores i ∈ S. If the stored energy configuration is
balanced at time t, then it may be kept balanced at all subsequent times by always serving energy
from each individual store i ∈ S at a rate which is proportional to Pi. Thus, in this case and under
such a policy, the stores may fully serve any residual demand process (d(u), u ≥ t) such that

d(u) ≤ P̂, for all u ≥ t, and
∫∞

t
d(u) du ≤ Ê(t), (2.6)

where P̂ = ∑
i∈S Pi and Ê(t) = ∑

i∈S Ei(t). Since, under any policy, these conditions are clearly also
necessary in order that the stores, balanced at time t as above, may fully serve a given residual
demand process subsequent to time t, it follows that the above policy for the subsequent use
of a balanced energy configuration is optimal in terms of its ability to satisfy any requested
demand. Indeed the balanced store configuration at time t has the same subsequent energy-
serving capability as a single store with the same total energy content Ê(t) and a maximum output
rate of P̂.

When the residual stored-energy configuration (Ei(t), i ∈ S) at time t is balanced as above,
the corresponding energy-power transform et

s(p) decreases linearly in p from Ê(t) when p = 0 to
zero when p = P̂ (and is zero thereafter). The conditions (2.6) on the residual demand process
(d(u), u ≥ t) are equivalent to et

d(0) ≤ Ê(t) and et
d(P̂) = 0, where et

d(p) is the corresponding energy-
power transform of that process on [0, ∞). Since the latter is convex, it follows that the residual
demand at and subsequent to time t may be completely served if and only if et

d(p) ≤ et
s(p)

for all p ≥ 0, and is then served by keeping the residual stored-energy configuration balanced
subsequent to time t. It is a consequence of theorem 2.1 that, under a suitable policy for the use of
the stores, this result extends to general stored-energy configurations.

Suppose that, under a given policy for the use of the set of stores S, the total rate at which
energy is to be served at each time t ≥ 0 is given by d̄(t) ≤ d(t). We shall say that such a policy is a
greatest-discharge-duration-first policy if, at each successive time t, the rates at which the individual
stores i ∈ S serve energy is given by prioritizing the use of the stores in descending order of
their discharge-durations Ei(t)/Pi. More exactly, under this policy at each time t the stores are
grouped according to their current discharge-durations Ei(t)/Pi (so that stores belong to the same
group if and only if their discharge-durations are equal); sufficient groups are then selected in
descending order of their discharge-durations such that, using the stores within each group at
their maximum rates (i.e. each store i within a selected group serves energy at a rate Pi), the
total rate at which energy is served is the required d̄(t); however, in order to meet precisely the
total rate d̄(t), each store in the last group thus selected may only require to serve energy at
some fractional rate λPi for some constant λ such that 0 < λ ≤ 1 (figure 1). As time t increases,
any such greatest-discharge-duration-first policy gradually equalizes over stores the discharge-
durations Ei(t)/Pi, thus pushing the residual stored energy configuration towards a balanced state
as defined above. Additionally, under this policy, once the discharge-durations within any set of
stores have become equal they remain equal for all subsequent times. Thus, when groups of stores
as defined above coalesce they remain coalesced, and further the (weak) ordering of stores by their
discharge-durations remains unchanged over time.

We shall say that a policy is greedy if, at each successive time t > 0, it serves as much as possible
of the demand d(t) at that time, i.e. if, under this policy,

∑
i∈S

ri(t) = min

⎛
⎝d(t),

∑
i∈S:Ei(t)>0

Pi

⎞
⎠ , for all t ≥ 0.

Note that there is a unique greedy greatest-discharge-duration-first (GGDDF) policy. This policy was
independently proposed in [19] in the context of water management, and in [13,16] for the current
context of energy storage. A discrete-time algorithm implementing this policy for a piecewise
constant demand process is given in [15]. Finally, we note that [17] introduced a closely related
discharge policy for the class of constant demand signals (d(t) = d, for t ∈ [0, T] and d(t) = 0 for
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p
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Figure 2. Example 2.6: energy-power transforms e0s (p) and e
0
d(p) at time 0 of the burst-power profile (of the initial stored-

energy configuration) and of the demand process (d(t), t ≥ 0). The set π (0) defined in the proof of theorem 2.1 is given by
{0, 100, 300, 400, 500} and is indicated on the horizontal axis. Both e0s (p) and e0d(p) are convex decreasing functions of p and the
function e0s (p) is linear between successive points of the setπ (0). The value of the expression (2.7) is equal to 100 (themaximum
being attained at p= 0), which, from theorem 2.1 is the minimum unserved energy demand over all policies.

t > T), where d (but not T) is known to the dispatcher in advance. For this limited class of signals,
the proposed policy is optimal in the sense that it minimizes unserved energy demand. It will be
shown below that the GGDDF policy is optimal in the same sense, but for a much broader class
of demand signals that includes constant signals as a special case.

