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Abstract
The resurgence of interest in landing on the Moon has sparked the creation of a number of novel technologies
concerning Terrain-Relative Navigation (

 

 

TRN) systems [12, 25]. They aid in the need for increasingly precise
landing, as well as enabling autonomous goal-oriented autonomy [26]. To achieve this, most technologies use
a ubiquitous feature present on the Moon: impact craters. Using databases containing of over a million la-
beled impact craters [71], research has yielded end-to-end algorithms that allow for the detection of craters in
a camera image and subsequent self-localisation. These types of algorithms generally use a technique called
crater pattern matching, where an indexable feature is generated from the detected set of craters to find
correspondence between the spacecraft state and the camera input. Recent developments concerning crater
pattern matching techniques have yielded novel methods using relations from the theory of projective geome-
try [17]. These techniques require crater rims in the image plane to be fit with ellipses as accurately as possible.

This research describes the design, development, and testing of an end-to-end
 

 

TRN system demonstrator.
This system demonstrator utilises a novel region-based Crater Detection Algorithm (

 

 

CDA) together with a
projective invariant-based crater pattern matching technique that allows for robust ego-position estimation
The system’s goal was to mark an improvement over earlier attempts to build an end-to-end

 

 

TRN in terms of
robustness, performance, and accuracy. This has been achieved by the development of a tightly integrated
system developed specifically for the task of ego-position estimation from a Lost-In-Space (

 

 

LIS) situation.

Using physically accurate data generated using specialised space exploration rendering software [67], a
region-based object detection model based on Ellipse R-CNN [23] was built to directly fit ellipses to impact
craters in the image plane. These parameterised ellipses were subsequently used to generate a seven-element
descriptor per crater triad for direct matching with a scalable database. Using the selenographic position and
shape of matched craters, a system of equations is solved using Random Sample Consensus (

 

 

RANSAC) [30] to
achieve a robust state estimation system. Tests show that the proposed system’s measurements alone com-
bined with an Extended Kalman Filter (

 

 

EKF) [88] result in an error of less than 160 [m] from a heavily degraded
(> 500 [km]) initial state.

The development of this demonstrator yielded three advancements to the field of
 

 

TRN: a flexible data gen-
eration pipeline, a novel Artificial Intelligence (

 

 

AI)-based
 

 

CDA, and the first results of a region-based detection
model in tandem with a modern crater pattern matching technique. The code is publicly available¹, allowing
future projects to improve upon the current state of the demonstrator.

¹https://github.com/wdoppenberg/crater-detection
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1
Introduction

During the later Apollo missions, the astronauts on-board the Lunar Landing module had to ensure a soft
landing at a safe location which was level and devoid of hazards. To achieve this, the descent stage of the
Lunar Module used a human-in-the-loop (

 

 

HITL) approach, combining automated systems and human inter-
action to perform the required actuations to reach the predesignated landing spot relatively accurately [48].
Figure 1.1 displays a schematic overview of the components that make up the control loop, clearly showing
that the interface between the astronaut and the Flight Computer system is present in both feedback (Inertial
Measurement Unit (

 

 

IMU), data display, optics) and control (manual control signals). At the time, a
 

 

HITL-based
control loop was an obvious choice considering the resources that were available.

Figure 1.1: Apollo 11’s Lunar Module Guidance Navigation & Control (
 

 

GNC) system schematic [48].

The majority of control systems for spacecrafts have been based on solutions using linear algebra and
linearisation [29], and have served their purposes well in the past. However, increasingly complex mission de-
mands require avionics engineers to look into non-linear designs, as this type of technology has the potential
to surpass current technological limitations. The precision landing problem can benefit greatly from this way
of thinking, considering the promise of Computer Vision (

 

 

CV) or Artificial Intelligence (
 

 

AI) shows in general
to such problems. The non-linear nature of the relation between a view of the Lunar surface and the relative
position can be potentially be taught by setting a target objective and letting the system train itself. The main
downside of these types of models is the significant processing power and time required. However significant
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2 1. Introduction

advances in processing hardware have made it possible to introduce non-linear control systems for spacecraft.
Combined with a renewed interest in planetary exploration using robotic landing vehicles, a flexible, cost-
effective, and self-contained autonomous position determination system can expand the possibilities of future
missions greatly. Current solutions use a combination of inertial, visual, and radiometric measurement up-
dates; the focus of this document is on the visual navigation subsystem, or Terrain-Relative Navigation (

 

 

TRN).

1.1. Terrain­Relative Navigation
Navigating towards a precise landing spot requires state knowledge throughout the mission envelope. For
example, the Autonomous Landing and Hazard Avoidance Technology (

 

 

ALHAT) project was initiated by Na-
tional Aerospace & Space Administration (

 

 

NASA) Jet Propulsion Laboratory (
 

 

JPL) to design a
 

 

TRN system that
could guide a lander within 100 [m] of its predetermined target on the surface of the Moon [50]. One recent
example of such a system was on-board of the Chang’E-4 unmanned Lunar lander [56]. This system used
photogrammetry to find a visual correspondence between its pose and the predetermined landing spot.

Figure 1.2: Illustration of
 

 

TRN in a precise lunar landing context, reprinted from [50].

State estimation can be achieved through global position estimation, local position estimation, and veloc-
ity estimation. The first two require prior knowledge about the landing site, for example a Digital Elevation
Map (

 

 

DEM) of the (wider) area to find correspondence between sensor input and an on-board database. The
latter however, is a less precise method of local position estimation because of the error accumulation in ve-
locity measurements. Combining these types of measurements is ideal, as it can be fed into a state estimation
algorithm like an Extended Kalman Filter (

 

 

EKF), or a modern equivalent.

1.1.1. Autonomous Navigation
 

 

TRN is onemanifestation of autonomy in space systems. As illustrated by themany functionalities described in
Figure 1.2, autonomy is achieved using a system which - given the current location and situation - intelligently
utilises multiple instruments to achieve a set goal. In the case of

 

 

ALHAT the goal is to achieve highly precise
autonomous landing. By the definition of the European Space Agency (

 

 

ESA), this would constitute a mission
execution autonomy level E3 [26]. The spectrum of these levels are given in Table 1.1 which provides a clear
definition of the relation between the degree of ground intervention and autonomy.
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Level Description Functions
E1 Mission execution from ground control;

limited onboard capability for safety is-
sues

Real-time control from ground for nomi-
nal operations. Execution of time-tagged
commands for safety issues

E2 Execution of pre-planned, ground-
defined, mission operations on-board

Capability to store time-based commands
in an on-board scheduler

E3 Execution of adaptive mission operations
on-board

Event-based autonomous operations. Ex-
ecution of on-board operations control
procedures

E4 Execution of goal-oriented mission opera-
tions on-board

Goal-oriented mission re-planning

Table 1.1: Mission execution autonomy levels, reprinted from [26].

Essentially, the highest degree of autonomy implies the usage of a highly adaptable navigation system.
This system should be capable of utilising on-board sensors input to autonomously achieve its goal without
ground intervention.

1.1.2. State of the Art
Most recent implementations of

 

 

TRN yield two types of solutions: Active & Passive. Active methods use an
active emitter directed at the Lunar surface, capturing the reflected signals to determine the surface geome-
try. This has the benefit of working in any lighting condition but is generally more complex, expensive, and
usually only works at low altitudes. Passive methods use a camera system to capture the (sunlit) surface of
the Moon, identifying either absolute or relative position estimations. The benefit of this method is that it is
relatively inexpensive, works at any altitude, and utilises components that can serve multiple purposes, such
as a camera or Vision Processing Unit (

 

 

VPU). However, the main downside is that this requires a sunlit terrain,
constrainingmission planning flexibility. Table 1.2 gives a condensed overview of different types of

 

 

TRNmostly
based on the survey provided in [50], with the addition of extra sources of recent developments in this domain.

Type Sensor Approach Input Strengths Weaknesses Sources

Passive Camera
Crater pattern
matching

Crater database;
camera output;
attitude

Robust against changes in illumi-
nation; space & time efficient; does
not require nadir-pointing; works
at any altitude

Requires sunlit terrain; requires
terrain with craters; requires atti-
tude input

[17, 21, 24,
40, 79, 87]

SIFT pattern match-
ing

SIFT database; cam-
era output

No attitude or altitude information
required; applicable with all types
of terrain

Requires sunlit terrain; changes in
illumination degrade performance;
sensitive to out-of-plane rotations

[57, 84]

Image to global map
correlation

Surface map; camera
output; attitude; al-
titude

Applicable with all types of ter-
rain; requires a single image with-
out post-processing

Requires sunlit terrain; changes in
illumination and terrain relief de-
grade performance; time & space
inefficient

[14, 77]

Active
LiDAR

Shape signature pat-
tern matching

LiDAR output; mo-
tion data; shape sig-
nature

No prior state knowledge required;
No sunlight required

Expensive sensor; requires distin-
guishable terrain relief; less mature
than camera; time inefficient

[32, 49]

DEM correlation LiDAR output; mo-
tion correction data;
attitude; DEM

No sunlight required; More robust
than altimeter

Requires complex scanning array;
less mature than camera

[74]

Altimeter DEM correlation Altimeter output;
motion correction
data; attitude; DEM

No sunlight required; works at
higher altitudes than LiDAR

Requires long contour; less mature
than camera

[36]

Table 1.2: A comparison between
 

 

TRN approaches

Most research into
 

 

TRN algorithms has been focused on passive techniques, especially crater patternmatching,
as is illustrated by the amount of sources available describing solutions using this method. The reason for this
popularity is clear: any lander design foresees the installation of a camera module which can be repurposed
to serve multiple uses, including

 

 

TRN. However, due to the complex relation between surface type, geometry,
and the sun angle, it has proven difficult to create a generalisable solution to detect craters. Furthermore,
designing an end-to-end Lost-In-Space (

 

 

LIS) crater pattern matching
 

 

TRN system has not been achieved. It is
herein that the opportunity lies to expand the body of knowledge concerning navigation algorithms, and to
realise fully autonomous navigation above a large crater-filled body such as the Moon.
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1.2. Crater Detection Algorithms
The study of impact craters has historically been the subject of planetary science subjects, for example on the
topic of whether or not the Late Heavy Bombardment occurred [42]. This brought about the creation of crater
databases which stored the location and shape of impact craters [46, 71, 75], which in some cases contain
more than a million entries. Craters are therefore suitable to navigate low orbit since they can be detected and
quantified as basic geometric shapes such as circles or ellipses. This is the reason the past decade has yielded
a number of proof-of-concepts for

 

 

TRN using craters [24, 58, 63], most of which could be described as a system
consisting of two parts: a detector and an identifier.

Crater Detection Algorithms (
 

 

CDAs) have been developed to work on either
 

 

DEMs for aforementioned
scientific purposes, or on optical imagery for state estimation. The former requires that the surface of the
primary body (e.g. the Moon) is scanned using a laser altimeter or similar instrument, whereas for state
estimation a camera is often considered to be the sensor of choice as this holds significant benefits in cost and
complexity. The drawback of optical imagery is that the input data heavily depends on exogenous variables
such as sun angle, spacecraft orientation, surface types, and more. Current

 

 

CDAs can be split into two groups:
traditional and

 

 

AI-based solutions.

1.2.1. Traditional Computer Vision
Traditional algorithms are often called as such because the concepts required to build them stem from an era
before

 

 

AI-based solutions, with methods like edge detection, filtering, and thresholding. Their logic consists of
a string ofmanually engineered operations that derive crater shapes in themost robust way possible. Figure 1.3
shows an example of a traditional

 

 

CDA by [60], where crater rims are detected using techniques such as Canny
Edge detection [13, 27, 89] combined with highly coupled pre- and post-processing operations.

Figure 1.3: Example of a traditional
 

 

CV crater detection algorithm, reprinted from [60].

Inherently, this high coupling of functions to derive crater shapes does not generalise well for varying
viewing angles, noise, or lighting conditions. For example, if lighting conditions were to change significantly,
the appearance of a crater in the pixel frame would change dramatically too. Advanced solutions using these
techniques that try to mitigate the shortcomings of traditional crater detection have been built [41, 43], but
nonetheless the focus of most recent

 

 

CDA research has shifted to
 

 

AI-based solutions.

1.2.2. Deep Learning­based
 

 

CDA
 

 

CDAs using
 

 

DL techniques have the potential to yield more robust solutions, as they self-engineer the non-
linear relations required to detect crater shapes through a training process (see section 1.3). This novel tech-
nique requires an introduction before its application to

 

 

CDAs can be fully understood.

1.3. Deep Learning
Recent years have seen novel solutions based on

 

 

DL appear for a host of domains because of a surge in dataset
size and available computing power [62]. Especially the

 

 

CV domain has benefited from the usage of Con-
volutional Neural Network (

 

 

CNN)-based models, since the unstructured and highly dimensional nature of
image data lends itself well to these types of architectures. The significant processing requirements can be
offset by deploying these models on massively parallel processors, which have only recently been deployed in
a spacecraft platform [6, 33].
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1.3.1. Concepts
It is a common agreement that the following holds for the relationship between Artificial Intelligence (

 

 

AI),
Machine Learning (

 

 

ML), and Deep Learning (
 

 

DL):

 

 

AI ⊃
 

 

ML ⊃
 

 

DL (1.1)

There are many exceptions, however it helps to illustrate the relationship between these terms as they are
often used interchangeably in papers that use this method for

 

 

CDAs. The goal of any Neural Network (
 

 

NN)
(also referred to as Multi-Layered Perceptron (

 

 

MLP) or deep feed forward network) is to approximate some
function 𝑓 ∗ by learning a set of parameters 𝜃 that result in the best function approximation 𝑓 (x; 𝜃) [37]. In
short, the objective is defined as:

𝑓 (x; 𝜃) ≈ 𝑓 ∗(x) (1.2)

Figure 1.4: A general representation of a Neural Network, reprinted from [1]

These
 

 

NNs are called networks because they comprise multiple (non-)linear functions that form layers, as
shown in Figure 1.4. For example, if 𝑓 (1), 𝑓 (2), and 𝑓 (3) are chained together to form a

 

 

NN, it becomes:

𝑓 (x) = 𝑓 (3)(𝑓 (2)(𝑓 (1)(x))) (1.3)

Specialisations of
 

 

NN also exist in the form of
 

 

CNN, which limits the amount of connections that layers
have, meaning that deeper networks are possible without the curse of dimensionality incurring heavy perfor-
mance penalties. This is by replacing the general matrix multiplication that occurs between layers in a fully
connected

 

 

NN with convolution. Convolution is the process where the network is only sparsely connected, re-
sulting in less connections while maintaining the ability to learn meaningful features with kernels that occupy
only a few tens or hundreds of pixels. For image processing, this is generally the preferred strategy because of
the input size, and because “units in the deeper layers may indirectly interact with a larger portion of the input
... this allows the network to efficiently describe complicated interactions between many variables by constructing
such interactions from simple building blocks that each describe only sparse interactions” [37].

Training any
 

 

NN consists of using a data set {x,y} which can - by updating 𝜃 using a method such as
Gradient Descent - yield a model that exhibits behaviour that approximates Equation 1.2. In the case of a

 

 

CDA, this usually means per-pixel classification of crater rims, with some post-processing steps added to get
the crater shape.

1.3.2. Image Segmentation
 

 

DL models have mostly been applied to image segmentation tasks. These tasks generally aim to classify
an image’s content, be it image classification or segmentation. The former attempts to label images as a
whole, whereas the latter is tasked with classifying each pixel on whether it belongs to a certain class (and
instance). Commonly used generalised open-sourced datasets include ImageNet [22] (image classification),
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𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

𝑠1 𝑠2 𝑠3 𝑠4 𝑠5

Figure 1.5: An illustration of the concept behind convolution, inspired by [37].

and CoCo [55] (semantic segmentation). Image segmentation models are therefore excellent candidates for
a modern

 

 

CDA, potentially being capable of a higher degree of generalisation. Up until recently, semantic
segmentation has generally been the preferredmethod of choice for

 

 

CDA because of a popular implementation
called DeepMoon [78]. The main concern of this type of model is that additional post-processing steps are
required to distinguish individual craters in the detection mask. More recent research into applying instance
segmentation models for detecting craters has yielded promising results [28].

Semantic Segmentation
Semantic segmentation is the process of labeling each pixel in an image. One application is biomedical image
segmentation, with U-Net being a popular example [73]. As a matter of fact, this exact architecture has been
applied to crater detection, and was renamed DeepMoon [78]. DeepMoon was first conceived as a novel

 

 

CDA
for the purpose of generating a crater catalogue using

 

 

DEM data of the Moon. This model uses a convolution -
deconvolution setup that copies feature maps at corresponding feature sizes. This allows the network to infer
high resolution segmentation by propagating context information from preceding layers. The layout of the
architecture is shown in Figure 1.6. DeepMoon used the architecture to generate per-pixel segmentation of
crater rims, after which a template matching step iteratively fits circles on the mask to find crater instances.
This method is not necessarily fast, but in the context of DeepMoon’s use case (crater cataloguing) it was
considered adequate.

Figure 1.6: U-Net architecture, reprinted from [73].

For
 

 

TRN, an iteration of DeepMoon trained using images with simulated camera images combined with an
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EKF named LunaNet was developed [24]. Instead of using template matching, this model uses the prediction
mask in combination with several post-processing steps to form a set of fitted ellipses per image. The conse-
quent crater identification is done with the assumption that prior approximate state information is available
during the crater identification step.

Instance Segmentation
Compared to a semantic segmentation, instance segmentation identifies distinct objects belonging to a class
in an image. This has the intrinsic benefit of having positional information as well as shape (usually returned
as a bounding box) for each detected object in an image. It is obvious that this type of model has great
potential for crater detection, having the benefit of replacing post-processing steps required when using per-
pixel classification masks such as the output of DeepMoon.

Instance segmentation is essentially an instance detection model with extra predictors added. The back-
bone that supports instance detection models are based on deep

 

 

CNNs image classification models such as
VGG [80] or ResNet [44]. These models can be up to 152 layers deep, and have typically been developed
to work well on a general image classification dataset called ImageNet [22]. For this task, the network uses
a method called end-to-end learning, which refers to a model learning the feature engineering required to
retrieve meaningful intermediate representations of the data. This essentially means that traditional image
manipulation techniques do not need to be implemented for the model to function. These convolutional layers
act as filters on an input image, and train themselves to highlight spatial relationships that aid in the classifi-
cation (or detection) process.

The target data for an object detection model consists of instances of the objects to be detected, and are
captured (mainly) by two variables: its label and the bounding box. The label is dependent on the amount of
classes that are included in the dataset, and the bounding box is the pixel location of the object in the image
delimited by a rectangle described as [𝑥min, 𝑦min, 𝑥max, 𝑦max] (see Figure 1.7). In the case of a

 

 

CDA this means
that there are two classes: background and crater. The model’s capability to distinguish objects from the
background is quantified by its objectness score.

