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Summary

The rapid advancements in nanopore sequencing technology have revolutionized the field of genomics,
enabling cost-effective and high-throughput long-read DNA sequencing. However, the basecalling pro-
cess, which involves translating the raw electrical signals generated by nanopores into nucleotide se-
quences, remains a computational bottleneck. This thesis explores the potential of recent sequence-
to-sequence (s2s) models from the deep learning literature to improve the accuracy and throughput
trade-off in basecalling.

We begin by providing a comprehensive background on the complexity of nanopore sequencing, delv-
ing into the physical process and the challenges associated with mapping nanopore signals to DNA
bases. We then introduce and compare various s2s models, including recurrent neural networks
(RNNs), trans- formers, and state-space models (SSMs), highlighting their computational properties
and suitability for the basecalling task. Additionally, we discuss techniques for producing variable-
length outputs, such as conditional random fields (CRFs) and connectionist temporal classification
(CTC), and consider hardware performance aspects crucial for efficient basecalling.

To gain a deeper understanding of basecalling, we conduct experiments to illustrate the properties
of basecalling data and investigate the reasons behind the superior performance of long short-term
memory (LSTM) networks in this domain. Through ablation studies and interpretability analysis, we
uncover key insights into the architectural components that contribute to the effectiveness of RNNs for
basecalling.

Building upon these findings, we explore a wide range of s2s models and propose novel architectures
tailored for basecalling. We introduce the ParallelRNN, a parallel formulation of RNNs that leverages
the locality of information in basecalling to achieve high throughput without compromising accuracy.
Additionally, we present DenseBaseConv, a convolutional architecture designed to focus on learning
the signal function and capture local dependencies efficiently.

Extensive experiments on large-scale datasets demonstrate the potential of our proposed models to
push the Pareto frontier of throughput-accuracy trade-offs in basecalling. We showcase the impact
of distillation techniques in enhancing the performance of existing models and highlight the competi-
tive performance of ParallelRNN and DenseBaseConv compared to state-of-the-art basecallers. Our
analysis also sheds light on the scalability challenges and the importance of custom kernel implemen-
tations for fully realizing the potential of these architectures.

This thesis makes significant contributions to the field of basecalling by providing a comprehensive
overview of modern s2s models, introducing novel architectures tailored for high-throughput base- call-
ing, and offering valuable insights into the computational properties and optimization strategies for
efficient basecalling. Our findings pave the way for future research on developing even more accu-
rate and computationally efficient basecallers, ultimately accelerating the progress in genomics and
enabling groundbreaking discoveries in various domains, from personalized medicine to evolutionary
biology.
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1
Introduction

1.1. Context
The study of DNA is fundamental to answering what has been called ”one of the oldest questions in
science” [58], namely that of nature and nurture. Genomics in particular is a fruitful and increasingly
popular area of study that has added to humanity’s informational heritage a novel deep and functional
understanding of, broadly, life on our planet, from pathological patterns such as cancers, genetic dis-
eases, to healthy ones such as GMOs and regenerative medicine.

A data that is essential to the study of DNA is the exact nucleotide sequence that forms a genome.
Being able to read it at a relatively low cost has largely helped the aforementioned discoveries, but for
a long time this has only been cost-effective when doing short-read sequencing, where short and dis-
connected parts of a genome are read, or genotyping, where only specific gene variants are measured.
A more valuable data is the collection of the whole genome of a living being. This technique is called
long-read sequencing. The advent of long-read DNA sequencers developed by i.e. Oxford Nanopore
Technologies over the past decade represents a new large step in whole-genome sequencing because
it is multiple orders of magnitude cheaper.

Long-read sequencing can be subdivided into two phases: producing signals that contain information
potentially revealing a DNA sequence using chemical processes, and analyzing the signal to extract the
underlying DNA sequence into a digital representation. This analysis, depicted in figure 1.1 consists of
the recognition of bases from the raw signals, called basecalling, and a series of post-processing steps
that combine the basecalling data into a highest-probability final sequence.

While both phases are important to the accuracy of long-read sequencing, recent findings indicate
that the main challenges are in the basecalling part. Due to a multitude of factors including noise
and the non-linearity of the relationship between the signal and the bases, only probabilistic models
have achieved a high enough accuracy in basecalling to be useful for genomics research, in particu-
lar deep learning models, and while they have achieved significant accuracy levels, the best models
have high computational requirements that can limit their usefulness. Different trade-offs of throughput
(amount of signal processed per second) and accuracy are used by scientists depending on their use
of the output. Specifically, current state-of-the-art models are potentially limited by their reliance on the
LSTM architecture, which has unfavorable computational characteristics. Currently, basecalling has
the longest duration part of the process in long-read genomics analysis workflows while additionally
requiring expensive high-end compute hardware to run those probabilistic models.

To illustrate the computational requirements of long-read sequencing, we take the example use-case
of reading DNA bases in real time. This would allow scientists to have fully-basecalled data right
when the machine is done producing signals. For this, we take two popular long-read sequencing
machines, Oxford Nanopore’s MinION and PromethION. Both read DNA at the same speed per DNA
strand, 400 bases per second. On average, we measure 8 electrical current samples per base, so
the machine produces 3200 current samples per second. But because these machines have multiple

1



1.2. Problem definition and research questions 2
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Figure 1.1: Top: basecalling takes 43% of the time in a nanopore genome sequencing pipeline. Bottom: during basecalling,
almost 90% of the computing time is spent computing the LSTM layers’ outputs. Illustration from [26].

nanopores that can read separate DNA strands in parallel, the MinION produces 512 × 3200 ≈ 1.6M
samples per second. PromethION generates 128′400 × 3200 ≈ 410M million samples per second. A
deep learning model attempting to basecall a running PromethION machine at its maximum throughput
configuration has to process 128’400 current samples within a budget of 1/3200 = 312μs. This high
sample rate necessitates a software-hardware compute solution that is able to sustain the required
compute throughput.

At the same time, recent developments in sequence-to-sequence (s2s) modeling present new avenues
for potential improvements in basecalling accuracy and efficiency. Variations of the transformer archi-
tecture, originally designed for natural language processing tasks, have been developed to maintain
its abilities while enhancing its hardware performance. Additionally, novel LSTM architectures and
even models of a completely different nature, such as state-space models, have emerged as poten-
tial alternatives to traditional approaches. These advancements in deep learning architectures call for
a thorough investigation into their applicability and potential benefits in the context of basecalling for
long-read sequencing.

This thesis explores the potential of these new deep learning sequence-to-sequence models to ac-
celerate the basecalling process. By examining various architectures, including transformer variants,
advanced LSTM designs, and state-space models, we aim to identify novel approaches that could sig-
nificantly improve both the speed and accuracy of basecalling. The research focuses on investigating
those new sequence models and their potential for building faster, and more accurate, basecallers.

1.2. Problem definition and research questions
The main problem this thesis tackles is the lack of understanding of the impact of recent sequence-to-
sequence models on the task of basecalling.

To address this problem, we focus on answering the following research questions:

1. What are the recent developments in efficient sequence-to-sequence modeling in deep learning?
2. What is the impact of recent developments in efficient sequence-to-sequencemodeling on improv-

ing the accuracy/throughput trade-off, or the accuracy/latency trade-off for the task of basecalling?

1.3. Thesis outline
This thesis is organized as follows:

• Chapter 1: Introduction
This chapter introduces the concept of basecalling, providing a description of the problem.

• Chapter 2: Background
This chapter introduces basic notions that will be used throughout the thesis, including a theoret-
ical analysis of the process of basecalling, the multiple sequence-to-sequence models from the
deep learning literature, and important concepts concerning the hardware we will run benchmarks
on.
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• Chapter 3: Understanding basecalling
Here, we present experiments illustrating the properties of basecalling data, investigate why
LSTMs perform well in this task, and analyze state-of-the-art models using interpretability tools.
A preliminary comparison of different sequence-to-sequence (s2s) models for basecalling accel-
eration is also included.

• Chapter 4: Sequence to sequence models
We explore various candidate sequence-to-sequence methods and compare their computational
properties.

• Chapter 5: Novel architectures for basecalling
This chapter details the final candidate models chosen for evaluation based on throughput/accu-
racy and latency/accuracy trade-offs. We present the reasoning behind their selection and the
experiments conducted for their development.

• Chapter 6: Overall experimental results
We study the accuracy and throughput properties of the final models, comparing them with exist-
ing LSTM and Transformer-based models.

• Chapter 7: Conclusions and future work
We wrap up the thesis with general conclusions from the paper, along with avenues for future
research.

1.4. Contributions
In the interest of finding faster basecallers, this thesis made the following contributions:

• An overview of novel sequence-to-sequence neural network architectures
• A reproduction of LSTM and transformer-based state-of-the-art basecallers
• A detailed ablation study of state-of-the-art recurrent architecture
• Introduction of a new kind of sequence-to-sequence model block called the Markov model
• An analysis of the accuracy/throughput tradeoffs offered by selected sequence-to-sequence mod-
els



2
Background

In this section, we introduce important background knowledge that is relevant for the rest of this thesis.
In general, they relate to the different stages of a basecaller as depicted in figure 2.1. Specifically,
section 2.1 corresponds to the original signal, section 2.2 to the encoder, and 2.3 the decoder. Section
2.4 discusses the hardware considerations we must take into account given that this thesis involves
the extensive use of performance benchmarks, which depend on the hardware involved.

Conv1d, k=5 + SiLU, stride=1

Conv1d, k=5 + SiLU, stride=1

Conv1d, k=19 + SiLU, stride=1

5 x LSTM + Reverse

original signal

CRF

CNN

Encoder

Decoder

Figure 2.1: The architecture of the Bonito basecaller as implemented in [61], along with example outputs of the different layers
with a given input sequence on the left column, the basic structure of the neural network in the middle column, and in the right
column the basic structure which the different basecallers present in this thesis have in common (CNN, Encoder and Decoder).
The model has dimensionality 96 and was trained for 5 epochs on the 52GB dataset. The outputs of the third convolution, the

LSTM and CRF show lower-dimensionality vectors obtained through the PCA method [23].

2.1. Complexity of nanopore sequencing
To achieve better accuracy and throughput trade-offs in basecalling, it is crucial to identify and incorpo-
rate inductive priors based on the intrinsic nature of the input data. One example of this is the Xception
architecture [12] which was found to be on the Pareto front of accuracy and throughput for the task
of image recognition in a paper performing a comprehensive benchmark analysis of models designed
for this task (see figure 3 of [7]). Their key insight was built upon previous work proposing to modify
the model’s layers such that correlations between different locations in the image, and correlations be-
tween different features extracted by the image at one location in the image, are separated into two
layers. In this section, we describe the source of nanopore current signals and examine the challenges
in mapping these signals to their corresponding DNA bases from its physical process. Therefore, this
section describes a physical model for the process of basecalling, and section 3.1 presents a statistical
model.

4



2.1. Complexity of nanopore sequencing 5

2.1.1. Overview of nanopore sequencing
At its core, basecalling aims to associate sequences of electrical current measurements (which we
will call the signal) with the four DNA bases (A, C, G, and T). Ideally, each base would generate a
characteristic current level, enabling a straightforward one-to-one mapping between current level and
bases. Such as scenario would allow simple intervals of the signal intensity to be defined for every base,
and the current to be converted to a list of bases. A visualization of the physical process of basecalling
is shown in figure 2.2 to clarify how the DNA strand moves along the nanopore protein, blocking the
flow of ions and producing a measurable perturbation to the measured electrical current.

However, real basecalling is more complex due to factors such as the presence of signal noise, temporal
fluctuations inherent to nanopore sequencing, and the length of the nanopore itself, which causes
multiple bases to be present in the nanopore at the same time such that they affect the signal together
(this is denoted as a k-mer nanopore for k bases present in the nanopore at the same time). There are
efforts to model the creation of this signal (by designing simulators), meaning they generate a realistic
signal from a base sequence. Squigulator [27], which to the best of our knowledge is the state of the art
in generating these simulations without the use of deep learning, models signal variation using temporal
fluctuations and amplitude noise exclusively to achieve realistic signal generation, and proceed to show
how they affect a trained basecaller’s accuracy in realistic ways, so that for example when one kind of
noise is removed, the basecaller shows better accuracy than on real basecalling data even though it
was trained on real basecalling data.

Figure 2.2: Depiction of the structure of a nanopore containing all essential components. (a) is the DNA strand, split into half
by (b) the polymerase, which also serves to slow down the speed at which DNA goes through the (c) CsgG protein, a popular
protein for nanopore sequencing. As charged ions go through the about 12 angstrom-wide (d) sensing region, the current is
perturbed by the DNA strand, by an amount that depends on the specific bases present in the sensing region. The charged
ions cannot go around the protein due to the (e) membrane, and are pulled through by an induced (f) electrical potential, or

voltage. Measurements from [9], illustration modified from [43].
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2.1.2. Nanopore sequencing as a complex deep learning task
As different deep learning tasks have different levels of complexity, so they have different requirements
in terms of the neural network architectures that can best solve them (i.e. [21] showing a transformer-
based model that captures long dependencies in images better than previous CNN-based models, [71]
showing theoretical representational limitations in neural networks for a given depth). One way tasks
like image classification or language modeling have accounted for those requirements is by increasing
the model size, however in a task like basecalling where the desired throughput is on the order of mil-
lions of inputs per second, which generally limits the parameter count of the basecaller, neural network
architectures with fundamentally different computational characteristics and types of patterns that can
be recognised will lead to different accuracies at the task at hand. There have been previous work on
the differing abilities of multiple sequence-to-sequence neural networks to model sequences of varying
levels of complexity. One work uses the Chomsky hierarchy, which is a classification of languages that
can be generated according to a series of rules (denoted as formal languages) to represent different
levels of complexity in a dataset. It explored how single layers of the aforementioned neural networks
(transformer, LSTM) fundamentally differ in their ability to model character sequences belonging to
those languages, depending on the language’s location in the hierarchy. This revealed that RNN mod-
els are able to represent more complex formal languages than transformer models[20]. Further work
explored adding multiple layers, and found that with multi-layer neural networks, the number of layers
of a model determines its ability to recognize more complex languages [56]. This is pertinent to our
work because if we frame sequence-to-sequence models as inductive biases (since they are subsets
of a dense and deep neural network taking the whole sequence as an input), the findings strongly sug-
gest that those biases are key to achieving low layer count, and therefore greater efficiency in modeling
complex data.

To better understand the question of what results into this signal, we refer to a paper describing a
process using the physics-based finite element method to simulate basecalling at high temporal and
spatial resolution [78]. Specifically, we examine the Poisson-Nernst-Planck-Stokes (PNPS) equations
used to describe the signal:

∇ · (ϵ0ϵr∇ϕ) = −(ρfpore + ρion) (2.1)
∂ci
∂t

= −∇ · (Di∇ci + ziµici∇φ− uci +Diβici) (2.2)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ η∇2u+ F ion (2.3)

Equation (2.1) is Poisson’s equation relating the electric potential ϕ to the fixed charge density of the
nanopore ρfpore and the mobile ion charge density ρion. Equation (2.2) is the Nernst-Planck equation
describing the transport of ions with concentration ci, where Di is the diffusion coefficient, µi is the elec-
trophoretic mobility, u is the fluid velocity, and βi accounts for steric effects. Equation (2.3) represents
the Navier-Stokes equations for fluid flow, with pressure p, viscosity η, and the ionic body force F ion.