Suppose now that it may not be possible to serve the entire demand process (d(t), t ≥ 0) and
that our objective is the minimization of the total unserved energy demand (1.4) over some time
interval [0, T]. Theorem 2.1 is central to the rest of the paper. It gathers together and provides a
unified, economical and accessible treatment of results previously obtained by various authors.
In particular the optimality of the GGDDF policy is established in [13,16,19], while the implied
necessary and sufficient condition for this policy to be able to serve a given demand process is
derived by Evans et al. [14] and Cruise & Zachary [16], and the expression for the unserved energy
demand under this policy is given by Evans et al. [15]. In considering arbitrary time intervals, the
theorem also provides a very modest extension of these results.

Theorem 2.1. For the given demand function (d(t), t ≥ 0) and the given initial energy configuration
(Ei(0), i ∈ S), the total unserved energy demand (1.4) over any time interval [0, T] is minimized by the
GGDDF policy, and this minimum is given by

max
p≥0

(
e0,T

d (p) − e0
s (p)

)
. (2.7)

Proof. We show first that the use of the GGDDF policy results in unserved energy as given
by (2.7). For each t ≥ 0, let d̄(t) ≤ d(t) be the demand actually served at time t under the GGDDF
policy. Similarly, for each such t, let Ei(t) be the energy remaining in each store i ∈ S at time t under
the GGDDF policy and let et

s(p), p ≥ 0, be the corresponding energy-power transform. Suppose
that, at time t, stores in S are ranked in descending order of their discharge-durations Ei(t)/Pi (as
is required for the implementation of the GGDDF policy). Let π (t) be the set of values of p such

that p = ∑j
i=1 Pi for some j such that Ej+1(t)/Pj+1 < Ej(t)/Pj, and include also in the set π (t) the

values p = 0 and (if no store is empty) p = ∑
i∈S Pi. (See the example of figure 2.) It follows from

the earlier observation that once, under the GGDDF policy, the discharge-durations of any two
stores have become equal they remain equal thereafter, that

π (u) ⊇ π (t), for all 0 ≤ u ≤ t. (2.8)
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Further, from (2.4) and from the definition of the GGDDF policy, it is readily checked that, under
this policy, at each time t and for all p ≥ 0, the derivative with respect to t of the energy-power
transform et

s(p) of the residual energy configuration satisfies

d
dt

(et
s(p)) ≤ min(0, p − d̄(t)), (2.9)

with equality for all p ∈ π (t). The latter equality is easily seen, and the general result (2.9) follows
from the observation that the above derivative varies linearly in p between successive points of
the set π (t) (again see the example of figure 2), while the function min(0, p − d̄(t)) is concave in p.
(Indeed we have equality in (2.9) for all values of p other than for those lying within that interval
which is bounded by two consecutive points of the set π (t) and within which d̄(t) lies.) Similarly,
from (2.5), at each time t and for all p ≥ 0, the derivative with respect to t of the energy-power
transform et,T

d (p) of the residual demand is given by

d
dt

(et
s(p)) = min(0, p − d(t)). (2.10)

Thus, from (2.9) and (2.10), under the GGDDF policy, at each time t and for all p ≥ 0,

d
dt

(et
s(p) − et,T

d (p)) ≤

⎧⎪⎪⎨
⎪⎪⎩

d(t) − d̄(t), p < d̄(t),

d(t) − p, d̄(t) ≤ p ≤ d(t),

0, p > d(t),

(2.11)

with equality for all p ∈ π (t). It now follows from (2.11) that, under the GGDDF policy and for all
p ≥ 0, the unserved energy demand over the interval [0, T] is given by

∫T

0
(d(t) − d̄(t)) dt ≥ eT

s (p) − e0
s (p) + e0,T

d (p) (2.12)

≥ e0,T
d (p) − e0

s (p), (2.13)

where (2.13) follows since necessarily eT
s (p) ≥ 0. It follows that the unserved energy demand over

the time interval [0, T] is greater than or equal to the expression given by (2.7). To prove equality,
define p̂ = min{p ≥ 0: eT

s (p) = 0}. Note that p̂ necessarily exists and that p̂ ∈ π (T); the latter follows,
for example, from the linearity of eT

s (p) between adjacent points of π (T). Observe that p̂ ≤ d̄(t) for
all t ∈ [0, T] such that d̄(t) < d(t) (i.e. under the GGDDF policy there is unserved demand at time t);
this follows since, for any such t, necessarily et

s(d̄(t)) = 0 and so also eT
s (d̄(t)) = 0. Observe also that,

by (2.8), p̂ ∈ π (t) for all t ∈ [0, T]. It follows from the above two observations, and by using (2.11),
that (2.12) holds with equality for p = p̂. Since also eT

s (p̂) = 0, the relation (2.13) also holds with
equality for p = p̂. Hence the expression (2.7) also provides an upper bound on the unserved
energy demand over the interval [0, T] under the GGDDF policy. (Note that, combining this with
the earlier lower bound, it follows (i) that the quantity e0,T

d (p) − e0
s (p) is maximized for p = p̂, and

(ii) that when the demand function can be fully served, we have e0,T
d (p̂) = e0

s (p̂).) It now follows
that, under the GGDDF policy, the unserved energy demand is as given by (2.7).