Figure 1.7: Illustration of bounding boxes fitted to craters in the image plane.

R-CNN [35], or Regions with
 

 

CNN, was a novel approach to object detection and classification. It uses
extracted region proposals from an input image as input to a

 

 

CNN for classification. This means that the
model architecture can return multiple instances with associated class predictions. Two newer iterations fol-
lowed this, aiming to improve training and testing speed: Fast R-CNN [34], and Faster R-CNN [69]. The
latest iteration introduced Region Proposal Networks (

 

 

RPNs), which leverages the learned weights present in
a state-of-the-art image classification network to generate region proposals. This only marginally increases
the cost of computing proposals for a single image.

Region-based models have very recently been applied to
 

 

CDA, showing promising results [28]. Utilising a
classification back-end to discern individual craters from the image is a powerful method, as it can be trained
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Figure 1.8: Overview of Faster R-CNN, reprinted from [69].

to work in varying circumstances caused by lighting conditions, spacecraft attitude, etc. However, this model
was designed for crater cataloguing, not

 

 

TRN. Only having bounding box predictions of craters does not yield
enough information to fit ellipses to crater rims. However, an existing model called Mask R-CNN [45] can for
example perform per-pixel classification per instance called instance segmentation. Using pixel-wise masks
for target instances, an extra predictor can be trained to perform pixel-wise classification based on the latent
features present in the backbone. This predictor is generally a relatively simple

 

 

MLP with 3 layers.

Opportunities
It is clear that the aforementioned architectures have great potential for crater detection. The fact that these
types of models can be trained to perform instance segmentation tasks triggers the question whether the
same type of regressors can be used to predict (normalised) ellipse parameters per detected instance. Further
research and development must answer this question, and is thus included in the scope of this project.

1.4. Crater Pattern Matching
Using detected landmarks such as craters, a spacecraft can determine its position above its primary body (such
as the Moon). First used by the Near Earth Asteroid Rendezvous (NEAR) mission [15] to navigate around Eros.
Craters prove to be an easily quantifiable feature because of the basic geometric shape (an ellipse) used to
describe its rim. There is one main assumption to make when designing an autonomous orbit determination
system: whether or not prior approximate state knowledge is present or not. Not having such information
available at the time of execution significantly impacts the complexity of the problem, illustrated by the name:

 

 

LIS. This term is similarly used when designing star tracker algorithms, which have the capability to reinitialise
the navigation state estimate without prior knowledge [70].

Crater pattern matching offers a space- and time-efficient alternative to more costly algorithms such as
image correlation techniques. Building an image correlation database for a

 

 

LIS ego-position estimation algo-
rithm would set a significant processing requirement to be able to work in real-time. Considering the limited
(processing) power available on a spacecraft, this is undesirable. Instead, geometric relationships can be made
between the apparent elliptical shapes of the rims of impact craters, generating discriminating features rep-
resented by a numerical descriptor that can be used to find correspondence between the camera input and
an on-board database. The high amount of classified impact craters available in public datasets such as [71]
allow the creation of a global crater identification database, with the goal of expanding

 

 

TRN functionality.
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1.4.1. With Available State Information
[11, 18, 79] describe another complete

 

 

TRN system using crater pattern matching. This system requires a-
priori state information combined with crater shape matches to determine a translation vector 𝛿𝑥𝑥𝑥 that solves
the crater-camera homography. This homography is the affine transformation between the craters in the
image plane and selenographic space. To solve this, it utilises a Random Sample Consensus (

 

 

RANSAC)-type
algorithm, which is a method for solving systems of linear equations with a high amount of outliers present.
The system has been tested using synthetic images as well as with a physical mock-up of the Lunar surface,
and proved to work well. Similarly, LunaNet’s crater identification subsystem uses an adapted version of this
technique, using the output of an

 

 

EKF to find crater correspondence.

1.4.2. Lost­In­Space Algorithms
[40] is an example of a Lost-In-Low-Lunar-Orbit algorithm, and utilises an approach derived from star tracker
algorithms. In summary, it uses the triangles formed by triads of craters projected into the image plane to form
a unique descriptor based on the two smallest inner angles. A fourth crater is then located in the image, which
is then used for a second database search with the newly formed crater triangle. The probability that said
match is false is used to then either reject or accept the identification. The problem with this method is that
it is not rotation invariant, meaning that only nadir-pointing camera angles are allowed. Furthermore, this
method uses just 2 consecutive searches for 2 values to discriminate between craters, which works acceptably
well for the amount of craters used in this research (4117), but does not scale well with a larger crater dataset.

[63] present a method for crater matching using a concept called projective invariants. This is a prop-
erty of pairs of geometric shapes, like ellipses, to be characterised by a function that yields the same outcome
regardless of any affine transformation that are applied. An example of such a transformation is the aforemen-
tioned crater-camera homography. Using this property, a seven-element descriptor can be made per coplanar
crater triad to use for a global crater index. Since this method uses projective invariants, it also means that it
can work under off-nadir pointing attitudes, increasing flexibility. [17] expands this method to non-coplanar
triads on non-degenerate surfaces (e.g. a spheroid), and introduces an algorithm for using matched crater
shape information and a known attitude input (from e.g. a star tracker) to estimate the spacecraft’s position
through solving a linear system of equations. This is a truly

 

 

LIS algorithm, but is yet to be paired with a
modern iteration of a

 

 

CDA. As mentioned in [17]: “Our crater identification algorithm is critically dependent
on the localization of the best-fit ellipse to the crater rim, which is often not the metric used to design or evaluate

 

 

CDAs. Thus, finding (or developing) an appropriate
 

 

CDA is an obvious topic of follow-on work”. This presents
an opportunity to create a tightly integrated

 

 

LIS
 

 

TRN algorithm by developing both the
 

 

CDA and a projective
invariant-based crater identification algorithm in parallel.

1.5. Research
The need for precise autonomous landing combined with advances in Commercial-Off-The-Shelve (

 

 

COTS)
hardware accelerators for mobile applications creates opportunities to explore novel vision-based solutions
for low orbit navigation problems. To ensure that the most knowledge is gained, the domain for the

 

 

CDA is
restricted to

 

 

AI-based solutions on purpose. This enables the research to be focused, to assess a real-world
application of specialised vision processing chips in spacecraft, and to attempt to solve an open problem in the
spacecraft avionics domain.

Developing, training, and verifying an
 

 

AI-based
 

 

TRN system requires the creation of a robust testing envi-
ronment that is capable of generating large amounts of data. Current scene simulation technologies provide
novel ways of approaching this, and could prove to be useful should further research be performed on similar
problems. Furthermore, marrying the rapid technological progress of the

 

 

DL domain with the relatively con-
servative space engineering domain may prove to be difficult, but may hold significant benefits for exploring
alternative methods for solving vision-based navigation problems. And finally, using the most recent methods
for achieving robust ego-position estimation with crater pattern matching in tandem with a

 

 

CDA presents a
unique opportunity to assess the current state-of-the-art in

 

 

TRN techniques.



10 1. Introduction

1.5.1. Research Questions
To guide the research, a set of (sub-)questions have been defined. These address the aforementioned opportu-
nities:

RQ Is region-based object detection a suitable method for a Lost-In-Space Terrain-Relative Navigation sys-
tem?

RQ1 What requirements should a datasetmeant for developing, training, and verifying a Terrain-Relative
Navigation system fulfil?

RQ2 Is a Crater Detection Algorithmusing region-based object detection sufficiently robust for a Terrain-
Relative Navigation system?

RQ3 How does an absolute position estimation algorithm perform in tandem with a Crater Detection
Algorithm using region-based object detection?

1.5.2. Research Objectives
To be capable of answering the research questions, a set of goals are given per research question. The goals
essentially define the needed components and associated tests that need to be developed and implemented.

Answering RQ1 requires the creation of a representative environment in which to verify the complete sys-
tem, manifested as a dataset with labeled data along with metadata (e.g. camera position, attitude, etc.). This
requires a method of simulating camera input along with the projected craters in the image plane (labels), as
well as a method of generating a large enough dataset for training a region-based object detection model.

Answering RQ2 requires developing a novel
 

 

CDA using region-based object detection techniques. An as-
sessment of the state-of-the-art of these types of models was done to find opportunities and to be able to
formulate a analytical description of the required steps for implementation.

Finally, answering RQ3 requires the implementation of a crater pattern matching and position estimation
algorithm that can work with the output of the developed

 

 

CDA. Again, this requires a study of available tech-
niques, and subsequently implementing them. This subsystem will most likely consist of a kind of database
and a ego-position estimation algorithm, hence these need to be implemented as well. Finally, the full system
is verified in a representative environment. A summarised overview is given in Table 1.3.

Research Question Goal Sub-goal

RQ1 Create a dataset fit for developing, training, and
verifying a

 

 

TRN system.

Camera input simulation
Crater projection from dataset
Robust data generation pipeline

RQ2 Develop and implement a
 

 

CDA using region-
based object detection techniques.

Assess state-of-the-art
Feature engineering
Model training
Evaluate subsystem

RQ3 Implement a crater pattern matching algorithm
with position estimation functionality and test it
in combination with the developed

 

 

CDA.

Assess state-of-the-art
Create indexable database
Develop position estimation algorithm
Evaluate system

Table 1.3: Research goals for the development of a
 

 

TRN system using region-based object detection techniques.



2
Systems Engineering

It is proposed to design, develop, and test a demonstrator to answer the questions posed in section 1.5. Ap-
proaching the full demonstrator as a system in itself allows the research to be focused on achieving the highest
amount of added knowledge on the chosen subject of

 

 

TRN using region-based object detection. To this end, a
list of requirements is generated along with methods for verification.

2.1. Front End Process
Following the steps from [52], the identified opportunity can be translated into a detailed system design. First,
the active and passive stakeholders alongwith their capabilities and characteristics are defined. Following from
their priorities and the set scope a system concept is chosen, illustrated by the system context diagram. Next
are the operational, functional, and physical views, from which the system’s main objectives, functions, and
layout can be derived.

2.1.1. Stakeholders
Answering the posed research questions has the potential to benefit space engineers involved in the design
and manufacturing of the processing hardware that is used to power

 

 

TRN systems. In fact, the proposed
combination of a very modern iteration of

 

 

CNNs (region-based object detection) with a
 

 

LIS navigation to form
an integrated avionics solution has never been performed before. Combining results from previous research
into a single end-to-end open-sourced

 

 

TRN system with modern techniques is a key step for avionics as it can
serve as a starting point or benchmark for future research.

2.1.2. Need
The need for a system as proposed in this research is reflected in a Statement of Work issued by the European
Space Agency (

 

 

ESA) for
 

 

AI techniques for spacecraft avionics:

“One space application that could greatly benefit from application of non­linear systems is
the autonomous vision­based navigation of spacecraft. Indeed, the demand of highly accu­
rate relative navigation in a non­linear and unpredictable harsh environment including time
constraints compels the designers to consider alternativemethodologies and concepts. One
of these ideas is to use adaptive systems with non­linear elements. Artificial Intelligence is
a product of a non­linear adaptive system. The way it can be manifested depends on the
technology level and the current knowledge.” [29]

In summary, there is a clear demand for a highly accurate vision-based navigation solution incorporating
 

 

AI. The development of such a solution serves to explore and assess the potential functional and performance
benefits of

 

 

AI in a spacecraft avionics system. Developing a navigation solution that functions in a
 

 

LIS situation
can be considered the ultimate form of adaptivity - another keyword in the above statement.

2.1.3. Opportunity & Implementation
The applicability of

 

 

AI-based techniques, and region-based object detection specifically, along with increased
processing power in a space avionics system present an opportunity to design and develop a technologically

11
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superior solution through technology fusion. These techniques have been transformative for many
 

 

CV prob-
lems, and exploring the potential benefits for space applications is therefore a key component of this research.
To test this claim, a demonstrator shall be developed to assess the performance of a region-based object de-
tection

 

 

CDA in combination with an ego-position estimation algorithm. Furthermore, the end-goal of this
research is to make a demonstrator that has proven its capabilities in a software environment, and is ready
to be ported to an embedded target for hardware performance testing. This requires the demonstrator to be
platform-agnostic, and the results to be reproducible for other researchers.

2.1.4. System Context
Figure 2.1 displays a system context diagram that defines the setup for our

 

 

TRN system, and is inspired by
 

 

ALHAT [12]. Defining what components are available for a physical implementation of the system naturally
affects the software implementation, and, as a result, the proposed demonstrator. The introduction of a repro-
grammable (and thereby flexible)

 

 

VPU into the system greatly influences the available design options for
 

 

CDA
design. Modern hardware accelerators provide the capability to run state-of-the-art

 

 

DL models with very low
power requirements [54].
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VPU Crater detection
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Figure 2.1: System Context Diagram for vision-based state estimation for landing missions.

This research will focus on the steps from the camera input up to and including the navigation filter. Both
instantaneous (i.e. randomised positions above the Lunar surface) performance as well as in an orbit scenario
will be analysed to provide enough evidence to warrant further development of the proposed system.

2.1.5. Use Case
The system will be tested in a simulated environment in orbit around the Moon (<500 [km]) in a

 

 

LIS situation,
with attitude information available. The reason why this assumption can be made is because star trackers
have become accurate, robust, and inexpensive [70]. Together with an accurate time stamp and SPICE kernels
[61], the navigation problem narrows down to finding a correspondence between the camera input and the
spacecraft’s selenographic position. This is inherently a much more difficult problem to solve than

 

 

LIS star
tracking, since available features (e.g. impact craters) suffer from high dimensionality and varying internal
(e.g. viewing angle) as well as external factors (e.g. lighting conditions, surface type, etc.).

This is therefore an excellent problem for an
 

 

AI-based approach, since this approach has proven to be
successful at solving high-dimensional problems [65] like object detection. Using the proposed system in
a situation where state information is known is obviously an option as well, and it is expected to further
improve accuracy. However, in the interest of designing a fully autonomous system that can initialise its state
estimator without ground tracking, this is not considered during the design, development, and verification of
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the proposed system.
TheMoon was chosen as a target because it is a scientifically rich target to land on and because of the large

amount of high-quality data available for one to work with. However, this does not mean that the system is
limited for use around the Moon only. In fact, the system will be required to function around any significant
body that has a cratered surface.

2.1.6. System Objectives
The high level performance objectives can be divided into four categories:

1. Accuracy: Provide state estimation filter with accurate absolute state estimations with manageable
error from a

 

 

LIS situation.

2. Autonomy: Function without ground station input.

3. Compatibility: Interfacing with other (Guidance Navigation & Control (
 

 

GNC)) components.

4. Robustness: Function in a wide variety of environments, including but not limited to different altitudes,
viewing angles, surface types, and lighting conditions. This also refers to the system’s capability to work
with little to no state knowledge available (

 

 

LIS).

The end-goal of this project is to create a Technology Readiness Level (
 

 

TRL) 3 [82] software-based demon-
strator of a

 

 

TRN system using region-based object detection and crater pattern matching. Ultimately, the
system’s purpose is twofold: to demonstrate the performance of

 

 

AI-based techniques in
 

 

GNC applications
and to provide an open source implementation to the spacecraft avionics community for future comparative
testing and development.

2.1.7. Technology Readiness Assessment
Because this system requires hardware components, the system shall be validated up to

 

 

TRL 3. According
to [82]: “

 

 

TRL 3 includes both analytical and experimental approaches to proving a particular concept”. The pro-
posed system comprises several software components that require integration before being able to generate
the desired results. This means that - in

 

 

TRL jargon - the software demonstrator is defined as the technology
concept, and the analytical and experimental studies to validate hypotheses regarding this technology serve
to verify the system at this stage of development. Advancement to

 

 

TRL 4 would require the software to be
written and optimised for an embedded target, which would then be used for further rigorous breadboard
testing in a relevant environment.

2.2. Top­Level Requirements
To achieve the end-goal of this project, a set of requirements that cover the main use case (

 

 

TRN) are generated.
The top-level requirements offer a solution to a range of problems related to

 

 

TRN, taking into account the
research domain and questions to maximise the scientific value of this project.

2.2.1. Functional Requirements
FR-01 The system shall be able to deliver absolute position estimations based on attitude information and

camera input alone.

Rationale : The main goal of any
 

 

TRN system is to generate position estimations, the limited available state
information during execution is purposely set for the system to function in a

 

 

LIS situation.

FR-02 The system shall utilise
 

 

AI techniques.

Rationale : To explore the performance of
 

 

AI-based algorithms in
 

 

GNC systems to add to the body of knowledge
concerning these types of solutions [29].

FR-03 The system shall be used for navigating around the Moon.

Rationale : To clearly set the scope of this project, the system shall be designed to work for Lunar missions. That
is not to say that the technology can be extended to work on other crater-rich targets as well.

FR-04 The system shall comprise all elements required for it to be reproduced by any user that requires it.
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Rationale : The system is to be designed with reproducibility in mind. To be able to distribute the solution for
further research & development, as well as to encourage reproduction studies for further verification.

FR-05 The system shall be executable entirely on-board a spacecraft.

Rationale : No form of ground tracking is allowed for the purpose of creating an entirely self-contained system.
This means that limited resources are available (power, processing, and memory).

FR-07 The system shall function for any Lunar approach path.

Rationale : In order to become a generally applicable system for Lunar landing missions the system must be
capable of configuration or self-adaptation to the proposed mission.

2.2.2. Performance Requirements
PR-01 The system shall achieve a maximum absolute state error of less than 487 [m] in a Lunar orbit below 500

[km].

Rationale : This is to solve the challenge of high-precision autonomous navigation where accurate state informa-
tion in an early stage (higher altitudes) of the approach and descent manoeuvres is desired. The value

is derived from the strictest error requirement given in Table 2.1 (√2302 + 4302 ≈ 487 [m]).

PR-02 The system shall deliver state updates at a frequency of at least TBD [Hz].

Rationale : To feed the state estimation filter with enough updates to gain sufficient state knowledge confidence.
The required update frequency is not known beforehand as it is dependent on the filter’s design and
the

 

 

TRN system’s performance. Further tests shall have to determine an appropriate rate for the re-
quirement to be validated.

Distance to surface Horizontal Error Vertical Error
200km 1640 [m] 3380 [m]
100km 410 [m] 845 [m]
80km 240 [m] 610 [m]
50km 230 [m] 430 [m]

Table 2.1: Maximum absolute state error requirement for varying altitudes. Values have been extrapolated from [29].

2.2.3. Operational Requirements
OR-01 The system shall be capable of functioning above any cratered region of the Moon without hardware

changes.

Rationale : This is to ensure that the system is reusable and is easily integrable with spacecraft. This is inspired
by the capability of star trackers to function in the same way, with attitude state as output.

OR-02 The system shall fulfil its task autonomously.