The simulated ionic current Isim through the nanopore is obtained by integrating the total ionic flux
across the reservoir boundary S:

Isim = F

∫
S

∑
i

ziJ i · n dS (2.4)

where F is Faraday’s constant, zi is the charge number of ion i, J i is the ionic flux, and n is the unit
normal vector to the surface S. This equation captures the contributions from diffusion, electrophore-
sis, convection, and steric effects, as well as the influence of the electrostatic potential and fluid flow,
providing an accurate simulation of the ionic current in nanopore sequencing.

Upon closer examination of the terms in the PNPS equations, we can identify several potential sources
of non-linearity in the current signal:

1. The Poisson equation establishes a relationship between the electric potential and the charge density,
encompassing both the fixed charges of the nanopore and the mobile ion charges. The non-linear
coupling between the potential and ion concentrations can give rise to intricate current patterns.
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2. The Nernst-Planck equation describes the transport of ions, which is governed by the electric field
and concentration gradients. The interplay between these factors can result in non-linear ion fluxes.

3. The Navier-Stokes equations dictate the fluid flow, driven by pressure gradients and body forces
such as the electric field acting on the ions. The presence of the convective term (u · ∇u) introduces
non-linearity into the fluid dynamics.

The existence of these non-linear terms in the PNPS equations suggests that the mapping between
DNA bases and current signals is likely to be non-linear and context-dependent. Implicit in these equa-
tions is also the impact of geometry, which not only causes disturbances in the signal along the time
dimension, but also can cause changes in the current depending on the specific position of the DNA
strand within the nanopore.

2.2. Sequence to sequence models
Multiple models exist in the literature to model sequences, in this section we introduce the relevant
equations and details to understand how they work. Further comparison in terms of accuracy at base-
calling and maximum throughput can be found in Chapter 4, in figure 4.1.

2.2.1. Recurrent Neural Networks (RNNs)
Recurrent Neural Networks are a class of neural networks that are particularly well-suited for processing
sequential data. Unlike feedforward neural networks, RNNs possess an internal state that allows them
to capture temporal dependencies within the data.

Elman Recurrent Neural Networks (Elman RNNs)
Elman Recurrent Neural Networks [22] are one of the simplest forms of RNNs. They are composed
of an input layer, a recurrent hidden layer that captures the temporal dependencies by maintaining an
internal state, and an output layer. The network’s equations are given by:

ht = tanh(Whxt + Uhht−1 + bh) (2.5)
yt = ϕ(Wyht + by) (2.6)

where tanh and ϕ denote the activation functions, and Wh, Uh, bh, Wy, and by are parameters that
need to be learned during training. While Elman RNNs can capture temporal dependencies, they often
struggle with long-term dependencies due to their gradients either vanishing or exploding (this was
called vanishing or exploding error flow in the original LSTM paper [37]). What is meant by this is
that because the same weight matrix is applied at every iteration, the errors it accumulates from every
timestep (due to the fact that every output depends on all previous inputs) increases or decreases over
the sequence length in a trivial way (depending on distance in the sequence dimension, instead of
depending on both distance and the specific vectors of the input sequence). Exploding gradients can
cause large gradients that, when applied, cause the model’s accuracy to collapse, and its loss to spike.
Vanishing gradients can stop the RNN from learning longer distance relationships in the data.

Long short-term memory networks
Long Short-Term Memory (LSTM) networks [37] are a specific type of RNN designed to address the
vanishing gradient problem that plagues vanilla RNNs (see previous section on Elman RNNs). LSTMs
introduce a memory cell ct and three gates: input gate it, forget gate ft, and output gate ot. The
network’s equations are given by:

ft = σ(Wfxt + Ufht−1 + bf ) (2.7)
it = σ(Wixt + Uiht−1 + bi) (2.8)
ot = σ(Woxt + Uoht−1 + bo) (2.9)
c̃t = tanh(Wcxt + Ucht−1 + bc) (2.10)
ct = ft ⊙ ct−1 + it ⊙ c̃t (2.11)
ht = ot ⊙ tanh(ct) (2.12)

where σ denotes the sigmoid activation function and ⊙ represents the element-wise product. The
gating mechanism of LSTMs equips them to learn long-term dependencies, making them effective for
basecalling tasks.
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The LSTM architecture includes three crucial gates that regulate the flow of information through the
network, enabling it to capture long-term dependencies. The input gate it (Equation 2.8) controls how
much of the new information from the current input xt and the previous hidden state ht−1 is stored in
the cell state ct. The forget gate ft (Equation 2.7) determines the extent to which the previous cell
state ct−1 is forgotten, thereby allowing the network to discard irrelevant information. The output gate
ot (Equation 2.9) decides how much of the cell state ct should be exposed to the next hidden state
ht, which affects the output for the current time step. These gates work together to update the cell
state ct and hidden state ht, ensuring that important information is retained over long sequences while
irrelevant data is discarded. The candidate cell state c̃t (Equation 2.10) represents the new candidate
values for the cell state, which are added to the cell state based on the input and forget gate values.

Gated recurrent units
Gated Recurrent Unit (GRU) networks [11] are a variation of RNN designed to address the vanishing
gradient problem while simplifying the LSTM architecture. GRU networks combine the forget and input
gates into a single update gate, and merge the cell state and hidden state. The network’s equations
are given by:

zt = σ(Wzxt + Uzht−1 + bz) (2.13)
rt = σ(Wrxt + Urht−1 + br) (2.14)

ĥt = ϕ(Whxt + Uh(rt ⊙ ht−1) + bh) (2.15)

ht = (1− zt)⊙ ht−1 + zt ⊙ ĥt (2.16)

where σ denotes the sigmoid activation function, ϕ denotes the hyperbolic tangent activation function,
and⊙ represents the element-wise product. The GRU, with its simplified gating mechanism, is effective
in learning long-term dependencies and offers an efficient alternative to LSTMs for basecalling tasks.
The rest of the variables are:

• xt ∈ Rd: input vector
• ht ∈ Re: output vector
• ĥt ∈ Re: candidate activation vector
• zt ∈ (0, 1)e: update gate vector
• rt ∈ (0, 1)e: reset gate vector

And the parameters:

• W ∈ Re×d, U ∈ Re×e, b ∈ Re: parameter matrices and vector which need to be learned during
training.

In our case, following the Bonito architecture as in [61], we consider dimensionalities e and d to be
equal. In basecalling, input vectors of the first GRU layer typically represents information about the
signal, whereas output vectors represent probabilities of bases in the nanopore at that step in time. The
candidate activation vector represents the addition of new information into the previous output vector,
so we may consider the GRU as applying modifications to the previous step’s output vector along
the whole input sequence. The update gate vector determines how much of the candidate activation
vector should replace information from the previous output vector. As the candidate activation vector
represents new information to include in the current output vector, the reset gate filters the previous
output’s information before it is used to compute the current step’s output vector.

Notice that instead of performing eight matrix multiplications (denoted asW andU matrices in equations
2.7 to 2.16), the GRU allows to only perform six, thereby reducing total floating points by about 25%
since most of the FLOPs (Floating Point Operations) come from the matrix multiplications because its
computational complexity (number of mathematical operations depending on the input dimensions) is
quadratic for varying input dimensionalities, whereas all other operations have linear computational
complexity.
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2.2.2. Transformers
Transformers [75] have revolutionized the field of sequence modeling [2], particularly in natural lan-
guage processing (NLP). They rely entirely on the self-attention mechanism to capture dependencies
across sequences, thereby eliminating the need for recurrence.

Self-attention mechanism
The self-attention mechanism computes the attention weights to focus on specific parts of the input
sequence:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (2.17)

Here, Q, K, and V are the query, key, and value matrices, respectively, and dk is the dimensionality of
the key vectors. The Transformer architecture stacks multiple layers of self-attention and feedforward
neural networks, enabling it to model complex dependencies efficiently.

Note that the softmax operation, run over the sequence length dimension, means that the attention
operation cannot be entirely parallelized and therefore creates a data dependency between all elements
of the sequence, which is also why it is able to attend to any part of the input sequence that is available
to it.

This attention operation is usually in a block, such as the encoder-decoder blocks from the original
transformer paper [75], which involves applying the attention operation followed by a normalization in
the batch dimension and residual connection, and then a two-layer MLP over the sequence length,
followed by another normalization and residual connection. The residuals and normalizations allow
gradients to flow through even very large numbers of these layers.

Local attention mechanism
Local attention [62, 14] is an efficient variation of the self-attention mechanism where each position
in the sequence only attends to a limited subset of positions within a certain window around it, rather
than the entire sequence. The motivation behind local attention is to reduce the computational and
memory complexity that arises from the quadratic dependence on sequence length L in the standard
self-attention mechanism.

In local attention, each query qi for the i-th element in the sequence only attends to the key-value pairs
(kj , vj) within a window of size w centered around i:

Attentionlocal(qi,K, V ) =

i+w/2∑
j=i−w/2

αijvj (2.18)

αij =
exp(qi · kj/

√
dk)∑i+w/2

j=i−w/2 exp(qi · kj/
√
dk)

(2.19)

Here, αij represents the attention weight that indicates the importance of the j-th position to the i-th
position. By focusing only on a local context given by the window size w, the computation and memory
requirements are significantly reduced from O(L2) to O(Lw), with w being much smaller than L.

This approach is beneficial for many practical tasks where long-range dependencies are either less
critical or can be approximated through sequentially composed local interactions. Typical applications
include natural language processing tasks involving very long documents or time-series data where
recent observations are more relevant.

Reformer: The Efficient Transformer
The Reformer [45] is one of the many variations of the Transformer architecture designed to handle long
sequencesmore efficiently. It introduces two key innovations: locality-sensitive hashing (LSH) attention
and reversible residual layers. These innovations collectively reduce the memory and computational
requirements of the Transformer model.
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Locality-Sensitive Hashing (LSH) Attention Unlike the standard attention mechanism, which com-
putes attention weights for all pairs of positions in the sequence, LSH attention limits interactions to
only a subset of positions that are likely to be similar. This is achieved using locality-sensitive hashing.

Locality-sensitive hashing is a technique for efficiently finding approximate nearest neighbors in high-
dimensional spaces. The LSH attention mechanism hashes the query and key vectors into buckets
such that similar vectors are likely to be assigned to the same bucket. Attention weights are then
computed only within these buckets rather than across the entire sequence:

h(x) = hash function(x) (2.20)

AttentionLSH(Q,K, V ) =
∑

j∈same bucket as i

αijvj (2.21)

αij =
exp(qi · kj/

√
dk)∑

j∈same bucket as i exp(qi · kj/
√
dk)

(2.22)

By changing the complexity from O(L2) to O(L logL), this mechanism offers a significant reduction in
both memory and computational cost, making it feasible to handle much longer sequences.

Reversible Residual Layers The Reformer also incorporates reversible residual layers, following the
design of reversible residual networks [28]. In a standard residual network, activations need to be stored
for backpropagation, leading to large memory consumption. However, in reversible residual networks,
the activations can be reconstructed from the outputs, obviating the need to store intermediate states:

Y1 = X1 + F (X2) (2.23)
Y2 = X2 +G(Y1) (2.24)
X2 = Y2 −G(Y1) (2.25)
X1 = Y1 − F (X2) (2.26)

By making the Transformer layers reversible, the Reformer reduces memory usage during training, as
only one copy of activations needs to be stored at any time.

Combining LSH attention with reversible residual layers makes the Reformer a powerful and efficient
model, capable of handling tasks that involve very long sequences while maintaining or even improving
performance relative to traditional Transformer models.

2.2.3. State Space Models (SSMs)
State Space Models (SSMs) are a class of models that have recently gained attention in the field of
sequencemodeling. SSMs are based on the idea of modeling a system’s behavior using a set of hidden
state variables that evolve over time according to a set of dynamic equations. The Structured State
Space (S4) model [32] and the Mamba model [31] are two notable examples of SSMs that have shown
promising results in various sequence modeling tasks.

Structured State Space (S4) Model
The S4 model is based on the state space model (SSM) defined by the following equations:

x′(t) = Ax(t) +Bu(t) (2.27)
y(t) = Cx(t) +Du(t) (2.28)

where x(t) ∈ RN is the hidden state, u(t) ∈ R is the input signal, y(t) ∈ R is the output signal, and
A ∈ RN×N , B ∈ RN×1, C ∈ R1×N , and D ∈ R are the model parameters.

The key innovation of S4 is the parametrization of the state matrix A using a combination of a Normal
Plus Low-Rank (NPLR) representation and the HiPPO (High-order Polynomial Projection Operator)
framework [33]. The NPLR representation allows for efficient computation of the SSM, while the HiPPO
framework enables the model to capture long-range dependencies effectively.
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The S4 model can be computed efficiently in both recurrent and convolutional forms. The recurrent
form is given by:

xk = Āxk−1 + B̄uk (2.29)
yk = Cxk (2.30)

where Ā and B̄ are the discretized versions of the continuous-time matrices A and B.

The convolutional form is given by:

y = K ∗ u (2.31)

where K ∈ RL is the SSM convolution kernel, and ∗ denotes the convolution operation.

As the recurrent formulation is formed entirely of affine operations, a non-recurrent formulation can be
written as a mathematical series largely composed of powers of theA,B, andC matrices, and therefore
pre-computed, which is broadly how the convolution kernels are made. Using kernels, backpropagation
through the sequence length is not needed and therefore training is accelerated, but this also means
the kernels need to be recomputed after every update step, which is a computationally costly operation.
To reduce the computational complexity of computing matrix powers, and to accelerate recurrent com-
putation in general, this method makes use of structured matrices, where a weight matrix is the sum of
a diagnosable matrix and a low-rank matrix.

The S4 model has shown impressive results on various benchmarks, including the Long Range Arena
(LRA) benchmark [74], where it outperforms other efficient Transformer variants and sets a new state-
of-the-art on the challenging Path-X task.

Mamba: Linear-Time Sequence Modeling with Selective State Spaces
The Mamba model [31] builds upon the S4 model by introducing a selection mechanism that allows
the model to perform content-based reasoning. The selection mechanism is incorporated by making
the SSM parameters ∆, B, and C functions of the input, enabling the model to selectively propagate
or forget information along the sequence length dimension based on the current token.

The Mamba model also introduces a hardware-aware parallel algorithm for computing the selective
SSMs in recurrent mode, which allows for efficient computation despite the input-dependent dynam-
ics. The selective SSMs are integrated into a simplified end-to-end neural network architecture called
Mamba, which does not include attention or MLP blocks.

Mamba achieves fast inference (5× higher throughput than Transformers) and linear scaling in se-
quence length, with performance improvements on real data up to million-length sequences. As a
general sequence model backbone, Mamba has demonstrated state-of-the-art performance across
several modalities, such as language, audio, and genomics. On language modeling tasks, the Mamba-
3B model outperforms Transformers of the same size and matches the performance of Transformers
twice its size, both in pretraining and downstream evaluation.