We now show that any non-negative demand process (d(t), t ≥ 0) which may be completely
served over the interval [0, T] by some policy, may be completely served over that interval by the
use of the GGDDF policy. To do this, it is sufficient to show that the condition

e0
s (p) ≥ e0,T

d (p) for all p ≥ 0. (2.14)

is necessary (as well as sufficient) for the demand process (d(t), t ≥ 0) to be capable of being
completely served over the interval [0, T]. For any p ≥ 0, let τp be the of the set of times t within
the interval [0, T] such that d(t) ≥ p. For the demand process (d(t), t ≥ 0) to be completely served

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

05
 J

ul
y 

20
22

 



8

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A379:20190435

................................................................

over the interval [0, T], it is necessary that

∫m(τp)

0
s0(u) du ≥

∫
τp

d(u) du, (2.15)

where m(τp) is the total length of the set of times τp. That this is so follows since, from (2.3), the
integral on the left side of (2.15) is the maximum amount of energy which is capable of being
served within any set of times of total length m(τp). The relation (2.15) in turn implies that

∫m(τp)

0
max(0, s0(u) − p) du ≥

∫
τp

max(0, d(u) − p) du,

since d(u) ≥ p on the set τp. However, this is simply the condition (2.14).
Finally, to complete the proof of the theorem, suppose that the non-negative demand process

(d(t), t ≥ 0) is not necessarily completely served over the interval [0, T] by any policy. Consider any
policy which minimizes the unserved energy demand over the interval [0, T] and let (d̂(t), t ≥ 0),
with d̂(t) ≤ d(t) for all t and d(t) = 0 for t > T, be the process of such demand as is served over [0, T]
under that policy. Then, by the result of the preceding paragraph (with d̂(t) replacing d(t) for all t),
the process (d̂(t), t ≥ 0) may also be completely served over the interval [0, T] by the use of the
GGDDF policy. The GGDDF policy therefore also minimizes the unserved energy demand over
that interval associated with the original process (d(t), t ≥ 0). �

Theorem 2.1 has the following immediate corollary, which is fundamental in establishing the
energy-power transform of a stored-energy configuration as containing all the information as to
which future demand processes may be completely served.

Corollary 2.2. Any given demand process (d(t), t ≥ 0) may be completely served over any interval [0, T]
(i.e. the unserved energy demand (1.4) is zero) by a given energy configuration with (initial) energy-power
transform (e0

s (p), p ≥ 0) if and only if e0
s (p) ≥ e0,T

d (p) for all p ≥ 0. Under this condition, the demand process
is completely served by the use of the GGDDF policy [14].

Remark 2.3. It follows from corollary 2.2 and the properties of the function e0
s (p) noted earlier

that, for a given total volume of stored energy
∑

i∈S Ei(0) at time 0, the set of future demand
processes which may be completely served is maximized when the stored-energy configuration
at time 0 is balanced as defined above, so that the corresponding energy-power transform e0

s (p)
decreases linearly in p.

The GGDDF policy has the important property of being non-anticipatory—as defined in §1. It
follows that the GGDDF policy remains feasible within a stochastic environment, i.e. when, at
each successive time t, the demand function d(t′) is known for times t′ ≤ t, but not necessarily
for t′ > t. Since, by theorem 2.1. the GGDDF policy thus minimizes unserved energy demand for
all possible evolutions of the demand function, we have the following further corollary to that
theorem.

Corollary 2.4. Suppose that (in a stochastic environment) the objective for the optimal serving of energy
is the minimization of the expectation of the unserved energy demand (1.4), or the minimization of any
quantile of the distribution of the unserved energy demand. Then this objective is achieved by the use of the
unique GGDDF policy [15,16].

Corollary 2.5. Suppose that a possibly stochastic demand signal (d(t), t ≥ 0) cannot be completely
served. In this case, consideration of the truncated signals on t ∈ [0, T̃], for T̃ ≥ 0 shows that the GGDDF
policy maximizes the time until the storage fleet is first unable to serve all demand [13].