Rationale : Ground operator actions may not be possible at all times, therefore the system shall be designed with
autonomy as a primary method of operation.

OR-03 The system shall be a self-contained instrument that is capable of handling all necessary steps to trans-
form optical input and attitude information into absolute state knowledge.

Rationale : It cannot be expected that auxiliary subsystems handle (part of) the work required to execute the
system to be designed to deliver absolute state estimations from image input and attitude.
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2.2.4. Environmental Requirements
ER-01 The system shall be capable of operating in a lunar orbit environment.

Rationale : The space radiation environment can impact performance or halt execution entirely. Appropriate
steps must be considered to minimize this risk.

ER-01.1 The system shall be capable of operating under a Single-Event Effect (
 

 

SEE) error rate of TBD.

Rationale : A quantification of ER-01 in terms of
 

 

SEE.

ER-01.2 The system shall be capable of operating with a Total Ionising Dose (
 

 

TID) of up to TDB Gy.

Rationale : A quantification of ER-01 in terms of
 

 

TID.

ER-02 The system shall be capable of operating in temperatures ranging from [TBD] to [TBD] [∘ Celsius].

Rationale : Specifically too high temperatures could limit the cooling capacity available to run the components
required to execute the system at an acceptable frequency.

2.3. Component­Level Requirements
Following from the set system-level requirements, an overview of the required functionality per component
is given through a functional breakdown diagram. This displays the hierarchical relationship between the
top-level requirements and the component-level requirements.

TRN functions

CDT 
Detect craters

CID 
Position Estimation

Discern crater rim
shapes from image

Function under a
range of conditions

Generate matchable
features from

detection

Match craters with
database Solve for ego-position

Figure 2.2: Functional Breakdown Diagram for
 

 

TRN.

Figure 2.3 displays this sequential relationship between the components.

Initialisation

1.0

Input processing

2.0

Detect craters

3.0

Output to Navigation
Filter

5.0

TOP LEVEL

Position estimation

4.0

Terminate operations
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Figure 2.3: Top level functional flow diagram.

2.3.1. Crater Detection Subsystem
Setting clear requirements for the

 

 

CDA subsystem requires a specification of the desired output for the iden-
tification subsystem. It seems clear that, as shown in section 1.4, fitting crater ellipses in the image plane to
crater rims yields enough information on individual craters to infer state information. Hence the need for the

 

 

CDA subsystem to discriminate individual (instanced) crater ellipses from the camera input.

CDT-01 The crater detection subsystem shall be able to detect crater shapes from a camera input.

Rationale: Craters are deemed the most prevalent and easily detectable features present on the Lunar surface.



16 2. Systems Engineering

Functional Requirements

CDT-FR-01.1 The crater detection subsystem shall be able to detect unobscured craters from a position in
orbit above the Lunar surface.

Rationale: The main functionality of a crater detection subsystem.

CDT-FR-01.2 The crater detection subsystem shall be able to discern individual instanced crater rims.

Rationale: To be able to detect individual instances of craters as opposed tomerely per-pixel classification
of the input image like DeepMoon [78].

CDT-FR-01.3 The crater detection subsystem shall be able to convert a detected crater rim into parame-
terised ellipse values.

Rationale: This is the output that is transmitted to the crater identification & position estimation sub-
system.

Performance Requirements

CDT-PR-01.1 The crater detection subsystem shall be able to detect craters with attitudes of up to 30 [de-
grees] away from nadir-pointing attitude.

Rationale: To prove that the added flexibility of using off-nadir pointing works as expected in the results
given in [17] (p.76).

CDT-PR-01.2 The crater detection subsystem shall be able to detect craters in sunlit conditions with varying
sun angles.

Rationale: This is so that the system can be deployed with varying sun angles, increasing the system’s
flexibility compared to LunaNet [24] which only augmented images by adjusting the bright-
ness.

CDT-PR-01.4 The crater detection subsystem shall be capable of detecting at least 3 craters per given camera
input.

Rationale: Crater pattern matching works by generating features per sets of craters, usually more than
3 [17] to be discriminating enough.

CDT-PR-01.5 The crater detection subsystem shall be able to detect craters with maximum ellipse axis error
of 3 [pixels].

Rationale: Accuracy is desired for accurate ego-position estimation, and from [17]: “we observe that
matching performance is not appreciably affected by ellipse localisation error until these er-
rors reach about 2–3 pixels” (p. 76).

CDT-PR-01.6 The crater detection subsystem shall be able to detect craters with maximum ellipse location
error of 3 [pixels].

Rationale: Similar to CDT-PR-01.5, also [17] mentions the fact that the “crater localisation error needs
to be better than 2-3 pixels” (p. 77).

CDT-02 The crater detection subsystem shall be able to detect craters at a sufficient rate so as to fulfil PR-02.

Rationale: Discerning crater rims from the sensor input can be relatively time consuming depending on the methodology,
hence it is necessary for this subsystem to operate at a high enough throughput to keep the identification
subsystem saturated. This requirement and all its sub-requirements will have to be verified in a

 

 

TRL 4
demonstrator, but needs to be defined at this stage to ensure future compatibility. [6].

Functional Requirements

CDT-FR-02.1 The crater detection subsystem shall utilise a hardware accelerator.

Rationale:
 

 

DL models cannot be run on space-grade hardware with realistic throughput [53]. Further-
more, this system is a use case [29] for mobile hardware accelerators such as the Intel-
Movidius Myriad line of chips that are currently seeing adoption in space platforms

Performance Requirements

CDT-PR-02.1 The crater detection subsystem shall be able to process input images at a rate of TBD [Hz].
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Rationale: The quantification of CDT-02, which requires the crater detector to strike a balance between
fidelity and speed. It is yet to be determined what the required update rate is for a complete

 

 

TRN system with state estimation filter included.

CDT-PR-02.2 The crater detection subsystem shall be able to process input images with a resolution of at
least TDB [pixels].

Rationale: Follows fromCDT-PR-02.1: resolution is one of the primary factors that influence the through-
put of a dedicated hardware accelerator.

CDT-03 The crater detection subsystem shall be able to interface directly with the crater identification subsys-
tem.

Rationale: Efficient communication between both the detection and the identification subsystem is necessary to ensure
successful state estimation.

Functional Requirements

CDT-FR-03.1 The crater detection subsystem shall be able to generate a set of detected crater rims which
comprises parameterised ellipses describing the crater rims in the image plane.

Rationale: This is required for crater pattern matching in general.

CDT-FR-03.2 The crater detection subsystem shall be able to communicate its state to the crater identifica-
tion subsystem and the

 

 

GNC subsystem.

Rationale: Required for appropriately handling errors or other exceptional events.

CDT-FR-03.3 The crater detection subsystem shall be able to communicate detection confidence values to
the matching subsystem.

Rationale: This can possibly be used to generate position estimation confidence values that can be com-
municated to the state estimation subsystem.

The top-level requirement CDT-01 without its sub-requirements could at first glance be achievable using the
solutions given in section 1.2. However, the sub-requirements that have been introduced highlight the short-
comings of these solutions. For example: they have not been designed to work using optical input (DeepMoon
[78]), or detect instanced craters without the need for sensitive post-processing steps (LunaNet [24]). CDT-02
is also strongly related to the

 

 

CDA architecture, since it can influence the degree with which it can run on a
hardware accelerator, keeping in mind FR-01 and the system context presented in Figure 2.1.

The functional flow is therefore defined as:

Accept pre-processed
input 

3.1

Detect crater
instances

3.2

Fit ellipses to crater
rims

3.3

DETECT CRATERS

Convert to conic
representation

3.4

Generate matchable
features

4.1

Figure 2.4: Crater detection functional flow diagram.

2.3.2. Absolute Position Estimation Subsystem
CID-01 The position estimation subsystem shall be able to match detected crater shapes with a database.

Rationale : In order to be able to derive ego-position estimations, it is necessary to match detected features with a
database from which the craters’ locations can be retrieved.

Functional Requirements

CID-FR-01.1 The system shall be able to match triads of approximately coplanar craters.

Rationale: From the theoretical approach described in [17] for orbit situation below 500 [km].
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CID-FR-01.3 The system shall be able to match detected craters from varying altitudes of at most 500 [km]
above the Lunar surface.

Rationale: Altitude invariance is key when applying the system in a Lunar approach scenario.

CID-FR-01.4 The system shall be able to match detected craters with off-nadir pointing camera angles.

Rationale: To prevent the system constraining allowed attitudes during manoeuvres.

CID-FR-01.5 The system shall be able to generate a database specific to a desired mission profile.

Rationale: Derived from FR-04, and allows for fine tuning the system for a specific region above the
Lunar surface.

CID-FR-01.6 The system shall be able to match craters from noisy measurements.

Rationale: Essentially caused by the non-linear and unstructured nature of the input data. This is one of
the key aspects in which a

 

 

AI-based system can outperform traditional
 

 

CV methods.

Performance Requirements
CID-PR-01.2 The system shall be able to create a database for a cratered region that spans at least 1000 by

1000 [km].

Rationale: A sufficiently large area is set for verifying the results shown in [17].

CID-02 The system shall be able to derive the spacecraft’s ego-position from the set of identified craters and the
spacecraft attitude.

Rationale : The output of this system is the spacecraft’s ego-position, therefore a final post-processing step needs to
be performed to reach this result.

Functional Requirements
CID-FR-02.1 The system shall be capable of deriving ego-position estimations from identified craters and space-

craft attitude alone.

Rationale: Essentially the main functionality of the subsystem, with the assumption on spacecraft attitude
knowledge derived from [17]: “... we can think of no plausible failure mode (where recovery is still
possible) in which the spacecraft has no knowledge of time (necessary for finding lunar attitude
from SPICE kernels) or of inertial attitude”.

CID-FR-02.2 The system shall be capable of rejecting faulty position estimates.

Rationale: It is assumed that the system will return erroneous position estimations at a to-be-determined rate,
which need to be handled appropriately.

CID-FR-02.3 The system shall be capable of integrating prior state information should it be available to improve
accuracy.

Rationale: A sufficiently large area is set for verifying the results shown in [17].

Performance Requirements
CID-PR-02.1 The system shall be able to derive instantaneous ego-position estimations with an average accuracy

below 1 [km].

Rationale: See CID-PR-02.3.

CID-PR-02.3 The system shall be able to derive ego-position estimation error below 500 [m] when multiple
measurements are combined through state estimation filtering.

Rationale: See PR-01, and consider that noisy instantaneous ego-position estimations can be used in a filter
(e.g. an

 

 

EKF) to gain more accurate state information. It is hypothesised that if a state estimation
error below 500 [m] can be achieved, the

 

 

LIS situation is alleviated. This would allow methods
requiring approximate state information and relative position updates to be used to converge fur-
ther.

CID-PR-02.4 The system shall be able to function with an initial state uncertainty of at most 500 [km].

Rationale: To verify the system’s performance in a
 

 

LIS scenario.

CID-03 The system shall be able to identify craters and derive the spacecraft’s ego-position at a sufficient rate
so as to fulfil PR-02.



2.4. Requirements Verification & Validation Plan 19

Rationale : Similar to CDT-02, matching crater features from the sensor input can be relatively time consuming de-
pending on the methodology, hence it is necessary for this subsystem to operate time efficiently to keep the
identification subsystem saturated. This requirement is mostly aimed at a

 

 

TRL 4 engineering model, and is
kept open as more knowledge is available about an embedded version of the proposed system.

Generate matchable
features

4.1

Match with database

4.2

Derive ego-position

4.3

IDENTIFY CRATERS

Output to Navigation
Filter

5.0

Figure 2.5: Crater identification functional flow diagram.

2.3.3. System Block Diagram
Now that it has been defined what each component must achieve individually, an overview that describes the
system at a more technical level is needed. Using the context diagram (Figure 2.1) as a basis and using the
gained background knowledge for

 

 

TRN, a block diagram showing the in- and outputs of each component and
the state estimation loop that it is part of.

Terrain-Relative Navigation System

Camera

Crater detection

Crater
identification &
ego-position

derivation

DB

N
avigation Filter

Inertial Measurement Unit

Star Tracker

To Flight Computer

Surface

Starfield

: S/C position in selenographic frame

: S/C attitude quaternion in celestial frame

: Crater triad descriptor set

: Detected craters in pixel coordinate frame

: Image input

Forces

Figure 2.6: System Block Diagram for the proposed Terrain-Relative Navigation (
 

 

TRN) system.

2.4. Requirements Verification & Validation Plan
Validation of the full system cannot be performed within the confines of this research, as it requires the de-
sign to progress to higher

 

 

TRL levels. Since the goal is a
 

 

TRL 3 demonstrator and therefore not a physical
engineering model, the system cannot be tested in a representative environment using a physical test bench.
For this reason, validating the demonstrator is answering the question of whether the proposed system merits
advancement to

 

 

TRL 4, and in such a way attempting to find out if the concept functions in a representative
simulation environment. Assessing whether the proposed technology can be considered

 

 

TRL 3 requires the
description, requirements, verification, and viability to be assessed [82].
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By first verifying the demonstrator by analytically and experimentally, a strong case can be made to invest
in a more mature version of the system for further testing. The addition to the body of knowledge concerning

 

 

AI-based
 

 

TRN is a similarly important aspect of this research: the combination of a region-based object de-
tection

 

 

CDA and a projective-invariant-based crater patter matching algorithm is a novel development in the
field of

 

 

TRN. Furthermore, general usage of
 

 

AI techniques in space applications is a very active field of research.

Table 7.1 displays the type of tests that are performed to verify the requirements set for the proposed
 

 

TRN
system. Verified performance requirements imply that the system also complies with functional requirements.
Requirements that need verification through the use of an engineeringmodel of the system (

 

 

TRL 4) are deemed
out of scope, but are included for integrity. A simulation approach is taken to design, develop, and verify the
functional and performance requirements of the subsystems and eventual end-to-end system. This requires
the development of a robust testing environment that can generate representative scenes. Three different test
types are defined to assess the functionality and performance of the proposed system: pseudo-measurements,
instantaneous camera simulation tests, and trajectory simulation tests.

Pseudo-measurements are used to develop and test the crater identification and position estimation sub-
system. Essentially, these consist of projected catalogue craters that have been artificially perturbed. These
pseudo-measurements will then be used as input, which also means that the perturbation that is used can be
added in a controlled manner to assess the system’s sensitivity to noise.

Instantaneous camera simulation tests require the use of a representative scene generator which can emu-
late the camera output for a given position and attitude above the Lunar surface. Using this, a series of Monte
Carlo trials where the position and attitude of the camera can be drawn from a set of pre-defined distributions
can be performed. It is assumed that because of the utterly random nature of the input image given a random
state above the Lunar surface that the system can be tested with little to no bias introduced by the test data.
Developing a test suite that can perform the aforementioned is a novelty, and has the potential to aid in further
development beyond the scope of this project.

Finally, to validate whether the demonstrator can become the basis for a system that can fulfil the demand
of “highly accurate relative navigation in a non-linear and unpredictable harsh environment” a representative test
is performed in which the system is fed with simulated input of a camera while in orbit. This means that mul-
tiple measurements through time can be used to generate more accurate state information through the use of
an Extended Kalman Filter (

 

 

EKF). This test mainly serves to validate the proposed system’s functionality in a
representative environment, and should indicate whether the demonstrator merits advancing the technology
to the next

 

 

TRL.



3
Data Generation

Designing and developing the systems for detecting and identifying crater features requires a robust method
of generating realistic testing data. This split into two categories: input and target data. The former can be
described as simulating the camera input as seen in Figure 2.1 and Figure 2.6 as accurately as possible. The
target data is a broader term, as it needs to contain detection targets, as well as the spacecraft state to be able
to design the crater detector and identifier, respectively. To achieve this, an object-oriented data generator
was designed as this holds significant benefits when translating the concepts to software.

3.1. Defining Orbiting Body
The core problem that is being solved in this project is estimating the body state, hence the need for a solid
and extendable base class for a generic orbiting body.

3.1.1. Reference Frames
The absolute state is defined in a Moon-Centred-Moon-Fixed (

 

 

MCMF) reference frame, as denoted byℳ. The
body’s attitude is always initialised with a nadir-pointing attitude defined by Equation 3.1, Equation 3.2, and
Equation 3.3, which defines an East-South-Down coordinate system for X, Y, and Z respectively. The reasoning
for this is that it follow standard convention for camera reference frames where the Z-axis is the Line-of-Sight
(

 

 

LoS) vector, the Y-axis is pointing downwards from the top-left corner of the image plane, and the X-axis is
pointing rightwards in the image plane.

𝑑𝑑𝑑𝐵 = −𝑥𝑥𝑥𝐵
||𝑥𝑥𝑥𝐵 ||

, (3.1)

𝑒𝑒𝑒𝐵 = 𝑘𝑘𝑘 × 𝑥𝑥𝑥𝐵
||𝑘𝑘𝑘 × 𝑥𝑥𝑥𝐵 ||

, (3.2)

𝑠𝑠𝑠𝐵 = 𝑑𝑑𝑑𝐵 × 𝑒𝑒𝑒𝐵
||𝑑𝑑𝑑𝐵 × 𝑒𝑒𝑒𝐵 ||

, (3.3)

with

𝑘𝑘𝑘 = [0 0 1]𝑇 , (3.4)

yields the following transformationmatrix for the body-centred reference frame (ℬ) w.r.t.
 

 

MCMF reference
frame:

𝑇𝑇𝑇ℳℬ = [𝑒𝑒𝑒𝐵 𝑠𝑠𝑠𝐵 𝑑𝑑𝑑𝐵] (3.5)

This parameter will henceforth be referred to as 𝑇𝑇𝑇𝐵 . Subsequent attitude changes are enacted through
methods that either incrementally change the attitude or manually set the attitude by either inputting a new
transformation matrix (from ℳ → ℬ) or quaternion.

21
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3.2. Defining Camera Properties
Next, the camera system that is used to view the Lunar surface to identify craters is defined by its projec-
tive properties. A pinhole camera model is considered sufficient in the context of the problem since the same
methodology should hold for more complex definitions of𝐾𝐾𝐾 . Subsequent iterations of the concept proposed in
this paper can adopt a more complex sensing model, which should have little effect on the overall performance
as long as the parameters are measured accurately.

As mentioned before, the coordinate system is defined in a Z-forward setup, meaning the X- and Y-
coordinates are reserved for the 2D image plane.

Figure 3.1: Pinhole camera model illustration, reprinted from [16].