The introduction of the selection mechanism in Mamba addresses the limitation of LTI (Linear Time-
Invariant) models, which struggle with content-based reasoning. By allowing the model to selectively
propagate information based on the input, Mamba can effectively handle tasks that require content-
aware reasoning, such as the Selective Copying task and the Induction Heads task.

In summary, SSMs, particularly the S4 and Mamba models, have emerged as a promising alternative
to traditional sequence models like RNNs and Transformers. By efficiently modeling long-range de-
pendencies and incorporating content-based reasoning, these models have the potential to become a
general-purpose backbone for foundation models operating on sequences across various domains.

2.2.4. comparison
While a task-specific comparison of these models is made in Chapter 4, it is useful to illustrate the
main differences between the three overall sequence-to-sequence research directions as we have split
them up (RNN-based, Attention (transformer) based, and state-space-based models). For a direct
comparison, we use complexity notation to compare them computationally (during both training and
inference), in terms of memory usage, their parameter count and memory usage during inference.
This comparison is shown in table 2.1.
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Convolution Recurrence Attention S4
Parameters LH H2 H2 H2

Training L̃H(B +H) BLH2 B(L2H + LH2) BH(H̃ + L̃) +BL̃H
Space BLH BLH B(L2 +HL) BLH
Parallel Yes No Yes Yes
Inference LH2 H2 L2H +H2L H2

Table 2.1: Complexity of various sequence models in terms of sequence length (L), batch size (B), and hidden dimension (H).
Convolutions are efficient for training, while recurrence is efficient for inference, and structured state-space models (SSMs) like

S4 combine the strengths of both. Table is taken from [32]

2.3. Producing variable-length outputs
In the context of nanopore sequencing and basecalling, the task involves mapping a continuous stream
of electrical current measurements to a discrete sequence of DNA bases. This mapping inherently
deals with variable-length outputs, as the number of observable signals does not directly correspond
to the number of DNA bases due to factors such as overlapping bases and variable dwell times within
the nanopore. To effectively handle this discrepancy, advanced decoding strategies are employed.
Two prominent methods for decoding variable-length outputs in sequence-to-sequence tasks are Con-
ditional Random Fields (CRFs) and Connectionist Temporal Classification (CTC). This section delves
into the mathematical formulations, underlying principles, and operational mechanisms of CRF and
CTC decoders.

2.3.1. Conditional Random Fields (CRFs)
Conditional Random Fields [47] are a class of discriminative probabilistic models used for predicting
sequences of labels. Unlike generative models, which model the joint probability of inputs and outputs,
CRFs directly model the conditional probability of the output sequence given the input sequence. This
approach is particularly advantageous in scenarios where the input-output alignment is ambiguous or
not explicitly provided, as is the case in basecalling.

Mathematical formulation
A CRF defines the conditional probability of an output label sequence y = (y1, y2, . . . , yT ) given an
input sequence x = (x1, x2, . . . , xT ):

P (y | x) = 1

Z(x)
exp

(
T∑

t=1

∑
k

λkfk(yt−1, yt,x, t)

)
(2.32)

where:

• fk(yt−1, yt,x, t) are feature functions that capture dependencies between labels and the input
sequence.

• λk are the associated weights for the feature functions.

• Z(x) =
∑

y exp
(∑T

t=1

∑
k λkfk(yt−1, yt,x, t)

)
is the partition function ensuring that the probabil-

ities sum to one.

Decoding with CRFs
Decoding in CRFs involves finding the most probable label sequence y∗ given the input x:

y∗ = argmax
y

P (y | x) (2.33)

Due to the potential complexity of the label space, exact inference can be computationally intensive.
However, for linear-chain CRFs, which are commonly used in sequence labeling tasks, dynamic pro-
gramming algorithms such as the Viterbi algorithm [76] can efficiently compute the optimal sequence.

Advantages and applications
CRFs are particularly suitable for tasks where the output labels exhibit interdependencies, such as in
part-of-speech tagging or named entity recognition in natural language processing. In the realm of
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nanopore sequencing, CRFs can effectively model the dependencies between successive DNA bases,
capturing context-dependent variations in the current signal. This leads to more accurate basecalling
by leveraging the structured relationships within the output sequence.

2.3.2. Connectionist Temporal Classification (CTC)
Connectionist Temporal Classification [29] is a loss function and decoding strategy specifically designed
for sequence-to-sequence tasks where the alignment between input and output sequences is unknown.
CTC is widely used in applications such as speech recognition and handwriting recognition, where the
input sequence length does not necessarily match the output sequence length.

Mathematical formulation
CTC introduces an auxiliary blank symbol ∅ that allows for flexible alignment between the input and
output sequences. Given an input sequence x = (x1, x2, . . . , xT ) and an output label sequence y =
(y1, y2, . . . , yU ) where U ≤ T , CTC defines the probability of y given x by summing over all possible
alignments π that can be collapsed to y:

P (y | x) =
∑

π∈B−1(y)

T∏
t=1

P (πt | xt) (2.34)

where:

• B is the blank collapsing function that removes blanks and merges repeated labels.
• B−1(y) represents all possible extended label sequences π that collapse to y.
• P (πt | xt) is the emission probability of label πt at time step t.

Decoding with CTC
Decoding with CTC typically involves finding the most probable output sequence y∗ by maximizing the
summed probabilities over all valid alignments:

y∗ = argmax
y

P (y | x) = argmax
y

∑
π∈B−1(y)

T∏
t=1

P (πt | xt) (2.35)

Due to the exponential number of possible alignments, efficient decoding algorithms such as the Beam
Search algorithm [53] are employed to approximate the optimal sequence. Additionally, the forward-
backward algorithm is utilized during training to efficiently compute gradients with respect to the model
parameters.

Advantages and applications
CTC is advantageous in scenarios where explicit alignment between input and output sequences is
either difficult to obtain or varies significantly between samples. In basecalling, CTC allows the model to
learn the alignment between the noisy current signals and the underlying DNA bases without requiring
pre-aligned training data. By introducing the blank symbol and considering all possible alignments,
CTC provides a flexible framework that can handle the inherent variability and uncertainty in nanopore
sequencing signals, leading to robust and accurate basecaller models.

2.3.3. Comparison: CRF vs. CTC
Both CRF and CTC are designed to handle sequence-to-sequence tasks with variable-length outputs,
yet they differ in their approaches and suitable applications:

• Alignment Handling: CRFs explicitly model the dependencies between output labels and can
incorporate rich feature representations, making them suitable for tasks where label interdepen-
dencies are crucial. CTC, on the other hand, implicitly handles alignment by summing over all
possible labelings, making it more straightforward for tasks with less structured output dependen-
cies.

• Training Complexity: CRFs generally require more complex training procedures due to the need
to compute the partition function over all possible label sequences. CTC simplifies training by
focusing on maximizing the probability of the correct label sequence regardless of alignment.
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• Flexibility: CRFs offer greater flexibility in incorporating domain-specific features and constraints,
which can be beneficial in specialized applications like nanopore sequencing where contextual
information is valuable. CTC is more rigid but efficient, making it suitable for large-scale sequence
labeling tasks.

In the context of basecalling, the choice between CRF and CTC depends on the specific requirements
of the task. CRFs may offer higher accuracy by leveraging contextual dependencies, whereas CTC
provides a more scalable and alignment-agnostic approach. Hybrid models that combine the strengths
of both methods are also an area of ongoing research.

2.4. Hardware performance
Aswe focus on achieving both good accuracy and throughput with basecalling, it is crucial to understand
the hardware we are using to run these benchmarks.
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Figure 2.3: Throughput measured in GFLOP/s and latency in ms of matrix multiplications of different sizes on Nvidia 3090
GPU to illustrate the roofline model.

2.4.1. Structure of the GPU
Modern graphics processing units (GPUs) are complex systems designed for parallel processing, par-
ticularly the case where the same operation is performed on multiple different data at the same time.
Between weight and data storage on the CPU and the GPU, there’s the CPU-GPU connection through
PCIe (Peripheral Component Interconnect Express). A PCIe 3.0 x16 connection, which is common in
many systems, provides a theoretical bandwidth of 16 GB/s in each direction.

GPUs have their own main memory with high bandwidth, of which the type is typically either GDDR
or HBM, which can provide bandwidths of hundreds of GB/s. This memory hierarchy continues with
L2 cache shared among streaming multiprocessors (SMs) and L1 cache within each SM. The GPU
cores are organized into these SMs, which execute warps (groups of 32 threads) in parallel. Each
thread consists of a CUDA core which is equipped with floating point multiplication ability. The different
CUDA cores are configured to execute parallel Single Instruction Multiple Data (SIMD) instructions,
meaning they are able to work in parallel when the same operation has to be performed on multiple
pieces of input data. Because of this, conditional statements, which CPUs accelerate by predicting
their outcomes and pre-fetching memory that corresponds to an outcome in the conditional statement,
run very slowly on the GPU. This is because the CUDA cores cannot all be active at the same time if
they need to perform different instructions, which is further exacerbated by the fact that GPUs generally
operate at more than two times lower clock speeds than CPUs.

GPUs perform best when asked to perform the same instruction on as much data as there are CUDA
cores in parallel.

Streaming multiprocessors on newer GPUs are also equipped with Tensor cores, which allow the SM
to break down matrix multiplications into grids of N ×M sub-matrices (where N and M depend on the



2.4. Hardware performance 15

data type) to multiply them and accumulate their results, so that a Tensor core is able to do this in less
instructions than if those values were multiplied and accumulated separately.

Different floating-point formats can encode the same weights. While FP32 (32-bit floating-point) has
been the standard, FP16 (16-bit floating-point) is becoming increasingly common in deep learning.
FP16 can halve memory bandwidth usage and main memory consumption, and it allows for more
operations per unit of silicon, potentially doubling throughput.

2.4.2. Hardware for this thesis
For our benchmarks, we primarily use NVIDIA GPUs, specifically the RTX 3090 and RTX 2080 Ti.
These GPUs feature tensor cores, which significantly increase FLOPS (floating-point operations per
second) for matrix multiplication and convolution operations common in deep learning. In order to
avoid slowdowns due to overheating, which can affect benchmark results, some tests done on the RTX
3090 are made with a power limit restriction on the GPU, restricting it to 250W instead of its default
350W.

Figure 2.3 illustrates the roofline model for the RTX 3090. The goal is to show the maximum amount
of operations per second that can be executed on the hardware used to compute benchmarks, as they
determine the fundamental upper-limit on how fast a given architecture with computational properties
that vary as shown in table 2.1 can be executed on a given hardware. This gives clues for potential im-
plementation inefficiencies. We do this by performing simple matrix multiplications for square matrices
of increasing dimensionality. This is an operation that has high computational complexity (cubic) for
relatively little memory bandwidth usage since the number of parameters, in comparison, is quadratic
with respect to the dimensionality. The x-axis represents the size of the matrix, and the y-axis shows
the attainable floating point operations per second (FLOPS) in gigaflops, which is roughly 109 floating
point operations per second.

The roofline shows that asmatrix size grows, the number of operations increases faster than the number
of floats that need to be loaded into main memory. This means that for smaller matrices, performance is
memory-bound (limited by memory bandwidth, or how fast the weights can be entered and exited from
the GPU’s compute cores), while for larger matrices, it becomes compute-bound (limited by computa-
tional capacity). This reflects the relationship between the growth in number of elements and number
of operations of this operation. As seen in the figure, for FP16 operations, the RTX 3090 can achieve
around 216 GFLOPS/s, while when using FP32 floating points, it reaches about 214 GFLOPS/s. This
discrepancy is not explained by the structure of the CUDA cores, as in our GPU they have as many
peak theoretical FLOPS in FP16 as in FP32. Instead, it is explained by the fact that the Tensor cores
(which specifically accelerate matrix multiplication) are only able to use FP16 floating points as inputs
and therefore offer additional performance when using that 16-bit precision. Mixed precision is a tech-
nique where FP32 floating points are automatically cast (or, converted) into FP16 before being given
to the tensor cores, and turned back into FP32 to store the results, thereby achieving as much peak
FLOPS as when we using FP16 floats.

It’s worth noting that our benchmarks are run entirely on the GPU, with data transferred to GPUmemory
before timing begins. Therefore, CPU performance, system RAM performance and bandwidth between
the CPU and the GPU do not significantly factor into our calculations.



3
Understanding basecalling

3.1. Representing basecalling data
Because basecalling is fundamentally a time-series state estimation problem, the inputs, which are
measurements of the underlying physical process we want to estimate the state of, are structured in
a unidimensionally-ordered way along the time dimension. Information density is a particular issue,
with a sampling rate that is only ∼8x higher than the rate at which bases go through the nanopore.
This is very different from speech recognition, for example, where most recorded words last thousands
of recording samples ( 150wpm is the average speaking rate and 8khz a typical speech recognition
pipeline sampling rate, so 60/150 ∗ 8000 = 3200). Instead, data is very dense.

In order to think in a principled way about neural network development for basecalling, a principled
approach would be to ask fundamental questions about the dataset. In this chapter we ask questions
and run experiments to answer those questions, such that we can use this information to improve our
understanding of what representation ability is characteristic of good accuracy for deep learning models
in basecalling.

First, we must answer a theoretical question: how is a base represented, in the current measurement
signal we receive as input? To answer that question, we start with understanding the locality of infor-
mation in basecalling, so that we can establish how the presence and order of a base in a signal is a
global or local phenomenon.
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Figure 3.1: A series of single-layer CNNs of varying hyperparameters composed of a one-dimensional CNN layer followed by
a ReLU non-linear activation function and a linear layer bringing the outputs of the non-linearity to 5 dimensions, trained for 5
epochs on 2GB of basecalling data using a CTC loss to find the most basic data dependencies. f is the number of filters

applied to the input signal, k is the width of each filter’s kernel. Validation loss for random outputs is 0.03.

As we can see in Figure 3.1, most of the gains in accuracy are found within around four bases (counting

16
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on average 8 datapoints per base, times four that’s 32) and regardless of the number of filters, by kernel
width 48 ( 6 bases) there does not seem to be any loss improvements left.

This observation raises several theoretical considerations regarding the representation and modeling
of basecalling data. Fundamentally, basecalling seeks to determine the most probable sequence of
bases given the observed signal, formally expressed as:

ˆseq = argmax
seq

P (seq | sig) (3.1)

where sig represents the entire nanopore signal. The conditional probability P (seq | sig) can be further
decomposed into a sequence of translocations, capturing the sequence of events within the nanopore
sequencing process:

P ([T1, . . . ,Tn] | sig), (3.2)

with the sequence seq = [T1, . . . ,Tn] representing the translocation events. Each translocation event
represents a pair of bases entering and exiting the nanopore, as well as the current state of the
nanopore. Importantly, these translocations are non-overlapping and can be individually decomposed,
ensuring a one-to-one correspondence between translocation events and segments of the signal.