Example 2.6. We illustrate various features of the GGDDF and other policies with a simple
example, which is adapted to present needs from one given by Cruise & Zachary [16] and which
is reasonably realistic in its dimensioning. Consider a time interval [0, 4] and a demand process
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(d(t), t ∈ [0, 4]) given by

d(t) =

⎧⎪⎪⎨
⎪⎪⎩

200, 0 ≤ t ≤ 2,

500, 2 < t ≤ 3,

100, 3 < t ≤ 4.

Consider also five stores, initially full, each with the same rate constraint Pi = 100 and with values
of Ei given by 100, 150, 200, 200, 250 for i = 1, . . . , 5. These stores are to be used to serve as much
as possible of the above demand process. If time is measured in hours, power in MW (and so
energy in MWh), then this example might correspond to a modest level of shortfall over a 4-hour
period in a country such as Great Britain, with the stores corresponding to four moderately
large batteries. It is readily verified that the GGDDF policy empties all five stores over the time
period [0, 3], serving all the demand during that time period, and none of the demand during
the remaining time period [3, 4], thereby leaving (minimized) unserved energy demand of 100.
This is as predicted by theorem 2.1—see figure 2, which plots the energy-power transforms e0

s (p)
and e0

d(p). Various other policies also empty all the stores and hence minimize unserved energy
demand. One such is the GGDDF policy applied to the time-reversed demand process, which
serves all the demand except that occurring during the period [0, 0.5] (during which none is
served). A further such policy is that which uses the greatest-discharge-duration-first policy, not
greedily, but rather to serve all demand in excess of a given level k. For k = 25, this policy just
serves all the demand in excess of that level, again emptying the stores. However, neither of the
above two policies, viewed as algorithms, could be implemented in a stochastic environment, as
in each case the decisions to be made at each successive time require a knowledge of the demand
process over the entire time period [0, 4].

Finally, the heuristic greedy policy studied in [20] arranges the stores in some order and
completely prioritizes the use of earlier stores (with respect to that order) over later ones. It may be
checked that, with respect to the arrangement of the stores in either ascending or descending order
of capacity, the suggested policy fails to empty the stores and hence fails to minimize unserved
energy demand.

3. Cross-charging of stores
We continue to study the situation in which the demand process (d(t), t ≥ 0) is non-negative over
some time interval, which we again take, without loss of generality, to be the entire positive half-
line, so that d(t) ≥ 0 for all t ≥ 0. We now allow that stores may be charging as well as discharging,
so that, for each i ∈ S, the rates ri(t) satisfy the rate constraints (1.3). However, we require also that
the net energy supplied by the stores in S is positive for all t ≥ 0 and is used to satisfy, again as far
as possible in some suitable sense, the demand process (d(t), t ≥ 0). Hence we require

0 ≤
∑

i∈S:ri(t)≥0

ri(t) +
∑

i∈S:ri(t)<0

ri(t)
ηi

≤ d(t), t ≥ 0, (3.1)

where, as previously defined, 0 < ηi ≤ 1 is the round-trip efficiency of each store i ∈ S. This
corresponds to the situation in which stores may supply energy to each other—which we refer
to as cross-charging—but in which no external energy is available for the charging of stores. Our
main aim in this section is to show that, while such cross-charging may often assist in serving
an external demand, it is also possible to identify circumstances, of considerable importance in
practical applications, in which it does not. We give first a simple example in which cross-charging
is helpful.

Example 3.1. Consider two stores with capacity and rate constraints (1.1) and (1.3) given by
(E1, P1) = (2, 2), (E2, P2) = (4, 1) and Pi = P′

i for i = 1, 2, and assume further that each store i has a
round-trip efficiency ηi = 1. We take the demand process (d(t), t ≥ 0) to be given by d(t) = 3 for
t ∈ [0, 1] and t ∈ [3, 4] and d(t) = 0 otherwise. Finally, we assume that the two stores are full
at time 0. Then it is straightforward to see the only way in which the demand signal can be
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completely served for all t ≥ 0 is to fully empty store 1 and use one unit of energy from store 2
during the time period [0, 1], to fully recharge the store 1 from store 2 during the time period [1, 3],
and then to fully discharge both stores during the time period [3, 4].

In the above example, there are initial and final periods of high demand, requiring service
from both stores, separated by a period of low demand during which the low capacity store may
be recharged from the high capacity store. This is the typical situation in which cross-charging
may be useful. However, for round-trip efficiencies which are less than one, such cross-charging
is inherently wasteful of energy. The following theorem is now fundamental.

Theorem 3.2. Suppose that the demand process (d(t), t ≥ 0) is (weakly) decreasing for all t ≥ 0, and is
such that it may be served, possibly with cross-charging and subject to the conditions (3.1), by the given
stored-energy configuration. Then it may also be served without cross-charging (i.e. with ri(t) ≥ 0 for all i
and for all t) by the use of the GGDDF policy.