𝐾𝐾𝐾 = [
𝑑𝑥 𝛼 𝑢𝑝
0 𝑑𝑦 𝑣𝑝
0 0 1

] , (3.6)

or written more compactly:

̄𝑢 ̄𝑢 ̄𝑢 = 𝐾𝐾𝐾 ̄𝑥 ̄𝑥 ̄𝑥 (3.7)

where ̄𝑥 ̄𝑥 ̄𝑥 = [𝑥 𝑦 1]𝑇 and ̄𝑢 ̄𝑢 ̄𝑢 = [𝑢 𝑣 1]𝑇 .
Relating the camera matrix to its cartesian position yields the projection matrix:

𝑃𝑃𝑃 = 𝐾𝐾𝐾 [𝑇𝑇𝑇𝐵 −𝑥𝑥𝑥𝐵] (3.8)

Using the inherited positional and rotational state from the orbiting body class therefore completes the
camera class, being able to relate points or basic shapes in the

 

 

MCMF coordinate system to the image plane.

3.3. Simulating Physically Accurate Scenes
One of the proposed system’s main benefits is its flexibility, meaning it has the potential to be deployed over
a wide range of mission scenarios with a range of lighting and surface conditions, as well as varying altitude
and orientation. Simulating scenes that can accurately reflect real-life situations in low-orbit missions around
the Moon is therefore done by employing scientifically accurate rendering software that is tuned for space
missions: SurRender [67]. This software is marketed as “Image generation software for space exploration”¹, and
is capable of using

 

 

DEMdata and associated textures to render synthetic camera data. This is well-suited to the
fulfilment of the set functional requirements, as it enables virtually limitless data generation for development
and testing purposes.

¹SurRender about page [link]

https://www.airbus.com/space/space-exploration/SurRenderSoftware.html
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3.3.1. Data
At the core of this scene lies the physical data describing the Moon shape and colour, which has been created
using the Planetary Data System (

 

 

PDS) node
 

 

DEM based on data that was captured using
 

 

NASA’s Lunar Or-
biter Laser Altimeter (

 

 

LOLA) [81] on board the Lunar Reconnaissance Orbiter (
 

 

LRO) [83]. This dataset was
generated by combining over 6.5 billion measurements made between 2009 and 2013, and has an average ac-
curacy of approximately 20 and 1 meters horizontally and radially, respectively. This was then converted into
an image with a resolution of 256 pixels per degree, resulting in 118 meter wide pixels at the equator. There
are gaps present in the data that range between 1 and 4 km wide which have been filled up by interpolation
[7]. See Figure 3.2 for an overview of the

 

 

DEM that is used for this project. More recent data exists that exhibit
a higher pixel density, such as the result of the merge of data from both

 

 

LOLA and SELENE Kaguya launched
by Japan Aerospace Exploration Agency (

 

 

JAXA) [9]. However, this data only ranged between latitudes 60.0∘N
and 60.0∘S, effectively removing both Lunar polar regions from the simulation.

Figure 3.2: Low resolution version of Moon
 

 

LRO
 

 

LOLA
 

 

DEM, reprinted from [7]. Pixel values indicate height w.r.t. mean Moon radius.

Furthermore,
 

 

NASA’s SPICE kernels [61] were used to determine accurate relative positions of the Sun and
Earth to ensure both lighting angles that represent the real world, as well as the flexibility to generate data
for specific moments in time. In fact, this flexibility is utilised in the generation of large datasets where the
“scene time” is dynamically changed to ensure a sunlit surface downrange from the camera.

3.3.2. Results
A straight forward method of verifying the functionality of both the renderer and the classes upon which it
is based, is by visually inspecting the output of a the renderer above a well-known crater such as Tycho [5].
This has the benefit of being able to eliminate many possible issues that may arise in the pipeline required to
simulate the output such as unexpected visual artifacts, mismatching locations, or unrealistic lighting. Quick
inspection of Figure 3.3 verifies that the pipeline is functioning correctly. What is especially interesting is how
well the shadows match the real image, which is ultimately going to effect how well the detection model can
function in real-world situations under varying lighting situations. The output image is grayscale and is scaled
to have pixel values between 0 and 1.

Combining all attributes and methods from both the orbiting body and camera class and creating an inter-
face with the SurRender renderer yields a flexible generator that can be used to generate highly configurable
synthetic camera output. However, the class has been defined in way that it can be used with other rendering
software that have Python interfaces as well.
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Figure 3.3: Comparison of real image shot of the Tycho crater on the Moon captured by
 

 

NASA’s
 

 

LRO camera module [2] (left), and an
image generated using SurRender combined with the custom interface as outlined in Figure 3.8 (right). The renderer was initialised above
selenographic coordinates 43.31∘S 11.36∘W at an altitude of 140 km with a solar incidence angle of approximately 70∘.

3.4. Projecting Craters
Crater databases are often structured in a tabular structure containing positional information (latitude, longi-
tude) and geometric information. In [71] it is argued that although crater shapes have been approximated as
circles before [46, 76], it is deemed more accurate to describe them as ellipses, a generalisation of a circle. The
database that was used for this project is described in [71] and contains craters >1-2 km, and was generated
using elevation maps of the Moon. Parameters such as the

 

 𝑎 and
 

 

𝑏, as well as the rotation w.r.t. the East-West
direction are given. The goal is to use these parameters to generate a mask that traces the apparent shapes of
the craters in the image plane.

To achieve this, the methodology described in [17] is followed. The craters are defined as conics in a
three-dimensional selenographic reference frame through their location and ellipse parameters, using this
information combined with the camera’s position and characteristics yields a set of projected two-dimensional
conics in the image plane.

3.4.1. Crater Position, Orientation, and Shape
First, the two dimensional plane in which a crater resides is defined by its position and relative orientation
w.r.t. the

 

 

MCMF reference frame. The position is determined by its latitude 𝜑𝑖 and longitude 𝜆𝑖 and the Moon
radius. In this case the Moon shape is assumed to be spherical because of SurRender limitations, meaning the
Cartesian coordinates for each crater is given by:

𝑥𝑥𝑥(𝑐)ℳ𝑖 = 𝜌𝑖 [
cos 𝜑𝑖 cos 𝜆𝑖
cos 𝜑𝑖 sin 𝜆𝑖

sin 𝜑𝑖
] (3.9)

The plane’s relative orientation is given by a local East-North-Up coordinate system with its origin at the
crater centre. Figure 3.4 illustrates the setup in the ℳ reference frame. The normalised axes are given in
Equation 3.10 to Equation 3.12, with Equation 3.13 combining them into a transformation matrix from the ℳ
frame to the crater plane 𝒞 .
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𝑋ℳ

𝑌ℳ

𝑍ℳ

𝒞𝑖

Figure 3.4: Illustration of two dimensional crater plane definition w.r.t.
 

 

MCMF reference frame.

𝑢𝑢𝑢𝑖 =
𝑥𝑥𝑥(𝑐)ℳ𝑖

||𝑥𝑥𝑥(𝑐)ℳ𝑖 ||
, (3.10)

𝑒𝑒𝑒𝑖 =
𝑘𝑘𝑘 × 𝑢𝑢𝑢𝑖
||𝑘𝑘𝑘 × 𝑢𝑢𝑢𝑖||

, (3.11)

𝑛𝑛𝑛𝑖 =
𝑢𝑢𝑢𝑖 × 𝑒𝑒𝑒𝑖
||𝑢𝑢𝑢𝑖 × 𝑒𝑒𝑒𝑖||

, (3.12)

𝑇𝒞𝑖ℳ = [𝑒𝑒𝑒𝑖 𝑛𝑛𝑛𝑖 𝑢𝑢𝑢𝑖] (3.13)

Crater geometry is approximated by fitting an ellipse on the crater rim in 𝒞 . An ellipse is an example of a
conic section, which is a set of points that satisfy the following second-degree polynomial equation:

𝑄(𝑥, 𝑦) = 𝐴𝑥2 + 𝐵𝑥𝑦 + 𝐶𝑦2 + 𝐷𝑥 + 𝐸𝑦 + 𝐹 = 0, (3.14)

with its more compact form:

[𝑥 𝑦 1] [
𝐴 𝐵/2 𝐷/2
𝐵/2 𝐶 𝐸/2
𝐷/2 𝐸/2 𝐹

] [
𝑥
𝑦
1
] = ̄𝑥 ̄𝑥 ̄𝑥𝑇𝐴𝐴𝐴𝑄 ̄𝑥 ̄𝑥 ̄𝑥 = 0, (3.15)

meaning that the ellipse can be parameterised as

𝐴𝐴𝐴𝑄 = [
𝐴 𝐵/2 𝐷/2
𝐵/2 𝐶 𝐸/2
𝐷/2 𝐸/2 𝐹

] (3.16)

Equation 3.16 represents the format in which the crater shape is saved as two-dimensional conic, along
with its positional information 𝑥𝑥𝑥(𝑐)ℳ𝑖 . Combined they contain all the information required to know the position
in the image plane, provided the camera state is known.

3.4.2. Crater­Camera Homography
Creating the correspondence between catalogued craters in their respective coordinate systems and the image
plane is done using the following methodology [17]:

𝐻ℳ𝑖 = [𝑇𝒞𝑖ℳ𝑆𝑆𝑆 𝑥𝑥𝑥(𝑐)ℳ𝑖 ,] (3.17)
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with

𝑆𝑆𝑆 = [𝐼𝐼𝐼 2×20001×2] (3.18)

The conversion between image plane coordinates ( ̄𝑥 ̄𝑥 ̄𝑥𝐶 ) and digital image pixel coordinates ( ̄𝑢 ̄𝑢 ̄𝑢𝐶 ) uses the
projection matrix given in Equation 3.8, and is described the following affine transformation [17]:

𝐻𝐻𝐻𝒞𝑖 = 𝑃𝑃𝑃 [𝐻ℳ𝑖
𝑘𝑇 ] (3.19)

The outcome is𝐴𝑖𝐴𝑖𝐴𝑖, the projected conic section of the crater in the image plane:

𝐴𝑖𝐴𝑖𝐴𝑖 ∝ 𝐻𝐻𝐻−𝑇𝒞𝑖 𝐶𝐶𝐶 𝑖𝐻𝐻𝐻−1𝒞𝑖 (3.20)

This shape is dependent on both the crater catalogue values, as well as the camera position and character-
istics as described in the preceding sections. Because of this dependence, the object-oriented approach proves
valuable as it provides an intuitive method of bringing together data and methods to form meaningful results.

3.4.3. Results
To ensure the projection works, a series of demonstration images have been generated to visually inspect the
accuracy of the pipeline. Figure 3.5 displays that the apparent positions of the ellipses project correctly on the
spherical surface of theMoon. Closer examination shows that many well-pronounced craters are accompanied
by a fitted ellipse. Certainly not all craters appear to have an ellipse fitted to them, which is caused by the
filter based on crater size and ellipticity imposed on the database to prevent an overcrowded image.

Figure 3.5: Example of projected ellipses overlaid onto a scene of the Moon. Craters with a major axis between 15 and 150 km and a
maximum ellipticity of 1.5 were used in the creation of the overlay. The renderer was initialised above selenographic coordinates 0.0∘N
180.0∘E at an altitude of 3000 km with a solar incidence angle of approximately 72∘.

Using the projected ellipses, a pixel-wise mask can be generated to indicate the crater-rims in the image
plane. This will prove to be useful when developing the detection algorithm, where it can serve as a ground
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truth. Figure 3.6 displays an example of one synthetic image-mask pair. The pixel values are set to unique
values to facilitate the retrieval of individual crater instances.

The inconsistency of crater rims being present in the mask is something to be aware of, as this may incor-
rectly disqualify detections during the training phase of the detector. Furthermore, the pipeline also allows the
user to define whether to generate filled or outlined ellipses, as well as it being able to discriminate between
separate instances of craters rather than just returning a binary mask.

Figure 3.6: Example of an image-mask pair. The renderer was initialised above selenographic coordinates 0.0∘N 160.0∘E at an altitude of
3000 km with a solar incidence angle of approximately 52∘.

3.5. Data Generation Pipeline
The data generation pipeline is defined by the sum of its parts, as can be seen in Figure 3.8. Combining the
data present in the Lunar surface

 

 

DEM [7] and the crater database given in [71] and passing them through
a render pipeline using SurRender as well as projecting the given craters allows for flexible dataset creation.
Object-oriented design aided in separating the concerns, as well as allowing for separate verification of the
modules.

3.5.1. Results
The dataset generation is defined by a loop that randomly generates positions above the Lunar surface using
values drawn from the distributions seen in Table 3.1. In addition, for every generated position the scene time
and spacecraft attitude are set randomly (while ensuring enough visibility of the Lunar surface). The current
setup can generate a dataset of around 80 thousand images at 256 by 256 pixels along with the ground truth
masks in about 1 hour on a workstation with the specification given in Table A.1. The ability to generate
virtually limitless amounts of data has the benefit of ensuring that the detection model generalises² well and
prevents over-fitting.

Name Symbol Unit Distribution
Latitude 𝜑 ∘ 𝒰(−90, 90)
Longitude 𝜆 ∘ 𝒰(−180, 180)
Altitude ℎ km 𝒰(150, 140)
Roll 𝜙 ∘ 𝒰(−180, 180)
Pitch 𝜃 ∘ 𝒰(−30, 30)
Yaw 𝜓 ∘ 𝒰(−30, 30)

Table 3.1: Distributions used for dataset generation. Roll, pitch, and yaw are deviations away from the nadir-pointing vector and are
applied in this order.

²A model’s ability to predict correctly on previously unseen data drawn from the same distribution - in this case images of the lunar
surface from a low orbit position [Link]

https://developers.google.com/machine-learning/crash-course/generalization/video-lecture
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Figure 3.7: Twelve randomly generated synthetic images with the ground truth craters projected onto them. The associated camera
positions are given as latitude 𝜑, longitude 𝜆, and height ℎ.

Figure 3.7 displays the variety of the scenes that can be generated using the data generation pipeline. Stark
differences between the number of craters, lighting conditions, spacecraft attitude, and surface types can be
seen in this small dataset alone. Lighting variation seems to have a great impact on the visible features of a
crater, comparing image #11 with #9 shows this difference. Being able to discern craters by eye actually serves
as a good indication on whether a crater detection algorithm can determine a crater shape from pixel values.
This demonstrates the vulnerability of using a passive sensor for crater detection, as the features that generally
define a crater in an image are heavily related to the sun angle and therefore shadow it casts. Besides this,
it needs to be stated that while most projected craters seem like a good fit for the shape of a crater, some
instances such as the bottom left crater in image #12 appear maligned in the image plane. This can be caused
by a variety of reasons ranging from the method that was used to create the crater database [71], to the way
that SurRender handles altitude deviation with respect to the Moon radius. Nevertheless, the amount of cor-
rectly fitted craters vastly outnumber the erroneous ones, meaning that meaningful features can be derived
for training the detector.

Having access to a large dataset containing datapoints with synthetic images, apparent crater shapes, and
relevant camera state information (position, attitude) enables further research into more robust

 

 

CDAs. Hence
why this pipeline is considered one of the main additions to the body of knowledge concerning

 

 

CDA and
 

 

TRN
in general. This also further motivates the choice of programming language, Python, as it is the main language
that allows researchers to build

 

 

AI models. Having the output be available in native NumPy arrays allows for
fast prototype creation, which undoubtedly is one of the main critical steps in the process towards developing
a new solution for the posed navigation problem.
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OrbitingBodyBase

Attributes
+ position: property(ndarray[3x1])
+ attitude: property(ndarray[3x3])

Methods
+ __init__(position: ndarray[3x1], attitude: ndarray[3x3], 

orbiting_body_radius: [float, int]): None
+ set_coordinates(lat: float, long: float, height: float, 

point_nadir: bool, convert_to_radians: bool): None
+ rotate(axis: str, angle: float, degrees: bool, 

reset_first: bool): None
+ point_nadir(): None
+ suborbital_position(): ndarray[3x1]

Camera

Attributes
+ fov: property(tuple[2])
+ resolution: property(tuple[2])
+ camera_matrix: property(ndarray[3x3])
+ projection_matrix: property(ndarray[3x4])

Methods
+ __init__(fov: tuple[2], resolution: tuple[2], **kwargs): None

ConicProjector

Methods
+ project_crater_conics(C_craters: ndarray[Nx3x3], 
r_craters[Nx3x1]): ndarray
+ project_crater_centers(r_craters: ndarray[Nx3x1])
+ generate_mask(A_craters: ndarray[Nx3x3], 

C_craters: ndarray[Nx3x3], r_craters: ndarray[Nx3x1], 
**kwargs): ndarray[(resolution)x(resolution)]

+ plot(A_craters: ndarray[Nx3x3], C_craters: ndarray[Nx3x3],
r_craters: ndarray[Nx3x1], **kwargs)

SurRenderer

Attributes
+ scene_time: property(datetime)
+ sun_pos: property(ndarray[3])
+ earth_pos: property(ndarray[3])
+ solar_incidence_angle: property(float)
+ backend: surrender_client

Methods
+ __init__(DEM_filename: str, texture_filename: str, 

scene_time: datetime, **kwargs): None
+ __setup_backend(): None
+ __sync_backend(): None
+ generate_image(): ndarray[(resolution)x(resolution)]

MaskGenerator

Attributes
+ r_craters_catalogue: ndarray[Nx3x1]
+ C_craters_catalogue: ndarray[Nx3x3]
+ mask_thickness: int
+ instancing: bool
+ filled: bool
+ axis_threshold: tuple[2]

Methods
+ __init__(r_craters_catalogue: ndarray[Nx3x1], 

C_craters_catalogue: ndarray[Nx3x3], 
axis_threshold: tuple[2], filled: bool, instancing: bool, 
mask_thickness: int, **kwargs): None

+ from_robbins_dataset(file_path: str, diamlims: tuple[2], 
ellipse_limit: float, arc_lims: float, 
axis_threshold: tuple[2], filled: bool, instancing: bool, 
mask_thickness: int, **kwargs): cls

+ _visible(): ndarray[N]
+ craters_in_image(): ndarray[Kx3x3]
+ plot(): None

DataGenerator

Methods
+ image_mask_pair(): ndarray, ndarray

Figure 3.8: DataGenerator class hierarchy.





4
Crater Detection

Section 1.2 summarises the current state-of-the-art in
 

 

CDAs, showing a justified interest in the application
of

 

 

DL-based solutions in the most recent solutions. Indeed, they hold the most promise for generalisation in
challenging environments. However, the development of such a solution is only as good as the data that is used
to train and test it, along with a host of other factors such as model architecture and hyperparameters. This
chapter describes a novel

 

 

CDA that utilises a region-based object detection network called Faster R-CNN [69]
as a basis. It is modified to be able to detect the elliptical shapes of the detected instances by adding an extra
Region of Interest (

 

 

RoI)-head that uses the convolutional features of a classification model called ResNet [44]
to predict normalised shape parameters. The extra

 

 

RoI-head is a three-layer
 

 

MLP which predicts normalised
ellipse axis values along with their rotation. This ‘ellipse regressor’ was directly optimised to minimise the
Gaussian Angle divergence [17] between predictions and target ellipses. Results show cutting edge precision
under a wide variety of circumstances, ranging from different surface types, lighting conditions, and camera
attitudes.