To formalize the structure of the signal, we initially represent it as a sequence of translocation events,
which have variable size in terms of measurement samples (which then involves a problem of learn-
ing the segmentation of those different translocation events in the signal, but for the purpose of this
examination we do not consider this):

sig = [tr(bn, bn+5), tr(bn+1, bn+6), tr(bn+2, bn+7),

tr(bn+3, bn+8), tr(bn+4, bn+9), tr(bn+5, bn+10)]

Notice that bn+5 appears twice in this sequence, suggesting that if the characterization of a base were
predominantly influenced by its own translocation events, we would expect a sharp decrease in the
loss curve once the kernel width encompasses the second translocation involving bn+5. However,
empirical observations show a more gradual decrease, implying that translocation events depend on
the five bases currently within the nanopore, thereby indicating a stateful process. We thus define a
translocation event with state as:

tr(bn, bn+5, sn)

sn = {bn, bn+1, bn+2, bn+3}

where sn denotes the state of the nanopore, encompassing the five bases present during translocation.
This stateful characterization is consistent with the two current best-performing simulators in research
[50, 49, 27], which track the five bases within a nanopore to generate simulated signals. Consequently,
incorporating state-tracking mechanisms, as evidenced by sequence-to-sequence neural network lay-
ers [56], serves as a beneficial inductive prior for basecalling tasks.

In modeling these translocations, the probability of each base entering the nanopore, Bn+1, is condi-
tioned on the sequence of preceding bases [B1, . . . , Bn], denoted as Pseqm(Bn+1 | [B1, . . . , Bn]). Given
the Markovian nature of the process, the model maintains a probability distribution over approximately
45 = 1024 possible nanopore states. Consequently, the number of potential trajectories for a sequence
of length 250 bases scales exponentially to approximately 10150 possibilities, as calculated by:

4250 ≈ 3.27× 10150 ≈ 10150

However, empirical observations suggest that the actual distribution pseq, defined as:

pseq = P ([T1, . . . ,Tn] | sig) (3.3)
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is significantly sparse within this vast space, with the number of feasible distinct 250-base sequences
estimated to be on the order of 1039. This estimation is meant as a soft upper bound, based on the
consideration that the longest known DNA sequences encompass approximately 1010 bases and there
are roughly 1031 cells on Earth (each potentially containing a number of mutations), leading to an
order of magnitude of possible distinct 250-base sequences of about 1010 × 1031 ÷ 250 ≈ 1038. The
discrepancy between the total possibilities and the upper bound real-world estimate, which we refer
to as the compression gap, implies that effective basecalling models must learn a highly constrained
manifold within the expansive space of possible sequences.

This necessity likely contributes to the efficacy of Conditional Random Field (CRF) decoders in en-
hancing basecalling accuracy, as they directly model pseq, thereby capturing the underlying sequence
dependencies more efficiently and providing more information about the structure of this constrained
manifold.

To represent the signal generation by the system, conditioned on the state of the DNA strand and the
nanopore, we define a function 3.4, which produces a sequence of signal measurements based on
a translocation event tr characterized by the base entering the nanopore (bn), the base exiting the
nanopore (bn+5), and the current state of the nanopore (sn). This is the function a neural network
needs to model apart from Pseqm, which we could measure independently for example by generating
synthetic signals based on uniformly-sampled DNA sequences.

sig_gen(tr(bn, bn+5, sn)) (3.4)

On the signal processing side, each translocation event comprises approximately eight 16-bit signed
integers, equating to around 128 bits of information per translocation, compared to the 11 bits of infor-
mation associated with the nanopore states. This further exacerbates the compression gap, as models
must distill high-dimensional signal information into the much sparser sequence space. As models at-
tempt to leverage longer-range dependencies within the signal to improve basecalling accuracy, they
encounter the curse of dimensionality, struggling to generalize across the exponentially increasing se-
quence lengths.

Mutual information between different segments of the signal is thus crucial for effectively utilizing longer-
range dependencies. Specifically, when models consider additional segments of the signal beyond the
immediate vicinity of a base, there must exist significant mutual information between these segments to
justify their inclusion in the predictive process. This necessitates robust modeling of the system’s state
using sequences of translocations, as this approach aligns with the successful strategies employed by
CRF decoders.

In summary, the intricate balance between the high-dimensional signal space and the relatively sparse
sequence space underpins the challenges in basecalling. Effective models must navigate this com-
pression gap by exploiting mutual information and leveraging structured probabilistic frameworks to
accurately infer base sequences from dense, time-ordered signal measurements.

3.2. Datasets
The dataset used is downloaded from [61], totaling approximately 375 gigabytes (GBs). From this, a
subset was chosen by copying training data files from uniformly-sampled random species in the bacteria
dataset. The size of this subset totals 52GB, and is chosen based on model training time and to have
a similar dataset size to the one used in [61]. The human data from the original dataset was retained
to measure generalization, though due to limited time and resources, the primary focus of the thesis is
not on generalization to human data. Therefore, it will not be extensively discussed in this thesis. We
call this the main dataset.

For more efficient model development, a representative 2GB subset taken using the same bacterial
sequences was created, enabling the full training of multiple models within an hour on a single GPU.
Training on this dataset was done only using a CTC decoder, for simplicity and speed of training. We
found that this was enough data to study the inductive biases of different sequence-to-sequencemodels,
most especially of the RNNs (GRU, LSTM) which are of highest interest for this thesis given that they
achieve the highest accuracy on the main dataset. We call this 2GB subset the small dataset.
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The 52GB dataset is constituted of data from the following samples:

Folder Name Size % Contribution
Klebsiella_pneumoniae-NUH11 6.3G 12.12%
Klebsiella_pneumoniae-NUH27 5.1G 9.81%
Klebsiella_pneumoniae-SGH07 4.7G 9.04%
Klebsiella_pneumoniae-QMP_B2_170 0.5G 0.90%
Klebsiella_quasipneumoniae-INF291 3.6G 6.92%
Klebsiella_variicola-KSB1_8J 5.4G 10.38%
Klebsiella_variicola-INF022 5.3G 10.19%
Morganella_morganii-MSB1_1E 6.4G 12.31%
Moraxella_lincolnii-51409 1.5G 2.88%
Pseudomonas_aeruginosa-MINF_7A 6.2G 11.92%
Salmonella_enterica-2010_06152 4.2G 8.08%
Stenotrophomonas_pavanii-MSB1_4D 2.6G 5.00%

Table 3.1: Composition of the 52GB dataset sampled from the data source used by [61]. Sample details are indicated as
codes at the end of the folder names. For example, NUH11 indicates a specific strain.

3.3. Synthetic datasets
Initial attempts weremade to create synthetic datasets for the purpose of studying sequence-to-sequence
models abilities on simplified tasks that preserve the same essential challenge as basecalling but with
controllable levels of difficulty and noise.

3.3.1. Damped harmonic oscillators
The first attempt involved a simulation of a damped harmonic oscillator using the following equations:

m
d2x

dt2
+ b

dx

dt
+ k(x− xr) = 0 (3.5)

P (X = k) =
λke−λ

k!
(3.6)

In Equation 3.5, m represents the mass, b is the damping coefficient, k is the spring constant, x is
the position, and xr is the resting height. The second equation, Equation 3.6, represents the Poisson
distribution where λ is the average rate, and k is the number of occurrences.

The oscillator’s xr resting height would change with a rate determined by sampling time intervals from
the Poisson distribution which were tuned to match basecalling data from our dataset. Multiple values
for k, m, and b were attempted to vary the complexity of the task. The task is therefore, at each
datapoint, to determine the resting height of the equation at that point in time.

Unfortunately, this task ended up being so simple to solve for even just two convolution layers, even
with large amounts of non-linear noise, that modifications in model architecture did not have a sufficient
impact on accuracy to be useful to compare them. Therefore this research direction was dropped.

3.3.2. Simulated data
The second attempt at generating an artificial dataset was to use DeepSimulatore [49], a neural-network
based model that can generate synthetic basecalling data when given a nucleotide base sequence.
The advantages of this approach were that we could generate synthetic sequencing data for base
sequences where the bases are selected completely randomly (so that neural network models do not
learn a bias towards certain nucleotide sequences rather than others), and also with reduced numbers
of base pairs. Models trained using this dataset could also be trained to perform segmentation on the
input data, so that we can more easily avoid issues of instability during training.
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When developing neural network models on this approach, it unfortunately was the case that models
that model performance on the synthetic dataset was not sufficiently predictive of performance on actual
basecalling data. One interesting finding worth mentioning was that CRF decoders tended to collapse
(meaning, their validation loss suddenly grows intensely and does not come back down) when trained
on the synthetic dataset generated from uniform random nucleotide sequences, when applied to the
Bonito architecture, and when applied to the SACall transformer-based CNN and encoder (per [61]
nomenclature).

We stopped using this dataset for model development because the training dynamics were also too
different from actual basecalling data. One particular example is that CNNs trained with receptive fields
shorter than 21 showed approximately 40% lower accuracy at the segmentation task when compared
to models with exactly 21 or longer receptive field. This is in stark contrast with equivalent experiments
from Figure 3.1.



4
Sequence to sequence models

4.1. General model considerations
In the context of sequence-to-sequence (s2s) models, particularly for tasks like basecalling, it is crucial
to understand and distinguish between several key performance metrics. Throughout this thesis, we
will frequently refer to three primary concepts: performance, accuracy, and throughput. Performance is
a broad term that encompasses various aspects of a model’s efficiency and effectiveness. It can include
factors such as computational speed, resource utilization, and the quality of results. In our discussion,
we often use performance as an umbrella term that includes both accuracy and throughput. Accuracy
refers to the model’s ability to correctly perform its intended task. In the case of basecalling, this would
be the proportion of correctly identified nucleotide bases in a DNA or RNA sequence. A higher accuracy
indicates that the model is more reliable in its predictions. Throughput, on the other hand, is a measure
of the model’s processing speed. It quantifies how much data the model can process in a given time
frame. For basecalling, this might be expressed as the number of base pairs processed per second.
In our case, we will count throughput in terms of input samples per second. Higher throughput is
desirable for applications requiring real-time or near-real-time processing of large volumes of data. It’s
important to note that there’s often a trade-off between accuracy and throughput. Models that achieve
high accuracy may require more complex computations, potentially reducing throughput. Conversely,
models optimized for high throughput might sacrifice some degree of accuracy. Throughout this thesis,
we will explore various approaches to balance these competing factors, aiming to develop models that
offer both high accuracy and efficient throughput for practical basecalling applications.

4.1.1. Performance-related properties of s2s models
Since the 1990’s, convolutions and recurrent neural network models achieved landmark results in deep
learning [2, 68], and those results, which evolved over time, were not especially designed with compu-
tational efficiency as a goal for the model architecture [2, 68], instead the improved ability to perform a
task (i.e. speech recognition, character recognition) was the main focus. Since the paper introducing
the transformer network was released however, model and dataset scales became the relevant vari-
ables for many of the most popular deep learning tasks, as exemplified by the paper introducing the
transformer network architecture itself [75] (in the sequence-to-sequence domain, as it formed a new
state of the art for tasks such as language modeling, language translation and speech recognition), and
the vision-transformer paper [21].

Some recent papers researching sequence modeling focus on inference-time and training-time compu-
tational improvements of sequence-to-sequence models, either by providing an improved implementa-
tion of the models [17, 15], by modifying the model’s formulation [77, 51], or by attempting to create
new models entirely [16, 63, 81, 13, 72]. In this thesis, we will refer to the ability to perform the task as
the ”accuracy” of the model, and its computational characteristics as its performance.

The mentioned papers presenting improvements in sequence-to-sequence modeling tend to under-
study the computational characteristics of their proposed improvements. They describe performance
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in some of the following ways. Some compare algorithms on the basis of the time taken for inference of
a single input sequence [77], a practice which we will also study and call latency. Others compare the
computational complexity [77, 32] of their proposed algorithms, with the problem noted by [17] that com-
putational complexity can be misleading as to how different neural network models will perform in terms
of wall-clock time to complete a task. In general, these papers face the inherent limitations of hardware-
dependency, meaning that using different hardware (of which there are many [67]) will result in different
advantages and disadvantages for two compared neural network models. Another fundamental prob-
lem is that there is a combinatorial explosion in the multiple ways an algorithm can be implemented,
some often running better than others, and some being discovered years after intense research has
been put into the task in question [24]. In this domain, this problem can be exemplified by [17] and [15],
where not only big performance improvements were achieved by changing the implementation of the
algorithm, but it also involved counter-intuitively increasing the total amount of calculations performed
by the hardware. The FlashAttention paper [17] showed that by improving the implementation alone,
speedups in training and inference time in practice could be higher than by improving the computational
complexity of the algorithm.

We posit that applications where: large amounts of parallelizable inputs have to be computed at the
same time, and where cost is an issue, as in basecalling, thenmaximum throughput is the most relevant
performance variable. Throughput in sequence-to-sequence models could be counted in samples per
second, where a sample is a unitary input data along the time dimension of a sequence. In our case it is
a current measurement of the nanopore reading machine. This metric can be optimized for in the same
ways discussed earlier, and there can be a trade-off when increasing the batch size as it increases the
throughput but but also increases the latency (see Figures 12 and 13 in [70], or Figure 5.2 which is just
one example. This is true of most models benchmarked in this thesis).

Once we have designed a basecalling model, how can we adjust its throughput and accuracy, in order
to achieve a desired trade-off level? In this thesis, we will use what we call model dimensionality in
order to do this. We will restrict ourselves to designing models that contain a series of modules that
can be repeated in order to increase the depth of the model. However, because we find that in general,
increasing the depth of models for basecalling leads to instabilities and it is often the case that a certain
number of layers is optimal, we decide to instead change the number of features that come in and out of
a module in order to increase or decrease the throughput, and vice versa the accuracy, of our models.
Generally, this has the effect of increasing the size of the parameter matrices of the different models,
and therefore the total amount of computation and data movement required to perform inference. For
models in this chapter, we did not put a particular emphasis on finding deeper networks with higher
layer counts than around 2, because the layers we were working with already produced much lower
throughputs than our RNN-based baseline, so that researching higher-accuracymodels with even lower
throughput would be counter-productive to the goal of this thesis, which is to find models that push the
throughput/accuracy Pareto curve.

4.1.2. Accuracy-related properties of s2s models
Sequence to sequence models are often tested on multiple sequence-related tasks when proposed,
such as Chomsky language recognition [13] or long range arena [74], where we see high variability
between different models. This means that different models have different strengths in their ability to
perform certain tasks, rather than having a generalized ability to perform, at least in these standard-
ized settings. The same is true in basecalling, where a previous work comparing different basecalling
models present in the literature [61] including transformers (vanilla transformer [75] and a modified
lite-transformer [54]), recurrent models (LSTM, GRU) and causal convolutions. One conclusion of that
work was that recurrent models definitely perform better than attention-based models, but there was
no further exploration of other models. In general, their reproduction of Oxford Nanopore’s Bonito ar-
chitecture was the vanilla model that performed best, and may be the largest company doing research
in this domain.