Proof. We prove the implication of the theorem by proving the contrapositive: if the GGDDF
policy (which does not permit cross-charging) cannot serve the demand process d(t), then neither
can any other policy, including those that make use of cross-charging.

Clearly, if d(0) >
∑

i∈S:Ei(0)>0 Pi (so that there is insufficient power at time t = 0) or if
∫∞

0 d(t)dt >∑
i∈S Ei(0) (i.e. the total energy in all the stores is insufficient to meet the demand process), then

no policy is able to serve the demand process. Hence, we consider only the remaining cases where
the GGDDF policy fails to fully serve the demand. In these cases, there must be a first failure time
t = t∗, characterized by the condition ∑

i∈S∗
Pi < d(t∗), (3.2)

where S∗ = {i ∈ S : Ei(t∗) > 0} is the set of stores that are not empty at time t∗.
The GGDDF policy has the property that it preserves through time the ordering of discharge-

durations Ei(t)/Pi, except for equalizations. Since the stores in S∗ have the highest values of
Ei(t∗)/Pi at time t∗ (the other stores being empty at that time), this must also have been the case
for all times t < t∗. Since, further, the demand process (d(t), t ≥ 0) is (weakly) decreasing, it now
follows from (3.2) that, under the GGDDF policy, all the stores in the set S∗ have served energy at
their maximum rates (i.e. ri(t) = Pi for all i ∈ S∗) for all times t ∈ [0, t∗]. Since also the stores i /∈ S∗
are empty at time t∗, it now follows that at time t∗ the GGDDF policy has extracted the maximum
possible amount of energy from the entire set of stores S over t ∈ [0, t∗]. Hence, under any policy
(with or without cross-charging) which succeeded in serving all demand over the time interval
[0, t∗], the stores i /∈ S∗ would also be empty at time t∗, so that that policy would also fail at that
time. �

Theorem 3.2 has the following companion result.

Theorem 3.3. Suppose that the demand function (d(t), t ∈ [0, T]) is (weakly) increasing on [0, T], and
that all stores are full at time 0. Then if (d(t), t ∈ [0, T]) can be served, it can be served without cross-
charging (i.e. with ri(t) ≥ 0 for all i and for all t), and with at least as much energy remaining in each store
at the final time T.

Proof. We first consider the case where every store i ∈ S has a round-trip efficiency ηi = 1, so
that there is no loss of energy in cross-charging. Here the result can be deduced from theorem 3.2
by an argument involving time and space reversal. Consider any policy for the use of the stores,
possibly involving cross-charging, which serves the given demand process (d(t), t ∈ [0, T]). For
each store i ∈ S, let Ei(t) be the corresponding level of store i at each time t; define a new sequence
of storage levels (E∗

i (t), t ∈ [0, T]) on the interval [0, T] for the store i ∈ S by

E∗
i (t) = Ei − Ei(T − t), t ∈ [0, T]. (3.3)

The set of such sequences over all i ∈ S corresponds to the use of the stores, with the same input
and output rate constraints and again with no loss of energy in cross-charging, to serve fully a
demand process (d∗(t), t ∈ [0, T]) given by d∗(t) = d(T − t) for all t, with the initial level of each
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store i being given (from (3.3)) by E∗
i (0) = Ei − Ei(T) ≤ Ei and with the final level of every store

being given by E∗
i (T) = 0 (again from (3.3) since, by the hypothesis of the theorem, Ei(0) = Ei

for all i). Further, this pattern of use of the stores involves cross-charging if and only if the use
of the original set of sequences (Ei(t), t ∈ [0, T]), for i ∈ S, to serve the original demand process
(d(t), t ∈ [0, T]) similarly involves cross-charging. Since the original demand process is increasing,
the demand process (d∗(t), t ∈ [0, T]) is decreasing and so, by theorem 3.2, it may also be served
fully, without cross-charging, by a modified set of sequences of store levels (Ê∗

i (t), t ∈ [0, T]),
i ∈ S, with Ê∗

i (0) = E∗
i (0) and Ê∗

i (T) = E∗
i (T) = 0 for all i (this last result following since the sets of

processes (E∗
i (t), t ∈ [0, T]), i ∈ S, and (Ê∗

i (t), t ∈ [0, T]), i ∈ S, both start at the same set of levels, serve
the same total volume of energy over the period [0, T], and, since the former set of processes fully
empties the set of stores, so also must the latter). Finally, transforming back in time and space, it
follows that set of sequences of store levels (Êi(t), t ∈ [0, T]), i ∈ S, given by

Êi(t) = Ei − Ê∗
i (T − t), t ∈ [0, T].

fully serves the original demand process without cross-charging, and that Êi(0) = Ei and
Êi(T) = Ei(T) for all i ∈ S, as required, and indeed so that in this case the modified process, with
cross-charging eliminated, leaves exactly the same volume of energy in each store at the final
time T.