4.1. Model Definition
Instead of using any pixel-wise mask, a novel method of detecting craters using

 

 

CNNs is introduced. Although
a region-based model has been used in a crater detection system before [28], it lacks the capability to return
crater shapes. Our method uses the object detection functionality and performance of a Faster R-CNN model,
in combination with a custom predictor that uses the latent features of a ResNet50 backbone to generate
normalised ellipse parameters. The approach is similar to that of Ellipse R-CNN [23]. Instead of having to
post-process pixel-wise masks with ellipse fitting algorithms, the model can now optimise directly for ellipse
shape. Amore direct way ofmeasuringmodel accuracy can then be introduced to train the network to generate
crater shapes𝐴𝐴𝐴𝑄 .

4.1.1. Feature Engineering
Before the model architecture is defined, it needs to be clear what the target features for a single detected
crater instance are. Starting from the image-mask pairs described in the previous chapter, a loop through
all individual pixel values that indicate separate crater instances in the image is performed to generate the
bounding boxes. Simply finding the extremes for the pixel-wise mask enables the generation of the bounding
box descriptor 𝐵. The ellipse 𝐸 that defines the crater rim has its origin at the box centre, and is further defined
by its axes and rotation relative to the 𝑥-axis. See Figure 4.1 for an illustration.

To normalise the output space that the ellipse regressor predicts upon, the target features generated for 𝐸𝑎 , 𝐸𝑏
are log-space translations relative to the box diagonal 𝑄 (Equation 4.2 and 4.3). This creates a constrained
output range which prevents the possibility of negative axes predictions, as well as to be able to infer relative
axes sizes w.r.t. 𝐵 rather than absolute values. The ellipse angle in radians 𝐸𝜃 is normalised by 𝜋

2 (Equation 4.4).

31
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𝐸𝑎
𝐸𝑏

𝐸𝜃 𝐵ℎ

𝐵𝑤

(𝑥, 𝑦)

Figure 4.1: Illustration of the definition of all features related to the geometry of a single detected crater.

𝑄 = √𝐵2𝑤 + 𝐵2ℎ (4.1)

𝛿𝑎 = ln(2𝐸𝑎/𝑄) (4.2)

𝛿𝑏 = ln(2𝐸𝑏/𝑄) (4.3)

𝛿𝜃 = 2𝐸𝜃/𝜋 (4.4)

To cast the target values back to pixel space, the inverse translations are as follows:

𝐸𝑎 =
𝑄
2 𝑒

𝛿𝑎 (4.5)

𝐸𝑏 =
𝑄
2 𝑒

𝛿𝑏 (4.6)

𝐸𝜃 = 𝜋
2 𝛿𝜃 (4.7)

Activation Function
The choice of activation function is important considering the desired output ranges for 𝛿𝑎 , 𝛿𝑏 , 𝛿𝜃 . As a matter
of fact, the target ellipse’s semi-major or semi-minor axis cannot exceed roughly half of the bounding box’
diagonal 𝑄, and the target ellipse angle 𝐸𝜃 falls in the range (− 𝜋

2 ,
𝜋
2 ). The chosen function is therefore the

hyperbolic tangent:

tanh(𝑥) = 𝑒𝑥 − 𝑒−𝑥
𝑒𝑥 + 𝑒−𝑥 (4.8)

This squeezes the regressor output between (−1, 1). Substituting this range into the possible output range

means that the axis sizes can range from ( 𝑒−12 𝑄, 𝑒12 𝑄) and the angle falls between (− 𝜋
2 ,

𝜋
2 ). The idea is that the

model has the capacity to learn the desired values from the raw output of the convolutional layers associated
with the region proposals.

4.1.2. Loss Function
Unlike Ellipse R-CNN [23], the raw output for 𝛿𝑎 , 𝛿𝑏 , 𝛿𝜃 is not directly compared with their target values with
a smoothed 𝐿1 loss function. Instead, these outputs are cast back into the image domain using Equation 4.5 -
4.7 to form the ellipse parameters 𝐸𝑎 , 𝐸𝑏 , 𝐸𝜃 along with their centre denoted by 𝐵𝑥 , 𝐵𝑦 to form a conic matrix
𝐴𝐴𝐴𝑄 that satisfies the equation of a conic section Equation 3.15. In order to determine a goodness-of-fit for a
predicted ellipse w.r.t. the target, the divergence is calculated. In other words, ellipses that are unlike in shape
and position need return a higher value and vice versa. See Figure 4.2 for an illustration of the concept. Instead
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𝒩𝑖 𝒩 ∗𝑖

𝑢

𝑣

𝒩𝑗 𝒩 ∗𝑗

𝑑 (𝒩𝑖||𝒩 ∗𝑖 ) < 𝑑 (𝒩𝑗 ||𝒩 ∗𝑗 )
Figure 4.2: Illustration of prediction vs. target in fitting an ellipse to a crater rim in the image plane.

of using metrics such as Intersection-over-Union (
 

 

IoU), which would require the ellipse shape to be drawn in
discrete pixels, a more direct approach is desired to both speed up the loss calculation and to increase accuracy.

To achieve this, both ellipses are approached as two-dimensional Gaussian distributions 𝒩 (𝑚𝑚𝑚,∑), with𝑚𝑚𝑚
and∑ denoting the mean and covariance matrix, respectively. The ellipse shape is essentially the 1𝜎 boundary
for the distribution. Approaching the geometric shape of an ellipse as a distribution allows for direct calcula-
tion of the aforementioned divergence using the Gaussian Angle distance.

To achieve this, the covariance matrices and means for both the predicted (𝐴𝐴𝐴𝑖) and target ellipse (𝐴𝐴𝐴∗𝑖 ) are
retrieved. After scaling both to satisfy |𝐴𝐴𝐴𝑖| = |𝐴𝐴𝐴∗𝑖 | = 1, these values are as follows:

∑ = 𝐴𝐴𝐴33 = [ 𝐴 𝐵/2
𝐵/2 𝐴 ] (4.9)

𝑚𝑚𝑚𝑖 = [𝐵𝑥𝐵𝑦] (4.10)

The Gaussian Angle distance was defined to satisfy four distance metric axioms [19]. Given two ellipses
in an image 𝒜𝑖 and 𝒜𝑗 :

1. 𝑑(𝒜𝑖, 𝒜𝑗) = 0 if 𝒜𝑖 = 𝒜𝑗

2. 𝑑(𝒜𝑖, 𝒜𝑗) = 𝑑(𝒜𝑗 , 𝒜𝑖)
3. 𝑑(𝒜𝑖, 𝒜𝑗) ≤ 𝑑(𝒜𝑖, 𝒜𝑘) + 𝑑(𝒜𝑗 , 𝒜𝑘)
4. 𝑑(𝒜𝑖, 𝒜𝑗) = 𝑑(𝑆[𝒜𝑖], 𝑆[𝒜𝑗])

Using these properties, the distance metric is defined as follows (see [17] p. 72 - 74 for derivation):

𝑑𝐺𝐴(𝒩𝑖||𝒩 ∗𝑖 ) = arccos {
4√|∑𝑖||∑∗

𝑖 |
|∑𝑖 +∑∗

𝑖 |
exp [−1

2(𝑚𝑚𝑚𝑖 −𝑚𝑚𝑚∗𝑖 )𝑇∑𝑖(∑𝑖 +∑∗
𝑖 )−1∑∗

𝑖 (𝑚𝑚𝑚𝑖 −𝑚𝑚𝑚∗𝑖 )]} (4.11)

Because both the bounding box and ellipse regressors are involved in predicting𝐴𝐴𝐴𝑖, any changes in loss are
propagated backward to further tune both

 

 

RoI-heads to be capable of generating reliable ellipse predictions.

4.1.3. Architecture
The custom

 

 

RoI-head capable of predicting 𝛿𝑎 , 𝛿𝑏 , 𝛿𝜃 was created in a similar way that Mask R-CNN creates
per-pixel segmentation predictions. This meant that a 3-layer (input, hidden, output)

 

 

MLP was chosen to be
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able to predict on the unrolled 1024 pixels, passing through a hidden layer with 512 nodes, eventually generat-
ing three outputs. The activation function between these layers is the aforementioned hyperbolic tangent. The
full model architecture is shown in Figure 4.3. Not shown here are the post-processing steps 𝑓 that combine
prediction output 𝐵 and 𝐸 to form the set of output ellipse matrices {𝐴𝐴𝐴𝑖 ∶= 𝑓 (𝐵𝑖, 𝐸𝑖) | 0 ≤ 𝑖 < 𝑛𝑑𝑒𝑡 }. Integrating
this into the detection model is required to calculate the divergence losses per ellipse, but also adds a bit of
convenience when parsing the output to the crater identification subsystem.

Conv.
layers

FPN

RoIAlign

RPN

Conv.
features

Class

Bounding Box

Ellipse Predictor

𝛿𝑎
𝛿𝑏
𝛿𝜃Input

Figure 4.3: Complete model architecture.

One major benefit of integrating all post-processing steps in a single model is that the framework that was
used (PyTorch) has a convenient method of exporting to shareable formats like ONNX¹, which can be used for
model deployment in other frameworks such as OpenVINO². This means that if a

 

 

TRL 4 engineering model is
to be made, it allows for rapid prototyping, since dedicated mobile

 

 

AI accelerators usually come with packages
that can optimise and deploy such models.

4.1.4. Training
Training the detector requires the creation of a data loader that takes the input image data along with the as-
sociated ellipses and other meta data and creates batches. This was achieved by extending the base Dataset
class included in the PyTorch framework. Using this, a highly customisable training loop is created, where all
hyperparameters given in Table 4.1 can be chosen. This finally enables the most unpredictable and challenging
procedure of training any

 

 

DL model: hyperparameter optimisation [90]. Essentially, it is impossible to predict
exactly what the effects are when any of these parameters are changed. In this case, it was chosen to use
roughly the same values used for training Faster R-CNN [69] since much of the

 

 

CDA is based on it. This yields
the following parameters:

Furthermore, a scheduler is used to adapt the learning rate for further fine tuning if and when the valida-
tion losses are not decreasing anymore. The training process is tracked using MLflow³, allowing convenient
separation of training sessions with associated model weights saved for later use.

¹https://onnx.ai
²https://docs.openvinotoolkit.org
³https://www.mlflow.org

https://onnx.ai
https://docs.openvinotoolkit.org
https://www.mlflow.org
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Name Value
Batch size 32
Training dataset size 80 ⋅ 103
Validation dataset size 2 ⋅ 103
Testing dataset size 1 ⋅ 103
Learning rate 0.01
Momentum 0.9
Weight decay 0.0005
Epochs 20
Optimizer Stochastic Gradient Descent

Table 4.1: Crater detector training hyperparameters.

4.2. Results

Figure 4.4: Sample of model detections (red is a True Positive, yellow is a False Positive) versus ground-truth (cyan) with associated ellipse
divergence 𝑑𝐺𝐴 for every True Positive. Minimum class score is set at 75%.

To understand the output and the accuracy of the model, a sample similar to the one shown in Figure 3.7 is
retrieved from the test dataset and passed through the model. Examining Figure 4.4 yields some interesting
results about the behaviour of themodel. Firstly, it seems that themodel’s predictions aremostly true positives.
In other words, the

 

 

CDA can separate the craters and background well. Next, the shape that is inferred from
the convolutional features appears to be captured as well, with relative axis sizes and angle following the
crater shape. In some cases, it appears that the model does exhibit some ellipse fitting error, and at first glance
this could be caused by challenging lighting conditions (#11), out-of-shape craters (top right crater in #12), or
partially visible craters (right-most crater in #6). Generally this can be attributed to a lack of discriminating
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features apparent in the image with which the model can predict the crater shape. It is found that predictions
performed using the test dataset exhibited an average axis error of approximately 2.6± 1.8 [pixels]. This means
that CDT-PR-01.5 is verified.

As Figure 4.4 may already suggest, the system is functional under non-nadir-pointing attitudes. To verify
this, a sample is made using the data generator with incremental pitch angles. Figure 4.5 displays the outcome,
and it becomes clear that this does work as expected. The performance seems to degrade for craters that have
a smaller footprint in the image due to increased ellipticity as the camera pitch angle increases. However, this
can be attributed to the low resolution decreasing the amount of discriminatory features when the apparent
ellipticity is very high ( 𝑎𝑏 > 2), ultimately resulting in a thin strip if pitch angle increases enough (see top of
right-most image in Figure 4.5). It is hypothesised that this can be achieved given a higher resolution and more
training, however this is considered outside the scope of this project. This proves the system’s compliance with
CDT-PR-01.1.

B = 0 B = 15 B = 30 B = 45

Figure 4.5: Sample of model detections in varying attitude angels, red is a detected crater, cyan is a ground-truth crater.

Figure 4.6 displays the system’s capabilities under varying sun angles. Using the data generator, a series
of images are made with different scene times, which result in a change in the relative position of the Sun. It
is evident that the

 

 

CDA has correctly learned to detect craters with different shadow profiles as they appear
in the image, proving that an

 

 

AI-based approach is valid. This proves the crater detection subsystem’s com-
pliance with CDT-PR-01.2.

S = 87.4 S = 63.2 S = 39.0 S = 15.4

S = 11.3 S = 34.5 S = 58.5 S = 82.7

Figure 4.6: Sample of model detections in varying light conditions, red is a detected crater, cyan is a ground-truth crater. Each image is 2
days further in time, resulting in a different sun angle.

Quantifying the performance of the
 

 

CDA requires a clear definition of true and false detections in the
context of crater detection, as well as the value describing a goodness-of-fit. True and False Positives (TP, FP),
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and False Negatives (FN) are defined by the following conditional statement that is dependent on a detection’s
confidence value 𝑝 and its

 

 

IoU with its respective matched target compared to thresholds 𝑡𝑝 and 𝑡IoU :

Detection =
⎧
⎨
⎩

TP, if 𝑝 ≥ 𝑡𝑝 ∧ IoU ≥ 𝑡IoU
FP, if 𝑝 ≥ 𝑡𝑝 ∧ IoU < 𝑡IoU
FN, if 𝑝 < 𝑡𝑝 ∧ IoU ≥ 𝑡IoU

Often-used metrics are Precision 𝑃 , Recall 𝑅, and 𝐹1 [28, 51], which describe the performance of an object
detector through its True and False Positives (TP, FP), and True and False Negatives (TN, FN):

𝑃 = TP
TP + FP

(4.12)

𝑅 = TP
TP + FN

(4.13)

𝐹1 = 2 𝑃 ⋅ 𝑅
𝑃 + 𝑅 (4.14)

In object detection models, a detection is a True Positive when its bounding box has an
 

 

IoU that is above a
certain threshold. Besides this, the distance metric given in Equation 4.11 is also used for evaluation as it more
accurately describes whether a detected crater is similar enough to its associated target. See Figure 4.7 for an
illustration of the concepts.

IoU

𝒩 𝒩 ∗

𝑑 (𝒩 ||𝒩 ∗)

Figure 4.7: Illustration of
 

 

IoU and divergence.

Precision-Recall curves can provide insight into the detector’s performance [20]. The visualisation is cre-
ated by calculating the Precision (Equation 4.12) and Recall (Equation 4.13) with a range of confidence thresh-
olds. This threshold determines whether a prediction is considered part of a class. So for example if a detection
has a confidence above 50%, it is accepted as a crater. For every confidence threshold, the model’s Precision
and Recall is calculated and plotted, with the Area Under the Curve (

 

 

AUC) metric representing the Average
Precision (

 

 

AP).
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Figure 4.8: Precision-Recall curve for Ellipse R-CNN-based
 

 

CDA with multiple minimum
 

 

IoU required to consider a detection a true
positive.

This performance is comparable to state-of-the-art object detection models like YOLOv3 [68], which is to
be expected. The difference here is that the target data is not the commonly used COCO dataset [55], but
rather the generated lunar scenes, which is a comparatively much easier classification task.

Besides object detection performance, the mean ellipse divergence is a key metric to give insight into how
well the detector can return well-fitted ellipses describing crater rims in the image plane. The metric used is
given in Equation 4.11, which returns lower values for good fits, and vice versa (see Figure 4.2). To have an
idea about how these values scale, please refer to Figure 4.4. Plotting this distance metric as a function of the
confidence threshold 𝑡𝑝 returns Figure 4.9
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Figure 4.9: Mean ellipse divergence 𝑑𝐺𝐴 (lower is better) for all positive detections (TP + FP) plotted as a function of varying confidence
threshold 𝑡𝑝 .

The proposed
 

 

CDA functions in a representative simulation environment, and has the intrinsic value of
being an end-to-end solution which does not require the addition of sensitive post-processing steps. Building
upon the functionality provided by the data generator described in the previous chapter, a virtually limitless
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amount of scenes could be created to create a large enough dataset to guarantee a generalisable model. The
results present a realistic view on the difficulty of reliable and scalable crater detection, but considering the use
case that this subsystem is partially fulfilling there is an acceptable amount of error as long as enough ‘good
enough’ detections are available for the position estimation subsystem. The tests up until this point return a
positive result for the performance of the model, however it does not yet prove its efficacy in a full position
estimation pipeline.





5
Position Estimation

To be able to derive the spacecraft ego-position, a crater pattern identification method is implemented. The
methodology is mostly based on the coplanar crater descriptor from [17] because of its capacity to work in

 

 

LIS situations and under off-nadir attitudes. It fully utilises the crater shape to form discriminating features
which can bematched with a database. The database is based on a 𝑘-d tree data structure that allows real-time
nearest neighbour searching for multidimensional trees [10]. Matched craters form a system of equations that
is solved using

 

 

RANSAC, after which a verification step is applied to remove reprojected outliers. Results show
a match rate of roughly 14% of all cases, albeit with accuracy that generally falls below 4 [km] when using
significantly perturbed pseudo-measurements.

5.1. Coplanar Invariants for Ellipse Triads
Creating discriminating features from a collection of conics is a topic that has been discussed in the

 

 

CV domain
for some time [31, 38, 47, 66], but has only recently been applied to crater pattern matching [17, 58]. The
essence of the method is that there exists a unique pair of numbers for a pair of coplanar ellipses (a conic)
that are invariant to affine transformations. This is a very useful property that can be exploited to create the
desired discriminating features which is independent of camera pose. To further increase the uniqueness of
the descriptor, a triad of craters is selected to calculate seven absolute invariants which jointly make up the
discriminating feature. In the following subsection a summarised derivation is given.