In contrast, Oxford Nanopore has announced that a LocalTransformer-based architecture [34, 62] they
developed has achieved best accuracy at lower-throughput regimes [19], making them worth investi-
gating in a research setting. Worth noting is that the model they end up with uses rotary embeddings,
which has been found to be superior to positional embeddings in learning hierarchical language struc-



4.1. General model considerations 23

tures [1].

Models based on state-space models also show promise. S4 [32] has been shown to outperform trans-
formers in tasks such as speech recognition or image recognition, with the important property that it is
timescale-invariant and therefore does not suffer from a large decrease in accuracy when the sequence
length increases by even an order of magnitude, while at the same time enjoying large improvements
in latency. Mamba [31] is another model in this series, which offers a new model with accelerated ker-
nels which contribute to fast execution on deep learning accelerators. It performs language modeling
with accuracy on par with the best transformer model found so far, but with throughput around 4 times
higher at language generation. Because of its selective attention mechanism, it is said to have more
complex modeling capabilities, as was confirmed by [56].

xLSTM [4] is another recent s2s model which outperforms other models at language recognition and
language modeling, offering improvements on the original LSTM architecture, optimized kernels as
well and faster inference than transformer networks. Finally, Retentive Network [72] is yet another
model, this time showing both improvements in throughput and latency, and improvements in language
modeling.

4.1.3. Selected techniques
In the field of sequence modeling, there are more models and techniques than there is time to test
on a task like ours. For each, some amount of hyperparameter tuning and architecture adjustment for
properties like stability during training, choice of functions according to their computational properties,
and choice of implementation is involved in order to properly judge its potential in solving a certain task.
For example, batch normalization layers [42] and gated activation functions [18] are both techniques
to enhance training stability, but at large dimensionalities the normalisation layer has a much smaller
computational impact on performance than gating. Because of this limitation, we select architectures
and techniques that show promise in basecalling and that represent a conceptually representative
sample of the line of research in which they are contextualized..

We have chosen to include the following s2s models in our analysis, and link to the sections discussing
them:

• RNN models (Section 4.2.1)

– LSTM
– GRU
– Elman RNN
– xLSTM

• Attention-based models (Section 4.2.2)

– Transformer
– Local-Transformer
– Reformer

• State-space models (Section 4.2.3)

– S4
– Mamba

One might also wonder why it could be beneficial to focus on architectures whose focus is on modelling
very long input sequences above thousands of elements such as xLSTM, Local-Transformer, Reformer,
S4, Mamba when in our case the input sequence is never longer than 500. We argue that the problem
of long sequences is one where the solutions being pursued are ones increasing efficiency in terms of
compute needed per input vector, and that this has a lot in common with increasing efficiency of base-
calling. A limitation is that these architectures do not generally explicitly pursue efficiency increases
at very large batch sizes (but in basecalling, 512 is the number of simultaneous input streams of the
smallest machine sold by Oxford Nanopore). Nevertheless, it is because of this overlap that we chose
to pursue this research direction.
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We show preliminary accuracy/throughput numbers for the models mentioned so far, in Figure 4.1. It is
important to point out how much the RNNs have an advantage over other architectures. In the rest of
this chapter, we document our attempts to either modify RNNs or to attempt to make other sequence-
to-sequence models competitive with RNNs. In Chapter 5 we will instead propose our own attempt at
improving upon the RNN’s very good accuracy and throughput properties.

The LSTM and GRU we will consider our baselines, because their accuracy/throughput is ahead of
others and the current best-performing open-source basecalling model uses LSTM layers. xLSTM
represents improvements in recurrent nets. The Transformer is included as the main competitor to
recurrent models [60] and to include a new variant we include the Local-Transformer. ReFormer rep-
resents advances in making a Transformer-based s2s model. S4 and Mamba represent the line of
research into state-space-based models. All together, we believe this set covers a substantially wide
range of modern developments in model architectures for sequence modeling.

To also consider more general model modifications, we have chosen to also consider the following:

• Fast-feed-forward (FFF), a neural network layer that replaces feedforward layers with layers that
learn a log2(n) computational complexity linear layer equivalent (in Section 4.2.5)

• Mixture of experts, a way to increase accuracy without adding computational complexity (in Sec-
tion 4.2.5)

• An exploration of different pre-processing functions to apply to the signal given as input (in Section
4.3)

• Two implementations of Kolmogorov-Arnold networks, one as a replacement for convolution, and
one as a replacement for linear layers (in Section 4.2.5)

• Knowledge distillation, a technique to use patterns learned by a teacher model to assist the train-
ing of a student model (in Section 4.2.4)
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Figure 4.1: Comparison of all base models considered in this chapter in terms of their throughput and validation loss. Models
have two layers and a dimensionality of 128, which is the dimensionality used for all models when working with the 2GB

dataset. Benchmarks run on RTX 3090 GPU. Model types are separated into groups of shapes (triangles for recurrent models,
three-lines for state-space models, and polygons for transformer-based models). Three models form the Pareto frontier on this

figure: the elman model, the lstm model and the xlstm model. Results are discussed in section

4.2. Model development
After seeing Figure 4.1, one might want to only study models that lie on the Pareto curve. But we find
that a given model can be modified in many different ways that could have an impact both on accuracy
and throughput. And while the impact of a modification on the model’s achievable throughput is often
intuitive, this is often not the case with accuracy, and therefore we cannot know in advance whether an
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improvement might cause a model to yield a useful trade-off between accuracy and throughput. This is
why we decided to spend extensive amounts of time studying many different techniques in this thesis.
In this section, we detail our wide-ranging search for useful model architectures, primarily using the
small dataset.

It is also worth mentioning that in order to achieve fast iteration between models, our training procedure
is to first train a model for 5 epochs on the small dataset, and when results show clear improvements
over a baseline model, we move to training it on 15 epochs instead, to see whether the model is under-
trained or not.

4.2.1. A closer look at RNNs
Ablating the GRU
In order to better understand why RNNs perform so well at language modeling, we decided to create
ablations of the GRU, to measure the impact of the modifications on validation accuracy after training
for five epochs on 2GB basecalling data:

Ablation Code Best Validation Loss Description
(Percentage Change)

5.4.0 0.01327 (-1.11%) Set ht−1 to k=1 1dconv output
5.4.2 0.01339 (-0.22%) Set ht−1 to k=4 1dconv output
5.4.1 0.01341 (-0.07%) Set ht−1 to k=2 1dconv output
baseline 0.01342 (0.00%) Baseline GRU model
5.5 0.01352 (+0.74%) Set ht−1 to transformer layer output
5.4.3 0.01363 (+1.56%) Set ht−1 to k=8 1dconv output
6.2 0.01363 (+1.56%) Replace each weight matrix one-by-one by a point-

wise product with a parameter vector
4.5.4 0.01364 (+1.63%) Set rt to 1.0
4.5.3 0.01373 (+2.30%) Set rt to 0.75
4.5.2 0.01388 (+3.42%) Set rt to 0.5
2.4.0 0.01401 (+4.39%) Set zt to 1.0
4.5.1 0.01404 (+4.61%) Set rt to 0.25
alt baseline 0.01419 (+5.73%) Equivalent Transformer-based architecture
1 0.01423 (+6.03%) Remove ht−1 from ht

2.4.1 0.01424 (+6.11%) Set zt to 0.75
4.5.0 0.01437 (+7.07%) Set rt to 0.0
2.4.2 0.01470 (+9.53%) Set zt to constant 0.5
2.4.3 0.01504 (+12.07%) Set zt to constant 0.25
6.1 0.01638 (+22.05%) Remove all non-linearities
2.1 0.02367 (+76.37%) Only consider xt

3.1 0.02367 (+76.37%) Remove the non-linearity
4.4 0.02367 (+76.37%) Replace non-linearity with ReLU
5.3 0.02367 (+76.37%) Set ht−1 to xt−1

2.3 0.02371 (+76.67%) Remove the activation function
3.3 0.02371 (+76.67%) Only consider xt

3.4 0.02372 (+76.75%) Only consider ht−1 with rt
4.1 0.02372 (+76.75%) Only consider xt

2.2 0.02374 (+76.90%) Only consider ht−1

3.2 0.02374 (+76.90%) Replace non-linearity with a ReLU
2.4.4 0.02375 (+76.97%) Set zt to 0.0
4.2 0.02375 (+76.97%) Only consider ht−1

4.3 0.02375 (+76.97%) Remove non-linearity
5.1 0.02375 (+76.97%) Set ht−1 to always zero
5.2 0.02375 (+76.97%) Set ht to always equal xt

3.5 0.02376 (+77.04%) Only consider ht−1 without rt
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Table 4.1: Impact of various ablations on the GRU model equations as shown in section 2.2.1. Ablation codes indicate how the
GRU equations were changed with syntax x.y.z where x is a part of the equations that is changed, y is the specific change that
was made, and optionally z indicates different values for a variable which is part of the change. Here are the meanings of the x
values: (1) Remove ht−n from ht from equation 2.16, (2) Modify zt from equation 2.13 (3) Modify ĥt from equation 2.15 (4)

Modify rt from equation 2.14 (5) Modify ht−1 from all GRU equations (6) General modifications. 17/35 modifications increased
the loss by more than 50%

Some ablations are simplifications such as removing a term or replacing a function by a simpler function.
Others are modifications that aim to remove properties, such as when we replace ht−1 with the output
of another s2s layer, either a transformer encoder or 1d convolution. In that case, the model effectively
becomes a mix between a recurrent model and a parallel s2s model.

We will consider that models that have+76% increases in validation loss have failed to learn basecalling
during training. In general, modifications to ĥt (which is the part of ht that contains information from the
current input) cause the model to fail, and since no other ablation code (see caption of Figure 4.2.1)
has all of its sub-ablations fail, this indicates that ĥt is the most crucial part of the GRU architecture for
basecalling.

Gating could be replaced with a fixed value and retain much of its validation loss. The update gate
vector zt had an impact of +4.39% on loss when set to one and fails to learn when set to a value of
zero (for obvious reasons, as it then doesn’t use any inputs. At zt = 1, only equation 2.15 is used to
calculate the output, which means there is no more update gate, so how much of the input vector is
added to the hidden state only depends on matrix Wh and the reset gate vector.

The reset gate vector rt could also be replaced by a fixed value and had minimal impact on validation
loss when set to 1, which means that the ĥt vector always contains maximal information from ht−1. Gen-
erally, gating in recurrent networks serves to enhance information flow through the iteration steps [44],
and in this case we are decreasing the rate at which hidden states are forgotten, increasing the time
horizon of the flowing information. This could imply that the neural network is using contextual informa-
tion that goes beyond the approximately 48 datapoints of information locally-available to determine the
base at a certain point in the input sequence.

One last point of interest is to note that removing all non-linearities did lead to a model that succeeded
in learning basecalling, however training collapsed about halfway during training, rather consistently.
It is its instability that lead to the +22% increase in loss. This implies that a more stable approach to
training such a model would make it parallelizable in the same way state-space models like S4 [32] are.
The model then can be formulated as a size-n kernel that can be computed either iteratively through
the input sequence or in parallel as a convolution operation. Similar approaches have been explored
multiple times in the past [25, 8].

Overall exploration of RNNs
As seen in Figure 4.1, recurrent neural networks (RNNs) show great promise for the task of basecalling.
The main question we aim to address in this subsubsection is: which RNN variant performs best at this
task, and why? We focus our analysis on three RNN variants included in PyTorch: LSTM, GRU, and
Elman. Despite differences in their floating point operations, we observeminimal variation in throughput
across these models. This is likely due to the inability to utilize batch sizes large enough to saturate
the available memory bandwidth.

Given the advantage of recurrent networks, we concentrated our efforts on model development using
the large dataset. Our goal was to develop an Elman RNN-based model that surpasses the Pareto front
of the LSTM. However, we have not been entirely successful in this endeavor. We found that incor-
porating residual connections and layer normalization layers improves accuracy and training stability.
Additionally, applying a small amount of dropout (around 10-20%) proves beneficial. Nevertheless, we
observed that the model struggles to effectively utilize model dimensions beyond 64, as indicated by
the increase in generalization and validation accuracies when employing distillation techniques.

We hypothesize that a fundamental limitation might exist, as evidenced by the GRU ablation results
in Table 4.2.1. Gating, particularly the ”forgetting” mechanism in GRU and LSTM layers, allows for
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implicit segmentation of the input. In the ablation where we replace the reset gate with a fixed scalar
(ablation codes 4.5), we constrain the model’s ability to implicitly segment the input. If we consider
the update gate z as representing the extent to which the nanopore state has changed since the last
timestep (otherwise, we could always return the same hidden state), we can interpret it as handling
the temporal fluctuations of basecalling, which determine the rate at which the nanopore state evolves
over time. On the other hand, the reset gate could be interpreted as estimating the mutual information
between the previous and next nanopore states, as it determines the proportion of the previous state
used to compute a new hidden state (the candidate hidden state in equation 2.15). Given that state-of-
the-art basecallers appear to be most sensitive to temporal fluctuations [27], our intuition suggests that
the update gate would be the most crucial for achieving the best loss, which aligns with the ablation
results.

Regarding LSTMs, in Chapter 6, we discuss the advantage of the GRU over the LSTM when using
distillation. This indicates that the GRU can, to some extent, represent the same information as the
LSTM. The difference can be primarily attributed to the memory cell c (see equation 2.11), which allows
for the utilization and propagation of information over longer temporal distances. The fact that we could
sometimes train GRUs to achieve similar accuracy to LSTMs implies that the ability to learn over longer
temporal distances mainly impacts training dynamics. If the GRU can represent the same accuracy, it
would seem unlikely that the model couldn’t find those weights independently through gradient descent,
suggesting that either more sophisticated regularisation or optimization could be helpful.

Concerning xLSTM, we only utilize their sLSTM layers, as the mLSTM layers are extremely slow de-
spite using 16-bit floating-point arithmetic and handcrafted CUDA kernels provided by the authors. The
sLSTM layer, although slower, demonstrates even lower loss compared to LSTMs, which is intriguing.
Given that the core idea behind sLSTM is to increase representational capacity and extend the complex-
ity of its representational space, we would expect substantial improvements in basecalling. However,
a significant issue appears to stem from the higher FLOP count in sLSTMs due to the increased size
complexity of their internal state. Furthermore, we were unable to achieve high enough accuracy on
the main dataset to pursue this direction further.

4.2.2. Exploring the transformer layer
While transformer layers are slow due to the O(n2) computational requirement during inference [32],
they are worth investigating for their ability to achieve top accuracy in highly competitive tasks such
as automatic speech recognition [55] and image classification [69] and occasional works that find their
throughput and latency to be competitive with other competing architectures [6]. The idea being that
if a technique can increase the accuracy of a transformer network, we can later tune the model for
throughput using various other techniques (such as by manipulating which parts of the attention matrix
we compute, or using operations that are an alternative to attention). Our first dataset and task for
model development was the 2GB small dataset.

Chain-of-Thought model development
To enhance the performance of our transformer-based models on the base recognition task, we ex-
plored the incorporation of the chain-of-thought (CoT) mechanism. Inspired by recent research indi-
cating that CoT allows models to recognize patterns at higher levels of the Chomsky hierarchy [57],
we hypothesized that integrating a CoT approach could improve accuracy without significantly impact-
ing inference time. Given that the theoretical benefit can be achieved with a chain length of log2(n)
(approximately 8 for our sequence length of n = 400), this technique was particularly appealing.