We now consider the general case ηi ≤ 1 for all i ∈ S. Again consider any policy for the use of the
stores, possibly involving cross-charging, which serves the given demand process (d(t), t ∈ [0, T]).
In particular, the rates ri(t) associated with this policy satisfy (3.1) with the second inequality
in that expression replaced with equality. As usual, we denote by Ei(t) the energy level in each
store i ∈ S at each time t ≥ 0. Consider also a modified model in which the stores and demand
process remain the same, except only that the round-trip efficiencies ηi are all replaced by one. It
is clear that we may choose a policy (possibly including cross-charging), i.e. a set of rate functions
(r̂i(t), t ≥ 0), i ∈ S, for this modified model in which again all demand is served, i.e.∑

i∈S

r̂i(t) = d(t), t ≥ 0, (3.4)

and in which, for each time t ≥ 0, the corresponding energy levels Êi(t) in the stores satisfy

Êi(t) ≥ Ei(t), i ∈ S. (3.5)

To see this observe that we may, inductively over time, choose the rates r̂i(t), and hence the store
levels Êi(t) as follows: at each time t, for those i such that ri(t) < 0, set r̂i(t) = ri(t) unless Ei(t) = Ei
(store i is full) in which case set r̂i(t) = 0; similarly, at each time t, for those i such that ri(t) ≥ 0,
choose 0 ≤ r̂i(t) ≤ ri(t) and such that equation (3.4) is satisfied for the modified model. Arguing
inductively, it is easy to see that, at each successive point in time, this modified model preserves
all rate and capacity constraints together with the relation (3.5). (Informally, we might think of
the modified model as corresponding to the idea that the same external demand is notionally
served at the same rates from the same stores as in the unmodified model, while the perfect
round-trip efficiencies of the stores in the modified model enable cross-charging to be used to
ensure that, at all times, the relation (3.4) is satisfied and all store levels are greater than or equal
to their levels in the unmodified model.) By the result of the theorem already proved for the case
of perfect round trip efficiency, the above policy may now be further modified so as to serve the
same demand process while eliminating cross-charging and leaving the final volume of energy
(at time T) in each store i ∈ S unchanged by this elimination. Since no cross-charging is now taking
place, this further modified policy now also serves the demand in the original system with ηi ≤ 1
for all i, again with the same final volume of energy in each store at time T, and this volume
is therefore greater than or equal to that which was present in the original model when cross-
charging was used. �

The need, in theorem 3.3, for some condition such as the requirement that all stores are full at
time 0 is shown by example 3.4.
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Example 3.4. Consider two stores with capacity and rate constraints (1.1) and (1.3) given by
(E1, P1) = (2, 1), (E2, P2) = (1, 1), with Pi = P′

i for i = 1, 2, and with round-trip efficiencies ηi = 1 for
i = 1, 2. Consider a time horizon T = 2 and let the demand process (d(t), t ∈ [0, 2]) to be given by
d(t) = 0 for t ∈ [0, 1] and d(t) = 2 for t ∈ [1, 2]. Finally, assume that, at time 0, store 1 is full while
store 2 is empty. Then it is easy to see the only way in which the demand signal can be completely
served for all t ∈ [0, 2] is to fully charge store 2 from store 1 during the time period [0, 1] and
to then fully discharge both stores during the time period [1, 2]. Hence in this case the need for
cross-charging cannot be dispensed with.

Theorems 3.2 and 3.3 have the following corollary.

Corollary 3.5. Suppose that the demand process (d(t), t ∈ [0, T]) is (weakly) increasing on [0, T′] and
(weakly) decreasing on [T′, T] for some 0 ≤ T′ ≤ T, and that all stores are full at time 0. Then if (d(t),
t ∈ [0, T]) can be served, it can be served without cross-charging, and by the use of the GGDDF policy.

Proof. This is an application of theorem 3.3 for the period [0, T′]—including the result that any
cross-charging may be eliminated in this period without reducing the volume of energy in each
store at time T′—followed by the use of theorem 3.2 for the period [T′, T] (since clearly any
increase in the volume of energy in each store at the time T′ due to the elimination of cross-
charging in [0, T′] means that we may continue to serve the given demand process on the interval
[T′, T]. Finally, since no cross-charging is necessary, it follows from theorem 2.1 that the demand
(d(t), t ∈ [0, T]) can be served by the use of the GGDDF policy. �

The following further corollary is an immediate application of theorem 2.1 and corollary 3.5.