5.1.1. Theory
The joint invariants of two conics𝐴𝐴𝐴𝑖,𝐴𝐴𝐴𝑗 that satisfy Equation 3.15 and |𝐴𝐴𝐴𝑖| = |𝐴𝐴𝐴𝑗 | = 1 are given by [17]:

𝐼𝑖𝑗 = Tr[𝐴𝐴𝐴−1𝑖 𝐴𝐴𝐴𝑗] (5.1)

𝐼𝑗𝑖 = Tr[𝐴𝐴𝐴−1𝑗 𝐴𝐴𝐴𝑖], (5.2)

with Tr denoting the trace of a matrix. Proving that this is invariant to affine transformations can be done
by applying the same transformation 𝑇 to both conics [43] as 𝐴𝐴𝐴′𝑖 = 𝑇 𝑇𝐴𝐴𝐴𝑖𝑇 and 𝐴𝐴𝐴′𝑗 = 𝑇 𝑇𝐴𝐴𝐴𝑗𝑇 , yielding the
following equality for the joint coplanar invariants:

𝐼 ′𝑖𝑗 = Tr[𝑇−1𝐴𝐴𝐴−1𝑖 𝑇−𝑇 𝑇 𝑇𝐴𝐴𝐴𝑗𝑇 ] = Tr[𝐴𝐴𝐴−1𝑖 𝐴𝐴𝐴𝑗] = 𝐼𝑖𝑗 , (5.3)

with the same holding for the reverse direction 𝐼 ′𝑗𝑖. This means that theoretically, two different cameras ob-
serving a pair of coplanar craters can derive the same invariant. Considering that craters on a sphere are not
coplanar, it is only possible to derive them for approximately coplanar craters. Extending the same property
to a triad of ellipses𝐴𝐴𝐴𝑖,𝐴𝐴𝐴𝑗 ,𝐴𝐴𝐴𝑘 yields 2 ∗ 3 + 1 = 7 invariants, where the seventh value is given by [17]:

𝐼𝑖𝑗𝑘 = 𝑇 𝑟[(𝐴𝐴𝐴𝑗 +𝐴𝐴𝐴𝑘)∗ − (𝐴𝐴𝐴𝑗 −𝐴𝐴𝐴𝑘)∗]𝐴𝐴𝐴𝑖. (5.4)

See Figure 5.1 for an illustration of the concept behind the coplanar invariants of three conics.

41



42 5. Position Estimation
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Figure 5.1: Illustration of the definition of coplanar invariants for a triad of ellipses.

Combined these form a robust descriptor that can be used in combination with the proposed
 

 

CDA since it
directly outputs the detected crater ellipses in the image plane. See subsection A.3.1 for the entire derivation
based on the implementation given in [17]. Given a set of craters in the image plane, an array of matchable
features in the shape of seven-element descriptors is created by iterating through them using an Enhanced
Pattern Shifting sequence [8]. This method was first developed for star trackers that similarly needed groups
of three stars to feed into the identification subsystem, and was optimised to create as many unique triads in
a list.

5.1.2. Verification
To verify the fact that the coplanar invariants function in practice, a series of tests using the data generator was
performed. First, an example of the descriptor is made for a single triad at varying altitudes, seen in Figure 5.2.

0 1 2 3

Figure 5.2: Crater triad at four different altitudes: 300, 400, 500, and 600 km.

Altitude Difference Δ𝐼𝑖𝑗 Δ𝐼𝑗𝑘 Δ𝐼𝑘𝑖 Δ𝐼𝑗𝑖 Δ𝐼𝑘𝑗 Δ𝐼𝑖𝑘 Δ𝐼𝑖𝑗𝑘
100km -0.9% -0.5% -1.5% -0.22% -0.49% -0.035% -2.2%
200km -1.4% -0.8% -2.5% -0.35% -0.79% -0.059% -3.7%
300km -1.8% -1.0% -3.1% -0.44% -0.99% -0.077% -4.6%

Table 5.1: Seven-element descriptor value change sensitivity to altitude changes w.r.t. the descriptor for the first image in Figure 5.2.

Performing the same test with only attitude changes yields a completely identical seven-element descriptor
for all cases. However, camera position and attitude is not the main factor that impacts accuracy, as this is
most likely the accuracy with which ellipses are fit to a crater rim. To test this hypothesis, a Monte Carlo
simulation was prepared that creates random scenes above the Moon similar to how the data generator does
(see Table 3.1). Using Enhanced Pattern Shifting to generate triads of craters in the image plane, for every
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trial a subset of the crater was selected to form the seven-element descriptor for. After this, the artificial
noise drawn from Table 5.2 was added to a copy of the exact same subset to allow for a direct comparison
of values. The result of 5000 tests is displayed in Figure 5.3 and splits the error for the clockwise descriptors,
counter-clockwise descriptors, and the triad descriptor 𝐼𝑖𝑗𝑘 .

Name Symbol Unit Distribution
Axis 𝑎, 𝑏 pixels 𝒩 (0, 1)
Angle 𝜃 ∘ 𝒰(−10, 10)
Centre 𝑚𝑚𝑚 pixels 𝒩 (0, 1)

Table 5.2: Distributions for seven-element descriptor sensitivity testing.
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Figure 5.3: Seven-element generation sensitivity to ellipse fitting in 5000 random camera scenes with at most 20 craters present. This is
the change in value after the artificial error is introduced.

It is apparent that the coplanar invariants are relatively sensitive to ellipse fitting error. However due
to the seven dimensions of the descriptor it was hypothesised that the probability of identifying a detected
triad is high enough to be used in a navigation solution. To prove this, an end-to-end database with querying
functionality was developed.

5.2. Crater Database
Building a crater database is achieved by creating a searchable index that can reliably match a generated ‘key’
to a triad of craters. This key index consists of seven-element descriptors that are built ahead of time, and as
illustrated by the previous section, the same descriptors can subsequently be made in real-time for a set of
detected craters. Once a set of potential matches has been found

5.2.1. Generation
Creating a readily searchable database for a crater pattern matching algorithm was achieved by taking the set
of craters from a list of known craters (e.g. from [71]) and finding crater triads that are within a certain range
that would allow the coplanar assumption to hold. In our implementation this was achieved by using functions
from [64], where the Cartesian coordinates of the crater set and inserting them into a three-dimensional 𝑘-d
tree to query each crater for their neighbours within a radius of 100km, to eventually return a sparse connec-
tion matrix containing all ‘connections’ between crater pairs. This sparse matrix forms the basis of a graph
structure which was then used to find all cliques [59] with a size of three, which corresponds to all crater
triads. Depending on how large the crater set is and how dense the connection matrix is this may take a long
time, so realistically a database will not be created at the scale of the entire Moon, but rather a sub-region.
This deviates slightly from the definition of a

 

 

LIS-situation, however it is reasonable to assume that the state
estimation of a spacecraft has not been degraded to such a degree that it is unaware which side of the Moon
it is above.

Then, by iterating through all crater triads we can find the seven-element descriptor by placing a ‘virtual’
camera above the centroid of the triangle formed by the three crater centres. By then projecting all three
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craters into the image plane they are intrinsically coplanar as they appear in the image plane, which is two
dimensional. See Figure 5.4 for an illustration of the process.

𝑋ℳ

𝑌ℳ

𝑍ℳ
Virtual Camera

1

# Lat Long

... ... ...

I123

DB

𝜑1 𝜆1
2 𝜑2 𝜆2
3 𝜑3 𝜆3

Shape

A1
A2
A3

...

Figure 5.4: Illustration of the database generation process, where neighbouring craters form a triad are ‘captured’ by a virtual camera,
from which the seven-element descriptor is derived and stored in the database.

The six pairwise invariants are sorted in a clockwise manner, and for each triad the crater 𝑖 in {𝑖, 𝑗, 𝑘} is
determined by ensuring that 𝐼𝑖𝑗 is the lowest value of {𝐼𝑖𝑗 , 𝐼𝑗𝑘 , 𝐼𝑘𝑖}. After finding and sorting all the invariant
descriptors 𝐼𝐼𝐼 , a seven-dimensional 𝑘-d tree is created to form the final indexing data structure that is used to
be able to identify craters as they appear in a detection with the catalogue.

5.2.2. Matching Functionality
Matching is achieved by querying the 𝑘-d tree that forms the basis of the database. The core functional-
ity is provided by the KDTree class from [85], and allows for direct nearest-neighbour(s) searching with a
configurable number of returned values along with the Cartesian distance between the detection triad’s key
and the database entry’s key. One drawback of this implementation is that it does not allow for a per-axis
(of the seven-element descriptor) normalised distance, achievable by using a weighted Minkowski distance
metric. Such functionality would most likely have to be implemented with a static language such as C++ for
performance reasons, which is not an unrealistic assumption in the likely event that this system is ported to
an embedded target.

5.2.3. Ego­position from Corresponding Coplanar Conics
Given a set of matched craters in the image plane

𝑀 = {𝐴𝐴𝐴𝑖 | 0 ≤ 𝑖 < 𝑛𝑑𝑒𝑡 },
and a set of triad indices using Enhanced Pattern Shifting

𝐾 = {[𝑖, 𝑗, 𝑘] | 𝑖, 𝑗, 𝑘 < |𝑀|, 𝑖 ≠ 𝑗 ≠ 𝑘},
amatchable pattern is created. This is constrained by a hard limit, since the amount of triads rises exponen-

tially with the amount of detected craters. This is the key that consists of a set of seven-element descriptors
per triad - the aforementioned corresponding features. Using the properties of the 𝑘-d tree that forms the
database, a set of 𝑁𝑞𝑢𝑒𝑟𝑦 nearest neighbours per triad are given as

𝑄𝑖 = {[𝐴𝐴𝐴∗𝑖 ,𝐴𝐴𝐴∗𝑗 ,𝐴𝐴𝐴∗𝑘]𝑛 | 0 ≤ 𝑛 < 𝑁 }𝑖,
and are passed to the ego-position andmatch verification subsystem, which reorders the set of craters from

the query and filters based on distance and removes duplicate entries. Using the methodology from [17], a
linear system of equations is formed using the known camera matrix, spacecraft attitude, and a filtered subset
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of the detected craters. The query also returns the associated matched selenographic positions 𝑥𝑥𝑥(𝑐)ℳ𝑖 , which
means that the spacecraft position can be derived by essentially finding a least-squares solution to Equation 5.6
for 𝑥𝑥𝑥𝐵 . An abridged version of the setup of this system of equations is as follows:

𝐵𝐵𝐵𝑖 = 𝑇𝑇𝑇𝐵𝐾𝐾𝐾𝑇𝐴𝐴𝐴𝑖𝐾𝐾𝐾𝑇𝑇𝑇−1𝐵 , (5.5)

[
𝑆𝑆𝑆𝑇𝑇𝑇𝑀𝐸0𝐵𝐵𝐵0⋮
𝑆𝑆𝑆𝑇𝑇𝑇𝑀𝐸𝑛𝐵𝐵𝐵𝑛

]𝑥𝑥𝑥𝐵 =
⎡⎢⎢
⎣

𝑆𝑆𝑆𝑇𝑇𝑇𝑀𝐸0𝐵𝐵𝐵0𝑥𝑥𝑥
(𝑐)
ℳ0⋮

𝑆𝑆𝑆𝑇𝑇𝑇𝑀𝐸𝑛𝐵𝐵𝐵𝑛𝑥𝑥𝑥
(𝑐)
ℳ𝑛

⎤⎥⎥
⎦
, (5.6)

using 𝑆 from Equation 3.18. This system of equations is then solved for the spacecraft position 𝑥𝑥𝑥𝐵 . The
first iteration of the state estimation is then used with the known spacecraft attitude 𝑇𝑇𝑇𝐵 to create projection
matrix 𝑃 (Equation 3.8). After that is performed, a second iteration of Equation 5.5 and 5.6 is performed with
a filtered subset of the detected craters based on the Gaussian Angle divergence (Equation 4.11) calculated
between a reprojected version of the matched crater and its associated detected crater. This reprojection filter
is applied as follows [17]:

Hypothesis(𝒜𝑖 = ̃𝒜𝑖) = {Accept, if 𝑑2𝐺𝐴𝑖/𝜎2 ≤ 13.276
Reject, otherwise

, (5.7)

with

𝜎 ≈ 0.85
√𝑎𝑖𝑏𝑖

𝜎𝑝𝑖𝑥 . (5.8)

𝜎𝑝𝑖𝑥 is a tuneable parameter that sets the strictness of the reprojection match verification. The full ego-
position pipeline is shown in Figure 5.5.

𝐷

|𝐷| < 3

|𝐷| ≥ 3

T𝐵 , K

No match

𝐾Match
Generator

Query
Database

DB

𝑄 Position
Estimation

No
Consensus

No match

x𝐵

𝐷𝐾

Figure 5.5: Illustration of the match verification and ego-position estimation pipeline.

During development it became apparent that using just a least-squares solution did not yield the desired
accuracy that was given in [17]. It was hypothesised that this was caused by the relatively high fraction of
outliers that are still present after the database query and subsequent filtering steps.

Random Sample Consensus
To solve Equation 5.6 under the presence of outliers, a method called Random Sample Consensus (

 

 

RANSAC)
was employed. This is a well-known algorithm used for fitting linear least-squares models with a large amount
of outliers [30] and is thus potentially a solution for reliably solving Equation 5.6. This increases the system’s
performance in the presence of erroneous matches, and therefore increases robustness. This is a novel ap-
proach, and builds upon the work presented in [17].

 

 

RANSAC functions by fitting a linear model to a random
subset of a given system of equations, it then assesses whether enough inliers are present to consider the
model fitted. An illustration of the performance difference between

 

 

RANSAC and linear regression is shown
in a two-dimensional case in Figure 5.6.
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Figure 5.6: Illustration of the difference between
 

 

RANSAC and linear regression on a two-dimensional system of equations with significant
amounts of outliers, reprinted from [4].

5.3. Results
The complete code implementation can be found on the online repository of the project¹. A series of Monte
Carlo simulations were performed to assess the robustness of the position estimation algorithm. These tests
are performed for a

 

 

LIS scenario, and span over an equilateral region above the Moon from 0∘ to 30∘ for both
lat- and longitude. The configuration parameters are as follows:

Name Symbol Unit Distribution
Axis perturbation 𝑎det, 𝑏det pixels 𝒩 (0, √2)
Angle perturbation 𝜃det ∘ 𝒩 (0, 20)
Centre perturbation 𝑚𝑚𝑚det pixels 𝒩 (0, √2)
Spacecraft latitude 𝜑𝐵 ∘ 𝒰(0, 30)
Spacecraft longitude 𝜆𝐵 ∘ 𝒰(0, 30)
Spacecraft altitude ℎ𝐵 km 𝒰(50, 200)
Spacecraft roll 𝜙𝐵 ∘ 𝒰(−180, 180)
Spacecraft pitch 𝜃𝐵 ∘ 𝒰(−10, 10)
Spacecraft yaw 𝜓𝐵 ∘ 𝒰(−10, 10)

Table 5.3: Distributions for perturbed ellipses in position estimation Monte Carlo trials.

Given the stochastic nature of the input data, the output of the position estimation pipeline is expected
to yield position error estimations that is partially unpredictable. The proposed system is built to work in
tandem with an estimator that accept measurements with statistical noise (like an

 

 

EKF), hence the need for a
thorough analysis of the error statistics. Starting with the total Cartesian position error, it becomes clear that
the estimator’s performance generally falls within the sub-5km range. Considering the large volume of space
that is used to randomly initialise the spacecraft position (roughly 1000x1000x150km), this is an impressive
result. See Figure 5.7 for the error distribution.

Decomposing the error into vertical and horizontal components yields Figure 5.8 and Figure 5.9. Simi-
lar to the total accuracy ||Δx||2, all components exhibit an unbiased error characteristic. This is favourable
considering state estimation filters usually work best with zero-mean measurement updates [88].

Similar to the radial error statistics given in Figure 5.8, there seems to be no clear indication that the position
estimation algorithm is biased in the latitude- and longitude-direction in Cartesian space. This means that

¹https://github.com/wdoppenberg/crater-detection/tree/main/src/matching

https://github.com/wdoppenberg/crater-detection/tree/main/src/matching
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Figure 5.7: Total Cartesian position error (||Δx||2 = ||xtrue − xpred ||2) statistics for 11654
 

 

RANSAC inliers (blue), and 6617 verified matches
through reprojection (red) with 𝜎𝑝𝑖𝑥 = 5.
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Figure 5.8: Total radial position error statistics for 6617 verified matches through reprojection with 𝜎𝑝𝑖𝑥 = 5.

if the end-to-end system expresses such bias, it would have to be caused by the
 

 

CDA subsystem. The error
distribution matches the error introduced in the pseudo-measurements. Following from Figure 5.9, horizontal
error statistics do not seem to skew in either longitude or latitude direction, and has a lower magnitude than
radial error. It is hypothesised that this is caused by the relatively higher impact of ellipse fitting error on
vertical position estimation compared to horizontal position estimation. This is caused by the perceived visual
angle being relatively unaffected by a change in altitude if high enough above the Lunar surface.
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Figure 5.9: Horizontal error statistics along latitude and longitude directions.

To examine the effect of the amount of matched craters used to regress the system of equations given in
Equation 5.6, a box plot showing the system’s accuracy as a function of the amount of verified craters is made
in Figure 5.10. No significant relation between accuracy and verified craters can be seen in this metric, however
it is a testament to the methodology introduced by [17] working with relatively low amounts of matches.
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Figure 5.10: Position estimator accuracy vs. number of verified crater matches in image.

As mentioned before, altitude is a factor in the system’s performance. This is further demonstrated by
Figure 5.11, indicating a relation between altitude ranges and the system’s accuracy.
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Figure 5.11: Position estimator accuracy vs. altitude ranges.

The crater identification and position estimation subsystem has been tested with highly perturbed mea-
surements, and its performance has been characterised. It has been shown that the match rate of the iden-
tification subsystem is significantly lower than the results described in [17], which could point to an under-
performing implementation or a more challenging test case. The former is possibly caused by the ad hoc
methodology for querying the database, which, as mentioned before, requires further development and veri-
fication in future work. The latter could be caused by this testing method being more thorough and therefore
less forgiving for the proposed subsystem. Both cases need to be investigated in later development stages.

Combined with the results of the novel
 

 

CDA described in chapter 4 it is hypothesised that combining these
subsystems will result in a working

 

 

TRN solution. The next chapter describes the tests and results of the entire
system to validate the set requirements for both components.





6
End­to­End System Performance

Assessing the proposed
 

 

TRN system fully requires the
 

 

CDA and position estimation subsystems to be combined
into a single pipeline that can essentially accept a (simulated) image of the Lunar surface and return an absolute
position estimation. To verify the capabilities as described in the previous chapters, its general performance
will be assessed on random positions above a sizeable region above theMoon, which is similar to the procedure
used to assess the position estimation subsystem. Instead of using pseudo-measurements, the Ellipse R-CNN-
based

 

 

CDA will now be used to derive crater rim shapes from simulated camera input.