We developed several versions of our model, each progressively integrating the CoT mechanism in
different ways. Our base architecture consists of a 1D convolutional layer for initial feature extraction,
followed by ReLU activation and positional encoding [75]. The core of the model employs transformer
layers to capture dependencies in the sequence data.

Model architecture details All model variants share a common backbone architecture comprising:

1. Convolutional Layer: A 1D convolutional layer processes the raw input sequences to extract
local features. The kernel size, stride, padding, and dilation parameters are adjusted across
versions to optimize performance.



4.2. Model development 28

2. Activation Function: A ReLU activation function introduces non-linearity.
3. Positional Encoding: Positional encoding is applied to the embeddings to retain sequence order

information, which is crucial for processing sequential data.
4. Transformer Layers: Depending on the version, transformer encoder and decoder layers are

utilized to model long-range dependencies and capture complex patterns within the data.
5. Chain-of-Thought Mechanism: Implemented through reasoning tensors and iterative process-

ing steps, the CoT mechanism enables the model to simulate a reasoning process over the input
data.

6. Fully Connected Layer: A final linear layer maps the transformer outputs to the desired output
dimensions (e.g., classification logits or regression targets).

SequenceNetCoT two-step variants To incorporate the CoT mechanism, we introduced a series
of models labeled SequenceNetCoTTwostep, each refining the approach to integrate reasoning steps
into the model’s processing pipeline.

• Version 1 (SequenceNetCoTTwostep V1): In this version, we introduced a reasoning tensor
initialized to zeros, representing a fixed number of reasoning steps (reasoning_steps). Both the
input sequence and the reasoning tensor undergo positional encoding. We then pass the rea-
soning tensor through a transformer decoder layer, using the encoded input sequence as the
memory (context). This allows the model to generate reasoning representations based on the
input data.

• Version 2 (SequenceNetCoTTwostep V2): Building upon the previous model, we added special
tokens to act as separators between the input sequence and the reasoning steps. Specifically,
we introduced two learnable parameters: a special token inserted between the input and rea-
soning tensors, and another to denote the end of the sequence. This aims to help the model
distinguish between different segments of the input, potentially improving the alignment between
the reasoning steps and the relevant parts of the input.

• Version 3 (SequenceNetCoTTwostep V3): This iteration incorporates an iterative reasoning
process. For each reasoning step, the model updates the reasoning tensor by attending over
both the input sequence and the accumulated reasoning from previous steps. This is achieved
by looping over the reasoning steps and sequentially updating the reasoning tensor. This process
allows the model to refine its reasoning iteratively, simulating a step-by-step thought process.

• Version 4 (SequenceNetCoTTwostep V4): In this version, we enabled multiple reasoning itera-
tions controlled by a hyperparameter (reasoning_iterations). We also replaced the zero-initialized
reasoning tensor with learnable parameters, allowing the model to learn an initial state for the
reasoning steps. This change provides the model with greater flexibility to determine the starting
point of its reasoning process.

• Version 5 (SequenceNetCoTTwostep V5): The final iteration explores several architectural mod-
ifications:

– Residual Connections: We added residual connections between the input embeddings and
the outputs of the transformer encoder, allowing the model to leverage both the original input
and the transformed representations.

– Encoded Context Inclusion: Weexperimented with including the encoded context (the output
of the transformer encoder applied to the combined input and reasoning tensors) in the
final reasoning steps. This aims to enhance the information flow between the input and the
reasoning mechanism.

– Separator Tokens: Similar to Version 2, we included separator tokens to delimit different
segments within the sequence, aiding the model in distinguishing between the input data
and reasoning steps.

Implementation considerations Throughout the development of these models, we carefully consid-
ered the computational complexity introduced by the transformer layers and the CoTmechanism. While
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transformer layers have a quadratic time complexity with respect to sequence length (O(n2)), we aimed
to mitigate this by limiting the length of the reasoning steps and optimizing the model architecture.

Experimental results We conducted extensive experiments on the 2GB small dataset. Initially, the
CoT models showed worse validation loss than vanilla transformers. However, after increasing the
number of training epochs to 15, the V5 CoT mechanism reached lower validation loss (by about 3%)
than the baseline two-layer transformer-encoder-based model, and both reached better validation loss
than even a two-layer GRU.

Model Best Validation Loss
two-layer transformer baseline 0.01186
SequenceNetCoTTwostep V5 0.01176
two-layer GRU baseline 0.01192

Table 4.2: Validation loss of chain-of-thought-based transformer network and baselines when trained on small 2GB basecalling
dataset

Benchmarks also showed that this updated block structure achieves throughput 10 to 15 percent lower
than the transformer baseline, so it was tested on the SACall architecture [40] as a drop-in replacement
for the transformer encoder blocks. This led to a negligible increase in accuracy of about 0.5%, however,
interestingly it led to a greater increase in out-of-distribution generalisation of 3.63%

Given the impact of the chain-of-thought technique on accuracy, we tried to use it with a Mamba-based
architecture, both as a drop-in replacement and, because the Mamba architecture does not attend to
all previous tokens directly (but rather through a recurrent state), we hypothesized that the chain-of-
thought vectors should be interleaved with the input vectors (so, instead of concatenating the chain-of-
thought vectors to the block’s input, we interleave them with the input, initialized as a trainable vector
so that the model is able to distinguish them from input data). This did not have any favorable impact
on validation loss.

Finally, we did run our best model on the 52GB dataset (see table 5.1). We notice that the chain-of-
thought model performs slightly better in validation accuracy, while having a bigger impact on general-
ization. Throughput is, of course, lower due to the increased number of operations.

Locality-enhanced transformer models
In our exploration of transformer models for basecalling, we investigated the impact of incorporating
local attention mechanisms, as proposed in the BigBird architecture [80]. The motivation behind this
approach was to capture local dependencies within the input sequences while maintaining the ability
to model long-range interactions.

Our experiments with local attention yielded mixed results. On the small dataset, we observed an im-
provement in validation loss compared to the standard transformer model. However, when we applied
the same technique to the main dataset, the improvement did not replicate, and the model’s throughput
remained unchanged. Our finding that this technique does not seem to increase throughput remained
true across various implementations using their own optimizations, including xformers [48], fairseq [59],
and the recent flexattention library [35], indicating that the issue was not related to the specific imple-
mentation.

Further analysis revealed that the primary factor limiting the throughput in both the local attention model
and the Reformer [45] was the number of attention heads. Reducing the number of heads led to a
significant degradation in validation loss, suggesting an inherent overhead associated with computing
the heads separately. Figure 4.1 illustrates that the Reformer model does not exhibit an advantage in
validation loss over the standard transformer, and reducing the number of heads substantially worsens
the validation loss. For this reason we did not pursue these two models.

Conclusion: transformer improvements for basecalling
Overall, it is evident that there is some room for improving transformer networks for basecalling, as
demonstrated by our findings and the CATCaller [54] paper. Additionally, it would be beneficial to in-
vestigate how these improvements can be coupled with throughput optimization techniques for effective
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deployment of models. Ultimately, our findings emphasize the pay-offs in accuracy that can come from
delving into these various routes for enhancement of transformer-based basecalling models.

4.2.3. State-space model development
The model using the S4 layer was the model offering the best throughput-validation loss trade-off when
not considering transformer-based models, so that extensive work was made to find block structures
around it that could improve the model’s accuracy or its throughput. This involved parameter sweeps,
experimentation with residual connections, normalization layers, linear layers between the S4 layers,
all to develop the best-performing block that we can repeat multiple times, as is the approach used
in most of the s2s model papers we’re including in this thesis. The resulting model exhibited good
training dynamics and improved validation loss on the small dataset, so we went on to continue model
development on the 52GB dataset.

The best S4-based block developed had the following structure: batch norm, a bidirectional s4 block [32]
with dropout 0.1 maximum kernel length 64 (which was found to have a large positive impact on valida-
tion loss on the 2GB dataset, as well as a large impact on throughput), the GELU activation function,
and using the original S4 kernel (no HiPPO or other techniques shown in [32]). With this architecture,
we were able to achieve validation accuracy on the 52GB training set of around 5.6% lower than SACall,
at 0.817 versus 0.866, so it was not pursued further. We hypothesize that because S4 does not per-
form state tracking [56], it is not able to track the change in the internal state of the nanopore during
basecalling along the time dimension. Similar efforts were applied to Mamba and Mamba2 because
it was shown to be an improvement upon S4 on the task of language modeling and in state tracking
tasks, but none of our attempts were able to achieve good accuracy or validation loss.

4.2.4. Distillation
Knowledge distillation is a technique where the behavior of one neural network (either its outputs, or
some intermediary values taken from its architecture) is put in a loss function along with equivalent
values from another network which is considered to have knowledge, or abilities, which the former
model does not have, so that the gradient descent process not only uses ground truth labels but a
reference coming from another model which has some advantage over the main model to train. The
seminal work on knowledge distillation focused on expert models distilling their knowledge into models
that combine their expertise [36], but as recent transformer-based models show improvements in ability
that scale with the size of the training data and the model’s parameter counts [38], more recent works in
distillation have focused instead on treating the larger or longer-trained (or both) model as the ”expert”
model from which a model with more favorable computational characteristics learns richer information
than just its training data during training [10].

We attempt this on the 52GB dataset directly since it is a simple modification of the training process,
by first training a Bonito model with dimensionality 512 (to maximize accuracy), and then using this
pre-trained model to distill its abilities to models with dimensionalities 64, 96, 128, 384. We distill the
large model into the small model by taking the output of either their encoders (the LSTM layers) or their
decoders (the CRF model’s input, see [61]), applying a linear layer to the small model’s encoder output
so it matches the dimensionality of the big model’s (when distilling encoder outputs). When distilling
on decoder outputs, we found that a mean-square error loss worked best, however this constrained
distillation to models with the same decoder layer (CRF, whereas SACall for example uses a CTC
decoder). This is why encoder-based distillation was pursued, and we found that in this case, using
a mean-square error loss collapses model accuracies during training, but that Kullback-Leibler diver-
gence works much better. Thus, decoder distillation uses mean-square error and encoder distillation
uses Kullback-Leibler divergence as a loss function. Guided by [10], we stop the distillation before
ending training, in our case after reaching 50% of the training steps, which we found empirically was
a good ratio, as can be seen in Figure 4.2, where we also notice that the model with dimensionality
128 actually suffers from distillation. We found this to hold in general, and were not able to increase
accuracy for a model at or below 128 using distillation, a fact we tentatively attribute to model capacity
being saturated on the smaller models, and them therefore not being able to represent more complex
patterns.

Other techniques attempted are self-distillation [82], where a model is distilled from a trained model of
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Figure 4.2: Validation and generalistaion accuracy of Bonito models with different dimensionalities, depending on what
percentage of total training steps we stop the distillation loss. 0.5 means we stop distillation halfway through training. 0.0

means that the model is not distilled at all. Number before the arrow indicates teacher model dimensionality, whereas number
after the arrow is the student model dimensionality.

the same dimensions as the student. This was repeated multiple times and found to increase accuracy
and generalisation for models with dimensionality 256 or higher. Best results are in Table 5.1 and are
chosen from the mutliple results collected during training. Complete sweeps and accuracy numbers
for all methods are not available due to time limitations.

4.2.5. Other modifications
Mixture of experts models
Another strategy we pursued to improve our model’s performance was a technique commonly used
to increase accuracy (or perplexity in the case of language modeling) by increasing the parameter
count without increasing inference complexity. This has successfully been done in transformer and
Mamba-based architectures [41, 3]. The idea is essentially that a single layer is replaced with a set
of identical layers with different parameters (termed ”experts”), and a lightweight gating layer selects
a small number of them which the input is given to, and their outputs are averaged. Thus, one could
have 128 feed-forward layers, but only select 2 for every input, thereby not loading or computing the
remaining 126. We found that this approach does not benefit basecalling at our levels of throughput
because just setting the batch size at 16 would mean that every single batch chooses different experts,
which means all experts end up being run. We also tried gathering sequence elements by chosen
expert in order to group computation, but this was found to cause significant overhead. We advise
against pursuing mixture-of-experts architectures in this way for the purpose of basecalling.

Fastfeedforward layer
Fast feed-forward [5] layers are an alternative to feed-forward layers in neural networks that perform
sparsification so that during inference, a multi-layer perceptron (such as the one present in the trans-
former encoder block) which normally takes a runtime of O(d2) where d is the dimensionality of the
input vectors, can be replaced with their layer that has a runtime of O(log2(n)) with comparable accu-
racy. In our experiments, the mechanism through which computational complexity is reduced, meaning
the sparse matrix operation, led to lower throughput than an equivalent perceptron on our Nvidia ac-
celerators (2080ti, 3090), and therefore was not pursued further. This is despite attempting multiple
implementations, including the one offered by the authors themselves. We theorize that such an ap-
proach would work better if custom CUDA kernels were written that implement these operations.

Kolmogorov-Arnold networks
Kolmogorov-Arnold networks (KAN) [52] are another replacement for multi-layer-perceptrons, however
instead of their theoretical base being based on the universal approximation theorem [39] where the
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subject of approximation is broadly any differentiable function, they are based on the Kolmogorov-
Arnold representation theorem [46] which focuses instead on continuous multivariate functions, stating
that they can be approximated by compositions of univariate continuous functions.

Batch Size Conv1dOperatorKAN Conv1d Two-Layer KAN Two-Layer MLP
1 1’626.53 13’917.09 2’081.21 9’387.37
16 25’467.84 219’266.50 8’580.51 47959.33
64 30’892.11 835’149.76 8’749.77 52188.53
256 31’310.66 1’150’916.88 8’794.13 53’755.35

Table 4.3: Throughput in batches/second for various models with different batch sizes. Conv1dOperatorKAN is the kan-based
1-dimensional convolution (a two-layer KAN replaces the linear layer and non-linearity of the conv1d model), Two-Layer KAN is
just a two-layer KAN network, and two-layer MLP is an equivalent two-layer multi-layer perceptron. Convolutions have kernel
size 5, 4 input filters and 16 output filters. The MLP and two-layer KAN model have two layers each, both with input and output

neuron count of 64.

We start by measuring the throughput of equivalently sized perceptron-based and KAN-based networks
using the highest-performance implementation we could find [66], which is a version where the univari-
ate continuous functions are learnable grids of re-weighted sine functions. We notice that there are
multiple order of magnitude differences between the KAN-based models and their perceptron counter-
parts, as seen in table 4.3. The impact on accuracy is measured by replacing convolution layers in
the Bonito architecture [61], specifically the first and second layer, in order to minimize the impact on
throughput, since those operations take a small percentage of total execution time.