Corollary 3.6. Under the conditions of corollary 3.5, and in a possibly stochastic environment, the
minimization of the expectation of the unserved energy demand (1.4), or the minimization of any quantile
of the distribution of the unserved energy demand, is achieved by the use of the GGDDF policy.

An important application of the above result is to the frequently occurring case where stores
may be fully recharged overnight, and there is a single period of shortfall during the day which
is unimodal in the sense that it is monotonic increasing and then decreasing as in the statement
of corollary 3.5. One may assume that there is no surplus energy available for charging any of
the stores during this period. Then, in a possibly stochastic environment, the expectation of the
unserved energy demand (1.4) is minimized by the use of the unique GGDDF policy.

Finally in this section, and for completeness, theorem 3.7 gives a useful variation of
theorem 3.3. As should be clear from the statement of theorem 3.3 itself, the condition of that
theorem that ‘all stores are full at time 0’ may be relaxed subject to the additional restriction of
some minimum level on the demand function. Theorem 3.7 makes this idea precise. It does of
course also have corollaries analogous to corollaries 3.5 and 3.6.

Theorem 3.7. Consider any initial stored-energy configuration (Ei(0), i ∈ S). Let S′ = {i ∈ S : Ei(0) <

Ei} and define u0 = mini∈S′ (Ei(0)/Pi), with u0 = ∞ if all stores in S are initially full. Let S1 be the set of
stores i such that Ei/Pi ≤ u0. (Note that from the definition of u0 all the stores in the set S1 are necessarily
full.) Define also S2 = S\S1 and let k = ∑

i∈S2
Pi. Suppose that the demand function (d(t), t ∈ [0, T]) is

(weakly) increasing, further satisfies d(0) ≥ k, and may be served possibly with the use of cross-charging.
Then it may also be served without cross-charging.

Proof. Consider a modified set of store capacities (Êi, i ∈ S) given by

Êi =
{

Ei, i ∈ S1,

Ei(0) + T′Pi, i ∈ S2,
(3.6)

where the constant T′ = maxi∈S2 (Ei − Ei(0))/Pi. Observe that these modified store capacities are
all at least as great as the original capacities. Let the demand function (d(t), t ∈ [0, T]) be as in the
statement of the theorem. Extend the time interval [0, T] to [−T′, T] and consider the demand
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function (d̂(t), t ∈ [−T′, T]) on this latter interval given by

d̂(t) =
{

k, t ∈ [−T′, 0],

d(t) t ∈ [0, T].
(3.7)

If the modified set of stores are considered to be full at time −T′ then their energy content is
sufficient to serve the demand function (d̂(t), t ∈ [−T′, T]), again possibly with the use of cross-
charging. To see this, observe that the stores in the set S2 may be used at their full rates to directly
serve the demand d̂(t) = k on the interval [−T′, 0] (as would be the case with the use of the GGDDF
algorithm on that interval); at time 0 the remaining energy in each store i is then the original
energy content Ei(0) of that store in the initial energy configuration of the theorem; the demand
d̂(t) = d(t) on the remaining interval [−T′, T] may now be served as in the statement of the theorem
(possibly with cross-charging, since the modified stores are all at least as large as the original
stores). Since the demand function (d̂(t), t ∈ [−T′, T]) is, by construction, increasing on [−T′, T], it
follows from theorem 3.3 that this demand function may also be served by the modified stores
without cross-charging, and in particular by the use of the GGDDF algorithm. Since the residual
energy content of these stores at time 0 is again simply the original energy content of the original
stores at time 0, the conclusion of the theorem now follows. �

The need, in theorem 3.7, for some condition such as the requirement that the demand function
(d(t), t ≥ 0) has some minimum level at time 0 is again shown by the earlier example 3.4. The
issue here is essentially the same as in theorem 3.3: informally, for a weakly increasing demand
function, it is the combination of an initially sufficiently low level of demand and spare capacity
in the stores at time 0, which enables cross-charging to assist in fully serving the demand function
where, in the absence of such cross-charging, this might not be possible.

4. Charging and discharging
We now allow that, for every time t ≥ 0, both the demand d(t) and the rates ri(t), i ∈ S, may be
arbitrary (in particular may take either sign) subject to the constraints given by (1.1)–(1.3) and the
condition

min(d(t), 0) ≤
∑

i∈S:ri(t)≥0

ri(t) + 1
η

∑
i∈S:ri(t)<0

ri(t) ≤ max(d(t), 0), t ≥ 0, (4.1)

where, throughout this section, we assume that all stores i ∈ S have the same round-trip efficiency
ηi = η. (For some discussion of the case where the stores have different round-trip efficiencies,
see below and also §5.) Thus, when the demand d(t) ≥ 0 the stores collectively serve energy
(possibly with cross-charging) to assist in meeting that demand and when d(t) < 0, corresponding
to a surplus of energy external to the stores, some of that surplus may be supplied to the stores
(again possibly with cross-charging). Our objective continues to be to manage the stores so as
to minimize, over those times t such that d(t) ≥ 0, the long-term unserved energy demand given
by (1.4), or, in a stochastic environment, the expectation of this quantity.