6.1. Instantaneous Position Estimation Performance
The main Key Performance Indicator (

 

 

KPI) for the complete system is the total Cartesian position error ||Δ𝑥𝑥𝑥||2.
This is reflected in Table 2.1, listing the maximum error for a full state estimation subsystem. The performed
tests are a combination of the methods used in chapter 4 and 5. This should give insight into the effects of
exogenous variables related to the scene as well as internal tuneable system settings. Just like the position
estimation performance test, trials are generated by drawing from probability distributions. Using the data
generator, a completely unique simulated camera output is generated for a single forward pass. This ensures
that the

 

 

CDA is not predicting on data it has seen before. Again, a region above the moon was chosen so as to
limit the time required to build the database, but the region is large enough to still consider it a

 

 

LIS situation.
The minimum altitude is set at 100 km because below that value the resolution of the

 

 

DEM used to generate
the artificial scenes becomes too low to accurately reflect reality. It is hypothesised that the system should
work with similar performance characteristics at lower altitudes as it does in this test. Future tests with higher
resolution data would have to confirm this.

Name Symbol Unit Distribution
Spacecraft latitude 𝜑𝐵 ∘ 𝒰(0, 30)
Spacecraft longitude 𝜆𝐵 ∘ 𝒰(0, 30)
Spacecraft altitude ℎ𝐵 km 𝒰(100, 200)
Spacecraft roll 𝜙𝐵 ∘ 𝒰(−180, 180)
Spacecraft pitch 𝜃𝐵 ∘ 𝒰(−10, 10)
Spacecraft yaw 𝜓𝐵 ∘ 𝒰(−10, 10)
Minimum ground truth craters 𝑛𝐺𝑇 − 10
Confidence threshold 𝑡𝑝 − 75%
Maximum reprojection deviation 𝜎𝑝𝑖𝑥 − 4
Catalogue diameter range 𝐷𝑐𝑎𝑡 km [4, 40]

Table 6.1: Parameters for end-to-end system position estimation accuracy verification through Monte Carlo trials.

Using the parameters from Table 6.1, 50000 trials were performed in roughly 2.5 hours to give a complete
overview of the system’s performance.

51
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6.1.1. Results
The tests yielded 8089 verified position estimations that can be considered a verified match, resulting in a
match rate of roughly 16%. This is not necessarily high, however it remains to be seen whether this translates
to low performance in a real-time test with multiple measurements per second. The accuracy with which the
system is able to infer ego-position estimations exceeds the values retrieved from the stress tests in chapter 5.
The median error for the total set of verified position estimations is ≈ 800 [m]. It needs to be emphasised that
this is from a

 

 

LIS situation, meaning no prior information other than the camera input and spacecraft attitude
is known.

Figure 6.1 displays the total system position error, and it is clear that the system has a better accuracy
than what was yielded during the pseudo-measurement tests. This means that the crater detection subsystem
has managed to be accurate enough for use in a crater pattern matching technique using the elliptical shape
of craters. To examine the source of the error further, the same plots as in chapter 5’s results section are
generated.
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Figure 6.1: Total Cartesian position error for 8089 position estimations made by the end-to-end
 

 

TRN system.

The total radial error statistics visible in Figure 6.2 display a very slight bias above 0, but the amount is not
enough to draw conclusions with. This result further confirms the suspicion of the model performing above
the expected results from the pseudo-measurement tests.
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Figure 6.2: Total radial position error for 8089 position estimations made by the end-to-end
 

 

TRN system.

To further analyse the system performance for verifying CID-PR-02.1, the horizontal error is given in a
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two-dimensional histogram in Figure 6.3. Again, the error appears to exhibit no bias, and appears to be of a
lower magnitude than the radial position error.
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Figure 6.3: Total horizontal error for the full system in 8089 position estimations

For future iterations, deriving match certainty from the amount of verified matches could serve as an extra
verification step in the state estimation pipeline. To that end, Figure 6.4 displays the relationship between the
amount of verifiedmatches and the position error. This confirms the decreased amount of outliers proportional
to the amount of verified matches.
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Figure 6.4: Number of verified matches versus position estimation accuracy.

The same box plot was made for both different altitude layers (Figure 6.5) and sun angles (Figure 6.6).
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Figure 6.5: Altitude ranges vs. total position error.

Altitude range Lower whisker Lower quartile Median Upper quartile Upper whisker
100km - 125km 76m 497m 745m 1226m 2278m
125km - 150km 38m 463m 781m 1393m 2787m
150km - 175km 44m 442m 759m 1380m 2784m
175km - 200km 21m 485m 831m 1486m 2985m

Table 6.2: Error statistics for varying altitude layers.
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Figure 6.6: Total position error statistics as a boxplot split into sun angle groups.

Sun angle Lower whisker Lower quartile Median Upper quartile Upper whisker
30∘−35∘ 80m 696m 1112m 1856m 3590m
35∘−40∘ 34m 430m 738m 1275m 2534m
40∘−45∘ 37m 582m 1023m 1868m 3796m
45∘−50∘ 21m 376m 620m 994m 1915m
50∘−55∘ 74m 434m 701m 988m 1608m

Table 6.3: Total position error statistics as a function of sun angle.

The results from statistical data yielded from Monte Carlo trials is considered sufficient verification at this
stage of development as it assesses the system’s capability to initialise state without prior information. It can
be concluded that, while match rate is insufficient, the proposed system is analytically sound and has the
potential to improve in future iterations. The reason why improvements are deemed possible is because the
results in [17], which has been the basis for the proposed system’s crater identification and position estimation
subsystem, claims to have much higher success rate. This means that the cause of this discrepancy is most
likely due to implementation differences. Furthermore, the assembled

 

 

TRN pipeline using the novel
 

 

CDA
introduced in this document together with a projective invariant-based crater pattern matching technique for
ego-position estimation is a valid approach.

6.2. Trajectory Performance
To assess a real-world application of the proposed system the system is tested by simulating camera input
generated along a pre-defined Kepler orbit above the Moon. Contrary to the instantaneous performance tests,
previous measurements can be used to form more accurate state estimations. The state estimation filter used
is an Extended Kalman Filter (

 

 

EKF) with the following characteristics [39]:

𝑋𝑘 = [𝑥𝑥𝑥𝐵𝑣𝑣𝑣𝐵]𝑘
=
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⎣

𝑥
𝑦
𝑧
̇𝑥
̇𝑦
̇𝑧
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⎦𝑘

(6.1)
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�̂�−𝑘 = 𝑓 (�̂�−𝑘−1) (6.2)

𝑃−𝑘 = 𝐴𝑘−1𝑃𝑘−1𝐴𝑇𝑘−1 + 𝑄𝑘−1 (6.3)

𝐾𝑘 = 𝑃−𝑘 𝐻 𝑇𝑘 (𝐻𝑘𝑃−𝑘 𝐻 𝑇 + 𝑅𝑘)−1 (6.4)

�̂�𝑘 = �̂�−𝑘 + 𝐾𝑘[𝑧𝑘 − ℎ(�̂�−𝑘 )] (6.5)

𝑃𝑘 = [𝐼 − 𝐾𝑘𝐻𝑘]𝑃−𝑘 [𝐼 − 𝐾𝑘𝐻𝑘]𝑇 + 𝐾𝑘𝑅𝑘𝐾𝑇𝑘 (6.6)

with state transition matrix 𝐴 defined as

𝐴𝑘−1(�̂�+
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, (6.8)

and measurement matrix 𝐻 as:

𝐻𝑘 = [𝐼𝐼𝐼 3×3 0003×3] , (6.9)

with process noise 𝑄𝑘 and measurement noise 𝑅 given in section A.4. This filter was merely defined to as-
sess state estimation performance given only the updates provided by the proposed system. However, it is
assumed that future iterations of this system would incorporate measurement updates from other navigation
instruments as well. This test is essentially a worst-case scenario, as no other measurements are included to
achieve more accurate state knowledge. The implementation was made using FilterPy [3] for building the

 

 

EKF
and poliastro [72] for ground-truth values of a Lunar orbit.

This test aims to verify CID-PR-02.3 and CID-PR-02.4, which both relate to the system’s performance
given multiple measurements in time. The results above indicate that it may be possible that the match rate
will not be sufficient in every orbit scenario to achieve accurate state estimations, hence only a scenario with
sufficient measurement updates will be taken into account to be able to solely assess the system’s performance
over time. The results of this test will serve as a validation of the full system’s performance requirements, as
it is tested in a configuration that resembles a real-world application. To achieve this, a nearly circular orbit at
roughly 260 [km] above the same patch of Lunar surface given in Table 6.1 is taken. It needs to be stated that
there may be situations in which the surface in view of the camera does not contain any or enough craters to
be able to query the database with, in which case the state error will increase. Because it is not in the interest
of seeing the performance of the proposed system in a trajectory without updates, a trajectory was chosen
with enough visible craters.

6.2.1. Results
The system indeed appears to function as would be expected given the state estimation error statistics from
the previous section. Even with an initial state estimation degraded as far as 500 [km] (positional) and 800
[m/s] (velocity) is salvageable through the use of the proposed system. Figure 6.7 displays the convergence of
the state estimation functioning as expected even in the presence of noisy measurements.

The lowest observed state estimation error observed in this test was 160 [m], which would allow future
iterations of the proposed system to incorporate crater pattern matching methods requiring approximate state
information (e.g. LunaNet’s

 

 

RANSAC approach [24]), providing additional measurements. To identify the
biggest source of state error, the position error is split along-track, cross-track, and radial components that are
defined by the velocity components of the ground-truth. The dominant error factor is - as hypothesised and
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Figure 6.7: Positional state estimations over time with an initial state error of 500 [km]. The top figure shows the absolute positional error,
the middle plot shows velocity error, and the lower plot shows the amount of detected craters at each instant. The red crosses in the top
plot indicate measurement update errors.

seen in chapter 5 and subsection 6.1.1, Figure 6.8 - the radial component. Future research can focus on assessing
a setup with the inclusion of a navigation instrument capable of more accurate altitude measurements.
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Figure 6.8: The positional error from the top plot in Figure 6.7 split into along-track, cross-track, and radial error. The red crosses indicate
measurement errors split into their respective components.

It can be concluded that the proposed system is capable of working in a dynamic environment, and verifying
that low match rates are an inconclusive metric for assessing performance in a representative situation. This
test demonstrates the combination of a novel

 

 

CDA combined with an augmented version of the crater pattern
matching technique introduced by [17] into a single position estimation pipeline featuring an

 

 

EKF functioning
as hypothesised.





7
Verification & Validation

To identify whether the system merits further research, a full verification of the requirements set in chapter 2
is given. After this, a validation plan is outlined for future work.

7.1. Verification
To assess compliance with the set requirements, an overview is given in a requirements verification matrix (see
Table 7.1).

Requirements Verification Matrix
Top-level requirements

Functional Requirements
FR-01: The system shall be able to deliver absolute position estimations from attitude information and camera input alone.
FR-02: The system shall utilise

 

 

AI techniques.
FR-03: The system shall be used for navigating around the Moon.
FR-04: The system shall comprise all elements required for it to be reproduced by any user that requires it.
FR-05: The system shall be executable entirely on-board a spacecraft.
FR-07: The system shall function for any Lunar approach path.
Performance requirements
PR-01: The system shall achieve a maximum absolute state error of less than 500 [m] in a Lunar orbit below 500 [km].
PR-02: The system shall deliver state updates at a frequency of at least TBD [Hz].
Operational requirements
OR-01: The system shall be capable of functioning above any cratered region of the Moon without hardware changes.
OR-02: The system shall fulfil its task autonomously.
OR-03: The system shall be a self-contained instrument that is capable of handling all necessary steps to transform optical input and
attitude information into absolute state knowledge.
Environmental requirements
ER-01: The system shall be capable of operating in a lunar orbit environment.
ER-01.1: The system shall be capable of operating under a

 

 

SEE error rate of TBD.
ER-01.2: The system shall be capable of operating with a

 

 

TID of up to TDB Gy.
ER-02: The system shall be capable of operating in temperatures ranging from [TBD] to [TBD] [∘ Celsius].

Component-level requirements
Crater detection subsystem
Functional requirements Verification

status
Method Comments

CDT-FR-01.1: The crater detection sub-
system shall be able to detect unobscured
craters from a position in orbit above the
Lunar surface.

Verified Camera simulation Figure 4.4, 4.5, 4.6

CDT-FR-01.2: The crater detection subsys-
tem shall be able to discern individual in-
stanced crater rims.

Verified Camera simulation Figure 4.4, 4.5, 4.6

CDT-FR-01.3: The crater detection sub-
system shall be able to convert a detected
crater rim into parameterised ellipse values.

Verified Analysis Equation 4.5, 4.6,
4.7
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CDT-FR-02.1: The crater detection subsys-
tem shall utilise a hardware accelerator.

Not verified HIL test Out of scope

CDT-FR-03.1: The crater detection subsys-
tem shall be able to generate a set of de-
tected crater rims which comprises parame-
terised ellipses describing the crater rims in
the image plane.

Verified Camera simulation Figure 4.4, 4.5, 4.6

CDT-FR-03.2: The crater detection subsys-
tem shall be able to communicate its state
to the crater identification subsystem and
the

 

 

GNC subsystem.

Not verified
Simulation

 

 

HIL test Out of scope

CDT-FR-03.3: The crater detection subsys-
tem shall be able to communicate detection
confidence values to the matching subsys-
tem.

Verified Analysis

Performance requirements Verification
status

Target
value

Tested
value

Method Comments

CDT-PR-01.1: The crater detection subsys-
tem shall be able to detect craters with atti-
tudes of up to 30 [degrees] away fromnadir-
pointing attitude.

Verified 30 [degrees] 45 [degrees] Camera simulation Figure 4.5

CDT-PR-01.2: The crater detection subsys-
tem shall be able to detect craters in sunlit
conditions with varying sun angles.

Verified 0 to 90 [de-
grees]

0 to 90 [de-
grees]

Camera simulation Figure 4.6,
Table 6.3

CDT-PR-01.4: The crater detection subsys-
tem shall be capable of detecting at least 3
craters per given camera input.

Verified 3 [craters] 56 [craters] Camera simulation Figure 4.4, 4.5, 4.6

CDT-PR-01.5: The crater detection subsys-
tem shall be able to detect craters withmax-
imum ellipse axis error of 3 [pixels].

Verified 3 [pixels] 2.6±1.8 [pix-
els]

Camera simulation

CDT-PR-01.6: The crater detection subsys-
tem shall be able to detect craters withmax-
imum ellipse location error of 3 [pixels].

Verified 3 [pixels] 0.9±0.6 [pix-
els]

Camera simulation

CDT-PR-02.1: The crater detection subsys-
tem shall be able to process input images at
a rate of TBD [Hz].

Not verified TBD [Hz] HIL test Out of scope

CDT-PR-02.2: The crater detection subsys-
tem shall be able to process input images
with a resolution of at least TDB [pixels].

Verified 256 by 256
to 512 by 512
[pixels]

256 by 256
to 512 by 512
[pixels]

Analysis

Position estimation subsystem
Functional requirements Verification

status
Method Comments

CID-FR-01.1: The system shall be able
to match triads of approximately coplanar
craters.

Verified
Pseudo-measurements
Analysis

CID-FR-01.3: The system shall be able to
match detected craters from varying alti-
tudes of at most 500 [km] above the Lunar
surface.

Verified
Pseudo-measurements
Analysis Figure 5.2,

Table 5.1

CID-FR-01.4: The system shall be able to
match detected craters with off-nadir point-
ing camera angles.

Verified
Pseudo-measurements
Analysis Figure 4.5, Equa-

tion 5.3

CID-FR-01.5: The system shall be able to
generate a database specific to a desired
mission profile.

Verified Analysis Figure 5.4

CID-FR-01.6: The system shall be able to
match craters from noisy measurements.

Verified Pseudo-measurements Figure 5.7, 5.8, 5.9

CID-FR-02.1: The system shall be capable
of deriving ego-position estimations from
identified craters and spacecraft attitude
alone.

Verified
Pseudo-measurements
Analysis Figure 5.7, 5.8, 5.9

CID-FR-02.2: The system shall be capable
of rejecting faulty position estimates.

Verified Analysis Figure 5.5

CID-FR-02.3: The system shall be capa-
ble of integrating prior state information
should it be available to improve accuracy.

Not verified
Pseudo-measurements
Analysis Out of scope
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Performance requirements Verification
status

Target
value

Tested
value

Method Comments

CID-PR-01.2: The system shall be able to
create a database for a cratered region that
spans at least 1000 by 1000 [km].

Verified 1000 by 1000
[km]

1500 by 1500
[km]

Pseudo-measurements
Camera Simulation

CID-PR-02.1: The system shall be able to
derive instantaneous ego-position estima-
tions with an average accuracy below 1
[km].

Verified 1 [km] 800 [m]
Pseudo-measurements
Camera Simulation subsection 6.1.1,

Table 2.1 & 6.2

CID-PR-02.3: The system shall be able to
derive ego-position estimation error below
487 [m] when multiple measurements are
combined through state estimation filter-
ing.

Verified 487 [m] 160 [m] Trajectory Simulation Figure 6.7, 6.8

CID-PR-02.4: The system shall be able to
function with an initial state uncertainty of
at most 500 [km].

Verified 500 [km] 500 [km] Trajectory Simulation Figure 6.7, 6.8

Table 7.1: Requirements verification matrix for the proposed system.

The proposed
 

 

TRN system complies with most but not all set requirements, substantiating the claim that
this technology merits further development. The set requirements aim to assess the proposed system’s capac-
ity to provide highly accurate position estimations in challenging - Lost-In-Space (

 

 

LIS) - situations. It is claimed
that the simulation environment made possible through the use of SurRender combined with a custom-built
interface has a high degree of similarity to the actual environment in which this system will be deployed.
Hence, it is concluded that the required levels of performance have been achieved in a representative environ-
ment.

Unfortunately, not all requirements have been verified because of resource constraints. The following
explanations for all unverified requirements are given:

CDT-FR-02.1 This requirement can only be verified with a
 

 

HIL setup. This was attempted by using Intel-
Movidius’ Neural Compute Stick (

 

 

NCS) platform which harbours a Myriad X chip purpose-built
for mobile

 

 

NN inferencing. Ultimately, this work was dropped due to difficulties in translating
a ‘proprietary’

 

 

DL model to a format that could be deployed onto this device. However, there
is enough reason to believe that the model can eventually be deployed given the fact that its
architecture closely resembles that of Mask R-CNN [45], which has been successfully deployed
onto the Myriad platform¹. This requirement has a high priority should the technology proceed
to

 

 

TRL 4.

CDT-FR-03.2 This requirement was added with the knowledge that the system’s adaptivity relies on its ability
to handle all possible situations that may arise during operations. Before this requirement could
be explored further however, the system’s main functionality (position estimation) needed to be
verified. Given that this is the case, further development has to point out how a system that is
reliant on

 

 

AI can effectively communicate (error) states.