Model Best Train Acc Best Val Acc
1st conv kan 0.920f 0.901f
baseline 0.923f 0.905f

2nd conv kan 0.923f 0.907f

Table 4.4: Train, and validation accuracy measurements on 52GB basecalling data for Bonito model where we replace either
the first or second

Results are in Table 4.4, where we notice that using a KAN on the first convolution worsens validation
accuracy. This, along with the fact that the gradient magnitudes were higher on this model, lead us to
think that the model does not stabilize during training. Replacing the second convolution with a kan-
based one however, does have a positive impact on validation accuracy, which could be explained by
its higher representative power. Overall, because of the impact on throughput, we do not consider this
result worth pursuing further.

4.3. Exploring alternative input representations
In our pursuit to enhance the accuracy and efficiency of the basecalling models, we explored various
transformations and parameterizations of the input sequence. The primary motivation was to present
the neural network with an input that encapsulates more meaningful features from the raw signal. Two
prominent methods we experimented with were the Fourier transform and Taylor series approximation.

The Fourier transform was our initial approach, converting the time-domain signal into the frequency
domain. The mathematical formulation of the discrete Fourier transform (DFT) we used is given by:

X[k] =

N−1∑
n=0

x[n] · e−j2πkn/N

where x[n] is the input sequence, N is the total number of samples, and X[k] represents the frequency
bin. Although this technique decomposes the signal into its constituent frequencies, we observed that
it reduced the accuracy of our models on the task of basecalling. Given that this type of information is
highly successful for tasks such as speech recognition, we attribute this to a loss of information with
respect to the original signal. This could be because the Fourier transform focuses primarily on the
frequency components and might not retain the phase information as effectively as needed.
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Acknowledging the limitations of the Fourier transform in our context, we considered the Taylor series
approximation as an alternative. The Taylor series provides a polynomial approximation of the function
around a specific point, effectively capturing the local behavior of the signal. The n-th degree Taylor
polynomial for a function f(x) around a point a is defined as:

Tn(x) = f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n

For our discrete input signal, we calculated the finite differences to obtain the derivatives up to the
desired degree. This method was compelling because it maintains the positional height information of
the signal and approximates the local trends, which could be beneficial for our sequence-to-sequence
models.

Initial testing involved converting small chunks of the input signal into their polynomial approximations
and using these as inputs to our neural network models. This was useful on the small dataset, and a
simple change for the Bonito model, so we tested it on the 52GB dataset. On the 52GB dataset, this
lead to an increase in validation accuracy, but the impact on throughput and memory usage was drastic,
as we could not compute it efficiently on our GPUs, so it was not pursued further.

The best hyper-parameters for this Taylor approximation we could find were using a 17-element sliding
window (of stride 1) and a Taylor polynomial of degree 81.



5
Novel architectures for basecalling

In this chapter we design new architectures for the goal of pushing the Pareto optimal line of throughput
and accuracy for the task of basecalling. We compare our proposed model to two baselines, Bonito
and SACall, using the 52GB dataset, and by varying their model dimensionalities in order to adjust their
position in the accuracy/throughput trade-off. This is based on looking at Oxford Nanopore’s multiple
Bonito architectures made available, and noticing that in order to adjust that trade-off themselves in the
direction of increased throughput, they do in fact lower the dimensionality of the model and sometimes
make no other changes at all. The Bonito-fast model, for example, has a dimensionality of 96, which
is why it is included in table 5.1 in this chapter, alongside the one with dimensionality 384, which is
considered the ”high-accuracy” model by Oxford Nanopore.

5.1. ParallelRNN
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Figure 5.1: Throughput measurements of a 5-layer LSTM with input and output dimensions 384 (as in Bonito) where we
repeatedly divide the sequence length by two by concatenating two halves of the input sequence along the batch dimension,
starting with 512 to be close to the actual Bonito sequence length of 400. Run on Nvidia 3090 GPU. Average of 10 iterations.

5.1.1. LSTM performance and parallelization
In our goal of finding more efficient architectures than LSTMs, the problem we are trying to solve is the
theoretical limitation of the recurrent dependence on all previous outputs, which means for any element
j of its input sequence, the LSTM requires the computation of all previous inputs regardless of their
relevance to the current element. This is illustrated in Figure 5.1, where we see that an input sequence
that is split up and concatenated along the batch dimension before being computed by the LSTM can
be computed up to an order of magnitude faster. To explore this further, we implement a variant of the
LSTM layer, where we first split the input sequence into n chunks, and then concatenate the chunks

34
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along the batch dimension so they are computed in parallel. Since the goal is still to process as many
input batches per second as we can, and increasing the batch size increases throughput for LSTMs,
we measure throughput for different input batch sizes in Figure 5.2. Initially we see an advantage,
which is the effect of parallelization, at small batch sizes. The advantage of using this layer seems to
disappear as the batch size of the input sequence increases. At batch size 256 and after, the models
have near-equal throughput.

There are multiple reasons this could conceivably happen, but because the different models perform
practically the same number of floating point operations, the performance stagnation must be due to
data locality issues such as memory bandwidth or cache sizes. The differences between all models on
the figure can also only be attributed to this, because computationally they only differ in terms of the
order in which the floating point operations are made, so that Split LSTM allows a greater proportion of
data (set by the splitting factor) to be computed in parallel.

We then halve the precision of the model and its inputs, meaning all floating points then occupy half
the space. It goes from using 32-bit full-precision floating points to using 16-bit half-precision floating
points. It also is able to double its compute throughput, as instead of using 16-bit tensor cores with
32-bit accumulates, it uses 32-bit accumulates, which on our GPU offers double the theoretical peak
FLOPS. We will show that this corresponds directly to what we see on the graph. We approximate the
FLOP count of an LSTM layer using the following equation:

FLOP countfwd = ((d+ h)× (4× h))× seq_len× num_lay

Here, d is the dimensionality of the input, h of the hidden state (both equal in our case), seq_len is the
length of the input sequence and num_lay the number of layers. We are only considering the matrix
multiplications in the LSTM cell, as the rest of the operations are comparably negligible at our scale.

Plugging in our variables in this equation and dividing it by the throughput we’ve measured in Figure
5.2, we find peak FLOPS of around 181 in float32, and 363 for float16. This means we reach peak
theoretical FLOPS for our GPU, but also that if our GPU had less memory, only the Split LSTM would
achieve peak FLOPS.
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Figure 5.2: Throughput measurements of two LSTM layers with same dimensions as Figure 5.2 and ”Split LSTM” where the
input is split into two along the sequence dimension and concatenated along the batch dimension. Run on Nvidia 3090 GPU.
Left uses full-precision (32-bit) floating points, right has half-precision (16-bit) floating points. Average of 32 iterations. Split

LSTM is put through PyTorch’s JIT compiler to minimize split-related overhead.

When we switch to 16-bit floating points, the Split LSTMmodel preserves its advantage over the default
LSTM for input batch sizes more than 2x bigger. In summary, we find that the advantage of paralleliza-
tion over recurrence is reaching higher throughput at earlier batch size. Batch size here is effectively
a way of increasing GPU occupancy until peak FLOPS are reached, meaning that before reaching
that threshold the GPU is slowed down by having to wait for previous iterations. This also implies that
to get good LSTM performance (and therefore maximize basecalling throughput using Bonito), hard-
ware should be picked such that a batch size large enough to reach peak FLOPS can be run, and
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where memory bandwidth is large enough to support what is essentially one big matrix multiplication
(in contrast to, say, the attention operation, where bandwidth constraints are more difficult [17]).

In fact, deeper analysis using Nsight Systems on an Nvidia T4 GPU shows that once the model reaches
its maximum throughput, the DRAM bandwidth is only around 12% of maximum bandwidth (for a GPU
with 320GB/s bandwidth) and general compute utilization of about 40% (including tensor cores and
active warps).

5.1.2. Parallel formulation of RNNs
After using an inverse gradient method on an LSTM-based basecalling model, we noticed that even
though the LSTM could use an arbitrarily long amount of its previously-seen inputs, it seems to period-
ically activate its forget gate and thereby restrict itself to using a range of around 3 of its input vectors.

Inspired by the Split LSTM and the advantages of parallelization, we propose the insight that a single
step of the LSTM model can be computed in parallel, if it is applied to all elements of a sequence at
once. By doing this for multiple iterations, the LSTM operation can be run in parallel, at the cost of a
much reduced receptive field. Since base predictions generally do not seem to depend on data more
than 5 bases away from the current one when learning the underlying signal function, and the CRF
decoder takes explicit care of modeling the sequence probability distribution (see section 3.1 for this
terminology) this should not result in a significant reduction in accuracy. If we consider one LSTM cell
iteration as a single function, the algorithm looks like this:

Algorithm 1 Parallel LSTM Pseudocode
Require: Input sequence X ∈ RT×D, where T is the length and D is the dimensionality
Ensure: Output hidden states H ∈ RT×D and cell states C ∈ RT×D

1: Initialize H ← zeros(T,D)
2: Initialize C ← zeros(T,D)
3: for j = 1 to number of iterations do
4: for i = 1 to T do
5: (H[i], C[i])← LSTM(X[i],H[i], C[i])
6: end for
7: for i = 1 to T - 1 do
8: H[i]← H[i+ 1]
9: C[i]← C[i+ 1]
10: end for
11: end for
12: return H,C

Note that the second and third for loops do not have data dependencies along their iterations, so
they can be run in parallel. This is how we implemented the layer. When implemented this way, the
LSTM cell computes all gates and outputs with sequence and batch-wise parallelism. There is also an
increase in total computation, because a single iteration, for sequence length T computes T times the
LSTM cell function, which is as many as a standard LSTM layer, and we want to do this for multiple
iterations in order to profit from the advantage of LSTM’s at basecalling (see Chapter 4).

Preliminary performance benchmarks of this approach reveal that a lack of custom CUDA kernels like
used in PyTorch’s official LSTM implementation make it hard to compare both algorithms directly. To
account for this discrepancy, we compare our models to three different LSTM implementations:

• Bonito is the Bonito architecture using an implementation of LSTM using Pytorch base layers
• BonitoJIT uses PyTorch’s Just-in-Time compilation to perform automated kernel fusion and other
techniques to automatically optimize our custom LSTM implementation

• BonitoOptimized uses the default PyTorch LSTM layer with its custom kernels, and is the imple-
mentation used until now in this thesis

We choose to use the parallel LSTM as a drop-in replacement for the LSTM in the Bonito architecture
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for a direct comparison. Results are shown in table 5.1. Our model’s training dynamics were simi-
lar to LSTMs and the gradients were even more stable than LSTMs. We ascribe this to the shorter
sequence length of individual cell outputs, which give less opportunity for exploding or vanishing gra-
dients. The accuracy, however, is not on the level of Bonito, but is still superior to transformer-based
SACall, showing further that it retains its advantage over alternative architectures. Given this archi-
tecture is essentially an LSTM where each output element is computed from a small number of input
elements, these results indicate that the remaining accuracy delta with standard Bonito is related to
the receptive field of the LSTM cells (meaning, the length of the previous context they use to generate
their final output).

Model Name Dimensionality Validation Generalization
Accuracy Accuracy

SACall 96 0.826 0.747
128 0.847 0.765
256 0.866 0.779
512 0.869 0.792

SACall CoT (4 layer) 256 0.872 0.790

Bonito/best distill 64 0.871/0.851 0.817/0.810
96 0.878/0.871 0.828/0.828
128 0.883/0.879 0.840/0.839
256 0.893/0.897 0.856/0.863
384 0.899/0.905 0.899/0.871
512 0.901/0.906 0.869/0.871

Bonito GRU/best distill 64 /0.847 /0.785
96 0.875/0.865 0.823/0.813
128 0.879/0.873 0.836/0.826
384 0.894/0.900 0.833/0.866
512 /0.901 /0.871

Bonito (parallel LSTM) 64 0.858 0.775
96 0.859 0.794
128 0.862 0.789
384 0.874 0.801

DenseBaseConv 64 0.861 0.786
96 0.868 0.799
128 0.873 0.812
256 0.881 0.828
384 0.885 0.835
512 0.887 0.840

Bonito ParallelRNN 64 0.808 0.706
96 0.827 0.727
128 0.839 0.741
256 0.858 0.761
384 0.864 0.748
512 0.860 0.746

Bonito 1stconvkan 384 0.894 0.857
2ndconvkan 384 0.899 0.865
2ndconvkan + wider + sinekan 384 0.899 0.867

Table 5.1: Validation and generalization (on human DNA) accuracy of different models after training on the 52GB dataset for 5
epochs. Dimensionality in bold when it’s the dimensionality used in [61]. Bold numbers in dimensionality column indicate the

best-performing dimensionality in the model group, bold numbers in accuracy columns indicate best model of all.
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5.1.3. ParallelRNN
To push this further, we decided to use the insights found in the GRU ablations performed in Chapter 4
(see table 4.2.1) in order to modify this architecture. First, we started with a parallel implementation of
the GRU recurrent model. The z and r gates (see equations 2.13 and 2.14 respectively) were removed
to improve throughput. Because the model does not go through a large number of layers, this should
have even less of an impact on accuracy, and to deal with instability caused by recurrent iterations, the
layer output is normalized using a GroupNorm [79] layer, which struck a balance between minimizing
validation loss and the impact on throughput.

 input tensor [b, d, s]

Hidden State
Linear

Mixer Conv1d +
LogSigmoid

Linear

Nx
Add + PReLU

GroupNorm(8)

 output tensor [b, d, s]

Left Shift (Nx)

Initial Hidden State

Nx

Figure 5.3: The architecture of the ParallelRNN layer, meant as a replacement for the LSTM layers in the Bonito model
architecture. Nx denotes the multiple recurrent iterations, so at each nth iteration, we use the output of the iteration as the new
hidden state, and the nth left-shifted output of the Linear layer on the lower left. Mixer convolution is a convolution for which in

the final ParallelRNN models in Table 5.1 the kernel size was 5, and the initial hidden state is a trainable vector that is
duplicated to have the same shape as the input tensor. The input tensor has shapes b, d, and s, which correspond respectively

to batch size, model dimensionality, and sequence length. Activation functions were determined through trial and error.

Another improvement inspired from table 4.2.1 aiming to increase accuracy by increasing the receptive
field of the recurrent cells was to add what we term a ’mixer’ layer, which is a 1d convolution applied
to the hidden state before each iteration. This mixer allowed to reach validation losses remarkably
lower than the strong GRU baseline with a number of iterations set only to 3, as seen on Figure 5.4.
This finding did not transfer to the larger dataset, where mixer width did not have the same effect on
accuracy, which was simply lower than all tested dimensionalities of the LSTM-based Bonito (see table
5.1), though it does show a better pareto frontier than SACall (see Figure 6.1). Further results are
discussed in the next chapter. This is after tuning the mixer kernel size, which was found to cause low
throughput and had to be reduced to 5. In the final model, we use two ParallelRNN layers, as this was
determined to yield the best accuracy/throughput trade-off, and the architecture is depicted in detail in
Figure 5.3.
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Figure 5.4: Validation accuracy of ParallelRNN model on 2GB dataset depending on hyperparameter ’mixer’ compared to a
GRU-based baseline.