For any continuous period of time [T, T′] over which d(t) ≤ 0 (energy may be supplied to charge
stores), there is now a theory which is fully analogous to that developed in §2 for discharging
stores. In particular, we may define the (residual) charge-duration of any store i ∈ S at any time t
as (Ei − Ei(t))/P′

i (the time that would be required to fully charge the store if this was done at
the maximum possible rate). Further the GGDDF policy for discharging-only which is optimal in
the sense of theorem 2.1 is replaced by the analogous greedy greatest-charge-duration-first (GGCDF)
policy, which, in the absence of cross-charging, is similarly optimal for attempting to accept as
much charge as possible over the interval [T, T′]. (Note that this would no longer be true in the
absence of a common round-trip efficiency for the stores. While one might, in this case, continue
to formulate a result analogous to theorem 2.1 by redefining store capacities and input rates in
terms of external energy input rather than output, the results of the present section would not
then continue to hold.)
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In many circumstances, a reasonable heuristic policy for the management of the stores is given
by the use of the GGDDF policy to serve as much of the demand process as possible during
periods when that process is positive, and the use of the GGCDF policy to charge the stores
as rapidly as possible during periods when the demand process is negative. This policy again
has the attractive property, discussed in §2, of being non-anticipatory, so that it continues to
be fully implementable in a stochastic environment. As in §3, this policy may be expected to
work particularly well when continuous periods of storage discharge are separated by lengthy
periods providing ample time for recharging. However, in general, it need not always be optimal
for the minimization of long-term unserved energy. The reason for this is that the GGDDF policy
attempts to equalize as quickly as possible the discharge-durations of the stores, while the GGCDF
policy attempts to equalize as quickly as possible the corresponding charge-duration times, and
these two objectives in general conflict with each other. However, we do have the following
theorem.

Theorem 4.1. Suppose that a set of stores S is such that Ei/Pi is the same for all i ∈ S, that P′
i = αPi

for all i ∈ S for some α > 0, and that the stores in S have a common round-trip efficiency η. Suppose also
that Ei(0)/Pi is the same for all i ∈ S. Then an optimal policy for the minimization of the expectation of the
unserved energy demand (1.4) over any subsequent time period [0, T] is given by the use of the GGDDF
policy at those times t such that d(t) is positive, and the use of the GGCDF policy at those times t such that
d(t) is negative.

Proof. Under the conditions of the theorem, at any time t, balance with respect to charging
(Ei(t)/Pi constant over i ∈ S) is equivalent to balance with respect to discharging ((Ei − Ei(t))/P′

i
constant over i ∈ S). The initial stored-energy configuration is balanced, and so, since the stores
have a common round-trip efficiency η, the GGDDF/GGCDF policy maintains a balanced stored-
energy configuration for all t ≥ 0. It now follows from the results of §2—see in particular
remark 2.3—that any demand process (d(t), t ≥ 0) which may be completely managed (i.e.
completely served at times t such that d(t) ≥ 0 and completely used for charging at times t
such that d(t) < 0) under some policy may similarly be completely managed by the use of the
GGDDF/GGCDF policy. The conclusion of the theorem now follows as for corollary 2.4. �

Remark 4.2. The essence of theorem 4.1 is that, under the conditions on device parameters
given by the theorem, once stores become balanced with respect to their initial energy
configurations, they remain so thereafter and may then be used with the same flexibility as
a single large store. It follows as in §2 that the GGDDF/GGCDF policy drives any initial
energy configuration towards such a balanced state. However, cross-charging may speed such
convergence.

5. Concluding remarks
The present paper has considered the optimal or near optimal scheduling of heterogeneous
storage resources for the ongoing balancing of electricity supply and demand. The results,
which hold in both deterministic and stochastic environments, are particularly applicable when
storage is used to cover periods of energy shortfall, such as periods of daily peak demand,
and may be completely or mostly recharged between such periods. However, in future years
storage may also be used to balance electricity systems over much longer timescales, such as
between summer and winter. The simultaneous existence of multiple timescales, together with
the physical characteristics of such storage types as are available, is likely to lead to a very
heterogeneous storage fleet, in which, in particular, round-trip efficiencies vary considerably. The
optimal dimensioning and control of such storage presents significant further research challenges.

Another topic of ongoing research is to extend the storage dispatch methodology beyond a
scenario with a central dispatcher and develop, for example, hierarchical schemes for aggregation
and disaggregation of energy units.
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