CDT-PR-02.1 Similar to CDT-FR-02.1. Once a
 

 

HIL setup is created, the system’s throughput can be assessed.

CID-FR-02.3 Although not necessary for the system to function, it is hypothesised that the reliability, accuracy,
and throughput of the system can be increased by fulfilling this requirement. This requirement
has not been verified due to time constraints.

The viability of the technology being advanced is related to the technical risk and effort required before
the full system can be validated. Knowing the challenges left open before the full system can be validated, it
is concluded that given enough resources this technology can reach

 

 

TRL 4 in less than a year of work. The
effort will mainly focus on repurposing the demonstrator made for this project as a functional and performance
test platform with which an embedded version (engineering model) can be verified to work. Modern software
engineering practices such as automated testing (using e.g. pytest²) can be used to smooth the development

¹https://docs.openvinotoolkit.org
²https://pytest.org

https://docs.openvinotoolkit.org
https://pytest.org
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process. In summary, there is a clear way forward for the proposed system, and current verified requirements
support the claim that the system can be fully validated in a more mature development phase.

7.2. Validation Plan
The value of this research lies in its capacity to demonstrate the performance of a

 

 

TRN system using region-
based object detection in tandem with a projective invariant-based crater pattern matching algorithm. To
this end, the subsystems that have been developed for the demonstrator have both been verified to work
independently, as well as in a full end-to-end system. In fact, the end-to-end system outperforms the pseudo-
measurements used for testing the position estimation subsystem.

The identified need for a highly accurate vision-based navigation solution incorporating
 

 

AI has been re-
flected in the identified system- and component-level requirements. But, as mentioned in section 2.4, the full
system cannot be validated as it requires a more mature iteration of the system along with a higher fidelity
testing environment, ultimately resulting in in-flight tests. However the concept has been demonstrated to
work through analysis and simulation, justifying further development in the form of an engineering model.

Once an engineering model has been built and when it has been established that all components work
together (

 

 

TRL 4), they can be tested to work in a simulated environment. A representative environment can be
constructed by building a to-scale mock up of the lunar surface such as [86]. Another option is to use the same
methodology as this project (scene rendering) but instead of directly feeding raw image data to the system, a
high resolution image can be projected in front of the camera module to fully verify the systems functional-
ity and performance. The latter option has the same benefits as this project’s verification environment: high
flexibility and realism. Using such a setup,

 

 

TRL 5 & 6 iterations can be verified.

The next step (
 

 

TRL 7) is to verify the system in a space environment, meaning the system is (almost) at fully
operational capability. The penultimate verification step is to deploy the system in a demonstration during an
actual mission, however it cannot be a mission-critical component at that time, since it is not yet flight proven
(

 

 

TRL 8). If successful, the system can then be used as mission-critical component, meaning it can be labeled
flight proven (

 

 

TRL 9).



8
Conclusions & Recommendations

This chapter contains the concluding remarks on the research that is presented in this document. The outcome
presents the answers to the posed research questions, after which recommendations are made for future work.

8.1. Outcome
The main research question was formulated to guide the research to assess the performance characteristics
of a

 

 

TRN system that combines region-based object detection with a projective-invariant-based crater pattern
matching technique. This research achieved all three set goals, each of which providing unique results within
the domain of

 

 

TRN and
 

 

AI.

What requirements should a datasetmeant for developing, training, and verifying a Terrain-Relative
Navigation system fulfil?

A dataset generator for training and verifying a
 

 

TRN demonstrator needed to be able to generate physically
accurate scenes with high flexibility. Instead of using static camera images or maps, simulation software
meant for space exploration development called SurRender was used in tandem with a robust data generation
interface that defined all required attributes and methods for scene generation. This meant creating a solid
definition of the coordinate system, camera definition, crater projection pipeline, relative planetary positions,
and finally the simulated camera output. Using its inherent flexibility, a virtually limitless amount of data can
be generated for the purpose of developing, training, and verifying a

 

 

TRN algorithm.

The creation of the data generation pipeline was further justified during the development and training of
the

 

 

CDA, where it proved capable of generating training data in the right format for a region-based object
detection model. Further assessing the system for its ability to work under varying attitude and sun angles
was made realistic and easier by the interfaces provided by the data generation class. Similarly, during the
development of the position estimation algorithm the pipeline aided in verifying the functionality and perfor-
mance through pseudo-measurement test. For verifying the end-to-end system a new validation set of 50000
unique images along with ground truth positions was made. This meant that enough results were generated
for a statistical analysis into the performance of the full system. Finally, the pipeline was used in tandem with
a simulated Kepler orbit, generating simulated camera input from position along the orbit.

This document described a novel method to generate data for training and testing a modern
 

 

DL model,
meaning that its use is not limited to the development of the specific system proposed in this paper. Further-
more, the flexibility and realism introduced by the SurRender software package is deemed to be an improve-
ment for verifying

 

 

TRN systems compared to static data. Its capacity to use
 

 

DEM and texture data dynamically
with state-of-the-art rendering techniques results in a more representative environment of a real-world situa-
tion.
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Is a Crater DetectionAlgorithmusing region-based object detection sufficiently robust for a Terrain-
Relative Navigation system?

Region-based object detection models have been used before in
 

 

CDAs, however they have not been developed
to output ellipses fit to crater rims in the image plane before. This is a necessity considering the chosen type
of crater pattern matching technique requires crater shape information.

This research presents a novel
 

 

CDA method based on Ellipse R-CNN, which has the capacity to detect
instanced crater shapes directly. Instanced detection has the distinct benefit of removing the need for sensi-
tive post-processing steps like those required if semantic segmentation models such as DeepMoon are used.
Furthermore, directly predicting ellipse shape parameters is computationally more efficient compared to mask
generation and allows the model self-engineer the logic that replaces the post-processing steps through train-
ing. This property was used to train the model to minimise the same metric that determined a good ellipse
fit in the crater pattern matching algorithm - a novelty in itself. Essentially this proves the effectiveness of
developing both subsystems to serve the same end-goal instead of reusing

 

 

CDAs developed for other purposes,
such as crater counting. Furthermore, the system proved robust against changes in spacecraft attitude and
exogenous factors such as sunlight and terrain types. Faulty detections are still present, but considering the
complex nature of the input data this is to be expected. Putting this result into the context of

 

 

TRN amelio-
rates this problem somewhat, since a certain fraction of misfitted ellipses is acceptable as long as position
estimations can be made. There is room for further performance improvements, however the proposed

 

 

CDA’s
functionality is robust enough for

 

 

TRN. In conclusion, given the complexity of the input data, it is claimed
that a

 

 

CDA using region-based detection is a valid choice for a
 

 

TRN system.

How does an absolute position estimation algorithm perform in tandem with a Crater Detection
Algorithm using region-based object detection?

Another novelty presented by this research is the combination of a projective-invariant-based crater pattern
matching algorithm with position estimation capability in tandem with a purpose-built

 

 

CDA. The applied
techniques for solving the

 

 

LIS position estimation problem are relatively new at the time of writing, and have
therefore not yet been integrated into an end-to-end

 

 

TRN system. Functionally aligning both the crater de-
tection subsystem with the crater identification and position estimation subsystem allowed for effective si-
multaneous design. Combined with a representative simulation environment, an integrated

 

 

TRN solution was
developed.

Performance tests have shown that the assembled
 

 

TRN system meets its functional requirements. The
match rate of the complete system in instantaneous performance tests is lacking at only 16%, however the
accuracy with which the system is able to derive ego-position from merely camera input and attitude state
information is within margin even without the use of a state estimation filter. The results show a median po-
sition error of 800 [m], with an unbiased error profile. In conclusion, the combined performance of the novel

 

 

CDA and the

Is region-based object detection a suitable method for a Lost-In-Space Terrain-Relative Navigation
system?

Further tests in which the proposed system combined with an Extended Kalman Filter (
 

 

EKF) was tested in a
simulated orbit around the Moon show that even from a completely uninitialised state - a

 

 

LIS situation - the
state error could be decreased to 160 [m] using only absolute position updates. The results of this implemen-
tation show that the system functionally complies with the definition of a

 

 

LIS
 

 

TRN, meaning it is capable of
initialising state estimation filters often present in

 

 

GNC subsystems without prior knowledge. The accuracy
with which it achieves this is in most cases within the set margins, meaning the detection rate and accuracy is
good enough for navigation algorithms. It is concluded that the proposed

 

 

CDA combined with a crater match-
ing and ego-position algorithm are very well suited for

 

 

TRN systems, supporting a high degree of autonomy
through its ability to work in extreme (

 

 

LIS) circumstances.
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8.2. Recommendations
The proposed system presents a novel

 

 

TRN algorithm using an
 

 

AI-based detection model in combination with
crater pattern matching. Future development for improving the system should focus on five subjects: data
generation improvements, better integration of a state estimation filter, database improvements, and creating
an engineering model.

• The data generation pipeline as described in this document is a flexible method of generating limitless
data points for the purpose of developing, training, and validating a

 

 

TRN system. The setup currently
is not deemed capable of returning representative images at low altitudes because of the limited reso-
lution in the source

 

 

DEM. Therefore future work should focus on finding or generating a higher fidelity
dataset for simulating the system’s performance at lower proximity to the Lunar surface. Furthermore,
being able to generate pseudo-measurements such as star tracker and

 

 

IMU output in real-time is a valid
addition to the data generation class, resulting in a testing environment that resembles reality even
closer.

• The proposed
 

 

CDA currently only accepts a single image at a time to form a static output of ellipses
fitted to crater rims. This is partially due to the initial focus on instantaneous position estimation per-
formance. However the system’s performance is best validated in a trajectory simulation, given the fact
that this is more representative of the actual environment in which the system must operate. Using
several images over time spent in orbit as input could allow the model to learn relationships between
translated versions of a crater (in the image plane) and the spacecraft’s state (positional and rotational).
A good point to start further research into this is to survey the state-of-the-art of autonomous driving.
Essentially, a highly integrated detection model that accepts multiple inputs and which integrates a

 

 

DL-based state estimation filter based on for example a Long Short Term Memory (
 

 

LSTM) model could
offer great performance benefits.

• The methodology for creating the database presented in this paper is in some part novel, however imple-
mentation improvements are required before deploying on an embedded target. Because this system’s
functionality and performance was demonstrated to work on a workstation, run times were not consid-
ered. Effort has been put into creating an efficient querying functionality through a 𝑘-d tree, however
the library used to achieve this lacked the capability of querying with normalised difference per-axis,
resulting in sub-optimal performance. This is a difficult problem, since the database is built beforehand,
yet querying needs to apply some sort of weighted distancemetric to accurately retrieve the𝑁 most alike
crater triads. A custom implementation in a compiled language such as C++ may offer the flexibility
and speed for real-time querying.

• Then, once the software implementation all set requirements, the system is ready for deployment onto
an embedded target. Before this is done however, separate

 

 

CDA model performance testing can be
performed by using a

 

 

HIL testing setup that only runs the model inference step on a mobile hardware
accelerator like a Myriad X. These chips are relatively inexpensive and feature USB connectivity for
development purposes. After verifying that the model runs at an acceptable rate on this accelerator,
it can be combined with a separate embedded processor for database querying and state estimation
filtering to form an end-to-end engineering model for physical tests. These tests can either use similar
simulated camera input or use actual camera input from a Lunar surface mock up.

Finally, the reader is encouraged to examine the associated repository containing all the required (Python)
code that was written for this project. Cloning this repository is similarly encouraged to promote further
research into developing an open source

 

 

TRN demonstrator.
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A.1. Systems Engineering
A.1.1. Full Functional Flow Diagram
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Figure A.1: Full functional flow diagram for proposed
 

 

TRN system.
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A.2. Detection Model

A.2.1. Backbone First Convolutional Layer Weights

0 1 2 3 4 5 6 7

1 3 5 7 9 11 13 15

2 5 8 11 14 17 20 23

3 7 11 15 19 23 27 31

4 9 14 19 24 29 34 39

5 11 17 23 29 35 41 47

6 13 20 27 34 41 48 55

7 15 23 31 39 47 55 63

Figure A.2: Visualisation of the weights for all convolutions for the first layer of a trained crater detector using a ResNet50 backbone.
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A.2.2. Backbone First Convolutional Layer Output
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Figure A.3: Example input for Figure A.4.
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0 1 2 3 4 5 6 7

1 3 5 7 9 11 13 15

2 5 8 11 14 17 20 23

3 7 11 15 19 23 27 31

4 9 14 19 24 29 34 39

5 11 17 23 29 35 41 47

6 13 20 27 34 41 48 55

7 15 23 31 39 47 55 63

Figure A.4: Visualisation the output of the first layer of a trained crater detector with a ResNet50 backbone on an example input image.

A.2.3. Kullback­Leibler Divergence

𝑑𝐾𝐿(𝒩𝑖||𝒩 ∗𝑖 ) = 1
2 (Tr(∑∗

𝑖 ∑𝑖) + (𝑚𝑚𝑚∗𝑖 −𝑚𝑚𝑚𝑖)𝑇∑∗
𝑖 (𝑚𝑚𝑚∗𝑖 −𝑚𝑚𝑚𝑖) − 2 + ln ( |∑

∗
𝑖 |

| ∑𝑖|
)) (A.1)

A.3. Coplanar Invariants
A.3.1. Derivation
Source: p. 52, 53 from [17].

|𝜆𝐴𝐴𝐴𝑖+𝜇𝐴𝐴𝐴𝑗 +𝜎𝐴𝐴𝐴𝑘 | = Θ1𝜆3+Θ2𝜆2𝜇 +Θ3𝜆𝜇2+Θ4𝜇3+Θ5𝜆2𝜎 +Θ6𝜆𝜎2+Θ7𝜎3+Θ8𝜇2𝜎 +Θ9𝜇𝜎2+Θ10𝜆𝜇𝜎, (A.2)

Θ1 = |𝐴𝐴𝐴𝑖| (A.3)

Θ4 = |𝐴𝐴𝐴𝑗 | (A.4)

Θ7 = |𝐴𝐴𝐴𝑘 | (A.5)
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and

Θ2 = Θ1Tr[𝐴𝐴𝐴−1𝑖 𝐴𝐴𝐴𝑗], Θ3 = Θ4Tr[𝐴𝐴𝐴−1𝑗 𝐴𝐴𝐴𝑖], (A.6)

Θ5 = Θ1Tr[𝐴𝐴𝐴−1𝑖 𝐴𝐴𝐴𝑘], Θ6 = Θ7Tr[𝐴𝐴𝐴−1𝑘 𝐴𝐴𝐴𝑖], (A.7)

Θ8 = Θ4Tr[𝐴𝐴𝐴−1𝑗 𝐴𝐴𝐴𝑘], Θ9 = Θ7Tr[𝐴𝐴𝐴−1𝑘 𝐴𝐴𝐴𝑗], (A.8)

with Θ10 being a coefficient that depends on all three conics, therefore being entirely unique to a single
triad given by

Θ10 = 1
2𝑇 𝑟[(𝐴𝐴𝐴𝑗 +𝐴𝐴𝐴𝑘)∗ − (𝐴𝐴𝐴𝑗 −𝐴𝐴𝐴𝑘)∗]𝐴𝐴𝐴𝑖. (A.9)

Setting

|𝐴𝐴𝐴𝑖| = |𝐴𝐴𝐴𝑗 | = |𝐴𝐴𝐴𝑘 | = 1, (A.10)

results in 7 coplanar invariants for a crater triad

𝐼𝑖𝑗 = 𝑇 𝑟[𝐴𝐴𝐴−1𝑖 𝐴𝐴𝐴𝑗] (A.11)

𝐼𝑗𝑖 = 𝑇 𝑟[𝐴𝐴𝐴−1𝑗 𝐴𝐴𝐴𝑖] (A.12)

𝐼𝑖𝑘 = 𝑇 𝑟[𝐴𝐴𝐴−1𝑖 𝐴𝐴𝐴𝑘] (A.13)

𝐼𝑘𝑖 = 𝑇 𝑟[𝐴𝐴𝐴−1𝑘 𝐴𝐴𝐴𝑖] (A.14)

𝐼𝑗𝑘 = 𝑇 𝑟[𝐴𝐴𝐴−1𝑗 𝐴𝐴𝐴𝑘] (A.15)

𝐼𝑘𝑗 = 𝑇 𝑟[𝐴𝐴𝐴−1𝑘 𝐴𝐴𝐴𝑗] (A.16)

𝐼𝑖𝑗𝑘 = 𝑇 𝑟[(𝐴𝐴𝐴𝑗 +𝐴𝐴𝐴𝑘)∗ − (𝐴𝐴𝐴𝑗 −𝐴𝐴𝐴𝑘)∗]𝐴𝐴𝐴𝑖 (A.17)

A.4. Extended Kalman Filter Values

𝑄 =

⎡⎢⎢⎢⎢⎢
⎣

1.25𝑒 − 08 0.00𝑒 + 00 0.00𝑒 + 00 2.50𝑒 − 07 0.00𝑒 + 00 0.00𝑒 + 00
0.00𝑒 + 00 1.25𝑒 − 08 0.00𝑒 + 00 0.00𝑒 + 00 2.50𝑒 − 07 0.00𝑒 + 00
0.00𝑒 + 00 0.00𝑒 + 00 1.25𝑒 − 08 0.00𝑒 + 00 0.00𝑒 + 00 2.50𝑒 − 07
2.50𝑒 − 07 0.00𝑒 + 00 0.00𝑒 + 00 5.00𝑒 − 06 0.00𝑒 + 00 0.00𝑒 + 00
0.00𝑒 + 00 2.50𝑒 − 07 0.00𝑒 + 00 0.00𝑒 + 00 5.00𝑒 − 06 0.00𝑒 + 00
0.00𝑒 + 00 0.00𝑒 + 00 2.50𝑒 − 07 0.00𝑒 + 00 0.00𝑒 + 00 5.00𝑒 − 06

⎤⎥⎥⎥⎥⎥
⎦

(A.18)

𝑅 = [
0.1 0. 0.
0. 0.1 0.
0. 0. 0.1

] (A.19)
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A.5. Code Repository
Because this project required the creation of a significant amount of code (over 4500 lines of Python), it was
decided that the best way to share this is through a public online repository hosted on GitHub. This allows the
reader to search through the code, and clone it for their own use. The code is shipped with an MIT license¹.
Click (if reading with a PDF viewer) or scan the QR-code given in Figure A.5 to access it.

Figure A.5: GitHub Repository QR code.

A.6. Workstation Specifications

Component Name
Central Processing Unit AMD Ryzen 7 5800X, 8C16T
Graphics Processing Unit NVIDIA RTX 3080
RAM 32 GB 3600 MHz, C18
SSD 1TB Samsung 980 Pro

Table A.1: Workstation specifications.

¹https://opensource.org/licenses/MIT

https://github.com/wdoppenberg/crater-detection
https://opensource.org/licenses/MIT
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