5.2. DenseBaseConv
Another idea inspired by the analysis in Chapter 3 was based on the hypothesis that in the pursuit of
higher throughput/accuracy ratios, one might want the ’computational budget’ to be spent where the
most information is present to make predictions. By focusing on learning the signal function, the model
would be able to avoid spending computation on learning longer-distance relationships in the data. For
example, the architecture of the LSTM is engineered to retain information from as many inputs back
as there are in the sequence, and the transformer layer is meant to learn relationships on the whole
sequence, forwards and backwards.

Conv1d, k=4 + GELU

InstanceNorm1d

Conv1d, k=1 + GELU

Add

tensor [b, d, s]

tensor [b, d x 2, s]

tensor [b, d, s]

Figure 5.5: Architecture of a single DenseBaseConv layer parameters b, d, and s are the batch size, dimensionality, and
sequence length of the input. Parameter k is the kernel width. All convolution layers have padding chosen such that it does not

change the length of the sequence, and the stride is always set to one.

In order to focus on local relationships, the initial version of the DenseBaseConv (Dense Base Con-
volution) block was an instance norm, then a 1d convolution with kernel size 2 and activation function
GELU, and two linear layers with GELU activations, and finally a residual connection from the output
of the instance norm to the output of the last linear layer. This architecture initially achieved better
validation accuracy than the LSTM baseline on the 2GB dataset, so it was developed further.

Further changes were made to the CNN convolutions when compared to the base Bonito architecture,
including replacing the SiLU activations with LeakyReLU activations, reducing the first two convolution
kernel sizes to 3 and 4, and changing the stride of the second convolution to 3, which increases the
sequence length to 666. We also add a Batch Norm after each of the two convolutions, and after the
DenseBaseConv block.
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In the final architecture, shown in Figure 5.5 there is only one linear layer, and the kernel size of the
convolution is set to 5 There is one DenseBaseConv block and one LSTM from the original Bonito
architecture. This was the trade-off we found was best to maximize throughput and accuracy. Its
accuracy measurements on the 52GB dataset are shown in table 5.1 as DenseBaseConv and on Figure
6.1. As can be seen, the model performs close to, but not as well as, the optimized Bonito model.



6
Overall experimental results

In this chapter, we present and discuss the overall experimental results obtained from our exploration
of sequence-to-sequence models for basecalling. We focus on two key aspects: the impact of model
dimensionality and scaling, and the throughput-accuracy trade-off offered by the models under consid-
eration.
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Figure 6.1: Validation accuracy and throughput for different models, on the left we sweep through batch sizes of increasing
powers of two until 1024, after which we increase by 256, and finally we pick the largest throughput regardless of batch size.
On the right we show throughputs at batch size 512, because this is the batch size a practitioner would face when using a
MinION nanopore sequencer (see Section 1.1). We show the main two baselines, SACall and Bonito, two models we

developed with the goal to push the Pareto frontier, DenseBaseConv and ParallelRNN, and one model Bonito GRU where we
simply replace the optimized LSTM layer with an optimized GRU layer. Also present are distilled versions of Bonito and Bonito
GRU, showing their utility in surpassing the pareto frontier, and an enhanced version of SACall implementing a chain-of-thought

mechanism and thereby beating the transformer-based pareto curve. All models are benchmarked with JIT, Inductor and
Cudagraphs compilation (when supported, but JIT compilation rarely works when applied to a whole model), and without

compilation, and the fastest throughput value among them is chosen. All benchmarks are averages of 3 runs during which the
model processes 16 groups of batches (on the rightward plot, one batch group contains 512 sequences). See Section 6.2 for
clarifications of terms ”optimized” ”JIT”, and other considerations affecting throughput. All benchmarks run on RTX 3090.
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6.1. Discussion on dimensionality and scaling accuracy
One of the primary challenges encountered during our experiments was the scaling behavior of themod-
els when transitioning from small to large datasets. The ParallelGRU model, which showed promising
results on the smaller 2GB dataset, required significant adjustments to maintain its performance on
the larger 52GB dataset. Similarly, the DenseBaseConv model, despite its initial success, struggled
to achieve comparable accuracy levels when applied to the larger dataset. Local-attention, as seen in
table 5.1 becomes more unstable as dimensionality is increased, but we have not found a reason why.

These observations highlight a crucial aspect of model development for basecalling: the effective uti-
lization of increased dimensionality. As the dataset size grows, the models’ ability to leverage the
additional information becomes a critical factor in their performance. Our current approaches, while
effective on smaller datasets, do not seem to scale well with increased dimensionality.

6.2. Levels of optimization
Throughput-accuracy comparisons like in Figure 6.1 are difficult to interpret for a few reasons. One
issue is of fused operations. Essentially, the usual case is that when two operations are to be performed
and the results of one are used in the second operation, then the first operation is performed, the
relevant data is taken from the GPU memory into the on-chip memory, the operation is performed, and
the results are brought back to GPU memory, after which the second operation will again retrieve the
data from GPU memory, causing extra waiting time. A fused operation, in our case written as a CUDA
kernel, allows the second operation to be performed before the data from the first operation is copied
back into GPU memory, hence having a positive impact on throughput. BonitoOptimized, for example,
computes one LSTM iteration, including non-linearities and gate point-wise multiplications, in a single
CUDA kernel call. ParallelRNN however, uses distinct kernel calls for the different operations that are
performed on all sequence vectors in parallel.

Another issue is of automated optimizers. the PyTorch deep learning framework provides a just-in-time
compiler (JIT) [65] which attempts to use compiler techniques to optimize the execution algorithm of
the model, i.e. by fusing multiple operations into a single kernel. There are multiple compilers available,
such as the Cudagraphs [30] or the PyTorch Inductor [64] compiler. Whether these methods are used
or not, sometimes determines the final measured throughput. We find that the impact of these systems
is largely dependent on the specific network type, so that an LSTM layer is slowed down by both the
Inductor and Cudagraphs optimizers, while the version using custom kernels (as BonitoOptimized does)
is much faster.

Finally, there are sources of overhead that lead, for example, the unoptimized Bonito and JIT Bonito
models to actually decrease in throughput as their dimensionality is reduced, which could be related
to different kernels being incompatible with certain specific dimensionalities. In this case, it seems the
issue is related to computational intensity, as the greater batch size on the left side of the figure causes
both models to behave more closely to the optimized Bonito models.

To clarify the comparability of the different models presented here, we detail the optimization levels of
the multiple models compared in this chapter:

• All models: CRF and CTC modules utilize a CUDA-optimized decoder provided by Seqdist, and
CNNs are composed of individual convolution layers which use their own kernels to execute
(PyTorch official kernels).

• Bonito: Per-iteration operations of the LSTM layers are individual PyTorch modules, each with
their own kernel.

• BonitoJIT: The LSTM layers are the same as in the unoptimized Bonito model, but they are put
through PyTorch’s JIT compiler before running benchmarks

• BonitoOptimized: LSTM layers are the PyTorch official ones, meaning individual iterations are
performed in a single kernel call.

• ParallelRNN: The RNN component is made of individual PyTorch modules, each having their
own kernels.
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• DenseBaseConv: The DenseBaseConv blocks (see Figure 5.5) are made of individual PyTorch
modules, and automated optimizers did not yield statistically significant increases in throughput.

• DenseBaseConv JIT: Same as DenseBaseConv, but the LSTM is the same as in Bonito JIT
• SACall: Transformer layers are highly optimized PyTorch official implementations, which use
the highly optimized FlashAttention kernels [17]. Automated optimizers did not yield statistically
significant increases in throughput.

• SACall CoT: Same as SACall

6.3. Throughput-accuracy trade-off
In this section, we analyze the results presented in Figure 6.1, discussing the performance of various
models in terms of their throughput-accuracy trade-offs. We will examine these results in several parts,
focusing on the impacts of distillation, the performance of SACall, and the potential of our proposed
ParallelRNN and DenseBaseConv architectures.

6.3.1. Impact of Distillation
Distillation emerges as the most significant contribution of this thesis, with particularly strong results
observed for the base Bonito model. The distilled versions of Bonito consistently outperform their non-
distilled counterparts, with the exception of smaller models, including the ’bonito-fast’ configuration.

For the Bonito GRU model at dimensionality 384, we observe a throughput increase of approximately
20% (7016 ÷ 5868 ≈ 1.20) compared to the optimized Bonito model. This demonstrates that we have
successfully expanded the Pareto frontier not only with the existing Bonito model but also with a new
architecture (the GRU Bonito).

Notably, at batch size 512, which corresponds to the practical scenario of a MinION nanopore se-
quencer, the distilled Bonito GRU model surpasses the Pareto curve of all other Bonito variants in the
high-accuracy regime (dimensionality 384). It achieves a throughput increase of approximately 25%
(3529÷ 2816 ≈ 1.25) while maintaining slightly higher accuracy.

6.3.2. SACall Performance
The results indicate that almost all models outperform SACall, suggesting relatively weak performance
for this transformer-based approach. However, it’s interesting to note that the implementation of a chain-
of-thought mechanism improves SACall’s Pareto curve. While we were unable to train more variants
of this model due to time constraints, this observation supports the potential of research directions
motivated by comparisons of models along the Chomsky hierarchy for finding more efficient sequence-
to-sequence models.

6.3.3. ParallelRNN and DenseBaseConv Performance
The ParallelRNN model achieved the highest throughput among all tested models. While its accuracy
is lower than that of the 96-dimensional Bonito model by about 2.6% (0.864÷ 0.878 ≈ 0.974), it appears
to potentially beat the Pareto optimal curve of the optimized Bonito, especially when the batch size is
limited to 512.

An important observation is the significant difference in performance between unoptimized and opti-
mized Bonito architectures. This suggests that both ParallelRNN and DenseBaseConv could benefit
substantially from custom kernel implementations, particularly ParallelRNN due to its unique computa-
tion method.

To further explore optimization potential, we benchmarked DenseBaseConv using the JIT-compiled
unoptimized LSTM implementation. We found that JIT compilation has a more pronounced effect at
smaller batch sizes and dimensionalities.

When compared to JIT-compiler-optimized Bonito, which represents a more comparable level of opti-
mization, our DenseBaseConv model surpasses the Pareto curve:

• In a constrained batch size scenario (512), all tested DenseBaseConv models outperform Bonito.
The best DenseBaseConv achieves approximately 80% throughput increase (3960÷2191 ≈ 1.80)
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with accuracy between Bonito’s 128 and 192 model dimensionalities. This means we outper-
form the Bonito-fast architecture in this scenario, which is particularly relevant for the MinION
sequencer’s output of 1.6× 106 bases per second.

• In unconstrained scenarios, we surpass the smallest Bonito JIT model with a speedup of approx-
imately 3.64× (6037÷ 1654 ≈ 3.64) while maintaining slightly better accuracy.

These results suggest that DenseBaseConv could offer a better trade-off than Bonito in some situations,
particularly very-high-throughput scenarios. Furthermore, it implies lower hardware requirements at
high-throughput regimes for larger numbers of concurrent nanopores.

In conclusion, our proposed models, particularly when optimized, show promising potential to push
the Pareto frontier of throughput-accuracy trade-offs in basecalling. The success of distillation tech-
niques and the performance of our novel architectures open up new avenues for improving basecalling
efficiency, especially in resource-constrained scenarios.



7
Conclusions and future work

7.1. Conclusions
In this thesis, we explored various sequence-to-sequence models and their potential for improving the
accuracy and throughput trade-off in the task of basecalling for nanopore sequencing. Our investiga-
tions led to several key findings:

• Distillation has allowed us to go beyond the state-of-the-art in throughput/accuracy, including with
new models (GRU-based Bonito) and at comparable levels of optimization, a new architecture
(ParallelRNN).

• Transformer-based models, particularly those enhanced with chain-of-thought mechanisms and
locality-aware attention, showed only slight improvements in accuracy compared to baseline mod-
els. These modifications demonstrate the potential for further optimization of transformer archi-
tectures for basecalling, but they also show that the transformer network is not very well adapted
for the task of basecalling at this scale of throughput.

• Recurrent neural networks, specifically LSTMs and GRUs, remain strong contenders for basecall-
ing at high-throughput regimes. Our ablation studies provided insights into the crucial components
of these architectures that contribute to their effectiveness.

• The analysis of computational properties and hardware utilization revealed that memory band-
width requirements for basecalling are relatively low, suggesting that consumer-grade GPUs
could be a cost-effective solution for this task.

Overall, our findings emphasize the importance of considering both architectural innovations and hard-
ware characteristics when designing basecalling models. By carefully balancing accuracy and through-
put, and leveraging insights from our experiments, future research can continue to push the boundaries
of efficient and accurate basecalling for nanopore sequencing.

7.2. Future work
This thesis suggests the following avenues for potentially fruitful research on this topic:

• Developing custom CUDA kernels and optimized implementations for promising architectures like
ParallelRNN and DenseBaseConv could significantly enhance their performance and make them
more competitive with state-of-the-art models.

• Exploring variants of RNN models (as there are many in the literature) would be the next logical
domain to explore in order to search for more efficient basecalling architectures (as long as custom
CUDA kernels are also written for these RNN models, and given the right compute budget)

• Conducting amore extensive examination of the CATCaller architecture, which showed promising
results but could not be fully explored due to time constraints, may provide additional insights
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and opportunities for improvement, perhaps through integration with more efficient transformer
architectures from the literature, such as the local-attention operation.

• Exploring the use of consumer-grade GPUs and parallelization strategies across multiple GPUs
could lead to more cost-effective and scalable basecalling solutions. Especially for LSTMs, it
seems using one GPU for the first half of a sequence and the next GPU for the other half would
increase the ratio of data in memory which can be computed in parallel, thereby increasing uti-
lization until the GPU reaches peak theoretical FLOPS. Exploring the newest GPU architectures
would also be important, to understand how compute resource trade-offs have changed.

• Exploring the use of cheaper accelerators would also make sense, as we found that FLOPS
was the main bottleneck in running Bonito and memory bandwidth was not, which is opposite of
what modern GPUs are focused on (because they target most primarily transformer networks,
which are more bandwidth-bottlenecked than compute). Accelerators similar to Meta’s Next Gen
MTIA [73] could offer better trade-offs as they are designed with FLOPS and total memory as a
bigger priority than memory bandwidth.

• Creating an efficient GPU implementation of Taylor approximations (or a training/inference setup
that performs it on the CPU) could be a catalyst for getting better accuracy from existing models,
as an alternative to the discrete Fourier transform which did not work for us.

• Examining large-batch-size custom kernels for Transformer inference, while existing techniques
often focus on latency at batch sizes close to 1 and dimensionalities higher than 1000, Basecalling
requires at least a batch size of 512 and a dimensionality of 128 could suffice, meaning that a good
execution algorithm should be able to maximise utilisation and minimize the overhead associated
with low-dimensional heads. It does not seem like this is currently the case.

• Models seem to struggle in effectively using their dimensions past a dimensionality of 128. It
would seem that specialised regularisation techniques could be a useful way to get more accuracy
out of bigger models.

By pursuing these research directions, we can continue to advance the field of basecalling for nanopore
sequencing, enabling faster, more accurate, and more accessible genomic analysis. The insights
gained from this thesis lay the foundation for future innovations in sequence-to-sequence modeling
and their application to the crucial task of basecalling.
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